
Design and Analysis ofHincent, Quick Content
Distribution With Priorities and High Incentives

Debessay Fesehaye Kassa
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801-2302

Email: dkassa2@illinois.edu

Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801-2302

Email: klara@illinois.edu

Abstract—Existing literature shows that Peer-to-Peer (P2P)
content sharing can result in significant scalability gains in
addition to assisting content distribution networks (CDNs).
However, currently proposed CDN and P2P hybrid schemes
do not provide accurate and efficient incentives to attract and
maintain more peers. Besides, they do not use efficient prioritized
congestion control and content source selection mechanisms to
reduce content transfer time.

We present Hincent, a quick content distribution protocol,
which uses efficient prioritized rate allocation and content
selection algorithms offering high incentives to participating
peers. The fair incentives attract more peers which securely
download and distribute contents. This in turn can benefit content
providers and network operators. The Hincent rate allocations
results in quicker content transfer time when compared with
existing schemes.Hincentalso employs effective rate enforcement
mechanisms without requiring changes to the TCP/IP stack or
to existing routers. Unlike existing centralized schemes such
as YouTube, the design allows peers to have full control of
(their) contents while sharing them with others using personal
web servers. We have also briefly describe howHincent can be
implemented using surrogate (cloud or cloudlet) servers with
OpenFlow vSwitches.

We have implemented Hincent in the NS2 simulator. Our
detailed trace-based experiments show thatHincentoutperforms
existing schemes in terms of file download time and throughput
by up to 30% on average. The results also demonstrate that
Hincent obtains fair uplink prices for the uploaders and fair
cost for the downloaders maintaining an overall system fairness.
Besides, the results show the efficientHincent enforcements of
the prioritized allocations. Our Hincent implementation using an
Apache SQL Server with PHP in Linux virtual machines demon-
strates that Hincent content index management mechanisms are
scalable.

I. I NTRODUCTION

With the fast growth of the Internet and networking tech-
nologies, there has been an explosive growth of online content
[1], [2]. These online contents are generated either by central-
ized content providers (Comcast, Amazon, etc) or distributed
users (Youtube, Facebook, etc). Such content generation isex-
pected to grow even more (40-45% a year) [2] with the further
expansion and sophistication of the Internet and networking
technologies.

Traditionally, centralized content providers (CCP) use con-
tent distribution networks (CDN) to distribute their contents to
their customers. With the increase in high bandwidth content

demands [1], content providers should either over-provision
their bandwidth to handle peak demands or rely on purchased
service such as Akamai. However as discussed in [3] it is
cheaper for content providers to purchase bandwidth from
their users than using third party content distribution networks
(CDNs) or purchasing the infrastructure to directly serve
contents. Besides assisting CDNs, using P2P networks results
in significant scalability gains as discussed in [4], [5].

While using cooperative customer peers to distribute con-
tent, providers need to be mindful about incentives to pay back
peers for their upload bandwidth. Besides, content providers
need to make sure that the incentives and returns are accurate
enough to offer better quality of service (QoS) guarantees.
Using an efficient, fair and accurate peer incentive mechanism
can also benefit content providers and network operators
significantly. Content providers can save on bandwidth costby
buying peer link bandwidth. Besides, peers who get significant
credit (financial or content credit) from uploading content
are most likely to subscribe to more contents potentially
increasing the content demand. More content demand can
also translate into more link bandwidth demand which can
benefit network operators. As discussed in [6] distributed user
generated contents can also be feasibly shared from homes
allowing users (peers) full ownership and control of their
contents.

Existing incentive-based content sharing mechanisms such
as Price-Assisted Content Exchange (PACE) [7], [8] and
Dandelion [3], [9] do not use efficient incentive mechanisms.
For instance PACE does not guarantee fair-exchange of con-
tent for payment. Dandelion uses fixed bandwidth pricing
mechanism that peers do not decrease their prices to attract
more customers when they have high upload rate and vice-
versa. Besides, such existing schemes do not find and enforce
accurate rates at which peers can download content from other
peers so as to minimize content transfer time. They do not
give a mechanism to prioritize content transfers which is an
important component of 3D [10] and other multi-view stream-
ing applications where some streams are more important than
others based on the view angle. Besides, existing work does
not provide an efficient content source selection mechanism
which chooses a source that leads to high throughput and low
file completion time.

2

In this paper we presentHincent, an efficientprioritized
distributed cross-layer content routing and congestion con-
trol protocol with high incentivesto the participating peers.
The design ofHincent enables distributed network peers to
securely exchange content by providing high monetary and
bandwidth incentives for their resource (bandwidth, storage,
energy, processing, etc) used in the content transfer. It allows
users to have full control of their contents which can be a
2D, 3D data or ordinary file.Hincent can limit the lifetime
of the content to a user-defined parameter. This content age
and the prioritized rate allocation features ofHincent are
specially important for 2D and 3D live streaming contents
which have real time requirements. For instance, to render
a 3D video, streams should be synchronized and rendered
within a short time gap between them. The fair and accurate
incentive, rate allocation, enforcement and content source
selection mechanisms ofHincent allows peers to exchange
content with smaller transfer time than existing schemes. The
Hincent protocol does not need changes to the TCP/IP stack
and existing network devices (routers, switches) that it can be
easily deployed in the current Internet.

We also discuss an extension ofHincent using surrogate
cloud or cloudlet servers to help peer clients transfer contents
faster than using existing schemes. The servers are equipped
with OpenFlow vSwitches and form a network. These servers
in the network are connected using either dedicated or overlay
links. Cloudlets [11] are decentralized and widely-dispersed
Internet infrastructure whose compute cycles and storage re-
sources can be leveraged by nearby mobile computers.

We have implementedHincent in the NS2 [12] simulator
and using an Apache SQL server with PHP in Linux virtual
machines. The NS2 simulator is so robust that descriptions of
the streams of the 3D content can be taken as inputs to produce
an emulated 3D video as output. The simulation results show
how Hincent can outperform existing content distribution
schemes in terms of download time and throughput. The re-
sults also demonstrate that the different components ofHincent
work according to the design. The SQL implementation of
Hincent using PHP shows thatHincent can scale to millions
of peers and contents.

In [13] we presented a short version of ourHincent work.
In that short version, among other things, we did not show
how Hincent rate allocation can be TCP friendly, there was
no discussion of multiple server selection policies and there
was no extension ofHincentusing surrogate servers. Besides,
the short version did not discuss theHincent content index
management (CIM) schemes and how the schemes scale.
We also did not present Apache SQL server implementation
experiments ofHincentCIM in our short version.

The main contributions of this work are as follows.
• We have designed an efficient content distribution pro-

tocol (Hincent) with cross-layer content routing (content
source selection) and congestion control mechanisms. It
can allow distributed users (peers) to have full control of
their contents while securely sharing them.

• We have shown thatHincent provides accurate and effi-

cient incentive mechanisms to benefit content providers,
content users and network operators. The incentive is
in real monetary values (monetary incentivemode) and
can also be translated into download rate (bandwidth
incentivemode).

• Hincentis a max/min protocol making efficient utilization
of network resources resulting in high throughput and
lower transfer time.

• The prioritized rate allocation mechanism ofHincent
allows some applications such as multi-view 3D stream-
ing to assign higher rate to some flows (streams). The
design has content lifetime feature to ensure efficient
transmission of live and multi-view content.

• Hincent uses an efficient content index management
scheme making it deployable in current networks without
having to change the TCP/IP stack, routers or switches.

• We have presented an efficient algorithm which extends
Hincent to use surrogate servers to help peers transfer
contents faster.

• We have implementedHincent in the NS2 simulator
and evaluated its performance. Results show that it can
achieve on average about 30% lower content transfer time
when compared with existing schemes.

• We have experimented withHincent using Apache SQL
server, and have shown thatHincentscales.

The rest of the paper is organized as follows. In section II
we present theHincent protocol. In section III we present
the methodsHincent uses to calculate the rates and prices
which are used in the algorithms of theHincent protocol.
Hincent content source selection mechanism which is also
used by theHincent algorithms is presented in section IV.
In section V we show howHincent rate allocation is TCP
friendly. Section VI discussesHincentscenarios when a flow
ends. A list of other server selection policies is presented
in section VII. In section VIII we present the content index
management component of Hincent. In section IX we show
how Hincent content index management scales with the growth
of the number of content records. Section X shows how our
scheme deals with scarce backbone bandwidth. In section XI
we show howHincentcan be extended using surrogate servers
to help peers exchange contents. We evaluate the performance
of Hincent in section XII. Analysis of related work is given
in section XIII. Finally, we give conclusion of the paper in
section XIV.

II. HincentPROTOCOL

TheHincentprotocol consists of network and content mod-
els, logical and physical architectures and algorithms described
below.

A. Network and Content Model

The network model ofHincent consists of a graphG =
(N,E) of nodesN and edgesE as shown in figure 1. The
node setV consists of the CDN servers which provide content
and the peers which provide and/or request for content. The
edge setE consists of all edges going to and from the nodes.

3

All nodes are linked with each other over the Internet which
may consist of multiple backbone networks. Each node has
link with specified upload and download capacities it buys
(gets) from network operators. The operator backbone network
usually has enough bandwidth to provide bandwidth guarantee
to the users (nodes). This is usually done using protocols such
as the OSPFv3 as a Provider Edge to Customer Edge (PE-CE)
Routing Protocol [14].

Primergy

CDN

PA

PA

PAPA

PA

PA

CIM

PA

Internet

Big Content

Source Peer

Fig. 1. TheHincentArchitecture

The Hincent data model consists of content which is sent
from the CDN servers or from some peers and exchanged
between the peer nodes. We classify the data (contents) into
none real-time ordinary static file (OSC), a realtime (live
and none-live) streaming video content like 2-dimensional
(2D) YouTube or a 3-dimensional (3D) video content [15].
The 3D Tele-Imersive content involves multiple streams from
different view angles which have to be synchronized by the
receiving end to produce a 3D multi-view streaming video.
To synchronize the contents,Hincent uses content lifetime
threshold based on how long a receiving node can buffer. For a
stringent 3D Tele-Imersive environment, where the peers have
to produce interactive content, the content lifetime becomes
very small to ensure a very small delay. For most cases
where nodes view the 3D content, the content life time can be
relaxed.

B. Logical and Physical Architectures

The Hincentarchitecture aims to efficiently distribute con-
tent to network peers benefiting all content actors (content
providers, content users and network operators). As shown in
figure 2, it consists of a content information (index) manager
(CIM) and peer agent (PA). A PA connects a peer with the
CIM. A CIM registers peers and chooses content source to
requesting peers. The CIM is made up of the light weight
front end server (FES), content information database (CID),
the complaint manager (CM) and the archive manager (AM).
The CID consists of a database of contents information such
as the source peers, source upload rates. The CM manages
reports about misbehaving peers. The AM manages old content
information and transaction logs to perform offline content

index analysis. The FES forwards requests to register a new
peer, a new content, or requests for a content, to the respective
CID tables. The FES also forwards peer complaints to the CM.
The CM contacts the AM for complaint history. The CIM
archives old content state information at the AM.

PAPA

AM

CM
CID

FES

. . . PA

CIM

Fig. 2. TheHincentLogical Architecture

The Hincent physical architecture can be described by
figure 1. The architecture consists of the peer nodes with
their PA, the CIM and a big content source peer connected
to its CDN with a bigger link. The big content source sends
its content to the content distribution network (CDN) which
informs the CIM of the new content. The content source which
can be any peer with a PA can also inform the CIM of its
content directly. The other peer nodes can then send a content
request to the content information manager (CIM) via their
peer agent (PA). The peers can get the content either from the
CDN or other peers whichever gives the highest throughput to
price ratio as discussed in the next section IV.

HenceHincentconsists of 3 main logical parts namelycon-
tent index manager(CIM), prioritized max/min rate allocation
(PRA) andbandwidth and content pricing(BCP) as shown
in figure 3. These components interact with each other. The
CIM consists of databases with information of peers and data
contents. The PRA component is done with the help of the
CIM and distributed peer agents (PA). It is where prioritized
rate is calculated for each upload and download link of the
peers and other main content servers. The rates are then used
to choose a content source and to set the sending rates of the
corresponding flows. BCP which is also done by the CIM
and PA is a component where the bandwidth and content
prices are calculated adaptively to ensure incentives between
the participating peers. Peers which upload more, earn more
credit which can be of monetary value or in terms of download
bandwidth or content discounting.

We next discuss theHincent algorithm involving the CIM
and PA.

C. Hincent Algorithms

The Hincent algorithms are cooperatively run by the CIM
and PA, to compute transmission rate and price (bandwidth,
content) metrics for the content distribution. To obtain the rates
at which each content is transmitted from one node to another
node and the bandwidth usage price,Hincentfirst carries out
temporary rate and price calculations at the CIM at every

4

Prioritized Max/Min
Rate Allocation

Content Index
Manager Content Pricing

Bandwidth and

Fig. 3. HincentLogical Components

request or at every control intervalτ . The rates and prices
are then sent to the PAs, updated by the PA and sent back to
the CIM. The CIM then uses these rate and price values to
select a content source (peer or CDN server) and determine
the rate at which content is transmitted.

To define theHincentrate and price metrics, we first present
the following notations in table I. For eachHincentparameter
X ∈ {R,C,Q, N̂ ,N, nj , Rj ,M j , p, ℘j}, with j being a flow
index, described in the table we use the notation,

Xd,u =

{

Xd if X is a downlinkHincentparameter,

Xu if X is a uplinkHincentparameter.
(1)

TABLE I
HincentPARAMETERS

Variables Description
Cd,u Link capacity
τ Control interval
Rd,u(t) Base link rate allocation of the current interval (round)
Nd,u(t) Number of flows in the link during the current round
R

j

d,u
(t) Link rate allocation of flowj for the current round

M
j

d,u
Minimum rate requirement of content flowj

pd,u(t) Per packet price
℘

j

d,u
Priority weight of flow (stream or chunk)j

With the above notations, theHincentalgorithm consists of
the following steps.

Initialization steps:

• In the Hincent deployment scenario each peer sets up a
personal web (content) server (with the help ofHincent).
The web-server can be hosted at a home server, a friend
server, an ISP or a cloud.

• Each participating peer and CDN server first initialize
their up link and down link base rates to the uplink and
downlink capacities, they dedicate to theHincentsystem.

• Each participating peer and CDN server also initialize
their unit per packet price (bandwidth) to some value. In
this study, the CIM sets the initial per packet bandwidth
prices of the peers to a small fraction of real CDN
bandwidth prices used by the Amazon CLoudFront [16].
Even though we consider only bandwidth price in this
paper, the price may include other costs such as peer
storage, energy, processing, content cost and other costs.

• Each participating peer and CDN server with a content
then send these rate and price values along with other
peer and content fields such as peer ID and content ID
to the CIM.

• CIM authenticates and registers the requesting peers and
the content sources.

Content request steps:

• Peer which is interested in a specific content sends
(via its PA) a content request along with minimum rate
requirement,M i

u to the CIM. The most popular content
information can be displayed by the CIM for other peers
to see. Peers can also lookup the content from the CIM
tables (via a web interface).

• If no peer has the desired content, the CIM sends the IP
address of a CDN (cloud) server which has the content to
the requesting peer and the IP address of the requesting
peer to the selected CDN server. The CIM can also use
existing search engines such as Bing and Google to look
for the requested content. Once a requesting peer finds
and clicks at the requested content, the index of the
content can be stored as being available in the requesting
peer by the CIM. Next time other peers request the CIM
for the same content, the content can be directly served
from the peer which got the content from the search
engines. It is important that the CIM and the PA save the
link to the original source of the content. This helps the
PA to update the content and attract more customers with
up-to-date content. AdditionalHincent content servers
can also keep a copy of the searched content and its
original link to provide fresh content to peers and to
monitor if the content source peers are offering fresh
content. Peers have incentive to maintain fresh content
as doing so attracts more customers (other peers).

• If there is (are) other peers which have a content re-
quested by another peer, the CIM chooses the node (peer
or CDN server) which gives the best metric (low price,
high throughput) based on the content source selection
policies discussed in section IV.

After the content request is received by the CIM, CIM and
PA update steps are carried out before content transfer to avoid
resource congestion and to achieve max/min resource (link)
usage respectively.

CIM update steps:

• To reserve a minimum bandwidth requirement for the
requesting peer, CIM subtractsM i

u of requesti from
the remaining uplink capacity of the content source and
M i

d from the remaining downlink capacity of destination
peer. This involves only a single subtraction operation.
This remaining capacity is used in equation 5 of the
rate calculation. If either of the remaining bandwidths
is negative, the CIM informs the requesting peer that its
request cannot be fulfilled.

• CIM increments the flow priority weight sum to be used
in equation 5. This involves one addition instruction.
The flow priorities are globally known to the CIM or
specified by each requesting peer. The PA and the CIM
then calculate the corresponding weights of the priorities.

• After accumulating the remaining bandwidth values and
the sum of the priorities used in equation 5, the calcula-

5

tions of the base rate using equation 5 and price values
using equation 7 can be done periodically to further
reduce more computational overhead.

• CIM sends the IP of the selected content source along
with the base upload rateRu(t) and thecontentHash
of the requested content to the requesting peer. The
contentHashis to check for content integrity.

• CIM sends the base download rateRd(t) of the requesting
node to the selected source.

When a PA of the content source and destination receive the
ratesRd,u of their uplink and downlink flows from its CIM,
they performs the following.

PA update steps:

• Use the uplink and downlink rate values of each of the
flows of its node received from its CIM to obtain the
effective flow count for all uplink and downlink flows of
its node using equations 9 and 8.

• Calculate new rate values using the effective flow count
as given by equation 10. This new rate ensures that a
capacity unused by some flows is being used by other
flows makingHincenta max-min fair algorithm. This is
because some uplink flows may be bottlenecked at the
downlink and vice-versa.

• Calculate the new price value based on the new rate
values using equation 7.

• Send the new base rate values obtained using equation 10
back to the CIM. The new price values can also be sent
to the CIM saving the CIM some computational costs.
The CIM then calculates its new price values and uses
both the new rate and price values to select content
sources (peers or CDN servers) for each request for
content.

Rate enforcing and content download steps:

• Both content source and destination calculate the new rate
Ri

d,u values of each of their uplink and downlink flows
(streams)i using equation 11.

• Both content source and destination enforce the rate
allocation as follows. First the destination node sets its
receive windowwi

r of flow i as

wi
r = Ri

d(t)RTT i. (2)

Then the corresponding source of the flow (stream)i sets
its congestion windowwi as

wi = min(wi
r, R

i
u(t)RTT i). (3)

If the bottleneck link is somewhere in the Internet which
is described as “Internet” node in figure 1, then the
destination of flowi sets its receive window size as given
by equation 2. And the source of flowi sets its maximum
congestion window sizewi

M as

wi
M = Ri

u(t)RTT i. (4)

Such a backbone bottleneck scenario can be detected by
multiple packet losses afterHincentallocation, though we

do not expect such a scenario to happen as discussed in
section II-A. More on this will be discussed in section X.

• Requesting peer downloads the content from the source
whose IP address it got from the CIM.

Price enforcing steps:

• Requesting peer via its PA asks for thecontentOldKey
from the CIM (CID) to decrypt the content it downloaded.

• The CIM increases the total amounẗE of credit, the
content source earns, and the total amountP̈ , the re-
ceiving peer pays, each by thecontentSize × pd,u(t).
contentSizeis in packets.

• The CIM charges the requesting peer the specified
amount and checks if the peer’s balance has not fallen
negative.

• If the requesting peer has enough credit (has paid for
the content download), the CIM sends thecontentOldKey
to it (the peer). Otherwise the peer cannot decrypt the
content after wasting its bandwidth.

• If the peer gets the decryption key, the CIM records the
contentIDof the downloaded content as available at the
requesting peer unless the peer indicates it does not want
to share the content. The efficient incentive mechanism
of our protocol encourages peers to share contents.

• At the CIM when the flow of the requesting peer finishes
(downloading the content), the remaining uplink band-
width of the content source and the remaining downlink
bandwidth of the receiving peer are increased by the
minimum rate requirement of the flow which finished
and the respective priority weights sums decrease by the
priority weight of the flow which finished. CIM then
updates the rates and prices using equations 5 and 7.

We next show how theHincentrate and price are calculated.

III. HincentRATE AND PRICE CALCULATION

The temporary down-link (d) and up-link (u) rates of every
node (peer or CDN server) are calculated by the CIM as

Rd,u(t) =
Cd,u −

∑Nd,u

j M j
d,u

∑Nd,u

j ℘j
d,u

(5)

where the notations are described in table I and℘j
d,u is the

priority weight of requestj. If all requests have the same
priority,

∑Nd,u

j ℘j
d,u = Nd,u.

The temporary uplink and downlink ratesRi
u and Ri

d of
flow i are given by

Ri
d,u = M i

d,u + ℘iRd,u(t). (6)

The temporary per packet prices for the uplink (u) and
downlink (d) are calculated as

pd,u(t) =
pd,u(t− d)×Rd,u(t− τ)

Rd,u(t)
(7)

where the notations are also described in table I.
When a request for content is made, the temporary rate

and price calculations ensure that the CIM does not result

6

in assigning requests to peers they do not have enough
resources for. CIM leaves the refined distributed rate and price
calculations to the peers.

With the temporary uplink rate of a flowk from a content
source asRk

u and the temporary downlink rate of the flow
to the destination byRk

d both obtained using equation 6, if
Rk

u > Rk
d , then the content source of flowk should not send

at the rate ofRk
u for flow k as it is bottlenecked in the last

link to the destination. On the other hand ifRk
u < Rk

d, the
destination node cannot receive (download) at the rate ofRk

d

for the flow k. In these cases, other flows sharing the links
with flow k should be able to use the corresponding uplink or
downlink bandwidth unused by flowk to ensure thatHincent
is max-min fair. To do this, some flows which cannot use the
bandwidth allocated to them are counted as partial flows or
fraction of a flow. We call such a count of a flowan effective
flow count. The effective flow count of flowk at the source
node is given by

nk
u =

{

Rk
u

Rk
d

if Rk
d > Rk

u,

1 otherwise.
(8)

The effective flow count of flowk at the destination node
is given by

nk
d =

{

Rk
d

Rk
u

if Rk
u > Rk

d ,

1 otherwise.
(9)

Each PA then obtains new uplink and downlink base rate
values as

Rd,u(t) =
Cd,u −

∑Nd,u

j M j
d,u

∑Nd,u

j ℘j
d,un

j
d,u

. (10)

The new per packet prices for the uplink and downlink of
a node are then obtained using equation 7.

Besides, a node resets the up and downlink rates of each of
its’ flow i as

Ri
d,u = M i

d,u + ni
d,u℘

iRd,u(t). (11)

Equivalently, the uplink rateRi
u of the flow i at a node can

also be calculated as

Ri
u = M i

u + ni
u℘

iRu(t). (12)

So far we have considered themonetary incentivemode of
Hincent. The monetary incentive can also be converted to a
uploadbandwidth incentiveusing the ratio of the total amount
to pay to the total credit earned. To do this, the CIM informs
the content source to rate-limit the requesting peer at a base
rate of

R̈ = ẅ(Ë, P̈)×min(Rd(t), Ru(t))

where ẅ(Ë, P̈) is the weight function of the total monetary
amountË the requesting peer has earned and the total amount

P̈ the peer has to pay. Themin is a minimum function. In this
study we set

ẅ(Ë, P̈) =
Ë

P̈
. (13)

Other pricing and weight functions can also be used in
Hincent. The new weights℘̃j

u of every requestj from the
requesting peer is then set as̃℘j

u = ℘j
uẅ(Ë, P̈). This new

weight is the product of the peer weight,ẅ(Ë, P̈), and the flow
(stream) priority weight,℘j

u. CIM obtains the rate allocation
of the requestj made by the peer as̈Rj = M j

u + ℘̃j
uR̈.

IV. CONTENT SOURCESELECTION

Once the CIM receives the new rate values from each PA, it
obtains the new price values using equation 7. Then a content
source for the requesting peer is selected based on the policy
discussed below.

A. Highest Rate to Price Ratio Policy (HRPR)

In this HRPR policy, the CIM keeps the ratio

Kd,u(t) = Rd,u(t)/pd,u(t) (14)

of the rates to their respective prices in its peer table. When
a node requests for a content, the CIM chooses a content
source which gives the highest value ofKd,u(t). This approach
enables the CIM to choose a node which gives the highest rate
with the lowest price. This policy takes locality into account,
serving requests using local sources which give the HRPR. It
can also be applied to social groups, selecting the best (with
HRPR) content sources in the group for requesting peers.

V. HincentIS TCP FRIENDLY

In this section we discuss howHincent deals with TCP
friendliness.

Theorem 1:A Hincentrate allocation of a flow which is not
bottlenecked at a linkl is TCP friendly to all flows sharing
link l.

Proof: If a flow i is not bottlenecked at linkl, it
cannot congest linkl regardless of how much its sending rate
increases. This is because the flowi has another bottleneck
which limits its sending rate. This in turn means that TCP
flows sharing linkl with flow i have enough bandwidth at
link l to use. This implies that TCP fairness is not an issue at
link l and flow i is TCP friendly.

Even thoughHincent handles scenarios where the bottle-
neck link can be somewhere in the backbone network, the
bottleneck link in theHincent architecture is usually going
to be at the last mile links to and from the peers. This is
because (1) users (peers) usually buy a guaranteed bandwidth
and (2) the peers which can use a specific peer as a source of
their content are usually scattered over a wide area each using
different paths in the backbone network. Hence, if theHincent
flows are not bottlenecked at a link which they share with TCP,
then they are TCP friendly based on the above theorem 1.
In a scenario where the bottleneck link is in the backbone
network, theHincent flows will drop or delay packets. This
congestion signal can be detected by the PA of each peer which

7

counts the number of successfully transmitted packets. ThePA
compares this count over a time interval against the minimum
of the uplink and downlink rates of the flow. If the PA finds
that the backbone network is congested, it uses the maximum
congestion window and receive window to enforce the rate
allocations as discussed in section X.

VI. W HEN A FLOW ENDS

When a peer wants to end a flow (stream) due to for
instance 3D view change, the node sends the contentID of
the flow (stream) it needs to end. The CIM then finds the
corresponding global contentID in its content table, removes
the contentID and releases the associated resources. It then
updates the corresponding content source and destination rate
and price values. The CIM also finds a new content source
to all other peers which are actively downloading the content
from the peer which wants to end it. Here, the CIM uses the
original content source as the new content source for the peers
which are using the content whose source is ending it. This is
because if a new peer (which is not the original content source)
is chosen to be the new source of the content, it is difficult to
find (trace) out whether one of the parents (ancestors) of this
chosen peer is the peer which is ending the content or not.

VII. OTHER SERVER SELECTION POLICIES

In this section we discuss server selection policies other
than the HRPR policy discussed in section IV-A.

A. Highest Rate Policy

In this policy the CIM selects a content source which
provides the highest rate to each node irrespective of the price.
So a node which is allowed to download from a content source
with the highest rate pays the corresponding price. The nodes
can also earn credit by allowing other nodes to download from
them and then get a service whose price is equivalent to the
credit they have earned as discussed in section III.

B. Best Rate Fit Policy

When a node requests the CIM for a content, the CIM can
also choose a content source whose upload rate is the smallest
value greater than the download rate of the requesting node.
This approach allows the CIM to do a best fit allocation to
allow big upload requests.

C. Smallest Price Policy

If a node which requests for a content doesn’t want to
pay more or doesn’t want to spend more of its credit, it can
request a smallest price policy. In this case, the CIM chooses a
content source with an upload value of at least as much as the
minimum required rate for the content and with the smallest
price.

CDN

PA

PA

PAPA

PA

PA

PA

FES

CID
CID

Internet

Big Content

Source Peer

Fig. 4. TheHincentArchitecture

D. Lowest Latency (Local Network) Policy

A user’s request may have some latency constraints. In this
case a user may request a node with the shortest latency. To
deal with this scenario, we group peers with similar IP prefixes
together. This can be done by hashing the most-significant
bit-group in the IP address of the content request packets of
the registering peers. We can then have one CIM responsible
for each group of users (peer nodes) forming a hierarchical
structure of content information managers as shown in figure4.
This policy can have a significant advantage in reducing
backbone network link congestion as many requests can be
served locally. This is another benefit to network operators.
Besides, users in the same geographical location may tend to
have interest to the same content making it easy for the content
source selection algorithm to decide.

To use this policy, users send a request to the FES of the
CIM which then hashes the requester’s IP prefix values and
forwards them to their respective CID tables. This approach
also allowsHincent to scale as discussed in section IX.

E. Small Content Lifetime (Hop Count) Policy

The peers in theHincent have a strong incentive to store
and share the contents they download. As every upload can
result in credit which can translate to monetary rewards or
high download rate. A node can also inform the content index
manager (CIM) that it does not want to serve a specific content.
Besides, a peer which has big enough buffer can store early
arriving streams to create a 3D tele-Imersive [10] view along
with other streams which arrive late. In a scenario where a
significant number of peers have limited buffer,Hincent can
follow a small content lifetimepolicy. In this policy, the CIM
uses a content hop count field in its content index database
(CID) along with locality information. Here a content source
with the lowest hop count is selected to serve the requesting
peers. The CIM first tries to find such content in the local CID.
If the content with the desired hop count cannot be found in the

8

local CID, it is searched in the mastertblSelectedSourcetable
as shown in section IX-A. If such content with the desired
hop count cannot be found, the defaulthighest rate to price
ratio policy discussed in section IV-A is used.

F. Private Group Policy

This Hincent policy allows content to be shared within a
specific group of peers which can be social or organizational
groups. Each private group can form its own CIM with any of
the above server selection policies. This can enableHincentto
deploy Facebook like applications such as the Diaspora [17],
[18]. A distributed network of CIMs can also be formed where
CIMs exchange public content information based on privacy
settings in an adhoc or hierarchical manner. Any peer can then
subscribe to different CIMs for different contents forminga
distributed content networking.

So far we have been discussing the two major components
of Hincentwhich deal with the prioritized rate allocation and
resource pricing. After presenting mechanisms of how the
uplink and downlink rates for each peer and the corresponding
bandwidth prices are calculated by the CIM and PA we have
also discussed how the CIM uses these metrics to select a
content source for a requesting peer. We next present an
efficient content index management scheme which the CIM
uses to select the best content source for a requesting peer.

VIII. C ONTENT INDEX MANAGEMENT

In Hincent, some peers or content providers provide content
by registering their content information at the content index
manager (CIM). Other peers request the CIM for a specific
content. In this section we show how such contents are
registered, requested and their source selected.

A. Content Index Database

The registered content information is stored at the content
index database (CID) which is part of the CIM system as
shown in figure 2. The CID consists of thetblPeer, tblContent,
tblSelectedSource, tblRequestedContenttables as shown in
figure 5. ThetblPeerContenttable is used to link thetblPeer
and tblContentin a many-to-many relationship.

1) Peer Table: The tblPeer contains the fields described
in table II. Initial content providers need to fill in all the
fields of this table. ThepeerInfocontains real content provider
information such as telephone number, address and/or credit
card number. Such confirmed information holds each content
provider accountable for the nature of the content provided.
The peerInfo field is also used by the content providers to
charge peers for none-free contents. Once a peer receives a
content, the CID registers the peer as having the content unless
the peer indicates that it does not want to serve the content.
The peers which are not the original sources of the content do
not have to provide theirpeerInfounless they want to receive
monetary value of the credit they earn. ThepeerID field is
the primary key of thetblPeer. It is preferred to be the IP
address of the peer. The peers have incentives to provide their
correct IP addresses. This is because if a peer gives a wrong IP

contentID

peerID

contentUrl

contentKey

contentHopCount

tblPeerContent tblContent

contentID

contentDescription

contentSize

contentHash

contentPopularity

tblSelectedSource

contentPopularity

contentHopCount

contentDescription

contentID

contentUrl

peerURate

peerPrice

peerRatePPrice

peerID

tblPeer

peerURate

peerPrice

peerRatePPrice

peerInfo

totalAmountToPay

totalAmountToEarn

peerID
1

contentID

contentDstID

contentSize

contentSrcID

requestTime

contentHash

contentOldKey

contentKey

amountToPay

tblRequestedContent

dlRate

1

∞

∞ ∞

∞

∞
1

Fig. 5. The CID Architecture

address, it can not get a content as a source sends its content
to an IP address it obtains from the CIM.

TABLE II
PEER TABLE FIELDS

Field name Description
peerID Unique peer identifier
peerURate Current base uplink rate,Ru(t) of a peer calculated

using equation 5
peerPrice Per unit uplink cost of a peer node
peerRatePPrice Peer rate per price calculated using equation 14
peerInfo Real content provider information
totalAmountToPay Total monetary amount a peer needs to pay for down-

loading a content
totalAmountToEarn Total monetary amount a peer earns for uploading a

content

If the peer is just joining the CIM, its uplink rate,peerU-
Rate, is the the total uplink capacity it uses to earn credit
from other peers to which it uploads content. The peer has
an incentive to dedicate more uplink capacity, as more uplink
capacity can bring the peer more credit (monetary values).
After the initial calculation by the CIM using equation 5,
peerURateis updated by each peer using equation 10. To
minimize the computation load of the CID, thepeerURate
can also be entirely calculated by the peers in a distributed
manner and sent to the CIM every control intervalτ . If the
peers send their download rates to the CID and if there is
enough server processing (computation) capacity at the CIM,
all rate computations given by equations 5 and 10 can also be
done by the CIM servers in a centralized manner. In this paper
we use the approach where initial simple rate computation is
done by the CIM servers and the more detailed rate update
computation is done by the peers. The peers then send the
update to the CIM servers.

The peerPrice in our study is per packet cost where one
packet in this study is 1000 Bytes. ThepeerPriceis initially
set to be the unit content cost plus basic initial user defined
link cost. The content cost is zero for a free content scenario
and the initial link cost in our study is determined by the CIM
system. After the initial cost,peerPriceis calculated adaptively

9

by the CID servers using equation 7 for each link.
The default content source selection policy we use in this

study is theHighest rate to Price Ratio Policydiscussed in
section IV-A. To implement this policy thetblPeermaintains
the peer rate per pricepeerRatePPricefield.

The amountToPayand amountToEarnfields are updated
by the tblRequestedContenttable. A peer gets an additional
amount in dollars for each content it serves and pays a certain
amount for each content it downloads.

2) Content Information Table:The second table the CID
keeps is the content information table which we calltblContent
in this paper. This table contains the fields shown in table III.

TABLE III
CONTENT INFORMATION TABLE FIELDS

Field name Description
contentID Uniquely identifies content chunk or stream in the CIM
contentDescription A textual description of the content
contentSize Size of the content in KB
contentHash To check for content integrity
contentPopularity The number of times a content withcontentID is

requested

The contentSizeis used by the CIM to charge the peer
which receives the content. The CID uses this content size
to obtain the per content amount a peer has to pay. The
contentHashis used by the content receiving peer to check
for content integrity. Every time a content is selected by a
peer, the popularity of the content increases.

3) Peer-Content Linking Table:This tblPeerContentlinks
the tblPeer with the tblContent in a many-to-many relation-
ship. To achieve this,tblPeerContentconsists of the primary
keys peerID and contentID of tblPeer and tblContent tables
respectively. The table also contains the peer specific fields,
contentUrl, contentKeyand contentHopCount. The current
location of the content in a peer withpeerID is contentUrl.
The source peer encrypts its content with the symmetric key
contentKey. After a peer receives a content from another peer
or from a the original content server, it requests the CID
(tblRequestedContent) for the key to decrypt the content. The
contentHopCountis set to 1 if the peer is the original content
source. Every other peer which receives the content increments
the value of the field by 1. This field along with locality
information for instance helps estimate the streaming content
age since its initial distribution.

4) Selected Source Table:From all the original content
servers and peers which have a specific content, a source for
a requested content is selected based on the content source
selection policy discussed in section IV above. For each con-
tent source selection policy, a table calledtblSelectedSource
is produced by a query from thetblPeer, tblPeerContent
and tblContent tables. For theHighest Rate to Price Ratio
Policy (HRPR) used in this paper, thetblSelectedSourcehas
the fields,contentID, peerID, contentDescription, contentUrl,
peerURate, peerPrice peerRatePPriceand contentPopularity.
This table can be sorted in descending order of popularity to
put the most popular contents at the top even though every
content can be looked up in constant time.

5) Requested Content table:The requested content ta-
ble, tblRequestedContent, consists of the fields,contentID,
contentSize, contentSrcID, contentDstID, requestTime, con-
tenOldtKey, contentKey, amountToPayand dlRate. The con-
tentID and contentSizefields correspond to the the requested
content. ThecontentSrcIDfield is the peerID of the peer
or server which is selected to serve the content. Thecon-
tentDstID field is thepeerID of the content requesting peer.
The field, requesTimeis the time when a request for the
specific content was made. ThecontenOldtKeyfield is a
symmetric key with which the content was encrypted and by
which the content receiver will decrypt the content. Once a
peer with contentDstIDrequests for this key to decrypt the
content it downloaded, itsamountToPayvalue is set to the
product of thecontentSizeand the per packet price,peerPrice,
of the source link. ThetotalAmountToPayof the peer with
contentDstIDand thetotalAmountToEarnof the peer or server
with contentSrcIDthat serves the content each increase by
amountToPay. The contentKeyfield is a new symmetric key
generated by the CID for the content downloaded by the
peer. The content requesting peer uses this key to encrypt the
content when selected by the CIM to serve the content. Once
the contenOldtKeyis successfully received by the peer which
requested the content, and after other tables ofcontentSrcID
andcontentDstIDare updated, the record entry of these fields
in tblRequestedContentis deleted. ThedlRate field is set to
the minimum of the downlink (to the destination) and uplink
(from the source) rates of the requested content.

In the next section we discuss how the CID tables scale with
the growth in the number of content and peer record entities.

IX. SCALING USER AND TRANSACTION MANAGEMENT

In this section we discuss howHincentscales to an increase
in the number of users and with the multiple variations in the
request arrival and completion patterns. The CID tables can
be scaled with increasing number of peers and contents by
using multiple data center like servers along with appropriate
hash functions. If the number of servers available for the
tblPeer table isSp, sigBits(peerID) gives the integral value
corresponding to the most significant bits of the peerID
field. How many significant bits of the peerIDs we take
depends on how many content entries we have. Taking fewer
significant bits for instance means we need fewer servers
(smaller Sp) as more peerIDs can be mapped to a single
server. A record forpeerID goes totblPeer located at server
sigBits(peerID) mod Sp. Here the servers are identified by
positive integral values and mod is the modulo operation. A
record for contentID of peerID goes to tblContent located
at serversigBits(peerID) mod Sp. This ensures that the
content and peer information are located in the same server
for easier local look-up.

Such hashing bysigBits(peerID)helps that content infor-
mation of peers whose IP addresses have the same domain go
to the same server. In this case if a peer in one index server is
selected by the CID as a source of a content to another peer
in the same index server, then the content source selection

10

strategy becomes local. Such local content source selection
mechanism can help peers achieve low download latency as
the content can be served from another peer in their local
network.

When the request arrival and completion vary so much, the
PA needs to recompute the rate given by equation 10 multiple
times. Furthermore the PA needs to update the rate values at
the respective CIM. Since each CIM obtains temporary rates
using equation 5, the PA does not have to send every update to
the CIM. The PA can send updates every user-defined control
intervals.

Equation 5 used by the CIM only needs one subtraction
(addition) and one division per new flow request arrival or
departure to obtain a temporary uplink rate for each peer. It
also needs one multiplication and one division to obtain the
temporary price given by equation 14. Since the process is
adaptive, some CIM rate and price updates can as well be
skipped as they can be updated by the rate the PA send for
each of their links. The CIMs using equation 5 also do not
need to obtain the temporary downlink rates and prices. The
downlink rates and prices can be sent by the content requesting
peer. In these cases the CIM only needs to check if the selected
source has enough remaining upload link capacity to satisfya
minimum rate requirementM j

d,u of the requestj.

A. Database Partition and Aggregate

Assigning tblPeer and tblContenttables to different index
servers based on the peer ID (IP) essentially partitions the
CID into multiple local databases. Each local database matches
content source and destination peers located in the same
network domain and local area. We call such content matching
a local content source selection strategy.

If content cannot be found in a local network or if peers
in other local networks can provide a higher upload rate and
lower price, then the source selected to serve a content can
be from a different network domain, different area or even
different country. Such a content source selection strategy
where a content source can be chosen from a different network
domain (area) is calledglobal content source selection.

To achieve global content source selection, the CID needs
to know a source with the highest upload rate and lowest
per packet price for the requested content. The CIM achieves
this by using a map/reduce [19] like framework as shown in
figure 6. For the content source selection strategy we use in this
paper, each local CID database’stblPeerContentis sorted in
descending orders bycontentPopularityand thenpeerRateP-
Price for each content. So here we have eachtblPeerContent
informationmappedto many local index servers (many CIDs).

For each content, a record with the highestpeerRatePPrice
among all thetblContenttables in each local CID database is
selected(reduced)into the tblSelectedSourcetable and placed
in another index server. This is like the reduction phase in the
map/reduce framework where themaximum ofis the reduce
function. Each CID continuously sorts thetblPeerContenttable
by thepeerRatePPricefield for each content with the changes
in the upload rates and prices of the corresponding peer.

If the value of peerRatePPricefield in a tblPeer table
changes, first, eachcontentIDcontent of thepeerID peer in
the tblPeerContentis sorted in descending order ofpeerRateP-
Price. Then for each content ofpeerID in the tblSelected-
Sourcetable, if the highestpeerRatePPriceof peerID is higher
than thepeerRatePPriceof the corresponding content intblS-
electedSource, then the values of thepeerID and peerRateP-
Price fields in the tblSelectedSourcetable are replaced with
the corresponding values in thetblPeer. ThetblSelectedSource
table is sorted bypeerID. Hence all contents of thepeerID
field are located once the first content ofpeerID is found. Such
a procedure of constantly updating thetblSelectedSourcetable
ensures that the table always consists of the list of contents
given by the peers with the highest upload rate and lowest
price (highest rate to price ratio).

tblSelectedSource

contentPopularity

contentHopCount

contentDescription

contentID

contentUrl

peerURate

peerPrice

peerRatePPrice

peerID

tblSelectedSource

contentPopularity

contentHopCount

contentDescription

contentID

contentUrl

peerURate

peerPrice

peerRatePPrice

peerID
.
.

.

tblSelectedSource

contentPopularity

contentHopCount

contentDescription

contentID

contentUrl

peerURate

peerPrice

peerRatePPrice

peerID

CID Sc

CID 1

1

1

1

1

Fig. 6. The CID Partition and Aggregation

B. CID Complexity Analysis

The CID operation of adding new peers to thetblPeer is of
constant orderO

(

1
)

as thetblPeerdoes not have to be sorted
out. Each content in thetblPeerContenthas to be sorted out
by peerRatePPrice. Hence adding a new content entry to the
tblPeerContenttable has a complexity of orderO

(

log(Nc)
)

whereNc is the number of peers which have the same content.

11

Whenever a peer gets a content that it requested, then
(1) the uplink rate of the content source decreases according
equation 5 and (2) the peer which gets the content becomes
one of the content sources. These two operations require
two O

(

log(Nc)
)

operations for each content. As thetblPeer-
Content in each of the CID partition is sorted, updating the
tblSelectedSourcefor each of its contents is of constant order.

When tblRequestedContentis updated upon a successful
download of a content by a peer, the corresponding values
of peerRatePPriceand totalAmountToEarnof a source peer
or server and thetotalAmountToPayof a receiving peer are
updated in constant time by using the matchingpeerID field.

X. HincentWITH SCARCE BACKBONE BANDWIDTH

The backbone links in the Internet which the nodes use
and which are represented by the ”Internet” node in figure 1
are not usually congested as can also be seen from [20].
Each user of theHincentmechanism can also have bandwidth
service level agreement from the operators which guaranteethe
desired capacity. Under this scenario the only bottleneck links
are the last links to and from theHincent peer nodes. Hence
the sources of the desired contents can set their congestion
window sizes (cwnd) to the product of their uplink rate value
calculated using equation 11 and their round trip time (RTT).

If the bottleneck link is somewhere in the Internet which is
described as “Internet” node in figure 1, then the destination of
flow i sets its receive window size as given by equation 2. And
the source of flowi obtains its maximum congestion window
sizewi

M using equation 4.
A node can detect whether or not the bottleneck is in the

link other than the last links to and from the source and
destination peers using different ways. For instance if a packet
loss is observed for flowi after the rate is enforced using
equation 3, then the TCP source of flowi can assume the
bottleneck link is other than the last links to/from the source
and destination nodes. The PA of the receiving end can also
count the number of received packets (bytes) per unit time
to obtain the actual download rate per content. Similarly the
PA of the content source can also estimate its uplink rate
of a specific content by counting the number of successfully
acknowledged packets (bytes) per unit time. The PA of the
source and destination of the content then report this rate
to the CIM per a specific content. The CIM then replaces
the peerURateof the content intblSelectedSourcewith the
minimum of these two values. The source and destination peer
also update their rate calculations using equations 8, 9 and10
to re-allocate unused capacities to other requests.

The tblRequestedContentof the CID has therequest-
Time and contentSizefields. When a peer receives a con-
tent, it requests the CID for the decryption key. The
CID of the CIM can then compare theactualT ime =
currentTime − requestTime against promisedT ime =
contentSize / dlRate, wherecurrentT ime is the time when
the request for the decryption key arrives at the CIM and
dlRate is the minimum of the uplink rate and down-
link rate of the requested content. If theactualT ime >

promisedT ime + toleranceV al, then the CIM via its CM
concludes that the source is not uploading at the rate it
suggested. HeretoleranceV al is a user-defined tolerance
value. In cases where the requested content is a video stream,
the source of the content can stream its frames by scheduling
them at 1

Ri
u

apart whereRi
u is given by equation 11.

XI. HincentUSING SURROGATESERVERS

In the Hincent deployment scenario presented in the pre-
vious sections, each peer uses a personal web (content)
server similar to the Diaspora social network [17], [18]. The
personal web server can be hosted at a home server, at a
friend server or at an ISP. An extension ofHincent can also
be implemented in big content distribution services such as
Google (YouTube) or other overlay (private) networks such as
[15] using cloud/cloudlet surrogate servers geographically dis-
tributed in a wide area as described in figure 7. The servers are
equipped with OpenFlow vSwitches (switches/routers). The
links of the network shown in figure 7 can be dedicated tunnels
or overlay links over the Internet. If the links are overlay,
their capacity can be estimated using bandwidth estimators.
We next discussed howHincentdistributes content using such
surrogate servers for the peers uploading and requesting for
content using OpenFlow vSwitchs [21], [22].

Server

vSwitch

Server

vSwitch

Server

vSwitch

Server

vSwitch

Server

vSwitch

Server

vSwitch

Client

Client
Client

Client

Dedicated tunnel or overlay link

Control communication

Controller

��
��
��

��
��
��

����
������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Fig. 7. Hincentwith Surrogate Servers

As shown in figure 7, peer clients upload and get contents
from their nearest surrogate servers using the following steps.

Content storage steps:

• A peer client which wants to share its content with other
peers or which wants to store its data in some distributed
servers, sends its request to a light weight FES (frontend
server) associated with the controller shown in figure 7.
The FES can also be associated with each surrogate
server.

• The FES hashes the request and forwards it to the closest
server using (first significant bits of) IP address matching.
This ensures that a request is handled by surrogate server
in the locality of the requesting peer.

• The FES also forwards the content information to a
modified tblContentwhich resides in the CID (content
index database) of the controller. The modifiedtblContent

12

includes the ID of the selected (by FES) surrogate server
where the content initially resides in addition to the other
fields described in table III.

• The controller informs all surrogate servers of the new
content. The surrogate server which is initially selected to
host the content can also share the contentID information
with the other servers similar to the way link state
information is shared.

• Each surrogate server adds a new record to itstblServ-
Content table which has the fieldscontentID, content-
Popularity, sourceIDandservURate. The contentIDand
sourceIDvalues are obtained from the controller or from
the surrogate server which is selected to initially host the
content. The value ofservURatealong with the path to
the server with the content is obtained using a max/min
routing algorithm described in [23] and [24]. The link
metric of the network of surrogate servers described in
figure 7 is a cross-layer (routing and congestion control)
rate metric obtained using the schemes described in [24].
As discussed in [24], this rate metric can be obtained us-
ing vSwitch (OpenFlow) per flow packet counts (statefull)
or using surrogate server assistance (stateless).

• Each surrogate server updates itstblServContenttable
sorting each contentID entry in decreasing order of
servURatevalue every time route computation to other
servers is done. The servers also sort the content entries
in decreasing order of popularity. When a peer request
for content is made, a selected server gets the content
from another server with the highestservURate(for the
requesting peer). HereservURateis the bottleneck update
rate from a source surrogate server to the destination
surrogate server.

Content retrieval steps:

• A peer client requests for a content by contacting the FES.
The FES seamlessly hashes the client ID and forwards its
request to a surrogate server which is the nearest (closest
IP address for instance) to the requesting client.

• If the surrogate server has the content, it directly transmits
it to the requesting client. Otherwise, the surrogate server
looks up its tblServContenttable for the best (highest
servURate) other server with the requested content. It
then starts a QCP [24] session (can also be TCP) to the
selected (highestservURate) server and gets the requested
content for the requesting peer.

• The server which downloaded the content on the behalf of
the peer client stores (caches) the content and informs the
controller CID that it also has the content. The controller
CID then informs other servers that the server also has
the content.

• This surrogate server which obtained the content from
another server also transfers the content to the requesting
peer. The connection between the peer client and its
surrogate server can also be QCP if the peer has a
dedicated tunnel connecting it with its server. Otherwise
it can be a TCP connection.

We have performed detailed experimental analysis to evalu-
ate the performance ofHincentas shown in the next sections.

XII. E VALUATION

In this section we evaluate the performance ofHincent
and all its components using simulation. We implemented
Hincent in the NS2 simulation package. We also implemented
the CID of Hincent using Apache SQL server [25]. After
discussing the simulation setup, we present detailed trace-
based packet level simulation experiments. We then show
how Hincent content management scales using Apache SQL
implementation experiments.

A. Simulation Setup

We use a simulation topology similar to the one given in fig-
ure 1. For the simulation the upload and download capacities
of the links to and from the peers is 15Mbps. The link capacity
to and from the CDN isnpeers × 15Mbps, where npeers

is the number of peers. The propagation delay between the
peers is taken from 4 hour PlanetLab traces [26]. The average
CDN bandwidth price taken from the Amazon CloudFront
[16] is avg cdnPrice = $0.176 per GB of traffic. The initial
peer bandwidth price isavg cdnPrice/(2.0 × npeers). This
price adaptively increases as the peer rate decreases with
more demands based on equation 7. We run different sets of
experiments as shown in the following sections.

B. Pure CDN Vs Hincent-Based Schemes

Figure 8 shows how theHincent-based scheme scales
with the growing number of content requesting peers when
compared with the pure CDN-based approach. This result
is consistent with detailed study [5] which shows that the
hybrid CDN-P2P can significantly reduce the cost of content
distribution bandwidth.

C. Other P2P schemes Vs Hincent

We have also compared the performance ofHincentagainst
other hybrid P2P and CDN schemes in terms of average
chunk completion time (ACCT). Previous hybrid P2P and
CDN schemes such as the Dandelion [3], PACE [8] use TCP as
their transport protocol. So we show how these schemes using
TCP compare againstHincent by fixing the content source
selection mechanism to be the same (based onHincent) for
both.

For this experiment we use 8 files with contenti , (1 ≤
i ≤ 8) having file size500i KB and chunk sizei is 50i KB.
Inter-content chunk request time is 0.5 seconds. Contents are
requested at the same time. Each file (content) is divided into
equal chunks. Content popularity is 5 for each of the contents.
For the TCP-based and theHincentapproaches content desti-
nation and source are the same. For these experiments we set
the minimum flow rate to 0.0 and all chunks have the same
priority levels.

Figure 9 shows that the ACCT and average maximum CCT
(Max CCT) are much smaller inHincent than the TCP-based
approaches (PACE, Dandelion). The Max CCT is the content

13

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

A
vg

. I
ns

t.
T

hp
t (

pk
ts

/s
ec

)

Simulation time (sec)

CDN-based Instanteneous
 Average Throughput (pkts/sec)

10 Peers
50 Peers

100 Peers

(a) Pure CDN based Approach

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

A
vg

. I
ns

t.
T

hp
t (

pk
ts

/s
ec

)

Simulation time (sec)

Hincent Instanteneous
 Average Throughput (pkts/sec)

10 Peers
50 Peers

100 Peers

(b) Hincentbased Approach

Fig. 8. Pure CDN VersusHincent-based Approach

(file) completion time as a file download is complete after its
latest chunk is downloaded.

 0

 0.5

 1

 1.5

 2

 50 100 150 200 250 300 350 400

C
C

T
 (

se
c)

Chunk Size (KB)

Avg and Max CCT

Hincent: Max CCT
TCP-Based: Max CCT

Hincent: ACCT
TCP-Based: ACCT

Fig. 9. Avg and Max CCT ofHincentVs TCP-Based Approaches

D. 3D Streaming Result

For the 3D streaming experiments, we use a setup which
emulates [15] with 6 streams. Each stream demands a min-
imum of 1Mbps capacity. Each streami, 1 ≤ i ≤ 6 has
a priority weight of 1/i. We used a content lifetime of 2.5
seconds for the streaming. So if a stream at a peer is older
than 2.5 seconds, the CIM does not register the peer as having
the content.

Figure 10 demonstrates the priority and minimum rate
mechanisms ofHincent. As shown in the figure, stream 1
which has the highest priority weight gets highest throughput.
The throughput of the other streams follows their priority
weights.

 150

 200

 250

 300

 350

 400

 450

 500

 550

 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

Peer ID

Average Instantenous Throughput (pkts/sec)

Stream 1
Stream 2
Stream 3

Fig. 10. Avg Instantaneous Throughput Per Peer for Streams 1,2 and 3

Figure 11 also shows how the instantaneous throughput
of the different streams evolve with time. All these plots
show how efficientlyHincentenforces the priority based rate
allocations. For readability and in the interest of space, plots
with streams 4, 5 and 6 are omitted.

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5 10 15 20 25 30 35 40 45

T
hr

ou
gh

pu
t (

pk
ts

/s
ec

)

Simulaiton Time (sec)

Average Instantenous Throughput (pkts/sec)

Stream 1
Stream 2
Stream 3

Fig. 11. Avg Instantaneous Throughput Over Time for Streams 1,2 and 3

E. More Trace-Based Experiments

We have also conducted experiments based on the trace
results presented in [27] for the content size distribution, [28]
for the content popularity distribution and [29] for distribution
of the flow arrival process. Since we could not obtain the
raw trace data, we constructed the trace values (data points)
from the plots given in these papers. We next present the trace
extraction methodologies we used.

1) Extracting file size distribution:Based on the nature
of the file size trace plot of US-Campus given in figure 4
of [27], we constructed piece-wise linear functions given by
equation 15.

FS =



























u(1, 5), cdf <= 0.17,
10−5

0.18−0.17
(u(0, 1) − 0.17) + 5.0, 0.17 < cdf ≤ 0.18,

200−10

0.204−0.18
(u(0, 1) − 0.18) + 10, 0.18 < cdf ≤ 0.204,

1000−200

0.25−0.204
(u(0, 1) − 0.204) + 200, 0.204 < cdf ≤ 0.25,

30000−1000

0.96−0.25
(u(0, 1) − 0.25) + 1000, 0.25 < cdf ≤ 0.96,

70000−30000

0.99−0.96
(u(0, 1) − 0.96) + 30000, 0.96 < cdf ≤ 0.99,

100000−70000

1.0−0.99
(u(0, 1) − 0.99) + 70000, 0.99 < cdf ≤ 1.0.

(15)

In equation 15, the functionu(a, b) generates a uniform
random number betweena and b and cdf is the CDF of
the file size trace plot. In the simulation, we first generate
a uniform random number between 0 and 1. We then obtain
the file size (FS) value as a function of the generate value
using equation 15.

14

2) Extracting content popularity distribution:A Gamma
distribution curve with a shape parameter ofk̃ = 0.372 and
a scale parameter ofθ = 23910 is fitted to Youtube video
content popularity distribution traces in figure 7 of [28]. The
content popularity distribution in the paper which refers to the
number of views of videos considers aboutNV = 1.6 × 105

videos. We normalized the scale parameterθ of the distribution
by the numberNV of distinct videos so as to use it with
simulation studies involving a different number of videos.The
normalization steps are as follows.

With nv as the total number of distinct (unique) video flows
to be simulated, andpv the average popularity of the videos,
nvpv is the total number of videos to be simulated. With a
simulation time ofts seconds and average video request arrival
rate ofλs flows per second, we have

nv =
tsλs

pv
. (16)

To obtainpv, we normalize the numberNV of traced videos
by the meañkθ of the Gamma popularity distribution as

nv

pv
=

NV

k̃θ
. (17)

Combining equations 16 and 17, we get the popularity value
as

pv =

√

k̃θtsλs

NV

. (18)

Using equation 18 in equation 16 we also obtain the number
of distinct videos in the simulation.

3) Flow arrival distribution: We used the distribution of
the number of flow arrivals per second given in [29] for our
simulation. The paper fits a Poisson distributed curve to the
trace and hence we used such a distribution for our flow
arrivals. The number of YouTube servers (servers with unique
IP addresses) used in the experiment was 2138. To scale our
simulation we considered arrival rates to 1 and 10 servers.
The experiment can simply be run for all servers with more
powerful machines.

4) More Trace Experimental Results:To compare the
performance of pureHincent based approach against other
TCP based approaches (PACE, Dandelion), we considered
the best case scenario for the TCP based approaches. This
scenario uses theHincent content selection mechanism (see
section XIII). So using this same server selection mechanism
we compared the performance of the TCP-based approaches
with our pureHincent based approach. As can be seen from
figures 12, 13 and 14, the pureHincentapproach gives lower
file completion time when compared with TCP-basedHincent
approach. For all experiments in this section, each YouTube
file is divided into 50 chunks. So bigger file sizes have bigger
chunk sizes. The YouTube video files we consider in this
analysis are not live videos. Hence we use a content age
of 15.5 seconds. This implies that videos which were first
requested less than 15.5 seconds ago can still be requested.
For all experiments of one YouTube server, the Intel i5 Core
machine we used allowed us to run the simulation for 120

seconds. For the 10 YouTube servers experiments, we used a
simulation time of 30 seconds.

 0

 5

 10

 15

 20

 25

 30

 0 5000 10000 15000 20000 25000 30000

F
C

T
 (

se
c)

File Size (KB)

File completion time (FCT): Max Num Chunks = 50

TCP-Based
Pure Hincent-Based

Fig. 12. File completion time with 1 YouTube server

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000 3500 4000

A
F

C
T

 (
se

c)

File Size (KB)

Average File completion time (AFCT):
 Max Num Chunks = 50

TCP-Based
Pure Hincent-Based

Fig. 13. Average file completion time (AFCT) with 1 YouTube server (small
files)

Figure 13 shows the average file completion time (AFCT)
of files less than 4000KB in size while figure 12 shows FCT
of all files. As can be seen from figure 14, with more YouTube
servers, the number of simulated peers requesting for content
increases. This in turn increases the number of peers with a
content and hence decreasing the file download time (AFCT).
This is one of the noble gains of peer to peer systems as more
peers means more bandwidth.

 0

 5

 10

 15

 20

 0 5000 10000 15000 20000 25000 30000

A
F

C
T

 (
se

c)

File Size (KB)

Average File completion time (AFCT):
 Max Num Chunks = 50, 10 YouTube Servers

TCP-Based
Pure Hincent-Based

Fig. 14. Average file completion time (AFCT) with 10 YouTube server

Figures 15, 16 and 17 show that overwhelming majority of
the peers do not have to spend money to download GB of data
as the credit amount they earn balances out with the amount
they pay. For each peer, the amount to spend in these plots is
calculated as the total amount of money a peer earns minus
the total amount a peer has to pay per GB of content.

Comparing figures 15 and 17, it can be seen that more
YouTube servers in the experiment means more participating
peers. The more peers have the contents the less other peers

15

 0

 0.05

 0.1

 0.15

 10 20 30 40 50 60 70

A
m

ou
nt

 to
 s

pe
nd

 (
$/

G
B

)

Peer ID

Per node to spend
 amount in $ per GB of data

Hincent
CDN (fixed price)

Fig. 15. Net amount to pay in dollars per GB of downloaded content with
1 YouTube server

 0

 0.05

 0.1

 0.15

 10 20 30 40 50 60 70

A
m

ou
nt

 to
 s

pe
nd

 (
$/

G
B

)

Peer ID

Per node to spend
 amount in $ per GB of data

Hincent
CDN (fixed price)

Fig. 16. Net amount to pay in dollars per GB of downloaded content with
10 YouTube servers (First few peers)

have to download the content from the CDN servers. This
saves peers more money as can be seen from the plots. In
all cases, the amount peers pay for bandwidth to download
a content is less than the fixed CDN bandwidth amount
charged by AmazonCLoudFront. For the experiments with
only one YouTube server, the simulation generates fewer peers
to download the content. As the number of peers which have
the content is smaller, more peers download contents from the
CDN servers paying more money as can be seen in figure 15.
The amount which peers pay to directly download a content
from the CDN servers can be subsidized (paid for) by the
content providers as such peers are serving as seeders for the
content provider.

F. CID Implementation Experiments

We have also implemented the basic features ofHincent in
an Apache SQL server using PHP script. We implemented all
the tables of the CID in an Ubuntu virtual machine using a
quad four processor and a 1GB RAM. We generatedtblSelect-

 0

 0.05

 0.1

 0.15

 20 40 60 80 100 120 140 160 180

A
m

ou
nt

 to
 s

pe
nd

 (
$/

G
B

)

Peer ID

Per node to spend
 amount in $ per GB of data

Hincent
CDN (fixed price)

Fig. 17. Net amount to pay in dollars per GB of downloaded content with
10 YouTube servers (All peers)

edSourcetable using a SELECT query from the tablestblPeer,
tblContent, tblPeerContentas discussed in section VIII-A4
above. The tables are linked in a many-to-many relationship.

To see the performance gain of using thetblSelectedSource
table over generating the contents requested by peers on thefly
from the three tables, we have conducted experiments using
and not using thetblSelectedSourcetable. We used one million
records in each table for this experiment. As can be seen from
figures 18 and 19 preparing thetblSelectedSourcetable as its
source tables are updated results in significant gain in query
time. Here, query time is the time from when a query for a
specific record is made to when the reply is displayed from the
SQL server. In these experiments we first generated uniform
random content index records with the given contentIDs to
request from the SQL server. The content with the ID of
cont396224was the first content requested. Such initial request
of a record resulted in a higher query time perhaps because
the SQL server took time to upload parts of the table into
memory. Figure 19 also shows that the query time increases
with the increase in the record ID. This is because the tables
are roughly sorted by requestIDs as the none-numeric parts
of the contentID and peerID values are the same while both
fields have text data types.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 100 200 300 400 500 600 700 800 900

Q
ue

ry
 ti

m
e

(s
ec

)

contentID/1000

Query times from the tblSelectedSource table

tblSelectedSource

Fig. 18. Query time using the tblSelectedSource table

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 100 200 300 400 500 600 700 800 900

Q
ue

ry
 ti

m
e

(s
ec

)

contentID/1000

Query times from the tblSelectedSource table

All tables

Fig. 19. Query time using SQL JOIN from all tables

The SQL query we made from thetblSelectedSourcefor the
content with contentID ofcont396224is as follows.

SELECT *
FROM ‘tblSelectedSource‘
WHERE contentID = ’cont396224’

16

LIMIT 0 , 1

And the following is the query we made from the three
tables.

SELECT tblPeerContent.contentID, tblPeerContent.peerID,
tblPeerContent.contentUrl, tblPeerContent.contentKey,
tblContent.contentDesc, tblContent.contentPopularity,
tblPeer.peerURate, tblPeer.peerUPrice, tblPeer.ratePerPrice

FROM tblPeerContent
INNER JOIN tblPeer ON tblPeerContent.peerID = tblPeer.peerID
INNER JOIN tblContent

ON tblPeerContent.contentID = tblContent.contentID
WHERE tblPeerContent.contentID = ’cont396224’
LIMIT 0 , 1

We next conducted an experiment to know how long it
takes for a query such as requesting thecontentKeyby a peer
from the CID of the CIM. The propagation delay from the
requesting peer virtual machine to the virtual machine with
the SQL server is about 1ms. The times it takes for such
query is shown in figure 20. There is a spike on the record of
cont132913which is the first record requested by the peer
in the experiment. Such a spike disappears with the other
requested records as perhaps the SQL server caches the session
and keeps thetblRequestedContenttable loaded in memory.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 50 100 150 200 250 300 350

Q
ue

ry
 ti

m
e

(s
ec

)

contentID/1000

Query times from the tblSelectedSource table

Requested table

Fig. 20. Query time from peers to the CIM

The query we used for the experiments in figure 20 is as
follows.

SELECT * FROM tblRequestedContent
WHERE contentID = ’cont$value’
LIMIT 0,1

These above query time figures are intended to show that
the time it takes to resolve a certain query is not high even
using a computer (server) with very limited hardward such as
an Ubuntu virtual machine.

XIII. R ELATED WORK

Over time, Peer-to-peer (P2P) content distribution has
evolved to incorporate incentives in order to prevent freeload-
ing. The BitTorrent [30], [31] uses a rate based tit-for-tat
mechanism where users can achieve higher download rate
from peers to which they are uploading. In this case a peer
which is not downloading a content is not incentivized to
upload a content. InHincent all peers are incentivized to
continue uploading as every upload increases their credit
maintained by theHincent CIM. Reputation based schemes
such as [32] help peers find another peer with the highest

reputation score to download content from. Such a reputation
scheme does not provide an accurate evaluation mechanism
to choose a peer to serve a content. For instance a peer
which is uploading many files without downloading a file can
have a high reputation score. If such a peer does not have
as much available upload capacity as another peer which is
downloading files, peers will select it anyways because it has
a high reputation score.

In the KARMA [33] scheme, every peer has a set of man-
agers which form banks which coordinate credit transfer with
other peers. In this scheme there is no guarantee of integrity
of the global currency when the majority of the managers
are malicious. InHincent a central CIM which cannot be
manipulated by peers offers real monetary rewards to all peers
which upload contents. PACE [8] uses bandwidth pricing to
help uploading peers earn credit. However PACE does not
give a fair-exchange of content for payment as the content
demand at a peer is estimated as a total requested download
rate at remote buy clients. Such demand used to obtain a
bandwidth price is not peer specific. Dandelion [3] is based on
a centralized online currency bank mechanism to incentivize
peers. However Dandelion uses a fixed pricing mechanism that
peers are not awarded according to the upload bandwidth they
offer to upload contents. Peers do not decrease their price
to attract more customers when they have high upload rate
and vice versa. PRIME [34] is a mesh-based P2P streaming.
Even though it tries to balance the average outgoing rate of
a source peer with the average incoming rate of a content
receiving peer, it does not use an efficient rate allocation and
enforcement mechanism likeHincent to achieve a max/min
allocation. It uses a TCP friendly rate control protocol (TFRC)
[35] which inherits the TCP problems of not quickly utilizing
available link capacities. In PRIME each peer tries to maintain
many parents that can collectively serve as content providers
using a mesh-based overlay construction which can potentially
incur significant overhead. UnlikeHincent, PRIME does not
give an efficient mechanism to help peers select a content
source with high throughput and minimum bandwidth cost.
This is because a new peer selects a random subset of peers
to be its content parents. A reliable client accounting system
of a commercial hybrid content-distribution network (Akamai)
is also presented in [36] to detect and mitigate a variety
of attacks by malicious peers. This mechanism improves the
NetSession which is a peer-assisted content delivery network
(CDN) operated by Akamai. InHincentpeers do have any in-
centive to act maliciously. This is because peers get monetary
incentives (credit) for uploading content and all transactions
are co-ordinated by a scalable centralizedHincentCIM. If an
Hincentpeer acts maliciously, it only wastes its bandwidth and
suffers monetary losses.

A hybrid CDN-P2P system for live video streaming called
LiveSky is presented in [37]. The paper gives a trace based
study of extensive LiveSky deployment in China. However
the work only gives approximate guideline for peer selection.
For instance the paper assume that the total upload bandwidth
of clients in level k of the P2P tree is always larger than

17

the download bandwidth requirement of clients in level k+1.
It also only considers aggregate measures (i.e., population
and time averages) to model the end-user properties. On
the other handHincent does not make such assumptions
and uses accurate rate and price based incentives to select
content sources to serve a content. This gives peers a reliable
incentive to cooperate without a malice. LiveSky also limits
peer selection to a local network whileHincentdoes not make
that ristriction unless local content source selection stragy is
used or the local peers have the best upload rate and lowest
prices. A study in [38] shows that redirecting every client
to the CDN server with least latency does not suffice to
optimize client latencies. The authors of this paper proposed a
system calledWhyHighto optimize Google CDN perfomance.
WhyHigh measures client latencies across all nodes in the
CDN and correlates measurements to identify the prefixes
affected by inflated latencies.Hincentby design chooses peers
or CDN servers which offer the highest throughput and lowest
price and does not require complex inefficient systems such
as WhyHigh to select content sources.

NetTube, a P2P assisted content delivering framework that
explores the clustering in social networks for short video shar-
ing is proposed in [39]. Like NetTube,Hincent allows users
to share their contents while keeping it in their own servers.
Unlike Hincent, NetTube selects a content source based on
social groups and not based on throughput and bandwidth
price. SocialTube, which is peer-assisted video sharing system
that explores social relationship, interest similarity, and phys-
ical location between peers in online social networks (OSNs)
is proposed in [40]. SocialTube uses a social network (SN)-
based P2P overlay construction algorithm. UnlikeHincent,
SocialTube does not select content sources based on a high
upload bandwidth and low cost. This can result in SocialTube
unnecessarily delaying streaming and other content transfer
when other peers not in the same social group with high upload
capacity exist.

Besides, unlikeHincent, all the above schemes do not help
peers determine an accurate rate at which they can download
content from other peers. They do not give a mechanism to
prioritize content transfers which is an important component
of 3D [10] and other streaming applications. UnlikeHincent
they also do not provide an efficient max/min rate allocation
mechanism.

XIV. C ONCLUSION

In this paper we proposed the design ofHincent, an efficient
cross-layer content routing and congestion control framework.
Unlike existing content distribution approaches,Hincentrelies
on an accurate and fair incentive mechanism which allows
prioritized max/min rate allocations and enforcements.Hincent
is a flexible scheme which allows multiple server selection
strategies. Unlike previous work we have presented a noble
content index management scheme forHincent. It allows
distributed peers to have full control of their contents andto
securely share them with others. We have also presented an
extension ofHincent using surrogate servers with OpenFlow

vSwitches to help peers exchange contents faster than using
existing schemes.

We have implementedHincent in the NS2 simulation pack-
age. We evaluated the performance ofHincentusing rigorous
trace based flow and packet level simulation experiments. The
experiments demonstrate theHincentdesign goals which result
in lower content transfer time than existing schemes. We have
also implementedHincent content index management with
Apache SQL server using PHP in Ubuntu virtual machines.
The implementation experiments show thatHincentcan easily
scale to millions of content index records.

REFERENCES

[1] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Ja-
hanian, “Internet inter-domain traffic,”SIGCOMM Comput. Commun.
Rev., vol. 41, no. 4, Aug. 2010.

[2] C. Labovitz, “Internet traffic evolution 2007-2011,”
http://www.monkey.org/ labovit/papers/gpf2011.pdf.

[3] M. Sirivianos, X. Yang, and S. Jarecki, “Robust and efficient incentives
for cooperative content distribution,”IEEE/ACM Trans. Netw., vol. 17,
pp. 1766–1779, Dec. 2009.

[4] P. Wendell and M. J. Freedman, “Going viral: flash crowds inan
open cdn,” inProceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, ser. IMC ’11. New York, NY,
USA: ACM, 2011, pp. 549–558.

[5] C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding hybrid cdn-
p2p: why limelight needs its own red swoosh,” ser. NOSSDAV ’08.
New York, NY, USA: ACM, 2008, pp. 75–80.

[6] M. Marcon, B. Viswanath, M. Cha, and K. P. Gummadi, “Sharing
social content from home: a measurement-driven feasibility study,” ser.
NOSSDAV ’11. ACM, 2011, pp. 45–50.

[7] C. Aperjis, M. J. Freedman, and R. Johari, “Peer-assistedcontent
distribution with prices,” ser. ACM CoNEXT ’08. New York, NY,
USA: ACM, 2008, pp. 17:1–17:12.

[8] C. Aperjis, R. Johari, and M. J. Freedman, “Bilateral and multilateral
exchanges for peer-assisted content distribution,”IEEE/ACM Trans.
Netw., vol. 19, no. 5, pp. 1290–1303, Oct. 2011.

[9] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki, “Dandelion: coopera-
tive content distribution with robust incentives,” in2007 USENIX Annual
Technical Conference, ser. ATC’07. Berkeley, CA, USA: USENIX
Association, 2007, pp. 12:1–12:14.

[10] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy, “Enabling
multi-party 3d tele-immersive environments with viewcast,”ACM Trans.
Multimedia Comput. Commun. Appl., vol. 6, no. 2, pp. 7:1–7:30, Mar.
2010.

[11] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,”IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14 –23, oct.-dec. 2009.

[12] S. McCanne and S. Floyd, “NS-2,” http://www.isi.edu/nsnam/ns/.
[13] D. Fesehaye and K. Nahrstedt, “Hincent: Quick Content Distribution

With Priorities and High Incentives,” inIEEE Consumer Communica-
tions and Networking Conference (CCNC 2013), Las Vegas, USA, jan
2013.

[14] P. Pillay-Esnault., P. Moyer, J. Doyle, E. Ertekin, andM. Lundberg,
“Ospfv3 as a provider edge to customer edge (pe-ce) routing protocol,”
United States, 2012.

[15] W. Wu, A. Arefin, Z. Huang, P. Agarwal, S. Shi, R. Rivas, and
K. Nahrstedt, “”i’m the jedi!” - a case study of user experience in 3d
tele-immersive gaming,” ser. ISM ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 220–227.

[16] Amazon, “Amazon cloudfront,” http://aws.amazon.com/cloudfront,
2012.

[17] “The diaspora* project,”http://diasporaproject.org/.
[18] K. Weise, “On diaspora’s social network, you own your data,”

http://www.businessweek.com/articles/2012-05-10/on-diasporas-social-network-
you-own-your-data, 2012.

[19] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

18

[20] Internet2, “Internet2 Network: GlobalNOC RealTimeAtlas,”
http://atlas.grnoc.iu.edu/I2.html, 2012.

[21] J. Pettit, J. Gross, B. Pfaff, M. Casado, and S. Crosby, “Virtual
switching in an era of advanced edges,” Sep. 2010. [Online].Available:
http://openvswitch.org/

[22] B. Pfaff and et. al., “Openflow switch specification v1.3.0,”
https://www.opennetworking.org/, April 2012.

[23] D. Fesehaye, I. Gupta, and K. Nahrstedt, “A Cross-layerRouting and
Congestion Control for Distributed Systems,” University ofIllinois
at Urbana-Champaign (UIUC), TECHNICAL REPORT, Nov. 2008.
[Online]. Available: https://www.ideals.illinois.edu/handle/2142/11503

[24] D. Fesehaye and K. Nahrstedt, “Finishing Flows Faster with A
Quick congestion Control Protocol (QCP),” University of Illinois
at Urbana-Champaign (UIUC), TECHNICAL REPORT, 01 2013.
[Online]. Available: https://www.ideals.illinois.edu/handle/2142/35905

[25] P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Rangara-
jan, A. Surna, and Q. Zhou, “Sql server column store indexes,”ser. ACM
SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 1177–1184.

[26] “Planetlab 4hr traces,”www.eecs.harvard.edu/syrah/nc/sim/pings.4hr.stamp.gz.
[27] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and

S. Rao, “Dissecting video server selection strategies in the youtube cdn,”
ser. ICDCS ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 248–257.

[28] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of youtube
videos,” in Quality of Service, 2008. IWQoS 2008. 16th International
Workshop on, june 2008, pp. 229 –238.

[29] T. Mori, R. Kawahara, H. Hasegawa, and S. Shimogawa, “Characterizing
traffic flows originating from large-scale video sharing services,” ser.
TMA’10. Springer-Verlag, 2010, pp. 17–31.

[30] B. Cohen, “Incentives build robustness in bittorrent,” Proc. Workshop
Econ. Peer-to-Peer Syst, 2003.

[31] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkatara-
mani, “Do incentives build robustness in bit torrent,” ser. NSDI’07.
Berkeley, CA, USA: USENIX Association, 2007.

[32] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-
peer networks,” ser. NOSSDAV ’03. New York, NY, USA: ACM, 2003,
pp. 144–152.

[33] V. Vishnumurthy, S. Chandrakumar, , and E. G. Sirer., “Karma: A secure
economic framework for peer-to-peer resource sharing,” Proc. Workshop
on Economics of Peer-to-Peer Systems, 2003.

[34] N. Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-
based streaming,”Networking, IEEE/ACM Transactions on, vol. 17,
no. 4, pp. 1052 –1065, aug. 2009.

[35] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “Tcp friendly rate
control (tfrc): Protocol specification,” United States, 2003.

[36] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel, B.Maggs, and
B. Wishon, “Reliable client accounting for p2p-infrastructure hybrids,”
ser. NSDI’12. Berkeley, CA, USA: USENIX Association, 2012.

[37] H. Yin, X. Liu, T. Zhan, V. Sekar, F. Qiu, C. Lin, H. Zhang,and
B. Li, “Design and deployment of a hybrid cdn-p2p system for
live video streaming: experiences with livesky,” inProceedings of
the 17th ACM international conference on Multimedia, ser. MM ’09.
New York, NY, USA: ACM, 2009, pp. 25–34. [Online]. Available:
http://doi.acm.org/10.1145/1631272.1631279

[38] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson, and J. Gao, “Moving beyond end-to-end path information
to optimize cdn performance,” inProceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference, ser. IMC
’09. New York, NY, USA: ACM, 2009, pp. 190–201. [Online].
Available: http://doi.acm.org/10.1145/1644893.1644917

[39] X. Cheng and J. Liu, “Nettube: Exploring social networks for peer-to-
peer short video sharing,” inINFOCOM, 2009, pp. 1152–1160.

[40] Z. Li, H. Shen, H. Wang, G. Liu, and J. Li, “Socialtube: P2p-assisted
video sharing in online social networks,” inINFOCOM, 2012, pp. 2886–
2890.

