Patterns in Testing Concurrent Programs with
Non-deterministic Behaviors’

Samira Tasharofi
University of lllinois at Urbana-Champaign
Urbana, IL, 61801, USA
tasharo1@illinois.edu

ABSTRACT

Concurrent programs are hard to test because of the non-
determinism inherit in them. Since non-determinism is one
of the major sources of bugs, it is important to to be tested.
We studied the test suites of four open source concurrent
libraries and discovered that the tests fall into three dif-
ferent patterns. One of the patterns avoids testing non-
determinism while the other two control the schedule of the
program execution to manage that.

Keywords

concurrent programs, testing patterns, testing non-determinism

1. INTRODUCTION

Testing is important for concurrent programs and also a hard
problem due to non-determinism, race conditions, deadlock,
and live-lock. Non-determinism in these programs means
that it is possible with the same input, they can lead to dif-
ferent outputs. This happens because the schedule of the
events during the execution might be different. In message-
passing style, this schedule is the order of the messages sent
to each component. However, in shared-memory style, this
schedule is the order of the read/write accesses on the shared
variables. The test cases written for these programs should
not only cover different inputs but also cover different sched-
ule of the program for a given input.

In order to understand how the programmers write tests for

*Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission. A preliminary ver-
sion of this paper was presented in a writersS workshop at
the 3rd Annual Conference on Parallel Programming Pat-
terns (ParaPLoP). ParaPLo Copyright 2011 is held by the
author(s). ACM 978-1-4503-0127-5.

Ralph Johnson
University of lllinois at Urbana-Champaign
Urbana, IL, 61801, USA
rjohnson@illinois.edu

concurrent programs, we inspected the test suite repositories
of four open source libraries including:

e Java concurrent package library: this package includes
features/contrsucts for concurrent programming in Java.
The test repository [6] contains tests for testing differ-
ent features in this package.

e Groovy actor library: Groovy [4] is a Java-based lan-
guage that has a library for message-passing program-
ming in the style of actors [13]. The code repository [5]
includes a great amount of tests for testing actors.

e Akka actor library: Akka [2] is a framework written in
Scala [9] and gives developers a simpler programming
model to develop highly reliable applications for con-
current or parallel operation. Using the popular Actor
model as a basis, Akka extends the concept to provide
high availability and fault tolerance. The test suite we
inspected is written for actors and available in [3].

e Smile: Smile [12] is a memcache library for scala which
is intended to be fast and highly concurrent.

The tests are written using the most popular testing frame-
works in those languages, e.g. JUnit [7] and ScalaTest [10].
We also contacted some developers (Daniel Spiewak) of con-
current closed source applications such as Novell Vibe [8] to
know about the way that they test their programs. Novell
Vibe is an actor-based social collaboration platform for the
enterprise that’s available both in the cloud and on premise.

The tests that we studied can be categorized into three
patterns: Deterministic black-box, Delayed Execution, and
Wait-notify Coordination. In the first pattern, programmers
try to get rid of non-determinism by writing tests in which
the results are the same regardless of the schedule. In the
second pattern, testers control the schedule of the tests by
inserting delays in the test. In the third pattern, testers con-
trol the schedule by having parts of the program generate
events and other parts wait for them.

What can be concluded from these solutions is that none of
them is suitable for testing concurrent programs. The first
pattern avoids testing non-determinism. The second one
makes the tests unreliable or very slow; and the third one
does not handle all the situations that must be tested and
can make the tests complex. This shows the deficiencies of

current testing frameworks which are mostly developed for
testing sequential programs. It turns out that we need a
framework for testing concurrent programs that can provide
better ways of testing non-determinisim.

2. PATTERNS
2.1 Deterministic Black-box
2.1.1 Problem

How to test a concurrent program while keeping the tests
simple and using the same approach as testing sequential
programs.

2.1.2 Context

In concurrent programs it is possible that with some given
input, the results are different in different runs. Therefore,
the tests might pass in one run and fail in the other run.
This non-determinism is due to the order of the events in
the execution (schedule of the execution). However, since it
is difficult to control the schedule, some programmers want
to write tests without dealing with different possible order
of events in the test execution. They want to keep the tests
simple and similar to the tests written for sequential pro-
grams.

2.1.3 Solution

The solution consists of two parts: (1) choose inputs for the
program under test whose final result does not depend on
the schedule; (2) run the program, wait for the results and
check if they are correct.

In shared-memory multi-threaded programs, the requests
(and input) to the program under test are usually given
by method calls. Therefore, the returned results can be
checked at the same place as the methods are called. How-
ever, in message passing programs, after sending a request
(message) to the program under test, the test should wait to
receive the result (which is in the form of message) from the
program and then check the result. This solution is based
on black-box testing. The reason is that white-box testing
needs to deal with the order of the events. In fact, if the
programmers want to check some internal properties of the
components in the middle of the test execution, they need
to be aware of the events happened by that time.

Example 1.1. As an example, consider the test in Listing 1
written in JUnit [7]. It is written for PriorityQueue class in
Java which is an unbounded priority queue based on a prior-
ity heap. The goal of this test is to check the correctness of
the isEmpty function by putting and removing elements from
the queue. It sequentially adds and removes elements and
calls isEmpty function without considering any concurrency.

Example 1.2. As the second example, consider the test in
Listing 2 which is written for testing FSM actor in Akka using
ScalaTest [10]. This actor simulates a finite state machine
by defining its states and the transitions among the states.
It also accepts a set of subscribers actors and informs them
about the current state and the transitions that happened by
sending CurrentState and Transition messages respectively.

o e I N N

I~
w N = O ©

Listing 1 Test for PriorityQueue class in Java using Deter-
ministic Black-box pattern

/%%
* isEmpty is
*/
public void testEmpty () {
PriorityQueue q = new PriorityQueue (2);
assertTrue (q.isEmpty ());
q.add(new Integer (1));
assertFalse (q.isEmpty ());
q.add(new Integer (2));
q.remove () ;
q.remove () ;
assertTrue (q.isEmpty ());

true before add, false after

The aim of the test in Listing 2 is to test a simple basic
functionality of a FSM actor. It creates a FSM actor that is
initially in state 0 and by receiving a "tick" message it goes
to state 1 and by receiving another "tick" message it comes
back to state 0 again. The test first subscribes itself in fsm
and waits to receive a message from that actor about its cur-
rent state by calling expectMsg. Subsequently, it sends two
"tick" messages and waits to receive appropriate messages
regarding the transitions happened in fsm.

2.1.4 Forces

The advantage of this solution is that it keeps test cases
very simple and understandable. However, it is a very weak
way of testing concurrent programs that cannot cover many
aspects of the program behavior. In fact, by this approach,
the programmers just test the deterministic parts of the pro-
gram behavior and leave it to the users to detect the bugs
related to non-deterministic parts of the behavior.

The programmers decide about the inputs (whose final re-
sults do not depend on the schedule of the test execution)
by using the program specification; but it might not be true
if there is any bug in the implementation. Therefore, they
might need to run each test multiple times with the hope
that if there is any bug, it will be revealed.

2.1.5 Known Uses

According to the discussions that we had with some compa-
nies that use actor-based languages for their products, e.g.
Novell Vibe, this approach is the only solution that they use
for testing their products. They also mentioned that they
just test one component (actor) at a time to keep the tests
simple and manageable. More than 80% of the test cases
written for Smile and more than 50% of the tests written
for Java concurrent package library are based on this solu-
tion. However, we found a few of them in Akka and Groovy
repositories.

2.2 Delayed Execution
2.2.1 Problem

How to write a test for concurrent programs in which an
event e should happen after some component is blocked or
terminated.

2.2.2 Context

1
2

24
25
26
27
28
29
30

Listing 2 Test for FSM actor in Akka using Deterministic
Black-box pattern

Listing 3 Test for ArrayBlockingQueue class in Java using
Delayed Execution pattern

object FSMTransitionSpec {

/]

class MyFSM(target ActorRef) extends Actor

with FSM[Int, Unit] {
startWith (0, Unit)
when (0) {
case Ev(7tick”) => goto (1)
when (1) {
case Ev(7tick”) => goto(0)
}
//
}
/]
}

class FSMTransitionSpec extends WordSpec with
MustMatchers with TestKit {
import FSMTransitionSpec. _

"A FSM transition notifier” must {
"notify listeners” in
val fsm = Actor.actorOf(new MyFSM(testActor)
).start ()
within (1 second) {

fsm ! SubscribeTransitionCallBack (
testActor)
expectMsg (CurrentState (fsm, 0))

fsm ! 7tick”
expectMsg (Transition (fsm, 0, 1))
fsm ! 7tick”
expectMsg (Transition (fsm, 1, 0))

-
= O ©®N O

-

12
13
14
15
16
17

public void testBlockingTake () throws
InterruptedException {
final ArrayBlockingQueue q =
SIZE) ;
Thread t = new Thread (new CheckedRunnable () {
public void realRun () throws
InterruptedException {
for (int i = 0; i < SIZE; ++i
assertEquals (i, q.take())
}

try {
q.take();
shouldThrow () ;
} catch (InterruptedException

{3
ISOK

t.start ();

Thread . sleep (SHORT_DELAY_MS) ;
t.interrupt ();

¢ join();

populatedQueue (
) A

success)

18 }

Thread test

final ArrayBlockingQueue
q = populatedQueue (SIZE) ;

Thread t

—
for (int i = 0; i < SIZE; ++i)
{
assertEquals (i, g.take());
}
try {
q.take();

Concurrent components that are based on synchronous com-
munications are more likely to get blocked during the exe-
cution. For example, in shared-memory style of program-
ming most of the communications are based on synchronous
method calls and the threads are usually blocked on their
requests until they receive their responses. The same is-
sue occurs in message-passing programs with synchronous
send /receive of the messages. In general, it is hard to en-
force a schedule in which some events (such as checking as-
sertions in the test) should happen after some component
is blocked or terminated. The reason is that the blocked or
terminated components are not able to communicate with
other components to comply with some specific schedule.

2.2.3 Solution

Ensure that event e happens after the desired component is
blocked or terminated by delaying e. Therefore, the concur-
rent components in the program under test will not commu-
nicate with each other to preserve the order; but the desired
order is enforced by implicit coordination. To implement
this pattern, put delay commands in the test and/or pro-
gram under test at appropriate places such that the desired
schedule is met. Depending on the language different con-
structs might be provided for this purpose. For example, in
Java (and other Java-based languages such as Scala [9], Ac-
torFoundry [1], Groovy [4], etc.) Thread.sleep can be used
which accepts a time interval and delays the execution by
that time interval.

’ t.interrupt(); ‘

SW catch (InterruptedException

‘ t.join(); ‘

Figure 1: The desired schedule of the test in List-
ing 3

Example 2.1. As an example consider the test in Listing 3
written in JUnit for testing ArrayBlockingQueue class in Java
concurrent package. ArrayBlockingQueue is a bounded block-
ing queue backed by an array. Attempts to put an element
to a full queue will result in the put operation blocking; at-
tempts to retrieve an element (by take operation) from an
empty queue will similarly block. In this test, the goal is to
check when the queue gets empty, the take operation would
block the calling thread. For that, the test creates a block-
ing queue and populates the queue with some default values.
Then it creates a thread t that takes all the elements out
of the queue and then calls one additional take. The test
starts the thread, waits for the thread to reach to line 9 (us-
ing Thread.sleep) and then interrupts the thread. In Java,
if you interrupt a thread which is blocked it will throw In-
terruptedException. In this code this exception in catched
successfully. If the thread is not blocked, it will reach to
line 10 which throws an exception that is not catched. The
schedule that should be satisfied in this test is graphically
represented in Figure 1.

o
O © WO oA W N R

12
13
14
15
16
17

Listing 4 Test for Actor class in AKKA using Delayed Ex-
ecution pattern

0>~

lass CrashingTemporaryActor extends Actor {
self.lifeCycle = Temporary
def receive = {
case ”Die” =>
throw new Exception (”Expected exception”)

}

@QTest
def shouldShutdownCrashedTemporaryActor = {
val actor = actorOf[CrashingTemporaryActor].
start
assert (actor.isRunning)
actor ! 7"Die”
Thread . sleep (100)
assert (actor.isShutdown)

}
/1
test actor
assert (actor.isRunning)
actor ! "Die" ’ I
def receive = {
case "Die" =>
throw new
Exception ("Expected
exception")
}
i
assert (actor.isShutdown)

Figure 2: The desired schedule of the test in List-
ing 4

Example 2.2. As another example, consider the test case
in Listing 4 written in JUnit for testing Akka actors . Ac-
cording to the specification of Akka Actor class, if their life
cycle is defined as Temporary, they should terminate if some
exception happens in their execution. The goal of the in
Listing 4 is to check this behavior. In the test class, a class
of CrashingTemporaryActor that extends Actor is defined and
its life cycle property is set to Temporary. This actor can
receive a "Die" message and upon receiving that, it throws
an exception. The test method creates an actor from the
type CrashingTemporaryActor, sends a "Die" message to that
actor and waits (by Thread.sleep) for the actor to receive
and process the "Die" message. Then, it checks if the state
of the actor is isShutdown (the actor is terminated). The
desired schedule of this test execution in shown in Figure 2.

As can be seen, in both examples 2.1 and 2.2, the time in-
terval should be selected cautiously; if the time interval for
delay is not large enough the assertions might be checked
while the thread/actor has not executed the desired opera-
tions and therefore the test will fail which is a false negative.

2.2.4 Forces

The advantage of this solution is its simplicity; it does need
special features supported by the language or special tech-
nology (delays can be simulated by loops in any language).
However, since it depends on real time intervals it has its
own drawbacks; specifically speaking, two extreme situa-

tions may happen:

e Small delay interval: in this case, running test cases
in different situations and different platforms may not
satisfy the the desired schedule. It can lead to both
false positives (the test cases can pass while they won’t
pass if they run with the desired schedule) and false
negatives (test cases may fail because the test did not
execute with the supposed schedule).

e Large delay interval: using large time intervals can
alleviate the problem of false positive and false nega-
tive results of running tests; but at the cost of slowing
down the test executions.

In the next section we describe about the other pattern that
can alleviate these problems.

2.2.5 Known Uses

This solution is widely used for testing Java concurrent li-
brary. We found many of them based on this solution. How-
ever, among the test cases written for actor libraries such as
Akka and Groovy, we found a few of them based on this
solution. The reason might be related to the nature of the
message-passing programming which is based on asynchrony
and non-blocking. The Smile repository also contains a few
tests based on this pattern. But this few amount is due to
the fact that most of the test cases written for Smile does
not test the concurrency behavior of the program.

2.3 Wait-notify Coordination
2.3.1 Problem

How to write a test for concurrent program in which one
event, e2 in component ¢2 should happen after another event
el in component cl and event el does not include blocking
or termination of component cl.

2.3.2 Context

As mentioned before, due to non-determinism in concurrent
programs, with a given input the result might be different
depending on the schedule of the test execution. If the events
that must be ordered do not include blocking or termination
of the concurrent components, the components can commu-
nicate with each other to preserve that order.

2.3.3 Solution

Ensure that event e2 happens after another event el by hav-
ing event cl sent a notification after el happens and having
c2 wait for that notification to trigger e2. This idea inher-
its from observer pattern [15] in which some entities can
wait (register) for some event and whenever the event hap-
pens they will be notified. The advantage of this approach
is that it does not depend on real time values that makes
the tests more reliable. Depending on the language, this
approach can be implemented in different ways. In Java
(and some other Java-based languages) there are synchro-
nization constructs that are used for this purpose including
CyclicBarrier and CountDownLatch. CyclicBarrier is a syn-
chronization construct that allows a set of threads to all wait
for each other to reach a common barrier point. CyclicBar-
riers are useful in programs involving a fixed sized party of

Listing 5 Test for Actor class in Akka using Wait-notify
Coordination pattern

7An Actor” should {
?be able to hotswap its behavior with become (..)”
in {
val barrier = new CyclicBarrier (2)
Qvolatile var _log = 77
val actor = actorOf(new Actor {
def receive = {
case "init”? =>
_log += 7init”
barrier .await
case "swap”’ => become ({
case "swapped” =>
_log += ”"swapped”
barrier .await
9
}
}).start
actor ! 7init”
barrier.await

_log must be (7init”)

barrier.reset
_log = "7

actor ! 7swap”
actor ! 7swapped”
barrier.await

_log must be (7swapped”)

threads that must occasionally wait for each other. The bar-
rier is called cyclic because it can be re-used after the waiting
threads are released. CountDownLatch is a synchronization
aid that allows one or more threads to wait until a set of
operations being performed in other threads completes. A
CountDownLatch is initialized with a given count. The await
methods block until the current count reaches zero due to
invocations of the countDown method, after which all wait-
ing threads are released and any subsequent invocations of
await return immediately. The count in the latch cannot be
reset.

Example 3.1. As an example consider the test in Listing 5
which is written for testing Akka actor library using Sca-
laTest as the testing framework. In this library, each ac-
tor should be able to change its behavior by calling become
method. The test creates a barrier with size two and an ac-
tor that can receive two messages namely, "init" and "swap".
The actor after receiving "swap" message, it calls "become"
and then becomes an actor that can only receive "swapped"
message. The test sends a message "init" to actor and waits
on the barrier which means that it waits for actor to receive
"init" message (Line 9. Then it checks the _log value to
see if it is set to "init" (which means that the actor is able
to receive the proper messages from the test). Then, the
test rests the barrier and _log, sends "swap" and "swapped"
messages and waits for the actor to process "swap" message,
calls become and becomes an actor that can accept "swapped"
message and finally process "swapped" message. At this point
the test will exit from waiting on the barrier and checks the
_log value. The schedule of this test is shown in Figure 3.

Note that in this test, if there is any bug in become method,

test

‘ actor ! "init"

actor

i

case "init" => _log += "init"
L
_log must be ("init") < |
barrier.rese
_log =
actor ! s
actor ! "swapped"
PP I "swap" => become ({

\$ case
case "swapped" =>
_log += "swapped"

_log must be ("swapped"))/

Figure 3: The desired schedule of the test in List-
ing 5

the test might wait for the barrier forever (deadlock). To
solve this problems, latches and barriers can accept a time-
out value for await method. In that case, if the thread is not
released from waiting after the timeout, it will return "false”
that can throw an exception by using assertTrue on await
method.

Example 3.2. The test in Listing 6 shows another example.
This test is written for testing ScheduledThreadPoolExecutor
class in Java concurrent package. ScheduledThreadPoolExecu-
tor is a ThreadPoolExecutor that can additionally schedule
commands to run after a given delay, or to execute period-
ically. The Delayed tasks execute no sooner than they are
enabled, but without any real-time guarantees about when,
after they are enabled, they will commence. Tasks scheduled
for exactly the same execution time are enabled in first-in-
first-out (FIFO) order of submission.

In This test the goal is to check if a ScheduledThreadPoolEx-
ecutor successfully executes a runnable. For that, it creates
a executor will a pool size of one, a latch with count one,
and a Runnable task. Then it asks executor to execute the
task. The latch will be count down when the task is exe-
cuted (method run is called). The test will wait for the latch
to reach zero. In this test, await is used with a timeout value
which causes assertTrue throws assertion error if the latch
does not reach zero after the time out.

2.3.4 Forces

Wait-notify Coordination is a more reliable alternative to
delay style. Although it can alleviate the problems associ-
ated with Delayed Ezecution, it has its own limitations as
follows:

e In order to be able to use that, the language should
support the required synchronization constructs. There-
fore, it is not such simple that can be used in every
language.item If it is not used with cautions, deadlock
can occur in test execution, e.g. some threads might
wait for a barrier or latch and they won’t be notified.

e It is not straight forward to be used in the cases that
the events subjected to be in a specific order include
blocking/termination of components. The reason is

1

Listing 6 Test for ScheduledThreadPoolExecutor class in
Java using Wait-notify Coordination pattern

Listing 7 Test for Blocking class in Java using a mix of both
Delayed Execution and Wait-notify Coordination patterns

public void testExecute () throws
InterruptedException {
ScheduledThreadPoolExecutor executor =
cheduledThreadPoolExecutor (1) ;
final CountDownLatch done = new CountDownLatch
(1)
final Runnable task = new CheckedRunnable() {
public void realRun () {
done.countDown () ;
T
try {
executor .execute(task);
assertTrue (done.await (SMALL.DELAY_MS,
MILLISECONDS)) ;
} finally {
joinPool(p);

new

that blocked or terminated component cannot notify
other components. In these situations, Delayed Fxecu-
tion is a better solution.

2.3.5 Known Uses

This pattern is widely used for testing message-passing (actor-
based) libraries. More than 95% of the tests written for
Groovy actors use this solution. Additionally, more than
60% of the tests written for Akka actors are based on this
solution. The reason is that in message-passing environment
most of the communications are asynchronous and hence the
events do not cause the components to be blocked. However,
a few of test cases written for Java concurrent package li-
brary and Smile test cases are also based on this approach.

3. MIXING PATTERNS

As can seen, each one of the patterns described in this pa-
per have their own advantages and disadvantages. A good
practical approach would be using a combination of them in
a test to alleviate their problems and exploit their advan-
tages. This approach can also be seen in some of the test
cases written for testing concurrent programs. An example
is shown in Listing 7.

This test is written for testing BlockingQueue class in Java
concurrent package. Similar to ArrayBlockingQueue, Block-
ingQueue is a thread-safe queue with bounded capacity and
calling take method on an empty BlockingQueue would block
the calling thread until the queue becomes non-empty (some
element is put in the queue).

The goal of this test is to check the blocking of take op-
eration on an empty queue. For that, it uses a mixture of
latches and Thread.sleep to enforce the desired order. The
test creates an empty queue and then starts a new thread t
which tries to take some elements out of the empty queue.
This test is very similar to the test in in Listing 3 except
that initially the queue is not populated. When the thread
t starts its execution, it counts down the threadStarted latch
such that the test thread would be informed that the thread
t has started its execution. Then, the test calls Thread.sleep
for some time intervals to let thread t calls q.take. The latch
in this test is used to make the test more reliable: the test

N o U A W N e

10
11
12
13
14
15

16

17
18
19
20

22
23

/%%
* take ()
*/
public void testTakeFromEmptyBlocksInterruptibly ()
throws InterruptedException {
final BlockingQueue q = emptyCollection () ;
final CountDownLatch threadStarted = new
CountDownLatch (1) ;
Thread t = newStartedThread (new CheckedRunnable
0 A
public void realRun () {
long t0 = System.nanoTime() ;
threadStarted .countDown () ;
ery {
q.take();
shouldThrow () ;
} catch (InterruptedException success) {}
assertTrue (millisElapsedSince (t0) >=
SHORT_DELAY_MS) ;
s

threadStarted .await () ;

Thread . sleep (SHORT_-DELAY_MS) ;
assertTrue (t.isAlive());

t.interrupt ();

awaitTermination (t, MEDIUM DELAY_MS) ;

blocks interruptibly when empty

won’t call Thread.sleep until thread t starts its execution to
increase the chance of delay interval to be sufficient.

The mix of the patterns can also be seen in a few of the tests
written for Akka and Groovy actor libraries.

4. CONCLUSION AND RELATED PATTERNS

In this paper we discussed about three patterns used for
writing tests for concurrent programs. These patterns are
extracted by inspecting the test suite of four open source
libraries and the discussion that we had with the developers
of some closed-source concurrent applications.

As noted before, each solution has its own advantages and
limitations. But in general, none of them is well-suited for
testing concurrent programs even if they are mixed in a test.
The tests written based on these solutions can get very com-
plex and unreliable. In other words, these patterns cry out
for a better solution. It turns out the frameworks which are
developed for testing sequential programs are not suitable
to be reused for testing concurrent programs. Some prior
works tried to alleviate these problems by creating a frame-
work for testing multi-threaded programs [18, 17, 14]. But
still in these frameworks it is not easy to specify the order of
the events in the test and hence they have not got popular
enough to be used by the programmers in practice. To the
best of our knowledge, even there is no such priori work in
the area of message-passing actor programs.

Fortunately, people are working on better solutions, and
with any luck, in a few years these patterns will be su-
perceded by better ones. A group of people at UIUC are
working on creating a framework for testing multi-threaded
programs [16]. We also have a work in progress [19, 11] to
develop a framework for testing Scala actors. Although it
is specific for Scala programs, but we believe that the idea
is general enough to be applied to other object-oriented ac-

tor languages. By this framework, the user can specify the
order of the events in the test in an elegant and clean way.
Instead of using latches, barriers, and/or Thread.sleep, what
the user needs to do is to 1) define the events (messages) that
should be ordered (not necessarily all events); and 2) spec-
ify the order of the defined events that must be satisfied in
the test execution. The framework would execute the test
according to the desired order. This will make the test cases
more reliable and on the other hand, there is no need to
put delay/latch commands which can make the tests very
complex. The framework can also handle the blocking or
termination of actors.

5. REFERENCES

[1] ActorFoundry, http://osl.cs.uiuc.edu/af/

[2] Akka, http://akka.io/

[3] Akka Project,
https://github.com/jboner/akka/tree/master/akka-
actor-tests

[4] GPars, http://gpars.codehaus.org/

[5] Groovy DSLs for concurrent processing,
http://code.google.com/p/gparallelizer/source/browse/trunk/src/test/groovy/groovyx/gpars/actor/

[6] Java Community Process. JSR 166: Concurrency
utilities.,
http://g.oswego.edu/dl/concurrency-interest/

[7] JUnit, http://www.junit.org/

[8] Novell Vibe,

http://www.novell.com/products/vibe-cloud/

| Scala, http://www.scala-lang.org/

| ScalaTest, http://www.scalatest.org/

1] Setac, http://mir.cs.illinois.edu/setac/

] Smile, https://github.com/robey/smile

| Agha, G.: Actors: a model of concurrent computation

in distributed systems. MIT Press (1986)

[14] Dantas, A., Brasileiro, F., Cirne, W.: Improving
automated testing of multi-threaded software. In:
ICST. pp. 521-524 (2008)

[15] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (1995)

[16] Jagannath, V., Gligoric, M., Jin, D., Rosu, G.,
Marinov, D.: IMUnit: improved multithreaded unit
testing. In: Proceedings of the 3rd International
Workshop on Multicore Software Engineering. pp.
48-49. TWMSE ’10, ACM (2010)

[17] Long, B., Hoffman, D., Strooper, P.: Tool support for
testing concurrent Java components. IEEE Trans.
Softw. Eng. 29, 555-566 (2003)

[18] Pugh, W., Ayewah, N.: Unit testing concurrent
software. In: ASE. pp. 513-516 (2007)

[19] Tasharofi, S., Gligoric, M., Marinov, D., Johnson, R.:
Setac: A Framework for Phased Deterministic Testing
of Scala Actor Programs. In: 2nd Scala Workshop
(2011)

