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Abstract

The elastic modulus and failure behavior of poly(urea-formaldehyde) shelled microcapsules were

determined through single-capsule compression tests. Capsules were tested both dry and immersed

in a fluid isotonic with the encapsulant. A shell-theory model for a fluid-filled microcapsule was

utilized to extract the modulus of the shell wall material from individual capsule tests. The testing

of capsules immersed in a fluid had little influence on mechanical behavior in the elastic regime.

The average capsule shell wall modulus was determined to be 3.7 GPa. Capsule diameter was

found to have a significant effect on burst strength, with smaller capsules sustaining higher stresses

before burst.
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I. INTRODUCTION

Microcapsules containing liquid healing agent are a critical component of self-healing poly-

mers [1, 2]. Healing is accomplished by incorporating the microencapsulated healing agent

and a catalyst within an epoxy matrix. An approaching crack ruptures embedded microcap-

sules, releasing healing agent into the crack plane through capillary action. Polymerization

of the healing agent is initiated by contact with the embedded chemical catalyst, bonding

the crack faces. The rupture of microcapsules is the mechanical trigger to the healing process

and without it, no healing occurs. This system has proven to be highly effective at healing

cracks in both quasi-static [1] and fatigue [3–6] loading.

An optimal combination of microcapsule and matrix properties is necessary to ensure

mechanical triggering when the material is damaged; if the shell wall is too thick the micro-

capsule will not rupture readily, preventing the release of healing agent. On the other hand,

if the shell wall is too thin, the capsules not only are fragile, but also allow diffusion of the

healing agent into the matrix. Other key parameters for efficient healing agent delivery are

the elastic stiffness, the fill content, and the burst strength of the capsules.

The complex three-dimensional crack–microcapsule interaction which occurs in a self-

healing composite has been studied using the Eshelby–Mura equivalent inclusion method

[1]. Model predictions reveal that that the capsule-to-matrix stiffness ratio influences the

crack propagation path in close proximity to the capsule. A capsule with a higher elastic

modulus than the surrounding matrix creates a stress field that tends to deflect the crack

away from the microcapsule. Conversely, a more compliant shell wall material produces a

stress field that attracts the crack toward the microcapsule, facilitating capsule rupture.

In addition to providing storage of the healing monomer, Brown et al. [7] demonstrated

that microcapsules toughen the polymer matrix by as much as 127% over the neat matrix

(with no capsules) value. Previous studies of microcapsule toughening included only the

effect of average capsule diameter and volume faction. The additional influences of shell

wall thickness, capsule processing, and fill content on toughening in a polymer matrix were

examined in more recent work [8]. While all three of these parameters significantly impacted

the efficiency of microcapsule toughening, it was difficult to elucidate the relationship be-

tween physical properties of the microcapsule and the fracture performance of the polymer

composite. The goal of the present work is to characterize the mechanical properties of the

microcapsule system currently used in self-healing composites.
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Several methods for characterizing capsules have appeared in the literature, most of which

were developed for biological cells. Mitchison and Swan [9] introduced a micropipette aspira-

tion test for probing the mechanical response biological cells. A micropipette was placed in

contact with the cell and a vacuum was applied, drawing the cell wall into the micropipette.

The cell wall deflection was measured and related to the mechanical stiffness of the wall

material. The micropipette aspiration technique has also been applied to determine micro-

capsule shell wall elastic modulus [10]. Cole used a simple compression test to characterize

the stiffness of sea urchin eggs [11]. A single egg was placed between two platens and then

compressed. In addition to characterizing biological cells, this experimental technique has

been applied to microcapsule systems [12–14]. In the current work, the single-capsule com-

pression experiment is adopted for the characterization of a range of microcapsules and

the resulting load–displacement data compared with a shell theory model to determine the

elastic properties of the shell wall.

II. EXPERIMENTAL PROCEDURE

A. Capsule Manufacture

The capsules examined in this study had a poly(urea-formaldehyde)(UF) shell wall and

were filled with dicyclopentadiene (DCPD) liquid monomer. They were identical to those

used for the self-healing system in [1] and were manufactured by an in-situ microencapsu-

lation method. In-situ microencapsulation proceeds in two concurrent steps. First a UF

prepolymer is formed in an aqueous bath containing an emulsified, water-immiscible encap-

sulent fluid [15]. The UF polymerizes around an individual DCPD droplet in the emulsion,

forming the shell wall of an individual microcapsule. Capsule diameter is determined by the

droplet size of the emulsion. A schematic of the manufacture procedure for UF capsules is

presented in Fig. 1. The average diameters for each capsule group tested were 213±12 µm,

187±15 µm, and 65±7 µm.

A representative scanning electron microscopy (SEM) micrograph of the surface mor-

phology of a UF capsule is shown in Fig. 2. In addition to allowing investigation of surface

morphology, SEM allowed measurement of the shell wall thickness of an individual capsule.

These microcapsules possessed a highly uniform shell wall thickness, 175±33 nm, indepen-

dent of capsule diameter.
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FIG. 1: Encapsulation procedure for UF capsules [15]

(a) (b)

FIG. 2: Electron micrographs of a UF DCPD filled microcapsule: (a) surface morphology; (b)

cross-section of the shell wall.

B. Experimental Setup

The capsule compression apparatus, shown in Fig. 3, was adapted from the one described

by Liu and coworkers [12]. Displacement was applied at a rate of 5 µm/s for the 187 µm

and 213 µm capsule size ranges and 2.5 µm/s for the 65 µm size range using a stepper

actuator (Physik Insturmente M-230S) controlled via a computer interface. Load data were

acquired from a 10 g load cell (Transducer Techniques GSO-10) via a DAQ card (PCI-

MIO-16E-4) and associated software from National Instruments. Images of the capsule

during the compression cycle were captured through a stereo microscope (Nikon SMZ-2T)
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FIG. 3: Photograph of experimental setup.

by a monochrome CCD Camera (Qimaging Retiga). The entire system was mounted on a

vibration isolation table.

For a dry microcapsule test, capsules were drawn into a pipette, which enabled release of

a single capsule onto the compression platen. An image of the microcapsule was taken prior

to compression to determine the initial capsule diameter. An initial separation between the

capsule and punch allowed the stepper to achieve steady-state velocity after motion was

initiated. The test program was started after positioning the punch above the capsule and

terminated after burst was observed.

Immersion tests were conducted using a modification of the apparatus presented in Fig. 3.

A schematic of the modified compression setup and the immersion test cell are shown in

Fig. 4. Capsules tested in the immersion setup were dispersed in a bath of DCPD and allowed

to equilibrate for at least 24 hours. Then a single capsule was removed from solution by

pipetting and placed into the compression cell. Fluid was added to the cell cavity to ensure

that the entire capsule was submerged. Testing then proceeded as described for the dry test.
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FIG. 4: Schematic of the immersion testing apparatus.

III. COMPRESSION TEST RESULTS

Figure 5 shows representative load–displacement data for an immersed capsule, 213 µm

in diameter, tested in compression. Dimensionless displacement is defined by the displace-

ment, δ, divided by the initial capsule diameter, D. Capsules tested while immersed in the

encapsulant fluid were imaged by backlighting. In Fig. 5 the images numbered one through

four show the capsule during representative sections of the loading sequence. In these im-

ages, the solid white line indicates the bottom of the compression platen and the dark region

is the compression punch. Image 1 shows the capsule prior to contact with the compression

platen. Image 2 is the capsule near the 15% dimensionless displacement point. At approxi-

mately this displacement, other researchers have observed a ‘yield’ in the load–displacement

response. This yield is characterized by a change in concavity of the load–displacement

curve [13]. Image 3 captures the capsule near the ‘burst’ event, which is indicated by the

load peak, and image 4 is the capsule after burst.

From Fig. 5 two key observations of compressive capsule shell wall behavior are evident:

the capsule shell wall does not buckle during compression and, the capsule remains effectively

intact after burst. The absence of buckling indicates that the yield point is due to localized

damage, such as microcracking or shear yielding, of the shell wall material. The burst

event was also studied with dry compression tests utilizing capsules filled with dyed DCPD.

Capsule burst was observed to proceed from the edge of the contact zone where the radius

of curvature is the highest. This burst is not a dynamic event, but a leaking of encapsulant

fluid from a shell wall failure. The encapsulent leakage proceeds quickly, coating the surface

of the capsule in a few seconds.

Figure 6 is a comparison of compression results for dry and immersed capsules of similar

diameters. The load–displacement responses of these tests are quite similar in the elastic
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FIG. 5: Images of a 213 µm diameter capsule during an immersed compression test.

region of the test (dimensionless displacement less than 15%). At about 20% dimensionless

displacement, however, the capsule response changes. The dry capsules generally sustain

more load prior to burst than the immersed capsules.

Capsules from batches with average diameters of 187±15 µm and 65±7 µm were tested in

dry compression to determine the effect of capsule size. Figure 7 shows representative load–

displacement responses for each of the capsule diameters. Two size effects can be noted:

smaller capsules are less stiff as a system, in the sense that they sustain less load for a given

dimensionless displacement, and the maximum load at burst is highly diameter dependent.

The dependence of burst strength on capsule diameter has been observed previously [13].

Table I shows the average burst force and burst strength of the microcapsule types tested.

The burst strength is calculated as the burst force normalized by capsule cross-sectional

area. The strength data indicate that during dry compression, smaller capsules are harder
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FIG. 6: Comparison of dry and immersed tests on capsules of similar diameter (222 µm).

to burst than their larger counterparts.

FIG. 7: Comparison of load–displacement responses for a 169 µm diameter microcapsule and a 61

µm diameter microcapsule tested in dry compression.

8



FIG. 8: Schematic of the microcapsule compression problem. The solid line is the uncompressed

microcapsule and the dashed line is the compressed microcapsule, after the figure in [12].

IV. COMPARISON WITH THEORY

A. Model Development

The elastic modulus of the capsule shell wall material is extracted through comparison

with an analytical membrane theory model. The model is based on the theory initially

developed by Feng and Yang [16] for an inflated spherical membrane and then later extended

to fluid-filled shells by Lardner and Pujara [17]. The current work follows the analysis for

fluid-filled shells as presented in [18] that includes a linear elastic constitutive relationship for

the shell wall material. A summary of the model is presented below along with comparisons

with the current compression data.

The compression of a microcapsule is shown schematically in Fig. 8, where the solid line

is the uncompressed profile and the dashed line represents the compressed geometry. This

geometrical arrangement generates two systems of ODEs, one for each distinct region of the

compressed capsule. The contact region, the flat portion of the dashed profile, is constrained

in one dimension by the compression punch. The non-contact region, which comprises the

rest of the capsule shell, is unconstrained and can deform freely.

The system of ODEs for the contact region are

λ
′

1 = − λ1

λ2 sinψ

f3

f1

− λ1 − λ2 cosψ

sinψ

f2

f1

, (1)

λ
′

2 =
λ1 − λ2 cosψ

sinψ
, (2)

where ψ is the angular coordinate of the compressed capsule, λ1 and λ2 are the principal
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stretch ratios, and f1, f2, and f3 are

f1 =
∂T1

∂λ1

, (3)

f2 =
∂T2

∂λ2

, (4)

f3 = T1 − T2, (5)

where T1 and T2 are the membrane tensions.

The ODEs for the non-contact region are

λ
′

1 =
δ cosψ − ω sinψ

sin2 ψ

f2

f1

− ω

δ

f3

f1

, (6)

δ
′
= ω (7)

ω
′
=
λ

′
1ω

λ1

+
λ2

1 − ω2

δ

T2

T1

− λ1(λ
2
1 − ω2)1/2Pr0

T1

, (8)

where

δ = λ2 sinψ. (9)

A linear elastic constitutive relationship was assumed for the current microcapsule systems

and was derived following [18]. The linear-elastic strain energy formula is

W =
Eh0

2 (1 + ν2)

{
(λ1 − 1)2 + (λ2 − 1)2 + 2ν(λ1 − 1)(λ2 − 1)

}
(10)

from [19]. The wall tensions Ti are related to the strain energy by

Ti =
1

λ1λ2

∂W

∂λi

(λi)
2. (11)

Equation (10) with Eqn. (11) yields

T1 =
Eh0

(1− ν2)

λ1

λ2

{(λ1 − 1) + ν(λ2 − 1)} , (12)

T2 =
Eh0

(1− ν2)

λ2

λ1

{(λ2 − 1) + ν(λ1 − 1)} (13)

for the shell wall tensions. The boundary conditions for this problem are

ψ = 0 : λ1 = λ2 = λ0,

ψ = Γ : λ1,contact = λ1,non−contact,

ψ = Γ : λ2,contact = λ2,non−contact, (14)

ψ = Γ : η
′
= 0,

ψ =
π

2
: δ

′
= 0.
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The above system of ODEs were solved using the numerical scheme outlined in [16].

Numerical solutions were performed with a Runge–Kutta solver provided by Matlab (The

MathWorks Inc.). Input to this program consisted of the measured capsule diameter and

the average wall thickness. The Poisson’s ratio ν was assumed to be 1/3, a value consistent

with other formaldehyde-based polymers. Since the problem is time independent, the load–

displacement plots were generated by solving the equilibrium problem of the capsule for a

given contact radius and determining the corresponding cross-head displacement.

A sensitivity study was undertaken to investigate the influence of Poisson’s ratio vari-

ance on the calculated load–displacement response. Figure 9(a) shows the non-dimensional

force (F = P/Eh0r0)–dimensionless displacement response for different values of the Pois-

son’s ratio. The model exhibits little sensitivity to Poisson’s ratio, and the results shown

in Fig. 9(a) are independent of capsule diameter or shell wall thickness. The sensitivity to

shell wall thickness variation was also investigated numerically. Figure 9(b) contains pre-

dicted load–displacement curves for a hypothetical capsule with a diameter of 180 µm and

a shell wall modulus of 3.6 GPa. The family of curves are the calculated load–displacement

responses if the shell wall is assumed to be the average thickness, the upper thickness limit,

and the lower thickness limit measured by SEM on a microcapsule batch. These numerical

studies indicate that variation in the shell wall thickness alters the predicted modulus value

by the same percentage as the thickness variation. That is, if the shell wall is assumed to

be 20% thicker than the actual value, the modulus will be under-predicted by 20%. Addi-

tionally, the encapsulated volume is assumed constant, as in previous studies [12, 17]. The

constant volume assumption disallows fluid diffusion through the shell wall.

B. Property Extraction

Representative model fits for a 169 µm capsule and a 61 µm capsule tested in dry com-

pression are shown in Fig. 10(a). The model was fit to the experimental data using Young’s

modulus as the single adjustable parameter. Modulus values obtained from both dry and

immersed compression tests are summarized in Table I. The model fits show good agree-

ment until the capsules reach displacement values near 15% (yield point) and then the model

deviates significantly from the experimental data. The model predicts a maximum of 3 to

4 percent strain in the capsule shell wall at this point. Strains of this magnitude are suffi-

cient to initiate damage in other thermosetting polymers and, as mentioned previously, the
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(a) (b)

FIG. 9: load–displacement plots from model parameter studies on the (a) effect of Poisson’s ratio

(t = 175 nm) (b) effect of shell wall thickness variation for a hypothetical 180 µm capsule with a

shell wall modulus of 3.6 GPa.

TABLE I: Average Young’s modulus and burst behavior of tested microcapsules.

Average diameter t/D E Average burst force Normalized burst strength

(µm ±Std. dev.) (GPa ±Std. dev.) (mN ±Std. dev.) (MPa ±Std. dev.)

187±15, dry 0.001 3.6± 0.4 6.5± 1.6 0.24± 0.04

213±12, immersed 0.001 3.9± 0.7 4.9± 0.5 0.14± 0.02

65±7, dry 0.004 3.7± 0.5 2.7± 0.7 0.8± 0.3

yield point may indicate the onset of damage in the shell wall. Dye tests have indicated

that there is significant leakage of encapsulant fluid only near 45% deformation, but some

diffusion of encapsulant fluid may be occurring. This diffusion would have an effect on the

load–displacement behavior of the capsules and is not accounted for in the model. A rep-

resentative model fit for the compression of a 223 µm immersed capsule, Fig. 10(b), shows

similar behavior to the dry tests. In this case, the model again deviates just prior to 15%

deformation.
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(a) Model comparisons for dry compression tests.

(b) Model comparison for an immersed test.

FIG. 10: Comparisons of experimental load–displacement data with the fluid-filled model for dry

and immersed UF capsules.

V. CONCLUSIONS

The shell wall elastic modulus of poly(urea-formaldehyde) shelled microcapsules was suc-

cessfully extracted from single capsule compression testing by comparison with a membrane

theory model. Young’s modulus was found to have an average value of 3.7±0.2 GPa for all
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capsule testing conditions and was independent of capsule diameter. However, capsule burst

behavior was found to be highly diameter dependent. Capsules of smaller diameters, while

bursting at lower loads, have a higher specific strength.

Acknowledgments

The authors would like to acknowledge support from the National Science Foundation

(Grant NSF CMS 02-18863) and NASA/JPL (subcontract 1270900). The electron mi-

croscopy was performed with the assistance of S. Robinson in the Imaging Technology Group

at the Beckman Institute, University of Illinois Urbana-Champaign. The authors would also

like to thank Prof. S.R. White and Prof. G. Gioia for fruitful discussions.

[1] S. White, N. Sottos, P. Geubelle, J. Moore, M. Kessler, S. Sriram, E. Brown, and

S. Viswanathan, Nat. 409, 794 (2001).

[2] E. Brown, S. White, and N. Sottos, Exp. Mech. 42, 372 (2002).

[3] E. Brown, Ph.D. thesis, Department of Theoretical and Applied Mechanics, University of

Illinois Urbana-Champaign (2003).

[4] E. Brown, S. White, and N. Sottos, Compos. Sci. Technol. (2005), to appear.

[5] E. Brown, S. White, and N. Sottos, Compos. Sci. Technol. (2005), to appear.

[6] E. Brown, S. White, and N. Sottos, J. Mat. Sci. (2005), in review.

[7] E. Brown, S. White, and N. Sottos, J. Mat. Sci. 39, 1703 (2004).

[8] M. Keller and N. Sottos, in Proceedings of the 2004 SEM X International Congress on Exper-

imental and Applied Mechanics (2004).

[9] J. Mitchison and M. Swan, J. Exp. Biol. 32, 443 (1954).

[10] A. Jay and M. Edwards, Can. J. Physiol. Pharmacol. 46, 731 (1968).

[11] K. Cole, J. Cell Comp. Physiol. 1, 1 (1937).

[12] K. Liu, D. Williams, and B. Briscoe, Phys. Rev. E 54, 6673 (1996).

[13] G. Sun and Z. Zhang, Int. J. Pharm. 242, 303 (2004).

[14] Z. Zhang, R. Saunders, and C. Thomas, J. Microencap. 16, 117 (1999).

[15] E. Brown, M. Kessler, N. Sottos, and S. White, J. Microencap. 20, 719 (2003).

[16] W. Feng and W. Yang, J. Appl. Mech. 40, 209 (1973).

14



[17] T. Lardner and P. Pujara, in Mechanics Today, edited by S. Nemat-Nassar (Pergamon, 1980),

pp. 161–176.

[18] C. Wang, L. Wang, and C. Thomas, Ann. Botany 93, 443 (2004).

[19] L. Cheng, J. Biomed. Eng. 109, 10 (1987).

15



 



List of Recent TAM Reports 

No. Authors Title Date 
 

 

989 Riahi, D. N. On stationary and oscillatory modes of flow instabilities in a 
rotating porous layer during alloy solidification—Journal of Porous 
Media 6, 1–11 (2003) 

Nov. 2001 

990 Okhuysen, B. S., and 
D. N. Riahi 

Effect of Coriolis force on instabilities of liquid and mushy regions 
during alloy solidification—Physics of Fluids (submitted) 

Dec. 2001 

991 Christensen, K. T., and 
R. J. Adrian 

Measurement of instantaneous Eulerian acceleration fields by 
particle-image accelerometry: Method and accuracy—Experimental 
Fluids (submitted) 

Dec. 2001 

992 Liu, M., and K. J. Hsia Interfacial cracks between piezoelectric and elastic materials under 
in-plane electric loading—Journal of the Mechanics and Physics of 
Solids 51, 921–944 (2003) 

Dec. 2001 

993 Panat, R. P., S. Zhang, 
and K. J. Hsia 

Bond coat surface rumpling in thermal barrier coatings—Acta 
Materialia 51, 239–249 (2003) 

Jan. 2002 

994 Aref, H. A transformation of the point vortex equations—Physics of Fluids 14, 
2395–2401 (2002) 

Jan. 2002 

995 Saif, M. T. A, S. Zhang, 
A. Haque, and 
K. J. Hsia 

Effect of native Al2O3 on the elastic response of nanoscale aluminum 
films—Acta Materialia 50, 2779–2786 (2002) 

Jan. 2002 

996 Fried, E., and 
M. E. Gurtin 

A nonequilibrium theory of epitaxial growth that accounts for 
surface stress and surface diffusion—Journal of the Mechanics and 
Physics of Solids 51, 487–517 (2003) 

Jan. 2002 

997 Aref, H. The development of chaotic advection—Physics of Fluids 14, 1315–
1325 (2002); see also Virtual Journal of Nanoscale Science and 
Technology, 11 March 2002 

Jan. 2002 

998 Christensen, K. T., and 
R. J. Adrian 

The velocity and acceleration signatures of small-scale vortices in 
turbulent channel flow—Journal of Turbulence, in press (2002) 

Jan. 2002 

999 Riahi, D. N. Flow instabilities in a horizontal dendrite layer rotating about an 
inclined axis—Journal of Porous Media, in press (2003) 

Feb. 2002 

1000 Kessler, M. R., and 
S. R. White 

Cure kinetics of ring-opening metathesis polymerization of 
dicyclopentadiene—Journal of Polymer Science A 40, 2373–2383 
(2002) 

Feb. 2002 

1001 Dolbow, J. E., E. Fried, 
and A. Q. Shen 

Point defects in nematic gels: The case for hedgehogs—Archive for 
Rational Mechanics and Analysis 177, 21–51 (2005) 

Feb. 2002 

1002 Riahi, D. N. Nonlinear steady convection in rotating mushy layers—Journal of 
Fluid Mechanics 485, 279–306 (2003) 

Mar. 2002 

1003 Carlson, D. E., E. Fried, 
and S. Sellers 

The totality of soft-states in a neo-classical nematic elastomer—
Journal of Elasticity 69, 169–180 (2003) with revised title 

Mar. 2002 

1004 Fried, E., and 
R. E. Todres 

Normal-stress differences and the detection of disclinations in 
nematic elastomers—Journal of Polymer Science B: Polymer Physics 40, 
2098–2106 (2002) 

June 2002 

1005 Fried, E., and B. C. Roy Gravity-induced segregation of cohesionless granular mixtures—
Lecture Notes in Mechanics, in press (2002) 

July 2002 

1006 Tomkins, C. D., and 
R. J. Adrian 

Spanwise structure and scale growth in turbulent boundary 
layers—Journal of Fluid Mechanics (submitted) 

Aug. 2002 

1007 Riahi, D. N. On nonlinear convection in mushy layers: Part 2. Mixed oscillatory 
and stationary modes of convection—Journal of Fluid Mechanics 517, 
71–102 (2004) 

Sept. 2002 

1008 Aref, H., P. K. Newton, 
M. A. Stremler, 
T. Tokieda, and 
D. L. Vainchtein 

Vortex crystals—Advances in Applied Mathematics 39, in press (2002) Oct. 2002 

1009 Bagchi, P., and 
S. Balachandar 

Effect of turbulence on the drag and lift of a particle—Physics of 
Fluids, in press (2003) 

Oct. 2002 

1010 Zhang, S., R. Panat, 
and K. J. Hsia 

Influence of surface morphology on the adhesive strength of 
aluminum/epoxy interfaces—Journal of Adhesion Science and 
Technology 17, 1685–1711 (2003) 

Oct. 2002 



List of Recent TAM Reports (cont’d) 

No. Authors Title Date 
 1011 Carlson, D. E., E. Fried, 

and D. A. Tortorelli 
On internal constraints in continuum mechanics—Journal of 
Elasticity 70, 101–109 (2003) 

Oct. 2002 

1012 Boyland, P. L., 
M. A. Stremler, and 
H. Aref 

Topological fluid mechanics of point vortex motions—Physica D 
175, 69–95 (2002) 

Oct. 2002 

1013 Bhattacharjee, P., and 
D. N. Riahi 

Computational studies of the effect of rotation on convection 
during protein crystallization—International Journal of Mathematical 
Sciences, in press (2004) 

Feb. 2003 

1014 Brown, E. N., 
M. R. Kessler, 
N. R. Sottos, and 
S. R. White 

In situ poly(urea-formaldehyde) microencapsulation of 
dicyclopentadiene—Journal of Microencapsulation (submitted) 
 

Feb. 2003 

1015 Brown, E. N., 
S. R. White, and 
N. R. Sottos 

Microcapsule induced toughening in a self-healing polymer 
composite—Journal of Materials Science (submitted) 

Feb. 2003 

1016 Kuznetsov, I. R., and 
D. S. Stewart 

Burning rate of energetic materials with thermal expansion—
Combustion and Flame (submitted) 

Mar. 2003 

1017 Dolbow, J., E. Fried, 
and H. Ji 

Chemically induced swelling of hydrogels—Journal of the Mechanics 
and Physics of Solids, in press (2003) 

Mar. 2003 

1018 Costello, G. A. Mechanics of wire rope—Mordica Lecture, Interwire 2003, Wire 
Association International, Atlanta, Georgia, May 12, 2003 

Mar. 2003 

1019 Wang, J., N. R. Sottos, 
and R. L. Weaver 

Thin film adhesion measurement by laser induced stress waves—
Journal of the Mechanics and Physics of Solids (submitted) 

Apr. 2003 

1020 Bhattacharjee, P., and 
D. N. Riahi 

Effect of rotation on surface tension driven flow during protein 
crystallization—Microgravity Science and Technology 14, 36–44 (2003) 

Apr. 2003 

1021 Fried, E. The configurational and standard force balances are not always 
statements of a single law—Proceedings of the Royal Society 
(submitted)  

Apr. 2003 

1022 Panat, R. P., and 
K. J. Hsia 

Experimental investigation of the bond coat rumpling instability 
under isothermal and cyclic thermal histories in thermal barrier 
systems—Proceedings of the Royal Society of London A 460, 1957–1979 
(2003) 

May 2003 

1023 Fried, E., and 
M. E. Gurtin 

A unified treatment of evolving interfaces accounting for small 
deformations and atomic transport: grain-boundaries, phase 
transitions, epitaxy—Advances in Applied Mechanics 40, 1–177 (2004) 

May 2003 

1024 Dong, F., D. N. Riahi, 
and A. T. Hsui 

On similarity waves in compacting media—Horizons in World 
Physics 244, 45–82 (2004) 

May 2003 

1025 Liu, M., and K. J. Hsia Locking of electric field induced non-180° domain switching and 
phase transition in ferroelectric materials upon cyclic electric 
fatigue—Applied Physics Letters 83, 3978–3980 (2003) 

May 2003 

1026 Liu, M., K. J. Hsia, and 
M. Sardela Jr. 

In situ X-ray diffraction study of electric field induced domain 
switching and phase transition in PZT-5H—Journal of the American 
Ceramics Society (submitted) 

May 2003 

1027 Riahi, D. N. On flow of binary alloys during crystal growth—Recent Research 
Development in Crystal Growth, in press (2003) 

May 2003 

1028 Riahi, D. N. On fluid dynamics during crystallization—Recent Research 
Development in Fluid Dynamics, in press (2003) 

July 2003 

1029 Fried, E., V. Korchagin, 
and R. E. Todres 

Biaxial disclinated states in nematic elastomers—Journal of Chemical 
Physics 119, 13170–13179 (2003) 

July 2003 

1030 Sharp, K. V., and 
R. J. Adrian 

Transition from laminar to turbulent flow in liquid filled 
microtubes—Physics of Fluids (submitted) 

July 2003 

1031 Yoon, H. S., D. F. Hill, 
S. Balachandar, 
R. J. Adrian, and 
M. Y. Ha 

Reynolds number scaling of flow in a Rushton turbine stirred tank: 
Part I—Mean flow, circular jet and tip vortex scaling—Chemical 
Engineering Science (submitted) 

Aug. 2003 



List of Recent TAM Reports (cont’d) 

No. Authors Title Date 
 1032 Raju, R., 

S. Balachandar, 
D. F. Hill, and 
R. J. Adrian 

Reynolds number scaling of flow in a Rushton turbine stirred tank: 
Part II—Eigen-decomposition of fluctuation—Chemical Engineering 
Science (submitted) 

Aug. 2003 

1033 Hill, K. M., G. Gioia, 
and V. V. Tota 

Structure and kinematics in dense free-surface granular flow—
Physical Review Letters 91, 064302 (2003) 

Aug. 2003 

1034 Fried, E., and S. Sellers Free-energy density functions for nematic elastomers—Journal of the 
Mechanics and Physics of Solids 52, 1671–1689 (2004) 

Sept. 2003 

1035 Kasimov, A. R., and 
D. S. Stewart 

On the dynamics of self-sustained one-dimensional detonations: 
A numerical study in the shock-attached frame—Physics of Fluids 
(submitted) 

Nov. 2003 

1036 Fried, E., and B. C. Roy Disclinations in a homogeneously deformed nematic elastomer—
Nature Materials (submitted) 

Nov. 2003 

1037 Fried, E., and 
M. E. Gurtin 

The unifying nature of the configurational force balance—Mechanics 
of Material Forces (P. Steinmann and G. A. Maugin, eds.), in press 
(2003) 

Dec. 2003 

1038 Panat, R., K. J. Hsia, 
and J. W. Oldham 

Rumpling instability in thermal barrier systems under isothermal 
conditions in vacuum—Philosophical Magazine, in press (2004) 

Dec. 2003 

1039 Cermelli, P., E. Fried, 
and M. E. Gurtin 

Sharp-interface nematic–isotropic phase transitions without flow—
Archive for Rational Mechanics and Analysis 174, 151–178 (2004) 

Dec. 2003 

1040 Yoo, S., and 
D. S. Stewart 

A hybrid level-set method in two and three dimensions for 
modeling detonation and combustion problems in complex 
geometries—Combustion Theory and Modeling (submitted) 

Feb. 2004 

1041 Dienberg, C. E., 
S. E. Ott-Monsivais, 
J. L. Ranchero, 
A. A. Rzeszutko, and 
C. L. Winter 

Proceedings of the Fifth Annual Research Conference in Mechanics 
(April 2003), TAM Department, UIUC (E. N. Brown, ed.) 

Feb. 2004 

1042 Kasimov, A. R., and 
D. S. Stewart 

Asymptotic theory of ignition and failure of self-sustained 
detonations—Journal of Fluid Mechanics (submitted) 

Feb. 2004 

1043 Kasimov, A. R., and 
D. S. Stewart 

Theory of direct initiation of gaseous detonations and comparison 
with experiment—Proceedings of the Combustion Institute (submitted) 

Mar. 2004 

1044 Panat, R., K. J. Hsia, 
and D. G. Cahill 

Evolution of surface waviness in thin films via volume and surface 
diffusion—Journal of Applied Physics (submitted) 

Mar. 2004 

1045 Riahi, D. N. Steady and oscillatory flow in a mushy layer—Current Topics in 
Crystal Growth Research, in press (2004) 

Mar. 2004 

1046 Riahi, D. N. Modeling flows in protein crystal growth—Current Topics in Crystal 
Growth Research, in press (2004) 

Mar. 2004 

1047 Bagchi, P., and 
S. Balachandar 

Response of the wake of an isolated particle to isotropic turbulent 
cross-flow—Journal of Fluid Mechanics (submitted) 

Mar. 2004 

1048 Brown, E. N., 
S. R. White, and 
N. R. Sottos 

Fatigue crack propagation in microcapsule toughened epoxy—
Journal of Materials Science (submitted) 

Apr. 2004 

1049 Zeng, L., 
S. Balachandar, and 
P. Fischer 

Wall-induced forces on a rigid sphere at finite Reynolds number—
Journal of Fluid Mechanics (submitted) 

May 2004 

1050 Dolbow, J., E. Fried, 
and H. Ji 

A numerical strategy for investigating the kinetic response of 
stimulus-responsive hydrogels—Computer Methods in Applied 
Mechanics and Engineering 194, 4447–4480 (2005) 

June 2004 

1051 Riahi, D. N. Effect of permeability on steady flow in a dendrite layer—Journal of 
Porous Media, in press (2004) 

July 2004 

1052 Cermelli, P., E. Fried, 
and M. E. Gurtin 

Transport relations for surface integrals arising in the formulation 
of balance laws for evolving fluid interfaces—Journal of Fluid 
Mechanics (submitted) 

Sept. 2004 

1053 Stewart, D. S., and 
A. R. Kasimov 

Theory of detonation with an embedded sonic locus—SIAM Journal 
on Applied Mathematics (submitted) 

Oct. 2004 



List of Recent TAM Reports (cont’d) 

No. Authors Title Date 
 1054 Stewart, D. S., 

K. C. Tang, S. Yoo, 
M. Q. Brewster, and 
I. R. Kuznetsov 

Multi-scale modeling of solid rocket motors: Time integration 
methods from computational aerodynamics applied to stable 
quasi-steady motor burning—Proceedings of the 43rd AIAA Aerospace 
Sciences Meeting and Exhibit (January 2005), Paper AIAA-2005-0357 
(2005) 

Oct. 2004 

1055 Ji, H., H. Mourad, 
E. Fried, and J. Dolbow 

Kinetics of thermally induced swelling of hydrogels—International 
Journal of Solids and Structures (submitted) 

Dec. 2004 

1056 Fulton, J. M., 
S. Hussain, J. H. Lai, 
M. E. Ly, 
S. A. McGough, 
G. M. Miller, R. Oats, 
L. A. Shipton, 
P. K. Shreeman, 
D. S. Widrevitz, and 
E. A. Zimmermann 

Final reports: Mechanics of complex materials, Summer 2004 
(K. M. Hill and J. W. Phillips, eds.) 

Dec. 2004 

1057 Hill, K. M., G. Gioia, 
and D. R. Amaravadi 

Radial segregation patterns in rotating granular mixtures: Waviness 
selection—Physical Review Letters 93, 224301 (2004) 

Dec. 2004 

1058 Riahi, D. N. Nonlinear oscillatory convection in rotating mushy layers—Journal 
of Fluid Mechanics (submitted) 

Dec. 2004 

1059 Okhuysen, B. S., and 
D. N. Riahi 

On buoyant convection in binary solidification—Journal of Fluid 
Mechanics (submitted) 

Jan. 2005 

1060 Brown, E. N., 
S. R. White, and 
N. R. Sottos 

Retardation and repair of fatigue cracks in a microcapsule 
toughened epoxy composite—Part I: Manual infiltration—
Composites Science and Technology (submitted) 

Jan. 2005 

1061 Brown, E. N., 
S. R. White, and 
N. R. Sottos 

Retardation and repair of fatigue cracks in a microcapsule 
toughened epoxy composite—Part II: In situ self-healing—
Composites Science and Technology (submitted) 

Jan. 2005 

1062 Berfield, T. A., 
R. J. Ong, D. A. Payne, 
and N. R. Sottos 

Residual stress effects on piezoelectric response of sol-gel derived 
PZT thin films—Journal of Applied Physics (submitted) 

Apr. 2005 

1063 Anderson, D. M., 
P. Cermelli, E. Fried, 
M. E. Gurtin, and 
G. B. McFadden 

General dynamical sharp-interface conditions for phase 
transformations in viscous heat-conducting fluids—Journal of Fluid 
Mechanics (submitted) 

Apr. 2005 

1064 Fried, E., and 
M. E. Gurtin 

Second-gradient fluids: A theory for incompressible flows at small 
length scales—Journal of Fluid Mechanics (submitted) 

Apr. 2005 

1065 Gioia, G., and 
F. A. Bombardelli 

Localized turbulent flows on scouring granular beds—Physical 
Review Letters, in press (2005) 

May 2005 

1066 Fried, E., and S. Sellers Orientational order and finite strain in nematic elastomers—Journal 
of Chemical Physics 123, 044901 (2005) 

May 2005 

1067 Chen, Y.-C., and 
E. Fried 

Uniaxial nematic elastomers: Constitutive framework and a simple 
application—Proceedings of the Royal Society of London A (submitted) 

June 2005 

1068 Fried, E., and S. Sellers Incompatible strains associated with defects in nematic 
elastomers—Physical Review Letters (submitted) 

Aug. 2005 

1069 Gioia, G., and X. Dai Surface stress and reversing size effect in the initial yielding of 
ultrathin films—Journal of Applied Mechanics, in press (2005) 

Aug. 2005 

1070 Gioia, G., and 
P. Chakraborty 

Turbulent friction in rough pipes and the energy spectrum of the 
phenomenological theory—arXiv:physics 0507066 v1 8 Jul 2005 

Aug. 2005 

1071 Keller, M. W., and 
N. R. Sottos 

Mechanical properties of capsules used in a self-healing polymer—
Experimental Mechanics (submitted) 

Sept. 2005 

 


