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Abstract
The transmission control protocol (TCP) is the major trans-
port protocol in the Internet. TCP and its variants have the
drawback of not accurately knowing rate share of flows at
bottleneck links. Some protocols proposed to address these
drawbacks are not fair to short flows, which are the majority
of the Internet traffic. Other protocols result in high queue
length and packet drops which translate into a high average
flow completion time (AFCT).

In this paper we present the design and analysis of a
Quick congestion Control Protocol (QCP). QCP can quickly
give flows their fair share rates hence allow them to quickly
finish. Unlike existing schemes, QCP uses an accurate for-
mula to calculate the number of flows sharing a network
link. This enables QCP to get fair share rates to flows with-
out over or under-utilization of bottleneck link capacities.
We also present an efficient sharing mechanism which QCP
uses to assign capacity which is not used by some flows bot-
tlenecked elsewhere to other flows which need the capacity.
We show how QCP can be implemented by extending the
emerging OpenFlow architecture. Simulation results confirm
the design goals of QCP in achieving reduced AFCT (by
upto 30%).
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tocols]: Transport Protocol Design

General Terms Computer Systems Organization
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1. Introduction
General Internet and data center traffic is dominated by a
large number of small flows (mice) and a few number of
large flows (elephant) [1, 3, 34]. For certain small size time
sensitive requests (flows) in applications such as financial

and database transactions, even a small increase in aver-
age flow completion time (AFCT) is significant. Multimedia
(streaming) applications also require a more smooth, fair and
predictable rate allocation. Video streaming services such
as YouTube and Netflix require an average download rate
which is slightly larger than video encoding rate [35]. Other-
wise if elephant flows significantly delay the periodic trans-
fer of fixed size blocks (64KB for instance) of video content
[35], the video playback may interrupt due to empty buffers.
So the AFCT of flows of specific sizes becomes an impor-
tant performance metric as also discussed in [9]. Hence an
efficient congestion control protocol should able to achieve
small AFCT for majority of network flows.

The majority of network traffic uses the transmission con-
trol protocol (TCP) [17] as a congestion control protocol.
TCP was successful managing congestion in the early stages
of the Internet and before the emergence and vast expan-
sion of other types of network and networking technologies.
With the growth of Internet and network technologies TCP
encountered many performance problems [14, 22]. As dis-
cussed in [22], a random packet loss can for instance re-
sult in a significant TCP throughput degradation over high
bandwidth-delay product networks. TCP is also not fair to
short flows (mice) which are the majority of network traffic
as few big size (elephant) flows can significantly delay many
mice flows [1, 34, 36].

There have been numerous research efforts to deal with
the weaknesses of TCP. The current modifications to TCP
such as HighSpeed TCP [11] inherit the main problems
of TCP in not quickly knowing the bottleneck link share
of flows. This results in flows taking longer to finish than
necessary [9].

The eXplicit congestion Control Protocol (XCP) [18] is
designed to achieve full link utilization and hence high per
flow throughput. However, XCP is not fair to short flows
(mice) resulting in higher average flow completion time
(AFCT) [9]. The Rate Control Protocol (RCP) [9] on the
other hand was designed to finish flows quickly. But as
shown later in this paper, RCP under or over estimates the
number of active flows which it needs to obtain the rate at
which flows send packets. This results in under or over uti-
lization of bottleneck link capacity which in turn results in
high queue length, packet drops and high AFCT.



To overcome the drawbacks of existing congestion con-
trol schemes and hence finish the majority of network flows
more quickly, we present the design and analysis of a Quick
congestion Control Protocol (QCP). The QCP approach de-
rives a simple and effective congestion control rate metric
which routers calculate and at which sources send data. Un-
like TCP, this rate metric can quickly obtain a very high link
utilization and a low queue size and hence results in smaller
AFCT. It can also achieve fairness (equal fair and propor-
tional fair) among all flows quickly unlike XCP. QCP also
uses an accurate derivation of the number of active flows
and hence doesn’t suffer from such estimation errors of RCP.
QCP can be easily implemented using (extending) the Open-
Flow [26, 27, 32] architecture.

QCP can emulate processor sharing (PS) [31] by dividing
available link capacity fairly among flows. The PS scheme
may not allocate a link capacity, unused by flows which are
bottlenecked at other links, to other (local) flows which need
the capacity. This is because in a multi-bottleneck network
scenario, a traditional PS scheme does not have a good way
to find out whether or not an active flow is bottlenecked
locally or at another link. To deal with this drawback, we
design anEfficient Sharing(ES) scheme by extending the
QCP approach. The ES algorithm achieves this efficiency by
treating each flow bottlenecked at other links (not locally)as
a fractionof a flow.

Previous results [9] have shown how RCP outperforms
XCP [18] and TCP. The simulation results we present in this
paper show how QCP outperforms both XCP and RCP.

The main contributions of this paper are as follows.

• We show that the performance of the Rate Control Proto-
col (RCP) degrades with network congestion.

• We propose a Quick congestion Control Protocol (QCP),
which is a novel congestion control scheme, that over-
comes the weaknesses of existing congestion control
schemes to achieve reduced flow completion time and
high link utilization.

• We implement QCP in the NS2 simulator and present
results which show how QCP outperforms RCP and XCP.

• We introduce a new resource sharing scheme called Effi-
cient Sharing (ES) and generalized ES (GES). ES can be
more efficient than the traditional Processor Sharing (PS)
in utilizing unused network resources without the need
of multiple queues and complex schemes for flows. We
show that QCP is an ES and GES protocol.

• We show how QCP can be implemented using (extend-
ing) the emerging OpenFlow [32] architecture which is
currently being deployed in the backbone of major enter-
prise networks such as Google.

The rest of the paper is organized as follows. We first dis-
cuss more related work in section 2. The QCP algorithm is
explained in section 3. In section 4 we present the derivation

of the QCP rate. Sections 5 and 6 show how QCP can achieve
processor sharing and even more efficient sharing (ES) than
the traditional processor sharing (PS) [19]. The QCP packet
header format is presented in section 7. We extend QCP to be
a weighted fair share allocation in section 8. The stabilityof
QCP is shown in section 9. We show how QCP can be grad-
ually implemented in section 10. A description of how QCP
can co-exist with TCP and TCP like algorithms is presented
in section 11. After validating the performance of QCP using
simulation in section 12, we give a brief summary in section
13.

2. Related Work
In this section we discuss previous work on congestion con-
trol protocols. We start with TCP and its variants and then
analyze the major clean-slate congestion control protocols.

2.1 TCP and its Variants

The performance limitations of TCP over high bandwidth
delay product networks has been reported in [22]. They
showed that a random packet loss can result in a signifi-
cant throughput degradation. The same paper also shows that
TCP is unfair towards flows with higher round trip delays.
TCP is also not fair for short-lived flows as shown in [14] as
the bottleneck bandwidth is dominated by long-lived flows
whose window size has grown so large. As has been exten-
sibly reported in the literature [7], TCP is also not suitable
for wireless networks. The main reason is that TCP assumes
that all packet losses are due to network congestion while in
the case of wireless networks it can be due to some wireless
link errors which may soon correct themselves. TCP also
either under-utilizes or over-utilizes the network bandwidth
resulting in a download time much longer than necessary as
discussed in [9].

The current modifications to TCP inherit the main prob-
lems of the original TCP and have not properly addressed the
main challenges. The Datagram Congestion Control Proto-
col (DCCP) [20] which is primarily designed to replace the
User Datagram Protocol (UDP) whose unreliable nature can
cause congestion collapse is for instance based on the TCP
algorithm. There are also many other variants of and mod-
ifications to TCP [4, 6, 11, 13]. Nonetheless these modifi-
cations of TCP inherit the basic limitations of TCP of not
quickly knowing the bottleneck link share of flows in spite
of some improvements over the original TCP. They mainly
rely on packet loss and packet delay as congestion signals.
Hence, they take longer than necessary to fully utilize the
link capacity and to achieve fairness among flows. This in
turn results in higher average flow completion (download)
time (AFCT).

2.2 Major Clean Slate Protocols

In this section we discuss how QCP differs from RCP and
XCP which are the two other major clean slate congestion
control protocols.



2.2.1 On Performance of RCP

The rate update equation of the rate control protocol (RCP)
[9] is given by

R(t) = R(t− d) +
(α(C − y(t))− β q(t)

d
)

N(t)
(1)

whered is a moving average of the RTTs measured across all
packets,R(t−d) is the last (previous) updated rate,C is the
link capacity,y(t) is the measured input traffic rate during
the last update interval,q(t) is the instantaneous queue size,
N(t) is the router’s estimate of the number of ongoing flows
(i.e. number of flows actively sending traffic) at timet and
α, β are parameters chosen for stability and performance.

In RCP and in the rate control protocol with acceleration
control (RFC-AC) [10], the number of ongoing flows,N(t)
is estimated as

N(t) =
C

R(t− d)
. (2)

But this is a heuristic estimate and is where the major limi-
tation of RCP lies.

RCP either over-estimates or under-estimates the allo-
cated rateR(t). When the initial value ofR(t − d) from
whichN(t) is obtained is too small, thenN(t) is too large
. This in turn results in the router unnecessarily dividing
the capacity into too many flows resulting in link under-
utilization. Let’s consider an initial rate ofR(t−d) = C/200
whose correspondingN(t) = 200. If the link receives only
40 flows/sec for an RTT of 0.1 sec, we have an actual num-
ber of 4 flows. If the router allocates each of these flows
only C/200 bytes/sec, then the total arrival rate for the next
round becomesC/50 bytes/sec which is 1/50 of the available
link capacity. In this case RCP significantly under-utilizes
the link capacity.

On the other hand if the initial value ofR(t − d) is too
large, thenN(t) becomes too small. As a result the router
divides the capacity into fewer number of flows and hence
over-estimates the rate allocation. This causes link over-
utilization, more queuing delays and packet losses. In fact,
the simulation setup of RCP uses a big buffer capacity (to
try to deal with this).

For example, let the initial sending rateR(t− d) = C/4.
Then the correspondingN(t) = 4. If the flow arrival rate is
200 flows/sec for an RTT of 0.1 sec, the actual number of
flows is 20. The router then tells each of these 20 flows to
send at the rate ofR(t − d) = C/4. If they all send at this
rate, then the total arrival rateΛ = 20C/4 = 5C. Hence the
link receives 5 times more packets than it can handle.

2.2.2 On Performance of XCP

The fact that XCP is not fair to short flows (flows with small
data to send) makes its average flow completion (download)
time (AFCT) much higher than TCP as shown in [9]. For ex-
ample, let us consider three short lived flows (mice) which
just started with a congestion window size of 1 packet and

need to send 50 packets each and one long lived flow (ele-
phant) which needs to send 500 packets and already reached
a congestion window size of 60 packets. Without loss of gen-
erality let’s assume that they all have the same round trip
time (RTT). If the spare link capacity is 20 packets per RTT,
then XCP shares it equally among all four flows allowing
each flow to increase its congestion window by 4 packets
per RTT. This implies that the window size of the three short
lived (mice) flows is now set to 5 packets per RTT. Hence, it
takes 50/5 = 10 rounds (RTT) to download each of the short
lived flows and hence a longer AFCT for most of the flows.
But QCP can reduce this FCT of majority of the flows by di-
viding the entire link capacity (say 60+20 = 80 packets/RTT)
equally among all four flows. This implies that each flow sets
(resets) its window size to 80/4 = 20 packets per RTT. This
implies that each of the short lived flows (the majority) will
have a file download time of about 2.5 rounds (RTT).

3. QCP Algorithm
The QCP algorithm at the end-hosts and at the routers can
be described as follows:

• A source sends each bytej with its desired rateR̂j

carried in the corresponding packet of the byte.

• Each router in the network calculatesR(t) using equa-
tion 4 or the simplified QCP version equation 14 every
control intervald, 0 < d ≤ RTTmax. HereRTTmax is
the maximum RTT of the flows which can be known or
estimated offline.

• Each router in the path of a packet associated with bytej
checks ifR(t) < R̂j in which case it overwriteŝRj and
forwards it unchanged otherwise.

• The destination then copies thêRj in the data packet to
the ACK packet.

• The source sets its current window sizew′
j = R̂jRTTj

upon receipt of the ACK packet whereRTTj is the RTT
of the flow of bytej.

• Each router updates itsR(t) value every control interval
d.

4. QCP Rate
To define and derive the QCP rate metric, we first give
notation in table 4.

The per flow fair QCP rate allocation at a bottleneck
router is derived as follows.

The intuition behind QCP is the assertion that the total
numberL of bytes sent to a router (link) during a control
intervald shouldn’t exceed the bandwidth-delay product mi-
nus the queue size at the router during the interval. Denote
wj to be the windows size of (number of bytes sent by) a
flow of byte j. Byte j is carried by its packet which arrives
at the router. Define theper byte cwndto be the number of
bytes to be sent in the next round trip time (RTT) for each



Parameters Description
C Link capacity in bytes per sec
d Duration of control interval in sec
q(t) Queue size from the current interval in bytes
R(t) Per flow rate allocation of the current interval in bytes per sec
N Number of flows in the current interval
L Total number of bytes which arrive to the router during a

control interval of lengthd
mi Number of packets of flowi which arrive to the router
ǫi The packet size of flowi in bytes
L̂ Total number of packets which arrive to the router
Ri Sending rate of flowi during the current round in bytes per

sec
α, β Stability parameters

Table 1. QCP Notations

of thewj bytes sent by a source of bytej during the current
RTT. If a source is sending at the rateRj bytes/sec and plans
to send at the fair share rateR(t) bytes/sec in the next RTT,
then theper byte cwndis R(t)/Rj bytes. The objective is
to find the fair rateR(t) = w′

j/RTT ′
j using the current rate

shareRj = wj/RTTj of a flow associated with its bytej
which arrives at the router.

The total number of bytes sent to a router from all sources
in the next interval is then the sum of theper byte cwnd
of all flows. With the notations defined in table 4, ifRj =
wj/RTTj denotes the rate associated with thejth of theL
bytes which arrive to the router,

L
∑

j=1

R(t)

Rj

=

L̂
∑

k=1

ǫkR(t)

Rk

=

N
∑

i=1

miǫiR(t)

Ri

= αCd− βq(t)

(3)
This implies that

R(t) =
αCd− βq(t)
∑L

j=1(1/Rj)
=

αC − β q(t)
d

1
d

∑L

j=1
1
Rj

. (4)

5. QCP Can Achieve Processor Sharing (PS)
In this section we discuss how QCP achieves PS. The inter-
byte timeσj is defined as the time between two consecutive
bytes for a flow associated with bytej. It is given byσj =
1
Rj

. Now suppose a router has seenL bytes within the
control time intervald. If ni of these bytes carryingσi

(in their corresponding packet) from sourcei are received
by the router during the control intervald, then taking the
denominator of equation 4 we have

1

d

L
∑

j

1

Rj

=
1

d

N
∑

i=1

ni

1

Ri

=

N
∑

i=1

ni

d

RTTi

wi

(5)

whereN is the number of active flows andwi is the conges-
tion window size (cwnd) of flowi which is the number of
bytes sourcei sends during its round trip time (RTTi). The
variableni is the total number of flowi bytes which arrive
at the router during the control intervald.

In the case where all bytes sent from a sourcei at the rate
of Ri = wi/RTTi arrive to the next hop router (switch) at

the same rate (as all the bytes of a flow to a router can be
spaced at an equal interval ofσi on average) we have that

ni

d
=

wi

RTTi

. (6)

This implies that1
d

∑L

j
1
Rj

=
∑N

i=1(
ni

d
)/( wi

RTTi
) = N

which means that QCP can achieve PS.
In the next section we will discuss scenarios whereni

d
6=

wi

RTTi
and where QCP can perform better than the traditional

processor sharing (PS) in a scheme we define asefficient
sharing (ES).

6. Efficient Sharing (ES)
Before we defineEfficient Sharing (ES), we will first de-
scribe the following notations. The resource to be shared
has a capacity ofX units/sec. Different sources use a se-
quence (chain) of different resources one after the other.
Some sources are currently requesting a total ofM units
of the current resource of interest per intervalτ . If there
areN such sources and if sourcek requestsnk units then
M =

∑N

k nk. A source associated with unitj has a bot-
tleneck resource share rate denoted byℜj units/sec. So the
source associated with unitj is sending requests to the cur-
rent resource at the rate ofℜj . The current rate allocation at
the current resource of interest is denoted withℜ(t− d). To
define ES, set

ℜ̌j = max (ℜj ,ℜ(t− d)) (7)

wheremax is a maximum function.

DEFINITION 1. The Efficient Share allocationℜ(t) for each
source at the current resource of interest for the next interval
is defined as

ℜ(t) =
X

1
τ

∑M
j

1
ℜ̌j

. (8)

In the case of QCP,X = αC −β q(t)
d

. We next show how
ES outperforms the traditional PS and GPS by allocating
capacity unused by some flows bottlenecked elsewhere to
other flows which need the capacity. We also discuss how
QCP is an ES protocol.

6.1 ES vs PS and GPS

A processor sharing (PS) which is also called a uniform pro-
cessor sharing allocates a resource capacity ofX units/sec
into N users equally. Its generalization is called General-
ized Processor Sharing (GPS) [31] and was first proposed
in [8] as weighted fair queueing (WFQ). GPS shares the re-
sourceX among theN users according to their weightsφj .
A source (user)i gets the shareℜi(t) given by

ℜi(t) =
φi

∑N

k φk

X. (9)



The case where all theφj are the same is a PS scheme.
The weight values ofφj are picked by the GPS scheduler.
However GPS does not give any specific approach to obtain
theweightsin such a way that a resourcem which can not be
used by a user which is bottlenecked at another resourcen is
allocated to another user which can use the resourcem. On
the other hand, ES uses the weights given in the denominator
of equation 8 to implicitly assign unused resource to all flows
which can use it.

Even though ES obtains the same rate to all flows as
shown in 8, the flows which do not need the assigned rate
implicitly release the resource to other flows which re-
quire it by not using the capacity of the resource beyond
what they can use (bottlenecked elsewhere). For exam-
ple if X = 100 units/sec, R1 = 10 units/sec, n1 =
10units, R2 = 50 units/sec, n2 = 50units andR3 =
70 units/sec, n3 = 70units for a control interval of
τ = 1 sec, and R(t − d) = 40units/sec then since
max(10, 40) = 40 from equation 7,

ℜ(t) =
100

10
40 + 50

50 + 70
70

=
100

2.25
= 44.44units/sec.

Here, all three users are assigned the same rateℜ(t) =
44.44. However user 2 implicitly releases the resources it
can not use by sending only at10 units/sec. A PS mech-
anism would result in a share of100/3 = 33.3 and would
not assign the resource unused by user 1 to the other users
(sources). The GPS on the other hand does not provide
a mechanism to obtain proper weight values at a multi-
bottleneck level to allow efficient use of resources. Hence ES
can also be viewed as a special case GPS where weights are
automatically and adaptively calculated at a distributed net-
work level in such a way that what some sources (users)can
not useis equally allocatedto other users in a work conserv-
ing manner (utilizing available resource if there is a demand
for it).

A resource some users cannot use can also be allocated
to other users which can use it proportionally based on some
weightsφi as the case of GPS. We call this generalization
of ES a generalized efficient sharing (GES). The same argu-
ment as equation 3 can be used to find a new rateℜj(t) with
weightφj associated with unitj as follows.

M
∑

k

ℜk(t)

ℜk

=
M
∑

k

φkℜ(t)

ℜk

= Xτ. (10)

This implies that

ℜ(t) =
X

1
τ

∑M

k
φk

ℜk

. (11)

Then the GES rateℜj(t) = φjℜ(t).
In addition to achieving PS, QCP can also handle ES

scenarios which a traditional PS scheme cannot handle. This
enables QCP to achieve more efficient sharing (ES) than PS.
We will next use two QCP cases to describe this ES.

6.2 Single Bottleneck Scenario

There can be a scenario whereni

d
< wi

RTTi
. This happens

for instance when a new bottleneck link is formed in the
flow path before the location of the previous bottleneck link
which allocatedRi = wi

RTTi
to flow i. The new bottle-

neck link then drops or delays packets of flowi resulting
in smaller rateni

d
arriving to the previous bottleneck link. In

this case, QCP in the previous bottleneck link counts flow
i as less than one flow (fractional flow) which is equal to
ni

d
/Ri. On the other hand, the traditional PS counts each of

such flows as one flow. In this case, the PS approach at the
previous bottleneck link divides the capacity by more than
theactualnumber of flows. This results in PS allocating less
rates to some flows which need more. Dividing the capacity
by theexact fractional numberof flows, QCP however gives
the capacity unused by some flows to flows which can use it
without causing buffer overflow or resource underutilization.
To do this, QCP doesn’t require any special queues or com-
plicated operations as the allocation is done using QCP rate
equation. On the other hand, the scenario whereni

d
> wi

RTTi

may occur, for instance when bursts of packets of a flow
arrive to a link. In this case, QCP temporarily counts such
flows asni

d
/Ri which is more than one flow. Hence, QCP

assigns less rate to flows to absorb the bursts of packets.
Another important result from equations 6 and 5, is that

unlike RCP [9] and XCP [18] the estimation of the control
interval, d, in QCPdoesn’t need the exact flow RTTs. The
value ofd can be set to some reasonable value between max-
imum and minimum RTT values. It can be user-defined and
obtained from reasonable offline experiments. The smaller
the value ofd, the more recent bottleneck rate values the
packets carry back to their sources. QCP is less sensitive of
the choice ofd. This is because if the choice ofd results in
ni

d
6= wi

RTTi
, the ES nature of QCP temporarily counts the

flow as a fractional flow resulting in an accurate rate calcu-
lation as discussed above. QCP can also use flow RTTs to
obtaind like XCP and RCP.

6.3 Multi-Bottleneck Network

In a multi-bottleneck network where different flows are bot-
tlenecked at different links, some flows may not be able to
utilize their equal share allocation at a link which is a bot-
tleneck to other flows. If the bottleneck link allocation of
flow i is Ri and if its current equal rate share at its non-
bottleneck link isR(t − d) > Ri, then flowi can waste its
non-bottleneck link capacity which can otherwise be used by
other flows bottlenecked at that link. This can result in QCP
not achieving ES.

To deal with this scenario, QCP uses

Řj = max(Rj , R(t− d)) (12)

instead of theRj in the denominator of equation 4, whereRj

is the source rate carried by a packet associated with bytej



of a flow andR(t − d) is the rate allocation of flows at the
link for the current interval.

QCP uses expression 12 only if the flow associated with
bytej is in its second RTT sending packets at its bottleneck
link rate. QCP can check this by comparingRj against
the initial QCP rateRinit of flows which can be known
before hand as the ratio of initialcwndand some average
flow RTT. In this case ifRj ≤ Rinit, QCP doesn’t use the
expression 12 as the flow may be just starting. QCP packet
header can also carry a single bit to indicate the start of a
flow. If possible, SYN packet can also be used to indicate
the start of the flow. OpenFlow switches (routers) can also
detect the first packet of a flow if the packet does not belong
to any of the flow table entries [32].

Here is some explanation of why the approach in expres-
sion 12 can achieve ES (Efficient Sharing). IfRj < R(t−d),
then a flow which owns bytej should be treated as a partial
(fractional) flow by the router which allocatedR(t − d) to
the flows (including the flow of bytej). This enables QCP
to assign the unused resource to other flows bottlenecked at
that router.

On the other hand, ifRj > R(t − d), QCP achieves ES
by treating the flow of bytej as at least one flow as it can
cause temporary queue spikes (being late to learn its new
allocation). This occurs for instance because the allocation
Rj was much older thanR(t − d) as the flow has an RTT
too long (longer than the control interval) to know about its
latest rate allocation.

If we approximateRj used in equation 4 withR(t − d)
even ifRj > R(t− d), we get

Na =
1

d

L
∑

j

1

Rj

≈
1

d

L
∑

j

1

R(t− d)

≈
1

R(t− d)

L

d
=

y(t)

R(t− d)
(13)

wherey(t) = L
d

is the total input traffic rate in bytes during
the control intervald at the router, andR(t− d) andRj are
rates per flow.

When QCP uses equation 13, it can overestimate the ac-
tual numberNa of flows when 1

Rj
< 1

R(t−d) . This overesti-
mation ofNa can result in a lower rate allocation to all flows
which in turn can result in link underutilization. This is spe-
cially true with a misbehaving flow. If QCP uses equation 13,
the misbehaving flow can continue to increase its rate at the
expense of the other flows as the router continues to count
the flow as more than one flow. Such behavior is not fair to
the other flows which quickly obey the QCP rate rule.

In a simplified version of QCP, we also use equation 13 in
the denominator of equation 4 as an estimation of the actual
number of flows. The resulting simplified QCP rate is then
given by

R(t) =
αCd− βq(t)

dNa

(14)

The derivation in equation 13 shows that the main strength of
this simplified version of QCP lies on its use of thefractional
flow concept where flows can be counted as partial flows
unlike the case of PS. Hence, the simple expression given
by equation 13 is an estimator of ES. This implementation
allows QCP packet header to be even smaller (about 8 bytes)
as shown in section 7. In the simulation experiments of this
paper we used the exact QCP rate given by equation 4.

7. QCP Packet Header Format
The QCP header can be placed as shim layer between the
TCP and IP headers. QCP can have two packet header imple-
mentation schemes. The first one which is shown in figure 1
has a 12 byte header.

0  1  2  3  . . .                  14  15  16                       . . .   30  31  32

Inter−Byte Interval (Inverse of Flow Bottleneck Rate)

QCP Bottleneck Rate 

QCP Reverse Bottleneck Rate 

Figure 1. QCP header with 12 bytes

The first field is theInter-Byte Intervallengthσj = 1/Rj ,
whereRj is the current sending rate attached to a packet
associated with bytej of the corresponding flow. The routers
in the path of bytej (its associated packet) use this field to
obtain the QCP rate given by equation 4. The second field
is theQCP Bottleneck RatêRj which is the rate initialized
to be the desired rate by source. The bottleneck router in the
path of the packet associated with bytej can then overwrite
the value. This rate is the minimum of all the rates in the path
of the packet associated with bytej. The third field isQCP
Reverse Bottleneck Ratewhich is the same QCP bottleneck
rate which the receiver copies to its outgoing packets (ACK
packets for example). The simulation results for QCP used
in this paper use this implementation scheme of the QCP
header.

The second implementation scheme of the QCP header
shown in figure 2 is without theσj field. This implementa-
tion can reduce the QCP packet header to 8 bytes.

0  1  2  3  . . .                  14  15  16                       . . .   30  31  32

QCP Bottleneck Rate 

QCP Reverse Bottleneck Rate 

Figure 2. QCP header with 8 bytes

In this implementation scheme each source sets the value
of the QCP bottleneck rate(R̂j) to its desired rate. Each
router in the path of the packet associated with bytej cal-
culates the rate using equation 14. If this rate is smaller than
the R̂j in the packet header, then the router replaces theR̂j

in the packet header with what it obtains using equation 14.
The receiver then copies the value of theQCP bottleneck



ratewhich routers may have changed, into the ACK (return-
ing) packets. The source which receives the ACK packets
then adjusts itscwndto the product of the rate it gets from
the ACK packets and its RTT.

8. Weighted QCP
The QCP rate given by equation 4 can be extended to be a
weighted share metric. Such a metric allows different flows
to get different shares based on their weights without causing
router buffer overflow or link under-utilization. If packetj
of a flow carries the weight informationωj of its flow, then
using a derivation similar to the one used in equations 10 and
11, we have

L
∑

j=1

ωjR(t)

Rj

= αCd− βq(t). (15)

This implies that

R(t) =
αCd− βq(t)
∑L

j=1(ωj/Rj)
. (16)

A flow of packetj can then set its rateRj = ωjR(t) =

ωjR̂j whereR(t) is the bottleneck link rate.
Different policies can be set for different classes of flows.

For instance, if a flow which just received the rate ofR̂k

from its ACK packetk wants to achieve a target rate ofRŤ
j

for the next round, it sets its weightωj asωj =
RŤ

j

R̂k

.
Different levels of priority can be used by adding a few

more bits in the QCP header or using the current IP header
fields (ECN bits). The source can also sendωj/Rj in the
QCP header. Each sourcei can then set its congestion win-
dow aswi = ωiR̂iRTTi packets wherêRi is obtained from
the ACK packets.

9. Stability Analysis
In this section we present stability analysis of QCP using
control theory.

9.1 Lyapunov Stability

The rate allocation by QCP queue at a bottleneck router is
done every control intervald. This allocation is received
by each source sharing the bottleneck link after a round
trip time (of each of the sources). This new rate allocation
changes the congestion windowwj of each sourcej. So
the aggregate feedback sent per unit time is the sum of
the derivatives of the congestion windows. This feedback is
similar with the XCP feedback and hence we have

∑

j

dwj

dt
= C − Λ(t− d)−

q(t− d)

d
(17)

whereΛ(t − d) andq(t − d) are the total arrival rate and
queue size in the previous control interval andC is the link
capacity.

Adding the control parametersα and β for stability,
Equation 17 becomes

∑

j

dwj

dt
= α(C − Λ(t− d))− β

q(t− d)

d
. (18)

As shown in [2] and [24], the QCP feedback mechanism
is given by the delay differential equations

Λ′(t) =
α

d
(C − Λ(t− d))−

β

d2
q(t− d)

q′(t) =

{

Λ(t)− C, q(t) > 0

max{Λ(t)− C, 0}, q(t) = 0.
(19)

As the QCP feedback mechanism can be written in Equa-
tion 19, appropriate Lyapunov functions can be used to find
stable values of the control parametersα andβ. For instance
the work [24] shows thatβ/d2 = α/d gives stability. This
for instance implies that ifα = 1.0 , β = d. Previous work
[2] also shows a wide range of stable values for protocols
whose feedback mechanism can be written in the form of
Equation 19. Our detailed simulation results also show that
α = 1 = β gives stable values for QCP. We are also working
on using the Lyapunov functions in [24] to find even wider
stable regions forα andβ.

10. Gradual Deployment of QCP
In the implementation of QCP, routers (router-like boxes)
read the QCP packet headers, calculate rate and modify the
packet headers of flows. QCP can be easily implemented
by extending the OpenFlow [26, 32] which enables clean
slate schemes to be implemented in big networks such as the
Google backbone network [15, 16]. In this section we will
discuss how QCP can be implemented using (by extending)
the OpenFlow architecture.

There are different ways QCP can be implemented using
the OpenFlow switch and protocol specification [32]. For
the rest of this section we will use the terms switch and
router interchangeably. As specified in [32], each flow entry
of an OpenFlow switch contains a set ofinstructionsthat are
executed when an arriving packet matches the entry. One of
the instruction types isMeter which directs the packet to a
specified meter. Each meter has one or moremeter bands.
Each band specifies therate at which the band applies and
the way packets should be processed. Packets are processed
by a single meter band based on thecurrent measured meter
rate. The meter applies the meter band with the highest
configured ratethat is lower than the current measured rate.
If thecurrent measured rateis lower than anyspecified meter
band rate, no meter band is applied.

In the case of QCP, the configured rate can be obtained by
taking theQCP bottleneck rate(R̂j) from the QCP packet
header. Themeasured meter rateassociated with a specific
link can be replaced with the QCP rate in equation 21 ob-
tained as discussed in section 10.1. The OpenFlow switch



can then invoke theApply-Actionsinstruction to apply the
Set-Fieldaction which overwrites the QCP bottleneck rate
in the packet header.

10.1 QCP Rate Using OpenFlow

The flow table of an OpenFlow switch can maintain a per
flow packet counter. By polling the packet counter every
control intervald the numberni of packets of each flow
i during the intervald (for each of theN flows sharing a
given link) can be obtained. The flow table also maintains the
numbersLr of received andLs served bytes for each flow
from which the queue sizeq(t) of a link can be obtained. The
q(t) can also be obtained by reading the OpenSwitch queue
length. By readingni at every control intervald, the current
sending rateri of flow i is given byri = ni/d. If the QCP
rate of the link obtained from the previous control intervalis
R(t− d), then setting

ři = max (ri, R(t− d)), (20)

the QCP rate can then be calculated as

R(t) =
αC − β q(t)

d
∑N

i=1
ri
ři

. (21)

This counters can be obtained and the rate can be calculated
using the OpenFlow switches (decentralized) with off-ASIC
or on-ASIC CPU [23, 28, 33]. It can also be calculated
by the OpenFlow controllers (centralized) and sent to the
OpenFlow switches. The OpenFlow switches then apply the
Set-Fieldaction using the instruction discussed above. The
Set-Fieldaction can be applied to the first packet of each
flow allowing each source to jump start its sending rate
as what Quick start TCP [37] aims to do. TheSet-Field
action can also be applied to some randomly selected or to
all packets of a flow. This implementation scheme can be
done using the 8 byte QCP header scheme as discussed in
section 7.

10.2 Using Stateless OpenFlow

Another QCP implementation scheme using the OpenFlow
concept can use the 12 bytes or 8 bytes QCP header scheme
discussed in section 7. In this implementation scheme, the
OpenFlow switches do not even need to read the bytes counts
from the flow tables. In this case, the source rateRj in the
QCP packet header field which carriesσj = 1

Rj
with equa-

tions 4 and 12 is used instead of theri in equations 20 and
21. This implementation scheme does not require OpenFlow
switches and controllers to maintain per flow states (such
as counters), which is the main OpenFlow scalability is-
sue [29]. The per link rate which can be calculated using
equation 4 (with end-host assistance) or equation 14 (with no
end-host assistance) is all the switches and controllers need
to achieve QCP and other OpenFlow objectives. For instance
OpenFlow rate limiting and max-min routing can be done as
briefly discussed in sections 10.4 and 10.3 using this rate.

10.3 Using OpenFlow Edge Switches

The QCP rate given by equation 21 or 4 can also be used
as a link weight metric in a max-min routing algorithm. The
max-min routing algorithm finds the minimum rate of each
path and takes the path with the highest such rate. The Open-
Flow controller can run the max-min algorithm and provide
the edge OpenFlow switches with such max-minpath and
the correspondingrate. Parallelism and other approaches
are being used to scale the OpenFlow controller[5, 21, 38].
The max-min can also be done by the routers (OpenFlow
switches) in a distributed manner by exchanging the rate as
a link metric. The edge switches can then use theSet-Field
action to replace the rate at the QCP packet headers. The
QCP packet headers then do not have to be changed until
they reach another edge switch (router) which has rate of its
link. Using this approach saves the core switches (routers)
more packet processing time. This approach can be easily
performed using emerging network virtualization architec-
tures such as [30] with intelligent edge open vSwitches and
controller cluster.

10.4 QCP Rate Limiting

Rate limiting of a flow can also be done using the QCP rate.
If the measured rateRM of a flow at a switch is higher than
the QCP rateR(t) obtained using equation 21, packets of
the flow can be dropped (sent to low priority queue) with
probability (RM − R(t))/RM . Otherwise, the packets are
served with no drops. Different flows sharing a link can also
get different rate allocations to support Quality of Service
(QoS). By associating a weightωi to flow i the QCP rate can
be obtained as

R(t) =
αC − β q(t)

d
∑N

i=1
ωiri
ři

. (22)

Flow k can then get a share ofRk = ωkR(t). In this case,
if RM > Rk, packets of flowk are dropped (sent to low
priority queue) with probability(RM−Rk)/RM . Otherwise
packets of flowk are served with no drops.

11. QCP with TCP Flows
To allow QCP to be implemented with other protocols such
as TCP for incremental deployment, the QCP router can be
modified as follows. The QCP router creates separate fair
queues for TCP and QCP traffic. The router serves packets
from the TCP and QCP queues based on weights, for in-
stance, using round robin. The weightsωT andωQ of the
TCP and QCP queues can be calculated the same way as the
weights of TCP and XCP queues are calculated in [18]. To
force its flows to be fair to TCP, QCP also uses the remain-
ing capacityωQC instead of the entire link capacityC in the
calculation of the QCP rate using equations 4 and 22.



Table 2. Baseline parameters for experiments on estimation
of N

Parameter Default value
Link capacity 20 Mbps
Link propagation delay 50 ms
Number of flows 10
File size 4 MB

12. Simulation Analysis
In previous studies [9], RCP was shown to outperform TCP
and XCP. In this section, we evaluate the performance of
QCP comparing it with RCP and XCP using NS2 [25] which
is a widely used network simulator.

To validate the performance of QCP, we have imple-
mented the QCP source as a sub-class of TCP-Reno and
QCP queue as a subclass of DropTail Queue in NS2.

Similar to previous work on RCP, we first use a sim-
ple topology which contains sources and a destinations con-
nected by one single bottleneck link. Unless specified we use
a router buffer size of 1 bandwidth-delay-product (BDP).

In the first set of experiments, we show how RCP and
QCP make estimation on the number of flows. We generate
a fixed number of big size flows which all start at the same
time. The baseline parameters are summarized in Table 2.

Figure 3 plots the estimation of number of flows versus
time for QCP and RCP. We use the same value ofα = 1 = β
for QCP in all experiments while RCP uses different values
of α andβ in different experiments. The estimation ofN
from QCP virtually matches the real value. In contrast, de-
pending on the choice of parameters, the estimation ofN
from RCP either needs much longer time to converge or even
never converges. This in turn results in flows taking longer
to finish than necessary. Two important messages conveyed
here are: (1) QCP gives a more accurate and reliable estima-
tion of the number of flows than RCP; (2) the performance
of RCP is sensitive to the setting of parameters and there is
no specific rule on how to set these parameters. In the rest of
the paper we useα = 0.1 andβ = 1 for RCP experiments.
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Figure 3. Estimation of N versus time withα = 0.1, α = 1
for RCP

To compare the average flow completion time (AFCT)
of QCP against RCP we have also considered a different
numbers of flows with a fixed file size. As can be seen from
Figure 4 the AFCT of QCP is smaller than that of RCP.
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Figure 4. AFCT versus number of flows

RCP performs badly when the number of flows grows as
shown in figure 4. This is because RCP either under or over
estimates the number of flows into which the bandwidth is
divided.

Most of the experiments used to validate RCP in [9] were
obtained using a non-congestion scenario with an average
link load of around 90%. However such a simulation sce-
nario doesn’t properly evaluate the performance of RCP. In
fact as in aNaive QCPapproach, where we set the initial
cwndof every flow equal to the file size of the flow for
the cases, where the link on average is not fully utilized
(similar to many RCP experiments in the [9]), the network
doesn’t get congested on average as shown in figure 5. In this
scenario a congestion control protocol is not even strictly
needed as all flows can send all the packets they have in one
round and retransmit some of their lost or delayed packets
to get very small AFCT. As can be seen from the plot, even
Naive QCP outperforms RCP.
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Figure 5. AFCT of Naive QCP vs RCP: Poisson(1500
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However, under a congestion scenario, the performance
of RCP is worse when compared with QCP as shown in the



Protocol Number of finished flows (in 26.061
sec)

RCP 17280
QCP 66212

Table 3. QCP versus RCP under high load scenario: Pois-
son(8333.3 flows/sec), Pareto(1.2,30 pkts)

next experimental results. In these experiments Poisson flow
arrivals where the file sizes are Pareto distributed are usedas
is also the case in [9, 18, 36] to emulate Internet and data-
center traffic [3]. As shown in table 3, within a simulation
time of 26.061 seconds only 17280 RCP flows finished due
to the increasingly high file completion time (FCT) as shown
in figure 6. On the other hand as can be seen from table 3,
66212 QCP flows finished during the same time.

The y-axis of figure 6 shows how the average completion
time of flows that complete within each progressing 2 second
interval grows with simulation time in a loaded link scenario.
As the simulation time progresses, RCP results in higher file
completion time of the flows that finish. This in turn results
in less flows finishing in RCP than in QCP as shown in
table 3.
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Figure 6. FCT of flows versus simulation time (with 2
sec aggregation): Poisson(8333.3 flows/sec), Pareto(1.2,30
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We also compared the FCT of the 17280 RCP flows (all
RCP flows) which finished against the first 17280 QCP flows
which finished. As shown in figure 7 the FCT of QCP flows
is much smaller than that of RCP. This small FCT helped
more QCP flows finish in a shorter time as shown in table 3.

We next give comparison of QCP against XCP which is
another major clean slate congestion control protocol. As
discussed in section 2.2.2, XCP is not fair to small size flows
(called mice) which are the majority of Internet flows. This
is because the link bandwidth is dominated by a few large
size flows (called elephants).

Table 4 shows that the AFCT of 20 flows about one-third
of which are elephant flows and the remaining 13 flows are
mice flows. The file size of each of the elephants is 1MB
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QCPM XCPM QCPE XCPE QCPAvg XCPAvg

0.4001 0.8971 3.8176 3.5130 1.5962 1.8127

Table 4. AFCT (seconds): QCP versus XCP

and that of each mice is 50KB. The single bottleneck link
bandwidth is 20 Mbps with a propagation delay of 50ms.
All the elephant flows start at the same time and the mice
flows start about 1 second after the elephant flows start.

As shown in table 4, the AFCT of XCP mice flows
(XCPM ) is more than twice the AFCT of QCP mice flows
(QCPM ). This shows how unfair XCP is to short flows
when compared to QCP. While achieving this fair allocation
to small file size (mice) flows, QCP does not compromise
the overall average flow completion time (QCPAvg) when
compared with XCP. QCP is also fair to the big file size
(elephant) flows (QCPE).
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Figure 8. FCT of XCP flows vs QCP flows: Poisson(6000
flows/sec)

Figures 8 and 9 present the CDF of QCP versus XCP for
a link capacity of 2.4Gbps with a propagation delay of 50ms.
In figure 8 flows arrive following a Poisson distribution with
mean 6000 flows/sec and file sizes are Pareto distributed
with mean 50 packets (packet size = 1000 Bytes) and shape
parameter of 1.6. In figure 9 flow arrival is Poisson with



mean alternating between 5400 flows/sec for 3 seconds and
30000 flows/sec for 2 seconds. This simulates a link where
the average load fluctuates between high load and low load.
In figure 9 file sizes are also Pareto distributed but with mean
30 packets and shape parameter of 1.2.
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As can be seen from both figures 8 and 9 the file comple-
tion time of of the majority of QCP flows is smaller than that
of XCP flows. As file sizes are Pareto distributed to emulate
the Internet flows, most of the flows in this simulation setup
are small size flows (mice).

We have also compared the performance of QCP against
RCP for a two bottleneck network topology as shown in
figure 10.

60Mbs20Mbs

50Mbs

30ms

30ms

20ms

Flows
Group 0

Flows
Group 1

Figure 10. Two bottleneck network topology

As shown in figure 11, QCP gives lower FCT for the two
groups of flows crossing two different bottleneck links as
shown in the topology of figure 10.

We have also simulated QCP against RCP and XCP us-
ing flow inter-arrival times and flow size traces taken from
[3] and [12]. In figure 12 we use a bottleneck link capacity
of 0.4Gbps and flow inter-arrival times uniformly distributed
between 10 and 100 micro seconds taken from [3] to eval-
uate QCP against other protocols under a high load (con-
gestion) scenario. Like the previous experiments, QCP flows
finish quicker resulting in more QCP flows finishing. Within
8.6 simulation time, 48511 QCP flows and 37762 RCP flows
completed. Figure 12 shows the FCT CDF of all RCP flows
that finished against the corresponding QCP flows that fin-
ished.
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13. Summary
In this paper we presented the design of a Quick conges-
tion Control Protocol (QCP). QCP uses afair rate metric
to determinethe rate at which flows send data. We have
shown how QCP can achieve a more efficient sharing (ES)
scheme than the traditional processor sharing (PS). We have
described how QCP can be implemented in the new Open-
Flow networking architecture which is currently being de-
ployed in major enterprise networks.

Simulation results show that QCP can outperform RCP
and XCP which are the two major clean slate congestion
control protocols.
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