
Why Do Scala Developers Mix the Actor Model
with Other Concurrency Models?

Samira Tasharofi, Peter Dinges, and Ralph Johnson

Department of Computer Science, University of Illinois at Urbana–Champaign, USA
tasharo1@illinois.edu, pdinges@acm.org, rjohnson@illinois.edu

Abstract. Mixing the actor model with other concurrency models in a
single program can break the actor abstraction. This increases the chance
of creating deadlocks and data races—two mistakes that are hard to make
with actors. Furthermore, it prevents the use of many advanced testing,
modeling, and verification tools for actors, as these require pure actor
programs. This study is the first to point out the phenomenon of mixing
concurrency models and to systematically identify the factors leading to
it. We studied 15 large, mature, and actively maintained actor programs
written in Scala and found that 80% of them mix the actor model with
another concurrency model. Consequently, a large part of real-world ac-
tor programs does not use actors to their fullest advantage. Inspection
of the programs and discussion with the developers reveal two reasons
for mixing that can be influenced by researchers and library-builders:
weaknesses in the actor library implementations, and shortcomings of
the actor model itself.

1 Introduction

The actor model [1] for concurrent and parallel programming is gaining popular-
ity as multi-core architectures and computing clouds become common platforms.
The model’s restriction of communication to asynchronous message-passing sim-
plifies reasoning about concurrency, guarantees scalability, allows distributing
the program over the network, and enables efficient tools for testing [11,22],
modeling [20] and verifying [23] actor programs.

These advantages, however, depend on an intact actor abstraction. Program-
mers mixing the actor model with other concurrency models can easily break
the abstraction. It increases their chance of committing mistakes that the actor
semantics carefully avoid: shared state between actors breaks transparent distri-
bution and can introduce fine-grained data races; and blocking and synchronous
communication can lead to deadlocks. Furthermore, most of the tools for testing
actor programs lose their efficiency when used on programs that mix concurrency
models.

When examining Scala [16] programs available from public github1 reposito-
ries that use either the original Scala actor library or Akka [10], we discovered

1 https://github.com

https://github.com


that many of the programs mix actors with other kinds of concurrent entities
such as Java threads. This raised the question why programmers gave up the
advantages of actors and mixed them with threads. Was it a temporary mea-
sure, as the programmers converted thread-based parallelism to actors? Does
this indicate problems with the actor model, with the implementation of the
actor libraries for Scala, or in the education of Scala programmers?

In this paper, we formulate three research questions to study the phenomenon
of mixing concurrency models:

RQ1. How often do Scala programmers mix actors with other kinds of concur-
rent entities? This question obviously goes far beyond Scala, but we decided
to look first at Scala before looking at other languages.

RQ2. How many of the programs are distributed over the network, and does
distribution influence the way programmers mix concurrency models? Our
motivation for this question is that the actor model can be used, both, to
exploit multiple local processors, as well as to distribute the program over
the network. Hence, one reason for mixing concurrency models could be that
some models are better for particular kinds of programming than others.

RQ3. How often do the actors in the programs use communication mecha-
nisms other than asynchronous messaging? The communication through
asynchronous messaging reduces the possibility of deadlock and data races,
which is a common problem in the shared-memory model. However, in Scala,
actors can also communicate via other mechanisms such as shared locks. The
motivation for this research question is to find out if mixing the actor model
with other concurrency models is related to the advantages of asynchronous
communication, that is, whether developers use actors for those parts of the
program that have high risk of data races or deadlocks.

This paper describes how we selected programs to study (section 3), the way
we measured them, the resulting measurements (section 4), and the conclusions
we drew. We also contacted the developers, and they provided many insights into
the meaning of our observations (section 5). Our findings (section 6) reveal that
the reasons for mixing the actor model with other concurrency models are mostly
due to weaknesses in the implementations of the libraries. However, they also
show weaknesses in the actor model itself, as well as the experience of developers.

In summary, this work makes the following contributions: (1) it is the first to
point out a phenomenon that is at odds with the accepted wisdom about actors;
(2) it gives statistics about the phenomenon of mixing actors with other kinds
of concurrent entities in Scala programs; and (3) it gives recommendations for
researchers and actor-library designers.

2 Background: Concurrent Programming with Actors

Actors [1] are a model of concurrent programming. They are concurrently execut-
ing objects that communicate exclusively via asynchronous messages. Each actor
buffers the messages it receives in a mailbox and processes them sequentially,



one at a time. Upon processing a message, an actor can change its state, send
messages, or create other actors. The event-based computation model avoids
blocking waits for specific messages, which helps to keep clear of deadlocks in
the system. Each message is processed in an atomic step. This reduces non-
determinism in actor programs and makes reasoning about the program easier.

Actor semantics furthermore mandate that each actor is perfectly encapsu-
lated, that is, there is no shared state between actors. This greatly reduces the
potential for race conditions. In combination with asynchronous execution, the
lack of shared state allows actor programs to fully exploit the processing cores
of current—and future—mutli-core processors. Hence, actors offer strong local
scalability, which makes them attractive for modern architectures.

Another trait of actor semantics is location transparent addressing: actors
know each other only by unique, opaque addresses. Not having to specify the
(physical) location of a message recipient allows the run-time system to distribute
the actors that constitute a program across a computing cluster. Consequently,
the actor model provides scalability beyond single machines.

Actor libraries. Obtaining the scalability benefits does not require a language
that enforces strict actor semantics; it is sufficient to have a library provid-
ing asynchronous messaging between concurrent objects, and to adhere to cod-
ing conventions for avoiding shared state. This allows programmers to reap the
scalability-benefits of the actor model, and to break the abstraction if desired—
for example by introducing shared state between actors or using non-actor con-
currency constructs.

Scala [16]—an object–functional language that runs on the Java virtual
machine—is one of the most popular languages that follow this path. Its stan-
dard library provides non-strict actors as the default concurrency mechanism. We
refer to the actors of this implementation as Scala actors. Building upon expe-
rience from Scala actors, the Akka library [10] supplies another implementation
of non-strict actors for Scala. Besides offering better performance, it adds auto-
matic load-balancing, as well as Erlang-style [2] resilience and fault-tolerance.

While making programming more convenient, breaking the actor abstraction
has severe drawbacks. For example, most of the tools for testing [11,22], mod-
eling [20], and verification [23] lose their efficiency when used on programs that
mix the actor model with other concurrency models. Mixing concurrency models
furthermore re-introduces the potential for fine-grained data races and reduces
the readability and maintainability of programs.

3 Methodology

This section describes our methodology for compiling the corpus of Scala pro-
grams that use actors. It also explains how we gather statistics about these
programs. We use these statistics to answer our research questions in section 4
and complement them with discussions with the developers in section 5.



Table 1. The corpus of actor applications

Program Description LoC # of
(Scala+Java) Developers

BlueEyes (Akka) A web framework for Scala 28,638+0 3
Evactor (Akka) Complex event processing 4,652+0 2
Diffa (Akka) Real-time data differencing 29,613+5,207 8
Gatling (Akka) A stress test tool 8,252+632 19
GeoTrellis (Akka) Geographic data engine 10,131+0 2
Scalatron (Akka) A multi-player programming game 10,498+0 2
SignalCollect (Akka) Parallel graph processing framework 4,590+0 4
Spray (Akka) RESTful web services library 15,795+0 8
Socko (Akka) A Scala web server 5,683+1,619 5
BigBlueButton (Scala) Web conferencing system 799+52,513 30
CIMTool (Scala) A modeling tool 3,598+26,524 3
ENSIME (Scala) ENhanced Scala Interaction Mode for Emacs 7,975+0 19
SCADS (Scala) Distributed storage system 26,308+963 15
Kevoree (Scala) A tool for modeling distributed systems 31,548+39,787 9
Spark (Scala) Cluster computing system 12,193+0 17
ThingML (Scala) Modeling language distributed systems 8,938+61,122 6

3.1 The Corpus of Actor Programs

The list of publicly available Scala programs on the github repository web site
serves as the foundation of our program corpus. We ignore programs with less
than 500 lines of code from the initial set of around 750 programs, which results
in a list of 270 programs2. Since the goal of the corpus is to characterize real-
world actor programs, we further filter the list of 270 programs, reducing it to
the 16 programs shown in Table 1 3. Our criteria for real-world actor programs
are as follows:

(1) Actor Library Usage: The program uses the Scala or Akka actor libraries
to implement a portion of its functionality. Note that this does not mean
that the program uses actors. We merely require that it uses functionality
provided by the library, for example futures or remote actors.

(2) Size: Since Scala makes it easy to import Java libraries and our analysis
tool is agnostic to the difference, we require that the program consists of at
least 3000 lines of code in total. Of these, at least 500 lines must be Scala
code, which is more compact than Java code.

(3) Eco-System: At least two developers contribute to the project, and these
provide a way to contact them. Furthermore, the source code must compile,
and the program must have a manual or documentation web site.

3.2 Data Collection

To collect the data underlying our statistics, we analyze each program using a
custom-written tool. The tool employs the WALA static analysis framework [7]
and accepts the compiled bytecode of a program as input. To increase complete-
ness and accuracy, the libraries used by the program are supplied alongside the

2 http://actor-applications.cs.illinois.edu/index.html
3 http://actor-applications.cs.illinois.edu/selected.html

http://actor-applications.cs.illinois.edu/index.html
http://actor-applications.cs.illinois.edu/selected.html


actual application code. However, the libraries are specifically marked as such
and do not contribute to the statistics.

We chose this approach to overcome the lack of type and inheritance informa-
tion in a purely syntactic source code analysis. It allows us to gather data with
higher precision in the following two situations: First, while programmers typ-
ically adhere to the convention of giving actor classes a name ending in Actor,
this is not enforced by the compiler. Hence, a class B extends A that inher-
its from a class A extends Actor is an actor class that cannot be discovered
through purely syntactic analysis. Second, because Scala employs type inference,
programmers may—and often do—supply only a limited number of type anno-
tations. This makes it hard to discover, for instance, whether an object or class
uses a Lock for synchronization of concurrent operations.

4 Results

In this section, we answer our research questions with statistical data gathered
from the programs in our corpus.

4.1 RQ1: How often do Scala programmers mix actors with other
kinds of concurrent entities?

The Scala and Akka actor libraries provide two main constructs for implementing
concurrent entities: Actor and Future. Furthermore, Scala supports access to
the Java library, which provides more conventional constructs for concurrent
computation such as Runnable and Future (from java.util.concurrent). The
programs in our corpus can therefore employ a mixture of actors, futures, and
threads (via Runnable) to implement concurrent entities.

Futures are place-holders for asynchronously computed values; they block
the current thread of execution when it tries to access a yet unresolved value.
This way, futures provide a light form of synchronization between the producer
and the consumer of the value. With their blocking result-resolution semantics,
futures provide a natural way of adding partial synchrony to actor programs.

As explained in section 2, maintaining a consistent model of concurrency is
good software design practice, helps reducing errors, and allows the usage of
advanced tools. Using our static analysis tool, we check each program for usage
of Actor, Future, and Runnable.

Observations. The results in Table 2 show that 13 of the 16 programs (81%) mix
concurrent entities and 12 of the 15 programs (80%) mix Actor with Runnable or
Future. Specifically, the results indicate that futures alone seem to be insufficient
to handle the concurrency related tasks of the programs: none of the programs
relies solely on futures.

The use of futures together with actors has been long established and can be
found in actor languages as early as ABCL. Following this tradition, the Scala
and Akka actor libraries support a special asynchronous messaging primitive for



Table 2. The usage of concurrent constructs

Program Actor Runnable Future Program Actor Runnable Future

BigBlueButton
√ √

× Kevoree
√ √ √

BlueEyes
√ √ √

SCADS ×
√ √

CIMTool
√ √

× Scalatron
√ √ √

Diffa
√ √ √

SignalCollect
√

×
√

ENSIME
√ √

× Socko
√ √

×
Evactor

√
× × Spark

√ √ √

Gatling
√

× × Spray
√ √ √

GeoTrellis
√

×
√

ThingML
√

× ×

actors that returns a future. It is therefore not surprising to find that 8 out of
15 programs (53%) that use actors also use futures.

In Table 2, 10 out of 15 programs (66%) use both Actor and Runnable. The
reasons for this are unclear. One hypothesis would be that the program de-
velopment started with thread-based concurrency, and later on shifted towards
actors. However, by manually inspecting the programs and asking the develop-
ers for clarification, we discovered that this hypothesis is wrong. We discuss the
details of our findings in section 5.

4.2 RQ2: How many of the programs are distributed over the
network, and does distribution influence the way programmers
mix concurrency models?

The previous section shows that mixing the actor model with other concurrency
models is common, and that the reason is not historical evolution. Another ex-
planation could be that some models excel at a particular kind of programming.
While the actor model allows both exploiting local processing resources, and
distributing the program over the network, threads and shared-memory commu-
nication are limited to exploiting local processing resources.

As our second question, we ask whether this difference in support for dis-
tributed programming could be the reason for mixing concurrency models. Maybe
programmers use actors for distributing the program over the network, but prefer
threads for using the locally available processing resources on a machine.

Both actor libraries enforce the use of a special remote actor API in the case
of network distribution. Our analysis tool can therefore distinguish between local
and remote actor usage. Table 3 shows the results of searching the application
code for invocations of the remote actor API.

Observations. Only 3 out of 16 programs use actors for remote deployment.
This indicates that most developers use actors to address the local scalability
problem, that is, they use actors as a solution for local concurrent programming.

However, we expected more of the applications to be distributed. To identify
which of the applications are actually distributed (not necessarily using remote



Table 3. The usage of actors for distributed programming

Program Uses Is Program Uses Is
remote actor distributed remote actor distributed

BigBlueButton ×
√

Kevoree ×
√

BlueEyes × × SCADS ×
√

CIMTool × × Scalatron × ×
Diffa × × SignalCollect

√ √

ENSIME × × Socko ×
√

Evactor × × Spark
√ √

Gatling × × Spray × ×
GeoTrellis

√ √
ThingML × ×

actors), we inspected the program code and contacted developers for confir-
mation. We found that 7 out of the 16 programs are distributed. This implies
that developers tend to use other ways than remote actors for implementing dis-
tributed computations. In section 5 we discuss the reasons the devlopers gave for
preferring other methods of distribution.

4.3 RQ3: How often do the actors in the programs use
communication mechanisms other than asynchronous
messaging?

The results of the previous section indicate that distributed computing is not the
reason for mixing the actor model with other concurrency models. Consequently,
programmers seem to use actors to exploit local computing resources and achieve
local scalability. If scalability is the goal, then, as motivated in section 2, actors
should communicate solely via asynchronous messages.

The limitation to asynchronous message-passing helps maintain scalability
and avoid data races and deadlocks, but it adds complexity to coordination.
Instead of implementing asynchronous distributed protocols to achieve a coordi-
nation task, programmers can follow a different route to solve the coordination
problems with Scala and Akka actors. In simple cases, programmers can use the
provided synchronous messaging operations for blocking remote procedure call
operations. Another option for synchronization are futures (see subsection 4.1).
Finally, Scala and Akka allow programmers to take a third route: programmers
can choose to break the actor abstraction and rely on customary coordination
methods from the shared-memory world, for example shared locks or latches.
Breaking the abstraction by sharing state between actors can also avoid mem-
ory limitations when actors operate on large (global) data structures.

While the above methods can solve coordination and memory-limitation
problems, breaking the actor abstraction re-introduces problems that actor se-
mantics carefully avoid: shared state between actors allows fine-grained data
races and breaks transparent distribution; blocking and synchronous operations
can lead to deadlocks and exhaust the available threads in the threadpool im-
plementations of Scala and Akka.



Table 4. Communication of actors with other entities

Program Non-block Block Other Program Non-block Block Other
sm,rf,ss wm,wf,ws sm,rf,ss wm,wf,ws

BigBlueButton
√

,×,× ×,×,× × Kevoree
√

,×,×
√

,×,×
√

BlueEyes
√

,
√

,× ×,×,× × Scalatron
√

,×,× ×,×,× ×
CIMTool

√
,×,× ×,×,× × SignalCollect

√
,×,× ×,×,×

√

Diffa
√

,×,× ×,×,×
√

Socko ×,×,× ×,×,×
√

ENSIME
√

,×,×
√

,×,× × Spark
√

,×,× ×,×,× ×
Evactor

√
,×,× ×,×,×

√
Spray

√
,×,× ×,×,× ×

Gatling
√

,×,
√

×,×,× × ThingML ×,×,× ×,×,×
√

GeoTrellis
√

,×,× ×,×,× ×

Hence, using actors with communication mechanims other than asynchronous
messaging is a trade-off decision. Our third question asks how common these
trade-offs are. We consider three main categories of communication:

(1) Non-blocking operations like sending asynchronous messages (sm); resolving
a future (rf); and signaling a synchronization construct (ss), for example
counting down a latch or releasing a lock.

(2) Blocking operations like waiting to receive a message from a channel (wm);
waiting for a future to be resolved (wf); and waiting for a synchronization
construct to be signalled (ws), for example waiting on a latch.

(3) Other operations that do not fit in either of the above categories, for example
communication via external resources like files or shared objects that are not
synchronization constructs.

To answer RQ3, our tool searches through all Actor classes in each program,
detecting if a class—or any of its super-classes—uses the non-blocking or block-
ing communication operations described in categories 1 or 2. Detecting other
communication operations requires a more complex analysis [15] and is beyond
the capability of our tool. We consequently leave this task for future work.

The results are shown in Table 4. We removed SCADS because it does not
use Actors from the libraries. For every program in Table 4, we mark a commu-
nication mechanism with

√
if we find at least one Actor in the program that

uses that mechanism. Otherwise, we mark it with ×. Consequently, we mark a
program with

√
for other if we find at least one Actor that does not use any of

the six blocking or non-blocking communication operations in 1 or 2.

Observations. As the results show, only 2 out of 15 programs (ENSIME and
Kevoree) use blocking operations to receive a message. Moreover, only two
programs (Gatling and BlueEyes) contains an Actor that communicates through
non-blocking operations on futures or synchronization constructs. However, at
least 6 of the 15 programs (40%) contain an Actor that communicates via an
operation of the other category (Note that it is possible that an actor that
uses asynchronous messaging also uses operations of the other category.). In
these cases, developers were willing to accept the potential drawbacks of data



races and deadlocks to solve the problem at hand. Manual inspection of some of
the actors using other communication reveal that in two programs, the actors
performed I/O, and in four programs the actors operate on a shared object. To
summarize, in at least 9 out of 15 programs (60%), actors use communication
mechanisms other than asynchronous messaging.

5 The Reasons for Mixing Concurrency Models

The results presented in Section 4 show that around 68% (11 out of 16) of the
real-world Scala actor programs in our corpus mix Runnable with actor library
constructs like Actor and Future. To investigate the reasons, we manually in-
spected these programs and contacted the developers, asking them about the
details of their design decisions. In order to avoid a bias toward a specific rea-
son, we omitted potential answers. Instead, we posed open-ended questions of
the form: Why did you implement module X with Runnable and not with Actor?

We received answers from the developers of 10 programs (all 11 programs
except CIMTool). After receiving the answers, we dismissed the initial hypoth-
esis that the programs started with thread-based concurrency that was later
(partially) replaced with actors or futures: only for 3 of the 11 programs did the
answers indicate such a motivation. In the cases of the other eight programs, the
developers desired to have pure actor programs. However, they faced problems
and as a consequence decided to replace Actor with Runnable. We categorize the
reasons into three groups:

– Actor library inadequacies: The reasons in this category are lack of library
support for efficient I/O, as well as problems implementing low-end systems,
managing many blocking operations, and customizing the default features of
the actor implementation.

– Actor model inadequacies: Certain protocols are easier to implement using
shared-memory than using asynchronous communication mechanisms with-
out shared state.

– Inadequate developer experience: Developers lack enough knowledge about
the library, or reuse legacy code.

5.1 Actor Library Inadequacies

Efficient I/O. The developers of four programs mention efficient input and
output (I/O) management as a reason for using Runnable.

The developers of BigBlueButton use Runnables for reading and writing I/O
streams to avoid blocking actors which are executed on the library thread pool.
However, they agree that it is possible to refactor the Runnables into actors
running on a specific thread4. While the Scala actor documentation describes a

4 https://groups.google.com/forum/?fromgroups=#!topic/bigbluebutton-dev/

2ad-HBeNQeY

https://groups.google.com/forum/?fromgroups=#!topic/bigbluebutton-dev/2ad-HBeNQeY
https://groups.google.com/forum/?fromgroups=#!topic/bigbluebutton-dev/2ad-HBeNQeY


pattern for this use case [8], it seems that the pattern is either too obscure or
inconvenient to implement.

Spark is a distributed computation framework that needs to exchange large
blocks of data over the network. Because the developers are unsure about the
actor library’s performance regarding large data transfer, they spawn dedicated
threads for handling this task.

“[...] in ParallelShuffleFetcher, we are receiving large blocks of data from
multiple machines. Most actor libraries don’t deal well with that – they are
optimized for transferring small messages (up to a few hundred bytes) [...] In
this case, instead of worrying about whether the actor library will handle the
transfer well [...] we chose to explicitly spawn threads. I’d love an actor library
that also handles large I/Os, or exposes asynchronous IO primitives, but I
haven’t found one.”

Above message by one of the developers shows that there is demand for an
API that gives programmers control over the I/O operations. Moreover, it shows
the lack of documentation of the Scala actor library’s capabilities: because the
capabilities of the library are unknown, the developers chose a known solution
using Runnables, accepting the design drawbacks.

The Spray framework builds upon the Akka library, which, unlike the Scala
actor library, provides an API for managing I/O. Despite this, the Spray devel-
opers implement a custom module for asynchronous network I/O using Runnable.
As motivation, the Spray developers explain5 that tailoring the implementation
to the specific use case yields performance benefits over using the (more abstract)
API of Akka. This is confirmed by one of the Akka developers.

In ENSIME, multiple Runnables are created and executed to read and write
from I/O streams. One of the developers expressed that, since there is no need
for the actor mail box, using Runnable has less overhead.

Low-End Systems. Mobile phones and low-end systems are among the target
platforms of the Kevoree framework for dynamically reconfigurable distributed
systems. While Kevoree uses Scala actors, it uses threads to implement the
core components that are shared among all platforms. The developers state
performance considerations as their motivation:

“[...] JVM ForkAndJoin implementation and other implementation of Thread
are very slow and switching context cost a lot of computational power. Again
part of Core section of Kevoree are now write with thread to avoid such limi-
tations. [...] More globally this is true for the whole Scala library which is now
growing more and more.[...] Porting such a library of more than 10 mb is now
challenging for limited environment (RaspberryPI) and especially for Android,
it was a nightmare [...]”

Managing and Debugging Many Blocking Operations. The Kevoree mid-
dlware also contains parts with many blocking operations.

5 https://groups.google.com/d/msg/spray-user/b4YwS5XUsB8/8q_88qs2Gu0J

https://groups.google.com/d/msg/spray-user/b4YwS5XUsB8/8q_88qs2Gu0J


According to explanations by the developers, some operations define atomic
actions which should block the calling thread and await the completion of the
operation. Initially, the developers started with a pure actor-based solution in
which actors use blocking operations for receiving messages. However, they faced
deadlock problems and decided to replace the blocking actors with threads:

“In earlier versions of Kevoree we used Actor everywhere [...]. That was a
mistake because we faced a lot of deadlock use cases. Some deadlock was issues
from bug in the ForkAndJoin implementation in JVM and some others went
from OS limitation (for example using VPS hosting which limited the number
of process). For those reasons critical section of Kevoree now start with some
dedicated threads, which costs a little more but is far easier to manage in case
of blocking actors.”

The developers also mention that Runnable helped them to manage blocking
operations:

“[...] we use plain old thread when dealing with third party library which do
some waiting operation internally. Using thread let us to control such blocking
operation and allow use to start a sibling watchdog thread when something
goes wrong. We could also use ThreadedActor but in this case the benefit is
not so important.”

As noted by the developers, it is possible to execute an actor in a dedicated
thread (ThreadedActor) and manage such blocking cases. However, the developers
decided to follow the old way of programming. In fact, when facing problems
with actors, the developers replaced some of them with Runnables to debug the
program. After finding the root cause of the problems, they decided to stay with
Runnables so that they can handle similar problems easier in the future.

The explanations given by the developers show that the abstraction that ac-
tor libraries provide over threads complicates conventional debugging approaches.

Customized Actors. The developers of SCADS and BlueEyes implemented
their own actor-like entities using Runnable and Future.

SCADS is a distributed database system which aims at improving perfor-
mance for exchanging data over the network. Developers implemented custom
actor-like concurrent objects to use a more efficient serialization mechanism than
the hard-coded Java object serializaion of the Scala actor library.

The developers of BlueEyes are interested in having typed actors. Neither
Scala, nor default Akka actors use type information to characterize the messages
that an actor accepts or sends. Hence, the compiler cannot discover whether an
actor sends the wrong type of message to another actor. To have support for this
kind of static composition checks, the BlueEyes developers implemented their
own actor-like class hierarchy.

5.2 Actor Model Inadequacies

The developers of BlueEyes found using actors to implement the coordination
protocol in their HTTP server harder than implementing it with threads.



“Now let’s look at Actors. They address concurrency and mutual exclusion,
but they conflate the two (you either get both or none). They don’t address
coordination at all – you have to build your own protocols for coordination.
This code [...] is all about coordination, so using a lock is much simpler way
to implement it than using an Actor.”

The problem pointed out by the developers concerns purely asynchronous
systems in general and is not restricted to the Akka or Scala actor libraries.
Coordination mechanisms for actor systems have been proposed in prior re-
search [3,21,6], but to the best of our knowledge, none have been integrated
with widely used actor libraries.

5.3 Inadequate Developer Experience

In three programs, Socko, Scalatron, and Diffa, the developers did not have any
special objection to the actor library. They used Runnable because (1) they used
to their traditional style of programming; (2) they had some legacy code and
wanted to reuse it; or (3) they did not want to trust a new technology when using
Runnable would be enough for implementing the required functionality. They use
actors when it is necessary to handle concurrent accesses to an object.

6 Implications and Discussion

In this section, we combine our analysis results with feedback from the developers
to give recommendations to researchers and library designers.

Implications for Researchers. The analysis results show that mixing concur-
rency models is common in real-world Scala programs that use actor libraries.
Each model has its strengths, and developers tend to use the model that best
fits the problem. However, the current implementations of actors in the Scala
standard library and Akka even force developers to use models other than actors
to meet the application requirements.

On the one hand, research on modeling, testing, and analysis tools for ac-
tor programs should take this into account. Specifically, mixtures of Actor and
Future are common, as they help implementing synchronization between the
purely asynchronous actors. Therefore, unless the proposed tools and approaches
for actor programs can handle a mixture of actors with other concurrent entities,
only few real-world programs can benefit from them.

On the other hand, the results show that in three cases, mixing actors with
threads is unnecessary. Automated tools that can detect such cases and help de-
velopers refactor threads to actors in their programs would alleviate the problem
of mixing concurrency models.

The actor model itself also puts a burden on developers. The property of no
shared state and asynchronous communication can make implementing coordi-
nation protocols harder than using established constructs like locks. However,
providing a language for coordination protocols would alleviate this problem.



Implications for Library Designers. The library APIs can help developers
comply with the best practices of a concurrency model in two ways:

First, the API can provide commonly required features like modules for effi-
ciently handling or customizing I/O. This would address one of the main prob-
lems that Scala developers currently have in pure actor programs.

Second, it can prevent developers from misusing the library constructs and
violating best practices. For example, if messages were restricted to immutable
types, actors could not easily share objects by exchanging references through
messages. While libraries cannot completely prevent shared state in actors, such
a limitation would push developers towards using a proper design.

Apart from the API, library-specific tools for debugging and testing would
be beneficial for developers. In particular, the high-level abstraction of actors
makes it hard for developers to trust, test, and debug low-level execution. A way
to get insight into the execution mechanism would reduce these worries.

Finally, clarifying the limitations and capabilities of the libraries also helps
developers make the right decisions during the design and development.

7 Threats to Validity

Internal threats to the validity of this study concern the accuracy of our data
collection tool. An inherent limitation is its use of static analysis: the detected
method calls and usage of concurrency constructs may not represent the usage
at run time. To reduce the probability of errors in our tool, we wrote simple pro-
grams as analysis test cases. Results from these tests were confirmed manually.

The external threats are related to how much our results are generalizable.
To ensure external validity regarding other Scala actor programs, we (1) ob-
tained our programs from github, which is the most common repository site for
Scala programs; and (2) target the two most popular actor libraries for Scala.
Our selection criteria (subsection 3.1) exclude the majority of programs from
the initial list, which greatly shrinks the sample size. However, the criteria en-
sure high-quality specimens by preventing the inclusion of programs with overly
idiosyncratic styles of single programmers and test projects. The criteria also
exclude large enough programs that we could not compile; however, only four
programs were excluded on this ground. Finally, we compiled our initial list of
programs one year ago. Consequently, it will exclude programs hosted only re-
cently on github. Since we demand a certain maturity of projects, we do not
expect this to be problematic.

The actor libraries we target have features similar to many other actor li-
braries for imperative languages [19,5], which also allow mixing threads and
actors. We therefore believe that our results hold for actor programs written
with these libraries. However, the results may not translate to pure functional
languages like Erlang [2].



8 Related Work

To the best of our knowledge, this is the first systematic study of the phenomenon
of mixing concurrency models in a single program.

The work most closely related to our study are comparisons between different
libraries and paradigms for multi-core programming. They are controlled user
studies that aim to determine the productivity of programmers. Nanz et al. [14]
compare two object-oriented languages, multi-threaded Java and SCOOP, for
concurrent programming. Besides productivity, the comparison also focuses on
the correctness of the programs written by the participants. Luff [13] compares
three concurrent programming paradigms: the actor model, transactional mem-
ory, and standard shared-memory threading with locks, in Java. Pankratius et
al. [18] compare Scala as an imperative and functional language with Java as an
imperative language for concurrent programming. None of these studies consid-
ers the mixing of concurrency models.

Several empirical studies investigate the usage of the concurrency constructs
from a single library. Naturally, these studies are confined to the concurrency
model of the library and do not discuss mixed models. Weslley et al. [24] study
2000 Java projects to determine the most commonly used Java concurrent li-
brary constructs. They also analyze usage trends over time. Similarly, Okur and
Dig [17] study programs using the Microsoft parallel libraries. By analyzing pro-
grams semantically, they achieve higher precision than the semantic analysis of
Weslley et al. The study of Hochstein et al. [9] concerns the productivity of
developers using MPI in a large-scale project.

Other studies [12,4] collect and document common mistakes in the usage of
concurrent constructs in a single library. These collections help developers and
researchers to prevent them in the future. However, they are also confined to the
concurrency model of the library.

9 Conclusion

This study is the first to investigate how often and why developers mix the
actor model with other concurrency models, which has severe drawbacks (sec-
tion 2). The study uses a corpus of real-world Scala programs collected from
public github repositories (section 3). Statically analyzing the programs reveals
(section 4) that most of the programs (80%) mix actors with other concurrent en-
tities. 66% of the programs combine actors and threads, and 53% combine actors
and futures. Moreover, at least 60% of all programs contain an actor that does
not communicate via asynchronous messaging. Thus, in some situations, other
factors than the advantages of asynchronous message-passing dominate the de-
cisions of developers. Through discussion with the developers (section 5), we
find that the reasons for mixing concurrency models and avoiding asynchronous
communication lie in inadequacies of the actor libraries and the actor model it-
self. In section 6, we discuss the implications of our findings for researchers and
library designers.



References

1. G. A. Agha. ACTORS — A Model of Concurrent Computation in Distributed
Systems. MIT Press series in artificial intelligence. MIT Press, 1986.

2. J. Armstrong. Making reliable distributed systems in the presence of sodware errors.
PhD thesis, Kungl Tekniska Högskolan, December 2003. http://www.erlang.org.

3. R. Atkinson and C. Hewitt. Synchronization in actor systems. POPL ’77, pages
267–280, 1977.

4. J. S. Bradbury and K. Jalbert. Defining a catalog of programming anti-patterns
for concurrent java. SPAQu’09, pages 6–11, 2009.

5. S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin. Orleans:
cloud computing for everyone. SOCC ’11, pages 16:1–16:14, 2011.

6. P. Dinges and G. Agha. Scoped synchronization constraints for large scale actor
systems. COORDINATION’12, pages 89–103, 2012.

7. J. Dolby, S. J. Fink, and M. Sridharan. T. J. Watson libraries for analysis (WALA).
http://wala.sf.net.

8. P. Haller and F. Sommers. Actors in Scala. Artima Series. 2012.
9. L. Hochstein, F. Shull, and L. B. Reid. The role of MPI in development time: a

case study. SC ’08, pages 34:1–34:10, 2008.
10. V. Klang, R. Kuhn, J. Bonér, et al. Akka library. http://akka.io.
11. S. Lauterburg, M. Dotta, D. Marinov, and G. Agha. A framework for state-space

exploration of java-based actor programs. ASE ’09, pages 468–479, 2009.
12. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehensive

study on real world concurrency bug characteristics. SIGPLAN Not., 43(3):329–
339, 2008.

13. M. Luff. Empirically investigating parallel programming paradigms: A null result.
PLATEAU at the ACM Onward! Conference, 2009.

14. S. Nanz, F. Torshizi, M. Pedroni, and B. Meyer. Design of an empirical study for
comparing the usability of concurrent programming languages. ESEM ’11, pages
325–334, 2011.

15. S. Negara, R. K. Karmani, and G. Agha. Inferring ownership transfer for efficient
message passing. PPoPP ’11, pages 81–90.

16. M. Odersky et al. Scala programming language. http://www.scala-lang.org.
17. S. Okur and D. Dig. How do developers use parallel libraries? FSE ’12, 2012.
18. V. Pankratius, F. Schmidt, and G. Garretón. Combining functional and imperative

programming for multicore software: an empirical study evaluating scala and java.
ICSE 2012, pages 123–133, 2012.

19. V. Pech, D. König, R. Winder, et al. GPars. http://gpars.codehaus.org/.
20. M. Sirjani and M. M. Jaghoori. Formal modeling. chapter Ten years of analyzing

actors: Rebeca experience, pages 20–56. 2011.
21. M. Song and S. Ren. Coordination operators and their composition under the

actor-role-coordinator (arc) model. SIGBED Rev., 8(1):14–21, Mar. 2011.
22. S. Tasharofi, M. Gligoric, D. Marinov, and R. Johnson. Setac: A framework for

phased deterministic testing of scala actor programs. Second Scala Workshop,
2011.

23. S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay, D. Marinov, and G. Agha.
Transdpor: A novel dynamic partial-order reduction technique for testing actor
programs. FMOODS/FORTE’12, pages 219–234.

24. W. Torres, G. Pinto, B. Fernandes, J. a. P. Oliveira, F. A. Ximenes, and F. Castor.
Are java programmers transitioning to multicore?: a large scale study of java floss.
SPLASH ’11 Workshops, 2011.

http://www.erlang.org
http://wala.sf.net
http://akka.io
http://www.scala-lang.org
http://gpars.codehaus.org/

	Why Do Scala Developers Mix the Actor Model with Other Concurrency Models? 

