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Abstract

Droughts continue to be a major natural hazard and mounting evidence of global warming

confronts society with a pressing question: Will climate change aggravate the risk of drought

at local scale? Are current infrastructure and their operation enough to mitigate the dam-

age of future drought, or do we need in-advance infrastructure expansion for future drought

preparedness? To address these questions, this study presents a decision support framework

based on a coupled simulation and optimization model.

A quasi-physically based watershed model is established for Frenchman Creek Basin (FCB),

where groundwater based irrigation plays a significant role in agriculture production and

local hydrological cycle. The model, revised from the Soil and Water Assessment Tool

(SWAT), simulates the dynamic response of aquifer and baseflow to groundwater pumping.

The physical model is used to train a statistical surrogate model, which predicts the water-

shed responses under future climate conditions. The statistical model replaces the complex

physical model in the simulation-optimization framework, which makes the models compu-

tationally tractable.

Decisions for drought preparedness include traditional short-term tactical measures (e.g.

facility operation) and long-term or in-advance strategic measures, which usually require

capital investment. A scenario based three-stage stochastic optimization model assesses

the roles of strategic measures and tactical measures in drought preparedness and mitiga-

tion. Considering uncertainties involved in different climate prediction horizons, the model
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results show the relative roles of mid- and long-term investments and the complementary

relationships between wait-and-see decisions and here-and-now decisions on infrastructure

expansion and irrigation system operations. Infrastructure expansion is preferred for the

long-term plan than the mid-term plan, i.e., larger investment is proposed in 2040s than the

current, due to a larger likelihood of drought in 2090s than 2040s.
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Chapter 1

Introduction

1.1 Background

Today, concern over drought is widespread. On average, 35-40% of the area of the United

States has been affected by severe droughts in recent years [71]. Of the 46 U.S. weather-

related disasters between 1980 and 1999 causing damage in excess of 1 billion, eight were

droughts. Among these, the most costly national disaster was the 1988 drought, with an

estimated loss of 40 billion [53]. These huge drought damages have emphasized the need to

move from crisis management, which emphasizes emergency response, to risk management,

which would place greater emphasis on preparedness planning and mitigation actions [70].

Traditional drought crisis management decisions only address tactical measures, i.e., post-

impact responses to drought hazards under de facto infrastructure [68]. Risk management

decisions include strategic measures, which are long-term or in-advance and usually require

capital investment. Strategic measures can be structural, such as water storage, or nonstruc-

tural such as long-term institutional reforms for water conservation.

According to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Cli-

mate Change(IPCC) [49], ”Warming of the climate system is unequivocal”. One of the most

important indirect issues linked to climate change relates to water supply, which is essential

for most human activities, including agriculture and ecological conservation issues. Mounting

evidence of global warming confronts society with a pressing question: Will climate change

aggravate the risk of drought at the regional or local scale? According to AR4, droughts

have become longer and more intense, and have affected larger areas since the 1970s; the
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land area affected by drought is expected to increase and water resources availability in af-

fected areas could decline as much as 30% by mid-century. In particular, U.S. crops that are

already near the upper end of their temperature tolerance range or depend on heavily used

water resources could suffer with further warming. Drought will revisit many areas, most

probably with a greater frequency and severity than in recent memory. It is important to

explore what additional risk will be imposed by climate change and what level of strategic

measures should be undertaken now to avoid vulnerable situations in the future.

Unfortunately there is still much uncertainty in the climate predictions which are needed

to assess drought risk [23]. The difficulty lies in the fact that general circulation models

(GCMs) which have projected global climate change cannot adequately resolve factors that

might influence regional climates, and also cannot tell us whether the occurrence of extreme

events will increase, because they focus on long-term, large-scale averages in climate. Few

studies have explicitly incorporated various uncertainties of regional climate change into

drought risk estimates at the local level.

Wilhite et al. [72] suggested a holistic management framework to integrate risk and cri-

sis management decisions and coordinate planning of strategic and tactical measures. If

infrastructure capacity is not sufficient (i.e., strategic measures are limited), even the best

tactical mitigation measures will not prevent large drought damage when a serious drought

occurs; whereas excess infrastructure capacity means extra cost but less costly tactical mea-

sures may be sufficient to prevent a certain level of drought damage even under a limited

infrastructure capacity. A quantitative tool is needed to analyze the trade-off relationships

between strategic and tactical drought mitigation measures. Models have been used for

analyzing either risk[30] or crisis management decision [50, 31], but not for an integrated

analysis of both, and few have included the uncertainty in climate change projections and

the thresholds existing in infrastructural and socioeconomic impacts.
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1.2 Scope of Thesis

The Republican River Basin (RRB) is located in the high plains of northeastern Colorado and

western Kansas and Nebraska. Ground water pumping for irrigation of croplands in RRB

was limited prior to World War II but progressed rapidly in the 1960s and 1970s. Since

then the headwater zone has been shrinking constantly in the past fifty years. For example,

Frenchman Creek once originated near the town of LeRoy in Logan County, Colorado, 50-km

west of Nebraska border; today the river is entirely within Nebraska. According to Burt et

al. [10], a strong statistical relationship was found between the logarithm of stream flow

and number of wells, current and lagged annual precipitation, and two variables that are the

geometric mean of precipitation and number of wells in the current year and the year before

last. Estimated mean stream flow from the statistical model in 1998 is approximately one

third of that in 1950. Water rights to stream flow in the Republican River are currently in

dispute between Kansas and Nebraska under a federal interstate river compact. Kansas has

filed suit against Nebraska in the U. S. Supreme Court with the contention that decreases

in annual estimates of virgin stream flows are not due to natural phenomena but are due to

increases in groundwater withdrawals [7].

Frenchman Creek is a spring-fed waterway that begins in Phillips County, Colorado, crosses

Chase and Hayes counties in Nebraska and ends at its juncture with the Republican River

in Hitchcock County, Nebraska. In this study, we choose the up and middle down reach

of Frenchman Creek Basin (FCB) above Ender reservoir as a case study to avoid the effect

of reservoir on stream flow. The annual precipitation from 1943 to 1994 in this region is

443 mm; the precipitation increases from east to west as the effect of elevation. The annual

evapotranspiration in this region is abut 1300 mm, making FCB a semi-arid region. Due

to the shortage of precipitation, agriculture are heavily dependent on groundwater based

irrigation. Declining groundwater levels associated with irrigation wells in the FCB appear

to be associated with declining stream flow in the area, because many of the streams in the
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basin receive a portion of their flow from the aquifers. As groundwater levels decline, hy-

draulic gradients toward the streams are reduced, thus reducing aquifer-to-stream discharge.

Nearby wells can lower the water table to the point where the hydraulic gradient to the

stream is reversed, thus causing stream flow depletion.

To manage the groundwater resources in this region, Nebraska water law provides a decen-

tralized system of control to accommodate scarcity of supplies, both with respect to surface

and groundwater. The state is divided into 23 natural resource districts (NRD) that have

a great deal of autonomy. The regulations imposed by an NRD can include well spacing,

groundwater withdrawals, rotation of pumping, and a moratorium on new wells. Since 1990s,

the NRD has reduces the water permit in FCB from 20 inch to 12 inch per year. In this

study we propose infrastructure expansion as a way to ease the water shortage problem is

FCB. The first point is to understand the interaction of surface water and groundwater. As

groundwater is a source of both stream flow (e.g. baseflow) and irrigation, human interface

(agricultural pumping) is also a driven force as precipitation in FCB. With the watershed

response of mid- and long-term climate forecasting, the decision making framework is to

answer several questions: 1) how decisions are effected by climate change, 2) should strate-

gic measures (e.g., infrastructure expansion) be prioritized compared to tactical measures

(e.g., facility operation) for drought preparedness and mitigation under climate change, 3)

what is the relative role of mid-term and long-term investments, 4) should the world invest

infrastructure now or wait-and-see given the uncertainties from mid- and long-term climate

change prediction?

1.3 Thesis Outline

A semi-distributed hydrological-agronomic model built in FCB is introduced in Chapter

2. The model is a modified version of Soil and Water Assessment Tool (SWAT), which
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can simulate the aquifer-stream interaction under groundwater pumping. In chapter 3,

climate data from regional climate models (RCM) down scaled from general circulating model

(GCM) are analysis first. Due to the computation expense, a statistical-surrogate model is

built from the training data from SWAT. Then the watershed responses to infrastructure

expansion and facility operation are predicted by the surrogate models with different climate

scenarios. In chapter4, a scenario-based three-stage stochastic optimization model is built

according climate scenario tree. The decision framework provides decision maker information

on how to arrange capital investment for drought preparedness and drought mitigation.

Results are summarized and further work are discussed in the last chapter.
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Chapter 2

Watershed Modeling

Groundwater (GW) and surface water (SW) are not isolated components of the hydrologic

system, but instead interact in a variety of physiographic and climatic landscapes. Thus,

development or contamination of one commonly affects the other [57]. Focusing on only one

component of the hydrologic system, such as a river or an aquifer, is usually partly effective

as each hydrologic component is inter-connected with other components. Understanding the

interaction between groundwater and surface water is very important to hydrologists and

water resources managers.

In recent years, it has been difficult to build surface water storage reservoirs along the

stream due to environmental and ecological concerns. Alternatively, using an aquifer system

for temporary storage of water becomes popular. In RRB, water stored in aquifers is pumped

out during the growing season and recharged back to aquifers during non-growing season.

Agricultural pumping has affected the processes of GW-SW interaction and gave rise to the

water rights conflicts between GW-SW stake holders. Thus the conjunctive management of

GW-SW leads to sustainability of hydrological, agronomic and ecological issues.

This chapter first introduces the GW-SW interaction processes under natural and aquifer

pumping conditions, then describes our modeling effort to simulate the GW-SW interaction

with agricultural pumping at the watershed scale.
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2.1 Effect of Groundwater Pumping on Stream Flow

The interaction between streams and aquifers takes places in three different ways: streams

gain water by outflow from the aquifer through the streambed (gaining streams), streams

lose water by the outflow to aquifer (losing streams), or they do both, gaining in some reaches

or in some seasons and losing in other reaches or in other seasons [73]. Losing streams can

be hydraulically connected to groundwater by a continuous saturated zone below the stream

or can be disconnected by an unsaturated zone. A special disconnected case is that the

water table may have a discernible mound below the stream, when the flow rate through

stream to groundwater is larger than the groundwater lateral flow rate of the mound. In

this condition, groundwater pumping near the stream does not affect the stream flow near

the pumping wells as the stream is suspended above the groundwater and thus not affected

by aquifer.

The discharge from groundwater to stream during non-storm events sustains the stream and

is vital to maintain the the fluvial ecologic communities. This part of water is usually called

baseflow, which is the part of stream water coming from groundwater (some authors also

include water from the soil profile). There are many hydrograph separation techniques that

compute baseflow from total stream flow. Baseflow index (BFI), which is the ratio of base-

flow to stream flow, describes the dependence of stream flow on groundwater. According to

[10], the BFI in RRB is about 80%, even as high as 90% in FCB. In these regions, stream

flow is highly dependent on groundwater, changes in groundwater storage affects surface

runoff and leads to water rights conflicts between groundwater and surface water use, as we

can see in RRB [61, 62].

Under natural conditions, groundwater storage reaches a dynamic equilibrium year by year.

In a dry year, groundwater gets less recharge and sustains the steam flow, which decreases

the groundwater storage and groundwater table. In wet years, groundwater levels recover
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due to excess surface recharge. Over a long time, the groundwater storage remains stable,

that is, the recharge equals discharge. In addition to the effect of climate on groundwa-

ter, human activities also affect the groundwater a lot. Humans pump groundwater for

agricultural, industrial and domestic purposes. When SW and GW are directly connected,

withdrawing from groundwater (especially from unconfined aquifers) can have a significant

effect on the movement of water between the two water bodies. The effect of a single well

or a small amount of pumping may not be significant. However, the effect of many wells

continuously pumping from an aquifer may be a regional issue.

If stream and groundwater is hydraulically connected, pumping can effect the exchange water

amount or even the flow direction. For a gaining stream under pre-development condition,

water flow from aquifer to stream. After groundwater pump, a drawdown cone begins at

the center of the well. The diameter of the cone and the drawdown develops if pumping

continues. This depletes some of the water stored in the aquifer and reduces the flow to

the stream. After the drawdown cone reaches the stream, the flow of stream-aquifer system

changes the direction and begins to flow from stream to aquifer. At this point, the gaining

stream becomes losing stream. With hydraulic connection, the rate of flow between stream

and aquifer is controlled by the hydraulic gradient between the stream water surface and the

groundwater table, and the conductivity of stream bed. If the pumping further continues,

the groundwater table is below the streambed. The stream-aquifer becomes unconnected by

a unsaturated zone. In disconnection condition, as long as the water level in stream does

not change, a further drawdown of the water table due to pumping does not significantly

affect the seepage from the stream. This condition can be observed when pumping does not

affect the stream flow. The effect groundwater pumping on stream flow has been explored

by many researchers to specify well locations and pumping schedules that would minimize

the harmful effects. Several analytical solutions are available for computing drawdowns and

stream depletions caused by pumping near a stream [60].
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With the development of numerical groundwater models, researchers takes into account

more realistic hydrologic conditions of stream aquifer systems. To assess the predictive ac-

curacy of Glove’s stream-aquifer analytical solution, which are widely used in administering

water rights, Sophocleous [58] evaluate the impact of the assumed idealizations on admin-

istrative and management decisions. They compares the predictive capabilities of Glover

steam-aquifer depletion model against the MODFLOW numerical standard and ranks the

relative importance of the various assumptions on which the analytical model is based. The

numerical model is more flexible than the analytical solution in the boundary definition

and considering the spatial heterogeneity of aquifers. Chen et al. [14] further use numeri-

cal model investigate two components of stream depletion: baseflow reduction and induced

stream infiltration occurring between streams and aquifers where groundwater is pumped

seasonally. The former represents a pumping well capturing the base flow, which, under

natural conditions, would have discharged to the stream; the latter represents the stream

water recharged to the aquifer, which was induced by the pumping well. They find that

baseflow reduction can be the major component in the total stream depletion.

Under predevelopment condition, the long-term groundwater system is in equilibrium state,

where groundwater storage is a constant or varies about some average condition in response

to annual or longer-term climatic variations. For the aquifer control volume, the water

budget writes like:

Rnat = Dnat (2.1)

where Rnat is the groundwater recharge volume under natural condition and Dnat is natural

groundwater discharge. With groundwater pumping, human changes the natural groundwa-

ter system equilibrium. The aquifer water budget then becomes:
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∆S = Rnat + ∆R−Dnat −∆D − Pump (2.2)

where ∆S is the removal of water that stored in aquifer, ∆R is the change in recharge change

after human pumping, ∆D change in discharge change after human pumping, and Pump is

pumping volume. From equation (2.2), we see the source of groundwater withdrawal must

be supplies by (1) more water entering groundwater system (increased recharge), (2) less

water leaving the system (decreased discharge), (3) removal of groundwater storage, or the

combination of the three. It is the changes in the system that can be withdrawn. That

is, the water pumped must come from some change of flows and from removal of storage.

An increases in recharge or an decrease in discharge need to balance the pumping when the

groundwater system reaches a new equilibrium state after human pumping.

Between the natural equilibrium and equilibrium with pumping, there is a transient state

when the system will undergo some drawdown in water levels near pumping well to induce

the flow of water to the wells (forming the drawdown cone). During this process, some water

initially is removed from storage. Thus, groundwater storage provides a transient source of

water which gradually converts to surface-water depletion. The timing of the transition is

dependent on the distance between pumping well and river, and aquifer properties, which

are highly variable from case to case (e.g. months to hundred of years) [5]. To simulate the

effect of human pumping on stream depletion (from the natural equilibrium to equilibrium

under pumping), a model must capture the dynamic response between pumping, stream flow

and aquifer storage.

2.2 Current Modeling Effort

Attempts to simulate the impact of groundwater pumping has been made by both surface

hydrology and groundwater community. Emphasis has been placed on different aspects of
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the natural process. Groundwater model, such as MODFLOW developed by USGS, has

been applied to direct pumping regulation at watershed scale. Republican River Compact

Administration Ground Water Model (RRCA Model) has been developed to determine the

amount, location, and timing of stream flow depletions to the Republican River caused by

well pumping and to determine stream flow accretions from recharge of water imported from

the Platte River Basin into the Republican River Basin. The model solves the finite dif-

ference form of the partial differential governing equation of water balance in a discretized

aquifer domain. It takes precipitation-dominated recharge, evaporation, pumping, aquifer

properties as input and handles the spatial heterogeneity in a cell-by-cell way. This model

also simulates the interaction between stream and aquifer. Extensive calibration on aquifer

property is carried out by experts to match the groundwater head in observation wells and

baseflow on some tributaries. However, the groundwater model does not treat surface wa-

ter in much details. Groundwater recharge is set constantly proportional to precipitation

without considering the carry-over effect of soil moisture and effect of pumping on recharge.

Groundwater evaporation is reduced from potential evaporation by area-specific coefficient

and groundwater pumping is estimated from energy consumption data. The simplification

of surface water treats these components not as hydrologic process but as known inputs or

parameters. Also, the stream flow in groundwater model is only consist of baseflow, that is,

only the flow from aquifer is simulated. Surface flow (saturation excess runoff or infiltration

excess runoff) which can be a big component in storm season is ignored. The stream-aquifer

interaction thus is only the interaction between baseflow and aquifer. In addition, this study

focus on the infrastructure planning for watershed management but the groundwater model

does not provide much flexible access to represent the infrastructure in the model.

Other studies attempt to couple groundwater model with watershed model to assess the

impact of irrigation impact at watershed scale [59, 16, 35]. Sophocleous et al. [59] inte-

grate the quasi-distributed watershed model SWAT with the fully-distributed ground-water

model MODFLOW to quantify the impacts of irrigated agriculture in Kansas. This inte-
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gration is fulfilled by replacing the conceptual groundwater part in watershed model with

physically-based distributed groundwater model. Then the groundwater model simulates the

stream-aquifer interaction. This approach requires the inputs from both watershed model

and groundwater model and needs converting the information in groundwater model cells

into hydrological response unit in watershed model back and forth. This approach simulates

all the components in hydrological processes and allows a complete analysis of the land-based

hydrologic cycle, providing the means for evaluating the impacts of land use, irrigation devel-

opment, and climate change on both SW and GW resources. However, this model requires

inputs from both watershed model and groundwater model. Also the calibration targets

include steam flow, groundwater level, and irrigation water uses. The model predictability

is at the expense of model complexity, which reduces the model flexibility and increases

the modeling effort. The input data uncertainty, such as steambed hydroconductivity, may

overwhelm the improvement in model [24, 35].

Instead of integrating watershed model and groundwater model, this study modified the

groundwater routine in SWAT to model the effects of pumping to assess the the infras-

tructure expansion on watershed response. The reasons to choose SWAT model, model

modification, model setup, calibration and validation processes are described in the next

session.

2.3 Model Description

SWAT is a conceptual, continuous time model that was developed in the early 1990s to

assist water resource managers in assessing the impact of management and climate on

water supplies and non-point source pollution in watersheds and large river basins [4].

SWAT is the continuation of over 30 years of model development within the US Depart-

ment of Agriculture’s Agricultural Research Service and was developed to scale up past
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field-scale models to watershed scale. Model components include weather, hydrology, ero-

sion/sedimentation, plant growth, nutrients, pesticides, agricultural management, stream

routing and pond/reservoir routing.

SWAT delineates a watershed according to topographic data and divides the watershed into

subbasins connected by a stream network. Each subbasin is further divided into hydrologic

response units (HRUs), which consist of unique combinations of land cover and soil type,

and there is not interaction between HRUs within a subbasin. In other word, there is no

spatial differences between HRUs, which is computationally efficient by lumping similar soil

and land use areas into a single unit. Computation is based on each HRUs and summed at

subbasin level, then the results in subbasin level are routed though the river network. In

SWAT model, groundwater is represented in SWAT by two aquifers: shallow aquifer, which

is an unconfined aquifer that contributes to flow in the main channel or reach of the sub-

basin; and deep aquifer, which is a confined aquifer. Water that enters the deep aquifer is

assumed to contribute to stream flow somewhere outside of the watershed, thus as a sink of

water. In general, shallow aquifer represents the unconfined aquifer which may hydraulically

connected with the stream, while deep aquifer represents the confined aquifer, which does

not affect the surface water in the simulation horizon.

One important feature of SWAT model is the flexibility to represents agricultural produc-

tion. SWAT model has a built-in database which describes the growth cycle of different

crops. Potential/optimal plant growth, i.e. plant growth under ideal growing conditions

(adequate water and nutrient supply and a favorable climate) is calculated by the method

of cumulated heat degree method. This method assumes that the rate of growth is directly

proportional to the increase in cumulated temperature until the number of heat to maturity

is reached. Differences in growth between plant species are defined by the parameters con-

tained in the plant growth database. The optimal growth rate is then discounted to actual

growth, accounting for the varies from potential growth due to extreme temperatures, water
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deficiencies and nutrient deficiencies. Agricultural management, such as drainage, irrigation,

fertilizer application, tillage and rotation, can be specified by schedule.

Irrigation in an HRU may be scheduled by the modeler or automatically applied by SWAT

in response to a water deficit in the soil. In addition to specifying the timing and application

amount, SWAT allows to specify the source of irrigation water. Water applied to an HRU

is obtained from one of five types of water sources: a reach, a reservoir, a shallow aquifer, a

deep aquifer, or a source outside the watershed. Due to the lack of detailed irrigation data,

SWAT can simulate auto-irrigation with a specified water stress threshold. The water stress

is the difference between field capacity and soil moisture content. Once the soil water stress

is below the specific value, the model will automatically apply water to the HRU. If enough

water is available from the irrigation source, the model will add water to the soil until it is

at field capacity. Actual plant growth equals optimal growth multiple by water stress, where

water stress is unitless.

A key strength of SWAT is a flexible framework that allows the simulation of a wide variety

of conservation practices and other BMPs, such as fertilizer and manure application rate and

timing, cover crops (perennial grasses), filter strips, conservation tillage, irrigation manage-

ment, flood prevention structures, grassed waterways, and wetlands [25]. The majority of

conservation practices can be simulated in SWAT with straightforward parameter changes.

Current SWAT model simulates the effect of BMPs at HRU level, so the location of BMPs

are lumped in subbasin but spatially distributed in basin.

To summarize, SWAT model is chosen as simulation framework in this study as it can: (1)

take future climate prediction as input to represent future climate, (2) simulate hydrological

processes and crop production at the same time, (3) represent landuse management and

agricultural practice in the model settings.
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However, one disadvantage of surface watershed model (like SWAT) is that it does not treat

ground water in much detail [59]. Particularly in this study, we want to assess the impact

of groundwater irrigation while groundwater based irrigation in SWAT model is treated as

having no impact on the source aquifers, thus no impact on stream flow. As discussed in 2.1,

groundwater pumping breaks the aquifer natural equilibrium and reaches a new equilibrium

where the change in recharge or discharge balances pumping. During the transient state,

groundwater storage is depleted and provides part of pumping sources. A modification on

SWAT model to relate groundwater irrigation, aquifer storage and stream flow is described

below.

2.3.1 Modification on Groundwater Representation

In SWAT model, the shallow aquifer contributes base flow to the main channel or reach

within the subbasin. Base flow is allowed to enter the reach only if the amount of water

stored in the shallow aquifer exceeds a threshold value specified by the user, aqshthr,q. The

baseflow calculation is derived from pre-development assumption, that is, non-steady-stage

water table fluctuations are only affected by groundwater recharge and baseflow:

Qgw,i =


Qgw,i−1exp[−αgw∆t] + wrchrg,sh (1− exp[−αgw∆t]) aqsh ≥ aqshthr,q

0 aqsh ≤ aqshthr,q

(2.3)

where Qgw,i is the groundwater flow into the main channel on day i, αgw is the baseflow

recession constant, ∆t is the time step (1 day), wrchrg,sh is the amount of recharge entering

the shallow aquifer, aqsh is the amount of water stored in the shallow aquifer and aqshthr,q

is the threshold water level in the shallow aquifer for groundwater contribution to the main

channel to occur. The baseflow recession constant, αgw, is a direct index of groundwater

flow response to changes in recharge. Values vary from 0.1-0.3 for land with slow response to

recharge to 0.9-1.0 for land with a rapid response. Although the baseflow recession constant
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may be calculated, the best estimates are obtained by analyzing measured stream flow during

periods of no recharge in the watershed [74]. When the shallow aquifer receives no recharge,

equation (2.3) simplifies to:

Qgw =


Qgw,0exp[−αgw∆t] aqsh ≥ aqshthr,q

0 aqsh ≤ aqshthr,q

(2.4)

From equation (2.3), we can see that the baseflow in SWAT model is only dependent on

the baseflow on the previous day and aquifer recharge. This formulation ignores the effect

of pumping on stream depletion. The derivation in equation (2.3) only considers aquifer

recharge and baseflow as the cause of water table change, while in this case, large scale

groundwater pumping is reason of groundwater table decline. If the time step is large enough

(large ∆t in equation (2.3)), then the exponential part of baseflow (Qgw) part is very small

and the exponential part of recharge (wrchrg,sh) is near 1. Then it turns out that baseflow

equals recharge. If we regard baseflow as aquifer discharge, then it turns out discharge equals

recharge for the aquifer. Under human development, this formulation can not represent the

aquifer transient state response and new equilibrium. As discuss in section 2.1, groundwater

pumping firstly obtains water from water storage in aquifer as the drawdown cone forms.

The water table gradient near the drawdown cone captures water to pumping well, which

will be discharged into steam without pumping. So from the equation (2.3) used in SWAT

model, groundwater based irrigation is treated as having no impact on the source aquifers

and stream flow.

In this study, we modify the groundwater discharge equation (2.3) to make the aquifer

storage and streamflow interact with groundwater pumping. The shallow aquifer is formed

as a linear reservoir, so the baseflow is linearly proportional to the shallow aquifer storage:

Qgw,i = αgwSsh,i (2.5)
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where Qgw is the groundwater flow into the main channel at time t, αgw is the baseflow

recession constant, and Ssh,i is the amount of water stored in the shallow aquifer at the

beginning of day i.

Then shallow aquifer storage is updated every computation step by water budget equation:

Ssh,i = Ssh,i−1 + wrchrg,sh −Qgw − wrevap − wpump,sh (2.6)

where Ssh,i is the amount of water stored in the shallow aquifer, wrchrg,sh is the amount

of recharge entering the shallow aquifer, Qgw is the groundwater flow, or base flow, into

the main channel , wrevap is the amount of water moving into the soil zone in response to

water deficiencies, and wpump,sh is the amount of water removed from the shallow aquifer by

pumping, which is calculated from in auto-irrigation commands in SWAT model.

The linear reservoir model has been widely used in lumped watershed model for a long time

since Maillet [43]. When aquifer discharge is the only outflow of aquifer, the aquifer water

budget is:

dS

dt
= −Qgw (2.7)

Substituting equation (2.5) into euqtion (2.7) and integrating, we get the baseflow exponen-

tial recession relation, as in equation (2.4). Some studies find that the log Qgw against t does

not follow a straight line or the plots shows convex or concave, which implies non-linearity

in aquifer release [75]. To handle this problem, some studies use two or more parallel linear

reservoirs to representing components of different response time [63, 28]. This means the

baseflow comes from different components which have different travel time in the watershed.

Some studies find the non-linearity comes with the scale issue [75, 17]. From an experimental
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watershed, Clark et al. [17] find the linear groundwater release relationship is approximately

consistent with a linear reservoir at hill slope scale, and there is a deviation from linearity

that becomes progressively larger with increasing spatial scale. To link the gaps between

different spatial scale with linear groundwater release relationship, they provides a parallel

linear reservoirs which produces both linear hill slope response and non-linear watershed

scale response. In this study, we apply the linear groundwater reservoir model at each HRU.

Through the river network routing, the linear groundwater discharge relation in HRUs trans-

forms to non-linear response at the outlet of watershed.

Though equation (2.5) and equation (2.6), we relate aquifer storage, baseflow and groundwa-

ter pumping in a water balance way. Aquifer discharge is calculated from linear proportion

to aquifer storage and aquifer storage is updated during every computation step considering

the effect of baseflow, recharge, and pumping. Then the aquifer discharge on the next com-

putation step is calculated from the updated aquifer storage. In pre-development condition,

the groundwater system is balanced between baseflow, recharge and groundwater evapo-

transpiration; in transient state, aquifer storage can provide part of the water for pumping;

in the new equilibrium stage, the aquifer is in a new balance between pumping, baseflow

and recharge. Thus we can use the modified model to assess the impact of irrigation in RRB.

There are some assumptions lying behind equation (2.5) and equation (2.6), which may limit

their application. The flow direction between stream and aquifer depends on the relative

height of water table in stream and aquifer. As SWAT model does not compute ground-

water table, there is no way to compare the water tables. As a solution, flow direction is

only allowed from aquifer to stream, that is, the commands only simulate the gaining stream

situation. It is applicable in headwater zone such as FCB where streams mainly gain water

from surrounding areas, while if in some catchments where streams are losing water or both

losing or gaining water equation (2.5) and equation (2.6) are not enough to capture the pro-

cess. Another limitation is that in current SWAT model, calculation is based on HRUs level.
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There is no interaction between HRUs while the interaction at subbasin level is realized by

river network. This limits groundwater as separated bucked in each HRUs, and there is

no interaction between aquifer water among calculation units. That is, there is no ground-

water horizontal movement in SWAT model. According to a groundwater model built by

Republican River Compact Administration (http://www.republicanrivercompact.org/), the

groundwater horizontal movement is not significant in FCB compared with the groundwater

storage depletion. The drawdown cone formed by pumping wells change the groundwater

table height and thus change the flow pattern in aquifer. These processes is not represented

in SWAT model. If interests are places on these sides, other groundwater based model

should be chosen for simulation. In this study, we are more interested in water budget not

the details in groundwater flow pattern and the effects agricultural practice in groundwater

quantity, which is affected by climate-driven irrigation.

2.3.2 SWAT Model Setup

In this subsection, we describe data to build SWAT model in FCB, the criteria to evaluation

the model, and some test scenario with SWAT model.

Watershed Delineation

In watershed boundary definition, we use a 30m (1 arc second) digital elevation model(DEM)

(http://seamless.usgs.gov/ned1.php) as a main source for elevation data. Further, the eight-

digit USGS hydrologic unit codes (http://water.usgs.gov/GIS/huc.html) and National Hy-

drography stream dataset (http://nhd.usgs.gov/data.html) also used to assist to define wa-

tershed boundary and delineate the subbasins. As there is a reservoir on Frenchman Creek,

the watershed outlet is chosen at a USGS stream gage above the Enders reservoir to avoid

the simulation of reservoir in the watershed, which is beyond the interest of this study. Fi-

nally, we has a watershed of about 2835 km2 with 89 subbasins.
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HRUs Definition

SWAT defines HRUs based on the combination of soil type and landuse. Soil data is from

the 2006 STATSGO2 database (http://soils.usda.gov/survey/geography/statsgo/). Landuse

data is from 2001 National Land Cover Data (NLCD2001) (http://www.epa.gov/mrlc/nlcd-

2001.html). SWAT can define one or multi-HRUs in one subbasin. As the watershed is

not much heterogamous in this study, we define one HRU in one subbasin based on the

dominant soil type and landuse. The landuse data is in 2001, which may not reflect the

agricultural development in the 1970s and 1980s. We use the crop data from National Agri-

cultural Statistics Service (NASS) (http://www.nass.usda.gov/Data and Statistics/). The

NASS dataset is summarized by county, and does not provide further spatial information.

We convert the crop area from NASS to equivalent area HRUs in SWAT model. Corn plant

is scheduled at 10 May and harvested at 31 October. As there is no detailed irrigation data

available, we use the auto-irrigation commands in SWAT to meet the crop water requirement.

Climatic Inputs

Daily precipitation and temperature (maximun and minimum) are obtained from High Plains

Regional Climate Center (HPRCC) (http://www.hprcc.unl.edu/about.php). Six weather

stations lie within or near the watershed is chosen based on the continuity of time series.

The stations are: Holyoke (Station ID: 054082), Enders Lake (Station ID: 252741), Imperial

Municipal Airport (Station ID: 254111), Wauneta (Station ID: 259020), Sedgwick(Station

ID: 259020) and Wray (Station ID: 059243).

Model Evaluation

The major hydrological budget component evaluated in this study is stream flow. As the

infrastructure expansion is planed for drought mitigation, we particular focus on lowflow.

The monthly stream flow observation data for calibration and validation are from USGS
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National Water Information System (NWIS) (http://wdr.water.usgs.gov/nwisgmap/). The

stream gage at the inlet of Ender Reservoir (FRENCHMAN CREEK NEAR IMPERIAL,

siteID 06831500) is chosen to avoid the impact of reservoir. Annual crop yield data are from

NASS dataset. We calibration the irrigated corn yield as it is the dominant crop and main

water consumption sector in this basin. The NASS summarizes crop yield in bushel per

acre, while SWAT gives yield as tons per hectare. The conversion of the units depends on

the moisture content in crop. We convert 1 bushel of corn to 0.0254 ton based on literature

average.

Calibration and Validation

We choose eleven parameters controlling surface runoff generation, evapotranspiration, ground-

water flow, and crop growth to calibrate the model. These parameters are chosen based on

previous studies that shows the sensitivity of these parameters. The parameters, their de-

scriptions, SWAT default values, range and calibrated values are listed in table 1.

Previous studies [25] summarizes statistics criteria for evaluating the performance of SWAT

model. These criteria compare the simulated value with model result, focusing on particular

part of interest. In this study, we choose 2 criteria for stream flow evaluation and 1 criterion

for crop yield. The monthly stream flow is calibrated using root-mean-square error (RMSE)

for general data (equation (2.8)) and logarithm of RMSE, which is more focused on lowflow

(equation (2.9)):

RMSE =

√√√√ 1

n

n∑
t=1

(Qsim,t −Qobs,t) (2.8)

LOG =

√√√√ 1

n

n∑
t=1

(logQsim,t − logQobs,t) (2.9)
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We use Non-dominated Sorting Genetic Algorithm II (NSGA-II) to find the optimal pa-

rameter combination. NSGA-II is a famous multi-objective optimization algorithm, which

provides a objective way to characterizing multi-objective problems [20]. By identifying

multiple Pareto optimal candidate solutions, NSGA-II requires a Pareto-compliant ranking

method, favoring non-dominated solutions. No weight is assigned to each objective and thus

no prioir information on the preference of the objectives is needed. The main advantage

of NSGA-II is that they allow computation of an approximation of the entire Pareto front

in a single algorithm run. The main disadvantage of evolutionary algorithms is the much

computationally expensive. There is no general guide on the GA parameters. The NSGA-II

population is set at 200 and generation is set at 100. The crossover, mutation and other

parameters are set at their default value. The calibrated parameters are listed in table 1.

The calibration and validation are conducted from 1981 to 1985 and 1986-1990 respectively,

shown in figure 2. NashSutcliffe model efficiency coefficient [48] is 0.74 and 0.72 for cal-

ibration and validation period respectively, which is regarded as good for SWAT model

simulation according to the summery from Gassman et al. [25]. As we focus more on the

lowflow part in the calibration, we can see that the simulated flows in the flood seasons is

lower than the observed one in 1981 and higher in 1983, 1986, 1988 and 1990. All of these

mismatches happen in May. Another possible cause may come from the auto-irrigation com-

mands in SWAT model. As May is the seeding season, the irrigation requirement may not

be so significant. In the model, auto-irrigation irrigates the soil until field capacity once the

soil moisture stays below a threshold specified for the whole growing season. However, crop

may not need so much irrigation water as they just develop. The more moisture in the soil,

more saturated surface runoff produces, leading to a higher stream flow than observed.

In addition, large portion of stream flow (baseflow) is dependent on aquifer and effected

by irrigation, we also compare the simulated aquifer storage with one observation well. To
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see the effect of groundwater irrigation over a long time, we run the model from 1965 to

1994 with the calibrated parameter set. The simulated aquifer storage is averaged over

the whole basin. The observation well data is obtained from USGS Groundwater Infor-

mation (http://water.usgs.gov/ogw/gwrp/activities/fundamentaldata.html). The well (Site

Number: 403220101384001) located in the mid-down reach of FCB measures the depth to

groundwater table. The aquifer storage and depth to groundwater are convertible if the

specific storage coefficient is known. Here we just compare the trend of the two data series

as the specific storage coefficient is heterogeneous over the domain [58]. Also note that the

aquifer storage is an areal average and the depth to groundwater table is a point measure-

ment. From figure 3, we can see these two time series match quite. They all experienced

a decline in from 1960s and 1970s, then remained stable afterwards. This shows the tran-

sient state from the natural equilibrium to a new equilibrium. During the transient state

groundwater storage is depleted to as part of the source for irrigation. The observation data

shows more variability over time than the simulated one. This is because the simulated is a

spatial average over the whole basin, which smooth out the temporal variability in one point.

2.4 Summary

In this chapter, we build a watershed model which focuses on the effect of groundwater-

based irrigation, especially how groundwater-based irrigation breaks the natural equilibrium

of aquifer budget and the transition to a new equilibrium. The original SWAT model does

not consider the impact of groundwater irrigation on aquifer storage and stream flow, that is,

the model does not relate the irrigation water to the source aquifer. We modify the baseflow

computation with a conceptual linear groundwater reservoir relation, where the baseflow is

proportional to aquifer storage. The latter is then updated at each computation includ-

ing the withdrawal of groundwater pumping. Related parameters are chosen to calibrate

the stream flow and crop yield with observation data by an evolution algorithm. We also
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compare the simulated aquifer storage with one observation well. The model successfully

reproduces the behavior of aquifer due to groundwater pumping, which shows the validity

of the revision of the model.
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Chapter 3

Statistical Surrogate Model

In chapter 2, we build a physically based model (PBM) which simulates SW-GW interac-

tion under groundwater pumping in FCB. For the infrastructure planning purpose, we are

coupling a optimization model with the physical model. As the physical model is non-linear,

not continuous and non-derivable, classic optimization algorithms are not applicable in this

case. Evolution Algorithms (EA) is then applied to a simulation-optimization modeling

framework. However, EA is very computationally expensive. GA needs to run the PBM for

each evaluation, which is not reasonable for such a large scale model.

In this chapter, we build an computationally efficient data driven model (DDM) to substitute

the PBM from the knowledge of Machine Learning. This DDM is built on Support Vector

Machine (SVM) and trained to produce the watershed responses to infrastructure expansion

under different climate change scenarios. This DDM will be latter used in the optimization

framework to replace the PBM.

3.1 Regional Climate Model

The RCM simulation data sets are driven by outputs from three GCMs: 1) the U.S. De-

partment of Energy and National Center for Atmospheric Research Parallel Climate Model

(PCM) [65], 2) the Community Climate System Model, version 3 (CCSM) [18], and 3)a

global atmosphere-only model (Hadley) derived from the atmospheric GCM of the Hadley

Centre CGCM (Hadley) [51]. These GCMs have different climate sensitivities, that is, the
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global mean temperature increase when atmosphere CO2 concentration level doubles. PCM

and CCSM have low climate sensitivity, with 2.1 and 2.2 oC respectively, while climate sen-

sitivity of Hadley is 3.3 oC, which belong to high climate sensitivity models. Compared with

all available GCMs, PCM and CCSM are at the low end and Hadley is in the upper half of

the range [39].

The RCMs conducts dynamical downscaling integrations from the coarse resolution from

GCMs, improving the spatial resolution from 300 km to 30 km. The downscaled RCMs

provides mesoscale projections for assessing potential climate change impacts at the regional

scale. The RCM that prvides the climate projection to this study is a climate extension

of the fifth-generation Pennsylvania State University-Nation Center for Atmospheric Pre-

diction (PSU-NCAR) Mesoscale Model (CMM5), version 3.3 [21]. Improvements including

incorporation of more realistic surface boundary conditions and cloud cover prediction from

an updated global reanalysis are made from the model of Liang et al. [40]. The simula-

tion of CMM5 is based on the cumulus parameterization scheme, which provides superior

performance in downscaling U.S.Mexico precipitation seasonal-interannual variations [41].

It has been demonstrated that CMM5 has considerable downscaling skill over the United

States, producing more realistic regional details and overall smaller biases than the driving

reanalyses or GCM simulations [42].

The historical simulation corresponds to the coupled model intercomparison project 20th

Century Climate in Coupled Models scenario (20C3M) [19], driven by historically accurate

forcings, including anthropogenic emissions of greenhouse gases and aerosols, indirect effects

on atmospheric water vapor and ozone, and natural changes in solar radiation and volcanic

emissions. The baseline simulations for RCM derived from PCM, CCSM3, and Hadley are

1991-2000, 1990-1999, and 1980-1989, respectively, which have been used as the baseline pe-

riods for climate change impact assessment [2]. The future simulation is forced by Emission

Scenarios from the IPCC Special Report [47]. Each RCM simulation scenario has 10-year
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length climate series. The simulation period is 2040-2049 and 2091-2100 for PCM, 2041-2050

and 2090-2099 for Hadley, 2090-2099 for CCSM, respectively. The two PCM emission sce-

narios are A1Fi (high, effective CO2 concentration of ∼970 ppm by 2100) and B1 (low, ∼550

ppm by 2100), respectively; the two CCSM emission scenarios are A1Fi and A1B (middle,

∼720 ppm by 2100), respectively; the two Hadley emission scenarios are A2 (moderately

high, ∼860 ppm by 2100) and B2 (moderately low, ∼620 ppm by 2100), respectively. The

RCMs simulation results are 3-hour continuous time series including precipitation, maximum

and minimal temperature, wind speed, humidity and solar radiation. The 3-hour data are

aggregated into daily data to feed the PBM developed in Chapter 2 to assess the climate

change on watershed management.

The historical precipitation and temperature data from 1985-1994 are used to assess the

climate change predicted by each prediction, shown in figure 4. The 10-year-mean annual

precipitation from historical data is 519.4 mm. RCMs scenarios predict annual propitiation

differently, ranging from 305.5 mm to 594.6 mm. Among the baseline scenarios, Hadley

RCM has higher annual precipitation at 553 mm, CCSM RCM has lower annual precipita-

tion at 364 mm, and PCM RCM predicts unchanged precipitation. For the future scenar-

ios, Hadley-B2-2090s has an increasing precipitation at 595mm, Hadley-A2-2090s has un-

changed precipitation, and other scenarios all experience decreasing precipitation. Among

those, CCSM-A1B-2090s has the lowest precipitation, 41 % decrease from current. Also,

the precipitation predicted by different GCM driven RCMs shows some patterns regardless

of their scenarios. CCSM driven RCMs have the lowest precipitation, PCM driven RCMs

have slightly decreasing precipitation, and Hadley has unchanged or increasing precipitation.

Although annual precipitation change shows a general trend of natural water available in

the future, the monthly precipitation variation is more important for the water resources

management, as the water use and hydrological regime shows a strong seasonal pattern in

this watershed. The precipitation in growing seasons (May to September), shown in figure5

27



and figure 6, affects the complementary irrigation that would be pumped out for crop pro-

duction; the precipitation in dry seasons is important for in-stream ecological community

and drought management. The monthly precipitation predicted by RCMs shows great vari-

ations compared with annual precipitation. Although precipitation change in other months

during 2040s is different in each model predictions, all model show increasing precipitation

in June. As June is the month when evaporation is highest, the increases in precipitation can

bring more water to sustain the stream flow. A1Fi scenario in PCM has decreasing precipi-

tation during most of the month, while B1 scenario has increasing precipitation in the first

half of the year and decreasing precipitation in later months of the year. For the period in

2090s, CCSM driven RCMs predicts increasing June precipitation while other monthly has

decreasing precipitation. The decrease is near 80% in from July to October in A1B and A1Fi

scenario. August is also the month when crop water demand is very high. The decreasing

August precipitation implies the agriculture may more dependent on irrigation. The Hadley

driven RCMs all have increasing spring precipitation and a slightly (within 20%) decrease in

other months. The increases in spring are 100%, 50%, and 77% for baseline, A1B, and A1F

respectively. The PCM driven RCMs shows more variability in monthly precipitation. The

baseline has 75% increase on February, April and June; A1Fi scenario predicts decreasing

precipitation, especially in July and Junel; and B1 scenarios has increase precipitation in

spring and June, while 15% to 35% decrease in other months.

From crop production, precipitation in growing season is of more importance as it pro-

vides water resources for evapotranspiration. Given the potential evaporation unchanged,

a decreasing precipitation in growing season usually implies an increase in complementary

irrigation demand. The growing season (from May to August) precipitation during 2040s de-

creases 28.6% and 14% in PCM-A1Fi and Hadley-A1 respectively, and remains unchanged in

PCM-B1 scenario. The growing season precipitation by CCSM model during 2090s decreases

about 30%, even nearly 40% in A1B and A1F scenarios. Growing season precipitation during

2090s increases 23.3% in Hadley-B2 scenario and decreases 18.9% in PCM-A1Fi scenario.
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Other scenarios have less 10% change in growing season precipitation. Generally the future

climate has less precipitation as predicted by the RCMs, which implies a more stress for

irrigation. Also the less precipitation indicates more likely to have drought, which requires

the potential for infrastructure expansion in this region to sustain the low flow given the

already depleted stream flow.

The mean temperature is averaged from the maximum and minimal temperature. Mean

temperature increase in nearly all month by all the prediction, but the variation is different

from scenarios. Monthly temperature change during 2040s has a slightly increase, mostly

within 5 oC. For the 2090s periods, PCM-B1 scenarios has temperature increases within 5

oC, while other scenarios experiences a month temperature increase over 5 degrees. CCSM-

A1F predicts a 10 degree monthly temperature increase. The increase in temperature has

two impacts on the watershed: 1) high temperature implies a high evapotranspiration rate in

the watershed, which may lead to a decrease in stream flow and higher demand for irrigation,

2) heat wave by unusual high temperature also stresses the crop growth even there is enough

water supply.

3.2 Overview of Support Vector Machine

Hydrological models try to represent the hydrological system in mathematical form. Within

a boundary, the system consists of different components and a set of equations linking the

input and output variables. The variable may be function of time or space or both. Depend-

ing on the processes and details described, hydrological models can be divided into physical

or scale models, conceptual models, lamped models, physically based models or empirical

models [15]. Due to developments in area of machine learning, empirical models received an

boost during last decades. Data-driven model is based on the analysis of all the data char-

acterizing the system under study. A model describes the connections between the system

state variables (input, internal and output variables) under a certain assumptions about the
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processes within the system.

A model can then be defined on the basis of connections between the system state variables

(input, internal and output variables) with only a limited number of assumptions about the

physical behavior of the system. The methods used nowadays can go much further than the

ones used in conventional empirical modeling: they allow for solving numerical prediction

problems, reconstructing highly non-linear functions, performing classification, grouping of

data and building rule-based systems. DDM is a modeling approach which focuses on using

the machine learning techniques in building models of physical processes. These models can

complement or replace the knowledge-driven models describing behavior of physical systems.

Support vector machine (SVM) is a concept in statistics and computer science for a set

of related supervised learning methods that analyze data and recognize patterns, used for

classification and regression analysis. Unlike other machine learning techniques, SVM has

some unique properties which leads to its popularity: 1) good generalization performance,

this is because SVM seeks to minimize the upper bound of generalization error rather than

minimizing the training error, 2) the solution of SVM is always globally optimal, while many

other machine learning techniques are subjected to local minimal (e.g., ANNs [76]), 3) the so-

lution is represented by Support Vectors, which are typically small subset of all training data.

A brief overview of ε-SVR is provided here. For more details, readers are referred to [56]

and [64]. The goal of ε-SVR is to find a function f (x) that has at most ε deviation

from the actually obtained targets yi for all the training data, and at the same time is

as flat as possible. That is, only errors larger than ε are considered. Given training data

{(x1, ε1) . . . , (xN , εN)} ⊂ X×R, where X denotes the space of input patterns (e.g. X = Rd).

The input xi is first projected to a higher dimensional feature space by the map Φ : X � F .

Linear regression to approximate the unknown function ε (x) is then performed in the feature

space Φ (x) = F instead of the input space X :
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f(x) = w · Φ(x) + b. (3.1)

The coefficients w and b are estimated by solving the optimization problem formulation of

SVR:

minimize
1

2
||w||2 + C

N∑
i=1

(ξi + ξ∗i ) (3.2)

subject to:

(wTφ(xi) + b)− εi ≤ ε+ ξi, (3.3a)

εi − (wTφ(xi) + b) ≤ ε+ ξ∗i , (3.3b)

ξi, ξ
∗
i ≥ 0, i = 1, ..., N. (3.3c)

Regularization by minimizing ||w||2 ensures the flatness of the solution. The second term in

Eqn. (3.2) is derived from the ε-insensitive loss function:

|εi − f(xi)|ε = max{0, |εi − f(xi)| − ε}. (3.4)

The constant C in Equation (3.2) determines the trade-off between the flatness of f and the

tolerance of deviation larger than ε.

Usually the map Φ : X → F is implemented implicitly via kernels such that:

〈Φ(xi),Φ(xj)〉 = K(xi,xj) (3.5)
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where 〈·, ·〉 denotes the dot product in F . In this work, the popular radial basis function

(RBF) is used as kernel:

K(xi,xj) = exp(−γ||xi − xj||2). (3.6)

The kernal width parameter γ was optimized via cross validation.

Following the recommendation of Cherkassky and Ma [13], the regularization hyperparameter

C and error insensitive hyperparameter ε are given by

C = max(|µ+ 3σ|, |µ− 3σ|), (3.7a)

ε = τσ0

√
ln N

N
, (3.7b)

where µ and σ are the mean and standard deviation of the training outputs εi’s, τ is a

coefficient usually which equals to 3, σ0 denotes the noise level, and N is the size of training

dataset. The reason that cross validation is not used to optimize all three hyperparameters

is due to the prehibitively long computation time required by sufficiently fine grid search.

In addition, the hyperparameters chosen analytically outperform the values that chosen by

a preliminary cross validation attempt with a relatively coarse grid search. The codes can

be downloaded from the LIBSVM website (http://www.csie.ntu.edu.tw/ cjlin/libsvm/).

3.3 BMPs Representation

The substitutionary model is built based on the simulation data of PBM with different future

climate predictions and planning decisions response. In this study, the planning decisions

includes strategic and tactical measures. Unlike the traditional crisis drought management,

which emphasizes tactical measures for emergency response, we also introduce strategic

measures as strategic measures as preparedness planning and mitigation actions [71]. Tradi-
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tional drought crisis management decisions only address tactical measures, i.e., post-impact

responses to drought hazards under de facto infrastructure [68]. Risk management decisions

include strategic measures, which are long-term or in-advance and usually require capital

investment. Strategic measures can be structural, such as water storage, or nonstructural

such as long-term institutional reforms for water conservation.

The tactic measures are taken only after a certain climate happens and are operational

measures to mitigate the damage caused by drought. The tactic measures include irrigation

from shallow and deep pumping wells. On one hand, pumping from aquifer provides the wa-

ter for crop evapotranspiration, which is not enough from precipitation; on the other hand,

pumping from shallow aquifer can cause stream depletion and pumping from deep aquifer is

more expensive and the effect of groundwater depletion needs more time to recover.

The strategic measures in this study are two types of BMPs: infiltration pond and terraces.

Terraces are earth embankments and channels constructed across the slope at suitable spac-

ings and with acceptable grades for one or more of the purposes to: 1) reduce soil erosion, 2)

provide for maximum retention of moisture for crop use, 3) improve water quality, 4) reduce

peak runoff rates to installations downstream, 5) reduce sediment content in runoff water.

Terraces can be identified by the way in which they handle runoff. There are three types of

terraces: 1) storage terrace, where the embankment of a storage terrace can include sections

that store runoff as well as sections that intercept runoff and convey it to the storage. The

water can be stored for a period of time and then released by underground outlet, 2) gra-

dient terrace, where runoff is intercepted by the terrace and conveyed directly (without any

storage) to a stable surface outlet at non-erosive velocities, 3) level terrace, where runoff is

intercepted for the purpose of moisture conservation.

Infiltration pond is another type of BMPs that used to regulate stormwater runoff. Unlike

detention pond, which is designed to discharge to a downstream water body, or a reten-
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tion pond, which is designed to include a permanent pool of water, an infiltration pond is

designed to infiltrate stormwater though permeable soil into aquifer system. Although it

does not discharge to a surface water body under most storm conditions, it overflows during

flood conditions. For the location of infiltration pond, the site should be a groundwater

recharge zone which has uncompacted and permeable soils. The pond should fail if it is not

properly maintained, especially in watershed with high levels of sediment which forms an

impermeable layer at the bottom of the pond. Important benefits of groundwater infiltration

facilities include reducing surface-runoff volume, reducing pollutant discharge, reducing ther-

mal impacts on fisheries, increasing groundwater recharge, and augmenting lowflow stream

conditions [45]. The purpose of building infiltration pond in FCB is to convert the stormwa-

ter into artificial groundwater recharge. The increasing recharge is a compensate for the

extensive exploitation of groundwater. Groundwater recovered from the extra recharge thus

sustains the lowflow during drought conditions.

The effectiveness of these BMPs have been studied with SWAT model by many researchers

[9, 33, 55, 54]. Bracmort et al. [9] evaluate the long term performance of BMPs by esti-

mating the condition of a BMPs based on visual inspection and compare them with selected

original design dimensions. Although they found economic benefits received from the BMPs

did not outweigh the costs for implementing and maintaining the BMPs, they claimed that

these BMPs has lots of benefits pertaining to water quality, wildlife habitat improvement,

human and aquatic ecosystem health, downstream impacts, and intangible impacts, which

are not able to assign a market value. Kaini et al. [33] used an evolution algorithm to opti-

mize location and size of BMPs combinations that cost effectively to promote achievement

of treatment goals at large spatial scales.

As there are high uncertainties in the degradation of BMPs, we only consider the size of

BMPs in this study. That is, we assume the BMPs are properly maintained which can ensure

the performance as designed. If further information on the degradation, the cost associated
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with maintenance and the degradation rate can be implemented into the model. Also, we do

not consider the location of the BMPs and assign uniform values to each subbasin in FCB.

This can be incorporated into our model but will increase the dimension of optimization

problem. In this study, we focus on the benefits and costs of the BMPs over the whole

basin, the improvement of considering the spatial variation of BMPs is beyond our scope.

3.4 Substitutionary Model

The substitutionary model is built by SVR from training data run from the PBM. The deci-

sion variables representing strategic and tactic measures are: 1) pond, the size of infiltration

pond in each subbasin, 2) terrace, the terrace built to reduce the slope in each basin, 3) auto

irrigation trigger, represented by the soil moisture below the field capacity, and 4) irrigation

water source, the threshold of shallow aquifer water depth when transferring pumping from

shallow aquifer to deep aquifer. In this study, due to the computation expense, we do not

consider the spatial variation of each variables and apply them uniformly to each subbasin.

The outputs from PBM are: 1) 10-day-flow from 10-year length simulation, 2) mean annual

crop yield, 3) mean annual irrigation from shallow aquifer, and 4) mean annual irrigation

from deep aquifer.

The procedures of building SVR watershed model representing response of strategic and

tactic measures under different climate scenarios are as follows: 1) generating combinations

of decision variables. As SVR dose not work well on extrapolation, all the decision variables

are sampled from a big enough range. Considering the computation time and goodness of

representation, 2500 combinations are generated from the the four decision variables, uni-

formly randomly sampled from their range. 2) simulating the corresponding outputs from

the decision variable combinations from PBM. Each combination of decision variables is

feed into PBM model with a climate scenarios, and calculate the 4 output variables. After
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running all the combinations of decision variables, SVR can represent watershed response

of strategic and tactic measures under a certain climate scenario from PBM. 3) repeating

process 2) to build other SVRs, which represents the response of a certain climate scenario.

To handle the complexity and goodness of fitting SVR model, we adjust two parameters in

SVR model: α, which represents the penalty for model complexity and σ2, which measures

the goodness of fit of model. The 2500 combinations of data sets obtained from PBM are

split into 3 subset: 1800 sets for SVR training; 400 sets for α and σ2 tuning; and 300 sets for

validation. The two parameters are adjusted by maximizing the mean value of of R-squared

values of the 4 outputs. As R squared value is between the range of 0 to 1, there is no

necessary to normalized the value between the outputs. Thus the mean value of R-squared

means the same weight on 4 outputs. The parameter values and the R-squared values during

calibration and validation are listed in table 2. The SVR model has a great improvement

on computation efficiency.

3.5 Catchment Response to BMPs Expansion and Irrigation

Operation under Different Climate Scenarios

3.5.1 Effect of infiltration pond on low flow

Infiltration pond is designed to retain storm water and increase aquifer recharge, while can

recovers aquifer storage and sustain low flow. Water captured in infiltration pond either

recharges aquifer or evaporates into atmosphere. Infiltration pond with large capacity cap-

tures more storm water potential for recharge. On the other hand, large pond has a large

surface area for evaporation. Figure 5 shows the effect of infiltration pond size on 10-day-

flow. There shows two patterns in the response curve. Watershed low flow increases first and

then decreases or remains with increasing infiltration pond size in CCSM model scenarios.

In other climate scenarios, low flow increases with infiltration pond size. In the analysis of
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future climate data, we have found CCSM model scenarios predict less precipitation and

higher temperature. In these scenarios, when pond capacity is small, infiltration pond do

not capture large amount of water, which infiltrates into the aquifer quickly. Although evap-

oration exists, the amount of evaporation is not dominant compared with filtration; when

pond capacity increases, more water stored in the pond. At the same time, ponds with larger

surface area evaporate more water. When evaporation is very high, evaporation becomes

dominant. Instead of increasing recharge, the building of pond has the effect of evaporating

water back into atmosphere, which would become recharges or stream flow with no or small

ponds. Also, in Hadcm3-A1 scenarios during 2040s, the low flow increases with infiltration

pond size at first. After the pond size reaches 18 million m3, the low flow does not increase

with pond size but becomes stable or slightly decreases. This can also be explained by

high evaporation rate in this scenario. Comparing precipitation in PCM-A1Fi and Hadcm3-

A1 during 2040s, although the former has more decreases in precipitation than the latter

(24% vs. 16%), Hadcm3-A1 has a higher mean temperature. The increases in mean annual

temperature predicted are 1.9 and 4.6 by PCM-A1Fi and Hadcm3-A1, respectively. The

increase in temperature indicates a higher evaporation rate. The more increases in evapora-

tion by Hadcm3-A1 outbid the more decreases in precipitation in PCM-A1Fi, so the low flow

does not increases with pond size in the former scenario, while the latter scenario can have an

increasing lowflow-pond size relation. To summarize, infiltration pond captures storm water

and recharges aquifer, thus increases the baseflow. The choosing of pond size is dependent on

the effect of increases in low flow and the cost of pond building. However, in scenarios with

extreme high temperature, the evaporation from ponds outbid the effect of their benefit. In

these conditions, the climate also becomes a physical constraint for the choosing of pond size.

3.5.2 Effect of terrace expansion on 10-day-flow

The terrace has the effect of reduce sub-basin hill slope, which reduces the peak flow in storm

events and increases the travel time of water in subsurface. The lagged release of subsurface
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flow increases the aquifer recharge and also sustains the low flow during between-storm peri-

ods. Although the terrace increases lowflow, the effect is not as significant as compared with

infiltration pond. This is because the terrace does not directly change the flow rate among

different water components but changes the travel time of subsurface water and redistributes

this part of water. Unlike the different patterns in lowflow response to pond size with differ-

ent climate scenarios, the building of terrace increases the lowflow in all scenarios. Terrace is

not affected by evaporation, thus can be a good choice of BMPs in high evaporation scenarios.

3.5.3 Effect of BMPs on crop yield

The expansion of infiltration pond or terrace does not quite affect the crop yield under the

climate scenarios. This is understandable as the BMPs are mainly designed to groundwa-

ter recovery and environmental flow requirement, while crop yield is high deepened on the

water available for crop evapotranspiration either from effect rainfall or complementary ir-

rigation. The expansion of BMPs can indirectly reduce the irrigation cost as the BMPs

recovers groundwater thus reduces the pumping cost. Attention should be paid to the crop

yield in CCSM-A1F scenarios during 2090s. The crop yield is about 6 ton/ha in CCSM-

A1F, compared with 10 ton/ha in other scenarios. The low crop yield in this scenario can

be explained by the high temperature. The optimal growth rate of crop is calculated by

accumulated heat units on each day. Then the actual growth rate is reduced due to water

stress or temperature stress from optimal growth rate. Daily temperature deviated from the

optimal temperature results temperature stress for the crop, which results an exponential

decay during the actual crop yield calculation. The CCSM-A1F scenario predicts a 9.2 oC

increases in daily temperature, the highest among all the scenarios. Heat wave is the dom-

inant reason for the decrease in crop yield. The effect of high temperature on crop yield is

beyond the scope of this study, but can be further studied to predict the impact of climate

change on crop production.
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The CO2 concentration rate in the atmosphere is one of the assumptions made for each

climate scenarios. In this study, we do not consider the CO2 concentration rate on the crop

yield but only consider the climate variables on the crop water use and temperature stress.

3.5.4 Effect of Irrigation on crop yield

Complementary irrigation supplements the water shortage of insufficient effective rainfall.

The actual crop yield is reduced from the optimal growth rate when there is water stress.

Larger irrigation applied in the crop increases the crop yield in all climate scenarios. The

slope of Yield-Irrigation relation is big at low irrigation depth and small at high irrigation

depth, which means the potential for stress irrigation. A reduce of irrigation amount around

the optimal growth rate does not decrease the yield much, but can save a large amount of

irrigation cost. Irrigation amount to get a near-optimal crop yield is less than 400mm in

most scenarios, but is nearly 600mm in scenarios with low precipitation and high tempera-

ture, such as CCSM-A1B and CCSM-A1F.

3.5.5 Effect of irrigation from upper aquifer on low flow

As stream is hydraulically connected with aquifer, pumping from aquifer for agricultural

irrigation also affects the stream flow. Figure 10 shows the effect of irrigation amount from

upper on the lowflow. Generally, the groundwater based irrigation decreases the low flow

due to the stream depletion effect. At high irrigation depth, low flow does not further de-

creases with irrigation (such as Hadley-B2, PCM-B1, PCM-A1Fi), even increases a bit (such

as CCSM-baseline and CCSM-A1B scenarios). Although pumping causes stream depletion,

on the other hand, large amount of pumping maintains the soil moisture close to the field

capacity. High soil moisture content generates more subsurface flow and produces more sat-

urated surface runoff. In these dry scenarios, the effect is more significant as we can see in

CCSM-baseline and CCSM-A1B scenarios.
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3.5.6 Effect of irrigation from lower aquifer on low flow

Lower aquifer is hydraulically unconnected with stream flow. Pumping from lower aquifer

acts like introducing water from outside of this system, so the low flow all increases with

pumping from lower aquifer. Pumping from lower aquifer costs more than that from shallow

aquifer. Besides, pumping from lower aquifer requires more time to recover, and can causes

problem outside the basin if the lower aquifer within a regional aquifer system. Pumping

from lower aquifer can be used as an emergency water supply for both agricultural produc-

tion and environmental conservation during very dry condition.

3.6 Summary

This chapter is a bridge which connects the simulation model in chapter 2 and optimization

model in chapter 4. 12 climate scenarios of RCMs driven by different GCMs models are

obtained to represent the future climate condition. The GCMs have different climate sen-

sitivity to climate change, and RCMs have different assumptions on CO2 concentration in

2100. The annual precipitation in the future ranges from 305.5 mm to 594.6 mm, compared

with 519.4 mm in current value. 2 out of 12 predict increasing annual precipitation and 2

out of 12 predict unchanged annual precipitation, while the remaining predict decreasing

annual precipitation. The lowest precipitation are predicted by CCSM based models. The

monthly and growing season precipitation change show the variation during a year. Hadley

model predicts precipitation increase in spring and decrease in other seasons. CCSM model

predicts decreasing precipitation in all months except June. The decreasing growing season

precipitation indicates more irrigation need for agriculture production. For the temperature,

all models predict a increase, ranging from 0.6 to 9.2 oC. The high temperature increases

the crop evapotranspiration, and the heat wave caused by extreme high temperature can
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also reduce crop yield if even there is enough water.

A substitutionary model is built with SVR from the training data from SWAT model for

each climate scenario. The SVR has a great improvement on computation efficiency and

still represents the relation produced by PBM. The SVR simulation predicts that under

future climate scenarios, infiltration pond and terrace are effective BMPs to increases the

lowflow during drought conditions. In extreme low precipitation scenarios, the selection of

infiltration pond size depends on the cost-effect evaluation and also physical constraints, as

infiltration pond can also evaporate storm water back into atmosphere. The crop yield is less

affected by BMPs expansion, but are more related to the irrigation operation. Crop yield

is increased by irrigation and constrained by temperature stress as heat wave in extreme

temperature can reduce crop yield. Irrigation helps to increase crop yield, on the other

hand, irrigation from shallow aquifer decreases lowflow in most of the cases. In dry climate

scenarios, effect of irrigation from shallow aquifer first decreases lowflow and then maintain

or even increases lowflow. This is because the large amount of irrigation water applied on

crop land maintains the soil moisture at field capacity. This increases from subsurface flow

and excess saturated runoff by precipitation compensate the baseflow depletion caused by

pumping. Irrigation from deep aquifer increases lowflow as deep aquifer is hydraulically

unconnected with stream. Pumping from deep aquifer costs more and can affect ground-

water flow pattern of a large region. Deep aquifer irrigation can be good source of water

for drought mitigation during extreme dry condition when surface water is not enough and

shallow aquifer pumping is not preferred for the consideration of lowflow conservation.
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Chapter 4

Decision Making Framework for
Infrastructure Expansion

In this chapter, we build a decision framework to answer those question: 1) how investment is

allocated between infrastructure expansion (strategic measures) and facility operation (tac-

tical measures) for the preparedness and mitigation of drought under an uncertain future?

2) How does the temporal allocation of investment depend on climate change projection?

That is, should the world invest infrastructure now or wait-and-see given the uncertainties

from mid- and long term climate change prediction? 3) How uncertainties from different

climate forecasting horizons are handled in the decision framework?

4.1 Scenario Tree

Multistage stochastic programs are effective for solving long-term planning problems under

uncertainty. In this study, a three stage stochastic optimization is developed for decision-

making on infrastructure expansion for both short-term and long-term plan. The optimiza-

tion is based on a scenarios model consist of many future climate predictions by RCM-GCM.

The concept of scenarios is usually employed for the modeling of randomness in stochastic

programming models, in which decisions have to be made independent upon knowing the

actual paths where data evolve over time [77]. Such data are usually subject to uncertainty

or some kind of risk. In this problem, the decision variables are strategic and tactical mea-

sures taken for drought mitigation and the investment decisions must be made before their

performance can be assessed. Each scenario can be viewed as one realization of an under-

lying stochastic data process. A good approximation of the underlying stochastic process
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may involve a very large number of scenarios and their probabilities. A better accuracy of

uncertainties is described when scenarios are constructed via a simulated path structure [29].

The scenario generation is a process which involves : 1) modeling of randomness, which

employees the set of available past information with the aim of building sub-models for

each individual stochastic parameter, 2) generating a set of scenarios that encapsulate the

consistent depictions of pathways to possible futures based on assumptions about economic

and technological developments from the sub-models, 3) the factors driving the risky events

are approximated by a discrete set of scenarios, or sequence of events [52]. According to

the complexity of stochastic model, the scenario tree structure is used to approximate the

random process (Heitsch and Rmisch 2005).

Due to the solvability of stochastic program, the scenario tree should be constructed from

the available climate scenarios. The strategy is to generate a 3 stage scenario tree from a set

of individual climate scenarios by bundling scenarios based on their property (e.g. RCM-

GCM model performance or model assumption). In this problem, 2 decisions are made in

the first stage; 4 and 2 decisions are made for each scenario in the second stage and third

stage, respectively. A good representation of the scenarios can reduce the number of decision

variable and accurate approximate of the future. The scenario tree reflects the inter-stage

dependency and the decreases the number of links between scenarios.

Due to the availability of the scenarios in different stages, the scenario tree for this 3-stage

optimization problem is built based on the CO2 concentration assumptions made for each

emission scenarios. The emission scenarios we have are A1Fi, A2, A1B, B1, and B2, with

effective CO2 concentration of ∼970 ppm, ∼860 ppm, ∼720 ppm,∼ 550ppm and ∼ 620ppm

by the year of 2100, respectively. The five scenarios correspond to high, moderately high,

middle and moderately low assumptions on CO2 concentration. The baseline scenario are

for the simulation of historical climate thus represent the current CO2 concentration level.
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To make use of the baseline scenarios, we treat them as representation of ’unchanged fu-

ture climate’. We can cluster the scenarios into 4 categories on future CO2 concentration

level: high (A1Fi), middle (A2 and B2)low (B1 and A1B) and unchanged. Furthermore,

we assume the changing trend of CO2 concentration level is consistent in the next century:

high CO2 concentration level in 2040s leads to high CO2 concentration level in 2090s; low in

2040s leads to low in 2090s; and unchanged remains unchanged for the whole century. This

clustering based on CO2 concentration level forms the nodes and links in the scenario tress.

As we don’t have scenarios on unchanged CO2 concentration in 2040s, historical data from

1985-1994 are used to represent unchanged climate as baseline scenario in 2040s. The cur-

rent can lead to four possible climate in 2040s: 1) unchanged (baseline), 2) high CO2 con-

centration level (PCM-A1Fi), 3) middle CO2 concentration level (Hadley-A2), 4) low CO2

concentration level (PCM-B1). Then the unfold climate in 2040s further leads to climate

scenarios in 2090s by different RCM-GCM, shown in figure 16.

One of the advantages on this scenario tree is that by bundling the scenarios by CO2 concen-

tration level, we average the uncertainty of different RCM-GCM models. As the RCM-GCMs

have different climate sensitivity, scenarios in in 2040s lead scenarios with similar CO2 con-

centration level but from different RCM-GCM model, thus averaging the uncertainty in

GCM models. Another advantage is that the scenarios tree has only 36 decision variable

(2 for first stage, 4*4=16 for second stage, and 2*9=18 for third stage). If the scenarios

is developed as scenario fan (each scenario in second stage leads to every scenario in third

stage), we would have 90 decision variables(2 for first stage, 4*4=16 for second stage, and

2*4*9=72 for third stage). This reduces the computation expense of the optimization. If

the GA population is set as 5 times of the decision variables, the the problem with scenario

tree needs 36*5*9=1620 evaluations and scenario fan needs 90*5*81=36450 evaluations for

generation.This greatly reduces the dimension of optimization problem
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4.2 Three-stage Stochastic Optimization

Stochastic programming is effective for problems where an analysis of policy scenarios is

desired and uncertainties are expressed as random variables with known probability distri-

butions. The fundamental idea behind stochastic programming is the concept of recourse

[8]. Recourse is the ability to take corrective action after a random event has taken place.

For example, in two-stage stochastic programming support the here and now decision, while

providing a number of wait and see solutions dependent upon which scenario unfolds: a

decision is firstly undertaken before values of random variables are disclosed and, then, after

the random events have occurred and their values are known, a recourse action is made in

order to minimize penalties that may appear due to any infeasibilities [31].

There are many studies which implement two-stage stochastic program in water resources

planning and management [44, 38, 37, 67, 12, 69]. Wilchfort et al. applied a two-stage model

to analyze the planning of long-term water conservation measures and the implementation of

short-term conservation measures, considering economic costs of those long-term and short-

term measures and probability distribution of water shortage. Cai et al. [12] extends the

two-stage decision process with risk aversion analysis in the choice of irrigation technology,

which provides a procedure for trade-off analysis of maximizing the expected profit and min-

imizing the risk of profit loss under worse conditions. However, these studies only deals with

two-stage decision making, which is not suitable for long-term planing. This studies provides

a framework for three-stage decision making. This model can use the mid- and long-term

climate prediction, allowing the now-and-wait tradeoff and decision adjustment during the

mid stage.

In scenario based stochastic programming, with a finite number of scenarios stochastic pro-

gramming can be converted into an equivalent deterministic problem. Decisions should be

based on data available at the time when the decisions are made and no future information
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is needed. The properties of two-stage stochastic program are [22]: 1) decisions at all stage

are made at once and no further information is expected, 2) hedging against all considered

unrelated scenarios of possible developments is assumed, 3) except for the first stage, no

non-anticipatively constraints appear. Depending on the considered problem in this study,

such properties can be regarded as disadvantages. In this study, we extend the two-stage

stochastic programming to a three-stage stochastic programming by permitting modified

decisions in each stage based on the real-time realizations of uncertain system conditions

[67, 1]. The uncertainties in stochastic programming are modeled as a 3-layer scenario tree

described in section 4.1.

In our three-stage model, the ”here and now” decision is the same in two-stage model, while

the ”wait and see” decisions are further extended by the short-term forecasting in 2040s and

long-term forecasting in 2090s. The idea behind the framework is that if infrastructure ca-

pacity is not sufficient (i.e., BMPs expansion are limited), even the best tactical mitigation

measures will not prevent large drought damage when a serious drought occurs; whereas

excess infrastructure capacity means extra cost but less costly tactical measures may be

sufficient to prevent a certain level of drought damage even under a limited infrastructure

capacity. As the investment on strategic measures is higher than the tactical measures,

given the climate forecasting, how investment is allocated between infrastructure expan-

sion (strategic measures) and facility operation (tactical measures) for the preparedness and

mitigation of drought under an uncertain future? How does the temporal allocation of in-

vestment depend on climate change projection? That is, how infrastructure is first planned

based on mid-term climate forecasting and then adjusted based on long-term climate fore-

casting? Further more, how uncertainties from different climate forecasting horizons are

handled in the decision framework? Compared with two-stage model, the three-stage model

can not only tell the resources allocation between strategic and tactical measures, but also

tell the temporal allocation between different planning horizons.
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4.2.1 Model Formulation

The purpose of the decision making framework is to provide a quantitative tool for analyzing

the tradeoffs between strategic and tactical drought mitigation measures. Strategic measures

made for drought preparedness and tactical measures for drought mitigation can help re-

duce the damage of drought on agriculture and environment. If infrastructure capacity is not

sufficient (i.e., BMPs sizes are limited), even the best tactical mitigation measures will not

prevent large drought damage when a serious drought occurs; whereas excess infrastructure

capacity means extra cost but less costly tactical measures may be sufficient to prevent a

certain level of drought damage even under a limited infrastructure capacity.

The three stage stochastic model has 2 kinds of decision variables in two different periods,

in figure 16. The decisions are: 1) BMPs building made at current time (bmp1), 2) irrigation

operational cost during the second stage (irrs,yr, where s stands from climate scenarios in

second stage, and yr represents the years in second period) , 3) BMPs expansion at the end

of the second stage (bmp2,s), 4) irrigation operational cost during the third stage (irrst,yr,

where st stands from climate scenarios in third stage led by scenario in second stage accord-

ing to scenario tree). The second stage and third stage is represented from 2040-2049 and

2091-2100 respectively. The periods between the two stage is not considered in this study

due to the climate data availability. The upper and lower bound of the decisions are the

same described in chapter 3.

The objectives of the optimization problem are: 1) capital investment, 2) crop yield, and

3) low flow. The capital investment includes infrastructure expansion cost and irrigation

operational cost in each stage. The BMPs investment cost is calculated as a point in the time

horizon and irrigation cost is obtained from a period of 10 years in each stage. Considering

the time value of capital investment, all the cost is converted into current value to with

constant discount rate. The formulation of capital investment objective is:
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Minimize c(bmp1) + E

(
2049∑

yr=2040

{
c [irrs,yr(bmp1)] /(1 + r)yr−2015

})
(4.1)

+E [c(bmp2s)] /(1 + r)2050−2015 +E
(∑2100

yr=2091 {c [irrst,yr(bmp1, bmp2s)] /(1 + r)yr−2015}
)

where r is the annual discount rate. c(bmp1) is the current (first stage) BMPs investment,

which consists of infiltration pond and terrace expansion. Here, we made an assumption of

equal probability distribution of all climate scenarios in the same stage. Thus, the expect

value is taken according to the scenarios tree in section 4.1. There are some cost-efficient

analysis on BMPs at different scales [26, 34, 3], but the cost of BMPs is different and highly

uncertainty from case to cases. Arabi et al. [3] contribute BMP cost to establishment, main-

tenance, and opportunity costs. Establishment costs included the cost of BMP installation,

and technical and field assistance. Maintenance cost is usually evaluated as a percentage

of establishment cost. The opportunity cost is a dollar value that would be produced over

the BMP design life as a result of investing the establishment and maintenance costs by

purchasing saving bonds. In this study, we only consider the establishment cost of BMPs

for simplicity. According to Kaini et al. [34], the cost is set at 500 per acre-ft and 300 per

unit for infiltration pond and terrace respectively. The cost is only dependent on the size of

BMPs, thus we don’t consider the fixed cost such as transaction cost of BMPs. The BMPs

expasion at the end of second stage is converted to current value by (1 + r)2050−2015.

The irrigation cost is the total irrigation cost over a 10-year length period during 2040s and

2090s. The irrigation cost depends on the groundwater table, total water pumped, labor

cost and so on. In this study, we differentiate aquifer-based irrigation by different sources:

shallow aquifer and deep aquifer. The irrigation cost is set at 10 and 20 per acre-inch for

irrigation from shallow and deep aquifer, respective. The irrigation cost is only dependent on

the amount of water pumped, so we ignore the fixed cost associated with the each irrigation

events.
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Crop yield can be converted into economic value. However, due to the uncertainty of future

crop price, we treat it as a separate objective. This objective can be integrated into the first

objective with reasonable crop price model, which is beyond the scope of this study. The

second objective is to maximize crop yield during 2040s and 2090s, formulated as:

Maximize E [yld2(bmp1, irrs)] + E [yld3(bmp1, bmp2s, irrst)] (4.2)

note yld2(bmp1, irrs) means the crop yield predicted by SVR during second stage with the

expansion of BMPs in first stage and irrigation in second stage. The third stage crop yield

is affected by BMPs from first and second stage, and irrigation in third stage.

The third objective is for environmental conservation for in-stream ecology. We choose to

maximize 10-day-minimal flow over the planning periods:

Maximize E [flow2(bmp1, irrs)] + E [flow3(bmp1, bmp2s, irrst)] (4.3)

For the latter two objectives, we do not discount the future value, meaning we put equal

weight on agricultural production and environmental conservation from different periods.

The decision-making framework is a coupled simulation-optimization model. The constraints

for the optimization model is that all the state variable should based on the prediction of

SVR model described in chapter 3:

SV R2s [bmp1, irrs, yld2(bmp1, irrs), f low2(bmp1, irrs)] = 0 (4.4)
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and

SV R3t [bmp1, bmp2s, irrst, yld3(bmp1, bmp2s, irrst), f low3(bmp1, bmp2s, irrst)] = 0 (4.5)

Note the superscripts s and t represent the relation of scenarios in second and third stage.

The links are illustrated in figure 16. For example, only t = 1, 2and3 scenarios in third

stage can be led by s = 1 scenario in second stage. The scenario tree are represented by the

superscripts:

t =



1, 2, 3,

4, 5,

6, 7,

8, 9,

when s = 1

when s = 2

when s = 3

when s = 4

(4.6)

4.3 Solution Algorithm

As SVR coupled into the optimization problem, there is no explicit mathematical equa-

tion expression for the relations. We use evolution algorithm to solve the optimization

problem. The problem is encoded into MATLAB r and solved by multi-objective genetic

algorithm(multi-ga) in optimization toolbox. The population size is set at 200 and genera-

tion is set at 150. The crossover probability is set at 0.85. Other multi-ga parameters are

set at their default value.

4.4 Optimization Results

As the third stage is about 80 years from now, the discount rate has a large effect on the

optimal solution, we solve the problem with different discount rate from 1% to 9%. Then

further analysis is discussed when discount rate is at 4%.
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4.4.1 Effect of Discount Rate

In the investment objective 4.1, the future costs decay exponentially with the time from cur-

rent. Large discount rate converts future value into small current cost. The multi-objective

GA produces a Pareto frontier for each optimization at the three objective dimensions. To

analysis the effect of discount rate, we fix two objectives: low-flow at 0.6 m3/s and yield at

8 ton/ha and pick out the current value cost in the Pareto frontier, shown in figure 18.

The current cost value decreases from 350 million $ to 90 million $ when discount rate in-

creases from 1% to 9%. Note that the decreases is the current value, it does not necessary

the BMPs expansion scale is smaller. Discount rate at 4% can be regarded as a turning

point, below which the current cost value decreases significantly with discount rate and

above which the current cost value is not so sensitive to discount rate. So 4% discount rate

is chosen for further analysis.

Similar to figure 18, figure 19 and 20 is obtained with low flow and crop yield objectives

fixed. Figure 19 shows with the same lowflow and crop yield requirement, how discount rate

affects the BMPs investment between second and third stage. Here the BMPs cost is calcu-

late at each stage and not converted into current value, thus shows the actual BMPs scale.

The result shows with increasing discount rate, BMPs investment for first stage decreases

and that for second stage increases. The investment on BMPs shifts to latter years as the

current value of second stage BMPs investment significantly decreases with large discount

rate. In figure 20, irrigation increases with discount rate because the higher discount rate

means less expensive future irrigation. The investment on BMPs in second stage is about 2

to 4 times of that in first stage; irrigation cost during 2040s is about 2 time of that in 2090s.

We can see both the BMPs expansion and irrigation operation for 2090s is higher than these

from 2040s. More investment should be spent for mitigation the drought in 2090s, as the

climate model predicts drier conditions in 2090s.
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4.4.2 Optimization Results with 4% Discount Rate

In figure 18, we have seen that 4% discount rate shows a changing behavior of cost in current

value on discount rate. Below this discount rate current cost value decreases significantly

with discount rate and above this discount rate the current cost value is not so sensitive to

discount rate. We pick up the optimization results with 4% discount rate for further analysis.

Figure 21 shows the Pareto frontier of three objectives, which compromises a surface in the

3 objectives dimension.

For more detailed analysis, we choose the points in Pareto frontier with different current

cost value. As the Pareto frontier does not provide the exact current cost value we choose,

we pick up the 4 closest points to our specified current cost value (60,70,80 and 90 million

$, respectively). This is to use a plane parallel to ’yield’-’lowflow’ plane to cue the Pareto

frontier, and extract the intersection points. As there is no exact intersect between points

and plane, the points close to the intersection plane is projected on the intersection plane

from Z axle. In figure 22, each line is the a Pareto font between yield and low-flow objec-

tives. For example, then current cost is 90 million $, trade-offs are made between yield and

low-flow along the line. With fixed budget, decision makers can invest more on BMPs to

have a higher low-flow, which leads to less investment on irrigation investment; or decision

makers can put more on agricultural production at the expense of low-flow. This provide

the information for decision makers to compromise between crop profit and environmental

conservation. Although we only pick 4 points, we can see the the slope of the trade-off

line changes. The tradeoff line have steep slope at high yield (or small low-flow) part and

becomes flat at at low yield (or large low-flow) part. The slope has a big change around 0.2

m3/S low-flow rate. At high crop yield section (e.g. 8 ton/ha), the increased investment

does not help to increases low-flow much. If we reduce the yield a little, there is a significant

environmental benefit. For example, if the yield crop is reduced at 6.8 ton/ha (red line in
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figure 22), low-flow rate increases from 0.17 to 0.7 m3/s with investment increasing from

60-90 million dollar, while the increases is only from 0.03 to 0.2 m3/s at high crop yield

(8 ton/ha). The tradeoff line tells us when investment for in-stream flow sustainment is

effective according to the crop yield. We can also see with increasing budget, the trade-offs

line moves up-right ward, which means more capital investment produces results with higher

yield and higher low-flow at the same time.

To see the how investment is split for BMPs and irrigation at different stage, we calculate

the mean BMPs investment cost and irrigation operation cost (these value are not converted

into current value) from the trade-offs line, shown in figure 19 and 20. The future invest-

ment value represents the actual size of these BMPs. The BMPs implemented in 2050 are

about 4 times larger than these planned in first stage. This means instead of putting all the

investment at now, the optimal solution indicates we should wait until the 2050 and have a

large scale BMPs expansion to prepare for the drought in 2090s. Although BMPs can miti-

gate the damage of drought, excess infrastructure capacity is not necessary in 2040s because

the less costly tactical measures are already sufficient to prevent a certain level of drought

predicted by the climate model. However, even the best tactical mitigation measures are not

enough to prevent the damage by the serious drought during 2090s, and large infrastructure

capacity needs to be extended in advance for preparedness. The irrigation amount in 2090s

are about 1.5 time of that in 2040s. Although droughts are more frequent in 2090s, large

scale infrastructure expansion helps to reduce the dependence of irrigation to mitigate the

drought. With a increasing budget, the investment is shifting from tactical measures to

strategic measures. We can see that how capital investment is split between infrastructure

expansion and irrigation operation with different investment rate. The irrigation cost does

not change quite much with increasing investment in figure 20, while investment on BMPs

increases with capital investment. The BMPs investment increases from 28 to 40, and 140

to 176 for first stage and second stage respectively, in figure 19.
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To see how should decision makers invest infrastructure now or wait-and-see for each mea-

sures, given the uncertainties from mid- and longterm climate change prediction, we compare

the cost in current value of investment in different stages, in figure 25. Note the costs are

all converted into current value, this represents how to allocate investment, not the physical

scale of different measure. The investment for infrastructure takes more than half of the

total investment. As the budget increases, the investment on irrigation decreases (especially

irrigation for 2040s) and more investments goes to BMPs. BMPs built in 2050 takes the

largest portion, taking 34% to 40% of the total investment when the budget increases from

60 to 90 million dollar. The investment on BMPs now and future in total takes 60% to 78%

of the whole investment, figure 26.

4.5 Summary

This chapter provides a decision framework for investment allocation between strategic mea-

sures (e.g.,infrastructure expansion) and tactical measures (e.g., facility operation). The

three-stage stochastic optimization shows how decision makers would invest infrastructure

now or ”wait and see”, given the given the uncertainties from mid- and long term climate

change prediction. The uncertainties from mid- and long term climate change prediction

are handled in a scenarios tree, in which climate predictions in different stages are formed

in a tree structure based on the assumptions in CO2 concentration levels. This bundling by

assumptions averages the uncertainties from climate sensitivity of RCM-GCM models.

The optimization results show that although BMPs can mitigate the damage of drought,

excess infrastructure capacity is not necessary in current decision as the less costly tactical

measures are already sufficient to prevent a certain level of drought during 2040s predicted

by the climate model. However, even the best tactical mitigation measures are not enough

to prevent the damage by the serious drought during 2090s, and large infrastructure capacity
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needs to be extended in advance for preparedness. Thus larger BMPs expansion is proposed

in 2040s for droughts preparedness in 2090s.
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Chapter 5

Conclusions

5.1 Discussion on Results

This study provides a decision making framework of infrastructure expansion and facility

operation for drought mitigation under climate change. Mid- and long-term climate forecast

are provided by regional climate model dynamically downscaled from global climate model.

The predicted future annual precipitation ranges from 305.5 mm to 594.6 mm, compared

with 519.4 mm in current value. 2 out of 12 scenarios predict increasing annual precipita-

tion and 2 out of 12 predict unchanged annual precipitation, while others predict decreasing

annual precipitation. Hadley model predicts precipitation increase in spring and decrease

in other seasons. CCSM model predicts decreasing precipitation in all months except June.

The decreasing growing season precipitation indicates more irrigation need for agriculture

production. For the temperature, all model predict a increase, ranging from 0.6 to 9.2 oC.

The high temperature increases the crop evapotranspiration, and the heat wave caused by

extreme high temperature(e.g. in CCSM predictions) also reduces crop yield even if there is

enough water.

A quasi-physically based hydrological agronomic watershed model is applied in FCB. The

model is built on SWAT with modifications. Although the original SWAT has groundwater

based irrigation, the baseflow is calculated separately from the aquifer storage, thus not

affected by pumping. We replace the baseflow calculation with a conceptual linear ground-

water reservoir model and get baseflow proportionally from aquifer storage. By updating

aquifer storage (including pumping) every time step, the modified model can simulate the
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interaction between pumping, aquifer storage and baseflow. The model is calibrated and val-

idated with historical data and then used to predict the watershed response to infrastructure

expansion and facility operation under different climate scenarios. Due to the computation

expense, a statistical surrogate model is built with SVR to replace SWAT in the optimization.

Each SVR is trained from the inputs (parameters representing infrastructure expansion and

facility operation) and outputs (irrigation amount, low-flow and yield) from SWAT model

with each climate scenarios. The SVR simulation predicts that infiltration pond and terrace

are effective BMPs to increases the low-flow during drought conditions. However, there are

different patterns in infiltration pond v.s. low-flow relationship. For slightly dry scenarios,

low-flow monotonically increases with pond size; for extremes dry scenarios, the relation

shows a convex pattern (increases first and then decreases). The nonlinearity is caused by

the complicating effects of groundwater recharge and pond evaporation. During extreme

drought events, large ponds evaporate water rather than recharging into aquifer. Irrigation

eases crop water stress, while crop potential yield is reduces by heat wave in extreme dry

scenarios even there is enough water. Irrigation from shallow aquifer causes stream deple-

tion, but can be recovered by recharges from BMPs. Irrigation from deep aquifer increases

low-flow as deep aquifer is hydraulically unconnected with stream, but is more costly and

requires long time to recover. Shallow aquifer irrigation is enough for moderate drought mit-

igation, and deep aquifer irrigation is essential for crop production and low-flow preservation

during severe drought.

For a watershed scale drought preparedness and mitigation, a scenario based three-stage

stochastic optimization model is built to analyzes the relative role of strategic measures

(e.g., infrastructure expansion) compared to tactical measures (e.g., facility operation) for

drought preparedness and mitigation under climate change. To reduce the uncertainty of

different RCM, the mid-term (2040s) and long-term (2090s) climate forecasting scenarios

are bundled by their assumptions on CO2 concentration level and further developed into a

scenario tree. This framework gives information of here-and-now or wait-and-see decisions
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on infrastructure expansion given the uncertainties from mid- and long-term climate change

prediction. The model is to maximize crop yield and low-flow given the capital investment.

The model shows that 1) even the best tactical measures (irrigation operation) alone are not

sufficient for drought mitigation in the future and infrastructure expansion is critical, espe-

cially for environmental conversation purposes. With increasing capital budget, investment

shifts from tactical measures (for drought mitigation) to strategic measures (for drought

preparedness), 2) for a fixed capital investment, trade-offs should be made between crop

production and environmental conservation. A small reduce in crop yield has significant

benefit on low-flow preservation, while increases in low-flow is insensitive when crop yield is

very low, 3) For the temporal allocation of investment, infrastructure expansion is preferred

for the long term plan than the mid-term plan. Larger investment is proposed in 2040s than

the current, due to a larger likelihood of drought in 2090s than 2040s. Moderate BMPs

expansion is proposed now to prepare for drought in 2040s, and after the 2040s climate

unfolds, large BMPs expansion is proposed for droughts preparedness in 2090s.

5.2 Further Work

In this study, the future climate is represented in mid- and long-term forecasting from RCMs,

each with a 10-year length. This time-slice approach fails to account for the transient nature

of climate changes over century. Climate forecasting within each period are stationary rather

than transient, thus uncertainties linked to natural climate variability if not explicitly con-

sidered. Moreover, due to the data availability, we use 10-year length time series to represent

mid- and long-term climate forecasting rather than a continuous climate forecasting for the

whole time domain. However, groundwater related components have long time response.

Thus, we do not consider the cumulative effect of infiltration pond recharge and ground-

water pumping. There are two ways to address the problem. One is very straightforward:

using continuous climate forecasting if there are available RCM results. However, continuous
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RCM simulations are based on CO2 concentration level at the end of the century. This ap-

proach only solves the continuous simulation of groundwater, while the mid- and long-term

forecasting are based on the same CO2 concentration level assumption. Another approach is

to generate transient climate data from weather generator. Recently, Rascal et al. develops

a transient weather generator, which enables the stochastic generation of large numbers of

equiprobable climatic time series, representing transient climate change between two peri-

ods [27, 11]. This approach provides a continuous transient climate change over the whole

century and also enables the climate change impact on groundwater resources. However,

provided the continuous climate change data, the simulation model computation expense

would be extremely huge. Now current computation technique, such as cloud computation,

may help to solve this problem.

The scenarios based stochastic optimization in this study minimize the expected value of

a cost function or maximize a net benefit function, and do not facilitate evaluation of the

trade-offs between the risks of infeasibility and the losses in optimality. In addition, we

assume a equal probability of the scenarios. Although there are other rules to determine the

uncertainty of climate models such as giving higher priority to models more strongly veri-

fied by the historical observation or A maximum entropy method [36], the probability itself

should be recognized as uncertain. Robust optimization (RO) can be used to incorporate

risk aversion into optimization models. For a scenarios-based RO, higher moments (e.g.,

variance) are then introduced into the objective function as a measure of risk [46]. This

allows the evaluation of trade-offs between the expected value of the objective function, the

variability in the value of the objective function, and the risk of violating soft constraints

[32, 12]. However, RO studies are based on single objective problems. Methods to handle the

risk in a multi-objective problem need further study. Still, one of the disadvantages of RO

is the potential size and complexity of the resulting model [66]. As a result, special solution

algorithms may be required. Another promising way is the nonprobabilistic RO approach

[6]. In this method, the uncertainty is not described by a PDF or scenarios but is known to
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reside within a user-defined uncertainty set. Hence, instead of immunizing the solution in a

probabilistic sense, the decision-maker searches for a solution that is optimal for all possible

realizations of the uncertainty set. If there is a way to construct the uncertainty set from the

climate forecasting, the decision framework avoids the assumptions on PDF of the scenarios.
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Chapter 6

Figures
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Figure 1: Domain of Frenchman Creek Basin in Republican River Basin
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Figure 2: Calibration (1981-1985) and validation (1981-1985) of streamflow

Figure 3: Comparison of simulated aquifer storage and USGS groundwater table height
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Figure 4: Annual precipitation predicted by different scenarios
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Figure 5: Monthly precipitation percentage change predicted by different scenarios
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Figure 6: Growing season precipitation percentage change predicted by different scenarios
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Figure 7: Monthly temperature change in oC predicted by different scenarios

67



Figure 8: Processes of build SVR from SWAT model for each climate scenarios
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Figure 9: Effect of infiltration pond size on 10-day-flow under different climate scenarios
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Figure 10: Effect of terrace expansion on 10-day lowflow under different climate scenarios
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Figure 11: Effect of infiltration pond size on crop yield under different climate scenarios
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Figure 12: Effect of terrace expansion on crop yield under different climate scenarios
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Figure 13: Effect of irrigation amount on crop yield under different climate scenarios
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Figure 14: Effect of irrigation from shallow aquifer on 10-day-flow under different climate scenarios
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Figure 15: Effect of irrigation from lower aquifer on 10-day-flow under different climate scenarios
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Figure 16: Scenario tree of three stage programming
.
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Figure 17: Three stage optimization model decision variables
.

Figure 18: Cost in current value changes with discount rate when low-flow and crop yield objectives are
fixed at 0.6 m3/s and 8 ton/ha, respectively
.
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Figure 19: BMPs cost in two stages with different discount rate
.
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Figure 20: Irrigation operation cost in two stages change with different discount rate
.
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Figure 21: Pareto front of 3 objectives (cost, crop yield, 10-day-flow) when discount rate is 4%
.

80



Figure 22: Trade-offs between 10-day-flow and crop yield with different cost
.
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Figure 23: BMPs expansion at different stage with different investment
.
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Figure 24: Irrigation operation in different periods with different investment
.
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Figure 25: Investment on BMPs and irrigation at different stages with different total Investment
.
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Figure 26: ratio of investment on BMPs with different total investment
.
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Chapter 7

Tables
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Table 2: R-squared Values of Output from SVRs

Periods GCM drive scenario R2 in Calibration R2 in Validation
Baseline PCM Baseline 0.95 0.94

CCSM Baseline 0.97 0.97
Hadley Baseline 0.93 0.92

2040s PCM A1Fi 0.96 0.95
PCM B1 0.97 0.95

Hadley A2 0.94 0.92
2090s PCM A1Fi 0.98 0.98

PCM B1 0.92 0.91
CCSM B1 0.97 0.97
CCSM A1Fi 0.93 0.98
Hadley A2 0.96 0.96
Hadley B2 0.98 0.97

88



References

[1] S. Ahmed, A.J. King, and G. Parija. A multi-stage stochastic integer programming
approach for capacity expansion under uncertainty. Journal of Global Optimization,
26(1):3–24, 2003.

[2] B.T. Anderson, K. Hayhoe, and X.Z. Liang. Anthropogenic-induced changes in twenty-
first century summertime hydroclimatology of the northeastern us. Climatic Change,
99(3):403–423, 2010.

[3] M. Arabi, R.S. Govindaraju, and M.M. Hantush. Cost-effective allocation of water-
shed management practices using a genetic algorithm. Water Resources Research,
42(10):10429, 2006.

[4] JG Arnold and N. Fohrer. Swat2000: current capabilities and research opportunities in
applied watershed modelling. Hydrological Processes, 19(3):563–572, 2005.

[5] WP Balleau. Water appropriation and transfer in a general hydrogeologic system. Nat.
Resources J., 28:269, 1988.

[6] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Opera-
tions research letters, 25(1):1–14, 1999.

[7] L.L. Bennett and C.W. Howe. The interstate river compact: Incentives for noncompli-
ance. Water Resources Research, 34(3):485–495, 1998.

[8] J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer Verlag,
1997.

[9] K.S. Bracmort, BA Engel, and JR Frankenberger. Evaluation of structural best man-
agement practices 20 years after installation: Black creek watershed, indiana. Journal
of soil and water conservation, 59(5):191–196, 2004.

[10] Oscar R. Burt, Maurice Baker, and Glenn A. Helmers. Statistical estimation of stream-
flow depletion from irrigation wells. Water Resour. Res., 38(12):1296, 2002.

[11] A. Burton, HJ Fowler, S. Blenkinsop, and CG Kilsby. Downscaling transient climate
change using a neyman-scott rectangular pulses stochastic rainfall model. Journal of
Hydrology, 381(1-2):18–32, 2010.

[12] X. Cai and M.W. Rosegrant. Irrigation technology choices under hydrologic uncertainty:
A case study from maipo river basin, chile. Water Resources Research, 40(4):W04103,
2004.

89



[13] C.C. Chang and C.J. Lin. Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[14] X. Chen and L. Shu. Stream-aquifer interactions: Evaluation of depletion volume and
residual effects from ground water pumping. Ground Water, 40(3):284–290, 2002.

[15] V.T. Chow, D.R. Maidment, and L.W. Mays. Applied hydrology. 1988.

[16] I.M. Chung, N.W. Kim, J. Lee, and M. Sophocleous. Assessing distributed groundwa-
ter recharge rate using integrated surface water-groundwater modelling: application to
mihocheon watershed, south korea. Hydrogeology Journal, 18(5):1253–1264, 2010.

[17] M. P. Clark, D. E. Rupp, R. A. Woods, H. J. Tromp-van Meerveld, N. E. Peters, and
J. E. Freer. Consistency between hydrological models and field observations: linking
processes at the hillslope scale to hydrological responses at the watershed scale. Hydro-
logical Processes, 23(2):311–319, 2009.

[18] W.D. Collins, C.M. Bitz, M.L. Blackmon, G.B. Bonan, C.S. Bretherton, J.A. Carton,
P. Chang, S.C. Doney, J.J. Hack, and T.B. Henderson. The community climate system
model version 3 (ccsm3). Journal of Climate, 19(11):2122–2143, 2006.

[19] C. Covey, K.M. AchutaRao, U. Cubasch, P. Jones, S.J. Lambert, M.E. Mann, T.J.
Phillips, and K.E. Taylor. An overview of results from the coupled model intercompar-
ison project. Global and Planetary Change, 37(1):103–133, 2003.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. Evolutionary Computation, IEEE Transactions on,
6(2):182–197, 2002.

[21] J. Dudhia, D. Gill, K. Manning, W. Wang, and C. Bruyere. Psu/ncar mesoscale mod-
eling system tutorial class notes and users guide: Mm5 modeling system version 3.
National Center for Atmospheric Research, 2005.

[22] J. Dupacov, G. Consigli, and S.W. Wallace. Scenarios for multistage stochastic pro-
grams. Annals of operations research, 100(1):25–53, 2000.

[23] National Research Council . Committee on Estimating, Communicating Uncertainty in
Weather, Climate Forecasts, National Research Council . Board on Atmospheric Sci-
ences, and National Academies Press. Completing the forecast: characterizing and com-
municating uncertainty for better decisions using weather and climate forecasts. National
Academies Press, 2006. (US).

[24] Jan H. Fleckenstein, Stefan Krause, David M. Hannah, and Fulvio Boano. Groundwater-
surface water interactions: New methods and models to improve understanding of pro-
cesses and dynamics. Advances in Water Resources, 33(11):1291–1295, 2010.

[25] P.W. Gassman, M.R. Reyes, C.H. Green, and J.G. Arnold. The soil and water assess-
ment tool: Historical development, applications, and future research directions. 2007.

[26] MW Gitau, T.L. Veith, and WJ Gburek. Farm-level optimization of bmp placement for
cost-effective pollution reduction. 2004.

90



[27] Pascal Goderniaux, Serge Brouyre, Stephen Blenkinsop, Aidan Burton, Hayley J.
Fowler, Philippe Orban, and Alain Dassargues. Modeling climate change impacts on
groundwater resources using transient stochastic climatic scenarios. Water Resour. Res.,
47(12):W12516, 2011.

[28] G.A. Griffiths and B. Clausen. Streamflow recession in basins with multiple water
storages. Journal of Hydrology, 190(1):60–74, 1997.

[29] N. Hibiki. A hybrid simulation/tree stochastic optimization model for dynamic asset
allocation. Asset and Liability Management Tools: A Handbook for Best Practice, pages
269–294, 2003.

[30] H.S.J. Hill, J.W. Mjelde, H.A. Love, D.J. Rubas, S.W. Fuller, W. Rosenthal, and
G. Hammer. Implications of seasonal climate forecasts on world wheat trade: a stochas-
tic, dynamic analysis. Canadian Journal of Agricultural Economics/Revue canadienne
d’agroeconomie, 52(3):289–312, 2004.

[31] GH Huang and DP Loucks. An inexact two-stage stochastic programming model for
water resources management under uncertainty. CIVIL ENGINEERING SYSTEMS,
17(2):95–118, 2000.

[32] Yanbing Jia and Teresa B. Culver. Robust optimization for total maximum daily load
allocations. Water Resour. Res., 42(2):W02412, 2006.

[33] P. Kaini, K. Artita, and JW Nicklow. Evaluating optimal detention pond locations at
a watershed scale. pages 1–8. ASCE.

[34] P. Kaini, K. Artita, and J.W. Nicklow. Optimizing structural best management practices
using swat and genetic algorithm to improve water quality goals. Water Resources
Management, pages 1–19, 2012.

[35] N.W. Kim, I.M. Chung, Y.S. Won, and J.G. Arnold. Development and application of
the integrated swatmodflow model. Journal of Hydrology, 356(1):1–16, 2008.

[36] R. Laurent and X. Cai. A maximum entropy method for combining aogcms for regional
intra-year climate change assessment. Climatic Change, 82(3):411–435, 2007.

[37] YP Li and GH Huang. Two-stage planning for sustainable water-quality management
under uncertainty. Journal of environmental management, 90(8):2402–2413, 2009.

[38] YP Li, GH Huang, and SL Nie. Water resources management and planning under
uncertainty: an inexact multistage joint-probabilistic programming method. Water
Resources Management, 23(12):2515–2538, 2009.

[39] X.Z. Liang, K.E. Kunkel, G.A. Meehl, R.G. Jones, and J.X.L. Wang. Regional cli-
mate models downscaling analysis of general circulation models present climate biases
propagation into future change projections. Geophysical research letters, 35(8):L08709,
2008.

[40] X.Z. Liang, K.E. Kunkel, and A.N. Samel. Development of a regional climate model
for us midwest applications. part i: Sensitivity to buffer zone treatment. Journal of
Climate, 14(23):4363–4378, 2001.

91



[41] X.Z. Liang, L. Li, K.E. Kunkel, M. Ting, and J.X.L. Wang. Regional climate model sim-
ulation of us precipitation during 1982-2002. part i: Annual cycle. Journal of Climate,
17(18):3510–3529, 2004.

[42] X.Z. Liang, J. Pan, J. Zhu, K.E. Kunkel, J.X.L. Wang, and A. Dai. Regional climate
model downscaling of the us summer climate and future change. J. Geophys. Res,
111:D10108, 2006.

[43] E.T. Maillet. Essais d’hydraulique souterraine et fluviale. A. Hermann, 1905.

[44] G.F. Marques, J.R. Lund, and R.E. Howitt. Modeling irrigated agricultural production
and water use decisions under water supply uncertainty. Water Resources Research,
41(8):W08423, 2005.

[45] J.W. Massman, Washington State Transportation Commission. Planning, Capital Pro-
gram Management, and Washington . Dept. of Transportation. A design manual for
sizing infiltration ponds. Technical report, Washington State Department of Trans-
portation, 2003. (State).

[46] J.M. Mulvey, R.J. Vanderbei, and S.A. Zenios. Robust optimization of large-scale sys-
tems. Operations research, pages 264–281, 1995.

[47] N. Nakicenovic, J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory,
A. Grubler, T.Y. Jung, and T. Kram. Special report on emissions scenarios: a special
report of working group iii of the intergovernmental panel on climate change. Techni-
cal report, Pacific Northwest National Laboratory, Richland, WA (US), Environmental
Molecular Sciences Laboratory (US), 2000.

[48] J.E. Nash and JV Sutcliffe. River flow forecasting through conceptual models part ia
discussion of principles. Journal of Hydrology, 10(3):282–290, 1970.

[49] R.K. Pachauri. Climate Change 2007: Synthesis Report. Contribution of Working
Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, volume 446. IPCC, 2007.

[50] R.N. Palmer, S.L. Kutzing, and A.C. Steinemann. Developing drought triggers and
drought responses: an application in georgia. pages 19–22.

[51] VD Pope, ML Gallani, PR Rowntree, and RA Stratton. The impact of new physical
parametrizations in the hadley centre climate model: Hadam3. Climate Dynamics,
16(2):123–146, 2000.

[52] H. Pranevicius and K. utiene. Scenario tree generation by clustering the simulated data
paths. pages 203–208.

[53] T. Ross, N. Lott, and National Climatic Data Center. A climatology of 1980-2003 ex-
treme weather and climate events. US Department of Commerece, National Ocanic and
Atmospheric Administration, National Environmental Satellite Data and Information
Service, National Climatic Data Center, 2003. (US).

[54] A. Saleh and B. Du. Evaluation of swat and hspf within basins program for the upper
north bosque river watershed in central texas. Transactions of the ASAE, 47(4):1039–
1049, 2004.

92



[55] C. Santhi, JG Arnold, JR Williams, LM Hauck, and WA Dugas. Application of a
watershed model to evaluate management effects on point and nonpoint source pollution.
Transactions of the ASAE, 44(6):1559–1570, 2001.

[56] A.J. Smola and B. Schlkopf. A tutorial on support vector regression. Statistics and
computing, 14(3):199–222, 2004.

[57] M. Sophocleous. On the elusive concept of safe yield and the response of intercon-
nected stream-aquifer systems to development. BULLETIN-KANSAS GEOLOGICAL
SURVEY, pages 61–86, 1998.

[58] M. Sophocleous, A. Koussis, JL Martin, and SP Perkins. Evaluation of simpli-
fied stream-aquifer depletion models for water rights administration. Ground Water,
33(4):579–588, 1995.

[59] M. Sophocleous and S.P. Perkins. Methodology and application of combined watershed
and ground-water models in kansas. Journal of Hydrology, 236(3):185–201, 2000.

[60] C.P. Spalding and R. Khaleel. An evaluation of analytical solutions to estimate draw-
downs and stream depletions by wells. Water Resources Research, 27(4):597–609, 1991.

[61] J. Szilagyi. Streamflow depletion investigations in the republican river basin: Colorado,
nebraska, and kansas. Journal of Environmental Systems, 27(3):251–263, 1999.

[62] J. Szilagyi. Identifying cause of declining flows in the republican river. Journal of water
resources planning and management, 127(4):244–253, 2001.

[63] LM Tallaksen. A review of baseflow recession analysis. Journal of Hydrology, 165(1):349–
370, 1995.

[64] V. Vapnik. Statistical learning theory. 1998, 1998.

[65] WM Washington, JW Weatherly, GA Meehl, AJ Semtner Jr, TW Bettge, AP Craig,
WG Strand Jr, J. Arblaster, VB Wayland, and R. James. Parallel climate model (pcm)
control and transient simulations. Climate Dynamics, 16(10):755–774, 2000.

[66] D.W. Watkins Jr. Finding robust solutions to water resources problems. Journal of
water resources planning and management, 123:49, 1997.

[67] D.W. Watkins Jr, D.C. McKinney, L.S. Lasdon, S.S. Nielsen, and Q.W. Martin. A
scenario-based stochastic programming model for water supplies from the highland lakes.
International Transactions in Operational Research, 7(3):211–230, 2000.

[68] W.J. Werick and W. Whipple Jr. National study of water management during drought:
managing water for drought. Technical report, DTIC Document, 1994.

[69] O. Wilchfort. Shortage management modeling for urban water supply systems. Journal
of water resources planning and management, 123:250, 1997.

[70] D.A. Wilhite. Combating drought through preparedness. volume 26, pages 275–285.
Wiley Online Library.

93



[71] D.A. Wilhite, M.J. Hayes, C. Knutson, and K.H. Smith. Planning for drought: Moving
from crisis to risk management1. JAWRA Journal of the American Water Resources
Association, 36(4):697–710, 2000.

[72] D.A. Wilhite, M.J. Hayes, C. Knutson, and K.H. Smith. Planning for drought: Moving
from crisis to risk management1. JAWRA Journal of the American Water Resources
Association, 36(4):697–710, 2000.

[73] T.C. Winter. Ground water and surface water: a single resource. DIANE Publishing,
1999.

[74] H. Wittenberg. Baseflow recession and recharge as nonlinear storage processes. Hydro-
logical Processes, 13(5):715–726, 1999.

[75] H. Wittenberg. Baseflow recession and recharge as nonlinear storage processes. Hydro-
logical Processes, 13(5):715–726, 1999.

[76] Z. Yi, P.A. Heng, and A.W.C. Fu. Estimate of exponential convergence rate and
exponential stability for neural networks. Neural Networks, IEEE Transactions on,
10(6):1487–1493, 1999.

[77] L.Y. Yu, X.D. Ji, and S.Y. Wang. Stochastic programming models in financial opti-
mization: A survey. 2003.

94


