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Abstract

We study problems in extremal combinatorics with respect to forbidden induced subgraphs,

forbidden colored subgraphs, and forbidden subgraphs. In Chapter 2, we determine exactly

which graphs H have the property that almost every H-free graph has a vertex partition

into k cliques and independent sets and provide a characterization. Such graphs contain

homogeneous sets of size linear in the number of vertices, and so this result provides a

strong partial result toward proving the Erdős-Hajnal conjecture.

In Chapter 3, we study a Ramsey-type game in an online and random setting. The

player must color edges of Kn in an order chosen uniformly at random, and loses when she

has created a monochromatic triangle. We provide upper bounds on the threshold for the

number of edges the player is almost surely able to paint before losing in the k-color game.

When k > 2, these upper bounds provide the first separation from the offline threshold.

In Chapter 4, we consider the family of 3-uniform hypergraphs that do not contain a

copy of F5, sometimes called the generalized triangle. We extend known extremal results to

the sparse random setting, proving that with probability tending to 1 the largest subgraph

of the random 3-uniform hypergraph that does not contain F5 is tripartite.

ii



Dedicated to Camellia Sinensis, without which none of this would have been possible.
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Chapter 1

Introduction

Graph theory is a comparatively young and extremely active branch of mathematics. Ex-

tremal graph theory is one area that has recently been recognized globally, with Endre

Szemerédi being named as the 2012 Abel Prize recipient. A well-studied example of a ques-

tion in extremal graph theory is what is the maximum number of edges a graph on n vertices

can have without containing a copy of some fixed graph H? Denote this number by ex(n,H),

called the Turán number of H.

In this thesis we present results in three areas of extremal graph theory, all of which

consider the structure of graphs (or hypergraphs) that do not contain some fixed structure.

An r-uniform hypergraph is a hypergraph whose edges are all sets of size r. For an r-

uniform hypergraph H, we let Forb(n,H) denote the family of r-uniform hypergraphs on n

vertices that do not contain H. Notice that ex(n,H) is therefore equal to max{|E(G)| : G ∈

Forb(n,H)}. Many other characteristics of Forb(n,H) have been studied, such as its size

or the typical structure of its members.

In the 1990s, attention shifted to an induced version of Forb(n,H). Call a graph H-free

if it does not contain an induced copy of H as a subgraph. A homogenous set is a set of

vertices in V (G) that is either an independent set or a clique. There are many interesting

questions to be asked about the family of H-free graphs. For example, Erdős and Hajnal [34]

conjectured that for any graph H every H-free graph must contain a large homogeneous set.

In Chapter 2 we present results related to this conjecture, which are also of independent

interest.

We can also consider a colored version of Forb(n,H). For a fixed graph H, we say

1



that G → H if any 2-coloring of the edges of G produces a monochromatic copy of H as a

subgraph. The classical problem in Ramsey theory seeks to determine for a fixed graph H

which graphs G have the property that G → H. More generally, for an integer k we say

that G
k→ H if any k-coloring of the edges of G contains a monochromatic copy of H. This

parameter can be considered in a game setting: one player, Builder, presents a graph G and

the other player, Painter, must k-color the edges of G. If Painter creates a monochromatic

copy of H, then Painter loses. This game is rather simple, since Builder need only find some

G for which G
k→ H in order to guarantee a win; in Chapter 3 we consider a more interesting

variation.

An important recent trend in combinatorics is the study of sparse versions of classical

problems. Following this trend, we can consider a sparse notion of Forb(n,H). That is, think

of Forb(n,H) as the set of all subgraphs of Kn (or more generally the complete r-uniform

hypergraph on n vertices) that do not containH. Instead ofKn, consider a random r-uniform

hypergraph Gr(n, p), in which each r-set of [n] is included as an edge with probability p. In

Chapter 4 we consider the structure of subgraphs of Gr(n, p) that do not contain some fixed

hypergraph H.

1.1 Excluding Induced Subgraphs

For a graph G and a set of vertices S, let G[S] denote the subgraph of G that has vertex set

S and contains exactly those edges of G whose endpoints both lie in S. We say that H is

an induced subgraph of G if there is some S ⊆ V (G) for which G[S] is isomorphic to H; if

H is not an induced subgraph of G, then we say that G is H-free.

Several different choices of notation have been used to denote the family of H-free graphs

and the family of graphs that do not contain H as a subgraph. Unfortunately, some notation

has been used by different authors to refer to both families. Prömel and Steger [64], [62]

used Forbn(H) to denote the family of graphs on n vertices that do not contain H as a
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subgraph, and Forb∗n(H) to denote the family of H-free graphs on n vertices. Loebl, Reed,

Scott, Thomason, and Thomassé [54] use Forb(H)n for the latter family and do not consider

the former. Kang, McDiarmid, Reed, and Scott [48] follow the notation of [54]. Because

we will discuss both families frequently, we will roughly follow the convention of Prömel

and Steger [64], [62], but while avoiding unnecessary subscripts. For a fixed r-uniform

hypergraph H, let Forb(n,H) denote the set of r-uniform hypergraphs with n vertices that

do not contain H as a subgraph and let Forb(H) be the union of Forb(n,H) over all n.

Let Forb∗(n,H) denote the set of r-uniform H-free hypergraphs with n vertices and let

Forb∗(H) be the union of Forb∗(n,H) over all n.

A homogeneous set is a set of vertices forming either an independent set or a clique. We

say that a family F of graphs has the Erdős-Hajnal property if there exists ε depending only

on F such that every graph G in F contains a homogeneous set of size at least |V (G)|ε. In

1989, Erdős and Hajnal [34] made the following famous conjecture.

Conjecture 1.1.1 (Erdős-Hajnal Conjecture). For any graph H, the family Forb∗(H) has

the Erdős-Hajnal property.

This conjecture is in general still open. Erdős and Hajnal [34] proved their conjecture

when H is obtained recursively from K1 by a series of disjoint unions and edge complemen-

tations. Alon, Pach, and Solymosi [4] considered a different graph operation: suppose G

has k vertices and suppose that H1, . . . , Hk are graphs such that Forb∗(G) and Forb∗(Hi)

for 1 ≤ i ≤ k all have the Erdős-Hajnal property. Let G′ be the graph with vertex set

V1 ∪ · · · ∪ Vk and edge set
⋃
ij∈E(G)(Vi × Vj). Alon, Pach, and Solymosi [4] proved that

Forb∗(G′) also has the Erdős-Hajnal property.

If G is a graph with n vertices and chromatic number at most k, then G must contain

an independent set of size at least n/k. In particular, if n is large, k is a constant, and every

graph in a family F has chromatic number at most k, then F has the Erdős-Hajnal property.

Prömel and Steger [64], proved that if χ(H) = k+ 1 then almost every graph in Forb(n,H)
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is k-colorable if and only if there is some edge e in H whose removal reduces the chromatic

number. In other words, H contains a critical edge. This result implies that if H contains

such an edge then Forb(n,H) “almost” has the Erdős-Hajnal property. Specifically, there is

a subfamily Q′(n,H) ⊆ Forb(n,H) such that Q′(n,H) has the Erdős-Hajnal property and

limn→∞
|Forb(n,H)|
|Q′(n,H)| = 1.

Recently Loebl, Reed, Scott, Thomason, and Thomassé [54] proved a more general result

for the family Forb∗(n,H): for every H there exists a subfamily Q′(n,H) of Forb∗(n,H)

such that Q′(n,H) has the Erdős-Hajnal property and limn→∞
|Forb∗(n,H)|
|Q′(n,H)| = 1. We say then

that Forb∗(n,H) has the asymptotic Erdős-Hajnal property. For a certain class of graphs

considered in Chapter 2, the result of [54] follows from our main theorem, Theorem 2.1.10.

Our theorem is analogous to the critical edge result of Prömel and Steger [64], but concerns

induced subgraphs.

Just as the chromatic number of H was key to the result of Prömel and Steger [64],

an analogous parameter, binary chromatic number of H, is key to ours. Whereas small

chromatic number implies the existence of a large independent set, small binary chromatic

number implies the existence of a large homogeneous set. We will define and discuss this

parameter in Chapter 2. We let Q(n,H) denote the family of graphs on n vertices that are

H-free and can be covered by a certain number of homogeneous sets (this definition will be

made precise later) and then ask for which H almost every H-free graph lies in Q(n,H).

We characterize the class of graphs H for which this holds and call them “critical” graphs.

Every graph in Q(n,H) has the Erdős-Hajnal property, and so when H is a critical graph

our theorem implies the [54] result. It in fact implies a stronger result, which is that almost

every graph in Forb∗(n,H) contains a homogeneous set of linear size. Loebl, Reed, Scott,

Thomason, and Thomassé [54] suggested that it would be interesting to determine for which

graphs H the family Forb∗(n,H) has this stronger property.

Let us say that a graph family has the linear Erdős-Hajnal property if every member of

the family contains a homogeneous set of linear size. Say that a graph family F has the
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asymptotic linear Erdős-Hajnal property if there is a subfamily F ′ having the linear Erdős-

Hajnal property for which the following is true. Let Fn be the family of n-vertex graphs in

F and let F ′n be the family of n-vertex graphs in F ′; then |Fn|/|F ′n| → 1 as n→∞. Kang,

McDiarmid, Reed, and Scott [48] proved that for almost every graph H it is the case that

Forb∗(n,H) has the asymptotic linear Erdős-Hajnal property.

1.2 Online Ramsey Games in Random Graphs

In classical Ramsey theory we are given a target graph F and seek a host graph H such that

any k-coloring of the edges of H results in a monochromatic copy of F . In such a case we

say that H
k→ F . Ramsey’s Theorem [67] states that for any graph F and integer k there

exists such a graph. The Ramsey number of a graph, R(F ), is the least n such that there

exists a graph H having n vertices for which H → F .

The number of vertices in a host graph H is not the only interesting parameter to

consider. For example, let ∆(H) denote the maximum degree of the graph H. The degree

Ramsey number of a graph F , denoted R∆(F ; k), is the least D such that there exists a

graph H for which ∆(H) ≤ D and H
k→ F . The degree Ramsey number is known for Kn

and K1,n [26], for the double-star [50], and for cycles and blowups of trees [47].

The classical Ramsey theory problem can be viewed as a two-player game in which one

player, Builder, presents a graph H to the second player, Painter, who must then provide

a k-coloring of the edges of H. If the resulting coloring contains a monochromatic copy

of the target graph, F , then Painter has lost. This game is not particularly interesting: if

n = R(F ; k), then obviously Kn
k→ F .

Many classical two-player games are famously intractable to analyze, notable examples

being Chess and Go. Such games involve so many cases that analysis is difficult, a character-

istic that Beck [19] calls “Combinatorial Chaos”. Traditional game theory studies games of

incomplete information: for example, in the Prisoner’s Dilemma neither participant knows
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what choice the other has made. In games of complete information, each player knows what

moves the other player has made at that stage of the game. Tic-tac-toe is an example of a

game with complete information. Of course, the players do not know each other’s strategies.

Beck [19] defines a Combinatorial Game to be a 2-player zero-sum game of skill (no chance

moves) with complete information such that the game can end only in one of three possible

states for each player: win, draw, lose.

In 1963, Hales and Jewett [45] considered a class of combinatorial games that they called

positional games. A positional game is played with a set of elements and a family of subsets

of these elements. The two players take turns claiming elements, and whoever first claims

all elements of a subset from the family wins. The well-known game tic-tac-toe is one

such positional game: the elements are the squares of a 3 × 3 grid, and the family is the

collection of all lines that intersect 3 squares. Hales and Jewett [45] studied generalizations

of “tick-tack-toe”1, but since then many other positional games have been studied.

If we let the game board be the edges (or vertices) of a graph, then many positional

games arise naturally from graph parameters. For example, the winning family could be

the set of all graphs with minimum degree at least d, the set of all 2-connected spanning

graphs, or the set of all spanning trees. If the board is the set of vertices of a graph, then the

winning family could be the set of all large independent sets, all large cliques, or all induced

graphs with girth exactly 4. If the game board is N, then the winning family could be the

set of all arithmetic progressions of length at least 3.

In 1973, Erdős and Selfridge [38] mentioned a positional game they called the Ramsey

game, in which two players take turns claiming edges of Kn and whoever first claims all edges

of a k-clique wins. This game is different from the Builder/Painter Ramsey game above;

in the Erdős-Selfridge [38] game, each of the two players is in some sense both a builder

1Also known as “noughts and crosses” in the UK. Littell’s Living Age, in 1864, refers to a game called
“noughts and crosses” or “tit-tat-to”, but this may have been a different game. The term “tick-tack-toe”
dates from 1884 [60]. In modern American English it is also spelled “tic-tac-toe” [32]. In this work we will
respect the spelling choices of the authors in question.
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and a painter, and each of them wishes to create a monochromatic copy of a fixed target

graph. Many other positional games have been studied, including Maker/Breaker games

and Avoider/Enforcer games. See Beck’s book Combinatorial Games: Tic-Tac-Toe [19] for

a fairly recent overview of the field. Beck also applies probabilistic methods to bridge the

gap between Ramsey theory and Random graphs, via positional games.

The positional games described above are more interesting than the Builder/Painter game

because the players take turns making moves and can therefore respond to each other’s deci-

sions in an “online” fashion. We too can consider an “online” version of our Builder/Painter

game. In this game, Builder presents edges of a graph one by one, and Painter colors each

as it is presented with one of k colors. Painter loses when she has created a monochromatic

copy of F . To keep Builder from winning too easily, we will require him to play in a family H

of graphs to which his underlying graph must belong. For a fixed graph F and fixed family

H, we call this the k-color online Ramsey game (F,H). This model was introduced by Beck

[18] and was further explored by Grytczuk, Ha luszczak, and Kierstead [44]. For example, H

could be the family of graphs with maximum degree D. Every parameter Ramsey number

has an online analogue; Butterfield, Grauman, Kinnersley, Milans, Stocker, and West [28]

studied the online degree Ramsey number of trees and cycles.

Rather than making our Builder/Painter game into an online game, we could replace

Builder with a random opponent. That is, for fixed n and some M ≤
(
n
2

)
, Builder chooses

randomly a graph on n vertices that has M edges. If Painter can k-color the resulting graph

without producing a monochromatic copy of F , then she wins. If n is large relative to |V (F )|,

then classical Ramsey theory implies that Painter will lose the game for large enough M .

The threshold for the number of edges, M , for which there is almost surely k-coloring of

G(n,M) with no monochromatic copy of F is known (see for example [55], [68], [69]). This

threshold is n
2− 1

m2(F ) , where m2(F ) = maxG⊆F
e(G)−1
v(G)−2

. When the target graph is K3, this

threshold is n3/2.

In Chapter 3 we will consider an online version of the random game. It is related to the
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online Ramsey game (F,Hd), where Hd is the set of all graphs G that have no subgraph

G for which |E(G)|/|V (G)| > d. In the k-color online F -avoidance edge-coloring game, a

graph on n vertices is generated by at each stage randomly adding a new edge. Painter must

irrevocably color each new edge as it appears while trying to avoid a monochromatic copy

of F . Let N0(F, k, n) be the threshold for the number of edges that Painter is almost surely

able to paint before she loses; this number is known to exist for all F , k, n [57]. The random

game described above is the offline version of this game, and Painter can do no better in

the online game than in the offline game. Even when the target graph is K3, the order of

magnitude for N0(K3, k, n) is unknown for k ≥ 3.

Prior to the results in Chapter 3, the only known upper bound on N0(K3, k, n) when

k ≥ 3 was from the offline threshold. We provide the first separation from this upper bound,

proving that

N0(K3, k, n) ≤ n
3
2
−ck for some cfk > 0

N0(K3, 3, n) ≤ n
3
2
− 1

42 .

Our result supports a conjecture of Marciniszyn, Spöhel, and Steger [58] that N0(K3, k, n) =

n
3
2(1− 1

3k
).

1.3 Extremal subgraphs of G3(n, p)

The earliest result in the area of extremal graph theory is Mantel’s Theorem [56], from 1907,

which states that any K3-free graph on n vertices has at most bn2/4c edges. The complete

bipartite graph whose partite sets differ in size by at most one is the K3-free graph that

achieves this bound. In fact, Erdős-Kleitman-Rosthchild [36] proved in 1975 that almost all

K3-free graphs are bipartite.

The Turán graph Tk(n) is the complete k-partite graph whose part sizes differ by at most

1. Turán’s Theorem states that among all Kk+1-free graphs on n vertices, the Turán graph

has the most edges. Mantel’s Theorem can be seen as a special case of Turán’s theorem.
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One of the most important developments in combinatorics over the past twenty years has

been the study of “sparse random” analogues of various classical extremal results. This study

was begun by Babai, Simonovits, and Spencer [8] for graphs and by Kohayakawa,  Luczak,

and Rödl [51] for additive structures. Recent breakthroughs by Conlon and Gowers [30] and

by Schacht [71] develop a general theory for attacking these problems. It is now known that

many classical theorems, such as Turán’s Theorem [77], the Erdős-Stone Theorem [39], and

Szemerédi’s Theorem [75] about arithmetic progressions have extensions for sparse random

structures. The online Ramsey game described above is another translation of a classical

problem into a sparse setting.

Szemerédi [75] proved that for any ε > 0 and any integer k there exists an integer

N = N(ε, k) such that if n ≥ N , then every set of at least εn integers from {1, . . . , n} must

contain an arithmetic progression of length k. Conlon and Gowers [30] and Schacht [71]

proved that this result extends to sparse random sets with density asymptotically greater

than n−1/(k−1) but not to those with density asymptotically less than n−1/(k−1).

Schur’s Theorem [73] states that for any integer k there exists an integer N such that if

n ≥ N , then any k-coloring of [n] contains a monochromatic solution to x+ y = z. A sparse

analogue of Schur’s theorem was proven in 1996 by Graham, Rödl, and Ruciński [43], but

the extremal version was open for another 15 years before being resolved [30], [71]. Balogh,

Morris, and Samotij [17] sharpened this result by characterizing the structure of the largest

sum-free subsets of a random subset of an abelian group.

Recall that almost all triangle-free graphs are bipartite [36]. Osthus, Prömel and Taraz [61]

proved a sparse version of this result, proving that if m ≥ (
√

3/4+ε)n3/2
√

log n, then almost

all triangle-free graphs with n vertices and m edges are bipartite. It is natural to consider

a sparse version of Mantel’s Theorem, and in order to do so we will first rephrase Mantel’s

Theorem. For a fixed graph G, let B(G) be a bipartite subgraph of G having the most

edges of any bipartite subgraph. Let F (G) be a K3-free subgraph of G that has the most

edges of any K3-free subgraph. Because every bipartite graph is K3-free, it is obvious that
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|E(B(G))| ≤ |E(F (G))| for any G. Using this notation, Mantel’s Theorem says that B(Kn)

and F (Kn) have the same number of edges.

In the sparse version of this problem, rather than considering extremal subgraphs of Kn

we will consider extremal subgraphs of a random graph. Babai, Simonovits, and Spencer [8]

considered this sparse version. We will follow the definitions of Alon and Spencer [5] regard-

ing random graphs. For a positive integer n and some p in the interval [0, 1], the random

graph G(n, p) is a probability space over the set of graphs with vertex set {1, . . . , n} deter-

mined by

P[{i, j} ∈ E(G)] = p,

with these events being mutually independent. Although it is, strictly speaking, a misnomer,

it is common to refer to “the random graph” and to refer to G(n, p) as a graph. For a fixed

graph H with chromatic number 3 and any graph G let F (G;H) be a largest (with respect

to number of edges) subgraph of G that does not contain H. Babai, Simonovits, and

Spencer [8] proved that with probability approaching 1 as n approaches infinity, B(G(n, p))

and F (G(n, p);H) have almost the same number of edges. They also proved that if H is K3,

then F (G(n, 1/2);H) is almost surely bipartite.

Brightwell, Panagiotou, and Steger [25] proved the existence of a constant c, depending

only on `, such that whenever p ≥ n−c, almost surely every maximum K`-free subgraph of

G(n, p) is (` − 1)-partite [25]. Kahn and DeMarco [31] recently solved the sparse problem

for K3, proving that B(G(n, p)) and F (G(n, p);K3) almost surely have the same number of

edges if p > Cn−1/2 log1/2(n), for some suitable constant C. Moreover, this threshold on p

is best possible up to the choice of C.

In Chapter 4 we consider a hypergraph version of this problem. We say that a hypergraph

is k-partite if its vertex set can be partitioned into k sets such that every edge in the hyper-

graph contains at most one vertex from each set. The Turán graph then naturally extends

to hypergraphs; let T rk (n) be the complete n-vertex r-uniform k-partite hypergraph with
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partite sets as equally-sized as possible. We will consider a random r-uniform hypergraph,

Gr(n, p), which is a hypergraph formed by including each element of
(

[n]
r

)
with probability p.

For a fixed r-uniform hypergraph H, let F be a subgraph of Gr(n, p) that contains the most

edges among all subgraphs that do not contain H. The natural question is “is F k-partite?”

In Chapter 4, we consider this question when H is a particular 3-uniform hypergraph,

F5, sometimes called the generalized triangle. We prove that for appropriately chosen p the

largest subgraph of G3(n, p) that does not contain F5 is almost surely 3-partite.

1.4 Background material

This section provides some basic terms and definitions. For a positive integer n, let [n]

denote the set {1, . . . , n}.

1.4.1 Graphs

A graph G consists of a set V (G) of vertices and a set E(G) of unordered pairs from V (G),

called edges. Sometimes we will let v(G) = |V (G)| and e(G) = |E(G)|. If {x, y} is an edge

then we say that x and y are adjacent, that x is incident to the edge {x, y}, and that x and

y are the endpoints of the edge {x, y}. We will often denote the edge {x, y} by xy. If V1

and V2 are disjoint sets of vertices then we let EG(V1, V2) denote the set of edges of G with

one endpoint in V1 and one endpoint in V2. If G is understood we will omit the subscript.

Sometimes we will let e(V1, V2) = |E(V1, V2)|.

A graph H is said to be a subgraph of a graph G if there exists an injection f : V (H)→

V (G) such that if xy ∈ E(H) then f(x)f(y) ∈ E(G). If H is a subgraph of G, then we

write H ⊆ G. If in fact xy ∈ E(H) if and only if f(x)f(y) ∈ E(G) then H is an induced

subgraph of G. For example, if H has n vertices then H is a subgraph of Km whenever

m ≥ n, but H is an induced subgraph of Km only if H is a complete graph. For a set of

vertices S ⊆ V (G), let G[S] be the subgraph of G whose vertex set is S and whose edge set
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is {xy : xy ∈ E(G) and {x, y} ⊆ S}. We call G[S] the subgraph induced by S.

An isomorphism from a graph G to a graph G′ is a bijection f : V (G) → V (G′) such

that xy ∈ E(G) if and only if f(x)f(y) ∈ E(G′). We say that two graphs are isomorphic if

there exists a bijection from one to the other. For example, H is an induced subgraph of G

if and only if H is isomorphic to G[S] for some S ⊆ V (G). Isomorphism therefore defines an

equivalence relation between graphs; we will often use the same notation for a graph and its

isomorphism class. For an isomorphism class H, we say that H is a subgraph of G if there

exists some H ′ in H such that H ′ ⊆ G.

A path is a graph whose vertices can be labelled x1, . . . , x` such that xixi+1 is an edge

for every i ∈ [` − 1]. We say that two vertices x and y are connected if there exists a path

that starts at x and ends at y. We say that a graph is connected if every pair of vertices in

the graph is connected. The components of a graph are its maximally connected subgraphs.

The graph that has n vertices, every pair of which form an edge, is the complete graph,

denoted Kn. The graph that has n vertices, no two of which are adjacent, is the empty

graph. If G is neither complete nor empty, then we say that G is nontrivial. The following

are some nontrivial graphs that are frequently referred to in this thesis.

Definition 1.4.1. A cycle is a graph whose vertices can be labelled x1, . . . , xn (for some

n) so that its edge set is {x1, x2}, {x2, x3}, . . . , {xn−1, xn} and {xn, x1}. Let Cn denote the

isomorphism class of n-vertex cycles. Notice that if n = 3 then the complete graph and the

cycle are the same graph, which we will often call a triangle.

Definition 1.4.2. A complete bipartite graph is a graph whose vertices can be partitioned

into 2 sets, called partite sets, such that x and y are adjacent if and only if they are not

contained in the same set. Let Ks,t denote the isomorphism class of complete bipartite

graphs whose partite sets have size s and t.

Definition 1.4.3. A complete k-partite graph is a graph whose vertices can be partitioned

into k sets such that x and y are adjacent if and only if they are not contained in the same
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set. Let Ks1,...,sk denote the isomorphism class of complete k-partite graphs whose sets have

size s1, . . . , sk.

The degree of a vertex x, denoted d(x), is the number of edges to which x is incident.

The set of vertices adjacent to x is the neighborhood of x, denoted N(x). Note that always

d(x) = |N(x)| under our definition of a graph. The degree of a vertex gives rise to a graph

parameter:

Definition 1.4.4. The minimum degree of a graph G, written δ(G), is min{d(v) : v ∈

V (G)}. The maximum degree of a graph G, written ∆(G), is max{d(v) : v ∈ V (G)}.

If a graph G contains no cycle as a subgraph then G is a forest. If in addition G is

connected, then G is a tree. Notice that the components of a forest are trees. Every tree

with n vertices has exactly n − 1 edges. A vertex of degree 1 is called a leaf, and the edge

to which a leaf is incident is called a pendant edge.

In this thesis we frequently consider the family of graphs that do not contain some fixed

H as a subgraph. We also frequently consider the family of graphs that do not contain some

fixed H as an induced subgraph, also known as the family of H-free graphs.

Definition 1.4.5. For a fixed graph H and an integer n, let Forb(n,H) denote the family of

graphs on n vertices that do not contain H as a subgraph. Let Forb(H) =
∞⋃
n=1

Forb(n,H).

For a fixed graph H and an integer n, let Forb∗(n,H) denote the family of graphs on n

vertices that do not contain H as an induced subgraph. Let Forb∗(H) =
∞⋃
n=1

Forb∗(n,H).

The Turán number of a graph H, denoted ex(n,H), is the maximum number of edges a

graph on n vertices can contain without containing H as a subgraph. In other words,

ex(n,H) = max{|E(G)| : G ∈ Forb(n,H)}.

Definition 1.4.6. A set S of vertices is independent in G if G[S] is empty. A set S of

vertices is a clique in G if G[S] is complete. A set of vertices is homogeneous in G if it is
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either an independent set or a clique.

Both independent sets and cliques give rise to graph parameters:

Definition 1.4.7. The independence number of a graph G, denoted α(G), is the size of the

largest independent set in G. The clique number of a graph G, denoted ω(G), is the size of

the largest clique in G.

Suppose V (G) can be partitioned into two independent sets, V1 and V2. Such a graph

is called bipartite, and we call the two independent sets partite sets of G. Notice that there

could be multiple ways in which to partition V (G) into two independent sets. A complete

bipartite graph, defined above, is of course bipartite. More generally, suppose that the vertex

set of G admits a partition into k sets V1, . . . , Vk such that Vi is independent for each i ∈ [k].

To put it another way, suppose there is a function f : V (G) → [k] such that if xy ∈ E(G)

then f(x) 6= f(y). Such a function is a proper k-coloring of the vertices of G, and when such

a coloring exists G is k-colorable. A complete k-partite graph, defined above, is k-colorable.

It is natural to wonder for what values of k a given graph is k-colorable.

Definition 1.4.8. The chromatic number of G, denoted χ(G), is the least k such that there

exists a proper k-coloring of the vertices of G.

Note that the chromatic number of any graph G is at least |V (G)|/α(G).

Edges can also be colored; an edge coloring of G is proper if no two incident edges have

the same color. For a fixed graph H, we say that G→ H if every 2-coloring of the edges of

G contains a monochromatic copy of H as a subgraph. More generally, for an integer k we

say that G
k→ H if any k-coloring of the edges of G contains a monochromatic copy of H.

Note that G
1→ H is equivalent to H ⊆ G. By Ramsey’s Theorem, for every graph H and

integer k there exists n such that Kn
k→ H.

Recall that eG(V1, V2) is the number of edges of G that connect vertices in V1 to vertices

in V2. Of course, eG(V1, V2) is at most |V1||V2| for any G.
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Definition 1.4.9. If V1, V2 are disjoint vertex sets in G, then the edge density of a pair of

disjoint vertex sets, written d(V1, V2), is defined by

d(V1, V2) =
e(V1, V2)

|V1||V2|
.

For a graph G, let m2(G) = maxF⊆G
e(F )−1
v(F )−2

. We say that a graph G is strictly 2-balanced

if e(G), v(G) ≥ 3 and e(F )−1
v(F )−2

< e(G)−1
v(G)−2

for every proper subgraph F of G. Cycles and complete

graphs with at least three vertices are strictly 2-balanced.

The following graph operations will frequently be used to obtain a new graph from an

existing graph. If G is a graph and e is an edge of the graph, then G− e is the graph with

vertex set V (G) and edge set E(G) \ {e}. The complement of the graph G, denoted G, has

vertex set V (G) and edge set {uv : u 6= v and uv /∈ E(G)}.

1.4.2 Hypergraphs

Recall that a graph consists of a vertex set and a collection of pairs of vertices called edges.

We can generalize this idea by not requiring edges to have exactly two vertices.

Definition 1.4.10. A hypergraph H consists of a set V (H) of vertices and a set E(H) of

subsets of V (H), called edges. An r-uniform hypergraph is a hypergraph in which every

edge consists of exactly r vertices.

A graph is then a 2-uniform hypergraph. Many graph parameters have natural extensions

to hypergraphs. We list some below.

Definition 1.4.11. The degree of a vertex, written d(x), is the number of edges containing

x. The minimum degree of a hypergraph, δ(H), is min{d(x) : x ∈ V (H)}, and the maximum

degree of a hypergraph, ∆(H), is max{d(x) : x ∈ V (H)}. The co-degree of a pair of vertices

x and y is the number of edges containing {x, y}. A vertex coloring f : V (H)→ [k] is proper

if no edge of H is monochromatic. A set of vertices, S, is independent if no edge of H is
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contained in S and is strongly independent if no edge of H contains more than one vertex of

S. A hypergraph is k-partite if its vertex set can be partitioned into k strongly independent

sets.

A complete r-uniform hypergraph H has edge set {S ⊆ V (H) : |S| = r}. A complete

r-uniform k-partite hypergraph is a hypergraph whose vertex set can be partitioned into k

sets V1, . . . , Vk such that {x1, . . . , xr} is an edge if and only if i 6= j implies that xi and xj

are in different sets. Notice that V` is strongly independent for every 1 ≤ ` ≤ k.

The family Forb(n,H) also has a hypergraph extension.

Definition 1.4.12. A hypergraphH is a subgraph ofG if there exists an injection f : V (H)→

V (G) such that whenever {v1, . . . , vi} is an edge of H the set {f(v1), . . . , f(vi)} is an edge of

G. If H is an r-uniform hypergraph, then Forb(n,H) is the family of all n-vertex r-uniform

hypergraphs that do not contain H as a subgraph and Forb(H) =
⋃∞
n=1 Forb(n,H).

If H is r-uniform and F is r′-uniform, where r 6= r′, then H cannot be a subgraph of F . If

H is not k-partite, then H is not a subgraph of a complete r-uniform k-partite hypergraph.

This brings us to the hypergraph extension of the Turán graph:

Definition 1.4.13. The Turán hypergraph, written T rk (n), is the r-uniform k-partite hyper-

graph on n vertices whose vertex set be partitioned into k independent sets, V1, . . . , Vk, such

that every r-set with at most one vertex in each Vi is an edge and such that |V1| ≤ |V2| ≤

· · · ≤ |Vk| ≤ |V1|+ 1.

1.4.3 Asymptotics

In a paper published in 1960, Erdős and Rényi [37] introduced the notion of a random graph.

For integers n and M , they let G(n,M) be a probability space over the set of graphs that have

n vertices and M edges, with each graph being equally likely. We will also consider a different

model for generating random graphs, following the definitions of Alon and Spencer [5].
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Definition 1.4.14. For a positive integer n and some p in the interval [0, 1], G(n, p) is a

probability space over the set of graphs with vertex set [n] determined by

P[{i, j} ∈ E(G)] = p,

with these events being mutually independent.

Although G(n, p) is a probability space, it is common to refer to G(n, p) as a graph. We

will often abuse notation and say, for example, that G(n, p) has a certain property when in

fact we mean that the probability that a graph in G(n, p) has that property is equal to 1.

Note that in the Erdős-Rényi model G(n,M), the constant M is always an integer, whereas

p is always in the interval [0, 1], and so the notation is not ambiguous.

For an integer r with r ≥ 2 and some real number p in the interval [0, 1] we can also con-

sider a random r-uniform hypgraph, Gr(n, p). This model is similar to the above model, with

each r-set of vertices included as an edge independently with probability p. The expected

number of edges in Gr(n, p) is p
(
n
r

)
, and G2(n, p) = G(n, p).

If f(n) and g(n) are functions of n, then we say that f(n)� g(n) if limn→∞
f(n)
g(n)

= 0. If

f(n)� n, then we write f(n) = o(n).

An event holds almost surely if, over a sequence of sets, the probability of the event

holding converges to 1.2 For example, if A is a family of graphs then we say that G(n, p) is

almost surely in A if limn→∞ P[G(n, p) ∈ A] = 1.

A graph property is a family of graphs that is closed under isomorphism. For example, “H

is a subgraph” and “H is an induced subgraph” are graph properties. Erdős and Rényi [37]

observed that many natural graph properties are true for a very narrow range of p (where p

depends on n). They made the following definition.

Definition 1.4.15. For a graph property P , t(n) is called a threshold function for P if

2It should be noted that “almost surely” is often defined to mean “with probability 1”, while what we
are calling “almost surely” is often called “asymptotically almost surely”.
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1. When p(n)� t(n), limn→∞ P[G(n, p) ∈ P ] = 0,

2. When p(n)� t(n), limn→∞ P[G(n, p) ∈ P ] = 1,

or vice versa.

Suppose that P (n) and Q(n) are two properties of graphs on n vertices, and so P (n)

and Q(n) are families of n-vertex graphs. Then we say that almost every graph in P (n) has

property Q(n) if

lim
n→∞

|Q(n)|
|P (n)|

= 1.

If a graph property is closed under the operation of taking subgraphs, then we call it a

hereditary graph property. Note that “H is a subgraph” is a hereditary property, but “H is

an induced subgraph” is not. To see this, consider that K4 contains no induced copy of C4.
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Chapter 2

Excluding Induced Subgraphs:
Critical Graphs

The structure and enumeration of graphs not containing a fixed subgraph H have been well-

studied for many choices of H. In the 1990s, Prömel and Steger proved that for a graph

H with chromatic number k + 1, almost all graphs not containing H as a subgraph are k-

colorable if and only if H contains a color-critical edge. We consider the analogous problem

with induced subgraph containment, proving that if H has binary chromatic number k + 1

then almost all H-free graphs can be covered by k graphs that are cliques or independent

sets if and only if H is in some well-defined sense critical.1 The family of critical graphs

includes C4 and C2k+1 for k ≥ 3.

2.1 Introduction

2.1.1 Definitions and motivation

It is obvious that if G ∈ Forb(n,H), then every subgraph of G is also in Forb(n,H), and

so |Forb(n,H)| ≥ 2ex(n,H). Being H-free (that is, containing no induced copy of H) is not

closed under the operation of taking subgraphs, however. Also, if χ(H) = k + 1 then every

k-colorable graph on n vertices is in Forb(n,H), but not necessarily in Forb∗(n,H).

Erdős, Kleitman, and Rothschild [35] proved that almost all K3-free graphs are bipartite,

and that if k > 3 then the number of K`+1-free graphs on n vertices is approximated by

2ex(n,K`+1). Kolaitis, Prömel and Rothschild [53] also studied K`-free graphs, proving that

almost all K`+1-free graphs are `-colorable.

1This work appeared in Random Structures & Algorithms in 2011 [14].
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Erdős, Frankl, and Rödl [33] partially proved a conjecture of Erdős by proving that if H

contains a cycle and χ(H) > 2, then |Forb(n,H)| = 2(1+o(1))ex(n,H). It remains open whether

this is true when H is bipartite. It is much more difficult to determine the structure of graphs

in Forb(n,H) or Forb∗(n,H). For example, although Erdős, Kleitman, and Rothschild [35]

proved that almost all K3-free graphs are bipartite, there are many bipartite graphs that are

not subgraphs of the extremal graph Kn/2,n/2. Much work has been done to characterize for

a fixed graph H the structure of graphs that do not contain H as a subgraph [64] or as an

induced subgraph [11], [23], and [65].

Prömel and Steger [66], Alekseev [2], and Bollobás and Thomason [24] defined the pa-

rameter in Definition 2.1.1, which will be important in what follows.

Definition 2.1.1. A graph H is (s, t)-colorable if the vertices of H can be partitioned into

s+ t (possibly empty) sets, t of which are independent sets while the remaining s are cliques.

The binary chromatic number of H, denoted χB(H), is the least integer k such that for every

(s, t) satisfying s+ t = k the graph H is (s, t)-colorable.

To see why Axenovich, Kézdy, and Martin [7] called this parameter the binary chromatic

number, note that any (s, t)-coloring of G is a coloring with s + t colors such that s of the

color classes are colored “clique” and t of the color classes are colored “independent set”.

If H is (s, t)-colorable, then we call (s, t) a covering pair. If s + t = χB(H) − 1 and H

is not (s, t)-colorable, then we call (s, t) a witnessing pair. Note that if χ(G) = k then G is

(0, k)-colorable, (0, k − 1) is a witnessing pair. Therefore, χB(G) > χ(G)− 1.

Example: C7 is not (3, 0)-colorable or (2, 1)-colorable, so χB(C7) > 3. On the other

hand, each of (0, 4), (1, 3), (2, 2), (3, 1), and (4, 0) is a covering pair, so χB(C7) = 4. Because

(1, 2) and (0, 3) are covering pairs, the only witnessing pairs are (3, 0) and (2, 1). In general,

χB(C2k+1) = k + 1 for k ≥ 1.

This parameter has a long history, and was re-discovered and re-named by several differ-

ent authors. To avoid confusion, we will briefly mention the terms and notation that were
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in use before the term “binary chromatic number” was introduced. Recall that a heredi-

tary graph property is an infinite family of graphs closed under isomorphism and induced

subgraphs. Bollobás and Thomason [24] defined their parameter on a hereditary family of

graphs P and called it the ‘coloring number’ of the family. They defined r(P) to be the max-

imum r such that there exist integers s and r with 0 ≤ s ≤ r for which every (r, s)-colorable

graph is in P .

Because the coloring number of a graph is usually used to mean the least k for which

there exists an ordering of V (G) in which no vertex has more than k − 1 neighbors earlier

than it in the ordering, we do not follow the terminology of Bollobás and Thomason. Prömel

and Steger [65] defined an equivalent parameter for a graph H; they gave it no name and

denoted it by τ(H), where τ(H) is the largest integer k for which there exists an integer

0 ≤ s ≤ k − 1 such H is not (s, k − s − 1)-colorable. Later, Balogh and Martin [16]

and Axenovich, Kézdy, and Martin [7] reintroduced the parameter under the name ‘binary

chromatic number’ while studying the edit distance of graphs. Alon and Stav [6] adopted

this notation and also defined it on a hereditary family, as Bollobás and Thomason had.

This is the notation and terminology given in Definition 2.1.1, and which we will use in this

thesis.

If (s, t) is a witnessing pair for H, then any graph whose vertex set can be partitioned

into s cliques and t independent sets is necessarily H-free. We can use this to build many

H-free graphs in the following manner. Partition n vertices into χB(H)− 1 classes of equal

size. For some witnessing pair (s, t), add edges to make exactly s of those classes cliques.

Then no matter how edges are placed between vertices from different classes the resulting

graph is H-free. This proves that

|Forb∗(n,H)| ≥ 2

(
1− 1

χB(H)−1

)
(n2),

and this is close to the actual size of Forb∗(n,H).
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Theorem 2.1.2 (Prömel and Steger [65]).

|Forb∗(n,H)| = 2

(
1− 1

χB(H)−1
+o(1)

)
(n2).

Bollobás and Thomason [24], and independently Alekseev [2], proved a more general

result for a hereditary family of graphs (recall that Forb∗(n,H) is not generally a hereditary

family). Recent sharper results for hereditary families of graphs appear in [3].

Theorem 2.1.3 ([2]). If P is a hereditary family of graphs with χB(P) = k and Pn is the

subfamily of graphs in P with n vertices then

lim
n→

log2(|Pn|)(
n
2

) = 1− 1

k
.

Theorem 2.1.4 ([3]). Let P be a hereditary family of graphs, with χB(P) = k. Let Pn

denote the subfamily of graphs in P that have n vertices. Then there exists a positive constant

ε = ε(P) such that

2(1− 1
k)

n2

2 ≤ |Pn| ≤ 2(1− 1
k)

n2

2
+n2−ε

.

Definition 2.1.5. For two sequences A and B of families of graphs, where An and Bn denote

the families on n vertices and Bn ⊆ An, we say that almost every graph in A is in B if

lim
n→∞

|An|
|Bn|

= 1.

Definition 2.1.6. For a graph H, let Q(n,H) denote the family of graphs G on n vertices

that are (s, t)-colorable for some s and t such that (s, t) is a witnessing pair for H.

Recall that if (s, t) is a witnessing pair for H, then by definition s + t = χB(H) − 1.

We have shown that if (s, t) is a witnessing pair for H, then any graph G that is (s, t)-

colorable is H-free. Therefore Q(n,H) ⊂ Forb∗(n,H). One might ask the following natural

question: for what graphs H is almost every H-free graph in Q(n,H)? A similar question
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was answered in the non-induced case by Prömel and Steger in [64]:

Theorem 2.1.7. If χ(H) = k + 1, then almost every graph G that does not contain H

as a (not necessarily induced) subgraph is k-colorable ⇔ there exists an edge e such that

χ(H − e) = k.

In other words, H contains a color-critical edge. The aim of this chapter is to extend

Theorem 2.1.7 to H-free graphs. Such an extension proves partial results regarding the

well-known Erdős-Hajnal conjecture. A family F of graphs has the Erdős-Hajnal property

if there exists ε = ε(F) such that every graph G in F contains a homogeneous set of size at

least |V (G)|ε.

Conjecture 2.1.8 (Erdős-Hajnal Conjecture). For any graph H, the family Forb∗(H) has

the Erdős-Hajnal property.

A graph family F has the asymptotic linear Erdős-Hajnal property if there is a subfamily

F ′ having the linear Erdős-Hajnal property such that almost every graph in mathcalF is in

F ′.

Prömel and Steger [62], [63], described the typical structure of graphs in Forb∗(n,H)

when H is a cycle on four vertices or H is a cycle on five vertices. In particular, they proved

that almost all C4-free graphs admit a partition of their vertices into two sets, one of which

is a clique and one of which is an independent set [62]. Such a graph is called a split graph.

They also proved that almost all C5-free graphs are generalized split graphs [63]. A graph

G is a generalized split graph if the following is true of either G or its complement: the

vertex set can be partitioned into two sets so that one is a clique and the other induces

a disjoint union of cliques. These results imply that Forb∗(C4) and Forb∗(C5) have the

linear asymptotic Erdős-Hajnal property (almost every generalized split graph contains a

linear-size homogeneous set).

Recently, Kang, McDiarmid, Reed, and Scott [48] proved that for almost every graph

H it is the case that Forb∗(n,H) has the asymptotic linear Erdős-Hajnal property. Loebl,
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Reed, Scott, Thomason, and Thomassé [54] recently proved that for every H, the family

Forb∗(n,H) has the asymptotic Erdős-Hajnal property. The authors of [48] and [54] were

aware of the results in this chapter.

2.1.2 New results

The characterization in Theorem 2.1.7 is fairly natural; in the induced case, the correct

characterization is far from obvious. Prömel and Steger’s cycle results suggest that C4 is

critical and C5 is not, which may lead one to expect that in general C2k is critical and C2k+1

is not. Interestingly, the truth is quite the opposite.

Definition 2.1.9. Let F(H, s, t) denote the set of minimal (by induced containment) graphs

F such that the vertices of H can be partitioned into s cliques, t independent sets, and a

set inducing F . A graph G is critical if χB(G) = k + 1 and for all s + t = k − 1 and large

enough n,

|Forb∗(n,F(H, s, t))| ≤ 2.

See below for examples of critical graphs. Our main result completely characterizes those

graphs H for which almost every graph in Forb∗(n,H) is in Q(n,H).

Theorem 2.1.10. For k ≥ 2 and χB(H) = k + 1,

lim
n→∞

Forb∗(n,H)

Q(n,H)
= 1

if and only if H is critical.

A direct consequence of Theorem 2.1.10 is that if H is critical then Forb∗(H) has the

asymptotic linear Erdős-Hajnal property. Alon, Balogh, Bollobás, and Morris [3] show that

if P is a graph property that is closed under the operation of taking induced subgraphs then

almost every graph in P has a certain structure. Note that the property of being H-free
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is closed under taking induced subgraphs and so their result applies, but the structure we

characterize is much more specific.

Example: C2k+1 is critical for every k ≥ 3. For example, let us consider C7; recall that

χB(C2k+1) = k + 1 and so χB(C7) = 4. As Figure 2.1 illustrates, F(C7, 2, 0) consists of K−3

and K−3 . Now consider a graph on n vertices, where n > 4, that contains no induced copy

of K−3 or of K−3 . Such a graph must contain no isolated edge, otherwise it contains K−3 . If

the graph is not Kn, then it must contain two edges that share a vertex. In that case, the

three vertices in those two edges must form K3, otherwise the graph contains K−3 , but this

implies that the graph is Kn.

Figure 2.1 also illustrates that F(C7, 1, 1) = {K2} and F(C7, 0, 2) = {K1}. If a graph on

n vertices contains no induced copy of K2, then it is a clique. No graph with any vertices

can avoid containing a copy of K1.

Figure 2.1: F(C7, 2, 0) = {K−3 , K−3 }, F(C7, 1, 1) = {K2}, and F(C7, 0, 2) = {K1}.
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We have therefore shown that for any s+ t = χB(C7)− 2 it is the case that

Forb∗(n,F(C7, s, t)) ⊆ {Kn, Kn}

(in fact Forb∗(n,F(C7, 0, 2)) = ∅). Therefore, C7 is critical. For k > 3, we find that

F(C2k+1, k− 1, 0) = {K−3 , K−3 , K3}, which means that Forb∗(n,F(C2k+1, k− 1, 0)) = {Kn};

because F(C2k+1, k − 2, 1) = {K1} and for every other s + t = k − 1 the pair (s, t) is a

covering pair this means that C2k+1 is critical. The following Proposition now follows from

Theorem 2.1.10.

Proposition 2.1.11. Almost every graph in Forb∗(n,C7) can be covered by 3 cliques or

by 2 cliques and 1 independent set. In particular, Forb∗(n,C7) has the asymptotic linear

Erdős-Hajnal property.

Figure 2.2: The bull graph, B, (top left). χB(B) = 3, F(B, 1, 0) = {K2} and F(B, 0, 1) =
{K2}.

Example: Let B be the so-called “bull graph”, which is the 5-vertex graph formed by

adding pendant edges at two different vertices of K3. If we let the three vertices of the

triangle be in one class and the two leaves each be in their own class, we see that (3, 0),
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(2, 1), and (1, 2) are covering pairs of G. We can also cover G with three independent sets,

as Figure 2.2 shows. Therefore, χB(G) ≤ 3. Now, (1, 1) is not a witnessing pair because

the two leaves form an independent set while the central triangle is a clique. However, (2, 0)

and (0, 2) are both witnessing pairs: no two cliques (and no two independent sets) can cover

more than four vertices of G. Therefore, χB(G) = 3.

To determine whether the bull graph is critical, we therefore need only find F(B, s, t) for

s+t = 1. Because F(B, 1, 0) contains K2 (take the triangle to be the clique) the only graph in

Forb∗(n,F(B, 1, 0)) is Kn. Because F(B, 0, 1) contains K2 (take the two degree one vertices

and the degree two vertex to be the independent set) the only graph in Forb∗(n,F(B, 0, 1))

is Kn. Therefore, the bull graph is critical. The following Proposition now follows from

Theorem 2.1.10.

Proposition 2.1.12. If B is the bull graph, then almost every graph in Forb∗(n,B) can be

covered by either two cliques or by two independent sets. In particular, Forb∗(n,B) has the

asymptotic linear Erdős-Hajnal property.

In fact, Chudnovsky and Safra used perfect graphs to prove that the family of bull-free

graphs has the Erdős-Hajnal property [29]. Specifically, they prove that every bull-free graph

contains a homogeneous set of size n1/4.

Recall that Prömel and Steger characterized the structure of almost all C4-free graphs

in [62] and characterized the structure of almost all C5-free graphs in [63]. It would be

natural to consider C6-free graphs next, but C6 is not critical.

Example: C6 is not critical. Although χB(C6) = 3, F(C6, 1, 0) consists of the path on four

vertices: besides Kn and Kn, any star forest also avoids this path, as does the complement

of a star forest. Consequently, Forb∗(n,C6) contains any graph that can be covered by the

complement of a star forest and a clique; this is a much larger family than Q(n,C6).

It can be seen similarly that larger even cycles are not critical. For all k > 5, F(C2k, k−

2, 0) = {P4, P3 ∪ K1, K2 ∪ K2, K2 ∪ K2, K4}, where G ∪ H indicates the disjoint union of
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the two graphs. The only graphs that avoid all of these induced subgraphs are those whose

complements are disjoint copies of K3 and a star forest. Every other F(C2k, s, t) is either

empty or consists of K1, except that F(C12, 3, 1) = {K2}. Consequently, the following

conjecture seems reasonable.

Conjecture 2.1.13. For k > 5, almost every G ∈ Forb∗(n,C2k) can be covered by k − 2

cliques and a graph whose complement is disjoint copies of K3 and a star forest.

One could formulate a similar conjecture for C6, C8, or C10; the statements, however,

seem rather technical.

Remark: The following may seem like a natural definition for a “critical” graph. For

each x, y ∈ V (H) let H(x, y) be the graph formed from H by removing the edge xy if

xy ∈ E(H) and by adding the edge uv if xy /∈ E(H). Then we might consider H critical

if χB(H(x, y)) < χB(H) for some x, y ∈ V (H). This is not equivalent to Definition 2.1.9,

however: we will show that K−4 is critical by Definition 2.1.9 and is not critical by this

definition. Note that χB(K−4 ) = 3. Suppose xy is the edge missing from K−4 ; then K−4 (x, y)

is K4. It is obvious that χB(Kn) = n and that (0, n− 1) is a witnessing pair, so χB(K4) =

4 6< χB(K−4 ).

For any other choice of x and y, the graph K−4 (x, y) is either C4 or a triangle with a

pendant edge. Because C4 is not (1, 1)-colorable, 3 ≤ χB(C4) 6< χB(K−4 ). Because a triangle

with a pendant edge is not (0, 2)-colorable, we see that χB(K−4 (x, y)) is not less than χB(K−4 )

for any choice of x, y.

On the other hand, to determine whether K−4 is critical by Definition 2.1.9, we need only

consider F(K−4 , s, t) for s + t = 1. Because F(K−4 , 1, 0) = {K1} and F(K−4 , 0, 1) = {K2},

it is obvious that Forb∗(n,F(K−4 , s, t)) ⊆ {Kn, Kn} for any s + t = 1. Therefore, K−4 is

critical.

Prömel and Steger proved [66] a Turán-type of statement in the induced case for the

following definition of ‘critical’ graph.
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Definition 2.1.14. A graph H is called PS-critical2 if χB(H) = k + 1 and for all 0 ≤

k̃ ≤ k the following is satisfied. Either (k̃, k − k̃) is a covering pair or there exist (possibly

four different) partitions of V (H), Π = (P1, . . . , Pk+1), such that P1, . . . , Pk̃ are cliques and

Pk̃+1, . . . , Pk+1 are independent sets and

1. |Pk+1| = 1 and e(Pk+1, P1) ≤ 1,

2. |Pk+1| = 1 and e(Pk+1, P1) ≥ |P1| − 1,

3. |Pk+1| = 1 and e(Pk+1, Pk) ≤ 1,

4. |Pk+1| = 1 and e(Pk+1, Pk) ≥ |Pk| − 1,

and there exist (again, possibly two different) partitions of V (H), Π = (P1, . . . , Pk+1), with

either P1, . . . , Pk̃ or P1, . . . , Pk̃+1 cliques and the rest independent sets such that

5. (for k̃ ≥ 1) |Pk̃+1| = 2 and Pk̃+1 is not connected to P1, and

6. (for k̃ ≤ k − 1) |Pk̃+1| = 2 and Pk̃+1 is completely connected to Pk+1.

We note that our definition of critical and the definition of PS-critical are both technical

enough that it is unclear to us whether one is a generalization of the other. In particular, we

know of no graph that is critical but not PS-critical, or that is PS-critical but not critical.

2.2 Observations

It is fairly easy to prove necessity in Theorem 2.1.10. We prove sufficiency by finding

constants 0 < σ < 1 and C such that if H is critical, then

|Forb∗(n,H)−Q(n,H)| < Cσn|Q(n,H)| (2.1)

2We say “PS-critical” to distinguish it from the “critical” in Definition 2.1.9 and because it was defined
by Prömel and Steger.

29



for sufficiently large n. This we do by first showing in Section 2.3 that almost every H-

free graph can be covered by k sets such that together they contain fewer than ϑn2 “bad”

edges, for some small ϑ > 0. We also show that almost all H-free graphs have certain other

random-like properties (Section 2.4).

In Section 2.5 we show that almost all H-free graphs have a partition into s almost-cliques

and t almost-independent sets (for some s + t = k) such that no vertex has more than βn

“bad” edges incident with it. Finally, in Section 2.6 we show that almost all H-free graphs

with no “bad” vertex in fact contain no “bad” edge at all, and are consequently in Q(n,H).

We will make use of the well-known Szemerédi Regularity Lemma [76].

Definition 2.2.1. Fix a graph G with n vertices. If A and B are sets of vertices of G then

their edge density d(A,B) is given by e(A,B)/(|A||B|).

A pair of vertex sets (A,B) is said to be γ-regular if for any A′ ⊆ A and B′ ⊆ B with

|A′| ≥ γ|A| and |B′| ≥ γ|B| it is the case that |d(A′, B′)− d(A,B)| < γ.

A γ-regular partition of V (G) is a partition V0, V1, . . . , Vk such that |V0| ≤ γn, and

|Vi| = |Vj| for all 1 ≤ i < j ≤ k, and all but at most γk2 pairs (Vi, Vj) with 1 ≤ i < j ≤ k

are γ-regular.

Theorem 2.2.2 (Szemerédi’s Regularity Lemma). For every γ > 0 and every m ∈ N

there exists and integer M such that if G is a graph with at least m vertices then for some

k ∈ [m,M ] there exists an γ-regular partition of V (G) with sets V0, V1, . . . , Vk.

Such a partition gives rise to an auxiliary graph called a cluster graph. There are many

different definitions of a cluster graph; one definition is that the cluster graph has vertex set

[k] and edge set {ij : (Vi, Vj) is an ε-regular pair}.

Definition 2.2.3 ([9]). The binary entropy function is H(x) = −x log(x)−(1−x) log(1−x),

where log(x) denotes log2(x). It satisfies the following property: for x sufficiently small,

∑
i≤xn

(
n

i

)
≤ 2H(x)n. (2.2)
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Lemma 2.2.4 (Chernoff bound [9]). For X1, . . . , X` ∈ {0, 1} with Pr(Xi = 1) = p,

Pr

(∑̀
i=1

Xi < p`/2

)
< exp(−p`/8).

To avoid unnecessary technicalities, we will omit ceiling and floor functions whenever

they are not crucial.

One part of Theorem 2.1.10 is easy to see. If H is not a critical graph, then

|Forb∗(n,H)| � |Q(n,H)|. (2.3)

Sketch of proof, Theorem 2.1.10 necessity. Suppose Forb∗(m,F(H, s̃, t̃)) contains more than

two graphs for some s̃ and t̃ satisfying s̃+t̃ = k−1. Then there is a graph in Forb∗(m,F(H, s̃, t̃))\

{Kn, Kn}. This means that there are at least m labelled graphs in Forb∗(m,F(H, s̃, t̃)) \

{Kn, Kn} (see Balogh-Bollobás-Weinreich [12] and Scheinerman-Zito [72]). Fix some par-

tition Π of [n] into k classes, and suppose there are c possible edges between vertices in

different classes of the partition. For each witnessing pair (s, t) there are
(
k
s

)
2c possible

ways to form a graph in Q(n,H) that respects this partition, and each graph in Q(n,H)

respecting this partition must be formed in such a way. Consequently, the number of graphs

in |Q(n,H)| respecting Π is at most
∑k

s=0

(
k
s

)
2c ≤ 2k2c.

On the other hand, if H is not critical then there exist s̃ and t̃ such that s̃ + t̃ = k + 1

and for sufficiently large n there are at least n/k labeled graphs in Forb∗(n/k,F(H, s̃, t̃)).

We may therefore generate many graphs that are in Forb∗(n,H) and not in Q(n,H) by

replacing the largest class in the partition with some such F and then choosing s̃ of the

remaining classes to be cliques, letting the remaining t̃ be independent sets, and choosing

the cross-edges arbitrarily. The number of graphs respecting Π that are in Forb∗(n,H) but

not Q(n,H) is therefore at least n
k

(
k
s̃

)
2c.

Since k is a constant, the ratio of graphs in Forb∗ to graphs in Q, that respect Π, is
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n
k

(
k
s̃

)
2c

2k2c
≥
n
(
k
s̃

)
k2k

,

which tends to infinity. If |Forb∗(n/k,F(H, s̃, t̃))| � kn then this is more than there are

choices of Π and we are done. Otherwise, “most” graphs in Forb∗ respect not many partitions

of [n]; we omit the technical details.

For the remainder of the chapter, assume that H is a critical graph on h vertices with

binary chromatic numberk + 1. It remains to show that there exist constants σ < 1 and C

such that (2.1) is true.

We will prove sufficiency in Theorem 2.1.10 by induction on n; in what follows we will

determine an integer n0 such that 1/n0 is smaller than any other constant we use, and large

enough to satisfy all of the following lemmas. From that, we will choose C large enough that

(2.1) holds for every n ≤ n0; for n > n0 we will use induction.

First, we observe some facts about Q(n,H).

Lemma 2.2.5. |Q(n,H)| ≥ |Q(n− 1, H)|2(1− 1
k

)(n−1).

Proof. Consider a graph G ∈ Q(n− 1, H); it can be covered by s cliques and t independent

sets for some witnessing pair (s, t). Form a new graph G′ ∈ Q(n,H) by adding a new vertex,

labeled ‘n’, to the smallest clique or independent set (break ties by choosing whichever

contains the least-indexed vertex). Then n must be adjacent to every vertex in its clique,

or to no vertex in its independent set. It may or may not be adjacent to each other vertex

in the graph; since we added n to the smallest clique or independent set there are at least

(1− 1
k
)(n−1) vertices in other cliques and independent sets. Consequently, there are at least

2(1− 1
k

)(n−1) possible ways to form a new graph G′ from each graph G ∈ Q(n− 1, H).

Iterating Lemma 2.2.5 results in the following.

Corollary 2.2.6.

|Q(n,H)| ≥ |Q(n− i,H)|2(1− 1
k

)in−(i+1
2 )(1− 1

k
).
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We can now bound |Q(n,H)| above and below by functions depending only on n and H.

Corollary 2.2.7.

2(1− 1
k

)(n2) ≤ |Q(n,H)| < 2kkn2(1− 1
k

)(n2).

Proof. It follows from Corollary 2.2.6 with i = n that

|Q(n,H)| ≥ 2(1− 1
k

)n2−(n+1
2 )(1− 1

k
) = 2(1− 1

k
)(n2),

because n2 − n2+n
2

=
(
n
2

)
.

For the upper bound, there are fewer than kn ways to partition n vertices into k classes,(
k
s

)
ways to let s of the classes be cliques, and 2(1− 1

k
)(n2) ways to select edges between vertices

in different classes. Since s may range from 0 to k, this gives

|Q(n,H)| <
k∑
s=0

(
k

s

)
kn2(1− 1

k
)(n2) = 2kkn2(1− 1

k
)(n2).

The following lemma is crucial in the proof of our main result. A star is a complete bipartite

graph with one partite set having size 1.

Lemma 2.2.8. If H is a critical graph then for any s+ t = k such that (s, t) is a witnessing

pair of H:

1. If s ≥ 1, then F(H, s− 1, t) contains a graph that is the complement of a star.

2. If t ≥ 1, then F(H, s, t− 1) contains a star.

Proof. Because H is critical, Forb∗(n,F(s − 1, t, H)) ⊆ {Kn, Kn} for all n > n0. Conse-

quently, any graph consisting of Kn−1 and a vertex v such that v has no edges to the clique

must contain some graph in F(s−1, t, H) as an induced subgraph. Since (s, t) is a witnessing

pair, that graph cannot be a clique and so must contain the vertex v.
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Similarly, K1,n−1 must contain some graph in F(s−1, t, H) as an induced subgraph. Since

(s, t) is a witnessing pair, that graph cannot be an independent set and so must contain the

vertex of degree n− 1.

2.2.1 Constants

This section may be useful to clarify size and dependence. In theory, we should define

the constants from largest to smallest; one can check, however, that the following are all

well-defined.

1

n0

� γ � µ� ε� ω � λ� α� ϑ� δ,

and ρ� δ � β � 1

1. We fix a graph H and let h = |V (H)| and k = χB(H)− 1.

2. We choose λ > 0 such that λ < 1
(10kR(h))2

. This inequality is needed for Lemma 2.3.11.

3. We obtain ω = ω(k, λ,R(h)) from Theorem 2.3.4.

4. We choose ε > 0 so that for all sufficiently large m,
(
1− 1

k

)
m
2

+ ε
(
m
2

)
< ωm2. This

will be needed in Lemma 2.3.11.

5. We choose µ > 0 so that H(2µ) < ε/6. This is used in Lemma 2.3.8.

6. We obtain γ2.3.5(µ, k) from Lemma 2.3.5, and then we choose γ < γ2.3.5 such that

γ < min
{
ε

12
, µ
}

. We need γ < ε
12

for Lemma 2.3.8, and we need γ < µ for Lemma 2.3.3

and Lemma 2.3.8.
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7. We obtain m0(k,R(h), ε) from Theorem 2.3.7 and then if necessary make m0 large

enough to satisfy the condition in 2.2.1.4 and large enough that m0 ≥ 12
ε

. We then

obtain m ≥ m0 from Lemma 2.3.6. The inequality m ≥ 12
ε

is needed in Lemma 2.3.8.

8. We choose α > 0 such that α2 > 100λ and α < 1
kR(h)

(this is possible because we chose

λ small enough). Both inequalities are needed in Lemma 2.3.11.

9. Let ϑ = γ
2

+αh+ λ
m2 + 1

2m
. As a shorthand we let ψ =

√
ϑ log( 1

ϑ
). We can choose γ, α, λ,

and 1/m small enough that 2H(ϑ) < 1
k2

and ϑ < 1
4k4

and ψ < min{ 1
4k(k−2)

, 1
12hk2h+3}.

These inequalities are needed for an application of Lemma 2.5.2 in Lemma 2.4.2, an

application of Lemma 2.5.2 in Lemma 2.4.6, Lemmas 2.5.5 and 2.6.1, and Lemma 2.6.2

respectively.

10. We find δ0(h − 1) and δ0(kh2h) from Lemma 2.5.2. We choose δ > 0 so that δ <

min{ 1
k2
, δ0(h− 1), δ0(kh2h)} and H(2δ) < min{ 1

4k2
, 1

3k22h+3} and

δ > max

{
2H(ϑ),

8k2

3
ϑ,

√
4ϑ

3

}

. The inequality δ < 1
k2

is needed for Lemma 2.4.6. We need δ < min{δ0(h−1), δ0(k2h)}

for Lemmas 2.5.3 and 2.6.1. Lemma 2.5.5 requires that H(2δ) < 1
4k2

and Lemma 2.6.2

requires that H(2δ) < 1
3k22h+3 . The final set of inequalities are needed for Lemma 2.4.2,

Lemma 2.4.6, and Lemmas 2.5.3 and 2.6.1, respectively.

11. We obtain ρ0 from Lemma 2.4.2. In Corollary 2.4.4 we find ρ′ > 0 such that ρ′ <

min {ρ0, 2ϑ} and then find ρ > 0 such that ρ < ρ′ − 1
n2
0
.

12. We choose β > 0 so that β
2h
≤ 1 − 1

4k−8
and β � max

{
8k2h

3
ϑ, 8k3h2h

3
ϑ
}

and H(βk) <

min{ 1
8k
, 1

3hk2h3
}. We need 2β ≤ 1− 1

4k−8
for Lemma 2.6.1. The second set of inequalities

are needed for applications of Lemma 2.5.2 in Lemmas 2.5.3 and 2.6.1. Lemma 2.5.5

requires that H(βk) < 1
8k

and Lemma 2.6.2 requires that H(βk) < 1
3hk2h+3 .
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13. We obtain ρ̂ = 1
k
−H(2δ)k− 2H(βk)− (k− 2)ψ− 2 log(n)

n
from Lemma 2.5.5. Previous

bounds guarantee that ρ̂ is positive. We obtain −ρ′ = H(2δ) + H(β)h + 4ψh −
1

k2h+3 − ψ
2h+3 during the proof of Lemma 2.6.2, and then let ρ̃ = 9

10
ρ′. Previous bounds

guarantee that ρ̃ is positive.

14. We obtain σ by induction such that max{2−ρ̂, 2−ρ̃} < σ < 1. The proof of Theo-

rem 2.1.10 requires σ > max{2−ρ̂, 2−ρ̃}, and the statement of Equation 2.1 requires

σ < 1.

15. We choose n0 an integer such that 1
n0

is smaller than every preceding constant and

larger than the n0 in Lemma 2.5.2 for m = h − 1 and for m = kh2h. That is needed

for Lemma 2.5.3 and for Lemma 2.6.1. We also require n0 to be large enough that

whenever n > n0 the following inequalities are all true:

n2(1− 1
k
− ε

6
)n

2

2 < 2(1− 1
k
− ε

5
)n

2

2 (for Lemma 2.3.3),

22 log(m)n+log(3)m
2

2
+m2

< 2εn
2/4 (for Lemma 2.3.8),

1
n
2 log(n) < 1

4k
(for Lemma 2.5.3),

(1− 1
k
)
(
h
2

)
− ρ′n < − 9

10
ρ′n (for Lemma 2.6.2),

log(n)
n

< ψ (for Lemma 2.6.2),

and min{|Q(n,H)|2−ρ̂n, |Q(n,H)|2−ρ̃n} > max{2(1− 1
k

)n
2

2
− ε

10
n2
, 2(1− 1

k
)n

2

2
−ρn2} (for The-

orem 2.1.10).

16. We choose C > 8 large enough that for n ≤ n0 Equation (2.1) trivially holds.

2.3 Sparse and Dense classes

We will show that almost every graph in Forb∗(n,H) can be covered by s “almost-cliques”

and t “almost-independent sets,” for some witnessing pair (s, t). We will make this statement
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precise later in this section. To this end, we will define a certain cluster graph and consider

a partition of its vertices.

Definition 2.3.1. If µ, γ > 0 and B = (U1, . . . , Um) is an equipartition of a subset of V (G)

such that every pair (Xi, Xj) is γ-regular, then the cluster graph Aµ(G) has vertex set [m]

and edge set {ij : µ < d(Ui, Uj) < 1− µ}.

Given a graph G ∈ Forb∗(n,H) and a partition Π of V (G), call a pair of vertices a bad

edge if it appears as an edge in a class of Π that has more non-edges than edges, or if it is a

non-edge inside a class of Π that has more edges than non-edges.

Definition 2.3.2. For ϑ > 0, let Forb∗(n,H, ϑ) be the set of graphs G ∈ Forb∗(n,H) that

admit a partition of V (G) into k parts which results in at most ϑn2 bad edges.

The main lemma in this section is the following, which says that almost all graphs in

Forb∗(n,H) admit such a partition.

Lemma 2.3.3. For n large enough there exist ϑ > 0 and ε > 0 such that

|Forb∗(n,H)− Forb∗(n,H, ϑ)| < 2(1− 1
k
− ε

5
)n

2

2 .

Our main tools to prove Lemma 2.3.3 are the stability theorem of Simonovits [74], a

variant of the Regularity Lemma that is due to Alon and Stav [6], and a corresponding

embedding lemma.

Theorem 2.3.4. [Stability Theorem] For any λ > 0 and any integers k,R, there exists

ω = ω(k, λ,R) > 0 such that if H is a graph on m vertices, for m sufficiently large, that

does not contain Kk+1(R) and

e(H) > e(Tm,k)− ωm2,

then we H differs from Tm,k in at most λm2 edges.
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The following embedding lemma is from [6]:

Lemma 2.3.5. For every real 0 < µ < 1 and integer f ≥ 1 there exists γ = γ2.3.5(µ, f) with

the following property. Suppose that F is a graph on f vertices v1, . . . , vf and that U1, . . . , Uf

is an f -tuple of disjoint vertex sets of a graph G such that for every 1 ≤ i < j ≤ f

the pair (Ui, Uj) is γ-regular. Moreover, suppose that whenever (vi, vj) ∈ E(F ) we have

d(Ui, Uj) ≥ µ, and whenever (vi, vj) /∈ E(F ) we have d(Ui, Uj) ≤ 1− µ. Then some f -tuple

(u1, . . . , uf ) ∈ U1 × · · · × Uf spans an induced copy of F in which vi is mapped to ui for

every i ∈ [f ].

The following lemma, also due to Alon and Stav [6], is a variant of Szemerédi’s Regularity

Lemma [76] that instead finds an equipartition in which every pair of classes is γ-regular,

by restricting attention to an induced subgraph.

Lemma 2.3.6. For every integer m0 and every γ > 0 there exists an integer M = M(m0, γ)

that satisfies the following. For any graph G on n ≥M vertices there exists an equipartition

A = {Vi|1 ≤ i ≤ m} of V (G) and a set of vertices U ∈ V (G), with an equipartition

B = {Ui|1 ≤ i ≤ m} of the vertices of U , that satisfy:

1. m0 ≤ m ≤M .

2. Ui ⊂ Vi for all i ∈ [m], and |Ui| ≥ n/M .

3. All pairs of classes of B are γ-regular in G[U ].

4. All but at most γ
(
m
2

)
of the pairs 1 ≤ i < j ≤ m satisfy |d(Vi, Vj)− d(Ui, Uj)| < γ.

Note that B satisfies the hypothesis of Lemma 2.3.5. We will also use the Erdős-Stone

Theorem [39].

Theorem 2.3.7 (Erdős-Stone Theorem). For any integers k and t and real number ε > 0

there exists m0(k, t, ε) such that for m > m0 any graph on m vertices with at least
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(
1− 1

k
+ ε

)(
m

2

)
edges contains a copy of Kk+1(t).

In Section 2.2.1 we fixed λ; note that λ can be chosen to be arbitrarily small and still

satisfy the conditions in 2.2.1.2. From Theorem 2.3.4 we obtain ω = ω(k, λ,R(h)), where

R(h) is the Ramsey number. Throughout what follows, we will have to make sure our

constants remain small enough relative to ω that the cluster graph we consider has at least

e(Tm,k) − ωm2 edges. We also fixed ε and µ in Section 2.2.1 and obtained γ2.3.5(µ, k) from

Lemma 2.3.5, then fixed γ < γ2.3.5. Note that if (Ui, Uj) is a γ-regular pair then it is also a

γ2.3.5(µ, k)-regular pair. For m0 defined by 2.2.1.7, consider the partition B guaranteed by

Lemma 2.3.6 and let A be the cluster graph defined for that partition. Note that by the

definition of m in 2.2.1.7, |V (A)| = m and 12
ε
< m0 < m < M(γ,m0).

We call a pair sparse if d(Ui, Uj) ≤ µ, average if µ < d(Ui, Uj) < 1 − µ, and dense if

d(Ui, Uj) ≥ 1− µ. When it will not cause confusion, we will often refer to a pair of vertices

(i, j) in the cluster graph A as “sparse”, “average”, or “dense” if the corresponding pair

(Ui, Uj) is respectively sparse, average, or dense.

Lemma 2.3.8. For sufficiently large n, all but at most 2(1− 1
k
− ε

6
)n

2

2 graphs G ∈ Forb∗(n,H)

have cluster graph A on m vertices that satisfies

(
1− 1

k
− ε
)(

m

2

)
< e(A) <

(
1− 1

k
+ ε

)(
m

2

)
. (2.4)

Proof. Let r = R(h). If Kk+1(r) is a subgraph of the cluster graph A it follows by

Lemma 2.3.5 that G contains an induced copy of H; that is because each class of Kk+1(r)

contains either h mutually sparse pairs or h mutually dense pairs, which correspond to,

respectively, an independent set or a clique in G. The edges in A are average pairs, and so

may correspond to an edge or non-edge of G as needed. Since χB(H) = k+ 1, any collection

of k+1 cliques and independent sets cover H, and so by Lemma 2.3.5 G contains an induced
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copy of H. By the Erdős-Stone theorem, because |V (A)| = m, if e(F ) ≥ (1− 1
k

+ ε)
(
m
2

)
then

Kk+1(r) is a subgraph of A. Consequently, e(A) < (1− 1
k

+ ε)
(
m
2

)
.

Now we will count the number of graphs whose cluster graph has fewer than (1− 1
k
−ε)

(
m
2

)
edges. Partition n vertices into m classes to determine a partition A = {V1, . . . , Vm}, then

choose a partition B = {U1, . . . , Um} satisfying Ui ⊂ Vi for all i. There are at most m2n =

22 log(m)n ways to do this. There are 3(m2 ) ≤ 2log(3)m2/2 ways to three-color the edges of Km,

which corresponds to determining which pairs of classes (Ui, Uj) are sparse, average, or dense.

There are at most 2(n/m2 ) ways to place edges inside each class Vi, so there are at most

2m(n/m2 ) ≤ 2n
2/2m ways to place edges inside all m classes. If (Ui, Uj) is sparse or dense

and |d(Vi, Vj)− d(Ui, Uj)| < γ, then there are at most
∑

i≤2µ n
2

m2

(
n2/m2

i

)
ways to place edges

between Vi and Vj (recall from 2.2.1.6 that γ < µ, so µ + γ < 2µ). There are at most
(
m
2

)
such pairs, so there are at most

2
∑

i≤2µ n
2

m2

(
n2/m2

i

)
(m2 )

≤ 2m
2+H(2µ)n

2

2

ways to place edges between such pairs (Vi, Vj).

There are at most (1− 1
k
− ε)

(
m
2

)
average pairs (Ui, Uj) with |d(Vi, Vj)− d(Ui, Uj)| < γ,

so there are at most 2n
2/m2(1− 1

k
−ε)(m2 ) ≤ 2(1− 1

k
−ε)n

2

2 ways to place edges between such pairs

(Vi, Vj). Finally, there are at most γ
(
m
2

)
pairs (Vi, Vj) for which |d(Vi, Vj) − d(Ui, Uj)| ≥ γ,

so there are at most 2
n2

m2 γ(
m
2 ) ≤ 2γ

n2

2 ways to place edges between such pairs.

Consequently, the number of graphs G ∈ Forb∗(n,H) whose cluster graph A on m

vertices has fewer than (1− 1
k
− ε)

(
m
2

)
edges is at most

22 log(m)n+log(3)m
2

2
+m2

2
n2

2m
+H(2µ)n

2

2
+(1− 1

k
−ε)n

2

2
+γ n

2

2 .
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For large enough n, this is at most

2(1− 1
k

+ 1
m

+H(2µ)+γ− ε
2

)n
2

2 ,

and n is chosen in Section 2.2.1 to be large enough. Recall that H(2µ) < ε
6

(from 2.2.1.5),

1
m
< ε

12
(from 2.2.1.7), and γ < ε

12
(from 2.2.1.6), and so 1

m
+ H(2µ) + γ − ε

2
< − ε

6
.

Consequently, at most 2(1− 1
k
− ε

6
)n

2

2 graphs G ∈ Forb∗(n,H) have a cluster graph with fewer

than (1− 1
k
− ε)

(
m
2

)
edges.

Note that

e(A) >

(
1− 1

k
− ε
)(

m

2

)
= e(Tm,k)−

[(
1− 1

k

)
m

2
+ ε

(
m

2

)]
> e(Tm,k)− ωm2,

and so by the Stability Theorem (Theorem 2.3.4) A differs from Tm,k in at most λm2 edges.

Given a partition of the vertices of a graph, we will call an edge interior both of its

endpoints are in the same class, and a cross-edge otherwise. Fix some k-partition Π =

(P1, . . . , Pk) of the vertices of A that maximizes the number of cross-edges. By Theorem 2.3.4,

the number of missing cross-edges in A is at most λm2 and the number of present interior

edges is at most λm2.

Lemma 2.3.9. Let q be a prime number and k any integer. Then we may pack q2 edge-

disjoint copies of Kk into Kk(q).

Proof. Order the k classes and label the vertices in each class with {0, 1, . . . , q− 1}. For any

a ∈ {0, 1, . . . , q−1} and any b ∈ {0, 1, . . . , q−1} let vi be the vertex in the ith class with label

a+(i−1)b, modulo q. Let Fa,b be the resulting induced copy of Kk; there are q2 such copies.

We claim that if (a, b) 6= (a′, b′) then Fa,b and Fa′,b′ are edge-disjoint. Note that because q
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is prime, Zq is a field. Suppose the edge {a+ (i− 1)b, a+ (j − 1)b} appears in Fa′,b′ . Then

a+(i−1)b = a′+(i−1)b′ and a+(j−1)b = a′+(j−1)b′. Consequently, (i− j)b = (i− j)b′.

Because Zq is a field, this implies that b = b′. Therefore, a+ (i− 1)b = a′ + (i− 1)b and so

a = a′.

Definition 2.3.10. Call a subset S ⊂ V (A) sparse-homogeneous if for each ij ∈ E(A[S])

the pair (Ui, Uj) is sparse or average. Call S dense-homogeneous if for each ij ∈ E(A[S])

the pair (Ui, Uj) is dense or average. Call S non-homogeneous otherwise.

Note that by Lemma 2.3.5 if S = {v1, . . . , v`} is a sparse-homogeneous set in V (A) then

there is an independent set in G with exactly one vertex from each set Uvi . Similarly, if S is

a dense-homogeneous set in V (A) there is a clique in G with exactly one vertex from each

set Uvi .

The following two lemmas will help to prove that each class of V (A) under the partition

Π either contains many sparse pairs or many dense pairs. This in turn will help us to find a

partition of the original graph G whose classes again contain either many or very few edges.

Let α be defined as in 2.2.1.8.

Lemma 2.3.11. For large enough m and G satisfying the restrictions in Lemma 2.3.8, no

class of the partition of V (A), Π = (P1, . . . , Pk), contains more than αm vertex-disjoint

non-homogeneous sets of size h.

Proof. Suppose the statement is false, and without loss of generality assume that P1 is a

contradictory class. Let r = R(h) (the Ramsey number), and suppose that α is small enough

that each class of the k-partition Π of V (A) contains at least αmr vertices (since A is close

to the Turán graph Tm,k, no class in the partition is small). Then each class other than P1

can be divided into αm vertex-disjoint subsets, each of size at least r. Therefore, each subset

contains either an h-vertex sparse-homogeneous set or an h-vertex dense-homogeneous set.

Call these αm homogeneous subsets the relevant subsets.
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On the other hand, P1 contains αm non-homogeneous subsets of size h. For each such

non-homogeneous set there is an induced subgraph in G with h vertices that is neither a

clique nor an independent set, obtained by applying Lemma 2.3.5. Since H is critical, none

of these αm subgraphs are in Forb∗(m
k
,F(H, s, t)) for any s + t = k − 1. Consequently, for

any s + t = k − 1, every one of the subgraphs contains some graph from F(H, s, t), and so

any choice of one relevant subset from each Pi and one non-homogeneous set from P1 results

in a potential induced copy of H in G, if we can apply Lemma 2.3.5.

Bertrand’s postulate states that there is a prime number between j and 2j for any integer

j, so fix the smallest prime number q such that 2αm
4
≥ q ≥ bαm

4
c. Now by Lemma 2.3.9 and

Lemma 2.3.5, if every cross-edge is present then we can embed q2 edge-disjoint copies of H

into A in such a way that each induces H in G. Since G is H-free, at least one cross-edge

must be missing from each such copy of H; because they are edge-disjoint, there are at least

q2 missing cross-edges in A. Consequently, there are q2 ≥ α2m2

100
cross-edges missing from

A. By 2.2.1.8, α2m2

100
> λm2. Since there are at most λm2 missing cross-edges, this is a

contradiction.

Now, after removing vertex-disjoint non-homogeneous sets from a class of Π what remains

of the class is either a sparse-homogeneous set or a dense-homogeneous set. We will call a

class of a partition of the cluster graph “sparse” if what remains is sparse-homogeneous, and

“dense” if what remains is dense-homogeneous. Call a pair (i, j) “bad” if d(Ui, Uj) < µ in a

dense class or if d(Ui, Uj) > 1− µ in a sparse class.

Lemma 2.3.12. For a graph G ∈ Forb∗(n,H) with a cluster graph A satisfying (2.4) and

Π = (P1, . . . , Pk) a k-partition of V (A) maximizing the number of cross-edges, A contains

at most αm2h bad pairs.

Proof. Each class Pi contains at most
(
αmh

2

)
+ (|Pi| − αmh)(αmh) bad pairs. This can be

rewritten as αmh|Pi| −
(
αmh+1

2

)
. Consequently, the total number of bad edges in A is at

most
∑k

i=1 (αmh|Pi|)−
(
αmh+1

2

)
≤
∑k

i=1 (αmh|Pi|) = αm2h.
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We are now ready to prove Lemma 2.3.3.

Proof of Lemma 2.3.3. There are fewer than n ways to choose m < n. We have found

that for all but at most n2(1− 1
k
− ε

6
)n

2

2 graphs G ∈ Forb∗(n,H), the cluster graph A of G

has a partition Π = (P1, . . . , Pk) with no more than αhm2 bad pairs in each class. From

Section 2.2.1, n2(1− 1
k
− ε

6
)n

2

2 < 2(1− 1
k
− ε

5
)n

2

2 . Form a partition of V (G) by letting Vi be in class

j if i ∈ Pj. In this partition of V (G), call a class “sparse” if it contains more missing edges

than edges and “dense” otherwise. Call an edge “bad” if it appears in a sparse class or is

missing from a dense class.

Recall that |Vi| = n
m

for all i and that for all but at most γ
(
m
2

)
pairs, |d(Vi, Vj) −

d(Ui, Uj)| < γ. There are therefore at most γ
(
m
2

)
n2

m2 ≤ γn2

2
bad edges between all such pairs

(Vi, Vj). Recall also that A contains at most λm2 interior edges, which correspond to average

pairs. There are therefore at most λ(1 − µ + γ) n
2

m2 ≤ λn2

m2 bad edges between all such pairs

(recall that γ < µ, by 2.2.1.6). If (i, j) is a bad pair in A then it results in at most n2

m2 bad

edges in G, so there are at most αhm2 n2

m2 = αhn2 such bad edges. Edges within each Vi may

be bad; there are at most m
(
n/m

2

)
≤ n2

2m
such edges. In total, that is at most

(
γ

2
+ αh+

λ

m2
+

1

2m

)
n2

bad edges. In other words, G ∈ Forb∗(n,H, ϑ), for ϑ = γ
2

+ αh+ λ
m2 + 1

2m
.

2.4 More properties of Forb∗(n,H, ϑ)

Recall that for some G ∈ Forb∗(n,H, ϑ) and a partition Π = (P1, . . . , Pk) of the vertices of

G, we call a pair of vertices a “bad edge” if it is missing from a dense class or if it is present

in a sparse class. Call such a partition optimal if it minimizes the number of bad edges;

recall that if G ∈ Forb∗(n,H, ϑ) then an optimal partition of G contains at most ϑn2 bad
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edges.

Lemmas 2.4.2, 2.4.3, and 2.4.6 are from [10], although Lemma 2.4.2 was updated in [9].

Note that although those papers deal with non-induced subgraphs the proofs of these lemmas

need only be slightly modified, if at all, to suit our needs. For the sake of completeness we

include those modified proofs.

Definition 2.4.1. Let Forb∗(n,H, ϑ, δ) be the set of all G ∈ Forb∗(n,H, ϑ) such that if

Π = (P1, . . . , Pk) is an optimal partition of V (G) then

1. for any A ⊂ Pi and B ⊂ V (Gn) − Pi with |A| = |B| = bδnc, we have 1
4
|A||B| <

e(A,B) < 3
4
|A||B|, and

2. ||Pi| − n/k| < (
√
ϑ log 1/ϑ)n.

In other words, Forb∗(n,H, ϑ, δ) consists of those graphs having an optimal partition Π

that is somewhat close to being an equipartition and whose cross-edges behave somewhat

randomly.

Lemma 2.4.2 (Lemma 6.1 in [10]). For any δ ≥ 2H(ϑ) there is a positive constant

ρ0 = ρ0(ϑ) > 0 such that for sufficiently large n all but at most 2(1− 1
k

)n
2

2
−ρ0n2

graphs in

Forb∗(n,H, ϑ) satisfy condition 1 of Definition 2.4.1.

Proof. Say that a graph in Forb∗(n,H, ϑ) is “bad” if there exists an optimal partition Π =

(P1, . . . , Pk) of V (G) and there exist A ⊆ Pi and B ⊆ Uj such that |A| = |B| = bδnc and

e(A,B) ≤ 1
4
|A||B| or e(A,B) ≥ 3

4
|A||B|. We will count the number of bad graphs.

For a fixed graph G ∈ Forb∗(n,H, ϑ), the number of optimal partitions of V (G) is at

most kn. There are at most
(
n
δn

)2
ways to choose A and B, and

(
n
δn

)2
< 22H(δ)n. For each

` ∈ [k] there are at most
(
n2

ϑn2

)
ways to choose edges within U`, because G is in Forb∗(n,H, ϑ)

and so does not contain many bad edges.

Claim: If i 6= j and A ⊆ Pi and B ⊆ Pj then the number of ways to choose edges between

Pi and Pj is at most

2
1
2

(1−1/k)n2 · 2−(1−H(1/4))δ2n2

.
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Proof of Claim. If e(A,B) ≤ 1
4
|A||B| then e(A,B) ≤ 1

4
δ2n2. If e(A,B) ≥ 3

4
|A||B| then

e(A,B) ≤ 1
4
δ2n2. Either way, there are

( (δn)2

1
4

(δn)2

)
ways to choose edges between A and B. If

there had been no restriction on the number of edges between A and B, there would have

been 2δ
2n2

ways to choose these edges. Because
( (δn)2

1
4

(δn)2

)
≤ 2H( 1

4
)(δn)2 , we find that there are

2
1
2

(1−1/k)n2 · 2−δ2n2 · 2H( 1
4

)δ2n2

ways to choose edges between Pi and Pj.

The number of bad graphs is therefore at most

2
1
2(1− 1

k)n2 · kn · 22H(δ)n · 2H(ϑ)n2 · 2−δ2n2 · 2H(1/4)δ2n2

.

If H(ϑ) < 1
3
δ2 and n is large enough that

log(k) + 2H(δ) +

(
H

(
1

4

)
− 2

3

)
δ2n < −1,

then the number of bad graphs is at most 2
1
2

(1−1/k)n2−n. Therefore, almost all graphs in

Forb∗(n,H, ϑ) have the desired property.

Lemma 2.4.3 (Lemma 6.6 in [10]). Given ϑ sufficiently small, all but at most 2(1− 1
k

)n
2

2
−2ϑn2

graphs in Forb∗(n,H, ϑ), satisfy condition 2 of Definition 2.4.1.

Proof. Once again we will count the number of bad graphs, and show that there are at most

2
1
2

(1−1/k)n2−n of them. Suppose G ∈ Forb∗(n,H, ϑ) but there exists i0 ∈ [k] for which

||Pi0 | − n/k| ≥ (
√
ϑ log 1/ϑ)n.

We will need the following claim (see [10], [74]):
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Claim: If G is a k-partite graph with n vertices with k-partition Π = (P1, . . . , Pk) then

e(G) ≤ e(Tn,k)−
k∑
i=1

(
si
2

)
,

where si = b|n/p− |Pi||c for i ∈ [k].

Now, si0 = b
(√

ϑ log(1/ϑ)
)
nc. Applying the above claim we find

∑
i<j

e(Pi, Pj) ≤ e(Tn,k)−
(
si0
2

)
< e(Tn,k)−

ϑ

3

(
log

(
1

ϑ

))2

n2.

Since H(x) ≈ x log(1/x), ((n
2

)
ϑn2

)
< 22ϑ(log(1/ϑ))n2

.

If log(1/ϑ) > 12, we find that the number of bad graphs is at most

kn · 2 1
2

(1−1/k)n2 · 2−ϑ3 (log(1/ϑ))2n2 ·
((n2)
ϑn2

)
≤ kn · 2 1

2
(1−1/k)n2 · 2−ϑ3 (log(1/ϑ))2n2+2ϑ(log(1/ϑ)n2

≤ kn · 2 1
2

(1−1/k)n2 · 2−ϑ6 (log(1/ϑ))2n2

< 2
1
2

(1−1/k)n2 · 2−2ϑn2
< 2

1
2

(1−1/k)n2−n.

Corollary 2.4.4. For any δ ≥ 2H(ϑ) there exists ρ = ρ(ϑ) such that

|Forb∗(n,H, ϑ)− Forb∗(n,H, ϑ, δ)| < 2(1− 1
k

)n
2

2
−ρn2

.

Proof. By applying Lemmas 2.4.2 and 2.4.3 we obtain

|Forb∗(n,H, ϑ)− Forb∗(n,H, ϑ, δ)| < 2(1− 1
k

)n
2

2
−ρ0n2

+ 2(1− 1
k

)n
2

2
−2ϑn2

.

Fix ρ′ < min{ρ0, 2ϑ}. Then |Forb∗(n,H, ϑ)−Forb∗(n,H, ϑ, δ)| < 2(1− 1
k

)n
2

2
−ρ′n2+1. Fix some
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ρ < ρ′ − 1
n0

; then

|Forb∗(n,H, ϑ)− Forb∗(n,H, ϑ, δ)| < 2(1− 1
k)

n2

2
−ρn2

.

The following lemma is a variant of Lemma 6.10 in [10].

Lemma 2.4.5 (Lemma 6.10 in [10]). For 4k2

3
ϑ < δ < 1

k2
, n sufficiently large (as defined

by Lemma 2.4.2) and G ∈ Forb∗(n,H, ϑ, δ), if Π = (X1, . . . , Xk) and Π′ = (Y1, . . . , Yk) are

optimal partitions of V (G) then for every i ∈ [k] there exists a permutation π of [k] such

that for every i ∈ [k] it is the case that |Xi∆Yπ(i)| ≤ 2δn.

Proof. We have already shown that all but at most 2(1− 1
k

+ 1
m

+H(γ)−ε)n
2

2 graphs in Forb∗(n, k)

have cluster graph H differing from Tm,k in at most λm2 edges. We have also shown that

for all but at most 2(1− 1
k

)n
2

2
−n graphs in Forb∗(n, k) the conclusion of Lemma 2.4.2 holds,

for n ≥ n0(k, δ).

If G is not one of these exceptions, then the number of bad edges in Xi is at most ϑn2

and the number of bad edges in Yi is also at most ϑn2. Note that Xi is partitioned into

Xi ∩ Y1, Xi ∩ Y2, . . . , Xi ∩ Yk. Let X∗i be the largest of these parts; of course then |X∗i | > n
k2

.

Define a function π : [k]→ [k] to satisfy X∗i = Xi ∩ Yπ(i).

Suppose π is not a permutation. That is, π(i) = π(j) for some j 6= i. Then X∗i and

X∗j are both contained in Yπ(i). By Lemma 2.4.2, since |X∗i |, |X∗j | ≥ n
k2

and n is sufficiently

large, 1
4
|X∗i ||X∗j | < e(X∗i , X

∗
j ) < 3

4
|X∗i ||X∗j |. If Yπ(i) is a dense class then this means that

e(Yπ(i)) ≥ 3
4
|X∗i ||X∗j | ≥ 3

4
n2

k4
> ϑn2, which is a contradiction. If Yπ(i) is a sparse class then

this means similarly that e(Yπ(i)) ≥ 1
4
n2

k4
> ϑn2, which is again a contradiction. Therefore, π

is a permutation.

It remains to show that |Xi∆Yπ(i)| ≤ 2δn. Suppose |Xi − Yπ(i)| > δn. Then by lemma

2.4.2, e(Xi) ≥ e(X∗i , Xi − Yπ(i)) ≥ 3
4
n
k2
δn > ϑn2, which as before is a contradiction. Since
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Xi and Yπ(i) are interchangeable in the above proof, |Yπ(i) − Xi| ≤ δn as well, and so

|Xi∆Yπ(i)| ≤ 2δn.

As in [10], the above lemma immediately implies the following.

Lemma 2.4.6 (Lemma 6.11 in [10]). Each G ∈ Forb∗(n,H) has at most 2H(2δ)kn k-partitions

Π = (P1, . . . , Pk) such that Π results in at most ϑ(n+ `)2 bad edges, for any ` ≤ h.

Proof. This is because there are at most

(∑
i<2δn

(
n

i

))k

≤ 2H(2δ)kn

partitions of [n] at distance no greater than 2δn from a given partition.

2.5 Bad vertices of a graph

For β > 0, we say that a vertex v in a graph is β-bad with respect to an optimal partition

if there are at least βn bad edges between v and other vertices in its class. We shall show

that for β chosen in accordance with 2.2.1.12 almost every G ∈ Forb∗(n,H, ϑ, δ) contains

no bad vertex.

Definition 2.5.1. Let Forb∗(n,H, ϑ, δ, β) be the set of graphs G in Forb∗(n,H, ϑ, δ) con-

taining no β-bad vertex in any of the optimal partitions of V (G).

If a graph G ∈ Forb∗(n,H, ϑ, δ) with an optimal k-partition Π = (P1, . . . , Pk) contains a

β-bad vertex v, then by the optimality of the partition Π we know that |N(v)∩Pi| ≥ βn for

every sparse class Pi and |N(v) ∩ Pj| ≥ βn for every dense class Pj. The following lemmas

say that if both N(v) ∩ Pi and N(v) ∩ Pi are large for every 1 ≤ i ≤ k, then we can find an

induced copy of H in G. We need another embedding lemma first, Theorem 6.3 from [10]:

Lemma 2.5.2. For every m there exists n0, δ0 such that if n > n0 and δ < δ0 � β
m

then

for any graph G on n vertices and graph F on m vertices the following holds. Suppose
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X1, . . . , Xm are disjoint sets in V (G) with |Xi| = βn
m

such that for any pair Ui ⊂ Xi and

Uj ⊂ Xj with |Ui|, |Uj| ≥ δn, e(Ui, Uj) ≥ 1
4
|Ui||Uj| whenever ij ∈ E(F ) and e(Ui, Uj) ≤

3
4
|Ui||Uj| whenever ij /∈ E(F ). Then there is some choice of xi ∈ Xi such that {x1, . . . , xm}

induces F in G.

Lemma 2.5.3. Given G ∈ Forb∗(n,H, ϑ, δ) with an optimal partition Π = (P1, . . . , Pk),

then G contains no bad vertex v such that |N(v) ∩ Pi| > βn and |N(v) ∩ Pi| > βn for all Pi

except perhaps the class containing v.

Proof. Suppose there is such a vertex v and Π consists of s dense classes and t sparse classes.

At least one of s, t is nonzero so without loss of generality suppose that v is in P1 and P1 is

dense (a similar argument can be made if P1 is sparse). Because H is critical and (s, t) is a

witnessing pair with s ≥ 1 by Lemma 2.2.8 there is some graph F ∈ F(s− 1, t, H) such that

F is the disjoint union of a clique and a single vertex. Given a copy of F , and s− 1 cliques

and t independent sets, each on h vertices, there is some way to place edges between them

so as to induce a copy of H. Call such an embedding “proper”. Note that |V (F )| ≤ h.

Now, since N(v) ∩ P1 is large we can divide it into h sets, each of size at least βn
h

. For

1 < i ≤ k, N(v)∩Pi and N(v)∩Pi are all large, so we can divide each of those 2k−2 sets into

h sets of size at least βn
h

. Let these sets together with P1 ∩ N(v) be called X1, . . . , X2hk−h.

We can now use Lemma 2.5.2 with m = h− 1 and F = H[V (H)− {v}] to find an induced

copy of H in G. That is, we will find a clique in P1 ∩N(v), cliques in the remaining dense

classes, and independent sets in the remaining sparse classes such that everything respects

the “proper” embedding (and exactly one vertex is chosen from each Xi). Note that we will

not be using every set Xi, only those that correspond to vertices in the covering of H by

s− 1 cliques, t independent sets, and F .

To apply Lemma 2.5.2 we require that δ � β
h
. Because Lemma 2.4.6 requires that

8k2

3
ϑ < δ this implies β � 8hk2

3
ϑ, which 2.2.1.12 guarantees. Recall from 2.2.1.10 that

3
4
δ2 > ϑ. We suppose Xi and Xj are in the same dense class and that Ui ⊂ Xi, Uj ⊂ Xj
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with |Ui|, |Uj| = δn. Then e(Ui, Uj) ≥ 1
4
|Ui||Uj| = 1

4
δ2n2, otherwise there are more than ϑn2

edges missing from that dense class, which is a contradiction. Similarly, if Xi and Xj are

in the same sparse class then e(Ui, Uj) ≤ 3
4
|Ui||Uj|. Finally, if Xi and Xj are in different

classes then by the definition of Forb∗(n,H, ϑ, δ), we have 1
4
|Ui||Uj| ≤ e(Ui, Uj) ≤ 3

4
|Ui||Uj|.

Lemma 2.5.2 now provides the correct embedding, which is of course a contradiction.

Corollary 2.5.4. If G ∈ Forb∗(n,H, ϑ, δ, β) and Π = (P1, . . . , Pk) is an optimal partition

of V (G), then G contains no bad vertex x such that both N(x)∩Pi and N(x)∩Pi have sizes

at least βn for all but one i.

Proof. Suppose there is such a vertex, v. Without loss of generality, suppose that v is in

the dense class P1. Call Pi evenly partitioned if N(v) ∩ Pi and N(v) ∩ Pi both have size at

least βn. If P1 is the class that is not evenly partitioned, then Lemma 2.5.3 still applies.

Suppose that N(v) ∩ Pi and N(v) ∩ Pi are both large for 1 ≤ i < k; that is, Pk is the class

that is not evenly partitioned. If Pk is a dense class then |N(v)∩Pk| > βn, otherwise Π was

not an optimal partition. Since both N(v) ∩ Pi and N(v) ∩ Pi are large for i 6= k and v is

a bad vertex if v ∈ Pk, we can temporarily move v into Pk and apply the same proof as in

Lemma 2.5.3. A similar argument applies if Pk is a sparse class.

We need therefore only consider those graphs G for which an optimal partition Π results

in a bad vertex whose neighborhood leaves at least two classes of Π unevenly divided. The

following lemma says that almost all G ∈ Forb∗(n,H, ϑ, δ) do not meet that description.

Lemma 2.5.5. There exists ρ̂ = ρ̂(δ, β, ϑ) > 0 such that for all but at most (Cσn−1 +

1)2−ρ̂n|Q(n,H)| graphs G ∈ Forb∗(n,H, ϑ, δ), optimal partition Π = (P1, . . . , Pk), and bad

vertex x, there exists at most one i such that x /∈ Pi and |N(x)∩Pi| < βn if Pi is sparse, or

|N(x) ∩ Pi| < βn if Pi is dense.

Proof. We will count the number of graphs Gn for which there is a bad vertex having two

or more classes satisfying the conclusion of the lemma. Note that if G is such a graph, Π is
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such a partition, and x is such a bad vertex then G[V −{x}] is in Forb∗(n−1, H). Moreover

the partition Π when restricted to V − {x} still contains at most ϑn2 bad edges. In other

words, each such graph Gn is formed from some graph G′ ∈ Forb∗(n−1, H) with a partition

containing at most ϑn2 bad edges.

There are at most n ways to choose x and by Lemma 2.4.6 there are at most 2H(2δ)k(n−1) <

2H(2δ)kn ways to partition [n − 1] that result in a k-partition with at most ϑn2 bad edges.

There are at most k2 ways to choose the two classes, say P1 and P2. There are at most(n
k

+ (
√
ϑ log( 1

ϑ)
))n

βn

)2

≤ 22H(β)n ways to place edges between x and the classes P1 and P2.

The remaining k − 2 classes have no restrictions on their connections to x, so there are

at most 2(k−2)(n
k

+
√
ϑ log( 1

ϑ
)n) ways to connect x with them. Let ψ =

√
ϑ log( 1

ϑ
). The following

is an upper bound for the number of graphs we are considering.

nk2|Forb∗(n− 1, H)|2H(2δ)kn+2H(βk)n+(k−2)(n
k

+ψn)

≤ |Forb∗(n− 1, H)|2H(2δ)kn+2H(βk)n+(k−2)(n
k

+ψn)+2 logn

≤ (Cσn−1 + 1)|Q(n,H)|2−(1− 1
k

)n2H(2δ)kn+2H(βk)n+(k−2)(n
k

+ψn)+2 log(n)

= (Cσn−1 + 1)|Q(n,H)|2−ρ̂n,

where ρ̂ = ρ̂(n) = 1
k
−H(2δ)k − 2H(βk)− (k − 2)ψ − 2 log(n)

n
. We make use of (2.2) and the

inductive hypothesis (2.1), as well as Lemma 2.2.5. Recall that H(2δ) < 1
4k2

(from 2.2.1.10),

2H(βk) < 1
4k

(from 2.2.1.12), and ψ < 1
4k(k−2)

(from 2.2.1.9), and n is large enough that

2 log(n)
n

< 1
4k

(from 2.2.1.15), so ρ̂ is positive.

The following is now immediate, after fixing C, σ, δ, ϑ, β and n0 from the preceding lemmas.

Corollary 2.5.6. For all n > n0,

|Forb∗(n,H, ϑ, δ)− Forb∗(n,H, ϑ, δ, β)| < (Cσn−1 + 1)|Q(n,H)|2−ρ̂n.
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2.6 Bad edges

It remains to show that for almost all G ∈ Forb∗(n,H, ϑ, δ, β), there is some optimal k-

partition of the vertex set of G that produces no bad edges at all. If Π is an optimal

k-partition of V (G) and F is a subgraph of some part, with h = |V (F )|, then there is

a natural partition of each other part of Π into 2h classes based on neighborhoods of the

vertices of F . If each of these neighborhoods is large enough, then we can once again use

Lemma 2.5.2 to find an induced copy of H in G.

Lemma 2.6.1. Suppose G ∈ Forb∗(n,H, ϑ, δ, β), where ϑ, δ, β are chosen in Section 2.2.1

and n is large enough. Let Π = (P1, . . . , Pk) be an optimal partition of V (G) and suppose it

has s dense and t sparse classes. If xy ∈ G[Pi] is a bad edge and Pi is a dense class, then

the following holds. If F is an induced subgraph in Pi that has h vertices, including x and y,

and contains some graph from F(H, s− 1, t) as an induced subgraph then there exists some

j 6= i such that the natural partition of Pj induced by the vertices of F contains at least one

part with size smaller than
|Pj |
2h+1 . If Pi is a sparse class then an analogous statement is true

for an F ∈ F(H, s, t− 1).

Proof. Suppose the statement is false. Assume without loss of generality that i = 1 and P1

is a dense class and contains a missing edge (the proof is easily adapted if P1 is sparse and

contains an edge).

We will again apply Lemma 2.5.2 to obtain an embedding of H, which is a contradiction.

Since H is critical and n is large, any non-trivial graph on |P1| vertices contains some graph

in F(H, s − 1, t) as an induced subgraph. Fix one, say F̃ , and extend it to an induced

subgraph of P1 on h vertices, say F ; because F̃ ∈ F(H, s − 1, t) it has at most h vertices,

so this is possible. Now, there is some way to place edges between s − 1 copies of Kh, t

copies of Kh, and F so as to induce H; call such an embedding “proper”. Consider the

natural neighbourhood partition induced in each Pj by the vertices of F ; if we can find Kh

in each sparse class and Kh in each dense class such that the vertices of each are in whichever
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neighbourhood respects the proper embedding, then we have found an induced copy of H in

G. That would of course be a contradiction, since G is H-free.

If there is no j 6= 1 for which that the neighborhood partition of Pj contains a part with

fewer than |Pj|/2h+1 vertices, then we can find such an embedding. This is achieved through

another application of Lemma 2.5.2 in which X1, . . . , Xm are the neighborhood partition’s

parts, equally divided into h sub-parts, where m = kh2h, and δ < δ0 � β
kh2h

. Because

8k2

3
ϑ < δ, this last inequalities implies that 8k3h2h

3
ϑ � β, which 2.2.1.12 guarantees. Notice

that |Pi| ≥ n
k
− ψn for every i. By 2.2.1.12 and 2.2.1.9, 2β ≤ 1 − 1

4k−8
< 1 − kψ, and so

|Xi| ≥ |Pi|
h2h+1 ≥ βn

kh2h
. Recall that δ2 > 4ϑ

3
, by 2.2.1.10.

Consider a pair (Ui, Uj) such that Ui ⊂ Xi and Uj ⊂ Xj and |Ui|, |Uj| > δn. If Xi and

Xj are in different classes of Π then 1
4
|Ui||Uj| < e(Ui, Uj) <

3
4
|Ui||Uj|. If Xi and Xj are in

the same sparse class of Π then e(Ui, Uj) <
1
4
|Ui||Uj| ≤ 1

4
δ2n2, otherwise there are more than

1
4
δ2n2 > ϑn2 bad edges in that sparse class. Similarly, if Xi and Xj are in the same dense

class of Π then e(Ui, Uj) >
3
4
|Ui||Uj|. Consequently, by Lemma 2.5.2, there is a copy of Kh in

each dense class and a copy of Kh in each sparse class such that the vertices of each respect

the proper embedding, and cross-edges can be chosen properly, which is a contradiction.

Lemma 2.6.2. There exists ρ̃ > 0 such that for all but at most (1 + Cσn−h)|Q(n,H)|2−ρ̃n

graphs G ∈ Forb∗(n,H, ϑ, δ, β), there exists an optimal partition Π = (P1, . . . , Pk) of V (G)

containing no bad edge.

Proof. Suppose there is some graph G ∈ Forb∗(n,H, ϑ, δ, β) such that every optimal k-

partition of V (G) contains a bad edge. Fix some optimal k-partition Π; let s be the number

of dense classes in Π and t be the number of sparse classes in Π. Without loss of generality,

assume that P1 is a dense class and that there is a bad edge inside of P1. Since H is critical,

P1 contains some induced subgrah, F , on h vertices that contains a graph F̃ ∈ F(H, s, t)

(every graph in F(H, s, t) has at most h vertices). Removing the h vertices of F results in

a graph G′ ∈ Forb∗(n− h,H); it remains to count how many graphs G that contain a bad
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edge can be built from such a graph G′.

By Lemma 2.4.6 there are at most 2H(2δ)kn partitions of [n − h] that have at most ϑn2

bad edges. There are fewer than nh ways to choose the h vertices of F . It remains to count

how many ways these h vertices can be added to G′; that is, in how many ways these h

vertices can be connected to the other n− h.

There are fewer than βn bad edges incident with each of these vertices, so there are at

most
(
n/k+

√
ϑ log 1/ϑn
βn

)h
≤ 2H(βk)nh/k ways to connect them with vertices in their own class.

For sufficiently small β, H(βk)/k ≤ 2H(β).

By Lemma 2.6.1 there is some class of the partition Π, say Pi, for which the partition

induced by the neighborhoods of the h vertices contains a part with size less than |Pi|
2h+1 . Let

N be the small class in Pi; by Chernoff’s inequality,

Pr

(
|N | < |Pi|

2h+1

)
< exp

(
− |Pi|

2h+3

)
< 2−|Pi|/2

h+3

.

Consequently, there are at most 2h|Pi|−
|Pi|
2h+3 = 2|Pi|(h−

1

2h+3 ) ways to connect the h vertices to

Pi. There are at most 2(n−|P1|−|Pi|)h ways to connect the h new vertices with vertices outside

of P1 and Pi. Let ψ =
√
ϑ log(1/ϑ). In total, at most

2H(2δ)kn+h log(n)+2H(β)nh+(n− 2n
k

+2ψn)h+(n
k

+ψn)(h− 1

2h+3 ) (2.5)

“bad” graphs can be made from each graph in Forb∗(n − h,H). Let −ρ′ = H(2δ)k +

2H(β)h+ 4ψh− 1
k2h+3 − ψ

2h+3 , then (2.5) is at most

2(1− 1
k

)nh−ρ′n.

Because H(2δ) < 1
3k22h+3 (from 2.2.1.10), and H(β) < 1

6hk2h+3 (from 2.2.1.12), and ψ <

1
12hk2h+3 (from 2.2.1.9), and n is large enough that h log(n)/n < ψh (2.2.1.15) we see that

ρ′ > 0. Consequently, there are at most
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|Forb∗(n− h,H)|2(1− 1
k

)nh−ρ′n

“bad” graphs in Forb∗(n,H, ϑ, δ, β). By induction and by Lemma 2.2.6, the number of

“bad” graphs is therefore at most

(1 + Cσn−h)|Q(n− h,H)|2(1− 1
k

)nh−ρ′n ≤ (1 + Cσn−h)|Q(n,H)|2(1− 1
k

)(h2)−ρ′n

≤ (1 + Cσn−h)|Q(n,H)|2− 9
10
ρ′n,

for large enough n. Let ρ̃ = 9
10
ρ′.

We are now ready to complete the proof of the main theorem.

Proof of Theorem 2.1.10. From the triangle inequality,

|Forb∗(n,H)−Q(n,H)| ≤ |Forb∗(n,H)− Forb∗(n,H, ϑ)|+

+ |Forb∗(n,H, ϑ)− Forb∗(n,H, ϑ, δ)|+

+ |Forb∗(n,H, ϑ, δ)− Forb∗(n,H, ϑ, δ, β)|+

+ |Forb∗(n,H, ϑ, δ, β)−Q(n,H)|.

We have, however, found bounds on the size of each of these sets:

|Forb∗(n,H)− Forb∗(n,H, ϑ)| < 2(1− 1
k

)n
2

2
− ε

10
n2

(Lemma 2.3.3),

|Forb∗(n,H, ϑ)− Forb∗(n,H, ϑ, δ)| < 2(1− 1
k

)n
2

2
−ρn2

(Corollary 2.4.4),

|Forb∗(n,H, ϑ, δ)− Forb∗(n,H, ϑ, δ, β)| < (Cσn−1 + 1)|Q(n,H)|2−ρ̂n (Corollary 2.5.6),

|Forb∗(n,H, ϑ, δ, β)−Q(n,H)| < (Cσn−h + 1)|Q(n,H)|2−ρ̃n (Lemma 2.6.2).

It is obvious now that |Forb∗(n,H) − Q(n,H)| < 4T , where we T is the largest of the

four bounds above. Recall that |Q(n,H)| ≥ 2(1− 1
k

)(n2). We may therefore fix n0 large enough

so that if n > n0 then
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min{|Q(n,H)|2−ρ̂n, |Q(n,H)|2−ρ̃n} > max{2(1− 1
k

)n
2

2
− ε

10
n2

, 2(1− 1
k

)n
2

2
−ρn2}.

In that case, the first two bounds above are smaller than the second two. It now suffices to

show that

(Cσn−1 + 1)2−ρ̂n + (Cσn−h + 1)2−ρ̃n ≤ 1

2
Cσn, (2.6)

because then |Forb∗(n,H)−Q(n,H)| < Cσn|Q(n,H)|.

We now fix σ > max{2−ρ̂, 2−ρ̃} such that σ < 1, as in 2.2.1.14. This is possible, since

both 2−ρ̂ and 2−ρ̃ are smaller than 1. Since C is chosen in Section 2.2.1 to be large enough

to make the statement of Theorem 2.1.10 true for n ≤ n0, we may assume that C > 8. Now,

for n > n0,

Cσn−12−ρ̂n < Cσn−1 1
8
σ = 1

8
Cσn

Cσn−h2−ρ̃n < Cσn−h 1
8
σh = 1

8
Cσn

2−ρ̂n < σn < 1
8
Cσn

2−ρ̃n < σn < 1
8
Cσn,

so (2.6) is true. This completes the proof of Theorem 2.1.10.
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Chapter 3

Online Ramsey Games for Triangles
in Random Graphs

In the k-color online F -avoidance edge-coloring game, a graph on n vertices is generated

by at each stage randomly adding a new edge. The player must color each new edge as it

appears; her goal is to avoid a monochromatic copy of F . Let N0(F, k, n) be the threshold

function for the number of edges that the player is asymptotically almost surely able to paint

before she loses. Even when F = K3, the order of magnitude of N0(F, k, n) is unknown for

k ≥ 3. In particular, the only known upper bound prior to the results in this chapter is

the threshold function for the number of edges in the offline version of the problem. In the

offline game, an entire random graph on n vertices with M edges is presented to the player

to be k edge-colored. In this chapter, we improve the upper bound for the k-color online

triangle-avoidance game.1 This is the first result that separates the online threshold function

from the offline bound for k ≥ 3. This also supports a conjecture of Marciniszyn, Spöhel,

and Steger [57] that the known lower bound is tight for cliques and cycles for all k.

3.1 Introduction

Hales and Jewett studied a class of combinatorial game that they called “positional games” [45].

A positional game is played between two players on a board, which is some set. Winning

is determined by a family of subsets of the board set. The two players take turns claiming

elements (according to the rules of the game), and the first player to acquire all elements

of a subset in the winning family wins the game. If all elements are claimed before either

1This work appeared in Discrete Mathematics in 2010 [13].
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player wins then the game is a draw. Tic-tac-toe is an example of a positional game, and

the Hales-Jewett paper focused mainly on variations of tic-tac-toe.

Remark: There are also combinatorial games played on a graph in which each player

only temporarily claims an element. Pursuit games such as the cops and robber game are

an example [1]. In the cops and robber game, one player (the robber) can claim one vertex

at a time while the other player (the cops) can claim some fixed number of vertices, with

repetition. In each turn, the robber can move his claim to an vertex adjacent to his previous

claim, while the cop can similarly move each of her claims to an adjacent vertex. The cop

wins if she ever claims a vertex currently claimed by the robber. This game was recently

studied by Bollobás, Kun, and Leader [22] in a random graph setting. The author has

studied another pursuit game, the revolutionaries and spies game, which was suggested by

Beck and studied by Howard and Smyth [46] and by Butterfield, Cranston, Puleo, Zamani,

and West [27].

Beck [19] defines a Combinatorial Game to be a 2-player zero-sum game of skill (no

chance moves) with complete information such that the game can end only in one of three

possible states for each player: win, draw, lose. Many of the winning families in the above

graph parameter games have a Ramsey flavor. Erdős and Selfridge considered a positional

game that they actually called the Ramsey game, in which two players take turns claiming

one edge at a time from Kn and the first player to claim all edges of a copy of Kk wins [38].

In the more general class of combinatorial games we find games in which the two players

have different goals. For example, Player 1 could be trying to claim all edges of a copy of

Kk while Player 2 tries to prevent Player 1 from succeeding. We can also consider games in

which the two players have different types of moves available to them. Beck introduced one

such game [18], which was further explored by Grytczuk, Ha luszczak, and Kierstead [44].

This game is played between two players, Builder and Painter. In each turn, Builder chooses

a new edge from Kn and then Painter must color the edge with one of k colors. Painter

loses when she has created a monochromatic copy of some fixed target graph H. If n is
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sufficiently large and Builder’s moves are unrestricted, then classical Ramsey theory implies

that Builder can win the above game by presenting a sufficiently large complete graph. We

therefore restrict Builder’s available moves by requiring that the underlying subgraph of Kn

that he presents is always an element of a fixed graph family H. This is the k-color online

Ramsey game (F,H).

Recall that the Ramsey number of a graph, R(F ), is the least n such that there exists a

graph H having n vertices for which H → F . More generally, R(F ; k) = min{|V (H)| : H k→

F}. In the special case when F is the complete graph Kn we write R(n; k) instead of

R(Kn; k) and R(n) instead of R(Kn; 2). Let ρ be some graph parameter, such as maximum

degree, and let

H = {G : ρ(G) ≤ s}

for some fixed s. For example, H could be the family of graphs with maximum degree D.

We can then consider the k-color online Ramsey game (F,H), obtaining an online analogue

of any parameter Ramsey number. Butterfield, Grauman, Kinnersley, Milans, Stocker, and

West studied the online degree Ramsey number of trees and cycles [28].

Recall that Beck’s definition requires a combinatorial game to be a game of skill, by

which he means there are no chance moves [19]. In recent years, many classical problems

in combinatorics have been considered in a sparse (i.e. random) setting. Babai, Simonovits,

and Spenser began this study for graphs [8], by asking how many edges an F -free subgraph

of the random graph can contain. Kohayakawa,  Luczak, and Rödl [51] studied arithmetic

progressions in sparse sets, and so began the study for additive structures. Recent results

of Conlon and Gowers [30] and Schacht [71] provide a general theory for attacking such

problems, and sparse analogues of many classical theorems are now known. In particular,

Conlon and Gowers [30] proved the following Ramsey-type result about the random hyper-

graph Gr(n, p). An r-uniform hypergraph F is said to be strictly r-balanced if for every

subgraph G of F it is the case that
e(F )− 1

v(F )− r
>
e(G)− 1

v(G)− r
.
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Theorem 3.1.1 ([30]). For every k ∈ N and any strictly r-balanced r-uniform hypergraph

F , there exists a positive constant C such that if p > Cn−1/mr(F ) then the following is almost

surely true. Every k-coloring of the edges of Gr(n, p) has a monochromatic copy of F .

Friedgut, Kohayakawa, Rödl, Ruciński, and Tetali [41] similarly studied a sparse version

of the online Ramsey game. They defined a one-player game in which edges are presented

one by one in an order chosen uniformly at random. The player must color each edge as it is

presented, trying to avoid a monochromatic triangle. Marciniszyn, Spöhel, and Steger [57]

generalized this game:

Definition 3.1.2. The k-color F -avoidance edge-coloring game is a one-player game in

which edges of Kn are presented one by one in an order chosen uniformly at random. The

player colors each edge as it appears with one of k colors. The player loses when she has

created a monochromatic copy of the target graph F .

In these one-player coloring games, we call the player Painter. If n is sufficiently large,

then Painter will certainly lose the F -avoidance edge-coloring game after enough steps. Let

k be a fixed positive integer, and let n approach infinity. We will call N0(F, k, n) a threshold

function for the H-avoidance game if for N � N0(F, k, n) there exists a strategy such that

the player almost surely wins the game played with N edges by following the strategy, and

for N � N0(F, k, n) the player almost surely loses the game played with N edges. In [41] it

was proved that if F is a triangle then N0(F, 2, n) = n4/3 and N0(F, 3, n) ≥ n7/5, although

the authors commented that their proof of the latter inequality can be improved to give the

lower bound n13/9.

To find an upper bound for N0(F, k, n), we shall consider an offline version of the game.

Recall that G(n,M) is the random graph on n vertices having M edges; Painter must color

the edges of G(n,M) with k colors. The following theorem provides a threshold function

for the offline game; because Painter has more information available to her when choosing

colors in the offline game, this yields an upper bound for N0(F, k, n). Recall that m2(F ) =
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maxG⊆F
e(G)−1
v(G)−2

.

Theorem 3.1.3 ([55],[68],[69]). Fix an integer k ≥ 2 and a graph F that is not a star forest

or, if k = 2, a forest of stars and paths with three edges. Let P be the graph property that

any k-coloring of the edges of H results in a monochromatic copy of F . Then there exist

constants c and C, depending only on F and k, such that

lim
n→∞

P[G(n,M) ∈ P ] =

 1 if M > Cn2−1/m2(F ),

0 if M < cn2−1/m2(F ).

Marciniszyn, Spöhel, and Steger [57] proved that for every graph F and integer k ≥ 1,

the threshold N0(F, k, n) exists and

lim
k→∞

lim
n→∞

logN0(F, k, n)

log n
= 2− 1

m2(F )
. (3.1)

In particular, the following is known for F = K3.

Theorem 3.1.4. If k ≥ 1, then the k-color online K3-avoidance edge-coloring game has a

threshold function N0(K3, k, n) that satisfies

N0(K3, 2, n) = n
4
3 , (3.2)

n
3
2(1− 1

3k
) ≤ N0(K3, k, n) ≤ n

3
2 . (3.3)

The lower bound in (3.2) is from [57], and the upper bound is from [41]. The upper bound

in (3.3) is from Theorem 3.1.3. To prove the lower bound in (3.3), Marciniszyn, Spöhel, and

Steger [57] consider a greedy strategy: as each edge is presented Painter colors it with color i

if and only if for every j with i < j ≤ k using color j would close a monochromatic triangle,

but using color i does not. In fact, they prove a more general lower bound for a general graph

F , using a variant of a greedy strategy in which for each color Painter avoids a particular

subgraph of F . To state this strategy they consider the following parameter, which is related
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to m2(F ).

mk
2(F ) =


max
G⊆F

e(G)

v(G)
if k = 1,

max
G⊆F

e(G)

v(G)− 2 + 1/mk−1
2 (F )

if k ≥ 2.
(3.4)

Now, given a non-empty graph F , let Gr(F ) be a subgraph of F that achieves equal-

ity in the above definition. That is, e(G1(F ))/v(G1(F )) = m1
2(F ), and if k ≥ 2 then

e(Gk(F ))

v(Gk(F ))−2+1/mk−1
2 (F )

= mk
2(F ). Painter will play according to the following strategy, which

we will call the “cunning” greedy strategy. First she orders the colors arbitrarily, calling

them c1, . . . , ck. As each edge appears, among {c1, . . . , ck} Painter will use the greatest-

indexed color, ci, that does not close a monochromatic copy of Gi(H). The greatest color is

used, rather than the least, because Marciniszyn, Spöhel, and Steger [57] use the definition

of mk
2(F ) to determine the number of edges that Painter can color by using this strategy.

Painter surrenders the game when she is forced to create a copy of G1(F ) that is monochro-

matic in color c1. Because G1(F ) is not necessarily isomorphic to F , Painter could continue

playing until she is actually forced to create a monochromatic copy of F , but it turns out

that she will have colored asymptotically the same number of edges as in this strategy. The

cunning greedy strategy results in the following bound on N0(F, k, n).

Theorem 3.1.5 ([57]). Let F be a graph that is not a forest. For k ≥ 1, the threshold for

the k-color online F -avoidance edge-coloring game satisfies

N0(F, k, n) ≥ n
2− 1

mk2(F ) .

In particular, if F is not a forest and m2(F ) = (e(F )− 1)/(v(F )− 2), then

N0(F, k, n) ≥ n(2−1/m2(F ))(1−e(F )−k).

Note that mk
2(F ) approaches m2(F ) as k approaches infinity, consistent with Equa-
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tion (3.1). If m2(F ) = (e(F ) − 1)/(v(F ) − 2) then we call F strictly balanced and the

above strategy can be simplified. Both cliques and cycles are strictly balanced. In a sep-

arate paper, Marciniszyn, Spöhel, and Steger [58] proved that if k = 2 then the bound in

Theorem 3.1.5 is tight for F in a large class of graphs, which includes K` and C` for every

` ≥ 2.

Theorem 3.1.6. Let F be a graph that is not a forest. If F has a subgraph F ′ with e(F )−1

edges such that

m2(F ′) ≤ m2
2(F ),

then the threshold for the online F -avoidance edge-coloring game with 2 colors satisfies

N0(F, 2, n) = n2−1/m2
2(F ).

In particular, when F = K3 Theorem 3.1.6 yields the bounds in Equations (3.2) and (3.3).

The cunning greedy strategy is not optimal for every graph, however. For example, if k = 2

and F is the graph formed by two triangles sharing one vertex, then this strategy provides

the bound N0(F, 2, n) ≥ n25/18, while a different strategy improves it to N0(F, 2, n) ≥ n17/12.

In [57] it was conjectured that the above greedy strategy is optimal for K3 and any number

of colors. In fact, Marciniszyn, Spöhel, and Steger [58] conjecture that it is optimal for any

clique and any cycle.

Conjecture 3.1.7. For ` ≥ 2 and k ≥ 1, the threshold for the k-color online K`-avoidance

edge-coloring game is

N0(K`, k, n) = n(2− 2
`+1)

(
1−(`2)

−k)
.

If ` ≥ 3, then in addition the threshold for the k-color online C`-avoidance edge-coloring

game is

N0(C`, k, n) = n(2− `−2
`−1)(1−`−k)
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Recall the two-player online Ramsey game (F,H) of Grytczuk, Ha luszczak, and Kier-

stead [44]. Belfrage, Mütze, and Spöhel [20] connected the two-player online game with the

one-player game. Let Hd denote the family of graphs for which every subgraph G satisfies

e(G)/v(G) ≤ d.

Theorem 3.1.8 ([20]). Let F be a graph with at least one edge, and let k ≥ 2. If d > 0 is

a real number such that Builder has a winning strategy in the k-color online Ramsey game

(F,Hd), then the threshold for the k-color F -avoidance edge-coloring game satisfies

N0(F, k, n) ≤ n2−1/d.

The density-constrained Builder is not equivalent to the random graph in the one-player

game. However, Belfrage, Mütze, and Spöhel [20] prove that with high probability the

random graph will “accidentally” play an optimal density-constrained Builder strategy. This

is partially because low-density graphs are likely to appear in the random graphs, and with

some additional work it can be proved that the low-density graph appears in the correct

order to respond to Painter’s color choices.

Remark: When F is a forest, Belfrage, Mütze, and Spöhel [20] proved that N0(F, k, n)

is in fact equal to n2−1/d0 , where d0 is the least d such that Builder can win the k-color

online Ramsey game (F,Hd). In general, however, it is not known whether the bound in

Theorem 3.1.8 is tight in the edge-coloring game. Recently, Mütze, Rast, and Spöhel [59]

proved a theorem analogous to Theorem 3.1.8 for a vertex-coloring version of the one-player

game. In the vertex-coloring game, the vertices of G(n, p) are revealed one-at-a-time along

with the edges incident with already-revealed vertices. The player must color each vertex

as it appears with one of k available colors, and she loses if she creates a monochromatic

copy of some fixed target graph F . We then seek to determine the threshold, p0(F, k, n), for

the value of p for which the player can win the vertex-coloring game. The vertex-coloring

game is in general more approachable than the edge-coloring game, and Mütze, Rast, and
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Spöhel [59] completely determined p0(F, k, n). Let m∗1(F, k) be the infimum over all d such

that Builder has a winning strategy in the k-color online vertex-coloring game with density

restriction d. Then Mütze, Rast, and Spöhel [59] proved that for any graph F with at least

one edge and any fixed integer k with k ≥ 2, the threshold p0(F, k, n) is equal to n−1/m∗1(F,k).

A similar result in the edge-coloring game would be very interesting.

In our main theorem, we use Theorem 3.1.8 to improve the upper bound from Theo-

rem 3.1.4 in the K3-avoidance edge-coloring game for any number of colors. This is the

first result that separates N0(K3, k, n) from the offline bound provided by Theorem 3.1.3 for

k ≥ 3. While there is still a gap between our upper bound and the lower bound in (3.3),

this result supports Conjecture 3.1.7.

Theorem 3.1.9. For k ≥ 3, there exists a positive constant ck such that

N0(K3, k, n) ≤ n
3
2
−ck .

For k = 3, we present a strategy for Builder in the online Ramsey game (K3,H42/22) with

three colors. Because c3 from Theorem 3.1.9 is strictly greater than 42/22, this results in an

upper bound that is smaller than n
3
2
−c3 . It is possible that Builder has no winning strategy

in the online Ramsey game (K3,Hd) with three colors for d < 42/22.

Theorem 3.1.

n
3
2
− 1

18 ≤ N0(K3, 3, n) ≤ n
3
2
− 1

42 .

The lower bound in Theorem 3.1 follows from (3.3) with k = 3.

We prove Theorem 3.1 in Section 3.2 and Theorem 3.1.9 in Section 3.3.
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3.2 The game with three colors

We prove Theorem 3.1 by providing a strategy for Builder in the 3-color online Ramsey

game (K3,H42/22), which with Theorem 3.1.8 yields an upper bound of n3/2−1/42.

Proof. First we present the strategy; we will check later that it satisfies the density restric-

tion.

Algorithm:

• Phase I:

– Step 1: Builder plays the edges of a star with center x and 25 leaves, and allows

Painter to color the edges. There will be at least nine edges in one color, say blue.

Label the non-x endpoints of nine of them y1, . . . , y9.

– Step 2: For each i, Builder gives 13 children to yi, using new vertices, and lets

Painter paint those edges. For each i, there is some ‘majority color’ such that yi

has at least five children whose edges to yi receive the majority color. If there

exist yi1 , yi2 , yi3 having the same majority color other than blue, then move to

Phase III.

– Step 3: If this step is reached, at most four of {y1, . . . , y9} do not have majority

color blue, so there are five whose majority color (on edges to children) is blue.

Without loss of generality, assume they are y1, y2, y3, y4, y5. Move to Phase II.

• Phase II: Set j = 1.

– Step 1: For 1 ≤ j ≤ 5, Builder gives 13 children, using new vertices, to each of

five children of yj whose edges to yj are blue. If some child of yj has majority

color blue, call that child zj (if there is more than one such child of yj, choose one

arbitrarily). If for any 1 ≤ j ≤ 5 there is no such zj then there are three children
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Figure 3.1: Phase I, step 3 of the 3-color algorithm; edges from x are blue and each yi has
13 children.

of yj whose majority color is red, or three whose majority color is green. In that

case, move to Phase III.

– Step 2: If this step is reached, then Builder adds the edges {xzj}5
j=1 and lets

Painter paint them. If any of those edges is painted blue, then {x, yj, zj} forms a

blue triangle. Consequently, at least three of the xzj edges must have the same

color, red or green. Move to Phase III.

• Phase III: When this phase is reached, there is some rooted tree with root r that has

three children c1, c2, c3, each with five children {ai,j}5
j=1 for 1 ≤ i ≤ 3. Additionally,
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Figure 3.2: Phase II, step 1 of the 3-color algorithm. Edges from x are blue and each yi has
at least 5 children via blue edges. Pictured are the two possible outcomes.

edges of the form rci are all in one color (say red) and edges of the form ciai,j for any

i, j are all in another color (say blue).

– Step 1: Builder adds the edges {c1a3,j}5
j=1, {c2a1,j}5

j=1, and {c3a2,j}5
j=1. This

connects c1 to each child of c3, c2 to each child of c1, and c3 to each child of c2.

If there is a blue edge from c1 to a child of c3, as well as a blue edge from c3 to a

child of c2 and a blue edge from c2 to a child of c1, then move to step 2. Otherwise

move to Phase IV.

– Step 2: If this step is reached, there is a blue cycle of the form c1a1,j1c2a2,j2c3a3,j3c1.
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x

z1 y1 z5 y5

Figure 3.3: Phase II, step 2 of the 3-color algorithm; children of yi other than zi not pictured,
for simplicity.

r

c3

c2

c1

Figure 3.4: Phase III, step 1 of the 3-color algorithm; edges from r to c1, c2, c3 are blue while
edges from ci to its children are red. Remaining edges are not yet colored.

In this case, Builder presents the edges c1c2, c2c3, c1c3. Painter now cannot avoid

making a monochromatic triangle.

• Phase IV: If this phase is reached, then there exists i and j with i 6= j and three

vertices that are connected to ci by blue edges and to cj by red (or green) edges. In

this case, Builder presents the edges of the triangle on those three vertices, and Painter

now cannot avoid making a monochromatic triangle.

It remains to check that this strategy is permissible in the online Ramsey game (K3,H42/22)

with three colors. Let H be the graph at the end of the game. Among all densest subgraphs

of H, let G be chosen to be inclusion-minimal. Obviously G is connected, otherwise some
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Figure 3.5: Beginning of Phase III, step 2 of the 3-color algorithm; a blue cycle is formed.

component of G has density at least as high, contradicting the minimality of G. With some

case analysis it can be checked that H contains no subgraph G with e(G)/v(G) ≥ 2; the idea

is that if we iteratively remove a vertex with degree at most 2 then we obtain a single edge,

which is a graph with density less than 2. If G is a forest then its density is strictly less than 1,

which is less than 42/22. If G1 is a connected graph that is not a tree and G′1 is obtained from

G1 by adding a pendant edge, then e(G′1)/v(G′1) = (e(G1) + 1)/(v(G1) + 1) ≤ e(G1)/v(G1).

Consequently, G contains no pendant edge.

On the other hand, if G2 is a connected graph that is not a tree and G′2 is obtained from

G2 by adding a vertex that is connected to two distinct vertices in G2, then e(G′2)/v(G′2) =

(e(G2) + 2)/(v(G2) + 1). If e(G2)/v(G2) < 2, then (e(G2) + 2)/(v(G2) + 1) > e(G2)/v(G2).

Consequently, if G is an inclusion-minimal densest subgraph of H, then every vertex outside

of G has at most one neighbor in G.

If Phase II terminates before step 2, then the tree in Phase III has root yj for some

1 ≤ j ≤ 5. Now, step 1 of Phase III creates 15 vertices of degree 2 whose neighborhoods

are connected. Consequently, G is densest if either Phase IV is never reached or Phase IV

is reached at the end of step 1. In either case, G is a subgraph of one of the graphs in
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Figure 3.6. It has 19 vertices: the root and its three children, and 15 vertices of degree 2.

It has 36 edges: three from the root, three in the final triangle, and 30 from the vertices of

degree 2. With some work, using the fact that if x /∈ V (G) then x has at most one neighbor

in G, one can check that both graphs in Figure 3.6 are strictly balanced. The density of G

is therefore at most 36/19, which is less than 42/22.

Figure 3.6: Larger vertices indicate position of final triangle.

If on the other hand Phase II reaches step 2, then the tree in Phase III has root x and

children from {zj}5
j=1. Again, a densest subgraph F will occur if either Phase IV is never

reached or Phase IV is reached at the end of step 1. This time, however, for each zj that is a

child in the tree there is a vertex yj connected to both x and zj. Note that if e(G)/v(G) ≤ 3/2,

then the density restriction is satisfied. If on the other hand e(G)/v(G) > 3/2, then there

is no triangle in H having exactly one vertex in V (G), as removing such a triangle would

increase the density: (e(G)− 3)/(v(G)− 2) > e(G)/v(G). Consequently, G is a subgraph of

one of the graphs in Figure 3.7, both of which are strictly balanced.

A densest subgraph in this case therefore has density at most 42/22.

The following lemma is due to Grytczuk, Ha luszczak, and Kierstead [44]; they proved it

only for the two-color game, but their proof easily generalizes to the k-color game.
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Figure 3.7: Larger vertices indicate position of final triangle.

Lemma 3.2.1. If F is the family of all forests and F ∈ F , then there exists a strategy for

Builder to win the k-color online Ramsey game (F,F).

Proof. It suffices to prove the claim for trees. We will prove the claim using induction on

the number of vertices in the tree and the number of colors available. The claim is obviously

true for any number of colors and the only tree with two vertices, K2: Builder need only

present a star with k + 1 edges. The claim is also obviously true for one color and any

tree: Builder simply presents the tree, and Painter must make it monochromatic in the one

available color. Suppose that T be a tree with n vertices, and let x be a leaf. Let y be the

neighbor of x. Let T ′ be the tree formed from T by deleting x. By induction, Builder has

a winning (T ′,F) strategy in the k-color game. By induction, Builder also has a winning

(T,F) strategy in the k − 1-color game.

By the pigeonhole principle, Builder can therefore force Painter to produce m disjoint

copies of T ′, for any m, that are monochromatic in the same color, say red. Say the copies

are T ′1, T
′
2, . . . , T

′
m, and let y′i be the vertex in T ′i that corresponds to y. Let m be the number

of vertices needed in Builder’s winning (T,F) strategy with k − 1 colors. Builder can play

this strategy on the vertices y′1, . . . , y
′
m. If Painter makes any of these edges red, then Builder

wins. If Painter avoids using red, then Builder wins by using his k − 1 strategy to force a
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monochromatic copy of T . Builder obviously introduced no cycles in this process, since he

uses only one vertex from each tree T ′i .

An implication of Lemma 3.2.1 is that Builder can win the k-color online Ramsey game

(F,H1) when F is a forest, because every forest has density less than 1. This can be

used to provide an alternative proof that Builder can win the 3-color online Ramsey game

(K3,H42/22): Builder can force a monochromatic tree with root x such that x has five

children y1, . . . , y5, each of which has one child which itself has five children. This is exactly

the tree that our strategy requires for Phase II, step 2; Builder can therefore proceed with

our strategy, starting with Phase II, step 2.

3.3 The game with many colors

We prove Theorem 3.1.9 by providing a strategy for Builder in the k-color online Ramsey

game (K3,Hd), for some d < 2. The strategy is along the lines of a method from [44].

Proof. Let Si be Builder’s strategy to force a triangle in the two-player game with i colors,

and let mi be the number of vertices Builder needs for strategy Si. The strategy S1 is

obvious, and m1 = 3. We will define Sk recursively in terms of Sk−1. Builder begins with

two large sets of vertices, X1 and Y1 (their size will be determined by what follows). In

Phase 1, Builder will place edges only between X1 and Y1.

For each step in Phase 1, Builder chooses k + 1 vertices in Y1 and one vertex in X1 and

presents the k + 1 edges between them. Painter must paint at least two of these r edges

with the same color; Builder will discard and never reuse the k− 1 vertices from Y1 that are

not painted with the majority color (if more than two edges get the same color, Builder still

discards k − 1 vertices). Discarded vertices will never be used again; vertices from X1 will

also never be reused.

Builder maintains an auxiliary edge-colored graph Aux(Y1) whose vertex set is Y1 and
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whose edges are the pairs of vertices kept at each stage, and whose color is the color of their

edges to X1. For example, if Builder’s first move is to place the edges xy1, . . . , xyk+1 and

Painter paints xy1 and xy2 red then Builder will discard {y3, . . . yk+1} and will add the red

edge y1y2 to his auxiliary graph. Builder does not present any edge from his auxiliary graph,

and so these edges do not contribute to density. If yy′ is a red edge in the auxiliary graph

then there exists a vertex x ∈ X1 such that xy and xy′ are both red, so if Builder were

to present the edge yy′ then Painter would not be able to paint it red without creating a

monochromatic triangle.

Claim 1: Builder can force an arbitrarily large, not necessarily monochromatic, star in the

auxiliary graph.

Proof. This follows from induction on the number of leaves in the star. Builder can force a

star with one leaf because he forces an edge in each step. Suppose he can force a star with

s−1 leaves. He can therefore also force k+1 disjoint stars, each with s−1 leaves, by playing

this star-forcing strategy repeatedly. Suppose the centers of these stars are y1, y2, . . . , yr+1;

Builder can then choose a new vertex x ∈ X1 and present the edges {xy1, . . . , xyk+1}. At least

two will be given the same color, say xy1 and xy2, and so Builder adds y1y2 to his auxiliary

graph. Adding this edge to the star with center y1 results in a star with s leaves.

Claim 2: Builder can force an arbitrarily large, not necessarily monochromatic, clique in

the auxiliary graph.

Proof. This follows from Claim 1 by induction on the number of vertices in the clique. We

already verified that Builder can force K2, which is a star with one edge. Suppose Builder can

force Km−1, and suppose his strategy to do so involves sm−1 vertices from Y1. By Claim 1,

Builder can force a star with sm−1 leaves. He can then play his strategy to force Km−1 on

the leaves of the star, resulting in a copy of Km.
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Let m be the Ramsey number Rk(mk−1); by Claim 2 Builder can force a clique on m

vertices in the Aux(Y1). This clique will contain a monochromatic (say, red) copy of Kmk−1
;

let Y ′1 be the vertices of this red Kmk−1
. See Figure 3.8. If Builder presents any edge among

these vertices Painter may not color it red without creating a red triangle.

Builder may therefore play strategy Sk−1 on these mk−1 vertices. Strategy Sk−1 consists

of k − 1 phases, which will be Phases 2 through k in strategy Sk. He begins by splitting

these mk−1 vertices into two sets, Y2 and X2, each sufficiently large for what follows; this is

the beginning of Phase 2. At the end of Phase 2, Builder will have obtained a set of mk−2

vertices in Y2 such that Painter can make no edge between them, say, blue (and Painter

can still not make them red). Builder may therefore play strategy Sk−2 among these mk−2

vertices; this is Phase 3. By the end of Phase k − 1, Builder will have obtained a set of

m1 = 3 vertices in Yk−1 such that Painter can only make edges between them, say, green.

These three vertices are Yk, and Xk is an empty set. Builder therefore wins if he presents

the three edges spanned by Yk; this is Phase k. Phases 1 through k together form strategy

Sk. Notice that Xj, Yj ⊆ Yj−1 for all 2 ≤ j ≤ k and that Xj ∩ Yj = ∅ for all j ∈ [k].

X1 Y1

Y ′1

Figure 3.8: The k-color algorithm. Every vertex in X1 has k + 1 neighbours in Y1, and two
of the edges share a color. Every pair of vertices in Y ′1 has a common neighbour in X1 via
red edges.

It remains to show that throughout the course of the game Builder never creates a
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graph with density 2 or higher. Note that the game, and therefore the graph, is finite. If

1 ≤ j ≤ k−1 then in Phase j of the game Builder places edges only between Xj and Yj. For

the purpose of analysis, we will orient these edges in the following way. If x ∈ Xj is used in

phase j then x has exactly k + 1 neighbours in Yj, because x is used only once. Of these,

k− 1 are discarded for having minority colors and never used again; orient those edges from

Xj to Yj and orient the remaining two edges from Yj to Xj (see Figure 3.8). If y ∈ Yj and

y has non-zero in-degree then y is discarded at some point during Phase j. At the end of

Phase j, therefore, vertices in Xj have in-degree 2 or 0 and vertices in Yj have in-degree 1

or 0. Moreover, if y ∈ Yj has in-degree 1 then it is never used again in any phase.

Because Xj and Yj are chosen from non-discarded vertices of Yj−1, at the beginning of

phase j each vertex in Xj∪Yj has zero in-degree. By the end of Phase k−1, therefore, every

vertex in the graph has in-degree at most 2, and vertices in Yk have in-degree 0. Phase k

consists of placing the edges of a triangle in Yk; orient these to be a directed cycle. Now

vertices in Yk have in-degree exactly one.

If there is a subgraph F in the final graph whose average in-degree is at least 2, then

every vertex in F has in-degree exactly 2. This implies that F contains an oriented cycle.

The only oriented cycle in the graph is the final triangle, however, and these vertices have

in-degree 1, which is a contradiction. Consequently, e(F ) < 2v(F ), as desired.

3.4 Open problems

The strategy we present in Section 3.3 is unlikely to be optimal, which is why we do not com-

pute the exact density. An improved strategy would yield a better bound onN0(K3, k, n), but

it is as yet unknown whether the upper bounds on N0(F, k, n) obtained from Theorem 3.1.8

are optimal.

It is also important to determine the least d for which there is a winning strategy for
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Builder in the 3-color online Ramsey game (K3,Hd). It is possible that the strategy we

present in the proof of Theorem 3.1 is optimal, in the sense that d = 42/22 is the least d

for which Builder can win. If this is the case, then either N0(K3, 3, n) = n
3
2
− 1

42 (in other

words, the bound in Theorem 3.1 is tight), or the bounds given by Theorem 3.1.8 are not

always tight. In the former case, this would disprove Conjecture 3.1.7. In the latter case,

this would prove that the edge-coloring game is different from the vertex-coloring game in a

significant way, since the vertex-coloring version of Theorem 3.1.8 is known to be tight [59].

Let Sk be the family of graphs whose maximum degree is at most k. Of course graphs

with low maximum degree must have low density, and so it is natural to wonder whether

Builder strategies in the 3-color online Ramsey game (K3,Sr) may help to produce Builder

strategies in the (K3,Hd) game. Butterfield, Grauman, Kinnersley, Milans, Stocker, and

West [28] considered the 2-color online Ramsey game (H,Sk). For triangles in particular,

they proved that there is a strategy for Builder to win the (K3,S4) game but that for k < 4

Painter can always win the (K3,Sk) game played with 2 colors. The graphs formed by

this strategy, however, [28] have rather high density. Belfrage, Mütze, Spöhel [20] present

a strategy for Builder in the (K3,H3/2) game, but their strategy produces a graph with

maximum degree 6 (not 4). It is therefore unlikely that good Builder strategies in the

(K3,Sr) game with 3 colors will lead to good Builder strategies in the (K3,Hd) game with

3 colors.
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Chapter 4

Extremal F5-free subgraphs of G3(n, p)

4.1 Introduction

Recall that ex(n,H) is the maximum number of edges a graph in Forb(n,H) can contain.

Alternatively, this can be expressed as the maximum number of edges a subgraph of Kn can

have without containing a copy of H. If χ(H) = k + 1, then no k-partite subgraph of Kn

can contain a copy of H. More generally, we can consider any graph on n vertices, not only

Kn. We then ask: For fixed graphs G and H, where χ(H) = k + 1, does the largest (with

respect to number of edges) k-partite subgraph of G have the same number of edges as the

largest subgraph of G that does not contain H?

As in Chapter 3, we will consider a sparse version of this question. Babai, Simonovits,

and Spencer [8] considered the following sparse problem. For a fixed H with χ(H) = 3, let

F (n, p;H) denote the largest (with respect to number of edges) subgraph of G(n, p) that

does not contain H, and let B(n, p) denote the largest bipartite subgraph of G(n, p). With

F = F (n, p;H) and B = B(n, p), we have |E(F )| ≥ |E(B)|, since H is not a subgraph of

B. Babai, Simonovits, and Spencer [8] proved that for any 3-chromatic H and any fixed

p ∈ (0, 1),

|E(B)| ≤ |E(F )| ≤ |E(B)|+ 2ex(n,S) +O(n),

where S is the family of all induced subgraphs of H whose deletion results in an independent

set. In the special case of H = K3, the family S is simply {K2}, and they were able to prove

the more precise result that if H is the triangle and p = 1/2 then in fact the largest H-free
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subgraph of G(n, 1/2) almost surely has the same number of edges as the largest bipartite

subgraph, and in fact is almost surely bipartite itself. This is one of the earliest examples of

a sparse version of a classical result.

Brightwell, Panagiotou, and Steger [25] improved the result of Babai, Simonovits, and

Spencer [8], proving that there exists a constant c > 0 such that if p ≥ n−c then the largest

K`-free subgraph of G(n, p) is almost surely (`− 1)-partite. DeMarco and Kahn [31] proved

a precise result when ` = 3:

Theorem 4.1.1 ([31]). There exists C > 0 such that if p > Cn−1/2 log1/2(n), then the largest

K3-free subgraph of G(n, p) is almost surely bipartite.

Moreover, this threshold on p is best possible up to the choice of C. Such precise state-

ments are only known for K3-free graphs: for K`, when ` ≥ 4, the problem is not completely

solved.

Say that a graph G is (H, ε)-Turán if every subgraph of G that has at least

(
1− 1

χ(H)− 1
+ ε

)
e(G)

edges contains a copy of H. Conlon and Gowers [30] proved an asymptotic result about the

random graph G(n, p), partially settling a conjecture of Kohayakawa,  Luczak, and Rödl [52].

Recall that m2(H) = maxF⊆H
e(F )−1
v(F )−2

and that a graph is strictly 2-balanced if m2(H) =

e(H)−1
v(H)−2

.

Theorem 4.1.2 ([30]). Given ε > 0 and a strictly 2-balanced graph H, there exists a positive

constant C such that if p > Cn−1/m2(H) then

lim
n→∞

P[G(n, p) is (H, ε)-Turán] = 1.

We continue the study of the sparse problem of Babai, Simonovits, and Spencer by

considering hypergraphs. The Turán hypergraph T rk (n) is the complete n-vertex r-uniform
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k-partite hypergraph whose partite sets are as equally-sized as possible.

Definition 4.1.3. For n ∈ Z and p ∈ [0, 1], let Gr(n, p) be a random r-uniform hypergraph

with n vertices and probability p. That is, let each element of
(

[n]
r

)
be an edge with probability

p.

In particular, G2(n, p) = G(n, p). Let F5 be the 3-uniform hypergraph on 5 vertices

whose edges are v1v2v3, v1v4v5, and v2v4v5. The vertices of F5 cannot be partitioned into

two strongly independent sets (that is, sets that contain at most one vertex from each edge),

but can be partitioned into three strongly independent sets.

Figure 4.1: The 3-uniform hypergraph F5

A 3-uniform hypergraph is said to be cancellative if for any three edges A,B,C in the

hypergraph, A ∪ B = A ∪ C implies that B = C. Equivalently, a 3-uniform hypergraph

is cancellative if it contains no copy of F5 or of the 4-vertex hypergraph with edge set

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}. Bollobás [21] showed that the most edges in a cancellative

graph on n vertices is s(n), where

s(n) = bn/3cb(n+ 1)/3cb(n+ 2)/3c = n3/27 +O(n2).

Frankl and Füredi [40], however, strengthened this result by proving that ex(n, F5) = s(n)

if n > 3000 (this was improved to n > 33 by Keevash and Mubayi [49] and to n ≥ 1 by

Goldwasser [42]). The Frankl and Füredi [40] result implies that the largest hypergraph

in Forb(n, F5) has the same number of edges as the largest cancellative hypergraph. The
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hypergraph F5 is therefore a natural hypergraph to consider, particularly because it is one

way to generalize K3 to a 3-uniform hypergraph, and most of the precise sparse statements

for graphs are about K3.

Our main result is that for appropriately chosen p it is almost surely true that the largest

subgraph of G3(n, p) that does not contain F5 is 3-partite.

Theorem 4.1.4. There exists a constant C such that if p ≥ C ω(n)√
n

for any ω(n) such that

limn→∞ ω(n) =∞, then almost surely the following is true. Every subgraph of G3(n, p) that

has the most edges among all subgraphs that do not contain F5 is 3-partite.

The threshold in Theorem 4.1.4 is a consequence of our proof techniques and is not likely

to be optimal; the optimal threshold for p should be C log(n)/n

The hypergraph F5 is an example of what Balogh, Butterfield, Hu, Lenz, and Mubayi [15]

call a “critical hypergraph”; they proved that if H is a critical hypergraph then for sufficiently

large n the unique hypergraph in Forb(n,H) with the most edges is the Turán hypergraph.

We could prove results analogous to Theorem 4.1.4 for the family of critical hypergraphs,

but extending these results to critical hypergraphs is likely to be very technical. It would

therefore be more worthwhile to continue to improve the bound on p.

4.2 Tools

In order to prove Theorem 4.1.4, we need a sparse stability lemma. Conlon and Gowers [30]

proved the following stability result.

Theorem 4.2.1 ([30]). Given a strictly 2-balanced graph H with χ(H) ≥ 3 and a constant

δ > 0, there exist positive constants C and ε such that if p ≥ Cn−1/m2(H), then the following is

almost surely true. Every H-free subgraph of G(n, p) that has at least
(

1− 1
χ(H)−1

− 2ε
)
p
(
n
2

)
edges can be made (χ(H)− 1)-partite by removing at most δpn2 edges.
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The above stability theorem leads to a sparse stability lemma, but only for p ≥ Cn−1+a

for some C, a > 0. However, Samotij [70] proved a stability version of a general extremal

result of Schacht [71] that is true for p ≥ Cn−1. One consequence of this general stability

theorem is the following theorem.

Theorem 4.2.2 ([70]). For every δ > 0 there exist positive constants C and ε such that if

pn ≥ Cn−1, then almost surely the following holds.

For every subgraph of G3(n, pn) with at least (2/9− ε)
(
n
3

)
pn edges that does not contain

F5, there exists a partition of [n] into sets V1, V2, and V3 such that all but at most δn3pn

edges have one point in each Vi.

We will make use of the following Chernoff-type bound (see [5]).

Lemma 4.2.3. Let Y be the sum of mutually independent indicator random variables, and

let µ = E[Y ]. For all ε > 0,

P [|Y − µ| > εµ] < 2e−cεµ,

where cε = min{− ln
(
eε(1 + ε)−(1+ε)

)
, ε2/2}.

Lemma 4.2.4. For ε > 0, cε given by Lemma 4.2.3, and p > 3 log(n)/(cεn), the following

is almost surely true. For any pair of vertices x, y, the number of hyperedges in G3(n, p)

containing both x and y is between (1− ε)pn and (1 + ε)pn w.h.p.

Proof. For each pair of vertices, x, y, let Xx,y be the random variable given by the number

of vertices a ∈ V \ {x, y} such that axy is an edge. Then Xx,y is the sum of the mutually

independent indicator random variables {Xa
x,y}a∈V \{x,y}, and so Lemma 4.2.3 applies. Letting

µ = E[Xx,y], we have µ = p(n− 2), and

P [|Xx,y − µ| > εµ] < 2e−cε(n−2)p < 2e−2cεnp).
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Because p > 3 log(n)/(cεn), it follows that

p > log(2n3)
2cεn

2cεnp > log(2n3)

e2cεnp > 2n3

n−3 > 2e−2cεnp,

so P [|Xx,y − µ| > εµ] < n−3. By the union bound, it therefore follows that the probability

that |Xx,y − µ| > εµ for some {x, y} is at most n2n−3 = n−1. Since limn→∞ n
−1 = 0, with

high probability there is no such {x, y}.

Lemma 4.2.5. For ε > 0, cε given by Lemma 4.2.3, and p ≥
√

300/cεn
−1/2, the following

is almost surely true. For every pair of disjoint vertex sets A,B in G3(n, p), each of size at

least n/10, and for every pair of vertices x, y in V (G3(n, p)) \ A \B,

(1− ε)p2|A||B| ≤ |{(a, b) ∈ A×B : xab, yab ∈ G}| ≤ (1 + ε)p2|A||B|.

Proof. For each pair of vertices x, y, let Xx,y be the random variable given by the number of

pairs (a, b) in A×B for which both xab and yab are edges in G3(n, p). Then Xx,y is the sum

of the mutually independent indicator random variables {Xa,b
x,y}(a,b)∈A×B, so Lemma 4.2.3

applies. Letting µ = E[X], we have µ = |A||B|p2, and

P [|Xx,y − µ| > εµ] < 2 exp
(
− cε

100
p2n2

)
,

where cε is defined in Lemma 4.2.3.

It therefore follows from the union bound that the probability that |Xx,y − µ| > εµ for

some {x, y} is less than

2 exp
(
− cε

100
p2n2

)
n2.

Call a pair {x, y} “bad” with respect to A,B if |Xx,y−µ| > εµ. We now take another union
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bound, over all choices of appropriate A and B, to see that the probability that for some

choice of A,B there is a pair that is bad with respect to A,B is at most

2 exp
(
− cε

100
p2n2

)
n222n.

Now, if p >
√

300/cεn
−1/2 then

log(2n322n) < 3n < cεp
2n2/100

2n322n < exp (cεp
2n2/100)

2 exp (−cεp2n2)n222n < 1/n.

Since limn→∞
1
n

= 0, almost surely there is no such A,B.

Lemma 4.2.6. For ε > 0, cε given by Lemma 4.2.3, and p > 100n−1, the following is almost

surely true. For every triple of pairwise disjoint sets A, B, C in G = G3(n, p), each of size

at least n/10,

(1− ε)p|A||B||C| ≤ |{(a, b, c) ∈ A×B × C : abc ∈ G}| ≤ (1 + ε)p|A||B||C|.

Proof. Let X be the number of triples in A×B ×C that are edges of G and let µ = E[X].

By Lemma 4.2.3, P [|X − µ| > εµ] < 2 exp (−cεn3p/1000). There are fewer than 3n choices

of A,B,C, and if p > 100/n then

2 exp
(
−cεn3p/1000

)
3n < 2 exp

(
−cεn2/10

)
23n.
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It remains to check that this approaches 0 as n→∞:

40/cε � n

4n � cεn
2/10

log(2) + 3n log(2) � cεn
2/10

log(23n2) � cεn
2/10

23n2 � ecεn
2/10

2e−cεn
2/1023n � 1.

Lemma 4.2.7. For any p� log(n)/n, any ε > 0, any function ω(n) such that limn→∞ ω(n) =

∞, and any integer r > ω(n)/p, the following is almost surely true. For any x ∈ V (G3(n, p))

and any set of vertices Ax with |Ax| ≤ εn, there are at most r pairs {u, v} ∈
(
V (G)

2

)
such

that xuv is an edge of G3(n, p) and |N(u, v) ∩ Ax| > 2εpn.

Proof. Fix a vertex x in G3(n, p) and some set Ax of size εn. We would like to show that

there are at most r edges of the form xuv for which |N(u, v) ∩ Ax| is large. For each pair

of vertices u, v, let B(u, v) be the event that xuv ∈ G3(n, p) and |N(u, v) ∩ Ax| > 2εpn. By

Chernoff’s inequality,

P [B(u, v)] < e−εpnc

for some constant c > 0. If {u, v} 6= {u′, v′} then B(u, v) and B(u′, v′) are independent

events. Consequently, the probability that B(u, v) is true for at least r pairs is at most

(
pn2

r

)
e−εpncr.

There are n choices of x in V (G3(n, p), and for each x there are
(
n
εn

)
choices of Ax. It

86



therefore remains to prove that

n ·
(
n

εn

)
·
(
pn2

r

)
· exp(−εpncr) = o(1).

This is true when r > ω(n)/p � 1/p, using the fact that
(
n
εn

)
≈ eH(ε)n, where H(x) is the

entropy function.

4.3 Proof of Theorem 4.1.4

We will begin with a sketch of the proof of Theorem 4.1.4, which will motivate the following

lemmas. Recall that Theorem 4.1.4 states that there exists a constant C such that if p ≥

C ω(n)√
n

for some ω(n) such that limn→∞ ω(n) = ∞ then the following is almost surely true:

if H is a subgraph of G3(n, p) that does not contain F5 and that has the most edges among

all such subgraphs, then H is 3-partite.

Fix some H, a subgraph of G3(n, p) that does not contain F5 and contains the maximum

number of edges among all such subgraphs. Let X1, X2, X3 be a partition of V (H) that

maximizes the number of edges in H ∩ (X1 ×X2 ×X3). Let

ε1 =
1

2560
, ε2 =

1

400
, δ =

ε21ε2
642 · 20

, ε3 =
96δ

ε1
.

Let M be the set of edges of G3(n, p) that are in X1 ×X2 ×X3 and are not edges of H.

This is the set of “missing” edges. For 1 ≤ i ≤ 3, let Bi be the edges of H that have at

least two vertices in Xi and let B = ∪iBi. By symmetry, we may assume that |B1| ≥ 1
3
|B|.

This is the set of “bad” edges; if B is empty then H is tripartite. Notice that Bi ∩ Bj = ∅

if i 6= j, because H is 3-uniform.

By Theorem 4.2.2, |B| ≤ δpn3. Since H has the maximum number of edges among all

subgraphs of G3(n, p) that do not contain F5, it follows that |M | ≤ |B|. By Lemma 4.2.6, it
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is the case that for 1 ≤ i ≤ 3

n

4
< |Xi| <

2n

5
.

Now, suppose that B is not empty (and, as pointed out above, we may assume that

|B1| ≥ |B|/3). For each W ∈ B1 with w1, w2 ∈ W ∩ X1, there exist, by Lemma 4.2.5, at

least 1
32
p2n2 choices of y ∈ X2 and z ∈ X3 such that W together with y and z form a copy

of F5 in G3(n, p). That is, w1yz and w2yz are both edges in G3(n, p). Since H contains

no copy of F5, at least one of w1yz, w2yz must be in M . We will count elements of M by

counting the embeddings of F5 in G3(n, p) that contain some W ∈ B1. This will provide a

lower bound on the size of M in terms of |B1|, which in turn will lead to a contradiction

with the fact that |M | ≤ |B|. We therefore conclude that B is in fact empty, and so H is

tripartite.

We will count copies of F5 in G3(n, p) by considering several cases, based on the relative

sizes of the sets C1 and C2, defined below.

We define the shadow graph of B1 on the vertex set X1. This is the graph L with vertex

set X1 and xy an edge if and only if there exists some edge of B1 that contains both x and

y. Let C = {x ∈ X1 : dL(x) ≥ ε1n} and let D = X1 \ C. Let C1 be the set of all x ∈ C

such that there are at least ε2pn
2 pairs (y, z) in X2×X3 for which xyz is an edge of H. Let

C2 = C \ C1.

With these definitions in hand, we are ready to prove the following lemmas, which will

lead to a proof of Theorem 4.1.4 at the end of the section.

Lemma 4.3.1. If L′ is a subgraph of L such that ∆(L′) ≤ ε3n, then

|M | ≥ 1

128ε3
pn|E(L′)|.

Proof. For each wx ∈ E(L′), there are at least 1
32
p2n2 choices of (y, z) ∈ X2 ×X3 such that

wyz, xyz ∈ G3(n, p), by Lemma 4.2.5. There are therefore at least 1
32
|E(L′)|p2n2 copies of

F5 in G3(n, p) whose vertices are in V (H). Because wx ∈ E(L), at least one of wyz, xyz
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must be in M for each of these copies of F5.

Consider R = xyz ∈ M with x ∈ V (L′). We will count how many of these copies of F5

in G3(n, p) contain R. Say that R is bad if there exist at least 2ε3pn vertices w ∈ NL′(x)

with wyz ∈ G3(n, p). For each x ∈ V (L′), the degree of x is at most ∆(L′) ≤ ε3n. We may

therefore apply Lemma 4.2.7 with ε = ε3 and Ax = NL′(x) for each x to obtain that for every

x ∈ V (L′) with Ax 6= ∅ there are at most log(n)/p pairs {y, z} such that {x, y, z} is bad

(here we let ω(n) = log(n)). Therefore, for every xw ∈ E(L′) there are at most 2 log(n)/p

bad edges containing x or w. Also, by Lemma 4.2.4, each bad edge is in at most 2pn of the

above copies of F5. Therefore, at least

1

32
|E(L′)|p2n2 − 2|E(L′)| log(n)

p
· 2pn ≥ |E(L′)|p2n2

(
1

32
− 2 log(n)

n2p3

)

of the above copies of F5 contain an edge from M that is not bad. For large n this is at least

1
64
|E(L′)|p2n2. By definition, an edge that is not bad is in at most 2ε3pn of the above copies

of F5. Therefore,

|M | ≥ 1

64
· |E(L′)|p2n2

2ε3pn
=

1

128ε3
· pn|E(L′)|.

Lemma 4.3.2. |C| < 96δε−1
1 n.

Proof. Notice that |E(L)| ≤ 48δn2 because, by Lemma 4.2.5, for each edge wx ∈ E(L) there

are at least p2n2

32
choices of y ∈ X2, z ∈ X3 such that xyz ∈ G3(n, p) and wyz ∈ G3(n, p). One

of these two edges must be in M , otherwise H contains a copy of F5. Thus, by Lemma 4.2.4,

3
2
pn|M | ≥ |E(L)| 1

32
p2n2. Because 3

2
pn · δpn3 > 3

2
pn|M | it therefore follows that 48δn2 >

|E(L)|.

Now, every vertex in C has degree in L at least ε1n, so ε1n|C| < 2|E(L)| < 96δn2 implies

that |C| < 96δε−1
1 n.

89



Lemma 4.3.3.

|M | ≥ ε21ε2
2 · 3 · 212δ

pn2|C1|.

Proof. For each x ∈ C1, let Sx = {(y, z) ∈ X2 × X3 |xyz ∈ H}. By the definition of C1,

each Sx has size at least ε2pn
2. We will count the number of copies of F5 in G3(n, p) of

the following form. For x ∈ C1 and w ∈ NL(x), there are (y, z) ∈ X2 × X3 such that

xyz ∈ H and wyz ∈ G3(n, p). An application of Chernoff’s bound shows that there are at

least 1
32
dL(x)|Sx|p such copies of F5.

The number of such copies of F5 is therefore at least

∑
x∈C1

1

32
dL(x)|Sx|p ≥

1

32
|C1|p · ε1n · ε2pn2 =

1

32
ε1ε2p

2n3|C1|.

Say that an edge wyz ∈ M is bad if w ∈ X1, y ∈ X2, z ∈ X3, and there are at least

δε−1
1 pn vertices x ∈ C1 for which xyz is in G3(n, p). We may now apply Lemma 4.2.7 with

Ax = C1 for each x and ε = 96δε−1
1 , because |Ax| = |C1| ≤ |C|, which by Lemma 4.3.2

has size at most 96δε−1
1 n = εn. For each vertex w that is a neighbor of some x in C, there

are at most (ω(n))2/p bad edges containing w, where ω(n) is some function of n such that

limn→∞ ω(n) =∞. Therefore, the number of bad edges is at most |X1|(ω(n))2/p. Each bad

edge is contained in at most 2pn of the above copies of F5, and so at least

1

32
ε1ε2p

2n3|C1| − |X1| ·
(ω(n))2

p
· 2pn

of the above copies of F5 contain an edge from M that is not bad. Now,

(ω(n))2

p
· 2pn · |X1| < 2(ω(n))2n2

< 1
64
ε1ε2p

2n3

≤ 1
32
ε1ε2p

2n3|C1|

90



Where the second inequality follows from p > Cω(n)n−1/2 for some C > 1/10. There are

therefore at least

1

32
ε1ε2p

2n3|C1| −
1

64
ε1ε2p

2n3|C1| =
1

64
ε1ε2p

2n3|C1|

of the above copies of F5 that contain an edge from M that is not bad. Each such edge is

contained in at most 2εpn = 192δε−1
1 pn such copies of F5, and so

|M | ≥ ε21ε2p
2n3|C1|

64 · 192δpn
=

ε21ε2
64 · 192δ

pn2|C1|.

Lemma 4.3.4. |M | ≥ 1
20
pn2 |C2|.

Proof. For vertices x ∈ C2, the number of edges from (X1 ×X2 ×X3)∩H that contain x is

at most ε2pn
2 but w.h.p. the degree in G3(n, p) is at least pn2/16. Thus there are at least

pn2/20 edges of M incident to x, so |M | ≥ |C2| pn2/20.

We now have three different lower bounds on the size of M . The final part of the proof

is to show that |M | > |B| by proving that no matter how the edges of B are arranged one

of the above lower bounds on M is larger than |B|. To do this, we divide the edges of

B1 into three pieces. Let B1(1) = {W ∈ B1 : |W ∩ C| ≥ 2 or |W ∩D| ≥ 2}. Let B1(2) =

{W ∈ B1 \B1(1) : |W ∩ C1| ≥ 1}. Let B1(3) = B1 \ B1(1) \ B1(2). Every edge in B1(3)

contains a vertex in C2 and is not completely contained in X1.

The proof will be completed by showing that Lemma 4.3.1 implies that |M | ≥ 10 |B1(1)|,

Lemma 4.3.3 implies that |M | ≥ 10 |B1(2)|, and Lemma 4.3.4 implies that |M | ≥ 10 |B1(3)|.

Since |B1| ≥ |B| /3 and one of B1(1), B1(2), or B1(3) has size at least 1
3
|B1|, we obtain a

contradiction.

Lemma 4.3.5. |M | ≥ 10 |B1(1)|.
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Proof. Let L′′ = L[C] ∪ L[D]. By definition, vertices x ∈ D have degree at most ε3n.

For x ∈ C, Lemma 4.3.2 shows that x has degree in L′′ at most |C| ≤ 96ε−1
1 δn. Pick

ε3 = 96ε−1
1 δ so that ∆(L′) ≤ ε3n. Lemma 4.2.4 shows that |B1(1)| ≤ 2pn |E(L′)|. Combined

with Lemma 4.3.1, this shows that |M | ≥ 1
256ε1
|B1(1)|. Pick ε1 = 1

2560
so that |M | ≥

10 |B1(1)|.

Lemma 4.3.6. |M | ≥ 10 |B1(2)|.

Proof. For each vertex x ∈ C1 and each y ∈ D, by Lemma 4.2.4 the co-degree of x and y is

at most 3
2
pn. Since |D| ≤ n, there are at most 2pn2 edges of B1 \B1(1) containing x. Thus

|B1(2)| ≤ 2 |C1| pn2 so Lemma 4.3.3 shows that |M | ≥ ε21ε2
2·642δ

|B1(2)|. Pick δ =
ε21ε2

642·20
so that

|M | ≥ 10 |B1(2)|.

Lemma 4.3.7. |M | ≥ 10 |B1(3)|.

Proof. Consider some x ∈ C2, so that the cross-H-degree of x is at most ε2pn
2. Note that

every edge in B1(3) has at least one vertex in C2 and is not completely contained in X1

(edges completely contained in X1 are in B1(1).) If there exist at least ε2pn
2 edges of B

which contain x and have a vertex in X2, we could move x to X3 and increase the number of

edges across the partition. Similarly, there are at most ε2pn
2 edges of B which contain x and

have a vertex in X3, since otherwise we could move x to X2. Thus |B1(3)| ≤ 2ε2 |C2| pn2. If

ε2 = 1
400

, then Lemma 4.3.4 shows that |M | ≥ 10 |B1(3)|.
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In Combinatorics, Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 317–346.
János Bolyai Math. Soc., Budapest, 1993.
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Linnik.
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