
c© 2012 by Weicheng Lv. All rights reserved.



ORBITAL ORDER IN IRON-BASED SUPERCONDUCTORS

BY

WEICHENG LV

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Physics

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Eduardo Fradkin, Chair

Professor Philip Phillips, Director of Research

Professor Peter Abbamonte

Professor John Stack



Abstract

In this thesis, we propose that a ferro-orbital order, which breaks the degeneracy

between the Fe dxz and dyz orbitals, is the effective cause of the structural and

the magnetic transitions in the iron-based superconductors. We will discuss this

orbital order in the framework of the local-itinerant dichotomy. First, due to

the spatial anisotropy of the occupied orbitals that form the local moments,

the magnetic exchange constants acquire dramatically different values along the

two in-plane directions. Second, the itinerant electrons also undergo a nematic

transition, causing the anisotropy observed in various experiments. Finally,

combining orbital order in both the local moments and itinerant electrons, we

find that the underlying magnetism is unfrustrated, consistent with the inelastic

neutron scattering results.

The thesis is organized as follows. We will first provide the necessary back-

ground knowledge of the iron-based superconductors in Chapter 1. As a pre-

liminary, we discuss in detail three different theoretical approaches, namely the

weak-coupling, strong-coupling and local-itinerant models. Chapter 2 serves as

the motivation of the thesis. Various experimental results will be presented to

demonstrate the existence of the in-plane anisotropy. We will introduce two

distinct theoretical scenarios that account for the nematic order. We will argue

that orbital order, instead of the spin-nematic order, is the underlying mecha-

nism. Chapters 3, 4, and 5 are the main contents of the thesis. In Chapter 3,

we will study the orbital order from the strong-coupling theories, with emphasis

on the Kugel-Khomskii model. Chapter 4 deals with the orbital order in the

weak-coupling theories and its experimental consequences. Finally in Chapter

5, we propose the degenerate double-exchange model, and show how the orbital

order in the itinerant electrons leads to the unfrustrated effective spin model.
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Chapter 1

Background on iron-based
superconductors

As the title suggests, this thesis focuses on the so-called iron-based superconduc-

tors, which are a class of high-temperature superconducting materials discovered

in 2008 [1]. Only four years have passed since their initial discovery. But great

progress has been made and general consensus has been reached in this rela-

tively young field. Interested readers may refer to many existing review articles

[2, 3, 4, 5, 6] for a comprehensive understanding of the current research status

of the iron-based superconductors.

Nonetheless, the author thinks it is necessary to provide his own perspective

on this field, which will be the contents of this chapter. We will start with a

short introduction to the general properties of the iron-based superconductors

in Sec. 1.1. Particular emphasis will be put on the structural and the magnetic

transitions, and their competition with the superconducting phase. Then we will

move on to theoretical aspects in Sec. 1.2 and compare two distinct approaches

for treating the iron-based superconductors, namely the weak-coupling and the

strong-coupling theories. The local-itinerant model that combines both theories

is also introduced.

1.1 Basic properties

The whole field of the iron-based superconductors started in February 2008,

when Hideo Hosono and coworkers found that in layered iron-based materials

LaOFeAs, superconductivity (SC) can be induced by replacing O with F, with

the transition temperature Tc reaching as high as 26 K [1]. Following this sem-

inal work, many new superconducting materials with the chemical composition

of RO1−xFxFeAs (R = Ce, Pr, Sm, Nd, etc.) [7, 8, 9, 10, 11] were discovered. In

about two months, the superconducting transition temperature Tc was raised to

around 55 K [11], which is only second to that of the copper-oxide superconduc-

tors (cuprates). In addition to the aforementioned materials with the 1111 chem-

ical formula (the so-called 1111 family), new families of the iron-based super-

conductors were also discovered in a short time. They include Ba1−xKxFe2As2

[12, 13] (122 family), LiFeAs [14, 15] (111 family), Fe1+yTe1−xSex [16] (11 fam-

ily), and many others with more exotic compositions [17, 18].

The crystal structures of several representative iron-based superconductors
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Figure 1.1: Crystal structures of several families of the iron-based supercon-
ductors. The quasi-two-dimensional tetrahedral coordinated FePn/Ch (Pn =
P, As; Ch = Se, Te) plane is their common component. From Ref. [4].

are shown in Fig. 1.1. The common building blocks are FePn/Ch (Pn = P,

As; Ch = Se, Te) planes sandwiched between different spacer layers, which ei-

ther serve as the charge reservoir, or apply a chemical pressure to the FePn/Ch

plane. The only exception is the Fe1+yTe1−xSex system, in which the spacer

layer does not exist and the FeCh planes simply stack together. It is generally

accepted that high-temperature superconductivity and other interesting phe-

nomena originate from this FePn/Ch plane, similar to the CuO plane in the

cuprate superconductors. The materials with the FePn planes are named iron

pnictides, while people call those with the FeCh layers iron chalcogenides.

As we see from Fig. 1.1, within the FeAs layer, the Fe atoms form a square

lattice, whereas the As atoms are located at the center of each Fe square, sitting

either above or below the Fe plane in an alternating order. Each Fe atom and its

four neighboring As atoms form a tetrahedron structure, the geometry of which

plays a critical role in mediating superconductivity. Due to the alternating

position of the As atoms, the true crystal unit cell contains two Fe atoms.

However, many theoretical models are constructed with the unit cell containing

only one Fe atom. In Chapter 4, we will discuss in detail how these models can

be constructed by unambiguously unfolding the 2-Fe Brillouin zone (BZ) into

the 1-Fe BZ. The readers need to keep in mind this distinction when browsing

existing literatures, some of which do not explicitly specify which conventions

2



(a) (b)

Figure 1.2: Temperature T versus composition x phase diagrams of the iron-
based superconductors (a) CeO1−xFxFeAs and (b) Ba(Fe1−xCox)2As2. From
Ref. [19] and [20].

are used.

Fig. 1.2 displays the phase diagrams of two typical iron-based superconduc-

tors, CeO1−xFxFeAs (1111 family) [19] and Ba(Fe1−xCox)2As2 (122 family)

[20]. Similar to the cuprates, high-temperature superconductivity in the iron

pnictides also arises from doping the antiferromagnetic (AFM) parent com-

pounds. However, there are more important differences between the two. Un-

like the cuprates, the parent compounds of the iron-based superconductors are

metals instead of insulators. Simple chemical counting finds that Fe has a

valence of 2+. So there are six electrons occupying the five outmost 3d or-

bitals, which clearly suggests that the iron-based superconductors are intrinsi-

cally multi-orbital systems. This is also different from the cuprates, in which

all the 3d orbitals are doubly occupied except the half filled dx2−y2 orbital.

In the iron-based superconductors, charge doping can be achieved, either

by replacing O2− with F− in the charge reservoir layer in CeO1−xFxFeAs

[Fig. 1.2(a)], or by substituting Co+ for Fe2+ directly in the FeAs plane in

Ba(Fe1−xCox)2As2 [Fig. 1.2(b)]. Both of these two are electron-doped materi-

als. But similar T -x phase diagrams are also found in Ba1−xKxFe2As2 with hole

doping and BaFe2(As1−xPx)2 with isovalent doping. Even applying pressure P ,

we still see a T -P phase diagram that is very similar in shape with the T -x

phase diagram. We recall that in the cuprates, superconductivity can only be

induced through charge doping in the reservoir layer.

Now let us set out to discuss each phase in the phase diagram. As illustrated

in Fig. 1.2, the iron-based superconductors have a tetragonal crystal structure

at high temperature. When the temperature decreases below the structural

phase transition temperature TS, a lattice distortion occurs in the parent com-

pounds and the underdoped materials and reduces the crystal symmetry from

tetragonal to orthorhombic. In the orthorhombic phase, the Fe-Fe lattice con-

stant is elongated along one direction, and shortened along the other (Fig. 1.3).

If we further lower the temperature below the Néel temperature TN , a stripe-

3



Tetragonal
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Paramagnetic

Orthorhombic

Antiferromagnetic

TS TN

Figure 1.3: Illustration of the structural and the magnetic phase transitions in
the iron-based superconductors. TS and TN are the structural phase transition
temperature and the Néel temperature, respectively.

type long-range magnetic order sets in on the distorted Fe lattice. As shown in

Fig. 1.3, the Fe spins are aligned antiferromagnetically along the longer direc-

tion and ferromagnetically along the shorter, characterized by the ordering wave

vector Q = (π, 0). It should be noted that the ordered magnetic moment is very

small, ranging from 0.3 µB in LaOFeAs [21] to around 0.8 µB in BaFe2As2 [22]

and CaFe2As2 [23]. The Fe1+yTe system possesses a large moment around 2

µB, but its magnetic order is double-stripe type with Q = (π/2, π/2) [24, 25].

We should also note here that the structural and the magnetic transitions

occur almost simultaneously, suggesting possible common origins. It has been

found that in the 1111 family, the structural transition always occurs at a higher

temperature than the magnetic one (TS > TN ), with both transitions being sec-

ond order. For the 122 family, this situation still holds for the electron-doped

Ba(Fe1−xCox)2As2 and the isovalent-doped BaFe2(As1−xPx)2. However, in the

parent compounds and the hole-doped Ba1−xKxFe2As2, the structural and the

magnetic transitions set in at the same temperature (TS = TN) and there is only

one first-order transition. Recently, more detailed experiments have shown that

in the parent compound BaFe2As2, these two transitions are actually separated

by less than 1 K. The structural transition is still second order, whereas an ap-

parent first-order discontinuity is seen at TN [26, 27]. One important exception

is the FeSe material, in which a structural transition happens at 90 K and there

is no magnetic order down to zero temperature [28].

Understanding the structural and the magnetic transitions is a fundamental

issue in the iron-based superconductors. One straightforward observation here

is that the structural transition can occur in the absence of the magnetic order,

but not vice versa. The reason is simply because the (π, 0) AFM order breaks

the lattice C4 symmetry and has to be accompanied by the lattice distortion.

This symmetry breaking naturally arises from the orbital order in a multi-

orbital system, such as the iron-based superconductors. Orbital order is the

central topic of the thesis. We will show in detail how the orbital order occurs

and discuss its experimental consequences. In short, a ferro-orbital order of

4



the Fe dxz and dyz orbitals breaks the C4 lattice symmetry and drives the

structural transition from tetragonal to orthorhombic. Meanwhile, it enhances

spin fluctuations along one particular direction, and leads to either a (π, 0) or

(0, π) magnetic order.

Why are we so concerned with the structural and the magnetic transitions?

Explaining their origin is certainly an interesting question in its own right. More

importantly, their close relation with superconductivity may provide important

clues for the pairing mechanism. From the phase diagram of CeO1−xFxFeAs in

Fig. 1.2(a), we see that superconductivity only emerges when the AFM order is

completely suppressed, but is able to coexist with the orthorhombic distortion

over some regime. However, in Ba(Fe1−xCox)2As2 there is indeed a coexistent

phase of superconductivity and the AFM order [Fig. 1.2(b)]. We would like

to emphasize that Tc seems to be highest just when both the structural phase

transition and the long-range AFM order are suppressed.

It is generally accepted that superconductivity in the iron-based supercon-

ductors does not come from conventional phonon-mediated pairing. The close

proximity of the structural and the magnetic transitions to the superconducting

phase gives us two different types of pairing mechanisms. The dominating view-

point is that electron pairing arises from the spin-fluctuation exchange. This

idea has a long history [29] and successfully predicted d-wave gap symmetry in

cuprate superconductors (for a review, see Ref. [30]). When long-range AFM

order is suppressed, spin fluctuations remain peaked at the original ordering

wave vector Q and strongly scatter the Cooper pairs connected by Q. This

electron-electron interaction is always repulsive in the singlet channel, and thus

requires a sign change of the superconducting order parameter,

∆(k) = −∆(k +Q). (1.1)

In the cuprates, Q = (π, π), leading to a d-wave superconducting gap. For the

iron pnictides with Q = (π, 0), the extended s-wave (s+−) gap will be favored

[31]. To be more precise, the superconducting order parameter ∆(k) of the iron-

based superconductors is invariant under kx → ky and kx → −kx, and changes

sign from k to k +Q. The other theory relies on the orbital order associated

with the structural phase transition. When the lattice distortion is suppressed,

enhanced orbital fluctuations can also mediate electron pairing and result in the

conventional s++ gap without sign changes [32]. The majority of the community

lean towards the s+− symmetry, but the s++ pairing is not ruled out. Even

within the s+− framework, many issues are still unresolved. For example, a

nodeless s+− gap may develop nodes on the electron pockets when a third hole

pocket composed of the dxy orbital disappears with electron doping. Further-

more, even the d-wave symmetry will possibly emerge in the heavily electron-

and hole-doped systems. We will discuss some of these issues in Sec. 1.2 in

the context of the theoretical models of the iron-based superconductors. How-
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(a)

(b)

(c)

Figure 1.4: (a) Fermi surfaces in the 2-Fe BZ from LDA calculations. Here
Γ = (0, 0, 0), Z = (0, 0, π), X = (π, 0, 0), and M = (π, π, 0). From Ref. [35].
(b) Fermi surfaces in the 2-Fe BZ from ARPES experiments. Γ1 and Γ2 denote
the two hole pockets, while M represents the electron pockets. From Ref. [36].
(c) The ratio of the kinetic energy from the optical experiments and the kinetic
energy from the band-structure calculations, Kexp/Kband, for the iron pnictides
and other materials. From Ref. [37].

ever, detailed discussion about the gap symmetry and structure goes beyond the

scope of this thesis. Interested readers are encouraged to consult some specific

reviews [33, 34] on this issue.

1.2 Theoretical models

In this section, we will focus on the theoretical models. Because these models are

also extensively used in explaining the anisotropic properties of the iron-based

superconductors, which are the central themes of the thesis, it is necessary to

give these models a brief introduction in advance.

Before we can construct any treatable theoretical models, there is one impor-

tant question to answer. How strong is the electron correlation in the iron-based

superconductors? Their metallic nature immediately tells us that the correla-

tion effect is not as strong as in the cuprates, which are Mott insulators in their

undoped state. Density functional theory (DFT) with the local density approx-

imation (LDA) finds that the bands close to the chemical potential are mostly

made up by the Fe 3d orbitals, and that the Fermi surfaces consist of multiple

sheets [35]. As shown in Fig. 1.4(a), there are two hole cylinders around the

zone center whereas two electron cylinders exist at the zone corner. A third

three-dimensional hole pocket is also seen centered at the Z point. As shown
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in Fig. 1.4(b), these fermi surfaces were qualitatively confirmed by the angle-

resolve photoemission spectroscopy (ARPES) experiment [36]. But an overall

renormalization of the band structure by a factor of 2-4 [36] needs to be imposed

to match the band dispersion from LDA with that from ARPES, which suggests

a nontrivial correlation effect.

More quantitative measurement of the electron correlations comes from op-

tical conductivity experiments [37]. Such experiments extract the kinetic en-

ergy, Kexp, from the Drude weight. It is then compared to the kinetic energy

from band-structure calculations, Kband. As we read from Fig. 1.4(c), the ra-

tio Kexp/Kband is close to one in conventional metals, such as Ag and Cu. In

contrast, Kexp/Kband almost vanishes in the parent compounds of the cuprates,

La2CuO4 and Nd2CuO4. They are the prototypical Mott insulators in which

the electron correlation effect dominates. Even in the doped cuprate materi-

als, or say doped Mott insulators, a large reduction of the kinetic energy by

80% from its band-structure value is observed. This kinetic energy reduction

is significantly less in weakly correlated materials. For example, MgB2, which

is a conventional phonon-mediated superconductor, and Cr, which is a spin-

density-wave (SDW) antiferromagnet, only displays a reduction of 20%. In

the iron pnictides, Kexp/Kband ≈ 0.3 in BaFe2As2 and Kexp/Kband ≈ 0.5 in

LaFePO [Fig. 1.4(c)]. These values suggest that it is appropriate to categorize

the iron-based superconductors as intermediately correlated metals. Another

quantitative measurement is the x-ray absorption (XAS) and resonant inelastic

x-ray scattering (RIXS) [38]. To obtain good agreement with theoretical calcu-

lations, it is required that the Coulomb repulsion be U ≈ 2eV and the Hund

coupling be J ≈ 0.8eV , which also places the iron pnictides in the regime of

intermediate correlation.

As a result, both the weak-coupling and the strong-coupling theories are

extensively used in the study of the iron-based superconductors. In addition,

researchers have combined both aspects of weak and strong coupling and in-

vented a hybrid model, namely the local-itinerant model. In the following we

will discuss each of these theories, with emphasis on their advantages and limi-

tations in the iron-based superconductors.

1.2.1 Weak coupling

In weak-coupling theories, because the interaction terms are treated as pertur-

bations, band structure plays the dominant role. Therefore, the top priority is

that our model can reproduce the Fermi surfaces and the band dispersions from

the LDA calculations. We will write down a tight-binding Hamiltonian,

HK =
∑

tαβij c
†
iαµcjβµ, (1.2)
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Figure 1.5: (a) Fermi surfaces of the two-orbital model in the 1-Fe BZ. The hole
pockets are labeled as α1 and α2, whereas β1 and β2 are the electron pockets.
The dashed square represents the true BZ with two Fe atoms per unit cell. From
Ref. [41]. (b) Fermi surfaces of the five-orbital model in the 1-Fe BZ. The main
orbital contribution is denoted by their corresponding colors. The filling level
n = 6, corresponding to the parent compounds. From Ref. [47].

where c†iασ creates an electron on site i, with orbital α and spin µ. Although

the As 4p orbitals are also included in some models [39], the majority of the

theories only consider the Fe 3d orbitals, which dominate the bands near the

Fermi energy according to the LDA calculations [35]. However, caution has

to be taken when we transform HK (1.2) into momentum space. The crystal

momentum k, defined by the translation operator T of the Fe square lattice, is

not a good quantum number of the system, because of the alternating positions

of the As atoms. We have to enlarge our unit cell to contain two Fe atoms, and

consequently double the number of the Fe 3d orbitals in our model. However,

a more clever way is to define a pseudocrystal momentum k̃ that labels the

eigenstates of the operator PzT , where Pz is the reflection operator in the z

direction. This pseudocrystal momentum k̃ is a good quantum number of the

system and gives an unambiguous way to unfold the 2-Fe BZ. We will be able

to write down

HK =
∑

ε̂αβ(k̃)c
†
k̃αµ

ck̃βµ. (1.3)

Detailed discussion of this issue can be found in Ref. [40]. Due to the multi-

orbital nature of the iron-based superconductors, at least two Fe 3d orbitals have

to be included [41]. Some researchers even advocate that all five Fe 3d orbitals

are necessary to reproduce a reasonable band structure. Interested readers may

refer to the literatures for the available models, using two [41, 42, 43], three

[40, 44], four [45], and five [46, 47, 48, 49, 50, 51] Fe 3d orbitals. As two

examples, the Fermi surfaces of the two-orbital model [41] and the five-orbital

model [47] are plotted in Fig. 1.5(a) and (b), respectively. For the five-orbital

model, we denote the dominant orbital contributions on the Fermi surfaces by

their corresponding colors in Fig. 1.5(b).
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From Fig. 1.5(b), we see that the hole pockets at the zone center are con-

nected to the two electron pockets at the zone edges approximately by the wave

vector of (π, 0) and (0, π), respectively. This may induce a nesting instability in

the system. Formally, we consider the dynamical spin susceptibility

χs(q, q′, iω) =
∫ β

0

dτ〈TτS(q, τ) · S(−q′, 0)〉eiωτ , (1.4)

and the dynamical charge susceptibility

χc(q, q′, iω) =
∫ β

0

dτ〈Tτn(q, τ)n(−q′, 0)〉eiωτ . (1.5)

We have defined the spin operator S(q, τ) = 1/2
∑

c†k+q,µ(τ)σµνck,ν(τ) and the

charge operator n(q, τ) =
∑

c†k+q,µ(τ)δµνck,ν(τ), where σ is the Pauli matrix.

For the normal state without translational symmetry breaking, the susceptibility

χ is diagonal, namely only χ(q, q, iω) with q = q′ is nonzero. The noninteract-

ing χs
0 and χc

0 are equivalent. They can be easily calculated after a unitary

transformation that diagonalizes HK (1.3).

Now we include the electron interactions. The simplest one is the on-site

Hubbard interaction. For a multi-orbital system, it reads [52]

HI =
∑

α

Un̂α↑n̂α↓ +
∑

β>α

(

V − J

2

)

n̂αn̂β −
∑

β>α

2JSα · Sβ

+
∑

β>α

J ′
(

c†α↑c
†
α↓cβ↓cβ↑ + h.c.

)

, (1.6)

where U , V , J , and J ′ are intra- and inter-orbital Coulomb repulsion, Hund’s

coupling, and the pairing hopping energy, respectively. Note that the site index

i has been suppressed here. If we impose that all the orbitals are degenerate and

equivalent, it is required that U = V +2J and J = J ′. However, this symmetry

requirement is not usually fulfilled in real systems.

The effect of these interactions on χs and χc can be calculated using the ran-

dom phase approximation (RPA). The detailed formulation for a multi-orbital

system can be found in Ref. [47], [50] and [54]. As shown in Fig. 1.5(b), the

RPA spin susceptibility χs
RPA displays enhanced peaks at the wave vectors close

to (π, 0) and (0, π), due to the nesting between the hole and electron pock-

ets. A broad feature is also found near (π, π), which arises from the scattering

between the two electron pockets. In contrast, the RPA charge susceptibility

χc
RPA is more than one order of magnitude smaller than χs

RPA, and shows no

sharp peaks. Therefore, when we increase the interaction strength, χs
RPA will

first diverge at some critical value of the interaction strength and causes a spin-

density-wave (SDW) order with either Q = (π, 0) or (0, π). From the viewpoint

of the weak-coupling theories, the antiferromagnetic order in iron-based super-

conductors comes from the nesting instability between the hole and electron
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(a) (b)

Figure 1.6: (a) RPA spin susceptibility χs
RPA(q, ω = 0) for the paramagnetic

phase. χs
RPA peaks close to the ordering wave vector Q = (π, 0) and (0, π).

The calculation is done for the electron-doped system with n = 6.125, and
interaction parameters are U = V = 1.65, J = J ′ = 0. From Ref. [47]. (b)
The imaginary part of the RPA spin susceptibility, =χs

RPA(q, ω + iδ), for the
antiferromagnetic phase with the ordering wave vector Q = (π, 0). The ordered
magnetic moment m = 0.6µB. From Ref. [53].

Fermi surfaces.

The magnetically ordered state can be investigated using a self-consistent

mean-field approach. The interaction term is decoupled in an orbital diagonal

way,

〈

c†iαµciβν
〉

=
1

2

(

nα + µmαe
iQ·ri

)

δαβδµν , (1.7)

where µ = ±1 for up and down spins, respectively. We derive the mean-field

interaction term,

HMF
I =

∑

k,α,µ

[

εαc
†
kαµckαµ − µηα

(

c†kαµck+Q,αµ + h.c
)]

+ C, (1.8)

where

εα =
U

2
nα +

(

V − J

2

)

∑

β 6=α

nβ , (1.9)

ηα =
U

2
mα +

J

2

∑

β 6=α

mβ, (1.10)

and the constant

C = −U
4

∑

α

(

n2
α −m2

α

)

− 2V − J

4

∑

α6=β

nαnβ +
J

4

∑

α6=β

mαmβ. (1.11)

The full Hamiltonian H = HK+HMF
I is quadratic, and thus can be solved with

the order parameters nα and mα being calculated self-consistently. As many

studies have shown, the Q = (π, 0) stripe-type AFM order indeed has the lowest
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energy if the interaction parameters are chosen properly [44, 45, 51].

We can further calculate the spin excitations in the AFM-ordered state using

the random phase approximation. However, we should note that both χ(q, q, iω)

and χ(q, q + Q, iω) become nonzero due to the presence of the AFM order.

Detailed formulations can be found in Ref. [55] and [56] for the single-band

case, and Ref. [53] for the multi-orbital generalization. The result from the

five-orbital model is shown in Fig. 1.6(b). The excitation clearly exhibits the

collective mode of spin waves around the ordering wave vector (π, 0), and quickly

dissolves into the particle-hole continuum at high energy.

The most powerful prediction of the weak-coupling theories is the symmetry

and structure of the superconducting order parameters. Within the RPA for-

malism, the superconducting gap equation is reduced to the following eigenvalue

problem [47, 57],

−
∑

j

∮

Cj

dk′

2π

1

vF (k′)
Γij(k, k

′)gα(k
′) = λαgα(k), (1.12)

where vF (k) is the Fermi velocity. We have decomposed the superconducting

order parameter ∆(k) into the amplitude ∆ and the normalized structure func-

tion g(k), ∆(k) = ∆g(k). The effective pairing interaction Γij(k, k
′) scatters

the Cooper pair at (k,−k) on the Fermi surface Ci to (k′,−k′) on the Fermi

surface Cj . The solution with the largest eigenvalue λα is the leading pairing

instability and has the highest transition temperature Tc. The eigenfunction

gα(k) determines the superconducting gap symmetry and structure.

As we see from Fig. 1.7(a), the effective pairing interaction Γ(k, k′, iω) quickly

decays when we increase the energy scale. So the gap equations can be restricted

on the Fermi surfaces as we have done in Eq. (1.12). We also find that Γ(k, k′, iω)

mostly comes from the spin fluctuation contributions, and thus also peaks when

k−k′ = Q. Because Γ(k, k′) is positive, a sign change has to occur between g(k)

and g(k + Q) so that a nontrivial solution to Eq. (1.12) can be found. Mean-

while, g(k) is invariant under the reflection x → −x and y → −y, and the C4

rotation x→ y and y → −x. This is the so-called extended s-wave gap or s+−
gap in the literature [31]. As shown by Fig. 1.7(b) and (c), the superconducting

gap does have different signs between the hole and electron pockets. However,

there exists a competing order that arises from the (π, π) scattering between

the two electron pockets. This scattering process disfavors the isotropic s+−
gap, and induces anisotropy and possibly gap nodes on the electron pockets [see

Fig. 1.7(b)]. If we dope the materials with holes, a third hole pocket, which

is dominated by the dxy orbital, appears at (π, π). The presence of this hole

pocket will enhance the scattering between the hole and electron pockets, and

thus stabilize an isotropic s+− gap without nodes [see Fig. 1.7(c)]. Actually

the emergence of the third hole pocket at (π, π) is also related to the pnicto-

gen height [58], which can be tuned either by applying external pressure, or by
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Figure 1.7: (a) The effective pairing interaction Γ(k, k′, ω, ω′), and its spin and
orbital contributions. From Ref. [47]. (b) The superconducting gap structure
function g(k) for the electron doping of n = 6.01. (c) g(k) for the hole doping
of n = 5.95. From Ref. [57].

replacing the As with the P atoms in BaFe2(As1−xPx)2.

So far, the s+− gap is the leading candidate in the iron-based superconduc-

tors. Experimentally the superconducting gap observed in ARPES is nearly

isotropic and nodeless [59]. On the other hand, the superconducting quantum

interference device (SQUID) measurement detected a half-integer flux quan-

tum jump [60], which strongly suggests that a π phase shift or a sign change

occurs in the superconducting order parameters. Further support of the sign

change comes from the appearance of the neutron resonance peak at (π, 0) [61].

The quasiparticle interference (QPI) image measured by the scanning tunneling

microscopy (STM) experiment provides another phase sensitive evidence [62].

However, recent studies have found that different iron-based superconductors

may possess different pairing symmetries. For example, in heavily hole-doped
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material KFe2As2, a nodal d-wave gap is likely to win over [63]. The nodeless d-

wave superconductivity is the favorite candidate for KFe2Se2 [64], in which the

hole pockets are absent [65]. It is a very interesting problem to see how different

pairing channels compete with each other when we dope the system or modify

the crystal structure of the FeAs layer. In the end, we briefly comment that the

conventional s++ gap is also possible if the pairing interaction Γ(k, k′) becomes

attractive when the orbital fluctuations make the dominant contributions [32].

The current theoretical and experimental status is summarized by several review

articles [33, 34].

There are more advanced approaches that go beyond RPA. The most popu-

lar one is the functional renormalization group (FRG) [66], which was pioneered

in the context of the iron-based superconductors in Ref. [67]. This technique is

able to study the flow of the renormalized interactions when the energy cutoff

Λ is reduced, and thus treats different instabilities on an equal footing. Al-

though the FRG is much more unbiased than RPA, it is still a weak-coupling

theory due to its perturbative nature. FRG is highly successful in the study

of the iron-based superconductors. It confirms that the (π, 0) SDW order and

the s+− superconductivity are the two leading instabilities of the system [68].

Researchers have applied the FRG approach to many different iron-based su-

perconductors [69, 70, 71], and their results appear to be consistent with those

from the RPA calculations.

The theories we have discussed so far are all formulated on the orbital basis.

But some researchers prefer the so-called multi-band model [72],

HK =
∑

kµ

εh,kc
†
kµckµ + εe,k+Qd

†
k+Q,µdk+Q,µ, (1.13)

where ckµ and dk+Q,µ are the annihilation operators on the hole and the electron

bands, respectively. The hole pocket at Γ = (0, 0) is circular, with the dispersion

εh,k = εh,0 −
k2x + k2y
2m

− µ, (1.14)

whereas the electron pockets are elliptical with

εX,Y
e,k+Q = −εe,0 +

k2x
2mx,y

+
k2y

2my,x
− µ. (1.15)

Here we use the the unfolded Brillouin zone that contains one Fe atom per unit

cell. So there are two electron pockets located at X = (π, 0) and Y = (0, π),

with their dispersions εXe,k+Q and εYe,k+Q, respectively. We will choose mx > my

so that the electron pockets are elongated along the correct direction.

The main advantage of this model is that the physical meaning is very evi-

dent. We can write down the magnetic interaction term,

HAFM = VAFM

∑

c†kµσµνdk+Q,ν · d†k′+Q,µ′σµ′ν′ck′ν′ . (1.16)
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Without loss of generality, we choose the spin quantization axis along the di-

rection of the magnetization. The spin-density-wave (SDW) gap is simply

∆SDW =
VAFM

2

∑

µ〈c†kµdk+Q,µ〉. (1.17)

Similarly, the inter-band pairing interaction in the singlet channel is

HSC = VSC
∑

(

c†−k↓c
†
k↑dk′+Q,↑d−k′−Q,↓ + h.c.

)

. (1.18)

The superconducting gaps on the hole and electron pockets are

∆h,SC = VSC
∑

〈dk+Q,↑d−k−Q,↓〉, (1.19)

∆e,SC = VSC
∑

〈ck↑c−k↓〉, (1.20)

respectively. We see that due to the inter-band nature of the pairing interaction,

the superconducting gap on the hole pocket is determined by the electrons on

the electron pocket, and vice versa. This formulation turns out to be very

useful in studying competing orders, for example, the coexisting phase of the

AFM order and superconductivity [73, 74, 75, 76, 77]. To zeroth order, the

multi-band model is equivalent to the multi-orbital model. However, in order

to study the angular dependence, we have to project the multi-orbital model

onto the band basis and decompose the interaction with the leading angular

harmonics [78, 79]. Therefore, the multi-orbital model is more fundamental

from our point of view.

Finally, let us focus on several limitations of the weak-coupling theories.

First, the nesting between the hole and electron pockets is far from perfect.

Both the LDA calculations and the ARPES experiments have found that the

hole pockets possess more circular shapes, whereas the electron pockets are

more elliptical. Therefore, the nesting instability does not usually occur at

the commensurate ordering wave vectors Q = (π, 0) and (0, π), but instead at

some incommensurate wave vectors [see Fig. 1.6(a)]. So the AFM order from

the weak-coupling theories should be incommensurate. But neutron scatter-

ing experiments almost always observe commensurate AFM order [21]. Second,

weak-coupling theories cannot explain the so-called bicollinear AFM order with

Q = (π/2, π/2) in the Fe1+yTe materials [24, 25]. The Fermi surfaces of Fe1+yTe

are very similar in shape with those of the iron pnictides, as the ARPES ex-

periments have found [80]. So there is no nesting instability at Q = (π/2, π/2).

Additionally, the large magnetic moment observed in Fe1+yTe cannot arise from

weak-coupling theories. Third, as we will discuss in detail in Sec. 2.1.1, the spin

excitations derived from inelastic neutron scattering (INS) experiments are bet-

ter fitted by a Heisenberg model. The predicted particle-hole continuum from

the weak-coupling theories is not observed in several materials [81]. Finally,

ARPES almost always observed a nearly isotropic superconducting gap [59] in-
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stead of the strong angular variation from the weak-coupling calculations. More

recently, laser ARPES experiments found that the superconducting gap is or-

bital independent [82], which is not consistent with the prediction from the spin

fluctuation scenario.

1.2.2 Strong coupling

Although most of the iron-based superconductors are metallic, the electron cor-

relation is certainly not weak as manifested by the unusually high resistivity.

Early dynamical mean-field theory (DMFT) combined with DFT calculations

suggested that the iron pnictides are strongly correlated metals on the verge

of a Mott transition [83]. On the basis of this motivation, the strong-coupling

theories were put forward.

In these models, the Fe orbitals are localized due to strong electron cor-

relations, and the virtual hopping processes give rise to the antiferromagnetic

superexchanges between the local moments Si. Because the As atoms are lo-

cated at the center of the Fe square, the next-nearest-neighbor (NNN) hopping

may acquire similar amplitude as the nearest-neighbor (NN) hopping. Immedi-

ately, we can write down the following Heisenberg model [84],

Hloc = J1
∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj, (1.21)

where J1 and J2 are the NN and NNN superexchanges, respectively. If we treat

the spin Si as a classical vector, then the (π, 0) or (0, π) stripe-type AFM order

has the lowest energy when J2 > J1/2, whereas the (π, π) order becomes the

ground state when J2 < J1/2. It is certainly difficult to calculate the exact

values of the exchange constants. However, if we simply assume the hopping

amplitude mediated by the As atoms is independent of the Fe-As-Fe angle, we

obtain J2 = J1/2. There are two paths via different As atoms for the NN Fe

atoms, whereas only one path connects the NNN Fe atoms. So the iron-based

superconductors are probably in the strongly frustrated regime with J2 & J1/2,

which explains the unusually small moments observed experimentally [21].

In the magnetically ordered state with Q = (π, 0), the spin excitations can

be readily calculated by the standard linear spin-wave theory [85, 87]. The spin

Si is represented by the Holstein-Primakoff boson ai,

Sz
i = S − a†iai, S+

i =

√

2S − a†iaiai, S−
i = a†i

√

2S − a†iai, (1.22)

where S±
i = Sx

i ± iSy
i . To the leading order, the spin-wave Hamiltonian reads

Hsw
loc =

∑

k

[

A(k)
(

a†kak + a−ka
†
−k

)

+B(k)
(

a†ka
†
−k + a−kak

)]

, (1.23)
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Figure 1.8: (a) Spin-wave dispersions from the J1-J2 model. We have set J1 = 1
and J2 = 2. From Ref. [85]. (b) Superconducting phase diagram of the t-J1-J2
model. The two-orbital model of Ref. [41] is used for the band structure. From
Ref. [86].

where

A(k) = S(J1 cos ky + 2J2), B(k) = S(J1 cos kx + 2J2 cos kx cos ky). (1.24)

We use the Bogoliubov transformation to diagonalize Hsw
loc (1.23), yielding the

spin-wave dispersion

ω(k) =
√

A2(k)−B2(k). (1.25)

One immediate consequence of the spin-wave calculation is that the dispersion

ω(k) is zero, not only at the ordering wave vector Q = (π, 0), but also at (π, π)

[see Fig. 1.8(a)]. Although single-ion anisotropy and quantum fluctuations can

lift this zero at (π, π), the spin-wave energy still remains a local minimum at

(π, π). However, as we will see in detail in Sec. 2.1.1, the inelastic neutron

scattering experiments found out that the spin-wave dispersion actually reaches

a local maximum at (π, π) [81]. This contradiction causes much controversy

about the strong-coupling J1-J2 model.

Nevertheless, let us turn to the problem of superconductivity. We consider

the superexchange between the spin of orbital α at site i and the spin of orbital

β at site j,

Hαβ
ij = Jαβ

ij

(

Siα · Sjβ − 1

4
niαnjβ

)

= −1

2
Jαβ
ij

(

Bαβ
ij

)†
Bαβ

ij , (1.26)

where the spin-singlet pairing operator Bαβ
ij is defined as

Bαβ
ij = ciα↑cjβ↓ − ciα↓cjβ↑. (1.27)

It is clear that the superexchange J provides the necessary pairing interaction

between the neighboring sites i and j. The treatment of the single-band problem
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can be found in Ref. [88] and [89]. For the multi-orbital case, it is argued that

the dominant pairing channel is from the intra-orbital exchanges [86, 90]. So the

inter-orbital exchanges are neglected, Jαβ
ij = δαβJ

α
ij . We will further assume that

for different orbitals, Jα
ij takes the same value of J1 and J2 between the NNs and

NNNs. With the presence of the translational symmetry, we can identify four

distinct pairing amplitudes, ∆α
x = 〈Bαα

i,i+x〉, ∆α
y = 〈Bαα

i,i+y〉, ∆α
x+y = 〈Bαα

i,i+x+y〉,
and ∆α

x−y = 〈Bαα
i,i+x−y〉.

Without the kinetic energy, the pairing states are highly degenerate. For

example, in a system with only the NN exchange J1, we can have the sx2+y2

pairing with the structure factor gx2+y2 = cos kx + cos ky when ∆x = ∆y.

In contrast, ∆x = −∆y will produce a degenerate dx2−y2 pairing state with

gx2−y2 = cos kx−cos ky. Similarly, if J2 is the dominant energy scale, there also

exist two degenerate pairing states sx2y2 and dxy, with the structure function

gx2y2 = cos kx cos ky and gxy = sinkx sin ky. In real space, they correspond to

∆x+y = ∆x−y and ∆x+y = −∆x−y, respectively.

The inclusion of the kinetic energy will lift the degeneracy of the pairing

states. Basically we will decouple the magnetic exchange term in the particle-

particle channel, and the resulting quadratic t-J1-J2 Hamiltonian can be solved

by a self-consistent mean-field theory. The solution that has the lowest energy

is the ground state and determines the leading paring instability of the system.

Various multi-orbital models have been used to capture the kinetic energy of

the iron-based superconductors [86, 90, 91, 92].

In Fig. 1.8(b), we show the superconducting phase diagram of a two-orbital

model at electron doping x = 0.18 [86]. As expected, when J2 dominates,

the sx2y2 state is the leading pairing instability. Its structural factor gx2y2 =

cos kx cos ky changes sign from the hole pockets at (0, 0) to the electron pockets

at (π, 0) and (0, π). It is consistent with the prediction from the weak-coupling

approaches. In contrast, for the J1-dominated regime, we will favor the dx2−y2

state [90] with gx2−y2 = cos kx − cos ky, which produces nodes at the hole

pockets and changes sign between the two electron pockets. Very interestingly,

there is a mixed state of sx2y2 and dx2−y2 pairing in the intermediate regime [see

Fig. 1.8(b)], signaling the competition of J1 and J2. In this mixed phase, the

dx2−y2 order parameter changes sign between the dxz and dyz orbitals, whereas

the order parameter of sx2y2 is invariant. So the overall superconducting state

still has the s-wave symmetry. The detailed discussion regarding the pairing

symmetry for the two-orbital case can be found in Ref. [93]. Compared to

the weak-coupling results, this mixed pairing state gives rise to the angular

dependence of the superconducting order parameters from another perspective.

However, due to the dominance of the NNN exchange J2, the sx2y2 gap is usually

favored in the strong-coupling theories. For example in KFe2Se2 where the hole

pocket is absent, the weak-coupling theories predict a d-wave gap [64, 69], while

the t-J1-J2 models still lead to the sx2y2 gap [91, 92].

The most apparent difficulty of the strong coupling theories is that the iron-
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based superconductors are never insulators, even for the parent compounds.

We are unable to justify that the low-energy spin physics can be described by a

Heisenberg model. Second, because the J1-J2 exchange interaction governs the

spin fluctuations, the superconducting gap structure becomes fixed in momen-

tum space. The sign and amplitude of the superconducting order parameter

only depend on the position of the Fermi surface. This result is not supported

by the experimental observations and the weak-coupling calculations. Finally,

as we have mentioned and will discuss in detail in Sec. 2.1.1, later inelastic

neutron scattering experiments [81] found that the isotropic J1-J2 Heisenberg

model cannot capture the observed spin excitations. The fitted exchange con-

stants are highly anisotropic, with J1a � J1b, for the (π, 0) magnetically ordered

state. We will see later that this anisotropy of the magnetic exchanges comes

naturally from the so-called Kugel-Khomskii model [94], which includes both

the spin and the orbital degrees of freedom.

1.2.3 Hybrid model

Motivated by the fact that neither the weak-coupling nor the strong-coupling

theories give a satisfactory description of the iron-based superconductors, some

have proposed the hybrid model that combines both theories. In this so-called

local-itinerant model, some d electrons become effectively localized and form the

local moments, whereas some other d electrons remain itinerant, contributing to

the observed metallic properties. The simultaneous presence of both localized

and itinerant electrons was proposed in the early study to explain the unusually

small magnetic moments [95]. However, more precise formulations of the hybrid

model came later [96, 97].

As illustrated by Fig. 1.9, the full Hamiltonian consists of three parts,

H = Hloc +HK +HH, (1.28)

where Hloc, HK , and HH describe the local moments, the itinerant electrons,

and the couplings between the two, respectively. The local moments arise from

strong electron correlations. They are the incoherent excitations away from the

Fermi energy (Fig. 1.9). Recall that in the iron pnictides, the electron inter-

action strength is likely to sit just below the critical value to induce a Mott

transition [83, 84]. These incoherent excitations are the remnants of the upper

and lower Hubbard bands in a Mott insulator, although a Mott gap does not

fully develop here. For simplicity, we will assume that the local moments are

governed by the superexchanges J1 and J2 between the nearest neighbors and

the next-nearest neighbors. So Hloc takes the form of the J1-J2 Heisenberg

model, as in Eq. (1.21). The itinerant electrons are the coherent excitations

at the Fermi energy (Fig. 1.9). They are adiabatically connected to the nonin-

teracting quasiparticles. So the interaction term within the itinerant electrons

can be legally dropped. We use either a multi-orbital model HK (1.2) or a
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Figure 1.9: Illustration of the local-itinerant model. The local moments are
described the J1-J2 Heisenberg model. We use a multi-orbital tight-binding
Hamiltonian for the part of the itinerant electrons. The two are further coupled
by a ferromagnetic Hund exchange. The illustration of the density of states is
from Ref. [96].

multi-band model HK (1.13) to reproduce the Fermi surfaces. As an example,

Fig. 1.9 displays a two-orbital tight-binding model consisting of the dxz and dyz

orbitals. Finally, we need to introduce the on-site Hund couplings between the

local moments and the itinerant electrons.

HH = −JH
∑

i,α

Si · si,α (1.29)

where si,α = 1/2
∑

c†iαµσµνciαν is the spin of the itinerant electron at orbital

α and site i, with σ being the Pauli matrix. We will choose JH > 0, so that the

Hund coupling is ferromagnetic.

Because of its dual character, the local-itinerant model is very versatile in

explaining various properties of the iron-based superconductors. The AFM

order of the local moments in the J1-J2 model will simultaneously induce the

same AFM order of the itinerant electrons. Using the RPA technique, we can

calculate the dynamical susceptibility of the composite spins, consisting of both

the local moments and the spins of the itinerant electrons [98]. The result at

low energy displays the well-defined spin-wave excitation that is governed by

the exchange interaction. When the energy becomes higher, the presence of

the itinerant electrons leads to an energy-dependent damping effect. If we go

above two times the AFM gap magnitude, the spin excitation is dominated by
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the particle-hole continuum. These behaviors are consistent with the inelastic

neutron scattering (INS) results in several materials [99, 100, 101]. The Hund

coupling between the local moments and the itinerant electrons also provides

the necessary pairing interaction. The s+− superconducting state emerges in

both the paramagnetic and antiferromagnetic phase [102].

Another interesting result from the local-itinerant model is the anisotropy of

the effective exchange constants. Our work [103] is the first to address this issue

and will be presented in detail in Chapter 5. The basic idea is that there exists

an effective ferromagnetic exchange between the local moments due to the Hund

coupling to the itinerant electrons. Its competition with the superexchanges J1

and J2 will stabilize the (π, 0) magnetic order. Furthermore, a ferro-orbital order

of the itinerant electrons can spontaneously arise. It produces very anisotropic

corrections to the spin interactions along the two in-plane directions. In the

appropriate parameter regime, we can even tune the exchange along the y di-

rection, J1y, to be ferromagnetic, corresponding to the unfrustrated magnetism

observed by the INS experiment [81, 100]. Using the same idea based on the

competition between double exchange and superexchange, researchers have pro-

posed [104] that the local-itinerant model can unify different magnetic orders in

the iron-based superconductors.

The biggest shortcoming of the local-itinerant model is that it artificially

separates the localized and the itinerant electrons. Such a separation is probably

unphysical, as the AFM order and superconductivity may arise from the same

electrons [76, 77]. Second, as we will see in Chapter 3, the local moment also

has an orbital degree of freedom, and is more appropriately described by the

Kugel-Khomskii model, instead of the Heisenberg model. Third, the itinerant

electrons should be defined only around the Fermi energy. However, the multi-

orbital model used here comes from the fitting over several eV, and may not

accurately capture the low-energy physics. Finally, an orbital independent Hund

coupling is also unrealistic.
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Chapter 2

“Nematic” order in
iron-based superconductors

The term “nematic” comes from the studies of the classical liquid crystals. In its

original meaning, the nematic phase breaks a continuous rotational symmetry,

but remains invariant under other symmetry operations, such as inversion and

translation. However, in the presence of a lattice, the underlying symmetry of

the system becomes discrete. So the nematic order actually breaks a discrete

rotational symmetry, with the resulting ground state being two-fold degenerate.

As we have learned in Chapter 1, the iron-based superconductors can exhibit

the structural phase transition in the absence of the long-range magnetic order.

This orthorhombic phase sandwiched between TS and TN is exactly the nematic

phase we have just defined. This lattice C4 symmetry breaking is driven by the

electron degrees of freedom, namely the electron nematic order [105]. The elec-

tron nematic phase, one of the electron liquid crystal phases [106], is abundant

in strongly correlated electron systems, such as the high Landau level quantum

hall system, cuprates, bilayer ruthenates, and also the iron-based superconduc-

tors we considered here (for a review, see Ref. [107]).

In this chapter, we will talk about both the experimental and theoretical

aspects of the electron nematic order in the iron-based superconductors. Sec. 2.1

will introduce a plethora of the experiments that found strong evidences of

the in-plane electronic and magnetic anisotropy. This section serves as the

experimental motivation of the thesis. In Sec. 2.2, two different origins of the

electron nematic order will be discussed. We will argue that the orbital order,

instead of the spin-nematic order, is the effective cause of the nematicity in the

iron-based superconductors.

2.1 Experimental evidence of the in-plane

anisotropy

From the symmetry point of view, the electron nematic order and the crystal

structural distortion break the same lattice C4 rotational symmetry, and thus

will have the same onset temperature in a Landau-Ginzburg theory. So it is

always ambiguous to distinguish which one of the two is the underlying cause

of the symmetry breaking. However, one critical observation here is that the

lattice distortion is too small to account for the large electronic anisotropy

21



(a) (b)

Figure 2.1: Spin-wave dispersion along the high-symmetry directions in
CaFe2As2. The filled circles are from the INS experiment. The black solid
and the red dashed lines are the fitting results by the anisotropic and isotropic
Heisenberg models, respectively. The fitting parameters are SJ1a = 49.9± 9.9,
SJ1b = −5.7± 4.5, SJ2 = 18.9± 3.4, SJc = 5.3 ± 1.3 meV for the anisotropic
model, and SJ1a = 27, SJ1b = 25, SJ2 = 36, SJc = 5.3 meV for the isotropic
model. The length of the blue vertical bars in (a) represents the momentum
dependence of the spin-wave damping Γ. From Ref. [81].

seen experimentally. Consequently, in our point of view, the electron nematic

order is the main symmetry breaking mechanism, whereas the structural phase

transition simply follows. In this section, we will list a series of the experiments

that found the electronic anisotropy in the iron-based superconductors. Some

of them are summarized in a recent review article [108].

2.1.1 Inelastic neutron scattering (INS)

Generally the INS experiments measure the dynamical spin correlation func-

tion χs(q, ω). As we have shown in Chapter 1, this quantity can be calculated

by either the RPA approach in the weak-coupling theories, or the linear spin-

wave theory in the strong-coupling Heisenberg models. So by fitting the INS

experimental results with the existing theories, we will be able to extract im-

portant parameters in our theory. However, the multi-orbital band structure

complicates the RPA-type spin susceptibility. Furthermore, the presence of the

particle-hole continuum at high energy makes the analysis even more difficult.

So far no direct fitting has been done using the RPA spin correlation function.

We are restricted to the fitting results of the Heisenberg models.

INS is arguably the first experiment to discover the in-plane anisotropy.

Early experiments carried out at low energy [109] already hinted that the un-

derlying magnetic exchange is highly anisotropic, with J1a � J1b. We have used

J1a and J1b to represent the exchange couplings between the nearest neighbors

along the AFM x direction and the FM y direction, respectively. But more con-

clusive results are from the later INS experiment of CaFe2As2 that covers the

entire spectrum [81]. We can read from Fig. 2.1(b) that the spin-wave energy at

(π, π) does not go to zero as predicted by the isotropic J1-J2 model, but instead

reaches a maximum. Obviously, nearly isotropic exchange constants fail to de-
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scribe the experimental results (red dashed line in Fig. 2.1). The best fitting

can be only achieved using the anisotropic Heisenberg model (black solid line

in Fig. 2.1). Not only do we have J1a � J1b, but it is also required that J1b be

slightly ferromagnetic. In contrast to the early claim of frustrated magnetism,

the INS experiments reveal that an unfrustrated spin model underlies the iron

pnictides. More recently, the INS experiments were pushed into the param-

agnetic (PM) phase [100]. When we go above the Néel temperature TN , the

spin-wave excitation becomes gapped at the ordering wave vector as expected,

whereas the high energy excitation at the zone boundary remains almost the

same. This result tells us that the magnetic exchanges are still anisotropic in

the PM phase.

However, we need to be careful here. Across the structural phase transition,

the crystal does not distort uniformly, but forms dense twin domains in which

the lattice constant is longer in either the x or y direction. Consequently, in the

magnetically ordered state, there are almost equal amounts of the (π, 0) and

(0, π) order, associated with the domains of a > b and a < b, respectively. So

the spin excitation measured by the INS experiment comes from both types of

the magnetic orders, and is thus C4 symmetric. However, the fitting can still be

carried out. All we need to do is to calculate χ(qx, qy, ω) from some Heisenberg

model, and take the average of χ(qx, qy, ω) and its 90o rotation counterpart,

χ(qy, qx, ω). In this sense, the anisotropy of the exchange constants observed in

the tetragonal phase above TN , does not represent a nematic order. Instead, it

signals the nematic fluctuation, which leads to the magnetic anisotropy within

its correlation length.

2.1.2 Scanning tunneling microscopy (STM)

STM measures the local tunneling current I from a sample at a certain bias

voltage V . By doing a derivative, one can obtain the local conductance g(r, E),

which is related to the local density of states. Its Fourier transform g(q, E),

which is named the quasiparticle interference (QPI) image, provides important

information of the system, such as the dispersion of the quasiparticles, the

symmetry and structure of the superconducting gap. Detailed review of the

STM study in the iron-based superconductors can be found in Ref. [110].

Because STM is a local probe, its measurement will not be affected by the

formation of the domains. As shown by the local conductance g(r, E) image

in Fig. 2.2(a), a clear domain wall is formed along the diagonal of the image.

The lower right region has the magnetic order at Q = (π, 0), with the spins

ferromagnetically aligned along the y direction, whereas the upper left region

is characterized by the (0, π) magnetic order. By a careful examination of the

g(r, E) image, we can observe some unidirectional structures within each do-

main. This C4 symmetry breaking is more evident if we perform a Fourier

transform of g(r, E) and plot the resulting QPI image g(q, E) [see the inset
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(a) (b)

Figure 2.2: (a) The local conductance image g(r, E) of Ca(Fe1−xCox)2Asx (x =
0.03). The domain wall is seen along the diagonal. Inset displays its Fourier
transform, namely the QPI image g(q, E), which rotates by 90o across the twin
boundary. Both images are taken at E = −10meV. (b) The dispersion of the
QPI pattern. Circles represent the peaks extracted from each QPI image g(q, E).
Blue lines are the parabolic fit. QPI pattern shows a hole-like dispersion, which
is only dispersive along the FM direction. The center peaks are separated from
the side peaks by a wave vector of 2π/8. From Ref. [111].

of Fig. 2.2(a)]. By varying the tunneling energy E, we find that the peak of

g(q, E) only moves along the ferromagnetic y direction for the (π, 0) ordered re-

gion [Fig. 2.2(b)]. The distance between the main peak and the two side peaks

along the AFM x direction remains almost the same at 2π/8, which reminds

us of the 1/8 anomaly in the cuprate superconductors. Both the band struc-

tures from the LDA [112] and the mean-field [113] theories in the AFM phase

have been used to calculate the QPI image. But neither of them can reproduce

this nearly one-dimensional QPI pattern with the 1/8 modulation. It is still an

open question to identify the nontrivial electronic order that contributes to this

peculiar QPI image. One possible solution is that the scattering center has a

dimer structure1.

We should note that it is incorrect to use the term “nematic” to describe

the C4 symmetry breaking observed here. The STM experiment is done at low

temperature, where the long-range AFM order already sets in. This stripe-

type AFM order is characterized by the ordering wave vector Q = (π, 0), with

the spins being antiparallel along the x direction and parallel along y, and

thus breaks the lattice C4 symmetry. However, another symmetry, namely the

translational symmetry along the x direction, is also broken by the AFM order.

Therefore, according to the terminology of the classical liquid crystals [106], we

should name such a phase “smectic” instead of “nematic”.

Later STM experiments [114, 115] also confirmed this in-plane anisotropy

1M. P. Allan and J. C. Davis, private communications.
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Figure 2.3: (a) Temperature dependence of the in-plane resistivity ρa and ρb of
the detwinned Ba(Fe1−xCox)2As2 crystals for various doping levels from x = 0
to x = 0.085. The vertical solid and dashed lines mark the structural and mag-
netic transition temperatures TS and TN of the unstressed samples, respectively.
(b) The in-plane resistivity ratio ρb/ρa, as a function of temperature T and dop-
ing x. The structural, magnetic, and superconducting transition temperatures
are also shown. From Ref. [119].

in various iron-based superconductors, suggesting the universality of this C4

symmetry breaking. Here we would like to emphasize one particular experiment

[115] on FeSe materials. As we have mentioned earlier, FeSe is a superconductor

with a transition temperature Tc = 8K at ambient pressure [16]. A structural

phase transition from tetragonal to orthorhombic occurs at 90 K [28], but no

long-range magnetic order is observed down to zero temperature, which makes

FeSe an ideal system for the study of nematic order. By either applying a

magnetic field or depositing additional Se atoms, experimentalists can suppress

superconductivity locally. The induced vortex core and the QPI image both

show very strong anisotropy [115]. It is an outstanding question to understand

the interplay between nematic order and superconductivity [116, 117].

2.1.3 Resistivity measurement

As discussed earlier, the formation of the dense twin domains usually prevents

the bulk measurements from detecting the intrinsic anisotropy in the iron-based

superconductors. This anisotropy will remain hidden unless we can develop a

proper technique to detwin the crystal. In early attempts, an in-plane magnetic

field is applied [118], which leads to a moderate change of the relative twin

populations. The real breakthrough comes from the mechanic method that can

almost fully detwin the crystal [119]. In these experiments, a uniaxial stress

is applied to the crystal along one Fe-Fe direction. If it is compressive [119],

the shorter b axis will be favored along the stress direction upon the structural

phase transition, whereas the tensile stress [120] will prefer the longer a axis.

In Fig. 2.3(a), the resistivity along the two in-plane directions, ρa and ρb,

are plotted as functions of temperature T for various doping levels x [119]. The
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resistivity anomaly is still seen around the structural and magnetic transition

temperature TS and TN of the unstressed samples. It may suggest that the

applied uniaxial stress is a weak symmetry breaking field, and does not affect

the transition temperature. In Fig. 2.3(b), the ratio ρb/ρa is plotted across the

entire phase diagram. We would like to point out two important features of

these figures.

First, the resistivity is always higher along the FM b direction. However,

simple argument that the scattering from spin fluctuations is stronger along the

AFM a direction will lead to a higher resistivity along a. Furthermore, according

to the previous STM result [111], the quasiparticles are only dispersive along

the FM b direction, and thus higher resistivity should also be expected along

the AFM a direction. So what causes the higher resistivity along the FM b

direction? In one theory, it comes from the Drude weight difference between

the two in-plane directions, due to the Fermi surface reconstruction by the AFM

order. Indeed, a simple mean-field theory calculation found higher Drude weight

and thus lower resistivity along the AFM a direction [121]. On the other hand,

another theory advocates that the electron transport is dominated by the hot

spots from the spin fluctuations [122]. The positions of these hot spots, relying

on the shape of the hole and electron pockets, determine the higher resistivity

direction. While the former theory is more straightforward, only the latter one

can explain the puzzling result that in hole-doped Ba1−xKxFe2As2, resistivity

anisotropy is vanishingly small [123], possibly with slightly higher resistivity

along the AFM a direction [124].

Second, the resistivity anisotropy sets in above the structural phase transi-

tion. One simple explanation is that the applied uniaxial stress already breaks

the crystal C4 symmetry and turns the sharp transition into a broad crossover.

The induced resistivity anisotropy signals a large nematic susceptibility. How-

ever, some recent x-ray [125] and neutron scattering [126] experiments suggested

that applying the uniaxial stress effectively raises the Néel temperature TN , and

thus the in-plane anisotropy is simply due to the onset of the long-range mag-

netic order. We note here that in Ba(Fe1−xCox)2As2, the structural phase tran-

sition, which is separated from the magnetic transition, is of the second-order

type. So the critical temperature TS is more susceptible to the external field.

In contrast, for CaFe2As2 and SrFe2As2, in which the structural and magnetic

transitions are simultaneous and first order, the resistivity anisotropy is only

observed below TS [127].

2.1.4 Optical conductivity

Optical conductivity σ(ω) measures the current-current correlation function. It

provides information of the system on the energy scale of the incoming photons.

In the context of the iron-based superconductors, it has been used to extract the

magnitude of the AFM order [128], although the multi-band character compli-
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Figure 2.4: (a) Optical conductivity σ(ω) of the detwinned BaFe2As2 along
the two in-plane directions at various temperatures. ω1 and ω2 represent two
characteristic frequencies. (b) Analysis of the optical conductivity. (Upper
panel) Temperature dependence of the scattering rate. ΓB and ΓN are the
scattering rates of the broad and the narrow Drude parts, respectively. (Lower
panel) Temperature dependence of the spectral weight from the Drude, mid-
infrared (MIR) and interband contributions, respectively. From Ref. [129].

cates the analysis. Because it is also a bulk measurement, we can only observe

the anisotropy in optical conductivity in detwinned crystals.

Detailed experimental results can be found in Ref. [129], [130], and [131].

Their results are mostly consistent with each other. In Fig. 2.4(a), the two in-

plane optical conductivity σaa(ω) and σbb(ω) in detwinned BaFe2As2 are plotted

for temperatures from 10 K to 270 K. As with the resistivity, the anisotropy of

the optical conductivity turns on above the structural and magnetic transitions

because of the applied uniaxial stress. We can identify two peak features associ-

ated with the frequency ω1 and ω2, respectively. The shoulder at ω1 comes from

the onset of the magnetic order, and gradually increases when we go deeper into

the AFM phase. Basically, the AFM order partially opens up a gap at the Fermi

energy, and shifts part of the spectral weight from low energy to high energy.

On the other hand, the peak at ω2 originates from the interband transitions. It

barely changes with the temperature.

We can gain more insights by decomposing the optical conductivity into

various parts. As shown by the lower panel of Fig. 2.4(b), the optical conduc-

tivity consists of three major components, the Drude term, the mid-infrared

(MIR) term, and the high-energy interband contribution. We will focus on

the Drude term, which can be further decomposed into broad and narrow parts.

From Fig. 2.4(b), we see that above the magnetostructural transition, the Drude

weight is larger along the FM b direction. So it is the larger scattering rate along

b that contributes to a higher resistivity along b. However, below the magne-
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tostructural transition, the scattering rate becomes larger along the AFM a

direction instead, possibly due to magnetic fluctuations. But the Drude weight

also becomes larger along a, which overcomes the scattering rate difference. So

we still end up with a higher resistivity along b. So from this analysis of the

optical conductivity, the anisotropy of the resistivity has two distinct origins

across the magnetostructural transition. Both the Drude weight [121] and the

scattering rate [122] play important roles here. As we will show in Chapter 4,

orbital order is another key ingredient [132, 133] in understanding the results

from transport experiments.

2.1.5 Angle-resolved photoemission spectroscopy

(ARPES)

In general, one can write the ARPES intensity as [134]

I(k, ω) = |Mk
f,i|2f(ω)A(k, ω) (2.1)

where k and ω are the in-plane momentum and the energy of the electron.

Mk
f,i is the matrix element that depends on the energy and polarization of

the incoming photon, and the momentum of the outgoing electron. f(ω) =

1/ (exp (ω/kBT ) + 1) is the Fermi-Dirac distribution function. A(k, ω) is the

spectral function, defined as the imaginary part of the retarded Green function,

A(k, ω) = − 1

π
= [G(k, ω + iδ)] . (2.2)

For a noninteracting system, A(k, ω) = δ(ω− εk). Generally this δ-function will

be broadened to a Lorentzian line shape due to scattering processes. So the

ARPES experiments provide direct measurement of the electron dispersion εk.

Another advantage of ARPES comes from the matrix elementMk
f,i. Tuning the

polarization of the incoming light suppresses some electron orbitals as a result

of the selection rules. We can make use of this feature to investigate the orbital

components, which turns out to be a convenient way to study a multi-orbital

system, such as the iron-based superconductors.

Evidences of the in-plane anisotropy have been found by early ARPES ex-

periments on twinned crystals [135, 136]. Experimentalists used a laser spot

that is small enough to be comparable to the typical domain size. Thus one

particular domain makes the dominant contribution so that the C4 symmetry

breaking can be observed. It is shown that upon the onset of the (π, 0) AFM

order, an orbital-dependent Fermi surface reconstruction occurs with the dxz

orbitals dominating the states near the Fermi energy [135]. This result is con-

sistent with theoretical predictions from mean-field theory [137].

However, ARPES experiments performed on detwinned crystals give us more

important insights [138]. In Fig. 2.5, the electron dispersion of detwinned

BaFe2As2 is plotted along the two in-plane directions, Γ-X and Γ-Y , respec-
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Figure 2.5: Orbitally polarized dispersions along Γ-X and Γ-Y lines at 80 K
in detwinned BaFe2As2, derived from the ARPES measurement. Due to the
polarization of the incoming photon, the band at X is mostly composed of
the Fe dyz orbital, whereas the dxz orbital dominates the band at Y . From
Ref. [138].

tively. In experimental setup, the polarization of the incoming photon selects

the orbitals that are odd under reflection with respect to the incident plane. So

we are able to detect only the dyz and dxy orbitals along Γ-X , whereas only

the dxz and dxy orbitals are active along Γ-Y . The splitting between the bands

at X and Y signals a possible energy difference between the dxz and dyz or-

bitals. As we will see in Chapter 4, this energy splitting term, combined with

the mean-field AFM order, is able to reproduce the band dispersion observed

here.

Again because of the applied uniaxial stress, the band splitting is seen above

the structural transition temperature TS . By comparing the ARPES results

on twinned and detwinned samples, researchers found the splitting even occurs

above TS in twinned crystals [138]. But it does not represent a nematic order,

but may arise from short-range orbital or magnetic orders. Recently, researchers

have performed ARPES experiments on detwinned NaFeAs [139, 140], in which

the structural and the magnetic transitions are well separated. They found that

the Fermi surfaces of NaFeAs undergo a C4 symmetry breaking between TS

and TN , and that the distorted hole and electron pockets have better nesting

conditions. This result suggests an interesting interplay between the nematic

and the (π, 0) AFM order.

2.1.6 Other experiments

The in-plane electronic anisotropy also manifests itself in other experiments, for

example, point contact spectroscopy (PCS). In these experiments, one measures

the differential conductance G(V ) = dI/dV of a point contact junction between

two different materials. In the ballistic regime, we have

G(V ) =

∫

d3k

(2π)3
v⊥(k)δ (εk − V ) (2.3)

where v⊥(k) = ∂εk/∂k⊥ is the velocity in the normal direction. As a result,

G(V ) contains the information about the system’s density of states (DOS). As
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Figure 2.6: (a) Differential conductance G(V ) for BaFe2As2. The red curve is
taken at the magnetostructural transition temperature TS = TN = 132K. The
zero-bias conductance enhancement is observed well above TS . Well below TN ,
a double-peak structure develops. (b) The phase diagram of Ba(Fe1−xCox)2As2
from the point contact spectroscopy. The phase below To has strong nematic (or-
bital) fluctuations, which cause the zero-bias conductance enhancement. From
Ref. [142]

shown by Fig. 2.6(a), there exists an enhancement of G(V ) at V = 0 well

above the magnetostructural transition [141, 142]. This zero-bias conductance

enhancement is intimately related to non-Fermi liquid behavior caused by the

nematic fluctuations, or equivalently the orbital fluctuations above TS [143].

In Fig. 2.6(b), we show the onset temperature of the orbital fluctuations, To.

Interestingly, in the overdoped samples where no structural transition occurs,

the orbital fluctuations also vanish. It will be appealing if the evidences of the

nematic or orbital fluctuations can be found in other experimental probes.

However, recent torque magnetometry measurements2 on BaFe2(As1−xPx)2

told a different story. By rotating the in-plane magnetic field, experimentalists

found that the magnetic torque displays a two-fold oscillation, which signals

a C4 symmetry breaking. Surprisingly, the onset temperature of this two-fold

oscillation, T ∗, is well above the structural transition temperature TS. Using a

Landau-Ginzburg theory, they concluded that T ∗ indeed marks the true onset

temperature of the nematic order. The lattice distortion also occurs at T ∗ due

to the symmetry breaking. But its magnitude is too small to be experimentally

detectable until TS , at which the lattice distortion undergoes a discontinuous

jump. Similar to our earlier argument, the symmetry breaking above TS can be

caused by the applied in-plane magnetic field. But it is also possible that the

smallness of the sample size used in this experiment helps to reveal the hidden

nematic order. We will have to wait until other experiments can provide more

definite evidence.

2S. Kasahara and Y. Matsuda, private communications.
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Figure 2.7: Illustration of the Ising-nematic order from the J1-J2 model. The
original square lattice is broken into two interpenetrating sublattices. On each
sublattice, the spins are antiparallel with their nearest neighbors, with the stag-
gered magnetization defined as m1 and m2. Classically the angle θ between
m1 and m2 is arbitrary. Fluctuations lift the degeneracy, resulting in θ = 0 or
π, corresponding to the ordering wave vector Q = (π, 0) or (0, π).

2.2 Origin of the nematic order

Having discussed the experimental side, now let us turn to the theories of ne-

matic order in the iron-based superconductors. In short, existing theories can

be categorized into two distinct types. In one theory, nematic order comes from

spin fluctuations, which offers a natural explanation of the proximity of the

structural and the magnetic transitions. In contrast, the other theory ascribes

the C4 symmetry breaking to orbital order, which can spontaneously arise in a

multi-orbital system, such as the iron-based superconductors. We will discuss

these two types of theories in Sec. 2.2.1 and Sec. 2.2.2, respectively.

2.2.1 Spin fluctuation

As we have learned in Sec. 1.2.2, the J1-J2 Heisenberg model gives a strong-

coupling account of the (π, 0) antiferromagnetic order. Furthermore, we will

demonstrate here that the structural phase transition may arise from the Ising-

nematic order in the J1-J2 model [144, 145, 146]. It is known that in the classical

limit, the stripe-type (π, 0) or (0, π) magnetic order will win over the (π, π) AFM

order if the J2 > J1/2. We should also notice that in this regime, the (π, 0) and

(0, π) AFM order are not the only two classical ground states. As illustrated

by Fig. 2.7, the original square lattice can be broken into two interpenetrating

sublattices. On each sublattice, there exists an AFM order, with the spins

between the nearest neighbors being antiparallel. We will define the staggered

magnetization on each sublattice as m1 and m2, respectively. If the spins are

treated as the classical vectors, it can be easily verified that the ground state

energy is independent of the angle θ between m1 and m2. Thus the classical

ground state manifold is S2
⊗

S2. However, if we take the quantum or thermal

fluctuations into account, this infinite ground state degeneracy will be greatly

lifted. The angle θ between m1 and m2 can only take discrete values of 0 and π,
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corresponding to the (π, 0) and (0, π) AFM order in the original square lattice.

The ground state manifold is reduced to S2
⊗

Z2. This is the so-called order

from disorder mechanism [147, 148].

Formally, we can perform a gradient expansion and derive the following

Hamiltonian [144, 145, 146]

H =

∫

d2rJ2
(

|∇m1|2 + |∇m2|2
)

+ J1m1 · ∂x∂ym2 −K (m1 ·m2)
2
, (2.4)

where K ∼ J2
1 /J2, arising from fluctuations. Because K > 0, in order to mini-

mize the energy, it is required that m1 and m2 are either parallel or antiparallel.

To describe such a Z2 order, we further introduce a Hubbard-Stratonovich field

σ, which couples to m1 ·m2,

L′ = −σ (m1 ·m2) +
1

4K
σ2. (2.5)

The Ising order parameter σ = ±1 corresponds to the (π, 0) and (0, π) AFM

order, respectively.

Very interestingly, for a pure two-dimensional system, there exists a finite-

temperature Ising transition to an Ising ordered state with nonzero expectation

value of σ, 〈σ〉 6= 0. However, according to the Mermin-Wagner theorem [149],

no continuous symmetry breaking can occur at finite temperature. Thus 〈m1〉 =
〈m2〉 = 0 unless T goes to zero. Therefore, we find a phase in which the lattice

C4 symmetry is broken by a finite 〈σ〉, without the onset of the long-range AFM
O(3) order. This is exactly the nematic phase we have defined earlier.

Certainly the real system is never pure two dimensional. We will introduce

the magnetic exchange Jz along the c axis to represent the three-dimensional

coupling. As shown in Fig. 2.8, as Jz increases, the Ising-nematic and the O(3)

AFM transitions start to merge together. It qualitatively explains why these

two transitions are separate in some materials, while being coincident in others.

Researchers have also studied the effects of doping and pressure, and found some

consistency with experiments [150, 151].

Obviously the most apparent problem here is that the J1-J2 model can-

not explain the magnetic excitations measured by the INS experiments (see

Sec. 2.1.1). The biquadratic exchange arising from fluctuations has an energy

scale K ∼ 0.01J2 [145], which is too small to account for the observed mag-

netic anisotropy. To solve the problem, researchers have directly included the

biquadratic term in the bare Hamiltonian and proposed the so-called J1-J2-K

model [152],

Hloc = J1
∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj +K

∑

〈i,j〉
(Si · Sj)

2
(2.6)

where K is the bare biquadratic couplings between the spins on the nearest

neighbor sites. In such a model, the effective exchange interactions between the
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Figure 2.8: The critical temperature of the Ising-nematic transition and the an-
tiferromagnetic transition, TN and TSDW, as a function of the magnetic coupling
along the z direction, Jz . From Ref. [145].

nearest neighbors are renormalized by the K term. The calculated spin exci-

tations are consistent with the experiments in both the magnetically ordered

phase [152] and the paramagnetic phase [153, 154]. It is argued that the exten-

sion of this model can provide a unified description of the magnetism in both

iron pnictides and iron chalcogenides [155]. Theoretically, we can motivate this

biquadratic K term by doing a strong-coupling expansion to the fourth order.

However, other four-spin terms, such as the ring exchange term, should also

appear. But they are neglected without any justification. It is also unclear why

the biquadratic K term between the NNN spins is not considered.

Besides the above strong-coupling theories, the Ising-nematic order can be

also formulated using the weak-coupling approach [156]. We will make use of

the multi-band model HK (1.13), and explicitly consider one hole pocket at

Γ = (0, 0) and two electron pockets at X = (π, 0) and Y = (0, π), respectively.

The magnetic interaction HAFM (1.16) occurs between the hole pocket and both

of the electron pockets. The first step is to introduce two bosonic fields,

∆X ∼
∑

c†kµσµνdX,k+Q,ν , (2.7)

∆Y ∼
∑

c†kµσµνdY,k+Q,ν , (2.8)

which represent two competing AFM orders with Q = (π, 0) and Q = (0, π),
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Figure 2.9: (Upper panel) The band structure in the 1-Fe BZ. We have a cir-
cular hole pocket at Γ and two electron pockets at X and Y . (Lower panel)
Magnetic fluctuations for different temperatures. Above the structural transi-
tion temperature TS, the two ordering wave vectors Q = (π, 0) and Q = (0, π)
are equivalent with 〈∆2

X〉 = 〈∆2
Y 〉. Below TS but still above the Néel temper-

ature TN , fluctuations at one wave vector become stronger, 〈∆2
X〉 > 〈∆2

Y 〉. So
the C4 rotational symmetry is broken without the long-range magnetic order,
〈∆X〉 = 〈∆Y 〉 = 0. From Ref. [156].

respectively (Fig. 2.9). We will do the standard Hubbard-Stratonovich trans-

formation to decouple the AFM interaction term HAFM (1.16). By integrating

out the fermionic fields, we write down the effective action of ∆X and ∆Y up

to the fourth order [156, 157],

Seff [∆X ,∆Y ] = r0
(

∆2
X +∆2

Y

)

+
u

2

(

∆2
X +∆2

Y

)2 − g

2

(

∆2
X −∆2

Y

)2
. (2.9)

If the nesting condition is perfect, namely m = mx = my and εh,0 = εe,0 [see

Eq. (1.14) and (1.15)], it is found that g = 0. Therefore, below the Néel tem-

perature TN , any solution that satisfies 〈∆X〉2 + 〈∆Y 〉2 = −r0/u will minimize

Seff . Both the AFM orders with Q = (π, 0) and Q = (0, π) can coexist in

our system. However, the nesting is never perfect in real systems, leading to a

positive g. So we will have a configuration with either 〈∆X〉 6= 0 or 〈∆Y 〉 6= 0,
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but both cannot be nonzero simultaneously. It is analogous to the Z2 order in

the aforementioned J1-J2 model.

Now the question is whether this Z2 transition can occur before the O(3)

symmetry breaking. The answer is yes. As illustrated by Fig. 2.9, at high tem-

peratures, the spin fluctuations are equally strong at the two competing ordering

wave vectors Q = (π, 0) and Q = (0, π). Once we go across the structural phase

transition temperature TS , the magnetic fluctuations become stronger at one

wave vector, say Q = (π, 0). Then we will have 〈∆2
X〉 > 〈∆2

Y 〉, which breaks

the C4 lattice rotational symmetry. However, the long-range magnetic order at

Q = (π, 0), which corresponds to 〈∆X〉 6= 0 and 〈∆Y 〉 = 0, only occurs at a

lower temperature TN .

Formally, we can introduce two new Hubbard-Stratonovich fields ψ and φ,

which are coupled to the fluctuations ∆2
X+∆2

Y and ∆2
X−∆2

Y , respectively. We

notice that ψ always has a nonzero expectation value and describes Gaussian

fluctuations. On the other hand, if the φ field obtains a nonzero expectation

value, the system will undergo an Ising-nematic transition. We can derive the

effective action of ψ and φ, Seff [ψ, φ], by integrating out the ∆X and ∆Y fields.

The stationary solutions of ψ and φ can be found by minimizing Seff [ψ, φ].

Detailed calculations are in Ref. [156]. The results are very similar to those from

the previous J1-J2 model. When the nematic coupling strength g/u is large, the

structural and the magnetic transitions are separate, with both being second

order. In the opposite limit that g/u is small, the system only exhibits one first-

order transition. Distinct from the strong-coupling results is the new phase

for the intermediate values of g/u. In this phase, the system first undergoes a

second-order nematic transition and then at a lower temperature, a first-order

magnetic transition. This behavior is consistent with the latest experimental

results on Ba(Fe1−xCox)2As2 [26, 27].

Finally we briefly comment on the equivalence between these two theories.

Indeed their starting points are exactly opposite. One is built from a local

moment model governed by the exchanges J1 and J2, whereas the other re-

lies on the SDW instability between the hole and electron pockets. But most

importantly, they share the same ground state manifold of S2
⊗

Z2. The Z2

Ising-nematic order can be spontaneously broken, without the onset of an O(3)

type magnetic order. Actually, with the identification that ∆X = m1 + m2

and ∆Y = m1 − m2, we see that the nematic order parameters in these two

theories are equivalent,

∆2
X −∆2

Y ∼ m1 ·m2. (2.10)

2.2.2 Orbital order

In the preceding section, we saw that nematic order can occur because the spin

fluctuations select a preferable direction above the Néel temperature, TN . In
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Figure 2.10: Orbital order, and the resulting magnetic order with the anisotropic
exchange constants. (a) The dxz orbital order and the Q = (π, 0) AFM order.
t1 and t2 are the hopping amplitudes along the x and y directions, respectively.
(b) The dyz orbital order and the Q = (0, π) AFM order.

this section, we would like to discuss another possible origin of nematic order,

namely orbital order. This is a natural scenario in a multi-orbital system, such

as the iron-based superconductors.

From the strong-coupling point of view, the one-band Hubbard model at

half filling can be reduced to the Heisenberg model when U � t. But the same

strong-coupling expansion for the multi-orbital Hubbard model does not only

involve the spin degrees of freedom, but also the orbital degrees of freedom.

The resulting low-energy Hamiltonian is the so-called Kugel-Khomskii model

[94]. The physics of the Kugel-Khomskii model and its application to the iron-

based superconductors [158] are the main contents of Chapter 3, where our

contribution [159] will be presented in Sec. 3.2.

But the basic idea is actually quite simple. For simplicity, let us consider a

system consisting of only two 3d orbitals, dxz and dyz. We note that dxz and

dyz are the only two 3d orbitals that break the lattice C4 rotational symmetry

locally. Above the structural phase transition temperature TS , each site can be

equally populated with the dxz and dyz orbitals. The C4 symmetry is preserved

and the lattice is tetragonal. When the temperature goes below TS , without

loss of generality, we assume that the system prefers to be occupied by the dxz

orbital [Fig. 2.10(a)]. This inequivalence between the dxz and dyz orbitals breaks

the C4 rotational symmetry and induces a structural distortion. We further

consider the magnetic superexchanges from the virtual hopping processes with

the hopping amplitudes t1 and t2 along the x and y directions, respectively.

Immediately we have the exchange constants J1a = 4t21/U and J1b = 4t22/U ,

where U is the intra-orbital Coulomb repulsion. Due to the spatial anisotropy

of the dxz orbital, it is assumed that t1 � t2 and consequently J1a � J1b,

which leads to the Q = (π, 0) AFM order [Fig. 2.10(a)], if the NNN exchange

J2 satisfies J2 > J1b/2. The onset of magnetic order can only occur after orbital
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order has already set in. Therefore the Néel temperature cannot be higher

than the structural transition temperature, TN ≤ TS. Similarly, for the dyz

orbitally ordered state, we will have J1a � J1b and the Q = (0, π) AFM order

[Fig. 2.10(b)]. We see that the anisotropy of the exchange constants comes from

the orbital order that breaks the C4 rotational symmetry.

Similar to the theories of the spin fluctuations, orbital order can be also

formulated from the weak-coupling limit. It is related to the Pomeranchuk

instability [160]. Formally, we consider the interaction between two electrons

on the Fermi surface with momenta k1 and k2. The interaction can be written

in both the charge and the spin channels,

fαβ,γδ(k1,k2) = f s(k1,k2)δαβδγδ + fa(k1,k2)σαβ · σγδ. (2.11)

We further decompose each interaction by its angular momentum, and define the

Landau parameter F s,a
l = N0f

s,a
l , where l is the angular momentum and N0 is

the density of states at Fermi energy. In the seminal work of Pomeranchuk [160],

he considered an arbitrary deformation of the Fermi surface [see Fig. 2.11(a)]

and asked the question whether the system is stable against these deformations.

After careful calculations, he found that the changes of the kinetic and the

interaction energies are

∆EK ∼ (δns,a
l )

2
, ∆EI ∼ F s,a

l

2l+ 1
(δns,a

l )
2
, (2.12)

where δns,a
l is the component of the deformation with angular momentum l, in

the charge and spin channel. In order to have the Fermi surface being stable

against the deformations, it is required that

F s,a
l > −(2l+ 1). (2.13)

If this criterion is not satisfied, a possible Fermi surface deformation can oc-

cur. The most common example is Stoner ferromagnetism from the s-wave spin

interaction F a
0 , as shown by Fig. 2.11(b). Nematic order corresponds to the

instability in the d-wave charge channel F s
2 [see Fig. 2.11(c) for the illustration].

Examining the Fermi surfaces of the iron-based superconductors [Fig. 1.5(b)],

we find that the dominant orbital component on the Fermi surfaces changes be-

tween dxz and dyz by a 90o rotation. Because of the difference in the intra-orbital

and inter-orbital electron interactions, the Landau parameter F s
2 is greatly en-

hanced. The resulting nematic order is equivalent to the orbital order in the

multi-orbital systems. This argument is behind the multi-orbital theoretical

work [161, 162] explaining nematic order in the bilayer ruthenates. In the iron-

based superconductors, self-consistent mean-field calculations do not produce

the orbital order in the absence of the magnetic order [51, 137, 163]. Due to

the simultaneous onset of the AFM order, we cannot associate this orbital or-

37



(a) (b) (c)

F0
a F2

s

Figure 2.11: (a) An arbitrary Fermi surface deformation. (b) Ferromagnetic
order from the spin interaction in the s-wave channel. (c) Nematic order from
the charge interaction in the d-wave channel.

der with the nematic order. Nevertheless, the appearance of the orbital order

above the Néel temperature TN has strong experimental support. So we will

phenomenologically include an energy splitting term between the Fe dxz and

dyz orbitals, and investigate its experimental consequences. The details of our

work [133] will be presented in Chapter 4.
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Chapter 3

Orbital order from strong
coupling

3.1 Preliminary: Kugel-Khomskii model

The idea of orbital order originates from the seminal work of Kugel and Khmoskii

[94]. They note that some transition metal compounds are characterized by a

partially filled band with orbital degeneracy. Interactions can lift this orbital

degeneracy, and induce orbital order with the corresponding lattice distortion.

In this section, we will use KCuF3 as an example and introduce the theory of

orbital order, with the emphasis on the Kugel-Khomskii model. We should note

that these theories were developed for insulators. In contrast, the iron-based

superconductors are metals in their normal state. However, due to the fact that

some 3d electrons are effectively localized, we can still apply these models to

the iron-based superconductors.

In KCuF3, each Cu atom is surrounded by six F atoms in an octahedral

setting (see Fig. 3.3 for an illustration). Under the cubic crystal field, the five

Cu 3d orbitals are split into two groups. The eg subgroup at higher energy

consists of the dx2−y2 and d3z2−r2 orbitals, while the dxy, dxz, and dyz orbitals

make up the t2g subgroup at lower energy [see Fig. 3.1(a)]. We have a total of

nine electrons occupying these five orbitals. So there exists a single hole in the

two eg orbitals. With the orbital degeneracy being preserved, the single hole

can occupy any state that is a linear combination of the dx2−y2 and d3z2−r2

orbitals. Formally, we can parameterize the hole state by

|θ〉 = cos

(

θ

2

)

|z〉+ sin

(

θ

2

)

|x〉, (3.1)

where the orbital states are defined as

|z〉 =
(

3z2 − r2
)

/
√
6, |x〉 =

(

x2 − y2
)

/
√
2. (3.2)

Due to the structure of this two-fold degeneracy, an orbital pseudospin operator

T with T = 1/2 can be introduced to represent the two orbital states, with

|z〉 =
(

1

0

)

, |x〉 =
(

0

1

)

. (3.3)

39



(a) (b)

Figure 3.1: (a) The cubic crystal field lifts the degeneracy of the 3d orbitals.
The eg orbitals (dx2−y2 and d3z2−r2) have a higher energy than the t2g orbitals
(dxy, dxz, and dyz). From Ref. [164]. (b) Schematic representation of the orbital
states obtained by the linear combination of the two eg orbitals. From Ref. [165].

In Fig. 3.1(b), we show various orbital states that can be obtained by varying

the mixing angle θ.

According to Kugel and Khomskii [94], this orbital degeneracy can be lifted

by the interactions. In a lattice system, there are generally three types of these

interactions. The first is the electron-phonon interaction, which couples the

lattice displacements with the occupation numbers of the orbitals. The second

type is the quadrupole-quadrupole interaction, due to the quadrupole moment

of the d orbitals. For these two types of interactions, we can directly integrate

out the lattice variables and derive the effective Hamiltonian in terms of the

orbital pseudospin operators T . The general form is written as,

H (Ti,Tj) =
∑

〈i,j〉
Jzz
ij T

z
i T

z
j + Jxx

ij T
x
i T

x
j + Jyy

ij T
y
i T

y
j + Jzx

ij

(

T z
i T

x
j + T x

i T
z
j

)

, (3.4)

where the “exchange” constants Jzz
ij , J

xx
ij , and Jyy

ij can all take different values,

and the off-diagonal “exchange” Jzx
ij is generally nonzero. So unlike the real

spin S, the Hamiltonian of the orbital pseudospin T is not SU(2) invariant. It

has been shown that H (Ti,Tj) (3.4) takes the form,

Ha =
∑

〈i,j〉
Ja

(

−1

2
T z
i +

√
3

2
T x
i

)(

−1

2
T z
j +

√
3

2
T x
j

)

, (3.5)

Hb =
∑

〈i,j〉
Jb

(

1

2
T z
i +

√
3

2
T x
i

)(

1

2
T z
j +

√
3

2
T x
j

)

, (3.6)

Hc =
∑

〈i,j〉
JcT z

i T
z
j , (3.7)

along the three crystal axes, a, b and c, respectively. We notice that the in-

teraction depends on the direction of the bond (i, j). Furthermore, the orbital
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Figure 3.2: Illustration of the Goodenough-Kanamori rule. We consider the
superexchanges of the eg orbitals along the c axis, where only the hopping of
the d3z2−r2 orbital is allowed. The energy of each orbital and spin configuration
is calculated by second-order perturbation theories. U , V , and J are the intra-
and inter-orbital Coulomb repulsion, and the Hund coupling, respectively.

pseudospin T is reduced to an Ising variable along each crystal axis.

The last type of the interaction in an orbital degenerate system is the ex-

change interaction. Unlike the first two interactions, which can be expressed

exclusively by the orbital pseudospins, the exchange interaction also involves

the spin degrees of freedom. In many systems, it makes the dominant con-

tribution to the orbital and spin orders. We will introduce this spin-orbital

superexchange model, namely the Kugel-Khomskii model in the remainder of

this section.

We will first present the arguments behind the Goodenough-Kanamori rule

[166, 167] to show how orbital and spin orders are coupled to one another. As

an example, we consider the superexchange of the holes at two neighboring sites

along the c axis in KCuF3. Because the dx2−y2 orbital is highly two dimensional,

only the hopping amplitude between the d3z2−r2 orbital is nonzero and we define

it as t. We need to consider four distinct orbital and spin configurations on

the two sites, as illustrated in Fig. 3.2. The energies of these states can be

easily calculated by the second-order perturbation theory. If both sites are

occupied by the d3z2−r2 orbital [Fig. 3.2(a) and (b)], the exchange is strongly

antiferromagnetic (AFM). The effective spin-only model is

H (Si,Sj) =
4t2

U

∑

〈i,j〉
Si · Sj. (3.8)

where U is the intra-orbital Coulomb repulsion. In contrast, if different or-

bitals occupy the two sites [Fig. 3.2(c) and (d)], the exchange becomes weakly

ferromagnetic (FM), with

H (Si,Sj) =

(

4t2

V
− 4t2

V − J

)

∑

〈i,j〉
Si · Sj ≈ −4t2J

V 2

∑

〈i,j〉
Si · Sj , (3.9)

in the limit that the Hund coupling J is much smaller than the inter-orbital

Coulomb repulsion V . Our results can be summarized by the Goodenough-

Kanamori rule: (1) If there is a strong overlap between the two occupied or-
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Figure 3.3: The atomic structure and the orbital order of KCuF3. In the ab
plane, there is an alternating configuration of the dx2−z2 and dy2−z2 orbitals.
Along the c axis, the orbitals in the ab plane are stacked either antiferromag-
netically (type a on the left), or ferromagnetically (type d on the right). From
Ref. [168].

bitals, the superexchange between them is strongly AFM; (2) If a large overlap

occurs between a filled orbital and a vacant orbital, we have a weakly FM

superexchange. So we see that the spin interaction depends on the orbital con-

figuration in the system.

As shown in Fig. 3.3, there exist two types of the orbital order in KCuF3.

For both of them, the dx2−z2 and the dy2−z2 orbitals alternate with each other

between the nearest neighbors in the ab plane. Applying the argument of

Goodenough-Kanamori, we predict that the spins will form an FM order in

the ab plane. Along the c axis, the orbitals can be aligned either antiferro-

magnetically (type a) or ferromagnetically (type d). Both types possess a large

overlap of the occupied orbitals along the c axis, leading to the spin AFM or-

der. This A-type spin order, which is characterized by the FM ab planes being

stacked antiferromagnetically along the c axis, indeed occurs in KCuF3.

Now let us formally derive the Kugel-Khomskii model from a second-order

strong-coupling expansion of the multi-orbital Hubbard model. We will still use

KCuF3 as the example. In the hole basis, the virtual hopping process leading

to the superexchanges is d1d1 → d2d0 → d1d1. As a first step, we need to

find the multiplet structure of the intermediate d2 state. The standard on-site

Hubbard interaction HI (1.6) can be easily diagonalized in the d2 configuration.

Following the convention used in Ref. [169], we have
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(i) the triplet

|3A2〉 =











|z ↑, x ↑〉
1√
2
(|z ↑, x ↓〉+ |z ↓, x ↑〉)

|z ↓, x ↓〉
, (3.10)

with the energy eigenvalue

E
(

3A2

)

= V − J, (3.11)

(ii) the interorbital singlet

|1Eε〉 =
1√
2
(|z ↑, x ↓〉 − |z ↓, x ↑〉) , (3.12)

with eigenvalue

E
(

1Eε

)

= V + J, (3.13)

(iii) the bonding singlet

|1Eθ〉 =
1√
2
(|z ↑, z ↓〉 − |x ↑, x ↓〉) , (3.14)

with eigenvalue

E
(

1Eθ

)

= U − J ′, (3.15)

and (iv) the antibonding singlet

|1A1〉 =
1√
2
(|z ↑, z ↓〉+ |x ↑, x ↓〉) , (3.16)

with eigenvalue

E
(

1A1

)

= U + J ′. (3.17)

Now we consider second-order perturbations from the kinetic energy HK .

The general form of the Kugel-Khomskii model along a given bond (i, j) can be

written as [158]

H(i,j)
KK = −

∑

τi,τj

∑

si,sj

J (i,j)
τi,τj ,si,sjA

(i,j)
τi,τj (Ti,Tj)×Bsi,sj (Si,Sj), (3.18)

where S and T are the S = 1/2 spin and the T = 1/2 orbital pseudospin

operators, respectively. The superexchange J is proportional to t2/E, where E

is the excitation energy of the intermediate d2 state.

The spin part Bsi,sj (Si,Sj) can be directly obtained by group theory tech-

niques. Namely they will be the projection operators on the intermediate total
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spin states,

B1,0(Si,Sj) =
3

4
+ Si · Sj, (3.19)

B0,0(Si,Sj) =
1

4
− Si · Sj. (3.20)

The remainder depends on the exact virtual hopping processes. In general, we

can write H(i,j)
KK as a sum of each intermediate d2 state,

H(i,j)
KK = −

(

Si · Sj +
3

4

)

1

E (3A2)
Q(3A2) (Ti,Tj)

+

(

Si · Sj −
1

4

){

1

E (1Eε)
Q(1Eε) (Ti,Tj)

+
1

E (1Eθ)
Q(1Eθ) (Ti,Tj) +

1

E (1A1)
Q(1A1) (Ti,Tj)

}

. (3.21)

For simplicity, let us first consider the virtual hopping processes along the

c axis. The only nonzero hopping amplitude is the one between the two neigh-

boring d3z2−r2 orbitals. Consequently we can express the initial and final states

using the projection operators Piz and Pix on the d3z2−r2 and dx2−y2 orbitals.

We have defined Piz and Pix as

Piz =
1

2
+ T z

i , (3.22)

Pix =
1

2
− T z

i . (3.23)

Straightforward calculations yield along the c axis,

Q(3A2) = Q(1Eε) = t2 (PizPjx + PixPjz) , (3.24)

Q(1Eθ) = Q(1A1) = 2t2PizPjz . (3.25)

Along the a and b axes, the hopping Hamiltonian is more complicated. We

can still express the initial and final states in terms of the orbital pseudospin

operators T , and proceed to write down all the contributing virtual processes.

But a more clever approach is to perform a unitary transformation into a new

orbital basis, where the hopping occurs only within one of two orbitals, namely

the d3x2−r2 orbital along the a axis and d3y2−r2 along b. The explicit results

can be found in Ref. [169]. It should be noted that our notations are slightly

different. However, most importantly, we find that strong anisotropy usually

occurs in the orbital space and that the exchange interactions of the orbital

pseudospins are not O(3) invariant.

So far we have discussed the interaction terms that are responsible for the

breaking of the orbital degeneracy. There are three types of interactions, the

electron-phonon, quadrupole-quadrupole, and exchange interactions. In terms

of the orbital pseudospin operator T , all three interactions are not SU(2) invari-
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ant. In many cases, the orbital pseudospin T is effectively reduced to an Ising

variable T z. Therefore, similar to the argument presented in Sec. 2.2, this Z2

type Ising or orbital order can set in without breaking the spin O(3) invariance.

In our example KCuF3, orbital order does occur at a temperature that is much

higher than the Néel temperature TN [170].

In the iron-based superconductors, we consider the two-orbital model con-

sisting of the Fe dxz and dyz orbitals. The above consideration and formulation

can be simply extended. We identify the Z2 Ising order as the ferro-orbital

order of either the dxz or the dyz orbital. This ferro-orbital order breaks the C4

symmetry and induces the structural distortion. It is exactly the nematic order

we have defined in Chapter 2.

The application of the Kugel-Khomskii model to the iron-based supercon-

ductors was pioneered by Ref. [158]. They considered the t2g state, with the

half filled dxy orbital and the quarterly filled degenerate dxz and dyz orbitals.

Their work is based on the low-spin S = 1 multiplet structure in d6 configu-

ration. However, the physics is simpler in the dxz and dyz two-orbital model

at quarter filling. Although this model is inconsistent with the multiplet struc-

ture consideration, we find experimental support from the integrated spectral

weight in recent inelastic neutron scattering experiments [171]. We were the

first to propose this ferro-orbital order of the dxz and dyz orbitals causes the

structural phase transition in the iron-based superconductors [159]. Our work

will be presented in the following section, with an explicit calculation of the

quadrupole-quadrupole interaction. Similar theories were also devised by oth-

ers using Wannier orbitals constructed from LDA calculations [172]. Numer-

ical simulations of the spin-orbital model give further support to our theory

[173, 174].

3.2 Orbital order, structural phase transition

and resistivity anomaly1

We attribute the structural phase transition (SPT) in the parent compounds

of the iron pnictides to orbital ordering. Due to the anisotropy of the dxz and

dyz orbitals in the xy plane, a ferro-orbital ordering makes the orthorhombic

structure more energetically favorable, thus inducing the SPT. In this orbital-

ordered system, the sites with orbitals that do not order have higher energies.

Scattering of the itinerant electrons by these localized two-level systems causes

a resistivity anomaly upon the onset of the SPT. The proposed orbital ordering

also leads to the stripe-like antiferromagnetism and anisotropy of the magnetic

exchanges. This model is quantitatively consistent with available experimental

observations.

1This section is from Ref. [159].
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3.2.1 Introduction

The structural phase transition (SPT) from tetragonal to orthorhombic sym-

metry around 150K [175] is a ubiquitous feature in the parent compounds of

the iron-based superconductors. Coincident with this transition is a resistivity

anomaly (RA) [176] in which the resistivity turns up slightly before a sharp

drop at exactly the onset temperature of the SPT, TS . For the 1111-family, at

a lower temperature, TSDW, a stripe-like antiferromagnetic spin density wave

(SDW) forms [21] on the distorted lattice of Fe atoms, with the spins being

parallel along the shorter axis and antiparallel along the longer axis. However,

for the 122-family, the SDW develops at the same temperature as does the SPT,

TSDW = TS [22]. In the 122-family [23], a single first-order transition obtains

instead of two separate second-order transitions in the 1111-family. Upon dop-

ing, superconductivity (SC) occurs leading to a cessation of the SPT, RA and

SDW [19, 177]. Hence, all of these three phenomena should be closely related

and share a universal mechanism. However, most theoretical work only focuses

on the connections between the SDW and SC. The importance of the SPT and

RA is somehow underestimated. The main objective of this section is to explain

the origin of the SPT and RA.

A common view [145, 146, 178, 179] is that the SPT is driven by the onset of

the stripe-like antiferromagnetism. Both first principles calculations [178, 179]

and Landau-Ginzburg modelings [145, 146] have been used in this context. The

fact that the two transitions are decoupled in the 1111-family is a limitation

of this approach. Further, since the origin of the SPT in their scenario is spin

based, the onset temperature should be sensitive to an external magnetic field.

However, experiments have shown that varying the magnetic field leads to no

change in the onset temperature of the SPT [176].

In this section, we develop a microscopic theory of the SPT without involv-

ing the spin degrees of freedom. On our account, uneven occupations of the

dxz and dyz orbitals make the orthorhombic crystal structure more energeti-

cally favorable, thus inducing the SPT. The operative mechanism driving this

ferro-orbital-ordering transition is the lifting of the degeneracy between the dxz

and dyz orbitals by the inter-site Coulomb repulsions. However, it should be

noted that other important factors, such as spin-orbital interactions [94] and

couplings to the displacements of ligand atoms (As), also contribute to this

process. In fact, spin-orbital physics appears to lie at the heart of orbital or-

dering in the manganites [164]. While such physics is undoubtedly present in

the pnictides [158, 180], quantifying it would require a first-principles calcula-

tion of the relevant parameters. However, as our goal is to propose a simple

mechanism that explains both the SPT and the resistivity anomaly, we focus

on a more easily quantifiable approach to orbital ordering based instead on the

Coulomb repulsion. Indeed, what our work indicates is that there is a rich set

of models which can lead to orbital ordering in the pnictides. Our model is
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sufficiently simple and general that warrant its being taken seriously. The key

insight gained from this study is not the detailed microscopic mechanism for

this orbital-ordering-induced SPT, which is rather standard [164], but its di-

rect consequence - a resistivity anomaly, which can be captured by our model

in quantitative agreement with the experimental results [see Fig. 3.6(b)]. Fur-

thermore, the stripe-like SDW and recently discovered anisotropy [81] of the

magnetic exchanges naturally arise in our theory.

3.2.2 Orbital ordering

As emphasized by pioneering earlier work [158], the orbital degrees of freedom

are important in the iron pnictides, which are intrinsically multi-orbital systems.

For the Fe atom located at the center of the tetrahedron of four neighboring

As atoms, five d orbitals are split into two groups, t2g (dxy, dxz, dyz) and

eg (dx2−y2 , d3z2−r2). Three of the five orbitals, dxy, dx2−y2 and d3z2−r2 are

rotationally symmetric in the xy plane. So they are unlikely to have any effect

on the SPT which is asymmetric in the xy plane. Then the only two possible

candidates are the dxz and dyz orbitals. We propose the following mechanism

for the SPT, assuming these two orbitals are localized. At high temperature

T > TS, dxz and dyz orbitals are degenerate, with equal numbers of electrons

on both. A possible configuration is shown in Fig. 3.4(a), in which a square

lattice is preferred. At low temperature, T < TS , there is a majority of either

dxz or dyz . For dyz orbitals, the Coulomb repulsion of two neighboring sites

is stronger along the y-direction than along the x-direction, which leads to a

rectangular lattice with a < b as shown in Fig. 3.4(b), where a and b are unit

lengths in the x and y direction, respectively. Similarly, when dxz dominates,

the system will form the configuration of Fig. 3.4(c), which is degenerate with

(b) by a rotation of 90 degrees.

To demonstrate the viability of this mechanism, we need to compare the

energies of configuration (a) and (b) in Fig. 3.4. For simplicity, only the nearest-

neighbor Coulomb repulsions are considered,

U =

∫

dr dr′
e2

|r − r′| |ψα(r −Ri)|2 |ψβ(r
′ −Rj)|2 (3.26)

where ψα(r −Ri) is the wave function of the α (α = dxz, dyz) orbital electron

at site Ri. This integral can be evaluated by an importance-sampling Monte-

Carlo method. In configuration (a), we choose a = b = a0 = 2.85 Å, which is

the typical experimental value [175] for the 1111-family. For configuration (b),

we define the lattice distortion δ as a = a0 − δ, and set b = a20/a to keep the

area of a unit cell constant. We calculate the relative energy difference

∆(δ) =
Ub(δ)− Ua

Ua
(3.27)
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Figure 3.4: (a) Equal numbers of dxz and dyz with a square lattice configuration.
(b) Entirely dyz state with a < b. (c) Entirely dxz state with a > b. d) Relative
energy difference ∆ between configurations (a) and (b), or (c), as a function of
lattice distortion δ. (Inset: an Ising-type transition where the order parameter
M is defined as the difference between the numbers of occupied dxz and dyz
orbitals.)

as a function of δ, where Ua and Ub are energies of configurations (a) and (b)

respectively. The results are shown in Fig. 3.4(d). For a lattice distortion 0.03

Å< δ < 0.09 Å, the rectangular lattice (b) or (c) is more energetically favorable.

It is noted that this value is larger than the experimentally observed distortion

of about 0.01 Å[175]. However, the localized states are probably neither dxz

nor dyz, but some combinations of the d orbitals, or even involve hybridization

with As p orbitals [95]. Thus the precise value of the distortion length can be

smaller by taking these factors into account. As already mentioned, other pos-

sibilities may also induce this ferro-orbital ordering and the subsequent SPT.

For example, Krüger et. al [158] derived a Kugel-Khomskii spin-orbital model

and the resultant phase diagram does contain the same orbital configuration

as proposed here. However, constructing the complete microscopic Hamilto-

nian that incorporates all the important physical processes requires a detailed

knowledge of the relevant coupling parameters, which is currently unavailable.

Thus the key point of our study is to put forth a simplified picture based on the
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coupling only to the Coulomb interaction in which the rectangular lattice with

ferro-orbital ordering emerges spontaneously at low temperature because of its

lower energy.

Our model allows us to make the following conclusion. Upon the onset of

the phase transition, a lattice distortion breaks the degeneracy between dxz and

dyz. By occupying either one of these two orbitals, the system forms a ferro-

orbital-ordered state and lowers its energy. It is this orbital-driven Jahn-Teller

effect that induces the SPT. Defining Mi = ±1 for site i occupied by dxz and

dyz orbitals respectively, we can write down an effective Ising-type Hamiltonian

for the SPT

HS = −JS
∑

〈i,j〉
MiMj (3.28)

where JS should be on the order of the transition temperature, TS. So the SPT

belongs to the Ising universality class, as shown in the inset of Fig. 3.4(d), where

the order parameter M is defined as M =
∑

iMi/N .

Recently, angle-resolved photoemission experiments using a linear-polarized

laser beam [135] show that at low temperature, the Fermi surface at the Bril-

louin zone center is dominated by a single dxz or dyz orbital, depending on the

distortions. In their subsequent local-density approximation (LDA) calculations

[135], it is found that the density of states of the dyz orbitals with a lattice con-

figuration of a < b displays a peak around 0.5 eV from the chemical potential,

which is just the localized state predicted in our SPT model. A recent optical

measurement [181] also suggests evidences of the orbital ordering.

3.2.3 Resistivity anomaly

The ferro-orbital-ordering-drivenSPTmechanism has an important consequence,

namely the resistivity anomaly. The essential physics is that of a Kondo prob-

lem. The scattering of the itinerant electrons off two otherwise degenerate

orbitals, dxz and dyz, will be suppressed by the gap opening, which results in a

sharp drop of the resistivity upon the onset of the SPT.

Above TS , the two dxz and dyz orbitals are degenerate. Below TS , the

occupancy of the electrons in dxz and dyz orbitals becomes unbalanced as a result

of the distortion of the crystal to configuration (c) [or (b)] in Fig. 3.4. Thus, the

electrons that remain in the dyz (or dxz) orbitals will have a higher energy and

hence can lower their energy by jumping onto dxz (or dyz) orbitals. This process

can be described by a localized two-level system. The classical analog, namely

a double-well potential, is shown in Fig. 3.5(a). The corresponding Hamiltonian

is given by

HTLS = λps
∑

α

a†αaα +
1

2
∆
∑

αβ

a†ασ
z
αβaβ

+
1

2
∆0

∑

αβ

a†ασ
x
αβaβ (3.29)
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Figure 3.5: (a) A schematic of a double-well potential, as the classical analog
of the two-level system. (b) Two types of scattering processes between the
itinerant electrons and the localized states. V z: diagonal scattering; and V x:
off-diagonal scattering.

where a†α (aα) creates (annihilates) an electron on orbital α and σi
αβ is a Pauli

matrix. We will choose an appropriate fictitious energy λps to prevent the

system from double occupancy. ∆ is the energy splitting between the two levels

and ∆0 is the tunneling rate, as shown in Fig. 3.5(a). By a rotation of the spin

axis, this system can be diagonalized and the gap between the two eigenstates

is E =
√

∆2
0 +∆2.

As the parent compounds are actually metallic, there should be itinerant

electrons present besides these localized states. These two can be coupled as in

the framework of the localized-itinerant dichotomous models [95, 96, 97, 182].

The starting Hamiltonian is [183, 184, 185]

H = He +HTLS + V (3.30)

He =
∑

kσ

Ekc
†
kσckσ (3.31)

V =
∑

i

∑

k1σ1,k2σ2

∑

αβ

c†k2σ2
V i
k2k1

ck1σ1
a†ασ

i
αβaβ, (3.32)

where He, HTLS and V represent the Hamiltonians for the itinerant electrons,

the single two-level system and the interactions between the two, respectively.

There are two kinds of scattering processes as shown in Fig. 3.5(b). One is the

diagonal scattering described by the V z term, where the localized state remains

on the same level. The other is the off-diagonal scattering initiated by the V x

term, where the localized state jumps onto the other level. V y is in fact zero, as

it breaks time-reversal symmetry. However, it should be noted that V y = 0 does

not hold for the renormalized vertex, since higher order terms are not necessarily
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local. We will also assume V z � V x as proposed previously [183, 184, 185].

In fact, this system is very similar to the Kondo model, with the two orbitals

dxz and dyz representing the up and down-spin states on the magnetic impurity.

We are going to perform a similar scaling analysis following Ref. [183, 184,

185]. We define the dimensionless couplings vik1k2
= V i

k1k2
N0 where N0 is the

density of states at the Fermi level. Reducing the bandwidth from D0 to D and

evaluating the vertex corrections up to the leading order, we have the scaling

equations

∂vsαβ(u)

∂u
= −2i

∑

ij

∑

γ

εijsviαγ(u)v
j
γβ(u) (3.33)

where viαβ are defined as vik1k2
=
∑

f †
α(k̂1)vαβfβ(k̂2), with fα(k̂) being a com-

plete set of spherical harmonics, fα(k̂) = ilY m
l (θk, φk), ε

ijs is the Levi-Civita

symbol and u = ln(D/D0). We can express viαβ using the Pauli matrices as

viαβ = viσi
αβ . Then the above scaling equations will be reduced to a set of

coupled equations involving vx, vy and vz . These equations can be solved by

separating u into two regimes: (a) vy < vx � vz and (b) vy ' vx < vz. In

regime (a), the solutions are

vx(u) = vx(0) cosh [4vz(0)u] (3.34)

vy(u) = vx(0) sinh [4vz(0)u] (3.35)

vz(u) = vz(0). (3.36)

In regime (b), we have

[vz(u)]
2 − [vx(u)]

2
= v20 , (3.37)

where v0 is scale invariant and vz(u) satisfies

u = − 1

4vz(u)
+ ln

[

D0

kBTK

]

(3.38)

with the Kondo temperature TK identified as

kBTK = D0

[

vx(0)

4vz(0)

]1/4vz(0)

. (3.39)

Using the parameters vz(0) = 0.33, vx(0)/vz(0) = 0.001, vy(0) = 0 and

D0 = 665K [186], we obtained the scaling flows of vx, vy and vz shown in

Fig. 3.6(a), for E = 0K. The corresponding Kondo temperature is TK = 1.24K.

Reducing the bandwidth D, the system goes from weak to strong coupling. The

resistivity due to the scattering of the two-level system can be calculated based

on these renormalized vertices as in Ref. [186]. At high temperature, we have two

degenerate levels, dxz and dyz . When the temperature is reduced, the scattering
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a)

b)

Figure 3.6: (a) Scaling of the coupling constants vi with respect to bandwidth
D. (b) Energy gap and resistivity as a function of temperature T . (The experi-
mental data of resistivity are extracted from Ref. [176].) Setting the resistivity
at T = 150K of our model equal to that of the experiment was the only fitting
parameter.
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from the states closer to the chemical potential increases, leading to a resistivity

upturn of logT [187] as in the Kondo model. However, upon the onset of the

SPT, a gap opens between the two levels. If the bandwidth D is less than the

gap E, the off-diagonal scattering is not allowed, since there are no states for

the electrons to be scattered into. As a consequence, the scaling terminates at

D = E. The electrons within the bandwidth E will no longer contribute to the

resistivity. This is the mechanism behind the resistivity anomaly. Our result is

shown in Fig. 3.6(b), which is in good qualitative agreement with experiment.

We set the tunneling rate ∆0 = 2K, and the energy splitting takes the form

∆(T ) = ∆(0)

√

1−
(

T

TS

)2

(3.40)

where ∆(0) = TS = 150K when T < TS. It should be noted that the overall

behavior of the scaling flows and the resistivity are independent of the chosen

parameters. This represents the explanation of the RA for the iron pnictides.

3.2.4 Orbital driven magnetism

Our model also offers a natural solution to the observed stripe-like antiferro-

magnetism. Before the SPT, we have an orbitally disordered state, in which

the neighboring sites are occupied probabilistically by different orbitals. The

resultant lack of overlap gives rise to a vanishing of any antiferromagnetic spin

exchange and as a consequence no spin order. After the SPT, either dxz or

dyz orbitals will dominate. Without loss of generality, we suppose that most

sites are occupied by dyz, as shown in Fig. 3.4(b). Due to the larger overlap

of the wave functions on neighboring sites in the y-direction than that in the

x-direction, the hopping integral tb should be larger than ta. For the nearest-

neighbor spin exchange, J1 ∼ t2/U , we have that J1a < J1b. So the spins on the

longer axis have a stronger tendency to be aligned oppositely. The spin config-

uration AFM2(b) in Fig. 3.7 is not favored. As has been suggested [84, 178],

we can further introduce a next-nearest-neighbor exchange J2. If J2 > J1a/2,

which is very likely for a relatively small J1a [158], AFM2(a) will have a lower

energy than AFM1, as shown in Fig. 3.7, and emerge as the ground state at

low temperature, which has already been confirmed by the experiments [21]. In

contrast with other theories in which the SPT is induced by the spin degrees of

freedoms, on this account, the formation of the SDW is actually a result of the

ferro-orbital ordering accompanying the SPT.

In fact, we are able to construct a universal Hamiltonian describing both the
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AFM1 AFM2(a) AFM2(b)

Figure 3.7: Different possible spin configurations on a distorted lattice with
a < b, which corresponds to the case that dyz is the majority orbital.

SPT and SDW, with a spin-orbital coupling model [158, 164, 180],

HSO = JS
∑

〈i,j〉
MiMj +

∑

〈〈i,j〉〉
J2 (Mi,Mj)Si · Sj

+
∑

i

J1x (Mi,Mi+x̂)Si · Si+x̂

+
∑

i

J1y (Mi,Mi+ŷ)Si · Si+ŷ (3.41)

where the spin exchanges are given by

J1x (Mi,Mj) = δMi,Mj
(J1bδMi,1 + J1aδMi,−1) (3.42)

J1y (Mi,Mj) = δMi,Mj
(J1aδMi,1 + J1bδMi,−1) (3.43)

J2 (Mi,Mj) = δMi,Mj
J2 (3.44)

where Mi, representing the orbital degrees of freedom, is defined to be ±1 for

dxz and dyz respectively, as in Sec. 3.2.2. Clearly, in this model, the spin order

will not occur until the formation of the ferro-orbital ordering at TS , which is on

the order of JS . Below TS, the spin degrees of freedom can be described by an

anisotropic Heisenberg model, whose transition temperature to the spin-ordered

state, TH , would depend on the spin exchanges, J1a, J1b and J2. If TH < TS ,

we would have two separate second-order transitions, TSDW = TH < TS , as in

the case of the 1111-family. For the 122-family, which has a shorter Fe-Fe bond

length, it is expected this would enhance the spin exchange J , likely leading

to TH > TS. But the SDW will not form before the SPT, since there is no

spin exchange until the SPT obtains. So there is only one first-order transition,

TSDW = TS.

Furthermore, this anisotropic Heisenberg model has also been proposed on

experimental grounds [81] to fit the spin-wave spectrum seen in the inelastic

neutron scattering data. Our theory gives a direct explanation for the observed
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anisotropy of magnetic exchanges. Note their results [81] do rely on a negative

Ja
1 , which is not obtained by our simple model. However, this difficulty can be

overcomed by introducing a Hund coupling between these localized spins and

itinerant electrons,

HK = −JH
2

∑

i,νν′

Si · c†iνσνν′ciν′ (3.45)

where σνν′ are the Pauli matrices. The hopping of the itinerant electrons with

this Hund coupling will give rise to an effective ferromagnetic coupling [188,

189, 190] between neighboring spins. After taking this into account, we will

eventually have the spins on the shorter axis coupled ferromagnetically. The

full details of this model are the subject of a future study.

3.2.5 Final remarks

To conclude, we have proposed that the SPT and RA in the iron pnictides

are due to the opening of a gap between two otherwise degenerate orbitals.

While our mechanism for the structural phase transition is a standard Jahn-

Teller distortion driven by a minimization of the Coulomb repulsion, the key

point of this section is that the resulting simple two-level system can resolve

the previously unexplained resistivity anomaly. The mechanism proposed here

is independent of an applied magnetic field as is seen experimentally [176].

Only in a ferro-orbital-ordered state after the SPT does the stripe-like SDW

form. This is the reason why these three phenomena, SPT, RA and SDW, are

closely related and almost always coincide with one another. In doped materials,

extra electrons or holes will break the uneven occupations of dxz and dyz, thus

diminishing the Jahn-Teller effect. So the SPT, RA and SDW will all become

less pronounced and shift to lower temperature, eventually vanishing at some

critical doping. These are all observed experimentally, lending credence to our

model.

After this work was posted on arXiv, several similar papers [172, 191] ap-

peared, based on the same orbital physics we utilized here, which supports our

theory that the orbital ordering is the driving mechanism for the SPT, RA and

SDW.
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Chapter 4

Orbital order from weak
coupling1

Recent experimental developments in the iron pnictides have unambiguously

demonstrated the existence of in-plane electronic anisotropy in the absence of

the long-range magnetic order. Such anisotropy can arise from orbital ordering,

which is described by an energy splitting between the two otherwise degenerate

dxz and dyz orbitals. Including this phenomenological orbital order into a five-

orbital Hubbard model, we obtain the mean-field solutions where the magnetic

order is determined self-consistently. Despite sensitivity of the resulting states

to the input parameters, we find that a weak orbital order that places the dyz

orbital slightly higher in energy than the dxz orbital combined with intermediate

on-site interactions produces band dispersions that are compatible with the

photoemission results. In this regime, the stripe antiferromagnetic order is

further stabilized and the resistivity displays the observed anisotropy. We also

calculate the optical conductivity and show that it agrees with the temperature

evolution of the anisotropy seen experimentally.

4.1 Introduction

In-plane anisotropy plays a prominent role in iron-based superconductors. For

example, inelastic neutron scattering (INS) first established that the exchange

constant along the ferromagnetic y-direction, J1y, is not only much smaller

than the one in the antiferromagnetic x-direction, J1x, but actually slightly

negative [81], suggesting an unfrustrated spin model underlies the magnetism.

Angle-resolved photoemission spectroscopy (ARPES) also observed a dramatic

orbital-dependent Fermi surface reconstruction upon the magneto-structural

phase transition [135, 136]. However, due to the fact that the crystals used in

such experiments spontaneously form dense domains, the signals from the two

diagonal phases were mixed in these early experiments. Hence, it was crucial

that scanning tunneling microscopy (STM) detected a quasi-one-dimensional

interference pattern [111], thus confirming that the anisotropy arises entirely

from a single domain. Helping to complete the story were the breakthrough

experiments in which a uniaxial stress was applied to almost fully detwin the

crystals [119]. This technique revealed an in-plane anisotropy in both the dc

1This chapter is from Ref. [133].
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[119, 120, 123, 192] and ac [129, 130, 131] conductivities. Consistent with this

transport anisotropy are the band dispersions derived from ARPES measure-

ments on detwinned samples [138].

The observed anisotropies (for a review, see Ref. [108]) have distinct ori-

gins in terms of the local-itinerant electron dichotomy [95, 96, 97]. On the one

hand, INS measures the spin excitations that arise predominantly from local

moments. Although a structural transition precedes or coincides with the onset

of the antiferromagnetic order, its magnitude is too small to account for the

strong anisotropy. In this context, several theories [158, 159, 172, 173] adopted

a Kugel-Khomskii [94] model with orbital dependent superexchanges and pro-

posed that ferro-orbital order stabilizes the (π, 0) magnetic order, leading nat-

urally to anisotropic spin couplings. In an alternative approach [103, 104], the

local moments, which are governed by an isotropic J1-J2 Heisenberg model, are

coupled with the itinerant electrons of the two degenerate dxz and dyz orbitals

by the Hund exchange. From the double-exchange mechanism, a ferro-orbital

order in the itinerant band leads to different corrections to the spin-wave ex-

citations along two diagonal directions, resulting in an anisotropic spin-only

model.

On the other hand, the detected anisotropy could simply signify that the

itinerant electrons also undergo a phase transition that breaks the C4 rotational

symmetry, which is no surprise since the symmetry is already broken by the

underlying (π, 0) antiferromagnetism. Although this electronic anisotropy does

persist above the Néel temperature, TN , and the structural transition tempera-

ture, TS, in some experiments [119, 120, 123, 129, 130, 131, 138, 192]. it should

be noted that the applied uniaxial stress unfortunately turns the sharp transi-

tion into a broad crossover. In this sense, recent INS measurements [100] that

observed a spin nematic order in the paramagnetic phase have taught us some-

thing new - the magnetic anisotropy, and the possible electronic anisotropy, can

exist in the absence of the (π, 0) antiferromagnetism and even the structural

distortion. This ‘nematic’ order is indeed confirmed by the band splitting above

TS observed by the latest ARPES experiments on twinned samples [138], and

recently hinted by the conductance enhancement in point contact spectroscopy

[141].

One theoretical proposal that is in accord with some of the current experi-

mental observations is the J1-J2 Heisenberg model,[84] in which an Ising order

can occur without long-range magnetic order [145, 146], according to the ‘order

from disorder without order’ mechanism [144]. However, the unfrustrated mag-

netism observed by INS [81, 100] suggests that the correct physical model lies

elsewhere. Another possible candidate is a Kugel-Khomskii spin-orbital model

[158] that might support a phase which possesses some orbital order that breaks

the C4 rotational symmetry, but no long-range magnetic order. Besides these

strong-coupling approaches, there are other theoretical proposals that attribute

the nematic order to interaction-induced instability of the itinerant electrons

57



[68, 156, 193].

Our particular view which we have enunciated elsewhere [103, 159] is that

orbital order (rather than any intrinsic tendency of the electrons to orient

themselves inhomogeneously) lies at the heart of the anisotropies and the ob-

served structural and magnetic transitions. Certainly, it is now common [106]

to refer to any phase that breaks C4 symmetry as an electron nematic even

when such a phase is lattice or orbitally induced. This view has been scruti-

nized sharply by recent experiments [194] on the the cuprate superconductor

Bi2Sr2Can−1CunO2n+4+x which indicate that many of the anisotropies that

have been viewed as evidence for an electron nematic phase actually originate

from lattice effects in the BiO layer. This experiment certainly indicates that

caution rather than a rush to nematize is warranted. For the pnictides, the

origin of the anisotropies will remain open in the absence of a clear experiment

that is able to discern their efficient cause. Consequently, our usage of the

term nematic here strictly entails the orbital order which necessarily breaks the

equivalence between the canonical x and y axes.

In this chapter, we will not focus on the origin of this ‘nematic’ order (in the

sense defined above), but rather investigate its experimental consequences, by

modeling it phenomenologically as an energy-splitting term between the Fe dxz

and dyz orbitals. This type of orbital nematic order has been studied previously

[132], but only in the context of an orbital-independent magnetic order, which is

insufficient to capture the complicated electronic structure. To this end, we will

start with the multi-orbital model that explicitly includes this orbital nematic

order and solve the mean-field Hamiltonian using a self-consistent procedure. In

this approach, the magnetic order on different orbitals will be determined more

realistically by the band structure and the interaction strength. Moreover, we

will be able to address how the orbital and magnetic orders interplay with one

another. To reach agreement with photoemission experiments [138], we find that

the dxz orbital is placed lower in energy than dyz, and that this orbital order

strengthens the stripe antiferromagnetism. The orbital and magnetic order

together reconstruct the band structure and result in the anisotropy at both

the low-temperature antiferromagnetic and the high-temperature paramagnetic

phase. These findings suggest that orbital order plays the central role in the

electronic structure of the iron-based superconductors.

This chapter is organized as follows. The general formalism of the multi-

orbital model is described in Sec. 4.2. We introduce the orbital nematic order

in Sec. 4.3 and calculate its experimental consequences that are relevant for

anisotropy in the paramagnetic phase. Sec. 4.4 presents the complicated elec-

tronic structure arising from both the orbital and magnetic orders. It is shown

that both of them are indispensable components that lead to anisotropies ob-

served by many experiments in the magnetically ordered state. Implications of

our findings are discussed in the last section.
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4.2 Multi-orbital model

The multi-orbital Hamiltonian we start with is usually defined within an ex-

tended Brillouin zone that only contains one Fe atom per unit cell. The kinetic

energy contribution is written as

HK =
∑

αβ

∑

k̃µ

ξ̂αβ(k̃)c
†
k̃αµ

ck̃βµ, (4.1)

where c†
k̃αµ

creates an electron of momentum k̃ on orbital α with spin µ (µ =↑
, ↓). We note here k̃ is not the crystal momentum, k, defined by the translation

operator Ti of the Fe lattice unit vector ei (i = x, y, z): Ti|k〉 = eiki |k〉. Rather,
it is the operator PzTi, where Pz is the reflection operator in the z-direction,

instead of Ti, that leaves the Fe-As lattice invariant. Thus k̃ actually labels

the eigenstates of PzTi: PzTi|k̃〉 = eik̃i |k̃〉 and yields an unambiguous way to

unfold the real Brillouin zone with two Fe atoms per unit cell. This important

distinction between k̃ and k was previously discussed in detail by Ref. [40].

In principle, we need to fold back the band dispersions that are obtained by

the diagonalization of HK(4.1), and fit them to the local-density-approximation

(LDA) calculations by tuning the tight-binding hopping parameters. This has

been done in many studies, using two [41, 42, 43], three [40, 44], four [45], or

five [46, 47, 48, 49, 50, 51] Fe d-orbitals. In order to make our calculations more

realistic, we only focus on the five-orbital model, particularly the one of Ref. [50],

which is based on a three-dimensional fitting to the LDA band structures of

BaFe2As2, the material on which most of the experiments are performed.

It is helpful for us to return to real space where HK(4.1) takes the form

HK =
∑

tαβij c
†
iαµcjβµ, where t

αβ
ij is the hopping amplitude with i, j denoting

the index of the site. As discussed, the operator PzTi leaves HK invariant.

Under PzTi, we have ciαµ → χαci+ei,αµ where χα = 1 for α = dxy, dx2−y2 , or

d3z2−r2 and χα = −1 for α = dxz or dyz. Thus, it is required that tαβij = tαβi−j

for χαχβ = 1, whereas tαβij = eiK·ritαβi−j for χαχβ = −1, where K = (π, π, π)

and tαβi−j only depends on ri − rj . We immediately noticed that in the crystal

momentum space, the electron operators of the dxz and dyz orbitals at k are

coupled with those of dxy, dx2−y2 , and d3z2−r2 at k+K. As a result, we define

the pseudocrystal momentum k̃ as follows, ck̃αµ = ckαµ for α = dxz or dyz

and ck̃αµ = ck+K,αµ for α = dxy, dx2−y2 , or d3z2−r2 [40, 45, 48]. It is in this

pseudocrystal momentum k̃ space that the kinetic energyHK takes the diagonal

form of HK (4.1).

The distinction between k̃ and k has immediate consequences for the inter-

pretation of the ARPES measurements. The momentum probed by ARPES is

not k̃, but k. Because the crystal momentum k is not a good quantum num-

ber of HK (4.1), ARPES detects both bands with momentum k̃ and k̃ + K,

corresponding to folding the Brillouin zone with one Fe atom per unit cell by a

wave vector K = (π, π, π). This observation is consistent with the fact that the
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real unit cell including the As atoms consists of two Fe atoms. However, the

relative intensity of each band measured by ARPES depends on the strengths

of hybridizations between k and k +K.

Formally the Green function in terms of k̃ is defined as

Ĝαβ(k̃, τ) = −
〈

Tτck̃αµ(τ)c
†
k̃βµ

(0)
〉

, (4.2)

with its Fourier transform satisfying Ĝ−1(k̃, ω) = ωÎ − ξ̂(k̃). We can simply

write down the spectral function

A(k̃, ω) = − 1

π
=
[

tr Ĝ(k̃, ω + iδ)
]

. (4.3)

However what is really measured by ARPES is not A(k̃, ω), but

A(k, ω) = − 1

π
=
[

∑

χα=−1

Ĝαα(k̃, ω + iδ)

+
∑

χα=1

Ĝαα(k̃ +K, ω + iδ)

]

. (4.4)

It is this function on which we will focus.

In Fig. 4.1(a) and (b), we plot A(k̃, ω = 0), depicting the Fermi surfaces in

the plane of k̃z = 0 and k̃z = π, respectively. Those of A(k, ω = 0) are shown

in Fig. 4.1(c) and (d). The frequency ω is defined with respect to the chemical

potential µ, which is determined by the electron filling level n = 6, dictated by

the Fe valence in the parent compounds. In addition, all the energy scales have

an implicit unit of eV in the whole chapter. Comparing these graphs, we find

that A(k, ω) displays a more complicated structure due to the folding of Bril-

louin zone. From now on we will only focus on A(k, ω), which is measured by

ARPES in our direct comparison with experiments. Furthermore in Fig. 4.2(a),

A(k, ω) is plotted along the line X-Γ-X with X = (π, 0, 0) and Γ = (0, 0, 0), to

represent the band dispersions probed by unpolarized ARPES. Experimentally

the orbital character can be investigated by tuning the polarization of the in-

coming light. For example, using a polarization perpendicular to the incident

plane only selects those orbitals that are odd under Py (dyz and dxy) along the

line of X-Γ-X . We plot these orbital-polarized dispersions in Fig. 4.2(b), which

shows qualitative agreement with experiments [138]. Since the C4 rotational

symmetry is respected, the dispersions are exactly the same along the crystal

momentum line Y -Γ-Y where Y = (0, π, 0), with no splitting between the bands

at X and Y .
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Figure 4.1: Fermi surfaces in terms of (a,b) the pseudocrystal momentum k̃ and
(c,d) the crystal momentum k. We plot the Fermi surfaces in the xy-plane and
set the z-component in each figure to (a) k̃z = 0, (b) k̃z = π, (c) kz = 0, and (d)
kz = π. We represent the values of the spectral function A(k, ω) by the color
scale, which is used consistently for all the figures in this chapter.
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Figure 4.2: (a) Unpolarized dispersions and (b) polarized dispersions along the
crystal momentum line of X-Γ-X . In (b) only the components of the dyz and
dxy orbitals are shown.

4.3 Orbital nematic order

As discussed in Sec. 4.1, electronic anisotropy has been confirmed by recent

experiments [100, 138] to persist above the magneto-structural transition. Our

take on this is that this effect is due entirely to orbital ordering. To test out

this hypothesis, we introduce the orbital nematic order as an energy-splitting

term between the dxz and dyz orbitals,

HN =
∑

iαµ

∆αc
†
iαµciαµ, (4.5)

where ∆α = ±∆ for α = dxz and dyz , respectively, and ∆α = 0 for the other

three orbitals. In principle, all the five orbitals should be involved in this nematic

order. But we will only consider the dxz and dyz orbitals due to their spatial

anisotropy, whereas the other three orbitals are dropped because they are C4

rotationally symmetric. It needs to be emphasized that HN (4.5) represents an

electron nematic order which occurs without the onset of the long-range stripe

antiferromagnetism. We find that in order to produce results that are consistent

with ARPES measurements [138], the orbital nematic order parameter ∆ is

required to have a small negative value, which leads to a higher energy of dyz

relative to dxz. For the purpose of illustration, we choose ∆ = −0.08, and plot

the resulting Fermi surfaces and polarized dispersions in Fig. 4.3.
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Figure 4.3: (Color online) Fermi surfaces in the plane for (a) kz = 0 and (b)
kz = π. Polarized dispersions along the line of (c) X-Γ-X and (d) Y -Γ-Y . We
have set the orbital nematic order parameter ∆ = −0.08, explicitly breaking C4

symmetry.
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From Fig. 4.3(a) and (b), we notice that the hole pockets at the zone cen-

ter are deformed into elliptical shapes that are elongated along the x- and y-

direction in the plane of kz = 0 and kz = π, respectively. The apparent breaking

of C4 symmetry is indeed a direct consequence of HN (4.5) that is explicitly

introduced by hand. However, this orbital order does have a physically reason-

able origin which can be explained as follows. From a weak-coupling point of

view, the observed magnetic order with wave vector q = (π, 0, π) arises from the

nesting instability between the hole pockets centered at k̃ = (0, 0, k̃z) and the

electron pockets at k̃ = (π, 0, k̃z+π). But the nesting is not perfect, because the

hole pockets are more circular, whereas the electron pockets are more elliptical

[see Fig. 4.1(a) and (b)]. By the inclusion of HN (4.5) with a small negative

∆, the hole pockets are deformed into ellipses whereas the electron pockets are

relatively less affected, thus resulting in a better nesting condition between the

two by the wave vector q [see Fig. 4.3(a) and (b)]. Consequently, this type of

orbital order will naturally arise in the system and provide further stabiliza-

tion of the antiferromagnetism. Our result is consistent with the Pomeranchuk

instability from the functional renormalization-group studies [68].

The polarized dispersions along the x- and y-direction are displayed in

Fig. 4.3(c) and (d), respectively. It needs to be emphasized that only the spec-

tral functions of dyz and dxy orbitals are shown in Fig. 4.3(c) whereas we only

plot those of dxz and dxy in Fig. 4.3(d), which are exactly what are measured

by the polarized ARPES setup [138]. Indeed a small negative ∆, which lifts dyz

higher than dxz in energy, produces splitting between the bands at X and Y ,

in agreement with experimental observations.

To further examine the validity of the orbital order termHN (4.5), we turn to

its experimental consequences in transport measurements by calculating the op-

tical conductivity σxx(ω) and σyy(ω) along the x- and y-direction, respectively.

When ∆ = 0, σxx and σyy are completely equivalent [Fig. 4.4(a)], preserving

the C4 symmetry. We see a sharp Drude peak accompanied by some high-

energy features due to inter-band transitions. If a small negative ∆ = −0.08 is

turned on, σ(ω) along two diagonal directions become distinct and a low-energy

sub-peak emerges around ω1 ≈ 0.2, where σyy has a value larger than σxx as

depicted in Fig. 4.4(b). We also notice that around the high-energy peak at

ω2 ≈ 0.7, σxx is dominant instead. These results are in good agreement with

experiments [130] performed above TN in the detwinned samples.

We also compare the Drude weight of σxx and σyy and plot their ratio as

a function of ∆. As shown in the inset of Fig. 4.4(a), when the energy split-

ting ∆ gets larger, σxx(0)/σyy(0) almost monotonically decreases, resulting in a

larger Drude weight along the y-direction. If we naively assume proportionality

between the Drude weight and the dc conductivity, this result contradicts exper-

imental findings in which the antiferromagnetic x-direction always has a higher

conductivity [119] than the ferromagnetic y-direction. However, as pointed out

by optical measurements [130], the Drude weight does obtain a higher value
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Figure 4.4: Optical conductivity σxx and σyy as a function of the frequency ω
for the orbital nematic order parameter (a) ∆ = 0 and (b) ∆ = −0.08. The
inset of (a) displays the ratio of the Drude weight, σxx(0)/σyy(0), as a function
of ∆. σ(ω) is plotted in an arbitrary unit, which is kept the same in this chapter.
The two arrows in (b) denote the two characteristic frequencies ω1 ≈ 0.2 and
ω2 ≈ 0.7 where σ(ω) exhibits a peak structure.
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along the y-direction, and it is the scattering rate difference that dictates the

higher conductivity along the x-direction. In this regard, to obtain the correct

anisotropy of the dc conductivity, we need to take into account some anisotropic

scattering mechanism, for example, a short-range (π, 0, π) magnetic order which

is supported by the recent INS experiment [100]. Indeed this correct anisotropy

of the scattering rate is obtained by a recent theory [122] that considers scatter-

ing by anisotropic spin fluctuations in the paramagnetic phase. It should also be

mentioned that our result of the Drude weight agrees with earlier studies [132]

based on the same form of the orbital order but using a different five-orbital

tight-binding model [47].

In conclusion, our study shows that orbital order plays an important role

in modifying the electronic structure as well as σxx(0)/σyy(0), the ratio of the

Drude weights above the onset temperature for long-range magnetic order. In

this way, we have separated the physics that results from magnetic as opposed

to orbital order.

4.4 Magnetic order

Now we set out to include magnetic order. At the mean-field level, magnetic

order can be described by

HAF =
∑

αβ

Mαβ

∑

i

eiq·riσz
µνc

†
iαµciβν (4.6)

for a multi-orbital system, where we have chosen the ordering wave vector q =

(π, 0, π) and the spins are assumed to point along the Sz direction, with σz

being the Pauli matrix. For a five-orbital system, the order parameters Mαβ

form a 5 × 5 Hermitian matrix, with a total of 25 independent real variables.

However, as discussed in Ref. [42], the (π, 0, π) magnetically ordered state is

invariant under the inversion I around any Fe site, reflections Px, Py, and Pz

along the x, y, and z directions, respectively, and effective time reversal T R′,

which is a combination of time reversal and spin reversal, T R′ = T R ◦ SR.

Under these symmetries in our five-orbital system, only six parameters acquire

non-zero real values: Mαα (α = dxz, dyz, dxy, dx2−y2 , d3z2−r2) and Mαβ = Mβα

(α = dx2−y2 , β = d3z2−r2). Hence, magnetic order obtains almost exclusively

within the same orbitals, with the only exception being the orbital-off-diagonal

term between the dx2−y2 and d3z2−r2 orbitals.

Following these discussions, we consider the on-site interaction of a multi-
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orbital Hubbard model,

HI =
U

2

∑

i,α,µ6=ν

n̂iαµn̂iαν +
V

2

∑

i,α6=β,µν

n̂iαµn̂iβν

+
J

2

∑

i,α6=β,µν

c†iαµc
†
iβνciανciβµ

+
J ′

2

∑

i,α6=β,µ6=ν

c†iαµc
†
iανciβνciβµ, (4.7)

where n̂iαµ = c†iαµciαµ. We still assume U = V + 2J and J = J ′, which is not

necessarily valid as the orbitals used here only share the same symmetry but

do not have exactly the identical form of the atomic d-orbitals. We make use of

the standard mean-field decoupling,

〈

c†iαµciβν
〉

=
1

2

(

nα + µmαe
iq·ri

)

δαβδµν , (4.8)

where µ = ±1 for up and down spins, respectively. As shown by LDA calcu-

lations [50], the Fermi surfaces are mostly composed of the t2g orbitals (dxz,

dyz, and dxy). Thus we can safely ignore the orbital-off-diagonal magnetic or-

der between dx2−y2 and d3z2−r2 , and use the above orbital-diagonal decoupling

which captures five of the total six non-zero mean-field antiferromagnetic order

parameters.

By contrast, we point out that in Ref. [46], the orbitals are defined along

the axes of the original unit cell, X and Y , which are rotated by 45◦ from the

x and y axes of the Fe lattice. Doing mean-field decoupling of Eq. (4.8) on this

model will only take account of four order parameters. Symmetry considerations

impose that the orbital-diagonal elements Mαα of the dXZ and dY Z orbitals are

equal to each other. However, the off-diagonal element Mαβ =Mβα (α = dXZ ,

β = dY Z) can acquire non-zero values, but will not be captured by the mean-

field theory. Hence we will use the model [50] where the orbitals are defined

along the Fe-Fe bond, and expect better results compared to earlier studies

[195, 196] based on Ref. [46] under orbital-diagonal mean-field decoupling.

Straightforward calculation yields the mean-field interaction term

HI = C +
∑

kαµ

[

εαc
†
kαµckαµ

+ ηαµ

(

c†kαµck+q,αµ + h.c.
)]

, (4.9)

67



0

1

10

4

3

2

432
U

m

 

 

J = 0.00U

J = 0.05U

J = 0.10U

J = 0.15U

J = 0.20U

J = 0.25U

J = 0.30U

J = 0.35U

J = 0.40U

Figure 4.5: The total staggered magnetic moment m as a function of the
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the context of iron-based superconductors.

where

εα =
U

2
nα +

(

V − J

2

)

∑

β 6=α

nβ, (4.10)

ηαµ = −µ
2



Umα + J
∑

β 6=α

mβ



 , (4.11)

and the constant

C = −U
4

∑

α

(

n2
α −m2

α

)

− 2V − J

4

∑

α6=β

nαnβ

+
J

4

∑

α6=β

mαmβ. (4.12)

Note in HI (4.9), k can be simply replaced by k̃ without changing the form

of the equation. The full Hamiltonian, H = HK + HN + HI , is quadratic in

electron operators ck̃αµ and can be solved with order parameters nα and mα

being determined self-consistently.

So far there is still no systematic mean-field study of this three-dimensional
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Figure 4.6: Polarized dispersions along (a) X-Γ-X and (b) Y -Γ-Y , for U = 1.08,
J = 0.20U , and ∆ = 0. The corresponding magnetic moment m = 0.46.

tight-binding model [50] specially constructed for BaFe2As2. Thus as the first

step we need to search for appropriate values of U and J that are consistent

with experimental observations. At the outset, we set the orbital nematic order

∆ to zero to simplify our calculations. Generally a non-zero ∆ produces further

modifications, but the physically relevant regime of U and J is not greatly

affected by the choice of ∆. In Fig. 4.5, we plot the total staggered magnetic

moment m =
∑

αmα as a function of Coulomb repulsion U for various Hund’s

couplings J . It is found that there exists a metallic phase with antiferromagnetic

order at intermediate Coulomb repulsion U . Furthermore the ratio of J and

U also needs to take intermediate values. This requirement of U and J is

qualitatively consistent with earlier studies [51, 163] based on other five-orbital

models.

For a typical value of U = 1.08 and J = 0.20U , we plot the polarized dis-

persions along the two diagonal directions in Fig. 4.6(a) and (b), respectively.

Clearly, the magnetic order opens up a gap close to Fermi energy and signif-

icantly modifies the original band structure shown in Fig. 4.2. However, this

(π, 0, π) antiferromagnetism, although breaking the C4 symmetry, produces only

a small splitting between the bands at X and Y . In fact, the band energy at Y

is even slightly higher than that at X . From our calculation using other values

of U and J , this near degeneracy of the bands at X and Y is quite robust,

which contradicts ARPES measurements [138]. As will be seen, this problem
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Figure 4.7: The total staggered magnetic moment as a function of the Coulomb
repulsion U and orbital nematic order parameter ∆. We set Hund’s exchange
J = 0.20U .

can be alleviated by including orbital ordering. Hence, orbital order HN (4.5)

is still present in the antiferromagnetic phase and has important experimental

consequences.

In order to simplify our discussions, we set J = 0.20U and focus in the

regime U ∈ [1.0, 1.2] and ∆ ∈ [−0.1, 0.1], where significant agreement with

experiment can be found. We first investigate variations of the total staggered

magnetic moment m for different U and ∆. As discussed in Sec. 4.3, a negative

∆ induces better nesting between hole and electron pockets and stabilizes the

(π, 0, π) magnetic order, thus leading to an increase ofm as shown in Fig. 4.7. In

contrast, the magnetic momentm decreases when ∆ takes larger positive values.

In fact, a positive ∆ places the dxz orbital higher in energy compared to dyz,

and favors the antiferromagnetism with q = (0, π, π) instead. This interesting

interplay between the orbital and magnetic order is also noted recently [197]

based on LDA results and a Ginzburg-Landau phenomenological theory.

To further illustrate the role of orbital order in the reconstruction of the elec-

tronic structure in the magnetically ordered phase, we plot the Fermi surfaces

and polarized dispersions in Fig. 4.8. We use the set of parameters, U = 1.08,

J = 0.20U , and ∆ = −0.08, to be consistent with previous figures. From

Fig. 4.8(c) and (d), the desired band splitting between X and Y is successfully

produced due to a negative ∆. Furthermore, there are multiple band crossings

at the Fermi energy along X-Γ-X whereas only a single crossing occurs along
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Figure 4.8: Fermi surfaces in the plane of (a) kz = 0 and (b) kz = π. Polarized
dispersions along the line of (c) X-Γ-X and (d) Y -Γ-Y . The parameters used
here are U = 1.08, J = 0.20U and ∆ = −0.08, with the total mean-field
staggered moment m = 0.62.
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Figure 4.9: Polarized dispersions along (a) X-Γ-X and (b) Y -Γ-Y , for U = 1.13,
J = 0.20U , and ∆ = 0. The corresponding magnetic moment m = 0.61, which
is close to m = 0.62 of Fig. 4.8.

Y -Γ-Y , also in agreement with ARPES findings [138]. We further point out that

the two small Fermi surfaces adjacent to the large hole pocket in Fig. 4.8(b) are

actually Dirac cones, which have been predicted theoretically [42] and confirmed

experimentally [138, 198], Note however, that the existence of Dirac cones relies

on the degeneracy between the dxz and dyz orbitals [42]. But the small orbital

order used here is not enough to annihilate such Dirac features. Finally the

two Fermi surface segments close to the zone center in Fig. 4.8(a) are mostly

aligned along the ferromagnetic y-direction and in principle can produce the

quasi-one-dimensional interference pattern observed in STM [111].

However, attentive readers may notice that for Fig. 4.8, the corresponding

magnetic moment m = 0.62, which is larger than m = 0.46 of Fig. 4.6. Hence

it is possible that the splitting between the bands at X and Y is caused by the

stronger magnetic order in Fig. 4.8. In order to confirm the splitting is entirely

due to the orbital order term HN (4.5), we plot the polarized dispersions in

Fig. 4.9 for U = 1.13, J = 0.20U , and ∆ = 0. These parameters produce a

staggered magnetic moment m = 0.61, which is close to the value of m = 0.62

in Fig. 4.8. However, no splitting between the bands at X and Y is generated

in Fig. 4.9, where the band energy at X is even slightly lower than that at Y .

As we have pointed out earlier, this near degeneracy between the band energy

at X and Y survives for other values of U and J as well, as long as the orbital
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nematic order parameter ∆ = 0. Therefore we have shown that it is the orbital

order HN (4.5), rather than the stripe antiferromagnetism, that is responsible

for the band splitting at X and Y observed in ARPES [138].

We end this section by discussing the optical spectra in the presence of both

orbital and magnetic order. The same set of parameters as those of Fig. 4.8 are

used here. From Fig. 4.10(a), we see that the optical conductivity shows two

peaks at frequency ω1 and ω2, which have similar values as we defined previously.

Compared to the results without the magnetic order (see Fig. 4.4), the magni-

tude of the peak at ω1 increased significantly. So the onset of this low-energy

peak at ω1 is mostly due to antiferromagnetism which opens up a gap at the

chemical potential and shifts part of the Drude weight to the region around ω1.

On the other hand, the high-energy peak at ω2 comes from the inter-band tran-

sitions that are already present in the original multi-orbital model. However,

we cannot distinguish along which direction the optical conductivity dominates

since there are multiple crossings (as a function of frequency) between the two

curves of σxx and σyy. But naively, σxx does have higher values in most of

the regions around ω1, which matches the experimental results [130] at the

low-temperature antiferromagnetic phase. Also of note is the region around ω1

where σxx displays a single peak whereas σyy acquires a double-peak structure,

which is also reproduced in recent LDA+DMFT study [199]. Anisotropy of the

Drude weight is presented as a function of U and ∆ in Fig. 4.10(b). If we as-

sume an isotropic scattering rate, the dc conductivity anisotropy has the correct

directionality in a very large region of parameter space. However, considering

the (π, 0, π) antiferromagnetism, we should expect a larger scattering rate along

the x-direction where the spins are antiparallel to their neighbors. This should

further restrict the parameter space of interest. Nonetheless, we find that in a

reasonable range of parameters, both orbital and magnetic order underlie the

resistivity anisotropy in a multi-orbital model of the pnictides.

4.5 Final remarks

In summary, we have solved a three-dimensional five-orbital model using the

mean-field approximation in the presence of both orbital and magnetic order.

We modeled the orbital order phenomenologically as an energy splitting term

between the two otherwise degenerate dxz and dyz orbitals, and find that it is

solely responsible for the splitting between the bands at X and Y observed by

polarized ARPES [138]. This orbital nematic order also causes the Drude weight

difference between the two diagonal directions for the paramagnetic phase, in

agreement with the analysis based on optical conductivity [130]. On the other

hand, the magnetic order sets in at a lower temperature. It opens up a gap at the

Fermi energy and shifts part of the Drude weight to high energies, leading to the

emergence of a peak structure at ω1 ≈ 0.2 in the optical conductivity. However,

magnetic order alone cannot explain the anisotropic dispersions, especially the
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Figure 4.10: (a) Optical conductivity σxx(ω) and σyy(ω) calculated using U =
1.08, J = 0.20U , and ∆ = −0.08. They are plotted in the same unit as Fig. 4.4.
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σyy(0). We choose J = 0.20U here.
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band splitting between X and Y . Thus both orbital and magnetic orders are

present in the low-temperature antiferromagnetic phase, and together induce

various anisotropies seen by different experimental techniques. This result is in

contrast with earlier studies [121, 137, 163] which claimed that the magnetic

order is the driving mechanism for the anisotropy. Thus, our study establishes

the importance of orbital order, irrespective of whether long-range magnetic

order is present or not.

Besides orbital order, the anisotropy observed above the magneto-structural

transition can come from a different mechanism, for example, static short-range

magnetic order. Its existence is indeed supported by recent INS experiments

[100]. In principle, we can model this by a probability distribution of the order-

ing wave vector peaked at q = (π, 0, π) [200], and investigate its modification to

the electronic structure. It is expected that the magnitude of the sub-peak at ω1

in Fig. 4.4(b) will increase due to this short-range magnetic order, thus yielding

better agreement with experiments [130]. Nevertheless, the orbital order should

always be present until the band splitting vanishes.

Of course, it remains an outstanding issue whether the nematic order above

the magneto-structural transition is orbitally or magnetically driven. Thermo-

dynamic measurement cannot distinguish them as both transitions fall into the

Ising universality class. Indeed, increasing sample quality does drive the mag-

netic transition closer to the structural transition [201]. In our point of view,

these two degrees of freedom actually coexist and cooperate with one another. A

non-zero orbital order can certainly induce a spin nematicity without long-range

magnetic order, and vice versa. It will be interesting if future INS experiments

can settle the onset temperature of the spin nematic order and compare it to

that of the orbital order measured by ARPES [138]. However, to account for the

large anisotropy of the magnetic exchanges [81, 100], orbital degrees of freedom

have to be considered.

One ingredient we ignored in our theory is the role of the structural distor-

tions, which in principle should enhance the orbital order [202]. We also ne-

glected possible strong-correlation physics, which may cause an orbital-selective

Mott transition [203]. To conclude, orbital order is an important part of the min-

imal model of iron-based superconductors. It induces strong exchange anisotropy

between the local moments, and leads to an electron nematic order on the itin-

erant level, governing the physics over a very large energy scale. The study of

the interplay between the orbital and magnetic orders should shed new insight

into the mechanism of superconductivity in this multi-orbital system.
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Chapter 5

Orbital order from the
local-itinerant model1

The magnetic excitations of the iron pnictides are explained within a degenerate

double-exchange model. The local moment spins are coupled by superexchanges

J1 and J2 between nearest and next-nearest neighbors, respectively, and interact

with the itinerant electrons of the degenerate dxz and dyz orbitals via a ferro-

magnetic Hund exchange. The latter stabilizes (π, 0) stripe antiferromagnetism

due to emergent ferro-orbital order and the resulting kinetic energy gain by

hopping preferably along the ferromagnetic spin direction. Taking the quantum

nature of the spins into account, we calculate the magnetic excitation spectra

in the presence of both super- and double-exchange. A dramatic increase of

the spin-wave energies at the competing Néel ordering wave vector is found,

in agreement with recent neutron scattering data. The spectra are fitted by a

spin-only model with a strong spatial anisotropy and additional longer ranged

couplings along the ferromagnetic chains. Over a realistic parameter range, the

effective couplings along the chains are negative corresponding to unfrustrated

stripe antiferromagnetism.

5.1 Introduction

The discovery of superconductivity in the pnictides [1, 8, 9, 10, 13, 204]. with

transition temperatures challenging those of single-layer, high-Tc cuprates, im-

mediately raised the question of whether, despite all their differences, the two

classes of materials share the same key mechanism for superconductivity [205,

206, 207]. Arguably the most striking similarity is that superconductivity

emerges upon doping antiferromagnetically ordered parent compounds. In the

pnictides, however, the magnetic ordering is unusual, characterized by an an-

tiferromagnetic arrangement of ferromagnetic chains, corresponding to an in-

plane ordering wave vector Q = (π, 0) [19, 21, 22, 23, 176, 208, 209, 210, 211,

212]. Whereas the pnictides are metallic, the parent cuprates are Mott insula-

tors. The conductivities in the pnictides are typical of bad metals, suggesting

that electronic correlations [38, 83, 84, 95, 145, 146, 213, 214, 215, 216] are cru-

cial. By contrast, the local-density approximation seems to be adequate [31] to

describe their band structure.

1This chapter is from Ref. [103]
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As a result of this dichotomy, both itinerant magnetism [31, 39, 41, 46,

67, 72, 217, 218] and local moment [84, 145, 146, 158, 178, 219, 220, 221, 222]

scenarios have been suggested to explain the unusual stripe antiferromagnetism.

Although the former weak-coupling theories which attribute the magnetism to a

spin-density wave instability of a nested Fermi surface, can explain the magnetic

low-energy excitations around the correct ordering wave vector, they fail to

describe the spectra at higher energies which have been measured in great detail

by inelastic neutron scattering [81, 109]. In particular, the itinerant scenarios

can not explain the observed maximum in the dispersion at (π, π) but rather

suggest that the excitations rapidly dissolve into a particle-hole continuum [218]

which has not been found experimentally up to energies of 200meV. So far, a

consistent description of the excitations over the entire energy range has been

obtained only by using suitably parametrized Heisenberg models.

Because of the positions of the arsenic ions above or below the iron plaque-

ttes, such a spin-only model is expected to be strongly frustrated with compa-

rable, antiferromagnetic superexchanges J1 and J2 between nearest and next-

nearest neighbors. In this regime, the model indeed exhibits long-range stripe-

antiferromagnetic order [87, 144, 148], and the strong frustration and proxim-

ity to a continuous magnetic phase transition might explain why the observed

magnetic moments are relatively small [84, 220]. Interestingly, the neutron

scattering experiments tell a radically different story. The spin-wave velocities

indicate that the exchange coupling along the ferromagnetic spin direction is

much smaller than the one perpendicular to the chains [19], J1y � J1x. More

recently, it has been argued [81] that the observed maximum of the dispersion at

(π, π) even requires a slightly ferromagnetic exchange J1y < 0 corresponding to

an unfrustrated spin model in contrast to early claims [84] of high frustration.

What might be the cause of such a strong spatial anisotropy? In fact, before

the magnetic order sets in, a structural transition occurs at which the two

in-plane lattice constants become inequivalent. The structural and magnetic

transition are clearly separated in the so-called ‘1111 compounds’ [19, 21, 209,

211], whereas they occur at the same temperature in the ‘122 family’ [22, 23, 210,

212]. However, inspecting the numbers, it appears that the orthorhombic lattice

distortion is too small, by two orders of magnitude, to explain the magnetic

anisotropy [222].

To this end, some have proposed [158, 159, 172, 173] that orbital-ordering

physics of a similar kind as in the manganite transition-metal oxides not only

provides a mechanism for the lattice distortion but more importantly explains

the strong in-plane anisotropies. In particular, it has been argued [158] that

due to an orbital degeneracy, the localized limit is described by a complicated

spin-orbital super-exchange (Kugel-Khomskii) model rather than by a Heisen-

berg Hamiltonian. Further, it was shown that the stripe antiferromagnetism is

stabilized by ferro-orbital order which breaks the in-plane lattice symmetry and

induces a strong anisotropy between the magnetic exchange couplings.
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Since the C4 lattice symmetry is broken by the orbital order and the ac-

companying orthorhombic distortion, the electronic structure must reflect this

spatial anisotropy with reduced symmetry [223]. Such an anisotropic electronic

state has been confirmed recently in scanning-tunneling-microscopy (STM) ex-

periments [111] and in-plane resistivity measurement [119, 120]. Moreover, dra-

matic Fermi-surface reconstructions at the structural transition [135]. as well

as enormous transport [224] and phonon[181] anomalies, have been interpreted

as clear indirect evidence for orbital ordering. Hence, on this interpretation, it

is the orbital ordering that underlies the electronic anisotropy not an inherent

anisotropy due entirely to the electrons, indicative of a true nematic state.

Consequently, an open problem with the pnictides is the role itineracy and

local physics play in mediating the apparently unfrustrated anisotropic mag-

netism. In this work, we start from the idea of the ‘local-itinerant dichotomy’

[95, 96, 97] of the iron pnictides and motivate an effective degenerate double-

exchange (DDEX) model very similar to the ones used to describe metallic man-

ganites with orbital degeneracies [225, 226, 227]. To be more precise, we assume

a ferromagnetic Hund coupling between the local moments, which are described

by the aforementioned J1-J2 Heisenberg model, and the itinerant bands of the

doubly-degenerate dxz and dyz orbitals. In the context of the manganites it

has been shown [225, 226, 227] that such DDEX models exhibit phases with

long-range stripe-antiferromagnetic order. Despite the antiferromagnetic cou-

plings between neighboring local moment spins, emergent ferro-orbital order

goes hand in hand with the formation of ferromagnetic spin chains in order

to minimize the kinetic energy of the itinerant electrons by directing it pre-

dominantly along the chains. Obviously, the resulting electronic state is highly

anisotropic. Moreover, the double exchange is expected to strongly suppress

the effective coupling between local moments along the chains, and possibly to

make it even ferromagnetic [228].

In this work, we analyze the effective DDEX model for the iron pnictides

layers. We indeed find the orbitally ordered (π, 0) antiferromagnet to be stable

over a wide parameter range including realistic values for the parent pnictide

materials. In particular, the seizable next-nearest neighbor superexchange J2

further stabilizes this phase. Whereas these results are to a large extend not

surprising given the similarities with the manganites, the magnetic excitation

spectra so far have been calculated only for a ladder system [229]. For the

manganites, the DDEX model is usually simplified [225, 226, 227] by treating

the core spins as classical and by taking the limit of large or infinite Hund’s

coupling JH which is not justified for the pnictides. Here, we instead focus on

the regime of small and intermediate JH and develop the tools to calculate the

magnetic excitation spectra in the presence of both, super- and double-exchange

to linear-spin-wave order. The spectra are found to be in good agreement with

the neutron scattering data [81]. In particular, in some parameter space the

double exchange along the ferromagnetic chains can overcompensate the bare
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antiferromagnetic superexchange as suggested by the experiment.

This chapter is organized as follows. In Sec. 5.2, we construct the local-

itinerant, DDEX model. Sec. 5.3 deals with the methods we use to solve the

model. Namely, a canonical transformation is performed to identify the true

magnons of the system. In Sec. 5.4, we summarize our results, including ferro-

orbital ordering, the magnetic excitation spectra, and the magnetic anisotropy.

Finally Sec. 5.5 discusses several aspects of our theory and validates its appli-

cability to the pnictides.

5.2 Model

In this Section, we proceed to motivate the DDEX model for the pnictides.

This model accounts for the presence of local moments, as suggested by the

neutron scattering experiments, as well as itinerant electrons responsible for the

bad-metal behavior of the parent compounds. Moreover, the orbital degeneracy

in combination with the Hund coupling between electronic and spin degrees

of freedom gives rise to orbital-ordering physics beyond simple band-structure

theory. The Hamiltonian consists of three parts,

H = Hloc +Hit +HH, (5.1)

where Hloc describes the superexchange couplings between local moments, Hit

the itinerant electrons of the degenerate dxz and dyz orbitals, and HH the ferro-

magnetic Hund coupling between the local moments and the itinerant electrons.

We point out that in order for this model to be valid, the Hund coupling JH

should be small compared to the tetrahedral crystal field splitting between the

t2g and eg multiplets, but larger than the tetragonal splitting between the dxy

orbital and the degenerate dxz,dyz doublet [158].

The local moments with spin S are coupled by super-exchanges J1 and J2

between nearest and next-nearest neighbors, respectively. The corresponding

Heisenberg Hamiltonian reads

Hloc =
J1
S2

∑

〈i,j〉
Si · Sj +

J2
S2

∑

〈〈i,j〉〉
Si · Sj , (5.2)

where, for convenience, the super-exchanges are measured in units of S2. Like-

wise, the Hund exchange JH which couples the electron spins to the local mo-

ments will be measured in units of S. This convention will facilitate our large-S

expansion later. The superexchanges are mediated by virtual hopping processes

via the p-orbitals of the arsenic ions which have alternating positions above or

below the iron plaquettes. Certainly, a quantitative comparison of the exchange

couplings would require knowledge of the two different Fe-As-Fe bond angles

and the precise shape of the orbitals. Assuming that the virtual processes for

the nearest-neighbor and diagonal bonds involve roughly the same energies, we

79



x

y

J1

J2J1

(a)

ABA

(c)

(b) +

+

-

-

+

+

-

-

+

+

-

-

+

+

-

-

t1

t2 t1

t2

t4

t3t3

-t4

dxz

dyz

Figure 5.1: Illustration of the degenerate double-exchange model for the pnic-
tides. (a) The local moments are coupled by nearest- and next-nearest-neighbor
exchanges J1 and J2, respectively, and interact via a ferromagnetic Hund cou-
pling JH with the itinerant electrons of the degenerate dxz, dyz orbitals. (b)
Illustration of the hopping parameters in a two-band model of these orbitals
(shown as projections in the plane). (c) Resulting ferro-orbital order which
stabilizes the (π, 0) antiferromagnetism by directing the kinetic energy of the
electrons along the ferromagnetic spin direction.
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estimate J1 ≈ 2J2 since two exchange paths via different arsenic ions contribute

to J1. Therefore, we expect the Heisenberg model (5.2) to be strongly frustrated

and potentially in the quantum disordered regime.

The itinerant electrons of the degenerate dxz and dyz orbitals are described

by a tight-binding Hamiltonian

Hit = −
∑

ij,αβ,ν

tαβij c
†
iανcjβν , (5.3)

where c†iαν creates an electron at site i on orbital α with spin ν. The hop-

ping integrals tαβij are illustrated in Fig. 5.1(b) and defined in the same way as

Ref. [41]. For simplicity, we neglect inter- and intra-orbital Coulomb interac-

tions [52] between the itinerant electrons. This is justified since on the level

of the effective DDEX model, the local moments are formed as a consequence

of strong correlations whereas the residual charge carriers should be viewed as

weakly interacting quasiparticles. We will assume t1 to be dominant hopping

amplitude because a larger wave-function overlap is expected when the orbitals

point towards one another. However, the precise shape of the orbitals is not

determined by geometry but depends on quantum chemistry, for example, on

the amount of hybridization between the Fe d- and As p-orbitals [95]. Here

we simply denote the orbitals by dxz and dyz because of the spatial symmetry

shared with the atomic Fe orbitals. Recently, it has been suggested [172] that

the hybridization leads to a strong deformation of the orbitals which make the

π overlap, t2 the dominant one. We point out that our results persist for the

exchange of t1 and t2, the only difference being that the orbital polarization

will be inverted in order to maximize the overlap along the ferromagnetic spin

direction.

We do not attempt to fit our hopping parameters to reproduce the electron

and hole pockets as being done in the previous two-orbital models [41, 43] on the

level of a tight-binding approximation. Such parameters are inherently arbitrary

since the hopping amplitudes are not uniquely determined by a particular con-

stant energy cut [43] and because Coulomb interactions and Hund’s exchange

are of the order of the electronic bandwidth [38, 83, 213, 214, 215, 216].

Finally the local moments and the itinerant electrons interact by a ferro-

magnetic Hund coupling,

HH = −JH
2S

∑

i,α,νν′

Si · c†iανσνν′ciαν′ , (5.4)

where σνν′ = (σx, σy, σz)νν′ with σα are the standard Pauli matrices and JH >

0. As mentioned before, the Hund exchange is measured in units of the local

moment S. We note that similar models have been proposed in the context of

the pnictides [96, 97]. However, the orbital degeneracy which is the pre-requisite

for orbital-ordering physics and the resulting spatial anisotropies has not been
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included.

5.3 Method

In this Section, we outline the approximations and transformation we employ to

analyze the complicated DDEX model for the pnictides. In similar models for

the maganites, the problem is typically simplified by treating the local moments

as classical spins and assuming an infinitely strong Hund exchange [225, 226,

227]. In the pnictides, these approximations are not justified since the Hund

coupling is of the order of the electronic bandwidth and since the local moments

are small and presumably best described by the extreme quantum limit, S =

1/2. Moreover, our goal is the calculation of the magnetic excitation spectra

in the presence of super- and double-exchange which will require the inclusion

of quantum fluctuations of the spins. Although the spins are small and the

Heisenberg model Hloc is strongly frustrated, it is reasonable to treat the local

moments on the level of linear spin-wave theory since the double exchange leads

to a dramatic stabilization of the magnetic order. Moreover, it has been argued

that the 1/S expansion is much better behaved for (π, 0) order as compared to

conventional (π, π) Néel antiferromagnetism [220].

Since the Hund coupling HH does not conserve the magnons describing the

spin-wave excitation of the isolated local moments, we perform a canonical trans-

formation in order to identify the true magnons of the coupled system. Readers

not interested in the details of this calculation can skip immediately to the

results, Sec. 5.4.

5.3.1 Operator rotations

Following the standard treatment of the antiferromagnetic Heisenberg model,

we perform the spin rotation Sx
i = S̃x

i , S
y
i = κiS̃

y
i , and Sz

i = κiS̃
z
i where

κi = exp (iQ · ri) = ±1 for sublattice A and B respectively [see Fig. 5.1(a)].

Representing the rotated spin operators S̃i by Holstein-Primakoff (HP) bosons

ai, a
†
i , to the leading order, S̃z

i = S − a†iai, S̃
+
i =

√
2Sai, and S̃−

i = a†i
√
2S

(S̃±
i = S̃x

i ± iS̃y
i ), we immediately derive the following expression for Hloc in the

linear spin-wave approximation,

Hsw
loc =

∑

q

[

A0(q)
(

a†qaq + a−qa
†
−q

)

+B0(q)
(

a†qa
†
−q + a−qaq

)]

, (5.5)

where A0(q) = (J1 cos qy +2J2)/S and B0(q) = (J1 cos qx+2J2 cos qx cos qy)/S.

In order to leave the Hund coupling term HH invariant, we perform exactly

the same rotation of the electron spins siα = 1
2

∑

νν′ c
†
iανσνν′ciαν′ . This is

achieved by transforming the fermion operators as ciαν = c̃iαν for sites i on
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sublattice A and ciαν = c̃iαν̄ on sublattice B. In the latter expression, we have

defined ν̄ =↓ for ν =↑ and vice versa. In terms of the HP boson creation and

annihilation operators ai, a
†
i and rotated fermion operators c̃iαν , c̃

†
iαν the Hund

exchange can be written as

HH = H(0)
H +H(1)

H +H(2)
H , (5.6)

H(0)
H = −JH

2

∑

k,α,ν

νc̃†kαν c̃kαν , (5.7)

H(1)
H = − JH√

2S

∑

kq,α

(

aq c̃
†
k+q,α↓c̃kα↑ + h.c.

)

, (5.8)

H(2)
H =

JH
2S

∑

k,qq′,αν

νa†qaq′ c̃
†
k−q,αν c̃k−q′,αν , (5.9)

where ν = ±1 for up and down spins respectively. Note that H(0)
H only involves

the electronic operators and represents the zeroth-order corrections to the elec-

tron energies by the classical background stripe antiferromagnetism. H(1)
H and

H(2)
H are the couplings between the electrons and the HP bosons, linear and

quadratic in the boson operators. In the following, we include the term H(0)
H in

the itinerant electron Hamiltonian, yielding the effective free-electron Hamilto-

nian

He = Hit +H(0)
H

=
∑

k,α,ν

[(

εα1 (k)− ν
JH
2

)

c̃†kαν c̃kαν

+ εα2 (k) c̃
†
kαν c̃kαν̄ + ε3(k) c̃

†
kαν c̃kᾱν̄

]

, (5.10)

where ᾱ = yz for α = xz and vice versa. We have defined εxz1 (k) = −2t2 cos ky,

εyz1 (k) = −2t1 cos ky, ε
xz
2 (k) = −2t1 cos kx−4t3 cos kx cos ky, ε

yz
2 (k) = −2t2 cos kx−

4t3 cos kx cos ky, and ε3(k) = −4t4 sinkx sin ky.

5.3.2 Canonical transformation

Apparently, the interaction term H(1)
H is linear in the HP boson ai, which shows

that these bosons do not represent the Goldstone modes of the system, namely

the transverse fluctuations of the total staggered magnetic moments, which con-

sist of not only the local moments, but also the spins of the itinerant electrons.

In order to correctly identify the true magnons and carry out the subsequent

spin-wave calculations, we need to perform a canonical transformation of the

original Hamiltonian H = Hsw
loc +He +H(1)

H +H(2)
H ,

H′ = e∆He−∆

= H + [∆,H] +
1

2
[∆, [∆,H]] + . . . (5.11)
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with ∆ a suitable anti-Hermitian operator, ∆† = −∆, such that in the trans-

formed H′, the terms linear in ai’s are eliminated. Similar canonical transfor-

mations [230, 231] and equivalent perturbative methods [232] have been used

in order to explain ferromagnetism in double-exchange models with a single

itinerant band. Up to the leading order, the transformation is determined by

[∆,He] +H(1)
H = 0. (5.12)

To find the ∆ satisfying (5.12), we first diagonalize He by a unitary transfor-

mation c̃kαν =
∑

n U
n
αν(k)dnk, yielding He =

∑

n,k En(k)d
†
nkdnk. Here, n labels

the four electronic bands arising after diagonalization from the two orbital and

two spin degrees of freedom. In the new basis of dnk, it is easy to verify that

(5.12) is solved by

∆ =
JH√
2S

∑

kq,mn,α

(

aqd
†
m,k+qdnk

En(k)− Em(k + q)

× Um∗
α↓ (k + q)Un

α↑(k)− h.c.

)

. (5.13)

After the canonical transformation (5.11), the Hamiltonian up to order 1/S

reads H′ = He + Hsw
loc + H(2)

H + H′
2, where H′

2 = [∆,H(1)
H ] + 1

2 [∆[∆,He]] =
1
2 [∆,H

(1)
H ]. The commutators [∆,Hsw

loc] and [∆,H(2)
K ] are of higher orders in

1/S and the boson operators, and thus can be dropped in the linear spin-wave

approximation. The contributions H(2)
H and H′

2 are bilinear in both the bosonic

and fermionic operators. After taking the expectation values of the electronic

operators with respect to the diagonal electronic Hamiltonian He, we obtain the

final spin-wave Hamiltonian

Hsw = Hsw
loc +

〈

H(2)
H +

1

2
[∆,H(1)

H ]

〉

e

=
∑

q

[

A(q)
(

a†qaq + a−qa
†
−q

)

+B(q)
(

a†qa
†
−q + a−qaq

)]

(5.14)

with A(q) = A0(q) + A1 + A2(q) and B(q) = B0(q) + B2(q). The constant

‘self-energy’ correction, A1, arises from H
(2)
K whereas H ′

2 = 1
2 [∆,H

(1)
H ] generates

momentum-dependent corrections to both the ‘self-energy’ and the ‘anomalous

amplitude’, which are denoted as A2(q) and B2(q). These corrections are ex-
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pressed as

A1 =
JH
2S

∑

k,n

fn(k)
∑

α,ν

ν |Un
αν(k)|

2
, (5.15)

A2(q) =
J2
H

2S

∑

k,mn

fn(k)− fm(k + q)

En(k)− Em(k + q)
(5.16)

×
∣

∣

∣

∣

∣

∑

α

Um∗
α↓ (k + q)Un

α↑(k)

∣

∣

∣

∣

∣

2

,

B2(q) =
J2
H

2S

∑

k,mn

fn(k)− fm(k + q)

En(k)− Em(k + q)
(5.17)

×
∑

αβ

Um∗
α↓ (k + q)Un

α↑(k)U
n∗
β↓ (k)U

m
β↑(k + q),

where fn(k) = 1/(1 + eβ(En(k)−µ)) is the Fermi distribution function with µ

the chemical potential. The Hamiltonian (5.14) is diagonalized by a Bogoliubov

transformation yielding the spin-wave dispersion

ω(q) =
√

A2(q)−B2(q) (5.18)

of the system in the presence of both super- and double-exchange.

5.4 Results

5.4.1 Classical phase diagram

As a pre-requisite for the spin-wave expansion, we have to clarify the classi-

cal phase diagram at first. In the absence of the itinerant electrons, the line

J2 = J1/2 separates two classical antiferromagnetic ground states of the local

moments characterized by ordering wave vectors of (π, 0) and (π, π), respec-

tively. For J2 > J1/2 where the stripe order is favored, the itinerant electrons

will be more likely to occupy the dyz orbital that has a larger hopping am-

plitude along the ferromagnetic y-direction. According to the double-exchange

mechanism, this ferro-orbital-ordered state will induce an effective ferromag-

netic exchange that is stronger along the y-direction than along the x-direction.

Thus the spin frustration should be reduced and the stripe order should be fur-

ther stabilized. However, when J2 < J1/2, the local moments will form a (π, π)

Néel order, in which the hoppings of the itinerant electrons will be impeded

due to the Hund exchange. So it is possible that for a sufficient large JH the

stripe order can still develop if the the kinetic energy gains by hoppings along

ferromagnetic spin direction win out against the difference of magnetic energies

of the two spin states.

Now we set out to compute the phase diagram by comparing the classical

ground state energy of the two spin configurations. The tight-binding hopping
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Figure 5.2: The classical phase diagram of the degenerate double-exchange
model for J1 = 0.04t1, at filling levels n = 0.05, n = 0.10, and n = 0.15.
The tight-binding hopping parameters being used to produce the figure are
t2 = −0.1t1, t3 = 0.2t1, and t4 = 0.05t1.

parameters are chosen as t2 = −0.1t1, t3 = 0.2t1, and t4 = 0.05t1, so that

t1 is much larger than the other hopping amplitudes to enhance the transport

along the ferromagnetic spin chains. In addition, the relatively small t4 helps to

reduce the overlap of the two orbitals and thus promotes the desired ferro-orbital

ordering. Here and thereafter, all the energies will be expressed in the unit of

t1, the largest of the hopping amplitudes. We further set J1 = 0.04tσ so that

the exchange constants are of the order of 10 meV for a bandwidth of 1 eV, in

agreement with both numerical [178] and experimental [81] observations. The

resulting phase diagram is displayed in Fig. 5.2 for the filling of the itinerant

electrons n = 0.05, n = 0.1, and n = 0.15, respectively. As being predicted,

a large JH can stabilize the stripe (π, 0) order even when J2 < J1/2 favors a

(π, π) Néel order. Moreover, as the filling level n increases, the stripe order

is also preferred because the electrons can gain more kinetic energy in that

configuration. Similar results have already been obtained in the context of the

manganites [225, 226, 227].

However, in our following calculations we will mostly focus on the regime

J2 > J1/2, where both the kinetic energy of the itinerant electrons and the

exchange energy of the local moments prefer the (π, 0) order. Therefore we can

safely set up the spin-wave expansions for any JH as long as the ferro-orbital

order maintains. In principle, when J2 < J1/2, the linear spin-wave calculations
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can still be carried out for a JH that is large enough to drive the system to the

stripe order classically. However, due to the strong competition between the

electron kinetic energy and the magnetic exchange energy, the system may be

disordered quantum mechanically, where the spin-wave expansion is unreliable.

An interesting comparison can be drawn between the pnictides and the man-

ganites. In manganites, the core spin has a length of S = 3/2 and is presumably

described by a classical O(3) vector. Furthermore, because of the nearly infinite

strong Hund coupling and the relatively weak bare exchange between the local

moments, the electron kinetic energy dictates the ground state by the classical

double-exchange mechanism. In contrast, for the pnictides, the local moments

are intrinsically quantum mechanical due to its small size, and the Hund cou-

pling is only of the order of the electron bandwidth. More importantly, the

local moments are strongly coupled by relatively large J1 and J2 exchange con-

stants. Therefore, in pnictides, the (π, 0) striped order is established mainly by

the J1-J2 Heisenberg model, whereas the itinerant electrons give corrections to

the spin-wave dispersions quantum mechanically and further stabilize the stripe

order due to the kinetic energy gains from hopping along the ferromagnetic

chains.

5.4.2 Orbital and spin polarization

We start with the inspection of the electronic Hamiltonian He (5.10) which

includes the Hund coupling to the local moments on a classical level given by

H(0)
H . From the diagonalization of He (5.10) with the same set of hopping

parameters as previously, we obtain the dispersions of the electronic bandsEn(k)

shown in Fig. 5.3(a) and (b) for a Hund exchange JH = 1.0t1 and JH = 0.1t1,

respectively. The colors of each band are determined by the weight of the dyz

orbital, Wyz . We have ‘blue’ corresponding to Wyz = 1, a complete dyz orbital,

whereas a complete dxz orbital (Wyz = 0) is displayed in ‘red’. With t4 being

non-zero, these electronic bands are always superpositions of the two orbitals.

However, if JH is strong enough, each band is dominated by a single orbital

throughout the Brillouin zone [Fig. 5.3(a)]. On the other hand, orbital mixing

is much more prominent for a small JH [Fig. 5.3(b)]. As will be shown, most

of our calculations are done for a strong Hund exchange JH & 1.0t1. Therefore,

from now on, we will denote these bands as ‘dxz’ and ‘dyz’ for simplicity.

Assuming translational invariance, the electron densities ραν can be easily

calculated as ραν =
〈

c̃†iαν c̃iαν
〉

with α = xz, yz the orbital and ν =↑, ↓ the

spin index. Obviously, these densities sum up to the total filling of the bands,

n =
∑

αν ραν . In Fig. 5.3(c) and (d), the orbital and spin polarization, no =
∑

ν(ρyz,ν − ρxz,ν) and ns =
∑

α(ρα,↑ − ρα,↓) are plotted as functions of the

total filling n for different values of the Hund coupling JH/tσ, using the same

hopping amplitudes.

Without the presence of the itinerant electrons, the local moments form a
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Figure 5.3: (a, b) The dispersions of the itinerant electron bands for JH =
1.0t1(a) and JH = 0.1t1(b), along the path (0, 0)-(π, 0)-(π, π)-(0, 0) in the Bril-
louin zone containing one Fe atom per unit cell. The bands are colored according
to the weight of the dyz orbital, from ‘blue’ for a complete dyz orbital, to ‘red’
for a complete dxz orbital. (c, d) orbital polarization no(c) and spin polarization
ns(d) as a function of the filling n of the itinerant bands, for various Hund’s
couplings JH. The hopping amplitudes are chosen the same as previously.

(π, 0) stripe antiferromagnetic ground state when J2 > J1/2. The spins are par-

allel along the y-direction and anti-parallel along the x-direction, as illustrated

by Fig. 5.1(a). Due to the on-site ferromagnetic Hund coupling, the spins of

itinerant electrons are more likely to be aligned in the same direction as are the

local moments on every site. Hoppings along the x and diagonal directions put

the electrons in the opposite spin states to the local moments either before or

after the hopping process, and thus cost more energy in comparison to that in-

volving hopping along the y-direction. With the assumption that t1 is dominant,

the electrons will first occupy the dyz orbitals because of the kinetic energies

gained by hopping along the ferromagnetic y-direction. Therefore, the system

will form a ferro-orbital-ordered state with all the electrons occupying the dyz

orbitals [see Fig. 5.1(c)] until the Fermi energy reaches the bottom of the band

of the dxz orbitals. This behavior is shown in Fig. 5.3(c) for different Hund’s

coupling JH. In general, a larger JH increases the energy difference between the

two bands, and thus push the complete orbital polarization to a higher filling

level. We denote the maximum filling level to which the ferro-orbital order is

sustained by n̄. When n > n̄, electrons start to populate the dxz orbitals, result-

ing in a decrease of the orbital polarization no. We have to note that ‘dxz’ and
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‘dyz’ denote the diagonal electronic bands here, instead of the original orbitals

defined in Fig. 5.1(b), as being mentioned before. The usage of these notations

will be self-evident in our following discussions.

Furthermore, as the Hund coupling JH tends to align the spins of the itin-

erant electrons with the local moments, the electrons are favored in a spin-up

state on sublattice A, whereas a spin-down state obtains on sublattice B, cor-

responding to a spin-up polarized state on both sublattices in the space of the

rotated electron operators c̃iαν . However, since the other hopping amplitudes,

t2, t3 and t4 are non-zero, the expectation values of the spin off-diagonal ele-

ments in He (5.10) are always finite, leading to incomplete spin polarizations,

as shown in Fig. 5.3(d). Generally speaking, a larger JH produces a stronger

spin polarization by increasing the energy difference between the spin-up and

spin-down state. In actuality, assuming t1 to be dominant, we expect that the

spin polarization of the dyz orbitals is larger than that of the dxz orbitals. This

is indeed reflected by the change in the slope of the spin polarization curves

coinciding with the kink in the orbital polarization.

5.4.3 Spin-wave spectrum

Now we set out to calculate the spin-wave spectrum by considering the correc-

tions from the itinerant bands to the original, strongly frustrated J1-J2 Heisen-

berg model. The hopping amplitudes are chosen the same as before. The spin

length S of the local moment is 1/2, which reflects the relatively small moment

measured by the experiment [21] and is consistent with a local multiplet struc-

ture with an orbital degeneracy [158]. Finally the original Heisenberg model is

strongly frustrated with J1 = 0.04t1 and J2 = 0.6J1.

We first calculate the spin-wave spectra for different filling levels n with

JH = 2.0t1, shown by Fig. 5.4(a). In this case, the complete orbital polarization

is found up to n̄ = 0.16 [see Fig. 5.3(c)]. When n = 0, corresponding to

an empty itinerant band, our model reduces to an isotropic J1-J2 Heisenberg

model, where the linear spin-wave energies are zero at both (π, 0) and (π, π). At

finite electron densities n < n̄, we observe that the spin-wave energy at (π, π) is

pushed to higher values as n increases. This indicates a stabilization of the stripe

antiferromagnetism over the competing Néel order. We also note a significant

mode softening along the (0, 0)-(π, 0) direction at low fillings due to the other

finite hopping amplitudes t2, t3, and t4. When n > n̄, the anisotropy weakens

with increasing filling n. This becomes manifest in a decreasing spin-wave energy

at (π, π). As the filling level continues to rise, the spin-wave spectrum becomes

unstable, not shown in the graph, suggesting that the system may evolve to a

different ground state, possibly to a spin-disordered, superconducting state.

Fig. 5.4(b) shows the spin-wave spectra for different values of the Hund cou-

pling JH, which represents the interaction strength between the local moments

and the itinerant electrons. The parameters used are the same as above, and
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Figure 5.4: Spin-wave energy ω in the unit of t1 as a function of the momentum
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Fe atom per unit cell. Both graphs share the following common parameters:
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the filling level n = 0.1. According to Fig. 5.3(c), we have complete orbital

polarization for all the JH’s used in Fig. 5.4(b), except for JH = 1.0tσ. As ex-

pected, a larger JH produces stronger corrections to the spin-wave dispersion,

especially around (π, π) where the spin-wave energy almost reaches a maximum.

In contrast, the dispersion along (0, 0) to (π, 0) is almost unaffected after JH

reaches some certain value.

5.4.4 Magnetic anisotropy

In Section 5.4.3 we saw that the double exchange leads to a dramatic change

of the magnetic excitation spectra. In particular, the spin-wave modes at the

Néel antiferromagnetic wave vector (π, π) are almost pushed to a maximum con-

sistent with the neutron-scattering data [81]. Since the orbital ordering leads

to a dramatic anisotropy in the electronic structure, the ferromagnetic double-

exchange contribution is expected to be much larger along the y-direction along

which the ferromagnetic spin chains are formed. To quantify the induced mag-

netic anisotropy, in this Section, we fit the spin-wave dispersions calculated in

the presence of both super- and double-exchange to an effective, anisotropic

Heisenberg model, illustrated by the inset of Fig. 5.5(a) where the fitting pa-

rameters J̃1x, J̃1y, J̃2 and J̃3y are the effective exchange constants of near-

est neighbors along the x- and y-direction, next-nearest neighbors, and third-

nearest neighbors along the y-direction, respectively. Please note the differ-

ent symbols used here to distinguish those in the original Heisenberg model

Hloc (5.2). Furthermore, we also introduce an additional exchange between the

third-nearest neighbors along the y-direction, J̃3y, which will be shown to be

slightly negative, in order to get a better fit to the spin-wave spectra. In the

relevant regime J̃1x > J̃1y, J̃1y < 2J̃2, J̃3y < 0, where the (π, 0) stripe anti-

ferromagnetism is stable, the linear-spin wave dispersion ω̃(q) is determined by

ω̃2(q) = Ã2(q)− B̃2(q) with Ã(q) = J̃1x− J̃1y(1− cos qy)+2J̃2− J̃3y(1− cos 2qy)

and B̃(q) = J̃1x cos qx + 2J̃2 cos qx cos qy.

The necessity of this extra fitting parameter J̃3y is already known in the

ferromagnetic double-exchange model where simple nearest neighbor exchange

is unable to reproduce the calculated dispersions from either canonical transfor-

mations [230, 231] or diagrammatic perturbations [232]. Indeed, by comparing

the fitted spin-wave dispersions with and without J̃3y to the original calculated

one [see Fig. 5.5(a)], we find out that the fitting results are much better behaved

with a nonzero J̃3y. The hopping amplitudes and the bare exchanges are the

same as those in Fig. 5.4(a) and (b), with the filling n = 0.1 and the Hund ex-

change JH = 3.0t1. In fact, setting J̃3y = 0 gives an unrealistic large correction

to the nearest-neighbor exchange along the x-direction (J̃1x = −0.27J1), which

has to be compensated by a fairly substantial increase of the diagonal exchange,

J̃2 = 0.90J1. This result is certainly unphysical, since we expect a slower de-

crease of J̃1x than that of J̃2 for t2 < t3 from the classical double-exchange
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fitted effective exchanges are written down explicitly in the figure. (Inset: the
effective spin-only model with additional third nearest-neighbor coupling along
the y-direction, J̃3y.) (b, c) The fitted, effective exchange constants J̃1x, J̃1y,

J̃2 and J̃3y as functions of the Hund coupling JH for bare exchange constants
J1 = 0.04t1(b) and J1 = 0.08t1(c). In both cases, the ratio of the bare ex-
change constants is given by J2/J1 = 0.6 corresponding to the regime of strong
frustration but where the (π, 0) stripe order is classically stable.
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argument. In contrast, by including J̃3y, we obtain more physical fitting re-

sults. Consequently, in the following, all of the fittings will be performed with

J̃3y 6= 0.

We further carry out the fitting process for different Hund’s couplings, and

analyze the dependence of the effective magnetic exchanges on the strength

of JH. Fig. 5.5(b) displays the fitting results for J1 = 0.04t1 and n = 0.1,

corresponding to spin-wave spectra shown in Fig. 5.4(b). As expected, a larger

JH causes more significant corrections to the exchange constants. As expected

from simple classical arguments of the double-exchange mechanism, J̃1y changes

by the most amount because t1 produces the strongest effective ferromagnetic

exchanges along the y-direction. The modification to J̃1x is smaller compared

to that of J̃2 as the diagonal hopping t3 is larger than t2. These are indeed

confirmed by our results shown in Fig. 5.5(b). We also note that the seemingly

uncontinuous behavior around JH ≈ 1.0t1 is not unphysical, but due to the fact

that the complete orbital polarization is not achieved until JH & 1.5t1.

Interestingly, for a sufficient strong Hund exchange JH & 2.0t1, J̃1y becomes

negative, which completely removes the frustration in the effective spin-only

model. Such an effective negative exchange coupling along the ferromagnetic

spin direction has been used phenomenologically to rationalize the spectra mea-

sured by inelastic neutron scattering [81]. Very remarkably, around JH ≈ 2.0t1,

the ratio of the three exchange constants J̃1x, J̃1y, and J̃2, agrees well with the

experimental estimates [81] on a quantitative level, except for an additional J̃3y.

The fitting is also performed for a larger bare nearest-neighbor exchange

J1 = 0.08t1, shown in Fig. 5.5(c). In this case, the relative corrections are

smaller and J̃1y never comes to ferromagnetic. In order to achieve the experi-

mentally observed negative J̃1y within reasonable parameter space, we require

J1 . 0.05tσ. In fact, inelastic neutron scattering [81] suggests that the exchange

constants are of the order of 10 meV, which in our theory leads to an electronic

bandwidth and a Hund coupling JH both of the order of 1 eV, in agreement

with other experimental estimates [38].

Finally, as being discussed before, the spin-wave expansion around (π, 0)

can still be carried out even when the Heisenberg model alone favors the (π, π)

order for J2 < J1/2, as long as the Hund coupling is sufficient strong so that

the kinetic energy of the itinerant electrons wins out the exchange energy of

the local moments. We carry out the spin-wave calculations for J2 = 0.4J1

and filling n = 0.1. From the phase diagram in Fig. 5.2, the stripe (π, 0) order

is stabilized classically for JH & 2.0t1. Indeed, in this regime, the calculated

spin-wave spectra with both super- and double-exchange are well-behaved as

shown in Fig. 5.6. The dispersions are also fitted by a spin-only model, with the

effective exchange constants as functions of the Hund coupling JH shown in the

inset of Fig. 5.6. However, the result shows no significant difference from that

of J2 = 0.6J1 [Fig. 5.5(b)]. Furthermore, the exact ground state is unknown

as strong quantum fluctuations might drive the system to a disordered state.
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Figure 5.6: Spin-wave energy ω in the unit of t1 as a function of the momentum
q along the path (0, 0)-(π, 0)-(π, π)-(0, 0) in the Brillouin zone containing one
Fe atom per unit cell for various JH that are sufficient large to stabilize the
(π, 0) order. We use the bare exchanges J1 = 0.04t1 and J2 = 0.4J1, where the
Heisenberg model prefers a (π, π) order classically without the presence of the
itinerant electrons. (Inset: the fitted, effective exchange constants J̃1x, J̃1y, J̃2
and J̃3y as functions of the Hund coupling JH.)

Consequently, we will not perform further analysis for the case of J2 < J1/2

and concentrate our discussions for J2 > J1/2.

To conclude this Section, we stress that the degenerate double-exchange

model explains the strong magnetic anisotropy observed experimentally [81] In

a realistic parameter regime, the double-exchange contribution along the ferro-

magnetic direction can exceed the bare antiferromagnetic super-exchange, J1,

leading to an effective exchange J̃1y which is slightly ferromagnetic, consistent

with the experimental data. In this regime, the (π, 0) antiferromagnetism is

unfrustrated.

5.5 Discussion and conclusion

In summary, we have studied a degenerate double-exchange model for the iron

pnictides which explains the dramatic magnetic [81, 109] and electronic [111,

119] anisotropies in these materials. The model consists of local moments which

are coupled by antiferromagnetic super-exchanges J1 and J2 between nearest-

and next-nearest-neighbor spins, respectively, and of itinerant electrons in the

bands of the degenerate dxz and dyz orbitals. The electrons are coupled to the lo-

cal moments by a ferromagnetic Hund exchange, JH . The system spontaneously
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develops ferro-orbital order because of the kinetic energy gained by directing the

itinerant electrons along ferromagnetic spin chains which are stabilized by the

double-exchange mechanism.

The calculated spin-wave spectra in the presence of both super- and double-

exchange are found to be in good agreement with the neutron-scattering data

[81, 109]. In particular, we find that the spin-wave dispersion is pushed almost

to a local maximum at the competing Néel ordering wave vector as seen in

the experiment [81]. This stabilization of (π, 0)-antiferromagnetic order results

from the strong anisotropy in the electronic sector which makes the ferromag-

netic double-exchange much stronger along the y-direction. Remarkably, in a

realistic parameter regime, we find that the ferromagnetic double-exchange can

exceed the super-exchange J1 between the local moments leading to a slightly

ferromagnetic exchange J̃1y along the y-direction in an effective spin-only model.

In this regime, the (π, 0) antiferromagnetism is unfrustrated.

It is feasible that the parent, undoped materials self-tune the size of the

local moments and the carrier density to the point where the (π, 0) antiferro-

magnetism is most stable. In our theory, this is the case for the optimal filling

level n = n̄. In fact, the starting Heisenberg model Hloc (5.2) is likely to be

in the regime of strong frustration, J2 ∼ 0.5J1, leading to a spin disordered

ground state in the absence of itinerant electrons. Only through interaction

with the ferro-orbital ordered itinerant bands, does the stripe antiferromag-

netism emerge. Electron or hole doping the system at n = n̄ diminishes the

orbital order and thus increases the magnetic frustration, lowering the transi-

tion temperature to a spin-ordered state.

We conclude by stressing that the degenerate double-exchange model mo-

tivated and studied in this work qualitatively explains many properties of the

undoped and slightly doped iron pnictides. The emergent ferro-orbital order

breaks the in plane lattice symmetry, thereby driving the orthorhombic lat-

tice distortion. Further, orbital order induces a strong electronic anisotropy

which explains why the structural transition is accompanied by dramatic Fermi-

surface reconstructions [135] and transport anomalies [224]. Moreover, recent

STM experiments [111] and in-plane resistivity measurements [119, 120] have

unambiguously demonstrated the spatial anisotropy of the electronic structure

below the structural transition temperature. Finally, the orbital ordering pro-

duces the strong magnetic anisotropy, essential to explain the experimentally

observed magnetic excitation spectra [81, 109].

During the review of this work, several mean-field calculations [132, 137, 163]

based on the five-orbital model have shown that the total occupations of the

dxz and dyz orbitals are close to each other, but there is a significant difference

in the densities of the states for the two orbitals at the chemical potential. The

ferro-orbital order in our theory does not contradict these results. In fact, by

viewing the itinerant electrons as quasiparticles, our model is an effective low-

energy theory that successfully describes the strong anisotropic electron state
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around the Fermi surface.
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