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ABSTRACT

Accurate dynamic load models are needed to ensure meaningful transient

simulation results. We investigate the use of a composite load (CLOD) model

to represent an aggregate load. Two algorithms for the parameter estimation

of the CLOD model are presented and analyzed. The first uses nonlinear

optimization and computes a solution with 2.02% error for a validation case,

but requires a 49 dB signal-to-noise ratio (SNR) to achieve this. The second

method uses least squares and has an error of 11.7% for the same case,

but only requires an 18 dB SNR. Higher accuracy is obtained by setting

tighter bounds on the parameters used in the simulations and by using more

simulations, up to a cap of approximately 100. In order to apply the above

algorithms to digital fault recorder data from a real disturbance, we first

convert the three-phase sinusoids to a positive sequence dynamic phasor.

The resulting signal has significant noise content, which is filtered using a

pseudomedian filter due to its edge-preserving quality. As part of this work,

a design methodology for a pseudomedian filter is created, which accepts a

cutoff frequency fc and designs a filter with 3 dB of attenuation at fc and

a stopband at 2.75fc. A 120 Hz cutoff frequency is chosen for this work.

However, even after post-processing, the measured and simulated signals are

very dissimilar, resulting in both algorithms failing to identify a reasonable

load model. We conclude that a measurement-based parameter estimation

method is ill-suited for a complex, nonlinear load model.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Simulations are a useful tool in power systems because they allow operators

and researchers to perform analysis of the electricity grid for planning and

operations purposes. Often, they are the only tool available, since running

tests on the real electricity grid operating at peak efficiency would decrease

this efficiency, and may cause interruptions to service or even damage expen-

sive power system components. Additionally, simulations have other benefits,

such as the ability to perform rapid iterations and the repeatability of re-

sults. In order for simulation results to be accurate and meaningful, however,

simulations must be set up with accurate models of all components of the

power system.

Power system components can be roughly placed into three groups: gener-

ation, transmission/distribution, and load. Historically, generator and trans-

mission modeling have received the most attention [1]. For example, the most

recent Siemens Power System Simulator for Engineering (PSS/E version 33)

software manual lists over 100 models pertaining to machines, approximately

40 models of various transmission devices, but only has nine load models [2].

However, due to increasing stresses on the grid from sources such as con-

gestion, aging of equipment, and renewable penetration, load modeling has

also become important [1], but this lack of knowledge about loads has made
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load models a weak link in simulations, where conclusions are conditioned

on the load model assumed [3]. For example, [4] showed that in a simulation

of a particular inter-area power transfer, the tie-line stability limit found can

vary by as much as 50% depending on the load model. In the absence of an

accurate and verified load model, an operator in such a situation may have

to be overly conservative, thus under-utilizing their resources and increasing

costs [5]. A reliable algorithm for the estimation of load model parameters

is the goal of this work.

1.2 The Load Modeling Problem

Broadly speaking, a load model is any model which characterizes the behavior

of the load depending on the conditions at its connection point to the grid.

Usually, it is a function that maps the supply voltage of the load to the

complex power demanded by the load: h : V 7→ S. The purpose of load

modeling is to estimate h(V ).

The general load modeling problem is very similar to generator modeling.

They are both just applications of the general field of control engineering

known as system identification [6]. Essentially, we are given a plant: a system

about which we know only limited information. By applying certain inputs

and observing the outputs, we try to obtain knowledge about the plant and

characterize it more completely. However, the key difference between gener-

ator and load modeling is scale. In the USA, there are approximately 5,800

power plants with a total of 18,000 generators [7], whereas there are over

131 million homes [8]. Additionally, each home represents a diverse range of

devices from digital electronics to appliances. Thus, while we can model each

of the generators individually, this is not tractable for the loads. Instead, we
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wish to create an aggregate model (of a city for instance) that has far fewer

parameters than the addition of all the individual loads.

1.3 Aggregate Load Modeling Challenges

Aggregate load modeling poses two special challenges, which are not faced

during the modeling of other components of the power system. Firstly, while

individual components such as transformers or generators can be tested in

isolation before they are placed in service (e.g. to find machine torque-speed

curves), loads cannot. Thus, we need to develop a method which can create

a model of the load while it is on-line and consuming power. The second

challenge of load modeling is that aggregate loads are inherently complicated

and highly nonlinear (and not even convex) [9]. This is because an aggregate

load may contain many diverse components, such as transformers built into

devices, power electronics, industrial motors, and constant impedance loads

such as a radiator. Even if each of these loads itself is linear, or linearizable

around an operating point, aggregating them together will most likely not

preserve this property.

1.4 Overview of Thesis

The remainder of the thesis will proceed as follows. In Chapter 2, we intro-

duce load models in more detail, and review major load model classifications

and examples of common load models. In Chapter 3, we present the compos-

ite load model, define the parameter estimation problem and general solution

approach, and then describe the validation case study. In Chapter 4, we im-

plement two parameter estimation algorithms and compare their performance

3



on the case study, as well as identify the merits, challenges, and considera-

tions involved with each algorithm. In Chapter 5, we discuss the application

of the parameter estimation algorithm to real world data, and the additional

challenges associated with handling measurement data. Finally, we conclude

in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Load Model Classifications

There are different types of aggregate load models, and different methods by

which to estimate their parameters. This paper focuses on finding a dynamic,

time domain load model using a hybrid measurement/component-based, top-

down approach. These four concepts are discussed below.

2.1.1 Dynamic versus Static

The conditions under which a model can be used will determine if it is a

static or a dynamic model. A static model is one which is only accurate

for steady-state operating conditions. However, often operators are more

concerned with transient stability, and wish to know if the system remains

stable under a particular disturbance, such as a fault. Disturbances cause a

system to transition from an initial steady state, through a transient region,

to a second operating point. Only a dynamic model can capture the response

during the transient region in addition to the initial and final steady states.

This is important because even if a system is stable at two operating points,

A and B, it can go unstable during the transition between them [3].
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2.1.2 Time versus Frequency Domain

There are two general classes of methods for system identification: time do-

main methods and frequency domain methods. Time domain methods try to

estimate a function h : V (t) 7→ S(t), by analyzing time domain input volt-

ages V (t) and power demanded S(t). On the other hand, frequency domain

methods estimate H : V (ω) 7→ S(ω) in the frequency domain. For power

system applications, time domain is preferred because ultimately operators

want to see the time domain response of the entire system [10] (frequency

domain models are more often used in the realm of harmonic analysis), so

this paper will focus on a time domain method.

2.1.3 Measurement versus Component Based

There are two time domain methods currently used for load modeling: the

component-based approach and the measurement-based approach [10]. The

component-based approach determines an aggregate load model at a bus

from a priori knowledge of the type (e.g. induction motors, electric heat-

ing) and quantity of loads connected to that bus, by simply adding them

together via a weighted sum [11]. Each of the load types are characterized

by predetermined parameters. On the other hand, the only assumption we

make in a measurement-based approach is the model structure—the actual

parameters in the model are calculated using measurements taken on the

grid, typically through the study of disturbances. In [12], the authors rec-

ommended that the measurement approach be used to determine the most

realistic model. The hybrid method proposed in the paper takes concepts

from both approaches, and will be described in detail in Chapter 4.
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2.1.4 Bottom-Up versus Top-Down

Measurement-based approaches can be further divided into bottom-up and

top-down methods [9]. A bottom-up method uses measurements made at

each load (e.g. at each house) to create many small-scale load models, and

then adds them together to create an aggregate load model [13]. Each sensor

is relatively simple and can have low sampling rates, but a very large number

of sensors would be required to create an aggregate load model [9]. On the

other hand, a top-down method uses sensors at the feeder or substation level.

These sensors are very expensive and have very fast sampling rates, but far

fewer are required [9]. Since such infrastructure has already been deployed

on the grid (in the form of phasor measurement units (PMUs) and digital

fault recorders), we will focus on a top-down approach.

2.2 Common Load Models

There are many load models which are typically found in power system simu-

lation packages. As stated above, they are predominately time domain mod-

els, so we list them Table 2.1 categorizes them as either static or dynamic

models.

2.2.1 Static Load Models

Four common static load models are listed in Table 2.1. A constant power

load has a constant power demand regardless of system voltages. This type

of load can only be used for steady state analysis near nominal voltage, since

transients could cause the power flow solution to fail for a constant power

load. For example, a fault on the load bus would cause the bus voltage to
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Table 2.1: Common static and dynamic load models. Note, all voltages are
in per-unit.

S
ta

ti
c

Constant Power
P = P0

Q = Q0

ZIP
P = P0(αp1V

2 + αp2V + αp3)
Q = Q0(αq1V

2 + αq2V + αq3)

Exponential
P = P0V

αp

Q = Q0V
αq

D
y
n
am

ic

DAE System
ẋ = f(x,∆V )
0 = g(x,∆V,∆P,∆Q)

State Space

ẋp = Apxp + Bp∆V
∆P = Cpx +Dp∆V
ẋq = Aqx + Bq∆V
∆Q = Cqxp +Dq∆V

Induction Motor
∆P + Tpp

d∆P
dt

= Kpv

(
∆V + Tpv

d∆V
dt

)
∆Q = Kqv∆V +Kqp∆P

drop to zero, meaning the power delivered (S = V I∗, where ∗ denotes the

complex conjugate) could not possibly be non-zero.

The ZIP and exponential load models have a power demand that does

vary with voltage. The ZIP model represents the load as a second degree

polynomial in voltage, and the exponential load model represents it as an

exponential function [11]. While these two models are typically classified

as static load models, their voltage dependence allows them to be used in

transient studies [14], though they are limited. This is partly because each

of these models alone is relatively simple and has relatively few parameters.

This limits their potential accuracy, since [15] found a close correlation be-

tween the number of parameters (i.e. degrees of freedom) in a model and the

accuracy of the model.
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2.2.2 Dynamic Load Models

The three dynamic load models listed here were developed specifically for

transient simulations. The reader should note that while the static models

are functions of V , the dynamic models are functions of ∆V . This is because

dynamic models describe the behavior of a system as it deviates from a

nominal operating point (P0, Q0, and V0), and these models usually become

less accurate for larger deviations. Additionally, while these models have

many more parameters and are thus capable of higher accuracy [15], they

also require more measurements in order to determine those parameters with

sufficient accuracy [16].

The differential algebraic equation (DAE) system model and the state

space model are general frameworks that can be used to describe a dynamic

system. They make use of a vector of state variables x in order to track the

internal states of the model, but the output is still just ∆P and ∆Q. The

DAE model represents the load as a combination of differential equations

and algebraic equations, and was used in [17]. The state space model is a

subset of the DAE model, in that it uses a linear system of equations. It can

be implemented either directly, as in [18], or it can be further transformed

into a transfer function using H(s) = C(sI −A)−1B + D, where I is the

identity matrix, as done in [19].

The induction machine (IM) model [20] describes the behavior of an in-

duction motor. There are various degrees of complexity of IM models; the

one shown is a relatively simple first order model (Tpp, Kpv, Tpv, Kqv, and

Kqp are the five model parameters). The IM model is conceptually different

from the previous two, because it is not a generic model, but is a model spe-

cific to power systems. While other specialized models exist, the IM model

9



is highlighted here because induction motors account for 57% of electricity

use in the United States [21]. The reader may note that, with the exception

of the IM model, the other models are all very generic structures, and not

specific to power systems. This is not ideal since we are not fully utilizing

the knowledge at hand. Chapter 3 proposes a solution.
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CHAPTER 3

CLOD MODEL HYBRID PARAMETER
ESTIMATION PRELIMINARIES

In Section 2.1.3, two time domain approaches were described: measurement-

based and component-based. Component-based approaches only used a pri-

ori knowledge of the grid, while measurement-based approaches avoided all

such assumptions. In this paper, we study a hybrid approach, which attempts

to capture the benefits of both methods. It accomplishes this by using the

component-based approach to create the structure of the load model: one

that is specific to power systems and unlike the mostly generic models in

Table 2.1. Then, it uses the measurement-based approach to determine the

parameters of the model.

3.1 The CLOD Model

Constant

P + jQ

Tap

R jX+

P
o

----------------

M M
I

V

Large Small Transformer Remaining

Po = Load MW in pu on system base

Discharge
Motors Motors Lighting Saturation

MVA

Loads

P P
RO

V
K

P=

Q Q
RO

V2=

I

V

Figure 3.1: PSS/E CLOD composite load model [2].
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One class of load models not yet discussed is composite (or complex) load

models. These load models are so named because they are an aggregation

of multiple models (henceforth called submodels), including, but not limited

to, those listed in Table 2.1. The CLOD model, as defined in PSS/E [22],

belongs to this class of models and is shown in Fig. 3.1. The CLOD model

represents the load as an aggregation of the following five submodels:

• Induction motors: Labeled Large Motors and Small Motors, these

two submodels are each characterized by typical torque-speed, current-

speed, and power factor-speed curves.

• Discharge lighting: For voltages above 0.75 pu, the real power is mod-

eled as constant current, and the imaginary as exponential with an

exponent of 4.5. As voltage decreases below 0.75 pu, both P and Q

drop linearly until the light is completely extinguished below 0.65 pu

voltage.

• Transformer losses: These are further divided into core losses (satura-

tion) and copper losses
(
R+jX
P0

)
. Transformer losses may be neglected

since they are relatively insignificant [3].

• Constant MVA: Constant real and reactive power consumption.

• Remaining loads: The real power is modeled as constant current (KP =

1 in Fig. 3.1) and the imaginary power as constant impedance. This is

abbreviated as PI/QZ.

In the CLOD model, the internal parameters of each of the submodels are

already defined as above. What we wish to calculate is the percentage allo-

cation for each of the load categories.
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The structure of the CLOD model was the contribution of the component-

based approach, as it uses a priori knowledge about the dominant load classes

on the grid to create a load model that is very specific to power systems [21, 3].

The measurement-approach is now applied to determine the load parameters

(the percentage allocations).

3.2 The Parameter Estimation Problem and Solution

In order to determine the dynamic load model parameters, we study the

response of the power system during disturbances. These disturbances can

include generator outages, load steps, and line faults. The type of measure-

ments used can include voltage magnitudes, angles, line flows, and frequen-

cies, but will inevitably be tied to the type of disturbance considered. For

example, it is well known that the coupling of real power to voltage magni-

tude is much weaker than to voltage angle [23], so for a load step, the angle

measurements are preferred for the analysis. For this paper, we study the

effect of faults on bus voltage magnitudes. For a given fault on the system,

the approach taken is similar to that described in [16]:

1. Guess the load model parameters, p, with p(i) ≥ 0 and
∑

i p(i) = 1.

2. Simulate the fault in PSS/E using the load model in Step 1 to generate

voltage waveforms at each bus. Concatenate the waveforms from all

the buses, forming vp[n].

3. Compare vp[n] with the actual waveform measured by sensors on the

grid, vmeas[n] .

4. Repeat Steps 1 to 3 with successively better guesses of p using least

squares.
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Mathematically, this can be restated as the following least squares minimiza-

tion problem:

p∗ = argmin
p≥0

{
||vp[n]− vmeas[n]||22

}
(3.1)

s.t.
∑
i

p(i) = 1

A perfect parameter estimation algorithm would calculate a p∗ equal to

the real parameters, preal. However, since preal is unknown, the best realistic

algorithm would calculate p∗ such that vp∗ [n] = vmeas[n]. Herein lies a crucial

assumption: there must be a one-to-one mapping between the parameters,

p, and the measurements, v[n], for both the simulation and the real power

grid. That is, both the fault and the simulation must be:

1. Deterministic: A given p should always produce the same v[n].

2. Injective: Two different sets of parameters p1 and p2 should not pro-

duce the same v[n].

For the real power grid, neither determinism nor injectivity can be guaran-

teed, and it is not something we can control. For the simulation, determinism

is a given as long as we do not use stochastic methods such as Monte Carlo

or purposely introduce randomness (e.g. white noise). Injectivity of the sim-

ulation, while not guaranteed, can be controlled. As an extremely simplistic

example, if the simulation is linear, then different inputs of p will result in

different outputs v[n]. When the simulation (or a component, such as the

load model) is highly nonlinear and not unimodal, injectivity of the simula-

tion also cannot be guaranteed. The implications of this will be discussed in

further detail in Section 4.1.3.
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3.3 Validation

In order to validate our algorithm, we require a set of measurements for which

we know the real load parameters. We can then use the difference between

the estimated parameters and the real parameters to judge the algorithm’s

efficacy. However, such data does not exist. Therefore, we need to generate

a set of fictional voltage data from a set of fictional parameters, which we

will label vfict[n] and pfict, respectively, and pretend this is the “real” load

model on the system. For this work, the power system used was the 37

bus case provided in [23], shown in Fig. 3.2. The disturbance simulated

was a three-phase balanced fault at bus Demar69 (highlighted), with fault

impedance Z = j1e–12 pu and cleared after 0.5 seconds. The fictional load

model parameters arbitrarily assigned are listed in Table 3.1. The five bold

ones are the parameters the algorithm will solve for.

Table 3.1: Parameters designated as the fictional load model. pfict =[
0.24 0.19 0.3 0.09 0.18

]T
Parameter Value

Large motor 24%
Small motor 19%
Discharge lighting 30%
Transformer saturation Neglected
Constant MVA 9%
PI/QZ 18%
Transformer R and X Neglected

In order to quantify the performance of the algorithm, we need to define

an error metric. Since the CLOD parameters are represented in a vector, a

natural metric would be the Euclidean distance between the estimate and

15



the correct solution:

ε = ||pfict − p∗||2 (3.2)

We will refer to this as the total estimation error.
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CHAPTER 4

PARAMETER ESTIMATION
IMPLEMENTATIONS

This paper will investigate two algorithms for calculating p∗: Compare and

Resimulate, and Simulate then Calculate. For each, the algorithm will be

described, followed by an analysis of its performance on the parameter esti-

mation problem, and ending with a comparison of the two methods as well

a discussion of obstacles to be overcome.

4.1 Compare and Resimulate

4.1.1 Algorithm

In Compare and Resimulate (CaR), we solve (3.1) using a general nonlin-

ear optimization routine. For this work, the MATLAB function fminsearch

was used, which uses a Nelder-Mead simplex algorithm [24]. This algorithm

makes use of a simplex, and uses evaluations of the cost function at the ver-

tices to successively shrink and reflect the simplex to converge to the solution.

This method was used because it is a derivative-free algorithm, to minimize

the risk of divergence given the nonlinear nature of the objective function.

4.1.2 Results and Discussion

The starting guess for fminsearch was set to 20% for each of the five parame-

ters to be estimated. Plotted in Fig. 4.1 are the values of p at each iteration
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of the algorithm, and the horizontal lines are the values of pfict. Fig 4.1 shows

the algorithm converging to within a tolerance of ||pi−pi−1||2 < 1e–4 in 188

function evaluations, where pi−pi−1 is the change in p between the previous

and the current iterations. Table 4.1 lists the final solution, and the Absolute

Error p∗−pfict. The reader can see that the algorithm successfully estimates

the parameters with a very low error. The runtime of CaR for this validation

case study was 42 minutes.
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Figure 4.1: Convergence of the CaR algorithm on p∗ in validation study.

4.1.3 The Challenge of Noise

From Table 4.1, it would seem that this algorithm performs well. However,

since this validation was done using simulated data, one aspect not yet con-

sidered is measurement error or noise, which would be present if real sensors

were used. Fig. 4.2 shows the results of 426 separate simulations, each with
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Table 4.1: CaR solution and error in validation study.

Parameter CaR Solution Absolute Error

Large motor 23.98% −0.021%
Small motor 19.00% +0.00089%
Discharge lighting 29.06% −0.94%
Constant MVA 8.31% −0.69%
PI/QZ 19.60% +1.60%

Total Error 2.02%

a different set of parameters pi, compared against the vfict[n] generated from

pfict. The X-axis value for each one of the 426 data points is Parameter Error,

as defined in (4.1), and the Y-axis value is the Residual, as defined in (4.2).

Parameter Error = ||p− pfict||2 (4.1)

Residual =
N∑
n=1

(v[n]− vfict[n])2 (4.2)

Ideally, we would like to see that as the parameter error increased (i.e.

p increasingly different from pfict), the difference in the simulated waveform

would also increase monotonically. While this general trend is seen in Fig.

4.2, it is clear that a monotonic increase does not exist. In other words, two

vastly different sets of parameters may produce waveforms that are nearly

identical.

To see this effect more clearly, we can show how the cost function defined

in (3.1) changes as we move away from pfict. Since the parameter space is

5-dimensional, we will resort to showing 2-dimensional cross sections. In

each subfigure inside Fig. 4.3, two parameters are selected, and a contour

of the log(·) of the residual is plotted as those two parameters are varied.

Of the remaining three parameters, two are set to their values in pfict. The

remaining parameter is designated the slack parameter, and its value changes
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Figure 4.2: The residual of 426 simulations as a function of the parameter
distance. Note that the Y-axis uses a logarithmic scale.

in order to preserve
∑5

i=1 p(i) = 1. For example, in the first figure, Small

Motors and Large Motors are plotted, and Discharge Lighting and Constant

Power are set to 30% and 9%, respectively (see Table 3.1). The dotted lines in

each subfigure identify the values of Large Motor and Small Motor in pfict, so

they are located at 24% and 19%, respectively. For all the subfigures in Fig.

4.3, the PI/QZ load was chosen as the slack parameter. When the analysis

is performed with other load types as the slack parameter, the results are

similar and are thus omitted.

There are two features in Fig. 4.3 that are of interest. Firstly, many of

the contours show multiple local minima. This agrees with the preliminary

analysis from Fig. 4.2.

The second point to note in Fig. 4.3 is that we can identify two distinct
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Figure 4.3: Contours of the value of the cost function (on a log scale) near
pfict. The PI/QZ load model serves as the slack parameter.
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contour shapes. In the left column, the contours are highly elongated in the

northwest-southeast direction, while in the right column, the contours are

elongated in the southwest-northeast direction. In the former case, this sig-

nifies that the two load types plotted behave similarly. For example, moving

load between Large Motors, Small Motors, and Constant Power has relatively

little effect on the Residual, and by implication, the resulting simulated tran-

sient response. On the other hand, contours elongated in the other direction

signify that the two load types are disparate. That is, Discharge Lighting

acts very differently compared to Large Motors, Small Motors, or Constant

Power loads. Additionally, because PI/QZ loads are the slack parameter, we

can also conclude from these contours that Discharge Lighting and PI/QZ

loads behave similarly (a plot of Discharge Lighting versus PI/QZ indeed

shows contours in the northwest-southeast direction).

We can see this effect in the time domain as well. In Fig. 4.4, we plot

the voltage at a bus close to the fault bus. We can see that Discharge

Lighting and PI/QZ loads recover quickly, while the Large Motor, Small

Motor, and Constant Power loads recover much more slowly and overshoot

the pre-fault voltage more. Since we now have two groups of loads that

perform similarly, the injectivity condition established in Section 3.2 may

no longer hold, resulting in the algorithm possibly converging to a grossly

incorrect p∗.

With the addition of measurement error or noise, this effect is further ex-

acerbated. To quantify the effect of noise on the algorithm’s performance,

we can add artificial noise to the measurements, and then view the resulting

change in the algorithm’s parameter estimation error. In this analysis, we

assume that the noise is white, meaning that it contains all frequency com-

ponents equally. Intuitively, an increase in the amplitude of the noise, or a
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Figure 4.4: The response of each submodel to the validation disturbance.

decrease in the signal-to-noise ratio (SNR) should cause an increase in the

estimation error. This is indeed seen in Fig. 4.5. However, Fig. 4.5 also

shows that an SNR of 49dB or higher is necessary for the error to stabilize;

below this value, the error behaves erratically as the varying levels of noise

cause the global minimum to alternate unpredictably between one of several

candidate local minima. An SNR of 49 dB is not easy to achieve, as it states

that the total noise from all sources (including the sensor measurement er-

ror, as well as all external sources of noise) can have an amplitude of at most

0.355% of the desired signal amplitude.
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Figure 4.5: The total estimation error for CaR as a function of the mea-
surement SNR.

4.2 Simulate then Calculate

Besides the sensitivity to noise stated above, another issue plaguing the CaR

algorithm is the computation time required. Because the objective function

contains a PSS/E simulation, that simulation must be performed for each of

the 188 function evaluations, for the new value of pi at that iteration, which

leads to the 42 minute computation time. Next we introduce an alternative

algorithm, Simulate then Calculate, based on [25].

4.2.1 Algorithm

In Simulate then Calculate (StC), we create a proxy which emulates the

simulation, but has a much shorter computation time. It uses a combination
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of least squares fitting and matrix multiplication, both of which are fast

calculations (compared to a simulation). The proxy works as follows:

1. Define ρ sets of parameters with a chosen distribution, and with ρ >> 5,

creating P ∈ Rρ×5. Also define P A as the augmented matrix [ 1 | P ] ∈

Rρ×6.

2. Simulate the fault for each of the ρ parameter sets, creating waveforms

V [n] ∈ Rρ×N , where N is the number of samples in the simulation

period.

3. Solve P AC[n] = V [n] for C ∈ R6×N in the least squares sense: C =(
P A

TP A

)−1
P A

TV .

4. Solve for p∗ = argminp {||vp[n]− vmeas[n]||22}

= argminp {||[ 1 | p ] ·C[n]− vmeas[n]||22}.

The matrix C[n] generated in Step 3 is the proxy, since it maps parame-

ters to waveforms. We augment a column of ones to the parameter matrix

P in order to provide one additional degree of freedom, since we are at-

tempting to replace a nonlinear process (a simulation) with a linear one

(the matrix C). Additionally, the reader may note that Step 4 is now

just a linear least squares problem, which has the analytical solution p∗ =

(vmeas −C1)C2-6
T
(
C2-6C2-6

T
)−1

, where C1 is the first row of C, and C2-6

are the second through sixth rows.

4.2.2 Results and Discussion

For the validation case, 126 simulations were used (ρ = 126). Since this

algorithm replaces an optimization that includes a simulation at every iter-

ation with a series of matrix multiplications, we expect the computation to
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be much faster. Indeed, we do see a large reduction in computation time:

the StC algorithm ran in 3.2 seconds. However, due to this linearization,

the accuracy of the algorithm suffered, with an increase in total error from

2.02% to 11.7%, shown in Table 4.2.

Table 4.2: StC solution and error in validation study, using 126 simulations
with a bounded uniform distribution.

Parameter CaR Solution Absolute Error

Large motor 24.44% +0.44%
Small motor 16.97% −2.03%
Discharge lighting 25.60% −4.40%
Constant MVA 5.11% −3.89%
PI/QZ 27.88% +9.88%

Total Error 11.7%

One may note that, while the solution algorithm ran in 3.2 seconds, we

had to perform 126 simulations beforehand as an input into the algorithm,

which would not have saved significant time compared to the 188 simulations

the CaR algorithm ran. However, these 126 simulations can be saved, and

never need to be repeated. They can be reused if, at a later time, we make

improvements to the algorithm and wish to recalculate the load parameters.

Alternatively, if we wish to improve the parameter estimation by using a

larger set of simulations, we can simply add on to the simulations we already

performed.

Aside from reduced computation time, the second motivation of this algo-

rithm was to reduce the impact that noise had on the solution. The reader

may recall that for the CaR algorithm, an SNR of 49 dB was required. Fig.

4.6 shows how the error for the StC algorithm changes as a function of SNR.

As the reader can see, in this case an SNR of only 18 dB is required to ensure

consistent results. This corresponds to a noise content with 35 times higher
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amplitude. Thus, the StC algorithm is also far more robust to measurement

noise than the CaR algorithm.
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Figure 4.6: The total estimation error for StC as a function of the mea-
surement SNR.

One further consideration for the StC algorithm is how many simulations

are required for us to be confident about the parameter estimation solution.

For five degrees of freedom, theoretically only five points (i.e. simulations)

are required to define a unique solution, but our confidence in this solution

would be poor. More simulations would improve our confidence, but at the

expense of computation time and storage space. The blue plot in Fig. 4.7

shows how the total error (ε) changes when we increase the number of sim-

ulations used (ρ). The red plot shows the error (or reduction thereof) that

each additional simulation introduces:
dε

dρ
. The reader can see that with

fewer than 20 simulations, the error can change drastically with each new
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additional simulation—meaning our confidence in the solution is poor. How-

ever, after about 100 simulations, with a few exceptions, more simulations

did not significantly change the result of the algorithm. Thus, we conclude

that in this case, 100 or more simulations is sufficient.
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Figure 4.7: The total estimation error for StC as a function of the number
of simulations used is shown in blue. The derivative of the estimation error
is shown in red.

4.2.3 Challenge of Parameter Bounds

Like the CaR algorithm, this algorithm also has a vulnerability which is not

immediately apparent from the results. In Step 1 in the StC algorithm, we

choose sets of parameters to be simulated, based on a chosen distribution. For

Table 4.2, 126 sets of parameters were created based on a uniform distribution

bounded by [0.05, 0.5]. That is, for each of the parameters in p, it must lie
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between 5% and 50%, while still adhering to
∑

i p(i) = 1. These limits

were chosen arbitrarily based on the reasoning that out of 5 load types, one

particular type should not dominate (i.e. greater than 50%), and none should

be so insignificant as to be less than 5%. An alternative approach would be

to use an unbounded uniform distribution, where the bounds are relaxed to

0% and 100%. The parameter estimation result obtained for the unbounded

distribution is shown in Table 4.3, where we can see that three of the five

parameter estimates are grossly inaccurate.

Table 4.3: StC solution and error in validation study, using 126 simulations
with an unbounded uniform distribution.

Parameter StC Solution Absolute Error

Large motor 20.49% −3.51%
Small motor 16.26% −2.74%
Discharge lighting −2.98% −32.98%
Constant MVA −11.95% −20.95%
PI/QZ 78.17% +60.17%

Total Error 71.88%

In order to further study how prudently established bounds on the pa-

rameter distribution can improve the performance of the algorithm, Fig. 4.8

shows how the total estimation error changes as we impose tighter bounds.

On the horizontal axis, the parameter distribution bound is the radius of the

hypersphere centered on the correct solution, pfict, where the hyphersphere

defines the bounds on each set of parameters pi that we use for the StC

algorithm. The reader can see a clear increase in the error as the bounds

are relaxed, which confirms our initial hypothesis that the tighter we set the

bounds, the better our estimation error. In other words, the more we know

about our system before using the StC algorithm, the better the results will

be from using the algorithm.
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Figure 4.8: The total estimation error for StC as a function of the bound
on the parameter distribution.

One note regarding the above analysis that should be pointed out is that,

as the bounds are relaxed, a larger number of simulations are encompassed

within the growing hypersphere. In order to remove the effects seen in Fig.

4.7, this analysis was performed using a constant 100 simulations, chosen at

random from within the bounding hypersphere.
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CHAPTER 5

APPLICATION TO REAL DATA

In Chapter 4, two algorithms for solving the parameter estimation problem

were presented, and were verified using the simulated validation case study.

In this chapter, we will apply the algorithms to real measurements from an

actual disturbance on the system.

5.1 Converting Three-Phase Time Domain to Phasor

Domain

The analysis performed in Chapter 4 assumed that the measurement data

is in the same form as the simulation data. That is, both were in the form

of time-varying positive sequence phasors. However, of the sensors currently

deployed on the grid, only PMUs output such measurements. Other sensors

such as digital fault recorders (DFRs) output the raw three-phase voltage

sinusoids. Most importantly, DFRs are much more abundant than PMUs. As

of 2011, 137 PMUs were installed on the Western Interconnection (WECC)

[26]. While it is unknown exactly how many DFRs are deployed, a case in

point is Reliant Energy, which operates only 7% of the total generation of

the WECC, but has 33 DFRs alone [27, 28, 29]. While this is in no way

a proof, it should convince the reader that to develop an algorithm that is

exclusive to PMUs, and cannot accept DFR data, would be unwise.

In light of this, we need to be able to convert sinusoidal data into phasor
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data. To do this, we use the concept of a discrete Fourier transform (DFT).

For this analysis, we are interested in the fundamental component of the

Fourier transform, so that we can calculate the phasor V corresponding to

the discrete time series v[t] [30]:

V =

√
2

W

W∑
t=1

v[t]e−j
2πt
N (5.1)

Equation (5.1) calculates a steady state phasor (V has no time dependence).

In order to generate a time-varying phasor V [t], we use a short time Fourier

transform (STFT). That is, for a sampling rate of fs on a 60 Hz system,

we define a window length W =
1

2

fs
60

, such that the STFT is over half

a period (to prevent spectral leakage). Actually, the window can be any

integer multiple of a half of a period, but longer windows reduce the time

resolution unacceptably. One additional notation that we will introduce is

the subscripts a, b, and c, which refer to the measurements of the three

voltage phases:

Va[n] =

√
2

W

n+W−1∑
t=n

va[t]e
−j 2πt

N (5.2)

Equation (5.2) converts the sinusoidal measurements of phase a into a dy-

namic phasor. The equations for the b and c phases are identical. In order to

extract the positive sequence component of the three phase dynamic phasors,

we use the concept of symmetrical components [23]:

V +[n] =
1

3

(
Va[n] + Vb[n]ej

2
3
π + Vc[n]e−j

2
3
π
)

(5.3)

Now that the voltages have been converted to dynamic positive sequence

phasor representation, we can compare them to the simulation results from
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PSS/E. Note that in the rest of this document, whenever we used v[n], we

were in fact using the positive sequence voltage defined in (5.3).

5.2 Filtering of Noise

One issue that we have only touched on briefly so far is measurement noise.

Measurement noise can come from a multitude of sources, such as: loads

turning on and off, high frequency switching from power electronics, weather

effects, measurement error of the sensors themselves, and even from post-

processing such as the STFT above. Fig. 5.1 shows some sample voltage

data from a DFR, after it has been converted to phasor representation. The

reader can see that significant noise exists. We can use filtering in order to

reduce this noise.
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Figure 5.1: Example unfiltered voltage data after conversion to phasor rep-
resentation.
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There are many types of filters that we can use, such as finite impulse

response (FIR), infinite impulse response (IIR), or nonlinear filters such as

the median filter. Each type has its own merits and shortcomings [31]:

• FIR filters have linear phase, or constant group delay, so different

frequency components are delayed by the same amount.

• IIR filters may only have somewhat constant group delay, but they

are easier to implement than FIR filters.

• Median filters preserve edges, but their magnitude response is not

well defined.

For this work, the median filter was chosen for its ability to retain edges,

which is crucial because during a fault the voltage drops nearly instanta-

neously. A low pass FIR or IIR filter would cause the vertical edge to be

distorted into a sloped transition region.

5.2.1 The Median and Pseudomedian Filters

In the median filter, we first define an odd window length of 2L+ 1, where L

is an integer. Then for an input x[n], the output y[n] is calculated as follows:

y[n] = Median(x[n− L], · · · , x[n+ L]) (5.4)

The median filter is a very widely used filter for noise reduction. However,

it does have some undesirable characteristics, especially when used as a low

pass filter. In order to filter out high frequency noise, what we would like is

a filter which has a magnitude response near 1 for frequencies below a cutoff,

but then drops to 0 quickly and monotonically upon reaching the cutoff,
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such as the FIR filter in Fig. 5.2 (note the vertical axis is linear, not in

dB). However, the median filter has a very slow drop-off, and the amplitude

response oscillates between positive and negative values [32], which is also

undesirable.

A similar filter called the pseudomedian filter has better frequency response

characteristics [32]. Fig. 5.2 shows that the response is very similar to that

of an FIR filter, but the pseudomedian filter still retains the edge preserving

quality of the median filter. In fact, for the frequencies above 20 Hz in Fig.

5.2, while the FIR filter has a very small ripple, the pseudomedian filter’s

response is identically zero. The pseudomedian filter of length L is defined

as follows [32]:

y[n] =
1

2
A+

1

2
B (5.5)

A = max {min {x[n− L], · · · , x[n]} , · · · ,min {x[n], · · · , x[n+ L]}}

B = min {max {x[n− L], · · · , x[n]} , · · · ,max {x[n], · · · , x[n+ L]}}

For the beginning and end of the signal, where there are fewer than 2L + 1

samples available, the signal is padded as necessary by the first and last

samples of x[n], respectively.

In (5.5), A is the maximum of a sequence of numbers of length L + 1,

where each element in the sequence is itself the minimum of a sequence of

consecutive measurements of length L + 1. B is very similar to A, but is a

minimum of maxima. By the min-max theorem, A < B, and A and B can

be thought of as “smoothed” out lower and upper bounds, respectively.

The reader should note that the “frequency response” of a median or pseu-

domedian filter is not a well defined concept, as it is for FIR or IIR filters.

This is due to linearity. Consider an input signal x[n] which is represented
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Figure 5.2: A comparison of FIR, median, and pseudomedian filters.
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as a sum of sinusoids of different frequencies:

x[n] =
K∑
k=1

ak sin(wkn) (5.6)

The output y[n] of a linear filter HL is the same whether we apply the filter

to the signal x[n] as a whole, or to the individual sinusoids and then sum:

y[n] = HL

(
K∑
k=1

ak sin(wkn)

)
=

K∑
k=1

HL(ak sin(wkn)) (5.7)

However, for a non-linear filter HNL, this is not the case:

HNL

(
K∑
k=1

ak sin(wkn)

)
6=

K∑
k=1

HNL(ak sin(wkn)) (5.8)

Thus, the frequency response of the median or pseudomedian filter depends

on the signal being filtered. This is precisely the reason why the median and

pseudomedian filters are able to act as low pass filters, while at the same time

preserving edges (which have significant high frequency content) in a signal.

To generate the median and pseudomedian plots in Fig. 5.2, we calculate the

frequency response of the filter to a sinusoid of a single frequency, and then

varied that frequency from 0 Hz to 100 Hz to obtain the plot. Henceforth,

we refer to the response of the median and pseudomedian filters as the single

sinusoid frequency response (SSFR).

5.2.2 Design of a Pseudomedian Filter

Whereas FIR and IIR filters have standard design methodologies, the pseu-

domedian filter does not. Because the pseudomedian filter is a non-linear

filter, concepts such as cutoff frequency cannot be defined in the traditional
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sense, since the cutoff frequency is based on the frequency response, which

we know from Section 5.2.1 is not constant. Thus, as an approximation, we

define the cutoff frequency of a pseudomedian filter based on its SSFR.

To calculate the cutoff frequency of a pseudomedian filter, we first write

the closed form equation of its SSFR [32]:

HPM =


1
2

(
1 + cos

(
π fN

2

))
0 ≤ f ≤ 2

0 f > 2

(5.9)

where fN is the normalized frequency in cycles/window, and the window

length W is defined as 2L + 1. Noting that fN = Wf
fs

, where f is the

frequency in Hz and fs is the sampling rate, we can rearrange (5.9) to solve

for the window length required to produce a desired cutoff frequency:

W =
2

π

fs
fc

cos−1

(
2

α
− 1

)
(5.10)

where α is the attenuation at the cutoff frequency fc—typically
√

2 (3dB).

Thus, for a desired cutoff frequency, the length of the pseudomedian filter

should be:

L =

⌈
1

π

fs
fc

cos−1
(√

2− 1
)
− 1

2

⌉
(5.11)

Here, we also introduce the ceiling function d·e, in order to return the closest

integer value of L that achieves the desired cutoff frequency or better.

From 5.10 we can also calculate the beginning of the stop band. In this

case, we will define the stop band as the frequency where the SSFR is zero
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(i.e. α =∞):

fstop = fc
cos−1

(
2
∞ − 1

)
cos−1

(
2√
2
− 1
) ≈ 2.75fc (5.12)

5.2.3 Applying the Pseudomedian Filter

Fig. 5.3 shows the results of the data from Fig. 5.1 filtered using pseudo-

median filters with cutoffs of 480 Hz, 120 Hz, and 30 Hz. The reader can

see that a 30 Hz cutoff for this application is too low; the window length is

so long that important features are removed. Both the 480 Hz and 120 Hz

cutoffs are acceptable, depending on the user’s preference. For this work, the

120 Hz cutoff will be used.

5.3 Results

In this section, we apply the two algorithms (CaR and StC) to real measure-

ments. The event we will study is a single line to ground fault on a 345 kV

transmission line in the Eastern Interconnection. Further details have been

withheld due to confidentiality. The measurements obtained were shown in

Fig. 5.1, and then filtered as per Section 5.2.3.

5.3.1 Compare and Resimulate

Fig. 5.4 shows the convergence of the CaR algorithm. For the first part of

the analysis, we will use an unconstrained optimization, and not restrict the

values of p∗ to lie between 0% and 100%, although they must still sum to

100%. The solution required 229 function evaluations, and took 48 minutes,

comparable in computation time to the validation case study. However, while
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Figure 5.3: The data from Fig. 5.1 filtered using pseudomedian filters with
cutoffs of 480 Hz, 120 Hz, and 30 Hz. The length of the window (W ) is
also shown.
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the algorithm does converge, the reader can see from Table 5.1 that the values

do indeed not lie between 0% and 100%, and hence do not have any physical

meaning.

Table 5.1: Unconstrained CaR solution for a real disturbance.

Parameter CaR Solution

Large motor 4315.4%
Small motor 1092.2%
Discharge lighting −14083.8%
Constant MVA 9852.2%
PI/QZ −1075.9%
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Figure 5.4: Convergence of the CaR algorithm on p∗ for a real disturbance.

An absence of physical meaning does not immediately imply that the so-

lution is useless. If we take the approach that we want a load model that

responds to this fault as the real system would, then we can view the vector

p∗ as an abstract model parameter, which does not need to satisfy physical
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constraints. However, this is predicated on the condition that v∗ and vmeas

match closely. However, Fig. 5.5 shows that the simulated and measured

waveforms are far from similar. Specifically, the oscillations observed could

not be reproduced during simulation.
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Figure 5.5: vmeas[n] compared to v∗[n], when the unconstrained CaR algo-
rithm is applied to a real disturbance.

If we add in the constraint that p∗ must lie between 0% and 100%, the

solution is shown in Table 5.2, and the simulated and measured waveforms

are shown in Fig. 5.6. The Constant MVA load hits the upper bound, while

the other loads are at the lower bound. The waveforms in Fig. 5.6 are even

more dissimilar than in the unconstrained case. Thus, we conclude that the

CaR method is ill-suited for this purpose.

43



Table 5.2: Constrained CaR solution for a real disturbance.

Parameter CaR Solution

Large motor 0%
Small motor 0%
Discharge lighting 0%
Constant MVA 100%
PI/QZ 0%
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Figure 5.6: vmeas[n] compared to v∗[n], when the constrained CaR algo-
rithm is applied to a real disturbance.

5.3.2 Simulate then Calculate

We can repeat the above analysis for the StC algorithm. 500 simulations were

used and the bounds used were the same as in Section 4.2.2: 5% ≤ p(i) ≤

50%. The results are shown in Table 5.3, and the simulated and measured

waveforms are shown in Fig. 5.7. Again, the results are nonsensical. In fact,

the solution values are far outside the bounds on the parameters used for the
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input simulations. Thus, this solution makes an extreme extrapolation.

Table 5.3: StC solution for a real disturbance, using 500 simulations with a
bounded uniform distribution.

Parameter CaR Solution

Large motor 2.89e11%
Small motor −5.79e10%
Discharge lighting 1.11e13%
Constant MVA 8.18e12%
PI/QZ −1.95e13%

−0.1 0 0.1 0.2 0.3 0.4
1.65

1.7

1.75

1.8

1.85

1.9

1.95
x 10

5

Time (s)

V
ol
ta
ge

(V
)

 

 

Simulated
Measured

Figure 5.7: vmeas[n] compared to v∗[n], when the StC algorithm is applied
to a real disturbance.

5.3.3 Discussion

From the results in this section, we can see that neither algorithm was able

to find a reasonable load model, even when we relaxed the constraints. This
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is not an indication of errors or inadequacies in the algorithms, but instead

of the fact that a simulation of the grid during a fault is not accurate enough

to permit parameter estimation of a composite load model, due to the sensi-

tivity of p to v[n]. In other words, if small changes in p led to small changes

in v[n], then the algorithm may be able to tolerate inaccuracies in simula-

tion. However, this is not the case (see Fig. 4.2). The simulation violates

the injectivity condition in Section 3.2, and thus any parameter estimation

algorithm is almost guaranteed to fail.
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CHAPTER 6

CONCLUSION

Simulations are used extensively in power systems, but they rely on accurate

models to give us meaningful results. While most other facets of the power

system have been studied extensively, there is still no consensus on what

type of model to use: the model must strike a balance between simplicity

and accuracy. Static load models were developed for steady state analysis,

but have recently been used in transient simulations, with some success.

However, they cannot match the performance of dynamic models. Dynamic

models typically describe the behavior of the load using derivatives, and

while some have a very generic structure, others such as the CLOD model

are specific to power systems. This thesis has investigated the parameter

estimation of the CLOD model, using a hybrid measurement/component

based approach.

Two parameter estimation algorithms were developed: CaR and StC. CaR

uses a nonlinear optimization routine with a simulation at every iteration to

determine the optimal parameters. This algorithm had excellent performance

in theory, but failed the validation case study when even a minute amount

of noise was added to the measurements. Additionally, we identified that

some of the CLOD submodels behave similarly, and thus the algorithm has

a difficult time distinguishing between them. The StC algorithm uses least

squares fitting, and while it was not as accurate as the CaR algorithm in

the validation study, it was more robust to noise. This algorithm performs
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best when we have a good guess of the parameters ahead of time, since well

placed bounds on the simulations were shown to provide better parameter

estimates.

In order to make use of real disturbance data, especially the three-phase

time domain data from DFRs, we used a DFT to convert it to the phasor

domain, and then used the concept of symmetric components to extract the

positive sequence data. This data, however, was extremely noisy due to both

measurement noise and errors introduced in the post-processing. In order to

filter out this noise, we made use of a pseudomedian filter, which has both

the edge preserving qualities of a median filter, and the steep roll-off of an

FIR or IIR filter.

When we applied the above processing to measurements from a real distur-

bance, we found that both the CaR and StC algorithms provide solutions far

from expected. The reason was that the sensitivity of the parameter estimate

to the simulation is too high given the accuracy that the simulation software

could achieve. Additionally, the nonlinear nature of the CLOD model ex-

acerbated the problem, as it violated the injectivity condition. Thus, we

conclude that measurement-based algorithms are ill-suited for the parameter

estimation of complex, nonlinear load models; a higher level of success may

be achieved using component-based methods.
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