Drag-and-Drop Refactoring:
Intuitive and Efficient Program Transformation

Yun Young Lee, Nicholas Chen, Ralph E. Johnson
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{lee467, nchen, rjohnson}@illinois.edu

Abstract—Refactoring is a disciplined technique for restructur-
ing code to improve its readability and maintainability. Almost all
modern integrated development environments (IDEs) offer built-
in support for automated refactoring tools. However, the user
interface for refactoring tools has remained largely unchanged
from the menu and dialog approach introduced in the Smalltalk
Refactoring Browser, the first automated refactoring tool, more
than a decade ago. As the number of supported refactorings
and their options increase, invoking and configuring these tools
through the traditional methods have become increasingly unin-
tuitive and inefficient. The contribution of this paper is a novel
approach that eliminates the use of menus and dialogs altogether.
We streamline the invocation and configuration process through
direct manipulation of program elements via drag-and-drop. We
implemented and evaluated this approach in our tool, Drag-
and-Drop Refactoring (DNDRefactoring), which supports up to
12 of 23 refactorings in the Eclipse IDE. Empirical evaluation
through surveys and controlled user studies demonstrates that
our approach is intuitive, more efficient, and less error-prone
compared to traditional methods available in IDEs today. Our
results bolster the need for researchers and tool developers to
rethink the design of future refactoring tools.

I. INTRODUCTION

Refactoring is a disciplined technique for restructuring an
existing body of code, altering its internal structure without
changing its external behavior [1]. The concept of refactoring
has been studied and improved since it was first introduced
by Opdyke and Johnson in 1990 [2], and is now a well-
accepted programming practice. Almost all popular IDEs,
such as Eclipse, IntelliJ, NetBeans, Visual Studio, and Xcode,
include support for automated refactoring tools. Though no
IDE supports all 72 refactorings that Fowler cataloged in
his book [1], the number of refactorings that IDEs support
has only been increasing. For example, Eclipse 2 (as of
2004) supported 14 refactorings but the most recent version
of Eclipse (version 4.2) contains 23 refactorings for Java.
The current version of NetBeans supports 18 refactorings and
IntelliJ supports more than 30 refactorings.

As automated refactoring tools become more mainstream,
there has been much research analyzing their usage patterns.
Murphy-Hill et al. analyzed Eclipse refactoring tool usage
and concluded that almost 90% of refactorings are performed
manually without the help of the tool [3]. Our prior work con-
cluded that programmers, on average, are aware of only eight
refactorings in Eclipse [4]. These numbers are discouraging
and suggest that refactoring tools are used infrequently. One

of the main causes behind their disuse is that the current tools
suffer from deep usability problems.

Prior research identified at least three dominant usability
problems when using automated refactoring tools [4]-[9].
First, programmers have trouble identifying opportunities for
using the tool. Second, programmers have difficulty invoking
the right refactoring from a lengthy menu of available refactor-
ings. Programmers often find the names and the position of the
refactorings in the menu confusing. Third, programmers find
configuring the refactoring dialog complicated. Configuration
dialogs disrupt the programming workflow and impose an
overhead by requiring the programmer to understand the
options. Our prior work estimates that programmers frequently
spend up to eight seconds on the dialogs [4]. We term the
second and third problems the invocation and configuration
problems respectively (Section II-A). Indeed, in our own user
study, we have observed multiple instances where program-
mers struggle with these very problems, confirming their
prevalence and severity (Section V-B2).

We argue that the invocation and configuration problems
stem from the overreliance on menus and dialogs in current
refactoring tools. Consider the following scenario. Once a
programmer decides on a refactoring to perform, she still has
to complete two steps. First, to invoke the tool, she has to
navigate through a lengthy and confusing menu (recall that
Eclipse, NetBeans and IntelliJ support at least 18 refactorings)
and select the appropriate refactoring. She could memorize an
elaborate keyboard shortcut but unless it is a refactoring that
she frequently uses, she is unlikely to do so (only 1 out of
10 participants in our controlled user study used keyboard
shortcuts). Second, to configure it, she has to interact with
a dialog containing many detailed options that she might not
require and only serve to distract her from her goals (90%
of users do not modify the default settings [3]). Thus, there
exists a gap between what she wants to accomplish and how
she needs to do it through the current user interface.

To bridge this gap, we allow the programmer to directly
manipulate program elements, e.g., variables, expressions,
statements, methods, etc. in the IDE, eliminating the need
for menus or dialogs. The programmer only needs to identify
a program element to serve as the drag source and another
program element to serve as the drop target. For instance,
to perform an Extract Method refactoring, the programmer
would drag the selected expression (source) and drop it into the

public class Foo {

2 Package Explorer 53

o

public void bar(String name) {
System.out.print("hello " + nameb;

}

¥ (a) before

public class Foo {

¥ [J) OuterClass.java
v @ outerClass
€ InnerClass

(b) before

private String extracted(String name) { [% Package Explorer 53 = ‘ ¥ =08
, return "hello + name; ,MIDJDemO
v (#@#Bsrc
public void bar(String name) { v £ pkg
System.out.print(extracted(name)); > [InnerClass.java
} v [J) OuterClass.java
} (a) after ® outerClass (b) after

Fig. 1.

enclosing class (target) (Figure 1a). Similarly, to perform the
Move Type to New File refactoring, she would drag the inner
class (source) and drop it into the desired package (target)
(Figure 1b).

Using drag-and-drop has two advantages. First, it eliminates
the need to navigate through lengthy menus of refactorings.
Second, it eliminates the need for a separate configuration step.
Through a single movement of selecting the appropriate source
and target elements, the programmer is able to both invoke and
configure the desired refactoring. Our approach works for all
move and extract based refactorings, and our tool supports up
to 12 of the 23 refactorings available in Eclipse. These 12 also
happen to be some of the most commonly invoked refactoring
tools in Eclipse [3], [4].

Our work makes the following contributions for improving
the state of refactoring tools:

1. Approach: We introduce a novel refactoring invocation and
configuration approach that relies on drag-and-drop of pro-
gram elements. This technique leverages the drag source and
the drop target of program elements to invoke and configure
the refactoring in a single step. The approach is generalizable
to different refactorings and different programming languages.
2. Mappings: For our approach to work, we needed to come
up with a suitable set of mappings for drag sources and drop
targets. To make it more intuitive, we derived the mappings
based on the survey responses of 74 participants. Tables I
and II detail the drag sources and drop targets for the supported
refactorings. The mappings serve as useful reference for future
researchers and tool developers.

3. Tool: We implemented our approach using the mappings
in our open source tool, DNDRefactoring, for the Eclipse
IDE. DNDRefactoring is supported (i) within a Java editor,
or (ii) within and between Package Explorer and Outline
views. The Package Explorer and Outline views show a Java
element hierarchy tree of the Java projects and source files.
We encourage readers to watch a demo of the tool in action
at [10].

4. Evaluation: We evaluated our tool for its efficiency and
usability. To evaluate the efficiency and usability, we con-

Drag-and-drop gestures in (a) Java editor for Extract Method refactoring, and (b) Package Explorer for Extract Type to New File refactoring.

ducted a within-group controlled user study where we asked
participants to perform a non-trivial refactoring task using
both the existing Eclipse tools and DNDRefactoring. Our
results show that DNDRefactoring is not only intuitive but
also increases invocation efficiency in terms of decreased
configuration time and error rates compared to traditional
refactoring tools, which may in turn invite programmers to
use the automated refactoring tools more frequently.

II. DNDREFACTORING
A. Design Rationale

The driving principle behind the design of DNDRefactoring
is to streamline the invocation and configuration mechanisms.
The current mechanisms, as implemented in modern IDEs
suffer from two problems:

1. Invocation inconsistencies — The dominant mechanism
of invoking automated refactorings relies on identifying a
refactoring by name and selecting it from a lengthy menu.
This mechanism has two shortcomings. First, the names are
non-standard. For instance, Eclipse adheres to Fowler’s nam-
ing scheme for Extract Method whereas NetBeans calls it
Introduce Method. Second, the grouping of refactorings in
the menu is unpredictable both within an IDE and across
IDEs. For instance, Eclipse places the Rename and Move
refactoring in the same category although they are not closely
related. Furthermore, while Eclipse groups Extract Superclass
and together with Pull Up (because they operate on class
hierarchies), IntelliJ groups Extract Superclass with the other
extract based refactorings and Pull Up in another category.
Both these inconsistencies lead to a hunt-and-peck style of
invoking a refactoring where the programmer has to spend
time searching through the menu. This problem was evident
in our user study (Section V-B2) and also corroborated by
Murphy-Hill et al. [8].

2. Configuration overload — The dominant mechanism for
configuration relies on dialogs. This is a remnant from the de-
sign of the first automated refactoring tool for Smalltalk [11].
As more complex refactorings were introduced, more compli-
cated configuration options were also made available. How-

TABLE I
REFACTORINGS WITH DRAG-AND-DROP: WITHIN A JAVA EDITOR.

Drag Source Drop Target

Refactoring

Local variable Declaring type

Promote local variable to field (ILE')

Same method

Extract temp variable (ILE)

Expression inside method

Between argument brackets of current method signature

Introduce parameter

Declaring type

Extract method (ILE)

Statements in method Declaring type

Extract method (ILE)

Non-static method Field variable in declaring type

Move instance method to field type

Argument type in current method signature

Move instance method to argument type

Another type in current editor

Move member to target type

Static method of field Field variable in declaring type

Move member to field type

Local variable type in declaring type

Move member to local variable type

Anonymous class Declaring type

Convert anonymous to nested type

VILE = In-Line Edit allowed after refactoring is completed.

ever, 90% of refactoring tool users do not modify the default
configuration [3]. Thus, these extra options serve only to
confuse and prolong the configuration of refactorings since
the user is tempted to read all the options. Moreover, we
have evidence from our controlled user study (Section V-B1)
that some of the options could be erroneously selected by the
programmer and could lead to undesired changes to the code.

DNDRefactoring solves both these problems. Because there
isn’t a universal naming and grouping of refactorings that
everyone can agree upon, we dispense with names altogether:
the drag source and drop target determines the refactoring
to invoke and we do not burden the user with remembering
names. Similarly, we do not need dialogs because the drag
source and drop target already serve as configuration options
to the refactoring tool and we rely on sensible defaults
where necessary. Our controlled user study suggests that these
options are sufficient; the participants are able to complete the
tasks without using more complicated configuration options.

Eclipse already provides a workaround for the configuration
overload issue with Quick Assist [12], which performs local
refactorings with default values and then allows programmers
to make changes. Our implementation of DNDRefactoring
in Eclipse leverages the Quick Assist paradigm whenever
possible, relying on sensible default configurations.

One could argue that the dialog boxes provide more func-
tionality than just configuration and that eliminating them
could be problematic. For instance, the dialog boxes also offer
a preview feature that shows the code changes to be performed.
However, our prior work [4] report that programmers use
the preview feature infrequently and prefer to perform the
refactoring and view the code changes directly in the editor.
If the user is unsatisfied with the changes, she uses the undo
feature to revert the refactoring.

B. Tool Features

Our implementation of DNDRefactoring in Eclipse allows
programmers to invoke existing refactorings by drag-and-

dropping program elements (i) within the Java editor or, (ii)
within and between the Package Explorer and Outline View.
The drag source is the highlighted selection, either a text
selection within a Java editor or a tree node in the Package
Explorer or Outline View. The drop target is identified by the
position of the cursor when the drag source is dropped. For
example, within a Java editor, a cursor located in a whitespace
anywhere inside a class, but outside any method and not
in any field declaration, will identify the target as the class
(Figure la). A refactoring is invoked based on the program
element types of the drag source and drop target. If no suitable
refactoring is found, the drag-and-drop gesture defaults to
textual cut-and-paste.

Tables I and II list all the drag-and-drop refactorings that
we have implemented for the Eclipse IDE. To the best of our
knowledge, the mappings in the tables are new and serve as the
first canonical set of drag-and-drop gestures for refactorings.
Other mappings for the stated refactorings are possible, but
the current mappings were determined based on the survey
responses (Section IV).

In addition to providing a new method of invocation and
configuration, DNDRefactoring also supports two new and
useful features that can only be accomplished through drag-
and-drop gestures.

1. Collated refactorings: A single drag-and-drop gesture
can effectively collate several refactorings together. Consider
dragging a nested class and dropping it in the current package.
This gesture can be translated into Move Type to New File
refactoring in Eclipse. What happens if the nested class was
dropped in a different package? Naturally, the extended gesture
can be interpreted as Move Type to New file refactoring
followed by Move type to target package refactoring. This
collated refactoring is supported intuitively and effortlessly in
a single drag-and-drop gesture using DNDRefactoring. Such
a simple collated refactoring is impossible to invoke using the
existing invocation and configuration mechanisms in Eclipse.
Programmers using the traditional invocation mechanisms are

TABLE II
REFACTORINGS WITH DRAG-AND-DROP: WITHIN AND BETWEEN PACKAGE EXPLORER AND OUTLINE VIEW.

Drag Source Drop Target

Refactoring

Non-static Method Type of field variable in declaring type

Move instance method to target field type

Type Pull-up, Push-down or Move method to target type
Nested Type Package Move nested type to new file + Move type to target package
Anonymous Type Type Convert anonymous to nested type
Package Convert anonymous to nested type + Move nested type to new
file + Move type to target package
Field Type Pull-up, Push-down or Move field to target type

Another type declared in current editor

Move members to target type

Static Members Type of field variable in declaring type

Move members to target field type

Type of local variable in declaring type

Move members to local variable type

Non-static fields Package Extract data class + Move type to target package
Non-static methods Package Extract interface
Static & non-static methods ~ Package Extract super class

forced to perform two separate refactorings in succession.
Collated refactorings are annotated with “+” in Table II.

2. Precise control: Another advantage of drag-and-drop is the
ability to precisely choose where a drag source is dropped. For
example, Extract Method refactoring in Eclipse always creates
a new method below the method from which the expression
or statements were extracted. However, with DNDRefactor-
ing, programmers’ natural expectation would be to see the
extracted method appear exactly where the expression was
dropped (Figure 1a). DNDRefactoring supports such precise
control and allows programmers to decide where to move or
extract program elements.

C. Supporting Floss Refactoring

Murphy-Hill and Black introduced the term floss refactoring
to describe refactorings that occur frequently in small steps,
intermingled with other kinds of program changes [13]. They
also proposed five principles to characterize a tool that sup-
ports floss refactoring. They suggest that such tools should let
the programmer:

1. Choose the desired refactoring quickly,

2. Switch seamlessly between program editing and refactoring,
3. View and navigate the program code while using the tool,
4. Avoid providing explicit configuration information, and

5. Access all the other tools normally available in the devel-
opment environment while using the refactoring tool.

Current refactoring tool in Eclipse violates all five princi-
ples [13]. The tools by Murphy-Hill et al. help programmers’
code selection process (i) with syntactic highlights, (ii) by
visualizing nested statements as a series of nested boxes, and
(iii) with control and data-flow annotations [9]. While the tools
were proven to help reduce time and errors during refactoring,
they violate Principles 1 and 4 because the tools do not assist
programmers with refactoring selection or configuration. The
same limitation applies to tools that alert programmers of
code smells and opportunities for refactorings [6] [7]. Murphy-

Hill et al. introduced other tools that help with refactoring
selection, by mapping directional gestures to refactorings [8].
The tool displays a radial menu with four quadrants, and
maps directional gestures (up, down, left or right quadrants)
to refactorings. The tool adheres to Principles 1 and 4 because
the radial menu displays a more concise set of applicable
refactorings and performs the selected refactoring without
requiring explicit configuration from programmers. However,
the radial menu is a modal window menu that covers up part
of the Java editor and thus violates Principles 2 and 3.

In contrast, we claim that DNDRefactoring satisfies all five
principles. DNDRefactoring eliminates the need for program-
mers to browse through a long list of refactoring menu items
and decode refactoring names that aren’t always obvious,
therefore Principle 1 is satisfied. In addition, because pro-
grammers choose source and target program elements in the
editors and views that they are currently working on, Principles
2 and 3 are satisfied. DNDRefactoring does not show modal
windows during refactoring, so it also adheres to Principles 5.
Lastly, DNDRefactoring also adheres to Principle 4 because it
does not interrupt refactoring processes with pop-up prompts,
but uses default values to complete the refactoring and then
invites programmers to make in-line changes.

III. EVALUATION METHODOLOGY

To measure the utility of DNDRefactoring, we ask and
answer the following research questions:
RQ1: [Intuitiveness] How intuitive are the drag-and-drop
gestures for users?
Given that there is a large set of possible drag sources and drop
targets that can be used to invoke each refactoring, the main
challenge is to build a set of mappings that is intuitive to most
users. To answer whether drag-and-drop gestures are intuitive,
we conducted a survey that asked participants unfamiliar with
the drag-and-drop approach to suggest drag-and-drop gestures
for 5 randomly selected move and extract based refactorings,

public class Foo {

£
public void bar() {

System.out.println("hello world!");
System.out.println("============");

} }

}

- public class Foo {
private Bar b =
public void methodl() {

8 src
v EB baz

w Foo.java

v @Foo

@ method1() : void
@ method2() : void
@ method3() : void

new Bar();

a) Mapping from drag-and-drop to refactoring: What
refactoring would you expect to invoke with the
following drag-and-drop gesture? class?

Fig. 2.

and to select refactorings given 5 drag-and-drop gestures. If
the majority of users agree on the drag sources and drop targets
for each refactoring, it would strongly suggest that there is a
set of drag-and-drop gestures that is universally applicable to
all users (Section IV).

RQ2: [Efficiency] How efficient is it to invoke and configure
drag-and-drop refactoring?

One of the main challenges of automated refactoring tools
is the burden of invocation and configuration. To answer
whether drag-and-drop refactoring is efficient, we imple-
mented DNDRefactoring, an Eclipse plug-in that supports
the set of gestures that we determined from RQI1. We then
conducted a controlled user study comparing DNDRefac-
toring to the default Eclipse invocation and configuration
mechanisms (baseline). Participants were asked to complete
a non-trivial refactoring task using Eclipse with and without
DNDRefactoring. We recorded videos of these user study
sessions, and analyzed them to measure and compare the
time taken to invoke and configure both tools. If the results
show that DNDRefactoring is more efficient, then it indicates
that DNDRefactoring could be compelling and complementary
addition to the existing tools (Section V). In addition, we
analyzed the physical effort involved in using the refactoring
tools, in terms of number of keyboard and mouse actions. The
paper omits this data for brevity, but it is available at [10].
RQ3: [Usability] How usable is drag-and-drop refactoring?
A tool can be very efficient to invoke and configure, and yet
have very little users because of the difficulties involved in
using the tool. We wanted to identify the main challenges
of using drag-and-drop refactoring compared to the default
Eclipse refactoring tools. To answer this question, we (i) asked
the participants to provide feedback on DNDRefactoring and
(ii) analyzed the videos of the controlled user study that we
captured as part of RQ2 to identified obstacles each participant
encountered when using both tools. We then coded and merged
those obstacles into key categories following the standard data
analysis procedure for open-ended survey responses [14]. By
comparing the categories of obstacles identified in each tool,
we can objectively discuss the advantages and disadvantages of
each tool and suggest room for improvement (Section V). All
survey and study materials, and results are available at [10].

b) Mapping from refactoring to drag-and-drop: c¢) Mapping from refactoring to drag-and-drop:
How would you move Foo.method1() to Bar

How would you extract an interface to baz
package with method1 and method2?

Examples of Survey Questions

IV. EVALUATING INTUITIVENESS
A. Survey Design

We conducted a survey asking participants to suggest drag-
and-drop gestures for refactorings. The survey contained five
questions asking participants to suggest a refactoring given a
drag-and-drop gesture, and five questions asking the reverse
mapping. Figure 2 shows actual samples of the questions
asked. Participants were given a 5-minute summary of the
study and were asked to complete the survey in 10 minutes.

The survey was conducted in a graduate-level software
engineering class. At least 95% of the students have taken
a prerequisite course in previous semesters that familiarizes
them with Java, Eclipse, and refactoring. All participants
were new to the drag-and-drop approach. The survey was
completely voluntary and anonymous.

B. Results and Observations

We collected 74 survey responses in total. Of those 74
participants, 60 participants (93%) indicated that they have
more than 2 years of Java experience, and 58 participants
(77%) have more than 2 years of experience with Eclipse.
Also, 17 (23.0%), 52 (70.3%), and 5 (6.8%) participants
regarded themselves as novice, intermediate, and expert users
of the automated refactoring tools in Eclipse, respectively.

We manually coded the responses for each question into
two main categories: the majority (the most common response)
and minority (Table III). On average 72% of the responses
formed the majority. More specifically, on average, 62%, 74%
and 90% of refactoring novice, intermediate, and expert users
of Eclipse refactoring tool agreed on a mapping, respectively.
This result strongly suggests that there is a set of universal
drag-and-drop gestures that is applicable for all users. We
analyzed all the responses in the majority category and found
all of them to be feasible gestures for drag-and-drop. We used
these gestures to implement our tool DNDRefactoring'.

To better understand the range of responses, we divided
the minority category into three sub-categories: alternate,

'We implemented gestures for 12 refactorings overall. 10 were based on
the survey responses, and the remaining two refactorings were conceived by
the authors after the survey.

TABLE III
SURVEY RESULTS BY CATEGORY. EACH COLUMN NAME CORRESPONDS TO THE PARTICULAR REFACTORING ASKED IN THE SURVEY.

Move Extract Convert
Extract Nested to Extract Tem Introduce Anony- Push Pull U Move Extract
Field sted, Method P Parameter mous to Down P Method Interface
New File Variable
Nested
Majority 60(81%) 40(54.1%) 46(62.2%) 59(79.7%) 59(79.7%) 55(73.3%) 49(66.2%) 54(73.0%) 51(68.9%) 61(82.4%)
Alternate 0(0%) 0(0%) 1(1.4%) 0(0%) 0(0%) 7(9.5%) 15(20.3%) 8(10.8%) 3(4.1%) 0(0%)
Infeasible 11(14.9%) 25(33.8%) 1925.7%) 9(12.2%) 7(9.5%) 5(6.8%) 5(6.8%) 6(8.1%) 7(9.5%) 1(1.4%)
Empty 3(4.1%) 9(12.2%) 8(10.8%) 6(8.1%) 8(10.8%) 7(9.5%) 5(6.8%) 6(8.1%) 13(17.6%) 12(16.2%)

infeasible and empty. The alternate category contains different
but reasonable alternative refactorings that could be interpreted
from the drag and drop gesture. For example, for a question
depicting Extract Method refactoring by dragging a set of
statements from inside a method and dropping it just above
the method declaration (Figure 2a, and Table III), a surveyee
answered “[create a] static method for class Foo”. These
responses in the alternate group may be supported in future
versions of DNDRefactoring. The infeasible category includes
responses that either conflict with existing refactorings in
Eclipse, are not refactorings, or involve infeasible drag sources
and drop targets. Lastly the empty category contains blank
responses.

V. EVALUATING EFFICIENCY AND USABILITY
A. Controlled User Study Design

We conducted a controlled user study with 10 participants
to evaluate the efficiency and usability of DNDRefactoring
on several refactoring tasks. Each participant carried out the
refactoring tasks twice, once using the default tools in Eclipse
and once using DNDRefactoring. The order of the tools was
randomized to mitigate the learning effect. Each user study
session was recorded in its entirety using either a screencasting
software or a video camera. To minimize unfamiliarity with
different machines, each participant used their own computer
or laptop for the user study.

All 10 participants were computer science graduate students
majoring in various sub-disciplines, including software engi-
neering and software testing. All participants had at least 2
years of experience in Java; 6 participants had more than 5
years of Java experience. The majority of participants had
from 2 to 5 years of experience in Eclipse. 2, 7, and 1
participants regarded themselves as novice, intermediate and
expert users of the Eclipse refactoring tool, respectively. After
the user study, each participant was asked to complete a
post-study qualitative survey to evaluate their experience with
DNDRefactoring. Participation was strictly voluntary with no
rewards offered, and invitations to the study was sent through
individual emails and departmental mailing lists.

The refactoring tasks given to the participants are based on
the Refactoring Lab Session exercise developed at LORE [15].
The exercise involves multiple refactorings for a Local Area
Network simulation program. The individual refactorings are
small and independent, thus are more like floss refactoring
than root canal refactoring. We made minor modifications

to the refactoring tasks in order to remove some duplicated
refactorings and include a wider variety of refactorings.

Prior to their individual user study sessions, all partici-
pants were given a group tutorial on DNDRefactoring and
the official reference on Eclipse’s refactoring tool [16]. The
DNDRefactoring tutorial showed a short video demonstrating
three refactorings, none of which were repeated in the user
study. Participants were encouraged to ask questions and to
try using both tools on their own code.

We collected data for two metrics: the configurations times
(quantitative) and the obstacles encountered (qualitative). All
measurements were done post-user-study from the video
recordings so as not to affect the participant’s performance
on the tasks.

For Eclipse’s existing refactoring tool, the configuration
time starts from pressing the Refactor menu item (either in the
tool bar or the mouse button menu) and ends with pressing
the Finish button in pop-up modal windows. For Quick Assist,
we counted time from the moment the small options window
showing to selecting one option. Lastly for drag-and-drop
(for DNDRefactoring or existing simple refactoring support
in Eclipse), the time was counted from when the programmer
starts her selection to dropping the selection.

We define obstacles as programmers’ actions that are in-
correct or unnecessary for invoking desired refactorings, for
example, when a programmer selects a wrong refactoring,
cancels a refactoring, invokes a refactoring with an irrelevant
program element, or when results do not match programmers’
expectations.

B. Controlled User Study Results and Observations

1) Efficiency: Table IV shows each participant’s configura-
tion times. There was an outlying case where participant #10
introduced a fault when using Eclipse that caused a unit test to
fail. She attempted to fix the fault both manually and by using
the refactoring tool and thus skewed the results. We felt that
while this case may give an insight to the complexity of current
refactoring invocation mechanisms in Eclipse, it is not a fair
representation of them. Therefore the data from participant
#10 was dropped from our following analysis.

Overall, DNDRefactoring reduced the time spent on config-
uration by up fo 9 times. On average, participants performed
the refactorings 3 times faster with DNDRefactoring compared
to Eclipse. To validate that this result is statistically significant,

TABLE IV

RESULTS OF THE CONTROLLED USER STUDY

- CONFIGURATION TIME IN SECONDS.

Refactoring: Extract Move Move Move Move Anon. Move Move Extract TOTAL
Method Method Method Method Method Class to Type to Class® Class
12 2? 32 42 Nested New File
PARTIC Eclipse 423 48.3 22.9 18.5 16.6 1.1 21.6 6.4 42.1 219.8
#l DNDR 18.6 127 134 13.8 14.3 209 miss 937
Eclipse 106.4 71 10.7 7.3 4.4 40.3 529 20.2 3255 345.7
DNDR 13.8 6.7 2.8 13.2 49 22.8 17.6 81.8
3 Eclipse 18.6 65.4 10.7 8.1 4 13.5 6.2 42 151.9 228.1
DNDR 33.5 3.7 2.9 2.3 1.4 16.8 8.9 69.5
Eclipse 533 11.7 18.4 13.1 4 335 404 13.2 40.5 228.1
DNDR 55.9 5.8 35 2.1 23 39.5 23.5 132.6
#5 Eclipse 237 93 8.9 29.8 8.2 44.1 423 9.5 41.5 301
DNDR 63.1 5 6.4 1.8 2 139 114 103.6
46 Eclipse 10 100.5 3 10.2 2.7 50.8 43.5 6.1 242 251
DNDR 31.3 26.8 1.5 1 1.1 15 15.3 92
#7 Eclipse 22.6 46.3 2.8 10.7 52 223 39.2 7.5 25.1 181.7
DNDR 22.8 34 1.6 1.6 0.9 23 7.6 60.9
#3 Eclipse 18.8 136.7 4.1 6.7 2.7 28.9 44.8 3.8 23.7 270.2
DNDR 17.6 1 2.1 1.7 4.1 6.8 21.8 55.1
#9 Eclipse 7 50.7 3.1 4.7 23 22.4 53 15.3 24 134.8
DNDR 12.6 1.5 1.5 1.6 1.6 13.7 12.9 454
Average Eclipse 33.6 69.3 9.4 12.1 5.6 28.5 32.9 9.6 66.75 246.1
DNDR 29.9 7.4 4.0 4.3 3.6 19.2 14.9 81.6
Ave. Time Save* 1.1 9.4 2.4 2.8 1.5 3.7 4.5 3.0

! Participant #10 introduced a bug while refactoring with Eclipse, thus her data is not included in our analysis.

2 Not all participants performed these refactorings in the same order.

3 Time recorded for DNDR is a collated time of Anon. Class to Nested + Move Type to New File + Move Class refactoring.

4 Calculated by dividing Eclipse Average by DNDR Average, per refactoring.

we used the Wilcoxon Signed Rank Test (WSRT) to do a pair-
wise comparison between the configuration times for Eclipse
and DNDRefactoring. We used WSRT to (i) compare the total
times for the entire study and (ii) compare the configuration
times for each refactoring. WSRT was used instead of the t-
test because we cannot assume that the data (configuration
time) is normally distributed. Participant #1 did not complete
the Extract Class refactoring, so her data was excluded from
the calculation of Total Time and Extract Class refactoring.
Configuration times for all four Move Method refactorings
were combined for simplicity, and Anonymous Class to Nested
Class, Move Type to New File, and Move Class refactorings
for Eclipse were also collated because the three refactorings
can be performed as one refactoring with DNDRefactoring.
The p values are reported in the following table; all except
Extract Method show statistical significance (p < 0.01).

Total Extract Move Collated Extract

Time Method Methods Refactor- Class
ings

p =0.004 | 0.715 0.002 0.002 0.004

The results suggest that DNDRefactoring is more efficient
compared to Eclipse, except for Extract Method. There are two
possible explanations for the inefficiency with Extract Method
refactoring. First, the method from which subjects were asked
to drag an expression was particularly long, and some found it
difficult to drag the expression out of the method while having
to scroll the editor. Second, Extract Method is one of the most
popular refactorings [3], and as such, many of the subjects may
be familiar and efficient enough with its configuration details.

The error case of participant #10 provided an insightful
opportunity to observe how programmers may introduce bugs
while interacting with Eclipse’s refactoring interfaces. We
were able to retrace and replay her refactoring actions by using
Eclipse’s refactoring history [17] and interviewing her after
the user study. The bug was introduced while she was moving
a method from one class to another, and when one of the
references to the moved method was not updated. She invoked
the Move refactoring and followed the modal instructions, and
opted to view the preview of the changes. Eclipse’s refactoring
preview window shows a list of Java source files that will be
changed by the current refactoring, and allows programmers

TABLE V
RESULTS OF THE CONTROLLED USER STUDY - OBSTACLES.

Obstacles PARTIC #1 #2 #3 #4 #5 #6 #7 #8 #9
ECLIPSE
Cancels 1 2 2 0 2 1 0 3 0
Manual Changes 3 1 2 1 1 0 1 1 2
Wrong Refactoring Selected 0 1 0 0 2 4 2 2 0
Correct Refactoring Unavailable 0 0 1 0 0 0 0 0 0
Cannot Choose a Refactoring 0 0 0 4 5 2 0 1 1
Incorrect Configuration 0 0 0 0 0 1 0 2 0
TOTAL 7 4 5 5 10 8 3 9 3
DNDRefactoring
Cancels 2 0 0 3 1 1 0 0 0
Manual Changes 1 2 2 2 1 1 1 2 2
Wrong Source/Target 0 0 0 1 2 1 0 0 0
Difficulty with Selection 0 0 0 1 0 0 0 0 0
TOTAL 4 2 2 7 4 3 1 2 2

to exclude any file from the changes. During the interview,
participant #10 stated that she remembers seeing one of the
files being excluded seemingly by default. Upon replaying her
refactoring history we concluded that the exclusion of a file
was indeed the source of the bug, but also confirmed that
Eclipse by default does not exclude any file from the change
list. We conjecture that she had mistakenly or unconsciously
excluded a file but because it appeared to her to be a default
setting, she accepted it to be correct. While anecdotal, this case
demonstrates the danger of configuration overload — it is too
easy to erroneously select a wrong option. DNDRefactoring
uses the default refactoring configurations and thus streamlines
the refactoring process, and does not burden the programmers
or provide an opportunity for accidental bugs.

2) Usability: We analyzed the video recordings to identify
obstacles that the participants encountered while perform-
ing the user study using Eclipse and DNDRefactoring. We
iterated through this list to code and merge similar items
into categories. Table V shows the categories we identified.
“Cancels” refer to when programmers cancel a refactoring
during configuration, or undo an already-executed refactoring.
“Manual changes” are when programmers opt to perform any
refactoring by hand even though the refactoring tool in use
supports it. Other categories names are self-explanatory.

“Correct Refactoring Unavailable” was an unexpected ob-
stacle. The refactoring tool in Eclipse infers to some extent
what refactorings a programmer is trying to invoke based
on the current cursor position in an editor, and prompts the
programmer with a subset of applicable refactorings based on
the cursor position. While useful, this inference can sometimes
be counter-intuitive or unexpected, which was the case with
participant #3. A slight misplacement of the cursor precluded
the refactoring he wanted from appearing in the menu. On the
other end of the spectrum was “Cannot Choose a Refactoring”
obstacle. A number of participants struggled to pinpoint a
desired refactoring in the long list of refactorings.

The participants encountered the most number of obstacles

when invoking Move refactoring with Eclipse. Eclipse’s Move
refactoring window shows a list of objects with their instance
name and type, one from which a programmer can choose
to move a method or field to. Many participants found the
list confusing, and 6 of them canceled it up to 3 times, often
spending much time studying the configuration details.

Many participants also missed a configuration opportu-
nity to change the access modifier when invoking Convert
Anonymous Class to Nested Class refactoring, and manually
changed it after the refactoring was completed. In an extreme
case, participant #5 opted to perform Extract Class refactoring
manually while using Eclipse. Selecting the right program
element to invoke refactorings was also difficult with Eclipse.
For example, in order to extract a data class with a subset
of fields declared in a class, 6 participants selected only the
relevant fields in a Java editor and invoked the Extract Class
refactoring, but Eclipse by default selects all available fields
which silently discarded the participants’ preliminary actions.
At least one participant did not notice the default configuration
and proceeded, eventually undoing the refactoring.

With DNDRefactoring, three participant selected wrong
drop targets while invoking Extract Method, Convert Anony-
mous Class to Nested, and Extract Data Class refactorings.
Most notably, few participants found it difficult to drag an
expression out from a long method to invoke the Extract
Method refactoring. Also, at least one participant struggled
with selecting an expression that is nested within a line of
code. Most manual changes made while using DNDRefactor-
ing were for refactorings that DNDRefactoring currently does
not support, including Rename and Change Method Signature.
On average, DNDRefactoring halved the number of obstacles
that participants encountered compared to Eclipse.

C. Post-Study Qualitative Survey Results

We asked each user study participant to answer a qualitative
survey after they completed their tasks. Of the 10 user study
participants, 9 found their interaction with DNDRefactoring
to be very satisfactory, and 1 found it somewhat satisfactory.

Also, 6 participants answered that DNDRefactoring was very
comfortable to use while 4 reported that it was somewhat
comfortable, and 7 participants found the translation from
drag-and-drop to refactorings as expected but 3 found at least
one of the refactorings unexpected (refactoring for extracting
a data class), or the occasional lack of immediate in-line edit
support a little cumbersome. We plan to mitigate these issues
in the future, as detailed in the Section VIII. All 10 would
recommend DNDRefactoring to other people and some also
suggested that it should be included as part of the Eclipse
IDE. Some participants stated that DNDRefactoring “[is] very
intuitive especially without knowing what the refactoring
jargon means” and “saves me the trouble of remembering the
exact refactoring to invoke”, and that they “liked that several
collated refactorings were invoked with a single action.”

VI. LIMITATIONS

A. Threats to Validity

1) Internal Validity: We allowed participants to use their
own machines for familiarity. These machines varied greatly in
terms of specifications and operating systems. Such differences
could have affected the configuration time, e.g., using a
trackpad instead of a mouse for drag-and-drop, and having a
larger screen requires dragging more. Also, while we minimize
intervention with participants during the controlled user study,
the presence of an external viewer (to ensure that we could
successfully video capture their session) might subconsciously
affect the participants’ performance. Lastly, because partici-
pants were aware that DNDRefactoring is a new addition to
Eclipse that we have developed, it might have biased them
toward/against the approach.

2) External Validity: Our survey and user study partic-
ipants were advanced undergraduate and graduate students
in Computer Science at the University of Illinois. Although
collectively the participants have diverse experiences with
Java, refactoring, and Eclipse, they might not be representative
of all software developers who use refactoring tools. Perhaps
within a larger group, different gestures might be suggested
for each refactoring. Also, while the refactoring exercise from
LORE that we used in our user study is well-known and
often used in software engineering classes, it involved only
a subset of the refactorings supported by DNDRefactoring.
We prioritized keeping the exercise short to enable partic-
ipants to finish within an hour. Therefore we don’t have
data on the performance of DNDRefactoring for the untested
refactorings. Lastly, we implemented DNDRefactoring only
in Eclipse and compared it to the default refactoring tools in
Eclipse. While most refactoring tools in different IDEs follow
a similar dialog-based approach, subtle difference between
each IDE could still affect the comparison with a drag-and-
drop implementation.

3) Reliability: All experimental materials and collected
data are available online. This allows an interested reader to
replicate our results.

B. Limitations of DNDRefactoring

One limitation of DNDRefactoring is the difficulty of trans-
lating some refactorings into drag-and-drop gestures. Currently
DNDRefactoring only supports move and extract based refac-
torings. It is difficult, for example, to translate Rename refac-
torings in drag-and-drop gestures. Secondly, perhaps mirroring
the first limitation, is that some drag-and-drop gestures can be
translated into multiple refactorings. For example, drag-and-
dropping an expression from within a method to its declaring
class can easily translate into both Extract Method and Extract
Constant refactorings. In an effort to follow our initial design
goal of not interrupting programmers during the execution
of refactorings, we default to the Extract Method refactoring.
We plan to support multiple refactorings in the future by, for
example, prompting programmers with a set of refactoring
previews in small tooltips that they can choose from when
they drop their drag source.

While useful, drag-and-drop also has some shortcomings.
One of the major concerns with drag-and-drop is that the
entire gesture has to be completed in a single motion. This
can be problematic when the drag source and drop target are
obscured in the user interface, e.g., when the users operate
on a smaller screens. Suspendable drag-and-drop techniques
such as Boomerang alleviate this by allowing the user to first
select the drag source, interact with other program elements
and resume the drop gesture later [18]. Drag-and-drop can also
be problematic on larger screens where the mouse has to travel
further distances. Pick-and-drop alleviates this by dynamically
clustering and displaying the potential drop targets close to the
mouse cursor affer the source target has been selected [19].
Many other extensions are possible. Collomb and Hascoét pro-
vide a good introduction to other possible extensions and show
how they can be unified to support different use cases [20].
Future work on DNDRefactoring could incorporate some of
these extensions to make it easier to use on smaller or larger
screens.

VII. RELATED WORK

Drag-and-drop interfaces have traditionally been used
in visual programming environments such as Alice [21],
EToys [22] and Scratch [23]. In such environments, novice
programmers write programs using visual blocks instead of
text. Programmers use drag-and-drop as the primary means
for organizing and restructuring those visual blocks.

Because visual blocks can be clunky to navigate in large
programs, we eschew this approach in DNDRefactoring and
implemented it directly in the textual Java editor, Package
Explorer, and Outline View. Moreover, simple restructuring
of visual blocks merely moves blocks to different locations
in the program without considering behavior preservation.
DNDRefactoring, on the other hand, intuitively maps each
drag-and-drop operation to a corresponding refactoring oper-
ation that, when performed, preserves program behavior.

The typical modal window-based approach to invoking and
configuring refactorings was introduced in the first refactoring
tool, i.e. the Refactoring Browser [11]. For more than a

decade, little has changed in the interface of refactoring tools.
Recently, Murphy-Hill et al. introduced new approaches to
invocation with selection assists [9] and gesture-to-refacto-
ring mappings [8]. Eclipse and IntelliJ have also introduced
in-place refactoring features [24] that allow widely-used refac-
torings to be configured directly in the editor without the need
for a modal window. Commercial tools such as CodeRush with
Refactor! Pro [25] also aid programmers’ refactoring tasks
with suggestions and visual hints within the code, without
modal windows. Nonetheless, these new approaches still rely
exclusively on keyboard shortcuts and mouse menus. Our work
investigates and demonstrates the potential of new methods of
invocation for refactoring tools.

While drag-and-drag infrastructure has always been avail-
able in modern IDEs, none have truly exploited its capabilities.
Existing IDEs such as Eclipse, NetBeans and IntelliJ provide
minimal support for drag-and-drop refactoring. Currently, the
only refactoring supported is Move refactoring, which can
be invoked by drag-and-dropping a class into a package in
the Outline View. All other drag-and-drop operations are
interpreted as plain textual moves. Existing products dedicated
to restructuring code only target organizational refactorings
between different packages. For instance, Restructurer101 [26]
provides a graphical view of all the classes and packages in the
system and allows a developer to perform Move refactorings
on them via drag-and-drop. To the best of our knowledge,
our tool is the first to leverage the drag-and-drop as an
intuitive way to invoke a variety of refactorings beyond Move
refactorings.

VIII. FUTURE WORK

The current implementation of DNDRefactoring assumes
that programmers can accurately distinguish between different
program elements. We believe selection assist tools such
as [9] will be an effective complement to DNDRefactoring.
Also, visual cues such as highlights or tooltips indicating the
specific refactoring that will be invoked may help narrow down
programmers’ selection of drop targets.

Lastly, we plan to conduct a long-term study to analyze
and evaluate the utility of DNDRefactoring in assisting pro-
grammers with floss refactorings. Would programmers using
DNDRefactoring use the refactoring tool in IDE more often? If
so, what kind of refactorings would they use DNDRefactoring
for? We plan to collect refactoring data from programmers
using DNDRefactoring in the wild, using such tools as [4],
and study the impact of DNDRefactoring on floss refactoring.

IX. CONCLUSIONS

We presented DNDRefactoring, a novel approach and tool
that streamlines refactoring invocation and configuration pro-
cesses by allowing programmers to refactor their code via
drag-and-drop of program elements. DNDRefactoring is a
practical and functional demonstration of a radically different
user interface for automated refactoring tools. DNDRefactor-
ing eliminates the need for menus and dialogs that program-
mers have to understand and interact with. Eliminating the

menus and dialogs not only makes the process more intuitive,
but also increases invocation efficiency in terms of decreased
configuration time and error rates compared to traditional
menu and dialog approach approach. Our results make a case
for the design of next generation refactoring tools that depart
from the traditional menu and dialog approach.

ACKNOWLEDGMENT

We thank Darko Marinov, John Brant, Mohsen Vakilian,
Milos Gligoric, and Jeff Overbey for their valuable reviews.
We also thank all the user study and survey participants. This
work is dedicated to the loving memory of Brett Daniel.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code, 1999.

[2] W. Opdyke and R. E. Johnson, “Refactoring, An Aid in Designing
Application Frameworks and Evolving Object-oriented Systems,” in
SOOPA, 1990.

[3] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and
How We Know It,” in ICSE, 2009.

[4] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, Disuse, and Misuse of Automated Refactorings,”
in ICSE, 2012.

[5] E. Mealy, D. Carrington, P. Strooper, and P. Wyeth, “Improving Usability
of Software Refactoring Tools,” in ASWEC, 2007.

[6] A. O’Connor, M. Shonle, and W. Griswold, “Star Diagram with Auto-
mated Refactorings for Eclipse,” in Eclipse, 2005.

[7]1 C. Parnin, C. Gorg, and O. Nnadi, “A Catalogue of Lightweight
Visualizations to Support Code Smell Inspection,” in SoftVis, 2008.

[81 E. R. Murphy-Hill, M. Ayazifar, and A. P. Black, “Restructuring
Software With Gestures,” in VI/HCC, 2011.

[9]1 E. Murphy-Hill and A. P. Black, “Breaking the Barriers to Successful

Refactoring: Observations and Tools for Extract Method,” in ICSE, 2008.

“DNDRefactoring,” https://wiki.engr.illinois.edu/display/cs599yyl/

DNDRefactoring.

D. Roberts, J. Brant, and R. Johnson, “A Refactoring Tool for Smalltalk,”

Theory and Practice of Object Systems, 1997.

“Quick Assist,” http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.

user/reference/ref-java-editor-quickassist.htm.

E. Murphy-Hill and A. P. Black, “Refactoring Tools: Fitness for Pur-

pose,” IEEE Software, 2008.

J. M. Corbin and A. L. Strauss, Basics of Qualitative Research:

Techniques and Procedures for Developing Grounded Theory, 2008.

S. Demeyer, M. Rieger, B. Van Rompaey, and B. Du Bois,

“Refactoring Lab Session,” http://lore.ua.ac.be/Research/Artefacts/

refactoringLabSession/.

“Refactor Actions,” http://help.eclipse.org/indigo/topic/org.eclipse.jdt.

doc.user/reference/ref-menu-refactor.htm.

“Tips and Tricks (JDT),” http://help.eclipse.org/indigo/topic/org.eclipse.

jdt.doc.user/tips/jdt%_tips.html.

M. Kobayashi and T. Igarashi, “Boomerang: Suspendable Drag-and-

Drop Interactions Based on a Throw-and-Catch Metaphor,” in UIST,

2007.

M. Collomb, M. Hascoét, P. Baudisch, and B. Lee, “Improving Drag-

and-Drop on Wall-size Displays,” in GI, 2005.

M. Collomb and M. Hascoét, “Extending Drag-and-Drop to New Inter-

active Environments: A Multi-display, Multi-instrument and Multi-user

Approach,” Interact. Comput., vol. 20, no. 6, pp. 562-573, Dec. 2008.

M. J. Conway, “Alice: Easy-to-Learn 3D Scripting for Novices,” Ph.D.

dissertation, University of Virginia, 1997.

“Squeakland: Home of Squeak Etoys,” http://www.squeakland.org/

about/.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The

Scratch Programming Language and Environment,” Trans. Comput.

Educ., vol. 10, no. 4, pp. 16:1-16:15, Nov. 2010.

“In-place Refactorings,” http://www.jetbrains.com/idea/webhelp/editor.

html.

“Refactor! Pro,” http://devexpress.com/Products/Visual_Studio_Add-in/

Coding_Assistance/refactor_pro.xml.

“Restructurer101,” http://www.headwaysoftware.com/products/.

[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]

(18]

[19]

[20]

(21]
[22]

[23]

[24]
[25]

[26]

https://wiki.engr.illinois.edu/display/cs599yyl/DNDRefactoring
https://wiki.engr.illinois.edu/display/cs599yyl/DNDRefactoring
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickassist.htm
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickassist.htm
http://lore.ua.ac.be/Research/Artefacts/refactoringLabSession/
http://lore.ua.ac.be/Research/Artefacts/refactoringLabSession/
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/tips/jdt% _tips.html
http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.user/tips/jdt% _tips.html
http://www.squeakland.org/about/
http://www.squeakland.org/about/
http://www.jetbrains.com/idea/webhelp/editor.html
http://www.jetbrains.com/idea/webhelp/editor.html
http://devexpress.com/Products/Visual_Studio_Add-in/Coding_Assistance/refactor_pro.xml
http://devexpress.com/Products/Visual_Studio_Add-in/Coding_Assistance/refactor_pro.xml
http://www.headwaysoftware.com/products/

	Introduction
	DNDRefactoring
	Design Rationale
	Tool Features
	Supporting Floss Refactoring

	Evaluation Methodology
	Evaluating Intuitiveness
	Survey Design
	Results and Observations

	Evaluating Efficiency and Usability
	Controlled User Study Design
	Controlled User Study Results and Observations
	Efficiency
	Usability

	Post-Study Qualitative Survey Results

	Limitations
	Threats to Validity
	Internal Validity
	External Validity
	Reliability

	Limitations of DNDRefactoring

	Related Work
	Future Work
	Conclusions
	References

