
Checking Reachability using Matching Logic

Grigore Roşu
University of Illinois at Urbana-Champaign

Alexandru Ioan Cuza University, Iaşi, Romania
grosu@illinois.edu

Andrei Ştefănescu
University of Illinois at Urbana-Champaign

stefane1@illinois.edu

Abstract
This paper presents a verification framework that is para-
metric in a (trusted) operational semantics of some program-
ming language. The underlying proof system is language-
independent and consists of eight proof rules. The proof sys-
tem is proved partially correct and relatively complete (with
respect to the programming language configuration model).
To show its practicality, the generic framework is instantiated
with a fragment of C and evaluated with encouraging results.

Categories and Subject Descriptors D.2.4 [Software Veri-
fication]: Formal methods; D.2.5 [Testing and Debugging]:
Symb. execution; F.3.1 [Specifying and Verifying and Rea-
soning about Programs]: Mechanical verification; F.3.2 [Se-
mantics of Programming Languages]: Operational semantics

General Terms Languages, Verification, Theory

Keywords Reachability, Hoare logic, matching logic

1. Introduction
Compared to other programming language semantic ap-
proaches, operational semantics are easier to understand and
define, since we can think of them as formal interpreters for
the languages they define. Moreover and perhaps more impor-
tantly, they can be efficiently executable, and thus testable, the
same way we test language implementations: by executing
large test suites of programs (see, e.g., [1, 4, 10] for the case
of C). This way, errors are detected and fixed, and confidence
in the semantics is incrementally build. It is therefore quite
common that operational semantics are considered trusted
reference models of the programming languages they define.

On the other hand, existing program reasoning approaches,
such as Hoare/separation/dynamic logics, require us to
(re)define the target language semantics as a set of proof
rules, which are often hard to understand and thus trust. For
that reason, the state-of-the-art in mechanical verification is
to prove such language-specific proof systems sound with re-
spect to another, more trusted semantics. Since the semantics
of real languages can consist of hundreds or even thousands
of rules, this duplication of work is at best uneconomical.
Worse, in order to even be possible to define a language
semantics in these formalisms, non-trivial and specialized

extensions of program logics are developed (e.g., “a sepa-
ration logic for Javascript”, etc.). Since such extensions are
likely non-reusable, they are not worth investigating in full
depth. Consequently, current program verification approaches
and tools are not easy to adapt to real languages, and even
the most advanced are only shown sound and/or relatively
complete for small fragments of their target languages.

What we want is a framework which takes a trusted se-
mantics of some arbitrary programming language, say an
off-the-shelf well-tested operational semantics, and automat-
ically (with zero effort) provides the following: (1) an ex-
pressive specification formalism for properties of programs
in that language; and (2) a sound, complete and practical
means for proving such language-specific program proper-
ties. Building upon matching logic for (1), we give the first
language-independent, sound and relatively complete proof
system for (2). Our proof system consists of eight proof rules
for reachability. To show its practicality, we have applied
the generic framework to a fragment of the C language, by
simply passing the operational semantics of the language,
unchanged, as axioms to the proof system, and by adding a
few heuristics for which proof rules to apply and when.

Matching logic [30] is designed to state and reason about
structural properties of arbitrary program configurations. Syn-
tactically, it introduces a new formula construct, called a
pattern, which is a configuration term possibly containing
variables. Semantically, its models are concrete/ground con-
figurations, where a configuration satisfies a pattern iff it
matches it. For a configuration signature with a top-level cell
〈...〉cfg holding other cells with semantic data such as code
〈...〉k, environment 〈...〉env, heap 〈...〉heap, input buffer 〈...〉in,
output buffer 〈...〉out, etc., configurations have the form

〈〈...〉k 〈...〉env 〈...〉heap 〈...〉in 〈...〉out ...〉cfg

The cells contents can be various semantic data, such as trees,
lists, maps, etc. Here are two particular configurations (in the
interest of space, we use “...” for the irrelevant parts of them):

〈〈x=*y; y=x; ...〉k 〈x 7→7, y 7→3, ...〉env 〈3 7→ 5〉heap ...〉cfg

〈〈x 7→3〉env 〈3 7→5, 2 7→7〉heap 〈1,2,3,...〉in 〈..., 7, 8, 9〉out ...〉cfg

Different languages may have different configuration struc-
tures. For example, languages whose semantics are intended

to be purely syntactic and based on substitution, e.g., λ-
calculi, may contain only one cell, holding the program itself.
Other languages may contain dozens of cells in their configu-
rations; for example, the C semantics in [10] has more than
70 nested cells. However, no matter how complex a language
is, its configurations can be defined as elements in an alge-
bra, using conventional algebraic techniques. Matching logic
takes an arbitrary algebraic definition of configurations as
parameter and allows configuration terms with variables as
particular formulae. For example, the formula

∃c :Cells, e :Env, p :Nat, i : Int, σ :Heap
〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg ∧ i > 0 ∧ p , i

is satisfied by all configurations where program variable x
holds a location p holding a different positive integer. The
variables e, σ, and c are structural frames. If we want to
additionally state that p is the only location allocated, then
we can just remove σ. Matching logic allows us to reason
about configurations, e.g., to prove:

|= ∀c :Cells, e :Env, p :Nat
〈〈x 7→ p, e〉env 〈p 7→9〉heap c〉cfg ∧ p>10
→ ∃i : Int, σ :Heap

〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg ∧ i>0 ∧ p, i

Since configuration terms with variables are particular pat-
terns, typical reduction rules left⇒ right used to define oper-
ational semantics (several operational semantics approaches
based on such rules are discussed in Section 5) are particular
matching logic reachability rules [28] of the form ϕ ⇒ ϕ′,
where ϕ and ϕ′ are patterns, so such operational semantics
become sets of reachability rules. For example, the following
reachability rule gives the operational semantics of variable
assignment in a language over configurations like above:

〈〈x = i;s〉k 〈x 7→ j, e〉env c〉cfg ⇒ 〈〈s〉k 〈x 7→ i, e〉env c〉cfg

Reachability rules as used above only specify one-step reach-
ability, but in general they can express any number of steps.
As shown in [29], they are in fact expressive enough to spec-
ify any program properties that can be expressed using Hoare
triples. Therefore, despite conceptual simplicity, such reacha-
bility rules are quite expressive, subsuming the main elements
of both operational and axiomatic semantics. These obser-
vation makes it desirable to have a framework allowing to
derive sequents A ` ϕ⇒ ϕ′, where A is a set of “axioms”
(i.e, trusted) reachability rules and ϕ ⇒ ϕ′ a reachability
rule to be proved. If A is the semantics of C and ϕ ⇒ ϕ′ a
reachability property of some C program, for example, then
such a proof system would allow us to prove such a property
based entirely on the operational semantics of C. No other
semantics for verification purposes would be needed.

In this paper we give an eight-rule proof system for more
general sequents, of the formA `C ϕ⇒ ϕ′, where C is also
a set of reachability rules. The intuition for such sequents

is that the reachability property ϕ ⇒ ϕ′ holds under the
hypothesesA and C, provided that the first step is always one
fromA whenever C is non-empty. The rules in C are called
circularities. The desired sequentsA ` ϕ⇒ ϕ′ are recovered
when C is empty. The characteristic rule of our proof system,
which allows to add circularities, is the following:

Circularity :
A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

The Circularity rule therefore allows to make a new circularity
claim at any moment during a proof derivation. In practice
one typically makes such claims for code with repetitive
behaviors, such as loops, recursive functions, jumps, etc. If
one succeeds to prove the circularity claim using itself, then
the claim holds. This circular reasoning would obviously be
unsound if used unrestricted. What makes the reasoning with
circularities well-founded and thus sound is the following
modified Transitivity rule, which unleashes the circularities
only after at least one trusted step, i.e., one from the set of
axiomsA (i.e., an operational semantics rule), is applied:

Transitivity :
A `C ϕ1 ⇒

+ ϕ2 A∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

The ⇒+ in the first premise implies at least one step cor-
responding to a rule in A has been applied. In concrete in-
stances, that operational step is typically a loop unrolling
step, or a function invocation step, or a jump, etc. The remain-
ing six proof rules (Figure 7) and the soundness theorem for
the entire proof system (Theorem 1), in the sense of partial
correctness, are given in Section 6.

Our language-independent eight-rule proof system can
therefore be used to derive reachability properties of pro-
grams in any language, provided that an operational seman-
tics of that language is provided. But how powerful is it? In
Section 7 we show that our proof system is in fact relatively
complete. That means that it can derive any reachability prop-
erty of any program in the given programming language. Note
that this is a significant improvement over the state-of-the-art,
as conventional program verification logics, like Hoare logic
or dynamic logic, need to be proved relatively complete for
each language separately. We prove our relative completeness
result for matching logic reachability once and for all, for all
languages. The relativity in our completeness result comes
from the fact that our setting, including the proof system, are
parametric in a model of configurations. We assume an oracle
telling whether the arbitrary but fixed configuration model
satisfies a given first-order formula or not.

To test the effectiveness of our approach, we implemented
a program verifier for a fragment of C, called MatchC, which
is directly based on the proof system in Figure 7. It uses
the operational semantics of the fragment of C completely
unchanged for program verification. A series of non-trivial
programs have been automatically verified using MatchC,
some discussed in Sections 3 and 8. The Matching Logic web

page, http://fsl.cs.uiuc.edu/ml, contains an online
interface to run MatchC, where one can try more than 50
existing examples (or type your own). For example, the
functional correctness of the Schorr-Waite graph marking
algorithm verifies in less than 2 seconds. Section 8 also
discusses how the proof system is being made practical.

Contributions
This paper makes the following specific contributions:

1. A novel language-independent proof system, parametric
in an operational semantics of a programming language;

2. A proof of its partial correctness, saying that any derived
reachability property is semantically valid;

3. A proof of its relative completeness, saying that any
semantically valid reachability property can be derived;

4. An implementation of it in MatchC, together with several
challenging C programs verified.

We also show that separation logic can be framed as an
instance of matching logic for an idealized model of heaps.

2. Related Work
The idea of regarding a program (fragment) as a specification
transformer to analyze programs in a forwards-style goes
back to Floyd [13]. However, his rules are not concerned with
structural configurations, are not meant to be operational,
and introduce quantifiers. Equational algebraic specifications
have been used to express pre- and post-conditions and then
verify programs forwards using term rewriting [14]. Evolving
specifications [24] adapt and extend this basic idea to com-
positional systems, refinement and behavioral specifications.
What distinguishes the various specification transforming
approaches is the formalism they use. What distinguishes
matching logic is its apparently low-level formalism, drop-
ping no detail from the configuration. The use of variables in
patterns offers a comfortable level of abstraction by mention-
ing in each rule only the necessary configuration components.

The state of the art in mechanized program verifica-
tion [1, 21] is to define both an operational and an axiomatic
semantics in a higher-order logic framework, where the two
semantics share the definition of a “state”, and to prove the
axiomatic semantics sound w.r.t. the operational semantics.
Then one can deduce theorems about programs using rules
from both semantics. While libraries of tactics are developed
to partially automate the process, it still needs to be done for
each language independently. The eight-rule proof system
proposed in this paper is language-independent and it should
be easy to mechanize in a higher-order framework.

Separation logic [22, 25] is an extension of Hoare logic.
There is a major difference between separation and matching
logic: the former enhances Hoare logic to work better with
heaps, while the latter provides an alternative to Hoare
logics in which the configuration structure is explicit in the
specifications, so heaps are treated uniformly just like any

other structures in the configuration. We study more closely
the relationship to separation logic in Section 4.3.

Bedrock [5] is a framework which uses computational
higher-order separation logic and supports mostly-automated
proofs about low-level programs. Unlike MatchC, Bedrock
requires the user to annotate the source code with hints for
lemma applications. Specifications use operators defined in a
pure functional language, similarly to the operators defined
algebraically in matching logic. Tactics employed by Bedrock
could likely be adapted for higher-order matching logic.

Shape analysis [31] allows to examine and verify proper-
ties of heap structures. The ideas of shape analysis have also
been combined with those of separation logic [9] to quickly
infer invariants for programs operating on lists. They can
likely be also combined with matching logic to infer patterns.

Dynamic logic (DL) [15] adds modal operators to FOL to
embed program fragments within specifications. For example,
ϕ → [s]ϕ′ means “after executing s in a state satisfying
ϕ, a state may be reached which satisfies ϕ′”. In matching
logic, programs and specifications also coexits in the same
logic. However, matching logic achieves it by staying within
FOL and making use of FOL’s algebraic signatures and term
models. Moreover, DL adds language-specific proof rules,
while our proof system is language-independent.

Our own related work. Matching logic was introduced in
[30]. However, the proof system there was language-specific
and not parametric in an operational semantics like the one
here. An early implementation of MatchC, based on the proof
system in [30], was presented in [27]. Our first language-
independent proof system is given in [28], and consists of
nine rules for deriving sequents A ` ϕ⇒ ϕ′, that is, ones
without circularities C with them. There, the Circularity rule
was more complex, mixing ideas from our current Circularity
and Transitivity rules, and a now unnecessary Substitution
rule was included. In [29] we were able to show the relative
completeness of that proof system for a particular simple
language, IMP, by showing how each Hoare logic proof rule
of IMP could be mimicked with the proof system in [28].
While all the above are clearly inferior to our new proof
system and its language-independent proofs of soundness
and completeness, they were nevertheless crucial milestones.

3. Examples using MatchC
Here we discuss a few C examples that illustrate the expres-
siveness and practicality of our approach. Figure 1 shows
an undefined program; Figure 2 a function that reverses a
singly linked list; Figure 3 a function that reads a sequence
of integers from the standard input into a singly-linked list;
Figure 4 a program that respects a stack inspection property,
where some functions can only be called directly or indirectly
by certain other functions, and only under certain conditions;
Figure 5 shows a function that flattens a tree into a list, travers-
ing the tree in infix order and in the process printing the list
to the standard output in reverse order. MatchC automatically

http://fsl.cs.uiuc.edu/ml

struct listNode { int val; struct listNode *next; };

int main()
{
struct listNode *x;
x = (struct listNode*) malloc(sizeof(struct listNode));
printf("%p\n", x->next);

}

Figure 1. C program exhibiting undefined behaviour.

struct listNode { int val; struct listNode *next; };

struct listNode* reverseList(struct listNode *x)

rule 〈$⇒ return ?p; ···〉k 〈··· list(x)(A)⇒ list(?p)(rev(A)) ···〉heap

{
struct listNode *p;
p = NULL;

inv 〈··· list(p)(?B), list(x)(?C) ···〉heap ∧ A = rev(?B)@?C

while(x != NULL) {
struct listNode *y;
y = x->next;
x->next = p;
p = x;
x = y;

}
return p;

}

Figure 2. C function reversing a singly-linked list.

verifies all these programs w.r.t. their specifications (given in
the grey boxes) in ∼1s in total (Section 8).

The unannotated/unspecified program in Figure 1 is un-
defined according to the C standard: it attempts to print the
value of the uninitialized list member next. Our operational
semantics correctly captures undefinedness, in that undefined
programs get stuck during their execution using the semantics.
MatchC verifies programs by executing them according to
the semantics. If a fragment of code is given a specification,
then that specification is verified and subsequently used as a
replacement for the corresponding fragment. This is possible
in matching logic because both the language semantics and
the specifications are uniformly given as reachability rules.
Since this program is unannotated, its verification reduces to
executing it according to the semantics, so it gets stuck when
reading x->next. C compilers happily compile this program
and the generated code even does what one (wrongly) expects
it to do, namely prints the residual value of x->next.

Some MatchC notations. Each user-supplied rule or in-
variant annotation (grayed area in the figures in this section)
corresponds to a reachability rule, also called a specification,
that needs to be derived with the proof system in Figure 7.
For the next specifications, we discuss some MatchC nota-
tions that help avoid verbosity. (1) While all specifications
are reachability rules ϕ⇒ ϕ′, often ϕ and ϕ′ share configura-

tion context; we only mention the context once and distribute
“⇒” through the context where the changes take place. (2) To
avoid writing existential quantifiers, logical variables starting
with “?” are assumed existentially quantified over the cur-
rent pattern. (3) To avoid writing environment cells with only
bindings of the form x 7→ ?x, we automatically assume them
when not explicitly mentioned and allow users to write the
identifier x (i.e., a syntactic constant) instead of the logical
variable ?x. (4) MatchC desugars invariants inv ϕ loop into
rules ϕ[loop...] ⇒ ϕ[...] ∧ ¬cond(loop), with ϕ[code] the
pattern obtained from ϕ setting the contents of 〈...〉k to code.

Function reverseList in Figure 2 reverses a singly-
linked list. The matching logic rule specifying its behavior
says that it returns a pointer ?p (here and in the rest of the
paper, $ stands for the body of the function). The rule also
says that, when the function is called, the heap contains a
list starting at x with contents the sequence A. When the
function returns, the initial list is replaced by a list starting
at ?p with contents the reversed sequence, rev(A). The ···
in the heap cell stands for the rest of the heap content (the
heap frame) which is not touched by the function and thus
stays unchanged. Similarly, all the parts of the configuration
that are not explicitly mentioned (the configuration frame) do
not change. The loop invariant asserts that the heap contains
two lists, one starting at p and containing the part of the
sequence that is already reversed, ?B, and one starting at x and
containing the part of the sequence that is yet to be reversed,
?C. The initial sequence A equals rev(?B) followed by ?C.
Again, the rest of the heap and configuration stay unchanged.
Here list, rev, etc., are ordinary operation symbols in the
signature and constrained through axioms (Section 4.2). Like
in OCaml, @ concatenates sequences. Variables without ?,
like A, are free. Hence, A refers to the same sequence in the
function rule and in the loop invariant, while ?B can refer to
different sequences in different loop iterations.

One might, at this early stage, argue that separation logic
allows writing more compact specifications. For example,
with the same convention about ? variables, i.e., they are
existentially quantified over the entire formula, the invariant
in Figure 2 would be specified in separation logic as

(list(p, ?B) ∗ list(x, ?C)) ∧ A = rev(?B)@?C,

where list(p, ?B) is a predicate capturing the same intuition
as our term list(p)(?B). While this separation logic formula is
indeed slightly more compact than our matching logic pattern,
we would like to make two observations:

• First, separation logic is heap-centric in its semantics, so
“∗” automatically refers to the heap, while matching logic
makes no such assumptions. If the heap were the only
cell in the configuration, then we could easily adopt the
assumption that heap terms are automatically wrapped
within the heap cell, in which case our notation would be
just as compact. However, as seen shortly, we introduce
input/output buffers and a call stack to the configuration.

struct listNode { int val; struct listNode *next; };

struct listNode *readList(int n)

rule 〈$⇒ return ?x; ···〉k〈A⇒ · ···〉in〈··· · ⇒ list(?x)(A) ···〉heap
if n = len(A)

{
int i; struct listNode *x, *p;
if (n == 0) return NULL;
x = (struct listNode*) malloc(sizeof(struct listNode));
scanf("%d", &(x->val));
x->next = NULL;
i = 1; p = x;

inv 〈?C ···〉in 〈··· lseg(x, p)(?B), p 7→ [?v, NULL] ···〉heap
∧ i ≤ n ∧ len(?C) = n − i ∧ A = ?B@[?v]@?C

while (i < n) {
p->next = (struct listNode*)

malloc(sizeof(struct listNode));
p = p->next;
scanf("%d", &(p->val));
p->next = NULL;
i += 1;

}
return x;

}

Figure 3. C function reading a sequence of integers from
the standard input into a singly-linked list.

Then the uniform notation which explicitly mentions the
cells becomes quite natural and useful; separation logic
would require syntactic and semantic extensions to deal
with such additional components. As shown in Section 4.3,
any separation logic formula can be mechanically trans-
lated into an equivalent matching logic pattern.
• Second, the compactness of separation logic formulae is

also due to an implicit heap framing rule in Hoare logics
based on separation logic. In matching logic verification
we deliberately avoid adding any automatic framing rules,
simply because those are not necessary. For example, the
“...” symbols in the specifications in Figure 2 are anony-
mous (first-order) variables that match the corresponding
cell “frames”. Removing all the “...” from the heap cells
would state that reverseList can only be called in con-
texts where the heap contains nothing but a list that x
points to. This would be hard to specify using separation
logic with implicit heap framing.

Function readList in Figure 3 reads n integers from
standard input and stores them in a singly-linked list. The
specification says that the function: (1) returns a pointer ?x;
(2) reads from the standard input a sequence of integers A of
length n (matches A and replaces it by the empty sequence ·);
(3) allocates a list starting at ?x with contents A (replaces
the empty heap ·). The rest of the input buffer, the heap,
and the configuration stay unchanged. The loop invariant
states that the sequence ?C is yet to be read, x points to a list
segment ending at p with contents ?B, p points to a nodeList

void trusted(int n);
void untrusted(int n);
void any(int n);

void trusted(int n)

rule 〈$⇒ return; ···〉k 〈S〉stack
if n ≥ 10 ∨ in(hd(ids(S)), [main, trusted])

{
untrusted(n); any(n);
if (n) trusted(n - 1);

}

void untrusted(int n)

rule 〈$⇒ return; ···〉k〈S〉stack
if in(trusted, ids(S))

{ if (n) any(n - 1); }

void any(int n)
{
// possible security policy violation
// (when any is called) if n <= 10
if(n > 10) trusted(n - 1);

}

int main() { trusted(5); any(5); }

Figure 4. C program respecting a stack inspection policy.

structure with the value field ?v and the next field NULL, the
loop index i is not greater than n, the size of ?C is n − i, and
the initial sequence A equals the concatenation of ?B, ?v, and
?C. The list segment lseg(x, p) includes x but excludes p.
The notation p 7→ [?v, NULL] stands for the term (and not
formula) “p 7→ ?v, p + 1 7→ NULL”.

Figure 4 shows a C program that respects the following
security policy: trusted must always be called directly with
n’s value less than 10 only from main, or from trusted
(suppose that n represents some priority or clearance level),
while untrusted must always be called directly or indirectly
from trusted (suppose that trusted is the only function
whose code is completely trusted, so in particular it is even
allowed to call untrusted functions). The reachability rule
of trusted matches the call stack, and requires that either
the value of n is at least 10, or that the function id of the
head of the call stack is one of main or trusted. The rest of
the configuration stays unchanged. The rule for untrusted
matches the same parts of the configuration as the rule for
trusted, but requires instead that somewhere in the call
stack there exists a frame for trusted. In particular, both
trusted and untrusted require the heap to stay unchanged.
We can prove that, as neither of the three functions allocates
or deallocates heap memory. Function any does not have
a rule, so its body is executed at each call. If the call to
trusted in any were not guarded by the if statement, the
line any(5); in main would violate the security policy. Note
that just constructing the call graph and performing value
analysis is not enough to verify these stack properties.

struct treeNode {
int val; struct treeNode *left, *right;

};
struct listNode {
int val; struct listNode *next;

};
struct stackNode {
struct treeNode *val; struct stackNode *next;

};

struct listNode *treeToList(struct treeNode *t)

rule 〈$⇒ return ?l; ···〉k 〈··· tree(x)(T)⇒ list(?l)(tree2list(T)) ···〉heap
〈··· · ⇒ rev(tree2list(T))〉out

{
struct listNode *l; struct stackNode *s;
if (t == NULL) return NULL;
l = NULL;
s = (struct stackNode *)

malloc(sizeof(struct stackNode));
s->val = t;
s->next = NULL;

inv 〈··· tree(s)(?TS), list(l)(?A) ···〉heap 〈··· rev(?A)〉out
∧ tree2list(T) = treeList2list(rev(?TS))@?A

while (s != NULL) {
struct treeNode *tn; struct listNode *ln;
struct stackNode *sn;
sn = s;
s = s->next;
tn = sn->val;
free(sn) ;
if (tn->left != NULL) {
sn = (struct stackNode *)

malloc(sizeof(struct stackNode));
sn->val = tn->left;
sn->next = s;
s = sn;

}
if (tn->right != NULL) {
sn = (struct stackNode *)

malloc(sizeof(struct stackNode));
sn->val = tn;
sn->next = s;
s = sn;
sn = (struct stackNode *)

malloc(sizeof(struct stackNode));
sn->val = tn->right;
sn->next = s;
s = sn;
tn->left = tn->right = NULL;

}
else {
ln = (struct listNode *)

malloc(sizeof(struct listNode));
ln->val = tn->val;
ln->next = l;
l = ln;
printf("%d ", ln->val);
free(tn);

}
}
return l;

}

Figure 5. Iterative C program flattening a tree into a list and
printing its values in the process.

Function treeToList in Figure 5 flattens a binary tree
into a list, by traversing the tree in infix order, and in the
process prints the list to the standard output in reverse order.
Each node of the initial tree (structure treeNode) has three
fields: the value, and two pointers, for the left and the right
subtrees. Each node of the final list (structure listNode)
has two fields: the value and a pointer to the next node of
the list. The program makes use of an auxiliary structure
(stackNode) to represent a stack of trees. For demonstration
purposes, we prefer an iterative version of this program. We
need a stack to keep track of our position in the tree. Initially,
that stack contains the tree passed as argument (as a pointer).
The loop repeatedly pops a tree from the stack, and it either
pushes back the left tree, the root, and the right tree onto
the stack, or if the right tree is empty it pushes back the left
subtree, appends the value in the root node at the beginning
of the list of tree elements, and prints the respective value to
the standard output. As the loop processes the tree, it frees
the tree nodes and it allocates the corresponding list nodes.
Because the values are printed when they are popped from
the stack, they appear in the output in reverse infix order.

The treeToList rule says that it returns pointer ?l. The
rule matches in the heap a tree rooted at t with contents T and
replaces it with a list starting at ?l with contents tree2list(T)
(the infix traversal sequence of T). Finally, it specifies that
the function outputs the traversal sequence in reverse order.
The rest of the heap, output buffer and the configuration stay
unchanged. The invariant says that the heap contains a stack
of trees (represented as a list of trees) with contents ?TS
and a list with contents ?A, the loop has printed so far the
sequence rev(?A), and that the infix traversal sequence of T,
tree2list(T), equals the concatenation in reverse order of the
infix traversal sequences of the trees in the stack concatenated
with the contents of the list. Nothing else changes.

4. Matching Logic: A Logic of Configurations
Traditionally, program logics are deliberately not concerned
with low-level details about program configurations, those
details being almost entirely deferred to operational seman-
tics. This is a lost opportunity, since configurations contain
very precious information about the structure of the various
data in a program’s state, such as the heap, the stack, the in-
put, the output, etc. Without direct access to this information,
program logics end up having to either encode it by means
of sometimes hard to define predicates, or extend themselves
in non-conventional ways, or sometimes both. In contrast,
matching logic [30] takes program configurations at its core.

We next first recall general matching logic notions and no-
tations (Section 4.1) with emphasis on its patterns, then give
an instance of it for configurations corresponding to a frag-
ment of the C language (Section 4.2), and in the end discuss
how it relates to separation logic [23, 25] (Section 4.3).

4.1 Patterns and General Notions
Matching logic [30] is a logic suitable for specifying and
reasoning about program or system configurations. Although
originally framed as a methodological fragment of first-order
logic (FOL), a setting that also suffices for this paper, match-
ing logic can be easily extended to second- or higher-order
settings. Matching logic is parametric in a syntax and a model
for configurations. Some configurations can be as simple as
pairs 〈code, σ〉 with code a fragment of program and σ a
“state” map from program variables to integers, e.g. when one
wants to reason about simple imperative languages. Other
configurations can be even simpler, for example just “heap”
singletons holding a map from locations to integers (e.g.,
when one wants to exclusively reason about heap structures
like in separation logic; see Section 4.3) or even just “code”
singletons (e.g., when one wants to reason about programs
based purely on their syntax). Yet, other configurations can
be as complex as that of the C language [10], which contains
more than 70 semantic components. No matter how simple
or complex the configurations under consideration are, the
same machinery described below works for all.

We assume the reader is familiar with basic concepts
of algebraic specification and first-order logic. Given an
algebraic signature Σ, we let TΣ denote the initial Σ-algebra
of ground terms (i.e., terms without variables) and let TΣ(Var)
denote the free Σ-algebra of terms with variables in Var.
TΣ,s(Var) is the set of Σ-terms of sort s. Maps ρ : Var → T
with T a Σ-algebra extend uniquely to (homonymous) Σ-
algebra morphisms ρ : TΣ(Var)→ T . These notions extend
to algebraic specifications. Many mathematical structures
needed for language semantics have been defined as initial Σ-
algebras: boolean algebras, natural/integer/rational numbers,
lists, sets, bags (or multisets), maps (e.g., for states, heaps),
trees, queues, stacks, etc. We refer the reader to the CASL
[20] and Maude [6] manuals for examples.

Let us fix the following: (1) an algebraic signature Σ, as-
sociated to some desired configuration syntax, with distin-
guished sort Cfg, (2) a sort-wise infinite set of variables Var,
and (3) a Σ-algebra T , the configuration model, which may
but needs not necessarily be the initial or free Σ-algebra. As
usual, TCfg denotes the elements of T of sort Cfg, which
we call configurations. In Section 7, we prove the relative
completeness of our proof system w.r.t. such an arbitrary but
fixed configuration model (with some additional constraints).

Definition 1. [30] A matching logic formula, or a pattern,
is a first-order logic (FOL) formula which allows terms in
TΣ,Cfg(Var), called basic patterns, as predicates. We define
the satisfaction (γ, ρ) |= ϕ over configurations γ ∈ TCfg,
valuations ρ : Var → T and patterns ϕ as follows (among
the FOL constructs, we only show ∃):

(γ, ρ) |= ∃X ϕ iff (γ, ρ′) |= ϕ for some ρ′ : Var→ T with
ρ′(y) = ρ(y) for all y ∈ Var\X

(γ, ρ) |= π iff γ = ρ(π) , where π ∈ TΣ,Cfg(Var)

A pattern ϕ is valid, written |= ϕ, when (γ, ρ) |= ϕ for all
γ ∈ TCfg and all ρ : Var→ T .

A basic pattern π is satisfied by all the configurations γ that
match it; the ρ in (γ, ρ) |= π can be thought of as the “witness”
of the matching, and can be further constrained in a pattern. If
SUM is the code “s:=0; while(n>0)(s:=s+n; n:=n-1)”
in a simple imperative language with configurations 〈code,σ〉
e.g., then the pattern ∃s (〈 SUM, (s 7→ s, n 7→n) 〉 ∧ n ≥Int 0)
matches the configurations with code SUM and state binding
program variables s and n to integers s and respectively
n ≥Int 0. We typically use typewriter for program variables
and italic for mathematical variables in Var. Pattern reasoning
reduces to FOL reasoning in the configuration model T :

Definition 2. Let � be a special fresh Cfg variable, which
is not in Var, and let Var� be the extended set of variables
Var∪{�}. For a pattern ϕ, let ϕ� be the FOL formula obtained
by replacing basic patterns π ∈ TΣ,Cfg(Var) with equalities
� = π. If γ ∈TCfg and ρ : Var→T , then let ργ : Var�→T be
the valuation which extends ρ by mapping � into γ: ργ(�) = γ
and ργ(x) = ρ(x) for all x ∈ Var. To highlight the semantic
indistinguishability between matching logic patterns with
variables in Var and the corresponding fragment of FOL with
variables in Var�, we take the freedom to write (γ, ρ) |= ϕ� in
the FOL fragment, too, instead of ργ |= ϕ�. A matching logic
(respectively FOL) formula ψ is patternless iff it contains no
basic pattern (respectively no � variable), that is, ψ = ψ�.

The following proposition states that the notation in Defi-
nition 2 is consistent:

Proposition 1. If ϕ is a matching logic pattern, γ∈TCfg and
ρ : Var→ T , then (γ, ρ) |= ϕ (notation in Definition 1) iff
(γ, ρ) |= ϕ� (notation in Definition 2). Also |= ϕ iff T |= ϕ�.

Therefore, patterns form a methodological fragment of
the FOL theory of T , so we can use conventional theorem
provers or proof assistants for pattern reasoning. It is often
technically convenient to eliminate the special � variable
from a FOL formula ϕ� corresponding to a matching logic
pattern ϕ. This can be done by replacing �with a Cfg variable
c ∈ Var (possibly which does not occur free in ϕ): indeed,
ϕ�[c/�] is patternless.

Lemma 1. If ϕ is a pattern, c ∈ Var is a Cfg variable, and
ρ :Var→T a valuation, then (ρ(c), ρ) |= ϕ� iff ρ |= ϕ�[c/�].

Not all patterns are equally meaningful. For example, the
pattern true is matched by all configurations, the pattern
false is matched by no configurations, some patterns are
always matched by precisely one configuration γ regardless
of the valuation ρ, others are sometimes by matched by some
configurations for some valuations, etc. For our subsequent
results, we are interested in well-definedness of patterns:

Definition 3. A pattern ϕ is weakly well-defined iff for any
valuation ρ : Var→ T there is some configuration γ ∈ TCfg

such that (γ, ρ) |= ϕ, and it is well-defined iff γ is unique.

Id F C identifiers
Nat F domain of natural numbers (including operations)
Int F domain of integer numbers (including operations)

Type F int | struct Id | Type *
Code F the entire remaining syntax of the C fragment

Env F MapId,Int
TEnv F MapId,Type
Cell F 〈MapId,ListType×Id

〉struct

| 〈MapId,ListType×Id×K〉funs

| 〈Code〉k
| 〈Env〉env

| 〈TEnv〉tenv

| 〈Id〉fname

| 〈ListId×K×Env×TEnv〉stack

| 〈MapNat,Int〉heap

| 〈ListInt〉in

| 〈ListInt〉out

Cfg F 〈BagCell〉cfg

Figure 6. Sample configuration

For example, all basic patterns π are well-defined, while
patterns of the form π1 ∨ π2 are weakly well-defined. Well-
defined patterns have the following property

Lemma 2. If ϕ is well-defined and c1, c2 ∈ Var are two Cfg
variables, then |= ϕ�[c1/�] ∧ ϕ�[c2/�]→ c1 = c2.

4.2 An Instance
Here we discuss a simple but non-trivial instance of matching
logic for an idealized fragment of the C language. The reason
we do not choose a trivial language is because we want to
reiterate that matching logic, as well as all the notions and
results presented in this paper, are totally agnostic to the
language under consideration and to its complexity.

To obtain a matching logic instance, one needs to provide
a syntax (as a signature Σ) and a model (as a Σ-algebra)
for that language’s configurations. We make use of common
algebraic structures like lists, sets, bags, and maps over any
sorts, including other lists, sets, etc., by simply mentioning
their sorts as subscripts. For example, MapBagNat ,Int×Int is the
sort corresponding to maps taking bags of naturals to pairs of
integers. For notational simplicity, we (ambiguously) use a
central dot “·” (read “nothing”) for the units of all lists, sets,
bags, maps, etc., a comma “,” or a whitespace “�” for their
concatenation, and an infix “ 7→” for building map terms.

Figure 6 shows the configuration syntax of our chosen lan-
guage. We only consider integer, structure and pointer types.
The sort Code is a generic sort for “code” and comprises the
entire language syntax; thus, terms of sort Code correspond
to fragments of program. Environments are terms of sort Env
and are maps from identifiers to integers. Type environments
in TEnv map identifiers to types. A configuration is a term
〈...〉cfg of sort Cfg containing a bag of cells. In addition to
〈...〉k, 〈...〉env and 〈...〉tenv holding a program fragment, an en-

vironment and a type environment, 〈...〉cfg also includes the
following cells: 〈...〉struct holds the available structures as a
map from data structure names to lists of typed fields; 〈...〉funs

holds the available functions as a map from function names
to their arguments and body; 〈...〉fname holds the name of the
current function; 〈...〉stack holds the function stack as a list of
frames, each containing a function name and its execution
context (the remaining code, the environment and the type
environment); 〈...〉heap holds the heap as a map from natural
numbers (pointers) to integers (values); 〈...〉in holds the input
buffer as a list of integers; and 〈...〉out holds the output buffer.

Let Σ be the algebraic signature associated to the configu-
ration syntax discussed above (it is well-known that an alge-
braic signature can be associated to any context-free grammar,
by associating one sort to each non-terminal and one oper-
ation symbol to each production). A Σ-algebra then gives a
configuration model, namely a universe of concrete language
configurations. Let us assume that T is such a configuration
model. We do not bother to define T concretely, because its
details are irrelevant. Note, however, that T must include
submodels of natural and integer numbers, of maps, lists, etc.
Moreover, to state properties like those in Section 8, Σ needs
to contain operator symbols corresponding to lists of integer
numbers and append and reverse on them, for membership
testing of integers to such lists, etc. Also, to meaningfully
reason about programs in our language, T needs to satisfy
certain expected properties of these operation symbols, e.g.:

rev(nil) = nil
rev([a]) = [a]

rev(A1@A2) = rev(A2)@rev(A1)
in(a, nil) = false
in(a, [b]) = (a = b)

in(a,A1@A2) = in(a,A1) ∨ in(a,A2)
〈n1 7→ i1, n2 7→ i2, σ〉heap → n1 , n2

We next give some examples of patterns for our Σ. Given
program variable x (i.e., a constant of sort Id), the pattern

∃c :BagCell, e :Env 〈〈x 7→ 5, e〉env c〉cfg

specifies those program configurations in which x is bound
to 5 in the environment. Similarly, the pattern
∃c :BagCell, e :Env, i : Int (〈〈x 7→ i, e〉env c〉cfg ∧ i ≥ 0)

specifies the configurations where x is bound to a positive
integer. The next says that x is bound to an allocated location

∃c :BagCell, e :Env, p :Nat, i : Int, σ :MapNat,Int
〈〈x 7→ p, e〉env 〈p 7→ i, σ〉heap c〉cfg

while the pattern
∃c :BagCell, e :Env, p :Nat, i : Int
〈〈x 7→ p, e〉env 〈p 7→ i〉heap c〉cfg

says that the location x is bound to is the only one allocated.
Matching logic allows us to write specifications referring

to data located arbitrarily deep in the configuration, at the
same time allowing us to use existential variables to abstract
away irrelevant parts of the configuration. To simplify writing,
we adopt the following notational conventions:

Notation 1. Variables starting with a “?” are assumed
existentially quantified over the entire pattern and thus need
not be declared. The sorts of variables are inferred from
their use context. Existentially quantified variables which
appear only once in the pattern are replaced by an underscore
(anonymous variable) “_” or by “...”. Cells mentioned only
for structural matching can be omitted when their presence is
understood; e.g., if e is an environment and ψ a FOL formula,
we may write 〈e〉env ∧ ψ instead of 〈〈e〉env ...〉cfg ∧ ψ.

With these notational conventions, the patterns above become:
〈x 7→ 5 ...〉env

〈x 7→?i ...〉env ∧ ?i ≥ 0
〈x 7→?p ...〉env 〈?p 7→ _ ...〉heap

〈x 7→?p ...〉env 〈?p 7→ _〉heap

We further illustrate the expressiveness of matching logic
with a few more pattern examples. The next says that program
variables x and y are aliased and point to an existing location:

〈x 7→?p, y 7→?p ...〉env 〈?p 7→ _ ...〉heap

The following patterns specify configurations where pro-
gram variable x is bound to the last integer that has been
output (located to the right of the output cell), and config-
urations in which only one integer has been output and no
program variable is bound to that integer, respectively:

〈x 7→?i ...〉env 〈... ?i〉out

〈e〉env 〈?i〉out ∧ ?i < Codom(e)

The following pattern says that the current function is f
and it has been called directly by g (stack’s top is to the left):

〈f〉fname 〈(g, _, _, _) ...〉stack

The following pattern is more complex:

〈x 7→?p ...〉env 〈f〉fname 〈... (g, _, x 7→?p ..., x 7→ _* ...) ...〉stack

It says that the current function is f, that it has been called
directly or indirectly by g, and that when g was called the
program variable x had a pointer type and was bound to the
same location (?p) it is also bound now in f’s environment.

Assuming that γ is a configuration of T of the form
〈〈x 7→ 5, y 7→ 5〉env 〈5 7→ 7〉heap 〈3, 5〉out ...〉cfg, then γmatches
all the following patterns:

π1 ≡ 〈x 7→ 5 ...〉env

π2 ≡ 〈x 7→?i ...〉env ∧ ?i ≥ 0
π3 ≡ 〈x 7→?p ...〉env 〈?p 7→ _ ...〉heap

π4 ≡ 〈x 7→?p ...〉env 〈?p 7→ _〉heap

π5 ≡ 〈x 7→?p, y 7→?p ...〉env 〈?p 7→ _ ...〉heap

π6 ≡ 〈x 7→?i ...〉env 〈... ?i〉out

Moreover, |= π1 → π2, |= π3 → π2, |= π4 → π3, |= π5 → π3,
and, assuming thatT correctly defines the claimed maps, lists,
etc., |= π1 ∧ π5 ∧ π6 → 〈y 7→ 5 ...〉env 〈5 7→ _ ...〉heap 〈... 5〉out.

In addition to usual FOL abstractions, matching logic also
allows us to introduce and axiomatize situations of interest
as operations (instead of predicates). For example, we next
show the list heap abstraction (part of the MatchC library)

which was used, together with other similar abstractions, to
verify the programs in Section 8. It abstracts heap subterms
into list terms and captures two cases, one in which the list is
empty and the other in which it has at least one element.

〈〈list(p)(α), σ〉heap c〉cfg

↔ 〈〈σ〉heap c〉cfg ∧ p = 0 ∧ α = nil
∨ ∃a, q, β (〈〈p 7→ [a, q], list(q)(β), σ〉heap c〉cfg ∧ α= [a]@β)

One can now use this axiom to perform reasoning like below:

〈〈1 7→ 5, 2 7→ 0, 7 7→ 9, 8 7→ 1, σ〉heap c〉cfg

↔ 〈〈1 7→ 5, 2 7→ 0, list(0)([]), 7 7→ 9, 8 7→ 1, σ〉heap c〉cfg

↔ 〈〈list(1)([5]), 7 7→ 9, 8 7→ 1, σ〉heap c〉cfg

→ 〈〈list(7)([9, 5]), σ〉heap c〉cfg

↔ ∃q 〈〈7 7→ 9, 8 7→ q, q 7→ 5, q+1 7→ 0, σ〉heap c〉cfg

4.3 Relationship to Separation Logic
Separation logic [23, 25] is a popular choice for specify-
ing heap properties. Its main strength is the separation con-
junction “∗”, which allows for modular reasoning. Although
matching logic is not particularly concerned with specify-
ing heap properties, the previous section showed many such
properties and thus begs for a formal relationship between
separation logic and matching logic. Here we present an
instance of matching logic, for a particular heap-centric con-
figuration signature and model, together with a mechanical
translation of separation logic formulae into semantically
equivalent patterns in the matching logic instance. There are
many variations of separation logic. Here we consider first-
order separation logic over integers, as presented in [23], but
we believe that similar embeddings can be obtained for other
variants. Formally, separation logic extends the first-order
theory of integers with the following constructs:

• emp, the atomic predicate specifying the empty heap.
• t1 7→ t2, the atomic predicate specifying the singleton

heap mapping the natural number (thought of as a mem-
ory location) represented by t1 into the integer number
represented by t2.
• P1 ∗P2, the formula specifying the separation conjunction

of two formulae, that is, that the heap can be split into two
disjoint heaps satisfying P1 and respectively P2.

For simplicity, we do not consider the separation implication
P1−∗P2 here. The satisfaction of a separation logic formula P
is given over a valuation s of the variables in P and a heap h,
i.e., a partial function from naturals to integers. Specifically,
as in [23, 25], the satisfaction of “spatial” formulae depends
on both s and h, while that of “pure” formulae depends only
on s (that is, is independent of h).

To establish the relation between separation logic and
matching logic, for the remaining of this subsection we fix
the following signature Σ with five sorts and only one cell:

NatF domain of natural numbers (including operations)
IntF domain of integer numbers (including operations)

BoolF domain of Booleans
HeapFMapNat,Int (domain of heaps represented as finite

mappings from naturals into integers)
CfgF 〈Heap〉heap

As in the previous section, we use “,” for the map concate-
nation and “.” for the map unit. To Σ we associate a model T
consisting of a model of natural numbers, a model of the inte-
ger numbers, a model of heaps, and a model of configurations
(which are just heaps wrapped into a cell). We assume there is
a special element ⊥ in T standing for “error”. All operations
with at least one argument ⊥ evaluate to ⊥. Equality between
⊥ and any other element does not hold. Valuations do not take
any variables into ⊥. The model of heaps has the important
property that the concatenation of two maps with non-disjoint
domains is ⊥. Since separation logic cannot quantify over
heap variables, if ρ : Var→ T is a valuation then we let ρ be
the restriction of ρ to natural and integer variables.

Let σ, σ′, σ1, σ2, . . . be Heap variables in Var which
do not occur in P. Given a separation logic formula P, we
construct an equivalent matching logic formula over Σ

S2M(P) ≡ ∃σ(〈σ〉heap ∧ ψ)

where ψ is a patternless formula. Intuitively, σ stands for the
heap which ψ constrains. The construction is based on the
syntactic structure of P, and somewhat mimics the definition
of satisfaction for separation logic formulae:

• S2M(∀xP): let S2M(P) be ∃σ(〈σ〉heap ∧ ψ). Then
S2M(∀xP) ≡ ∃σ(〈σ〉heap ∧ ∀x ψ)

• S2M(P1 → P2): let S2M(P1) be ∃σ1(〈σ1〉heap ∧ ψ1) and
S2M(P2) be ∃σ2(〈σ2〉heap ∧ ψ2). Then we define

S2M(P1 → P2)
≡ ∃σ(〈σ〉heap ∧ ∃σ1∃σ2(σ = σ1 ∧ σ = σ2 ∧ (ψ1 → ψ2)))

Notice that the equalities σ = σ1 and σ = σ2 ensure that
ψ1 and ψ2 constrain the same heap.
• S2M(p(t1, . . . , tn)), where p is a “pure” predicate (one

which is not interpreted over the heap, like “=” or “≤”):

S2M(p(t1, . . . , tn)) ≡ ∃σ(〈σ〉heap ∧ p(t1, . . . , tn))

We used the same notation for the pure predicate and the
corresponding Boolean algebraic operator.
• S2M(false): we define

S2M(false) ≡ ∃σ(〈σ〉heap ∧ false)

• S2M(P1 ∗ P2): let S2M(P1) be ∃σ1(〈σ1〉heap ∧ ψ1) and
S2M(P2) be ∃σ2(〈σ2〉heap ∧ ψ2). Then we define

S2M(P1 ∗ P2)
≡ ∃σ(〈σ〉heap ∧ ∃σ1∃σ2(σ = (σ1, σ2) ∧ ψ1 ∧ ψ2))

Note that the equality σ = (σ1, σ2) holds in T under some
valuation ρ only if (ρ(σ1), ρ(σ2)) is a proper heap, that is,
only if the domains of ρ(σ1) and ρ(σ2) are disjoint.
• S2M(x 7→ y): we define

S2M(t1 7→ t2) ≡ ∃σ(〈σ〉heap ∧ σ = (t1 7→ t2))

We use the same notation for the separation logic predicate
t1 7→ t2 and the algebraic map constructor t1 7→ t2.
• S2M(emp): we define (recall that · is the map unit)

S2M(emp) ≡ ∃σ(〈σ〉heap ∧ σ = ·)

To illustrate the transformation, consider the separation
logic formula P = x 7→ a ∗ y 7→ b ∧ a , b. By applying the
transformation we have S2M(P) to be

∃σ(〈σ〉heap ∧ ∃σ1∃σ2(σ = σ1 ∧ σ = σ2 ∧ a , b
∧∃σ3∃σ4(σ1 = (σ3, σ4) ∧ σ3 = (x 7→ a) ∧ σ4 = (y 7→ b))))

However, after eliminating the existential quantifiers via
substitution, we obtain the equivalent matching logic formula

〈x 7→ a, y 7→ b〉heap ∧ a , b

For this reason, in practice we do not encourage the use of
the transformation for generating matching logic formulae,
but rather directly writing the matching logic formulae.

The following proposition formally captures the relation-
ship between the version of separation logic considered here
and the matching logic over Σ and T .

Proposition 2. If P is a separation logic formula, h ∈ THeap

is a heap and ρ : Var → T is a valuation, then (ρ, h) |= P
(in separation logic) iff (〈h〉heap, ρ) |= S2M(P) (in matching
logic). Consequently, |= P (in separation logic) iff |= S2M(P)
(in matching logic).

Although insightful, the result above is not surprising. In-
deed, matching logic has the luxury of instantiating itself
with any configuration signature and any model of configura-
tions, in particular with ones that capture the precise syntax
and semantics of heaps, while separation logic and its vari-
ations come with fixed such signatures and models. There-
fore, the main conceptual difference between separation logic
and matching logic is that the former achieves separation by
means of special logical connectives and appropriate mathe-
matical domains to interpret those, while the latter achieves
separation by structural means, at the level of terms instead
of modifying the logic, but with the help of an appropriately
defined model of configurations. Matching logic thus has
the advantage that we do not need to modify the underlying
logic with each language extension that requires new seman-
tic components to be added to the configuration, but that does
not come for free: one still has to carefully construct one’s
configuration model with the desired properties.

5. Reachability Rules
In Section 4 we showed how one matching logic pattern ϕ
specifies all the configurations γ that match it. Here we ex-
tend specifications to pairs of patterns, called reachability
rules and written ϕ ⇒ ϕ′, which specify all pairs of config-
urations that simultaneously match both patterns. The two
configurations in each such pair can be thought of as being
related by the reachability relation in the transition system
corresponding to the (operational semantics of the) language
under consideration. Moreover, the transition system itself
can be defined in terms of reachability rules, which are inter-
preted as one-step transitions. Reduction semantics [33] and
rewriting logic [19] are perhaps the most established logical
formalisms whose basic sequents are statements of the form
t ⇒ t′, where t and t′ are terms with variables specifying
one-step transitions or reachability in the transition system
associated to a reduction or rewrite system. Since matching
logic patterns extend terms with logical constraints, such
pairs of unconstrained terms are therefore special instances
of reachability rules. We next recall notions related to reacha-
bility rules from [28, 29], and add a few new ones needed to
state and prove our new soundness and completeness results.

Definition 4. A reachability rule is a pair ϕ⇒ ϕ′, where ϕ
and ϕ′ are patterns (which can have free variables). A reach-
ability system is a set of reachability rules. A reachability
system S induces a transition system (T ,⇒T

S
) on the config-

uration model: γ ⇒T
S
γ′ for γ, γ′ ∈ TCfg iff there is a ϕ⇒ ϕ′

in S and a ρ : Var→ T with (γ, ρ) |= ϕ and (γ′, ρ) |= ϕ′.

There is overwhelming evidence that languages and cal-
culi can be given operational semantics based on rewrite (or
reduction) rules of the form “l ⇒ r if b”, where l and r are
configuration terms with variables constrained by boolean
condition b. One of the most popular approaches is reduc-
tion semantics with evaluation contexts [11, 12], with rules
“c[t] ⇒ c[t′] if b”, where c is an evaluation context, t is the
redex which reduces to t′, and b a side condition. Another
approach is the chemical abstract machine [3], where l is a
chemical solution that reacts into r under condition b. The
rewriting logic semantics framework K [26] is yet another
approach, based on plain (no evaluation contexts) rewrite
rules of the form “l ⇒ r if b”. Finally, higher-order logic
is also a successful framework for defining operational se-
mantics [4, 16], and it is technically the most powerful of all
the above. While we currently limit ourselves to FOL, there
is nothing to prevent higher-order extensions of matching
logic. Tools, techniques and methodologies supporting such
operational semantics, like Redex, Maude and the K tool
among others, as well as large languages defined using these
(e.g., the C semantics [10] exceeds 1,000 such rules), stand
as proof that this is not only possible, but also practical. Such
rules can all be expressed as matching logic reachability rules
l∧b⇒ r, allowing to regard operational semantics following
these approaches as matching logic reachability systems.

Generic, language-independent notions of termination and
finite-branching are needed for the partial correctness and for
the relative completeness results, respectively:

Definition 5. Configuration γ ∈ TCfg terminates in (T ,⇒T
S

)
iff there is no infinite⇒T

S
-sequence starting with γ. Configu-

ration γ ∈ TCfg is finite-branching iff the set {γ′ | γ ⇒T
S
γ′}

is finite. Reachability system S is finite-branching iff so is
each configuration γ ∈ TCfg.

Finite-branching will be critical for proving the relative
completeness of our proof system, since it will allow us to
encode non-termination as a FOL predicate: a configuration
γ does not terminate iff for any n there exists of path of length
n starting with γ. An example of an infinite-branching rule is
one defining a random expression construct with a reduction
rule of the form 〈random〉 ⇒ 〈n〉 (assume a trivial language
whose configuration holds only an expression) where n is
a variable ranging over an idealistic (infinite) domain of
natural numbers. One could devise criteria that guarantee
finite-branching, such as allowing fresh variables in the right-
hand sides (RHS) of rules (i.e., ones which do not appear in
the rule’s LHS) only if they range over finite domains, etc.,
but these are beyond the scope of this paper.

Definition 6. A reachability rule ϕ ⇒ ϕ′ is weakly well-
defined, respectively well-defined, iff ϕ′ is weakly well-
defined, respectively well-defined (recall Definition 3). Reach-
ability system S is (weakly) well-defined iff each rule is
(weakly) well-defined, and is finite-branching iff so is each
configuration γ ∈ TCfg.

Operational semantics defined with rules “l⇒ r if b” are
particular well-defined reachability systems with rules of
the form l ∧ b ⇒ r, because r is a basic pattern and basic
patterns are well-defined. One example of a properly weakly
well-defined rule is one of the form ϕ ⇒ ϕ1 ∨ ϕ2, where
(γ1, ρ) |= ϕ1 and (γ2, ρ) |= ϕ2 for two different configurations
γ1 and γ2 (however, note that such disjunctive rules can be
replaced with two rules). An example of a rule ϕ⇒ ϕ′ which
is not weakly well-defined is one where ϕ′ is not satisfiable,
for example ϕ′ ≡ false. Such non-well-defined rules are
unlikely to appear in any meaningful operational semantics,
but nevertheless, we do not want to impose any particular
style or methodology to define operational semantics in this
paper and instead prefer to prove our generic soundness and
completeness results as generally as possible. Weak well-
definedness will be required for the soundness of our proof
system and well-definedness for our completeness result.

Note that there is no relationships between finite branching
and well-definedness. For example, the rule 〈random〉 ⇒ 〈n〉
above is well-defined but not finite branching, while the rules
ϕ ⇒ ϕ1 ∨ ϕ2 and ϕ ⇒ false are finite branching but not
well-defined (the latter is not even weakly well defined).

Reachability rules can specify not only operational se-
mantics of languages, but also program properties. In fact,
each Hoare triple can be regarded as a particular reachability

rule [29], although the translation needs to be mechanized
separately for each language. For example, the property of
the SUM program mentioned in Section 4.1 in the context of a
simple imperative language with configurations of the form
〈code,σ〉 would be

∃s (〈SUM, (s 7→ s, n 7→ n)〉 ∧ n ≥Int 0)
⇒ 〈skip, (s 7→ n ∗Int (n +Int 1)/Int2, n 7→ 0)〉

Unlike Hoare triples, which only specify properties about
final program states, reachability rules can also specify inter-
mediate state properties. Hoare triples correspond to reacha-
bility rules whose basic right-hand pattern holds the empty
code, like the one above. Semantic validity in matching logic
captures the same intuition of partial correctness as Hoare
logic, but in more general terms of reachability:

Definition 7. Let S be a reachability system and ϕ ⇒ ϕ′ a
reachability rule. We define S |= ϕ⇒ ϕ′ iff for all γ ∈ TCfg

such that γ terminates in (T ,⇒T
S

) and for all ρ : Var → T
such that (γ, ρ) |= ϕ, there exists some γ′ ∈ TCfg such that
γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ′.

If ϕ′ holds the empty code, then so does γ′ in the definition
above, and in that case γ′ is unique and thus we recover the
Hoare validity as a special case.

6. Language-Independent Proof System
Figure 7 shows our language-independent matching logic
proof system for reachability. It derives sequents of the form
A `C ϕ⇒ ϕ′, whereA and C are sets of reachability rules.
Initially,A contains the operational semantics of the target
language, given as a set of (one-step) reachability rules, and
C is empty. We call the rules in C circularities. When C is
empty, we write the sequent as A ` ϕ ⇒ ϕ′. The intuition
for a sequent A `C ϕ ⇒ ϕ′ is that the reachability rule
ϕ ⇒ ϕ′ holds under the hypothesesA and C, provided that
the first step is always one fromA whenever C is non-empty.
In other words, the existence of a (non-empty) C in a sequent
A `C ϕ ⇒ ϕ′ requires its derivation to start with a trusted
step, that is, a step corresponding to a trusted rule inA, and
then to continue unrestricted using steps from bothA and C.

The proof rules Axiom, Reflexivity, and Transitivity have
an operational nature and their role is mainly to (symboli-
cally) execute operational semantics. Note how they properly
capture the intuition of our sequents: Axiom initiates the
trusted steps, Reflexivity is only allowed when C is empty,
and Transitivity requires at least one first trusted step with
axioms in A, followed by unrestricted use of rules in both
A and C as axioms. Logic Framing allows the deduction
of reachability to take place in context, but only when the
context is patternless. In other words, it is safe to add more
logical constraints on existing reachability properties, but it
is unsafe to add more structural constraints. We let it as an
exercise to the reader to note why it would be unsafe to allow
structural constraints in frames. Consequence, Case Analy-
sis and Abstraction are reminiscent to homonymous proof

Axiom :

ϕ⇒ ϕ′ ∈ A

A `C ϕ⇒ ϕ′

Reflexivity :
·

A ` ϕ⇒ ϕ

Transitivity :

A `C ϕ1 ⇒
+ ϕ2 A∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

Logic Framing :

A `C ϕ⇒ ϕ′ ψ is a (patternless) FOL formula
A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Consequence :

|= ϕ1 → ϕ′1 A `C ϕ
′
1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1 ⇒ ϕ2

Case Analysis :
A `C ϕ1 ⇒ ϕ A `C ϕ2 ⇒ ϕ

A `C ϕ1 ∨ ϕ2 ⇒ ϕ

Abstraction :

A `C ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅

A `C ∃X ϕ⇒ ϕ′

Circularity :

A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Figure 7. Matching logic proof system for reachability
(eight language-independent proof rules). The use of ⇒+

in sequent means that it was derived without Reflexivity.

rules that appear in Hoare logic proof systems. The latter
two can typically be proved in Hoare logics, by structural
induction on the language syntax, but they are necessary in
our language-independent system.

The Circularity proof rule has an inductive/coinductive
nature and captures the various circular behaviors that appear
in languages, due to loops, recursion, etc. Circularity allows
us to make a claim of circular behavior at any moment during
a proof derivation. The claim holds if we succeed to prove it
... using itself. What makes such a reasoning well-founded
and thus sound is the fact that the circularity claim will
only be allowed to be used after at least one trusted step.
In concrete instances, that trusted step is typically a loop
unrolling, or a function invocation, or a jump, etc., as given
by the operational semantics of the language.

The proof system in Figure 7 is clearly agnostic to the
particular operational approach or style used to define the
target language. In Section 8 we describe our particular

〈

〈··· x 7→ ?x, p 7→ ?p, y 7→ ?y ···〉env

〈··· list(?p)(?B), list(?x)(?C) ···〉heap

〈 if(x != NULL) {
y = x->next;
x->next = p;
p = x;
x = y;

} ···〉k
···

〉cfg ∧ A = rev(?B)@?C
⇒

〈

〈··· x 7→ ?x, p 7→ ?p, y 7→ ?y ···〉env

〈··· list(?p)(?B), list(?x)(?C) ···〉heap

〈···〉k

···

〉cfg ∧ A = rev(?B)@?C

Figure 8. Matching logic reachability rule derivable with
the first seven rules of the proof system in Figure 7 with S
the operational semantics of the considered fragment of C.
The ellipses in each pattern stand for distinct free variables,
assumed the same on the corresponding positions in the
left-hand-side and the right-hand-side.The “?” variables are
existentially quantified over each pattern.

use of the proof system in the MatchC program verifier,
using a K semantics of the C fragment, highlighting both its
expressiveness and its potential for automation in a non-trivial
language instance. Other language instances are certainly
needed in order to validate the effectiveness of our proof
system in other language paradigms. In particular, we are
investigating its use in the context of a substitution-based
reduction semantics definition of a functional language; the
proof derivations appear to be simpler than for the language
considered here. These results will be reported elsewhere.

6.1 Derived Proof Rules
In this section we give several derived rules that turned out to
be useful in practice or in proofs. To save space, we formulate
them as lemmas instead of as proof rules. The most important
one is Lemma 4 (Substitution).

Lemma 3. IfA `C ϕ⇒ ϕ′ thenA `C ∃X ϕ⇒ ∃X ϕ′.

Lemma 4. (Substitution) If A `C ϕ⇒ ϕ′ is derivable and
θ : Var→ TΣ(Var), thenA`C θ(ϕ)⇒θ(ϕ′) is also derivable.

Lemma 5. Suppose that A ⊆ A′. If A `C ϕ ⇒ ϕ′ then
A′ `C ϕ⇒ ϕ′, and ifA `C ϕ⇒+ ϕ′ thenA′ `C ϕ⇒+ ϕ′.

Lemma 6. IfA `C ϕ⇒+ϕ′ and C ⊆ C′ thenA `C′ ϕ⇒+ϕ′.

6.2 Examples
Here we show how the proof system in Figure 7 allows us to
derive program properties expressed as reachability rules.

First, let us consider the first seven proof rules and the
Substitution proof rule (which is derived from the first seven).

We can use them for symbolic execution/reasoning with the
operational semantics of the language. However, as seen in
Example 1, they are not sufficient to derive circular behaviors.

Example 1. Let us consider the while loop in function
reverseList discussed earlier (Figure 2), modified to only
iterate at most once, that is, modified into a conditional,
and let us show that it satisfies the claimed invariant. More
precisely, let us prove the reachability rule in Figure 8, say
∃Xϕ ⇒ ∃Xϕ′, where X = {?x, ?p, ?p, ?B, ?C}. Recall that,
by convention, the “?” variables are existentially quantified
over their corresponding patterns. The matching logic rule in
Figure 8 looks different from the invariant in Figure 2 because
of two MatchC notations: first, MatchC desugars invariants
inv ϕ loop into matching logic rules ϕ[loop...] ⇒ ϕ[...] ∧
¬cond(loop) (see Section 8), where ϕ[code] is the pattern
obtained from ϕ by setting the contents of 〈...〉k to code;
second, as explained in Section 3, MatchC allows to refer
directly to program variable x instead of logical variable
?x, generating automatically the environment cell containing
bindings of the form x 7→ ?x. Since here we want to
illustrate a formal proof, we completely desugar the MatchC
notation in Figure 2. We first derive ϕ ⇒ ∃Xϕ′ and then
the desired rule follows by Abstraction. It suffices to derive
ϕ ∧ ?x = 0 ⇒ ∃Xϕ′ and ϕ ∧ ?x , 0 ⇒ ∃Xϕ′, and then use
Case analysis and Consequence to derive ϕ⇒ ∃Xϕ′.

• For the former, we iteratively use the semantic rules of the
considered fragment of C via Axiom, Substitution, and
Logical Framing, together with FOL reasoning via Conse-
quence and with the Transitivity rule, until the condition
of if evaluates to 0 and then the if statement dissolves
(its else branch is empty), thus obtaining ϕ ∧ ?x = 0⇒
ϕ′ ∧ ?x = 0. The derivation of ϕ ∧ ?x = 0 ⇒ ∃Xϕ′ fol-
lows via Consequence, since |= ϕ′∧?x = 0→ ∃Xϕ′. Here
we are deliberately agnostic to how the semantic rules of
the language are defined, to avoid bias for any particular
operational semantics approach. In Section 8 we discuss
our MatchC implementation, which uses K [26].
• For the latter, we also use Axiom, Substitution, Logical

Framing, Consequence and Transitivity until the condition
of if evaluates to ?x , 0, then we apply the semantics
of if and take the then branch. To continue with the
execution of the other statements, we need to apply the
list axiom in Section 4.2 from left-to-right; FOL reasoning
eliminates the case when the list is empty (since ?x , 0).
Then Abstraction allows us to assume fresh variables a, q
and β like in the axiom of lists and thus we can continue
the execution. After the block terminates, we get:

〈

〈··· x 7→ q, p 7→ ?x, y 7→ q ···〉env

〈··· list(?p)(?B), ?x 7→ [a, ?p], list(q)(β) ···〉heap

〈···〉k

···

〉cfg ∧ ?C = [a]@β ∧ A = rev(?B)@?C

Let ϕ′′ denote this pattern. We can now again use FOL
reasoning, this time applying the list axiom from right-
to-left and using properties of the configuration model T
(like those in Section 4.2), and derive ϕ′′ ⇒ ∃Xϕ′.

If we had not modified the while loop into an if conditional
in the ϕ pattern above, then the second case above would
have started by first applying the operational semantics of the
while loop, namely unrolling into an if, and then the proof
would have followed similarly until a pattern like the ϕ′′

above was reached, but one where the 〈...〉k cell contains the
original while loop. Next one can either continue to unroll
the loop or one can conclude, similarly to the above, that
ϕ′′ ⇒ ∃Xϕ. Unfortunately, none of these would prove the
original goal, ∃Xϕ⇒ ∃Xϕ′.

Next we show how the last rule of the proof system in
Figure 7 can be used to deal with circular behaviors. The
Circularity proof rule allows for a rule to be used in its own
derivation, with certain restrictions. Initially, Circularity adds
the rule to a pending setC. Typically, one or more applications
of Circularity are eventually followed by Transitivity, which
enables the use of the rules in C after at least one step
is performed with the already existing axioms. Intuitively,
Circularity allows a rule to be used in its own derivation only
after progress has been made without it.

Example 2. We show how the Circularity rule can be used to
verify the while loop in function reverseList in Figure 2.
In Example 1, we showed how the first seven rules of the
proof system in Figure 7 can be used to verify that the claimed
loop invariant holds after the execution of the code obtained
by modifying the while loop into an if conditional. Then
we argued that they cannot derive the desired property about
the while loop, essentially because of their lack of reasoning
support for circular behaviors.

Let ∃Xϕ ⇒ ∃Xϕ′ be the desired property, that is, the
matching logic reachability rule in Figure 8 with if modified
into while and with the extra condition ?x = 0 in the right-
hand-side. Since ϕ contains the while loop in its 〈...〉k cell,
we can use the loop unrolling semantics and reduce ϕ into a
pattern that resembles the left-hand-side of the rule in Fig-
ure 8, except that the then branch of the if is followed by the
while loop. Let us call this pattern ϕif. Using Consequence
and Abstraction, we can thus derive S ` ∃Xϕ⇒+ ∃Xϕif.
By Circularity followed by Transitivity, it suffices to derive
S ∪ {∃Xϕ⇒ ∃Xϕ′} ` ∃Xϕif ⇒ ∃Xϕ′. Using a reasoning
sequence similar to the one in Example 1, we can first derive
ϕif ∧ ?x = 0 ⇒ ∃Xϕ′ and then ϕif ∧ ?x , 0 ⇒ ∃Xϕ. We
next use Transitivity and Axiom with ∃Xϕ⇒ ∃Xϕ′ to derive
S ∪ {∃Xϕ⇒ ∃Xϕ′} ` ϕif ∧ ?x , 0⇒ ∃Xϕ′, then Case anal-
ysis to derive S ∪ {∃Xϕ⇒ ∃Xϕ′} ` ϕif ⇒ ∃Xϕ′, and then
Abstraction to derive S ∪ {∃Xϕ⇒ ∃Xϕ′} ` ∃Xϕif ⇒ ∃Xϕ′.

6.3 Partial Correctness
We now state the soundness of our proof system:

Theorem 1. (soundness) Let S be a weakly well-defined
reachability system and let S ` ϕ⇒ ϕ′ be a sequent derived
with the proof system in Figure 7. Then S |= ϕ⇒ ϕ′.

Therefore, once all the circularities are discharged, the
derived reachability rule is semantically valid, in the sense of
partial correctness (Definition 7). Note that this result only
requires that the operational semantics of the target language
is weakly well-defined, a property which is satisfied by all
operational semantics that we are aware of.

Theorem 1 thus allows to formally derive correct proper-
ties of programs based entirely on the operational semantics
of the language, and to produce corresponding formal certifi-
cates under the form of proof objects, without any additional
axiomatic or any other kind of semantics being necessary,
and without any tedious, low-level inductive proofs over the
transition system associated to the operational semantics.

7. Relative Completeness
In this section we show that our proof system for reachability
in Figure 6 is relatively complete. That means that any
reachability property of any program in any (operational
semantics of any) programming language can be formally
derived with the eight proof rules of our system. The relativity
comes from the fact that all our setting, including the proof
system, are parametric in a configuration model. In particular,
the Consequence rule in Figure 6 relies on FOL validity
in the configuration model. Thus, the completeness of our
proof system is relative to an oracle telling whether the
configuration model satisfies a given FOL formula or not.

Before we proceed, let us note that our proof system
cannot be complete without some additional constraints on
the original reachability system S. First, note that although
S was allowed to be infinite in the partial correctness result
(Theorem 1), we need to restrict it to be finite in order to prove
the completeness of our proof system. Consider, for example,
a setting where configurations hold natural numbers, that is,
〈0〉, 〈1〉, 〈2〉, . . . , and where S contains the infinite (although
recursively enumerable) set of rules 〈1〉 ⇒ 〈0〉, 〈2〉 ⇒ 〈0〉,
and so on. Then it is easy to see that S |= 〈n〉 ⇒ 〈0〉, where
n is a variable ranging over natural numbers, but there is no
way to derive S ` 〈n〉 ⇒ 〈0〉. Thus, S is restricted to be finite.
This restriction is of little practical concern in our view, since
operational semantics are expected to be finite, no matter how
complex the target language is.

More restrictions on S are needed. For example, if S
consists of the rule true ⇒ true than the transition system
(T ,⇒T

S
) contains all possible pairs of configurations, so

S |= ϕ ⇒ ϕ′ for all reachability rules ϕ ⇒ ϕ′. On the
other hand, S ` ϕ ⇒ ϕ′ is derivable only when |= ϕ → ϕ′.
Thus, we need to impose further restrictions on S in order for
our proof system to be complete. One could argue that the
problem with the rule true⇒ true is that it does not use any
basic patterns, so it is not finite branching. Consider instead a
finite-branching system consisting only of a rule π⇒ π1∨π2,

where π, π1, π2 are distinct and ground basic patterns, and
whose model of configurations contains precisely these three
configurations. Then it is easy to see that S |= π⇒ π1, since
π1 matches the pattern π1 ∨ π2, but there is no way to derive
S ` π⇒ π1. Thus, finite branching does not suffice. However,
the rule π ⇒ π1 ∨ π2 is not well-defined. We are going to
require that S is both finite-branching and well-defined. We
believe that the finite branching requirement can be avoided,
but were not able to prove the completeness result without it.

In order to formulate the FOL questions that the config-
uration model needs to be asked during the completeness
proof, we also need some minimal support from the signa-
ture and the model of configurations. Specifically, in order
to Gödelize over sequences of configurations, we need to
express Gödel’s β predicate in our FOL, so the configura-
tion signature Σ needs to have a distinct sort N with constant
symbols 0 and 1 and with binary operation symbols + and
×, which are interpreted in the configuration model T as
the domain of natural numbers with corresponding constants
and binary operations. We also need to assume that T can
enumerate its own configurations. The weakest condition we
were able to find in order to achieve that is to assume that Σ

has an operation α : Cfg → N which is interpreted in T as
an injective (one to one) function. To simplify writing, we
deliberately make no distinction between operations in Σ and
their interpretation in T .

To summarize all the discussion above, in the remainder
of of this section we will work under the following

Framework:
The reachability system S is
— non-empty; — finite;
— well-defined; and
— finite branching.
The configuration signature Σ has
— a sort N;
— constant symbols 0 and 1 of N;
— binary operation symbols + and × on N;
— an operation symbol α : Cfg→ N.
The configuration model T interprets
— N as the natural numbers;
— operation symbols on N as corresponding operations;
— α : Cfg→ N as an injective function.

Recall that Var is a sort-wise infinite set of (first-order)
variables, and that � is a special variable of sort Cfg such
that � < Var. Let VarS ⊂ Var be the finite set of variables
appearing free in any of the rules in S. Notice that since � <
Var, it is also the case that � < VarS. We let c, c′, c0, . . . , cn

be distinct variables of sort Cfg in Var \ VarS (that is, these
do not appear free in rules in S). We also let γ, γ′, γ0, . . . , γn

range over (not necessarily distinct) configurations in the
model T , that is, over elements in TCfg, and let ρ, ρ′ range
over valuations Var→ T .

Also recall that, by Proposition 1, matching logic formulae
are a methodological fragment of the FOL theory of the model
T . For technical convenience, in this section we work with the
FOL translations ϕ� instead of the matching logic formulae ϕ.
Moreover, since there is no possibility for confusion, we drop
the � from ϕ�, and we use ϕ to denote the FOL translation.
We mention that in all the formulae used in this section, �
only occurs in the context � = t, thus we stay inside the
methodological fragment.

7.1 Gödelization of Configurations
We use Gödel’s β predicate to encode facts about sequences of
configurations in FOL (see [32] for an accessible introduction
to Gödelization and the β predicate). The predicate β relies
on the reminder of a when divided by b, namely a mod b. We
have that r = a mod b can be defined as

∃d (b × d ≤ a ∧ b × (d + 1) > a ∧ a = b × d + r)

β(a, b, i, x) is the predicate over natural numbers defined as

β(a, b, i, x) ≡ x = a mod 1 + (1 + i) × b

Note that our assumptions about the configuration model T
allow us to express Gödel’s β predicate.

The main role of Gödel’s β predicate is to encode, using
conventional FOL, quantification over finite sequences of
natural numbers. This is due to the following canonical
property of β: if u0, . . . , un is a sequence of natural numbers,
then there exist natural numbers a and b such that for all i with
0 ≤ i ≤ n and x, we have |= β(a, b, i, x) ↔ x = ui; in other
words, a, b and i uniquely identify ui. This allows us to take
sentences ∃u0, . . . , un ϕ, where n is a given natural number
and ϕ a FOL formula, and yield equivalent sentences ∃a, b ϕ,
where ϕ is a FOL formula obtained from ϕ by applying some
systematic translation. As part of this translation, each atomic
predicate p of ϕ is translated into

∃ui1 , . . . , uik (β(a, b, i1, ui1) ∧ · · · ∧ β(a, b, ik, uik) ∧ p)

where ui1 , . . . , uik are all the variables among u0, . . . , un con-
tained by p. The interesting cases are when ∃u0, . . . , un ϕ
occurs in contexts where n itself is existentially or univer-
sally quantified; in those cases, only a fixed (independent of
n) subset of the variables u0, . . . , un can occur in p, which
means that the k above is fixed and independent of n, which
means that ϕ is a correct FOL formula in those contexts.
Thus, thanks to Gödel’s β predicate, statements of the form
∃u0, . . . , un ϕ, which are not proper FOL formulae in con-
texts where n is a quantified variable, can be replaced with
equivalent FOL formulae ∃a, b ϕ.

It can be shown, although the proof is tedious and not
necessary here, that the injectivity of α : Cfg → N allows
us to adapt the result above to sequences of configurations
in T : sentences of the form ∃c0, . . . , cn ϕ, where n is a given
natural number and ϕ a FOL formula, can be systematically

translated into equivalent sentences of the form ∃a, b ϕ, where
ϕ is a FOL formula replacing each atomic predicate p of ϕ
containing variables ci1 , . . . , cik with

∃ci1 , . . . , cik (β(a, b, i1, α(ci1))∧ · · ·∧β(a, b, ik, α(cik))∧ p)

The injectivity of α guarantees that different free occurrences
of the same variable ci in ϕ are correctly related in ϕ. We
only need the particular instance of this general result when
ϕ expresses connectedness of c0, . . . , cn in (T ,⇒T

S
), and we

prove that instance separately (Lemma 9).

7.2 Encoding Transition System Operations in FOL
We introduce the following definitions of: (1) the one step
transition, (2) the transition sequence of length n (n is arbi-
trary but fixed), (3) the infinite transition sequence, (4) the
configurations that reach ϕ, and (5) the configurations that
reach ϕ in at least one step. Except for the first definition
of the step predicate below, which is a proper FOL formula
because S is finite, the definitions below quantify over se-
quences of configurations c0, . . . , cn, so they are not (yet) FOL
formulae. Lemma 9 shows how to Gödelize such sequences
and thus tells us that we can express all these predicates in
FOL. For simplicity, the first three definitions do not allow �
as a parameter. Thus, we cannot directly use pathn(�, c′) and
step(�, c′′) in the fourth and fifth definitions, respectively.
Instead, we introduce an existentially quantified variable c
which is constrained to be equal to �.

step(c, c′) ≡
∨

left⇒right∈S

∃VarS (left[c/�] ∧ right[c′/�])

pathn(c, c′) ≡ ∃c0c1 . . . cn (c = c0 ∧ c′ = cn

∧
∧

1≤i≤n

step(ci−1, ci))

infinite(c) ≡ ∀n∃c′ pathn(c, c′)
coreach(ϕ) ≡ ∃n∃c∃c′ (c = � ∧ ϕ[c′/�] ∧ pathn(c, c′))

coreach+(ϕ) ≡ ∃c′′ (∃c (� = c ∧ step(c, c′′))
∧coreach(ϕ)[c′′/�])

The following lemmas state that the above definitions actually
have the semantic properties their names suggest. Recall that
c, c′, c0, . . . , cn are distinct variables of sort Cfg in Var \ VarS.

Lemma 7. ρ |= step(c, c′) iff ρ(c)⇒T
S
ρ(c′).

Lemma 8. Let n be a natural number. Then ρ |= pathn(c, c′)
iff ρ(c)⇒nT

S
ρ(c′).

Now, using Gödel’s β predicate and the general schema
described in Section 7.1, we can define a transition sequence
of length n (n is arbitrary but fixed) in FOL using only a fixed
number of quantifiers as shown in Figure 9. Formally, we
have the following relationship:

Lemma 9. |= pathn(c, c′)↔ pathn(c, c′).

Consequently, we can use pathn(c, c′), the alternative
equivalent definition of pathn(c, c′), to express infinite(c),

coreach(ϕ) and coreach+(ϕ) in FOL. Since our relative com-
pleteness proof only uses step(c, c′), infinite(c), coreach(ϕ)
and coreach+(ϕ) besides other FOL formulae over the sig-
nature Σ, we can conclude that all the formulae used in our
proof are FOL formulae. For notational simplicity, we how-
ever prefer to continue to work with path instead of path.

Since S is finite branching, a configuration in TCfg does
not terminate in (T,⇒T

S
) if and only if it yields finite paths of

any length. Formally, we can prove the following:

Lemma 10. ρ |= infinite(c) iff ρ(c) does not terminate in
(T,⇒T

S
).

Lemma 10 implies the following valid formula (of T):

Lemma 11. |= infinite(c)→ ∃c′(step(c, c′) ∧ infinite(c′)).

Lemma 8 implies the following property of coreach(ϕ):

Lemma 12. (γ, ρ) |= coreach(ϕ) iff there exists some γ′ with
(γ′, ρ) |= ϕ and γ ⇒?T

S
γ′.

The following result formally establishes the expected
relationship between ϕ, coreach(ϕ), and coreach+(ϕ):

Lemma 13. |= coreach(ϕ)↔ ϕ ∨ coreach+(ϕ).

7.3 Encoding Semantic Validity in FOL
Here we show that the semantic validity of matching logic
reachability rules can be framed as FOL validity.

Proposition 3. If S |= ϕ⇒ ϕ′ then the FOL validity

|= ϕ→ ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ′)

holds in T .

Note that the proposition above, while reducing semantic
validity of our reachability sequents to FOL validity, does
not yet prove the desired relative completeness result. As an
analogy, consider the relative completeness of Hoare logic for
some simple language. Similarly, one can reduce the semantic
validity of a Hoare triple {ψ} code {ψ′} to FOL validity, but
that does not directly imply that {ψ} code {ψ′} is derivable
with the Hoare logic proof system. One still has to construct
a proof derivation for {ψ} code {ψ′} using the available proof
system, which is the hard part of the relative completeness
result for Hoare logic. Similarly, we still have to construct a
derivation for our reachability rule ϕ⇒ ϕ′ using the available
matching logic proof system in Figure 7.

7.4 Relative Completeness
We are now ready to start using the proof system to derive
a semantically valid reachability rule. We do so by proving
several helping lemmas.

The next lemma states that if a logical step (in terms of the
step predicate) is possible from the current configuration to a
next configuration, then that next configuration is provably
reachable without Reflexivity. The result may sound obvious,
but, however, it requires the well-definedness of S. For

pathn(c, c′) ≡ ∃a∃b (∃c0 (β(a, b, 0, α(c0)) ∧ c = c0) ∧ ∃cn (β(a, b, n, α(cn)) ∧ c′ = cn)
∧∀i (1 ≤ i ∧ i ≤ n→ ∃ci−1∃ci (β(a, b, i − 1, α(ci−1)) ∧ β(a, b, i, α(ci)) ∧ step(ci−1, ci))))

Figure 9. FOL definition of a transition sequence

example, if S consists of a rule of the form π ⇒ π1 ∨ π2
then the rule below cannot be derivable because, if it were,
then by the Substitution derived rule (Lemma 4), it would
also be derivable when c′ is substituted with π1; however, in
that case the rule becomes π ⇒ π1, which is not derivable
(see the discussion in the preamble of Section 7).

Lemma 14. S ` ∃c (� = c ∧ step(c, c′))⇒+ � = c′.

The next lemma states that the reachability rule whose
both patterns specify non-termination is derivable without
Reflexivity. Intuitively, that is because the step predicate will
relate a non-terminating configuration with at least one next
non-terminating configuration. This lemma enables the use
of the Circularity rule later (in Lemma 17).

Lemma 15. S `∃c(�=c∧infinite(c))⇒+∃c(�=c∧infinite(c))

Lemma 16. If S ∪A ` coreach+(ϕ)⇒ ϕ, then

S ∪A ` coreach(ϕ)⇒ ϕ

The following result is critical for the completeness theo-
rem: it says that the reachability rule from the pattern speci-
fying either non-terminating configurations or configurations
reaching ϕ to ϕ is derivable:

Lemma 17. S ` ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ)⇒ ϕ.

Finally, the relative completeness result now follows from
all the above lemmas. Note how the configuration model is
being used, via Proposition 3, as an oracle to answer the
semantic reachability question formulated as a FOL sentence.

Theorem 2. If S |= ϕ⇒ ϕ′ then S ` ϕ⇒ ϕ′.

Proof. Assume that S |= ϕ⇒ ϕ′. Then, by Proposition 3, we
have that

|= ϕ→ ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ′)

Further, by Lemma 17, we have that

S ` ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ)⇒ ϕ

Then the theorem follows by Consequence. �

8. Implementation and Evaluation
Here we discuss our MatchC implementation of the proof
system in Figure 7. While the proof system can be easily
implemented in most theorem proving environments, we pre-
ferred an implementation that emphasizes automated reason-
ing. Our results demonstrate that matching logic reachability
is practical in a more common sense, that is, that it can be

used for relatively efficient and highly automated verification
of expressive properties about challenging programs (like
AVL trees and Schorr-Waite). MatchC takes as inputs code
fragments written in a C fragment and (user provided) specifi-
cations for functions and loops, and automatically checks that
the code respect the specifications (without user interaction
or additional annotations, like ghost variables or hints).

As discussed in Section 5, general matching logic specifi-
cations are reachability rules between formulae. As seen in
Section 3, our tool handles specifications of the form:

∃X(π ∧ ψ)⇒ ∃X′(π′ ∧ ψ′)

where: π and π′ are basic patterns; ψ and ψ′ are pattern-
less FOL formulae; X and X′ are sets of first-order vari-
ables; π contains the cell 〈code ···〉k and π′ contains the
cell 〈code′ ···〉k; and code’ is either “·” or the return state-
ment. For now, MatchC only supports (partial correctness)
rules summarizing the behavior of functions or loops. An
invariant ∃X(π∧ψ) for while(C)S is just syntactic sugar for
a reachability rule. For clarity, we consider the case when the
condition C checks if a program variable x is non-zero (the
general case is similar). Then, if the environment of π maps
x into vx, we associate with the loop the following rule:

∃X(π ∧ ψ)⇒ ∃X(π′ ∧ ψ ∧ vx = 0)

where π′ is obtained from π by replacing 〈while(x)S ···〉k
with 〈· ···〉k, i.e., dropping the loop. The above rule sum-
marizes the loop. Section 6.2 discusses the reachability rule
associated to the loop invariant of reverseList in Figure 2.

We define the operational semantics of the C fragment in
the K framework [26] as a set of reachability rules S over
the configuration in Figure 6. Let us discuss in more detail
how to use the proof system in Figure 7 and the derived proof
rules in Section 6.1 to derive symbolic execution using S as
axioms. For example, consider the reachability rule in the
Example 1. First, we look at one step of symbolic execution,
and then we consider formula abstraction.

Figure 10 formally derives the execution of the as-
signment y = x->next (assuming that x->next evalu-
ates to some value q). The HEAP macro stands for the cell
〈list(?p)(?B), ?x 7→ [a, q], list(q)(β), H〉heap. We give below
the reachability rule associated to the K semantics of assign-
ment (in C assignment is an expression):

〈〈X = Vy K〉k 〈X 7→ P, E〉env C〉cfg

⇒ 〈〈Vy K〉k 〈X 7→ V, E〉env C〉cfg

Like refocussing [7], K flattens computations in a stack-like
structure whose tasks are separated byy (read “followed

·

S ` 〈〈X = Vy K〉k 〈X 7→ P, E〉env C〉cfg ⇒ 〈〈Vy K〉k 〈X 7→ V, E〉env C〉cfg
Axiom

S ` 〈〈y = qy K〉k 〈x 7→ ?x, p 7→ ?p, y 7→ ?y, E〉env HEAP C〉cfg ⇒ 〈〈K〉k 〈x 7→ ?x, p 7→ ?p, y 7→ q, E〉env HEAP C〉cfg
Subst

S ` 〈〈y = qy K〉k 〈x 7→ ?x, p 7→ ?p, y 7→ ?y, E〉env HEAP C〉cfg ∧ ψ⇒ 〈〈K〉k 〈x 7→ ?x, p 7→ ?p, y 7→ q, E〉env HEAP C〉cfg ∧ ψ
LF

Figure 10. Formal derivation of symbolic assignment
...

S ` 〈〈*(?x +Int 1)y K〉k 〈list(?p)(?B), ?x 7→ [a, q], list(q)(β), H〉heap ENV C〉cfg ∧ ψ′ ∧ ?x , 0 ∧ ?C = [a]@β⇒ . . .

S ` ∃a∃q (〈〈*(?x +Int 1)y K〉k 〈list(?p)(?B), ?x 7→ [a, q], list(q)(β), H〉heap ENV C〉cfg ∧ ψ′ ∧ ?x , 0 ∧ ?C = [a]@β)⇒ . . .
Abs

S ` 〈〈*(?x +Int 1)y K〉k 〈list(?p)(?B), list(?x)(?C), H〉heap ENV C〉cfg ∧ ψ′ ∧ ?x , 0⇒ . . .
Cons

Figure 11. Use of Consequence and Abstraction to reduce a more abstract configuration (bottom) to a more concrete one (up).

by”), whose intuition is that its left argument is first evaluated
and then its value is passed to its right argument, which inserts
it in the appropriate place, marked by �. Let θ : Var →
TΣ(Var) be a substitution mapping the free variables in the
rule above as follows:

θ(X) = y
θ(V) = q
θ(K) = �; x->next = p; p = x; x = y;
θ(P) = ?y
θ(E) = x 7→ ?x, p 7→ ?p, E
θ(C) = 〈list(?p)(?B), ?x 7→ [a, q], list(q)(β), H〉heap C

and let ψ be the patternless first-order formula ?C = [a]@β∧
A = rev(?B)@?C ∧ ?x , 0. Then, we can symbolically
execute the assignment by applying the Logic Framing proof
rule with the frame ψ, the Substitution derived proof rule with
the substitution θ above and the Axiom proof rule with the
rule above, as shown in Figure 10. The use of this sequence
of Axiom, Substitution and Logic Framing is generic and
entirely automatic. Further, the Transitivity proof rule allows
the chaining of such sequences. The Case Analysis proof rule
allows for splitting on constructors such as if when their
conditions evaluate to symbolic values.

Next, we consider an issue that arises due to formula
abstraction: the configuration can be too abstract for the se-
mantic rule to apply via Axiom. In such a case, the Con-
sequence and Abstraction proof rules can reduce proving a
reachability property about a more abstract configuration,
which is not matched by any semantic rules, to a property
about a more concrete configuration. Figure 11 shows such
an example caused by the symbolic memory read from the
location *(?x +Int 1), which occurs as part of the evalu-
ation of x->next in the context in Figure 8. The macro
ENV stands for 〈x 7→ ?x, p 7→ ?p, y 7→ ?y, E〉env, while ψ′ is
A = rev(?B)@?C. We use Consequence with the list abstrac-
tion axiom in Section 4.2 and the fact that ?x , 0 followed
by Abstraction with {a, q} and then we can symbolically
evaluate *(?x +Int 1) in a configuration in which ?x +Int 1
is explicitly mentioned in the heap. In general, we can use
the first seven rules of the proof system (the proof system

without Circularity) to derive the symbolic execution of a
linear segment of code (code without circular behaviours).

Let C be the set of reachability rules specifying all the
user provided program properties. C contains one candidate
rule for each function and one candidate rule for each loop.
MatchC derives the rules in C by applying the proof rules
in Figure 7 and the derived proof rules in Section 6.1 ac-
cording to certain heuristics. It begins by applying Circu-
larity followed by Transitivity for each rule in C and re-
duces the tasks to deriving individual sequents of the form
A∪ C ` ∃X(π ∧ ψ) ⇒ ∃X′(π′ ∧ ψ′). To prove each such
rule, the tool symbolically executes the code in the left-hand-
side formula using axioms fromA∪ C (like in the example
above), and then checks that the formulae obtained after the
execution imply the right-hand-side formula. Recall that the
code of the right-hand-side is either “·” or return, so we
know how the symbolic execution should terminate.

For each left-hand-side there may be multiple execution
paths, generated by splits via Case Analysis on constructors
like if or on disjunctions existent in the specifications
or introduced by abstraction axioms or domain reasoning.
Similarly, when the configuration is too abstract for any rule
inA∪ C to apply, the tool uses abstraction axioms to obtain
a more concrete configuration if certain triggers are met;
in the example above, the memory access on the head of
the list triggered the unrolling. As an optimisation, when
a formula can be reduced with rules from both S and C,
the verifier only uses the rules from C. In particular, only a
loop without a specified invariant is unrolled, and only the
body of a function without a rule specification is executed.
Another heuristic is that if the current formula implies that
application of an abstraction axiom would result into a more
concrete formula, the verifier applies the respective axiom
(for instance, knowing the head of a list is not null results in
an automatic list unrolling). MatchC is therefore sound but
incomplete w.r.t. the reachability proof system.

The symbolic execution is also implemented in K, as a set
of rules which are added to the original set of semantic rules.
Checking of matching logic formulae implication (required
for Consequence) is implemented in Maude [6]. Proving such

an implication consists of two parts: matching the structure of
the configuration, and checking the constraints. The structure
matching is done modulo both abstraction axioms and math-
ematical domain axioms. If all the structure is successfully
matched, and the remaining constraint does not simplify to
true, it is passed to CVC3 [2] and Z3 [8]. MatchC comes with
a library of ∼100 mathematical domain operators (like rev, in)
and pattern abstractions (like list), together with their axioms
and useful lemmas (see Section 4.2). It currently provides
support for reasoning about lists, trees, queues and graphs.

Figure 12 summarises the results of our experiments
(# paths column gives the number of symbolic execution
paths analysed). Two factors guided us: proving functional
correctness (as opposed to just memory safety) and doing
so automatically (the user only provides the specifications).
The undefined behavior is detected by execution based on
the semantics. The functional behavior of the programs
manipulating lists and trees and performing arithmetic and
I/O operations is algebraically defined, and is similar to
that of the examples in Figures 2 , 3 and 5. For the sorting
algorithms, MatchC checks that the sequence is sorted and
has the expected multiset of elements, and for the search trees,
it checks that the tree respects the data structure invariant and
has the expected multiset of elements.

The Schorr-Waite graph marking algorithm computes all
the nodes in a graph that are reachable from a set of starting
nodes. To achieve that, it visits the graph nodes in depth-first
search order, by reversing pointers on the way down, and
then restoring them on the way up. Its main application is
in garbage collection. The Schorr-Waite algorithm presents
considerable verification challenges [17, 18]. We formally
verified the algorithm itself, and a simplified version in which
the graph is a tree. For both cases we proved that a node is
marked if and only if it is reachable from the set of initial
nodes, and that the graph does not change.

Most of these examples are proved in milliseconds and do
not require SMT support. We mention that the AVL insert
and delete programs take approximately 3 minutes together
because some of the auxiliary functions (like balance) are not
given specifications and thus their bodies are being executed,
resulting in a larger number of paths to analyze. Given the
complexity of the specifications and the level of automation,
the average time per program (below one second) is low and
not a matter of concern. The experiments were conducted on
a quad-core, 2.2GHz, 4GB machine running Linux.

9. Conclusion and Future Work
This paper presented an eight-rule proof system for reach-
ability, parametric in an operational semantics of the target
programing language. The proof system was proved partially
correct and relatively complete. At our knowledge, this is the
first language-independent proof system with these proper-
ties. Previous proof systems, such as those corresponding to
Hoare/separation/dynamic logics and extensions of them, are

Program Cells Time (s) # paths SMT?
Example programs
undefined — 0.01 1 no
list reverse heap 0.06 2 no
list read in, heap 0.14 7 no
stack inspection call stack 0.24 8 no
tree to list (iterative) heap, out 0.24 11 no
Undefined programs
division by zero — 0.01 1 no
uninitialized variable — 0.01 1 no
unallocated location — 0.01 1 no
Simple programs that need only the environment cell
average — 0.02 1 no
min — 0.04 2 no
max — 0.04 2 no
mul by add — 0.13 3 yes
sum (recursive) — 0.06 2 yes
sum (iterative) — 0.08 2 yes
assoc comm — 0.03 1 no
Lists
list head heap 0.02 2 no
list tail heap 0.02 1 no
list add heap 0.02 1 no
list swap heap 0.03 3 no
list deallocate heap 0.04 2 no
list length (recursive) heap 0.05 2 no
list length (iterative) heap 0.07 2 no
list sum (recursive) heap 0.05 2 no
list sum (iterative) heap 0.07 2 no
list append heap 0.1 3 no
list copy heap 0.13 3 no
list filter heap 0.22 5 no
Input and output
read write in, out 0.12 4 no
list write heap, out 0.06 2 no
list read write heap, in, out 0.15 5 no
Trees
tree height heap 0.1 4 no
tree size heap 0.07 3 no
tree find heap 0.12 5 no
tree mirror heap 0.7 3 no
tree in-order heap 0.7 3 no
tree pre-order heap 0.7 3 no
tree post-order heap 0.7 3 no
tree deallocate heap 0.14 7 no
tree to list (recursive) heap, out 0.1 4 no
Call stack
only g calls f call stack 0.04 2 no
h in stack when f call stack 0.04 2 no
Sorting algorithms
insert heap 0.35 5 no
insertion sort heap 0.41 6 no
bubble sort heap 0.30 6 no
quicksort heap 0.47 8 no
merge sort heap 1.97 16 yes
Search trees
BST find heap 0.15 5 yes
BST insert heap 0.13 4 yes
BST delete heap 0.38 10 yes

AVL find heap 0.15 5 yes
AVL insert heap 43.5 23 yes
AVL delete heap 133.58 36 yes
Schorr-Waite
tree Schorr Waite heap 0.28 6 no
graph Schorr Waite heap 1.73 8 no

Figure 12. Results of MatchC program verification

language-specific and need to be proved sound with respect
to another semantics of the same language.

With the help of Stefan Ciobaca and Brandon Moore,
we have started developing in Coq a certifiable program
verification framework based on the presented proof system.
Our progress can be seen at http://fsl.cs.uiuc.edu/ml.
Our objective is to develop language-independent tactics
that allow for compact and intuitive proofs of program
correctness, as well as for generation of certifiable proof
objects relying only on the operational semantics of the
target language and requiring no low-level inductive proofs
about the transition system associated to the operational
semantics, and no language-specific lemmas. We also intend
to generalize our efficient MatchC prover into a generic one,
and connect it with the Coq-based framework, to achieve both
efficient and certifiable verification based on the presented
proof system.

Acknowledgements: We thank the members of the K team
(http://k-framework.org) and the anonymous reviewers
for their valuable comments on a previous version of this
paper. The work in this paper was supported in part by NSA
contract H98230-10-C-0294, by NSF grant CCF-0916893
and by (Romanian) SMIS-CSNR 602-12516 contract no.
161/15.06.2010.

References
[1] A. W. Appel. Verified software toolchain. In ESOP, volume

6602 of LNCS, pages 1–17, 2011.

[2] C. Barrett and C. Tinelli. CVC3. In CAV, pages 298–302,
2007.

[3] G. Berry and G. Boudol. The chemical abstract machine. Th.
Comp. Sci., 96(1):217–248, 1992.

[4] S. Blazy and X. Leroy. Mechanized semantics for the Clight
subset of the C language. J. Autom. Reasoning, 43(3):263–288,
2009.

[5] A. Chlipala. Mostly-automated verification of low-level pro-
grams in computational separation logic. In PLDI, pages 234–
245, 2011.

[6] M. Clavel, F. Durán, S. Eker, J. Meseguer, P. Lincoln, N. Martí-
Oliet, and C. Talcott. All About Maude, volume 4350 of LNCS.
2007.

[7] O. Danvy and L. Nielsen. Refocusing in reduction semantics.
Technical Report RS-04-26, BRICS, 2004.

[8] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In TACAS, volume 4963 of LNCS, pages 337–340, 2008.

[9] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape
analysis based on separation logic. In TACAS, volume 3920 of
LNCS, pages 287–302, 2006.

[10] C. Ellison and G. Rosu. An executable formal semantics of C
with applications. In POPL, pages 533–544, 2012.

[11] M. Felleisen and R. Hieb. The revised report on the syntactic
theories of sequential control and state. Th. Comp. Sci., 103
(2):235–271, 1992.

[12] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineer-
ing with PLT Redex. MIT, 2009.

[13] R. W. Floyd. Assigning meaning to programs. In Symposium
on Applied Mathematics, volume 19, pages 19–32, 1967.

[14] J. Goguen and G. Malcolm. Algebraic Semantics of Imperative
Programs. MIT Press, 1996.

[15] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In
Handbook of Philosophical Logic, pages 497–604, 1984.

[16] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics
for concurrent separation logic. In ESOP, volume 4960 of
LNCS, pages 353–367, 2008.

[17] T. Hubert and C. Marché. A case study of C source code
verification: the Schorr-Waite algorithm. In SEFM, pages 190–
199, 2005.

[18] A. Loginov, T. W. Reps, and M. Sagiv. Automated verification
of the Deutsch-Schorr-Waite tree-traversal algorithm. In SAS,
2006.

[19] J. Meseguer. Conditioned rewriting logic as a united model of
concurrency. Theor. Comput. Sci., 96(1):73–155, 1992.

[20] P. D. Mosses. CASL Reference Manual, volume 2960 of LNCS.
Springer, 2004.

[21] T. Nipkow. Winskel is (almost) right: Towards a mechanized
semantics textbook. Formal Aspects of Computing, 10:171–
186, 1998.

[22] P. W. O’Hearn and D. J. Pym. The logic of bunched implica-
tions. Bulletin of Symb. Logic, 5(2):215–244, 1999.

[23] P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning
about programs that alter data structures. In CSL, pages 1–19,
2001.

[24] D. Pavlovic and D. R. Smith. Composition and refinement of
behavioral specifications. In ASE, pages 157–165, 2001.

[25] J. C. Reynolds. Separation logic: A logic for shared mutable
data structures. In LICS, pages 55–74, 2002.

[26] G. Rosu and T.-F. Serbanuta. An overview of the K semantic
framework. J. Log. Algebr. Program., 79(6):397–434, 2010.

[27] G. Rosu and A. Stefanescu. Matching logic: a new program
verification approach (NIER track). In ICSE, pages 868–871,
2011.

[28] G. Rosu and A. Stefanescu. Towards a unified theory of
operational and axiomatic semantics. In ICALP (2), volume
7392 of LNCS, pages 351–363, 2012.

[29] G. Rosu and A. Stefanescu. From Hoare logic to matching
logic. In FM, To appear, 2012.

[30] G. Rosu, C. Ellison, and W. Schulte. Matching logic: An
alternative to Hoare/Floyd logic. In AMAST, volume 6486 of
LNCS, pages 142–162, 2010.

[31] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. ACM Trans. Prog. Lang. Syst.,
24(3):217–298, 2002.

[32] G. Winskel. The formal semantics of programming languages
- an introduction. Foundation of computing series. MIT Press,
1993.

[33] A. Wright and M. Felleisen. A syntactic approach to type
soundness. Inf. & Computation, 115(1):38–94, 1994.

http://fsl.cs.uiuc.edu/ml
http://k-framework.org

A. Proofs
Proposition 1. If ϕ is a matching logic pattern, γ∈TCfg and
ρ : Var→ T , then (γ, ρ) |= ϕ (notation in Definition 1) iff
(γ, ρ) |= ϕ� (notation in Definition 2). Also |= ϕ iff T |= ϕ�.

Proof. For readability, during this proof we use the notation
ργ |= ϕ� rather than (γ, ρ) |= ϕ�. We prove the first part of
the proposition by induction on the structure of the formula
ϕ. We distinguish the following cases:

• ϕ is t = t′. Then (γ, ρ) |= ϕ iff ρ(t) = ρ(t′) iff ργ(t) = ργ(t′)
iff ργ |= ϕ� (we use the fact that t and t′ are terms and thus
do not contain �).
• ϕ is ∀Xϕ′. By the induction hypothesis, for all valuations
ρ′ that agree with ρ on Var \ X, we have that (γ, ρ′) |= ϕ′

iff ρ′γ |= ϕ′�, hence (γ, ρ) |= ϕ iff ργ |= ϕ�, and we are
done.
• ϕ is ϕ1 ∧ ϕ2. By the induction hypothesis, (γ, ρ) |= ϕ1 iff
ργ |= ϕ�1 and (γ, ρ) |= ϕ2 iff ργ |= ϕ�2 . Then, (γ, ρ) |= ϕ iff
(γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2 iff ργ |= ϕ�1 and ργ |= ϕ�2 iff
ργ |= ϕ�, and we are done.
• ϕ is ¬ϕ′. By the induction hypothesis, (γ, ρ) |= ϕ′ iff
ργ |= ϕ′�. Then we have that (γ, ρ) |= ϕ iff (γ, ρ) 6|= ϕ′ iff
ργ 6|= ϕ′� iff ργ |= ϕ�, and we are done.
• ϕ is π. Then (γ, ρ) |= ϕ iff γ = ρ(π) iff ργ(�) = ργ(π) iff
ργ |= � = π, and we are done.

For the second part of the proposition, we notice that proving
|= ϕ iff T |= ϕ� is equivalent to proving that, for all γ and ρ,
it is the case that (γ, ρ) |= ϕ iff ργ |= ϕ�, which follows from
the first part of the proposition, and we are done. �

Lemma 1. If ϕ is a pattern, c ∈ Var is a Cfg variable,
and ρ : Var → T is a valuation, then (ρ(c), ρ) |= ϕ� iff
ρ |= ϕ�[c/�].

Proof. With the notation in Definition 2, (ρ(c), ρ) |= ϕ� iff
ρρ(c) |= ϕ�. Notice that if a valuation agrees on two variables,
then it satisfies a formula iff it satisfies the formula obtained
by substituting one of the two variables for the other. In
particular, since ρρ(c)(�) = ρρ(c)(c), it follows that ρρ(c) |= ϕ�

iff ρρ(c) |= ϕ�[c/�]. We notice that � does not occur in
ϕ�[c/�], thus ρρ(c) |= ϕ�[c/�] iff ρ |= ϕ�[c/�], and we are
done. �

Lemma 2. If ϕ is well-defined and c1, c2 ∈ Var are two Cfg
variables, then |= ϕ�[c1/�] ∧ ϕ�[c2/�]→ c1 = c2.

Proof. Let ρ : Var → T be a valuation. Since � does not
occur in ϕ�[c1/�] ∧ ϕ�[c2/�] → c1 = c2, it suffices to
prove that if ρ |= ϕ�[c1/�] ∧ ϕ�[c2/�] then ρ |= c1 = c2.
By Lemma 1, ρ |= ϕ�[c1/�] implies (ρ(c1), ρ) |= ϕ and
ρ |= ϕ�[c2/�] implies (ρ(c2), ρ) |= ϕ. Then, since ϕ is well-
defined, it follows that ρ(c1) = ρ(c2). Thus, we conclude that
ρ |= c1 = c2, and we are done. �

Proposition 2. If P is a separation logic formula, h ∈ THeap

is a heap and ρ : Var → T is a valuation, then (ρ, h) |= P
(in separation logic) iff (〈h〉heap, ρ) |= S2M(P) (in matching
logic). Consequently, |= P (in separation logic) iff |= S2M(P)
(in matching logic).

Proof. Let ρ[σ← h] be the valuation which agrees with ρ on
Var \ {σ} and with ρ[σ ← h](σ) = h. We begin by noticing
that (〈h〉heap, ρ) |= ∃σ(〈σ〉heap ∧ ψ) iff ρ[σ ← h] |= ψ.
Indeed, (〈h〉heap, ρ) |= ∃σ(〈σ〉heap ∧ ψ) iff there exists a ρ′

agreeing with ρ on Var \ {σ} such that (〈h〉heap, ρ
′) |= 〈σ〉heap

and (〈h〉heap, ρ
′) |= ψ. By the satisfaction of matching logic

formulae, (〈h〉heap, ρ
′) |= 〈σ〉heap iff ρ′(σ) = h, that is, iff

ρ′ = ρ[σ ← h]. Further, since ψ is a patternless formula,
(〈h〉heap, ρ

′) |= ψ iff ρ′ |= ψ. We conclude that such a ρ′ exists
iff ρ[σ← h] |= ψ. Thus, to prove the proposition, it suffices
to show that (ρ, h) |= P iff ρ[σ ← h] |= ψ, where ψ is the
patternless formula in S2M(P). The proof goes by induction
on the structure of P. We distinguish the following cases:

• ∀xP: let ρ′ be a valuation which agrees with ρ on Var \ {x}.
Then, by the satisfaction of separation logic formulae,
(ρ, h) |= ∀xP iff (ρ′, h) |= P. By the induction hypothesis,
(ρ′, h) |= P iff ρ′[σ← h] |= ψ. Since σ is different from x,
ρ′[σ← h] |= ψ iff ρ[σ← h] |= ∀x ψ, and we are done.
• P1 → P2: by the satisfaction of separation logic formulae,

(ρ, h) |= P1 → P2 iff (ρ, h) |= P1 implies (ρ, h) |= P2. By
the induction hypothesis, (ρ, h) |= P1 iff ρ[σ1 ← h] |= ψ1
and (ρ, h) |= P2 iff ρ[σ2 ← h] |= ψ2. Since σ does
not occur in ψ1 or ψ2, σ1 does not occur in ψ2 and σ2
does not occur in ψ1, we have that ρ[σ1 ← h] |= ψ1 iff
ρ[σ← h][σ1 ← h][σ2 ← h] |= ψ1 and ρ[σ2 ← h] |= ψ2
iff ρ[σ← h][σ1 ← h][σ2 ← h] |= ψ2. Thus, we conclude
that ρ[σ1 ← h] |= ψ1 implies ρ[σ2 ← h] |= ψ2 iff
ρ[σ ← h] |= ∃σ1∃σ2(σ = σ1 ∧ σ = σ2 ∧ ψ1 ∧ ψ2),
and we are done.
• p(t1, . . . , tn): since p is pure and σ does not occur

in p(t1, . . . , tn), we have that (ρ, h) |= p(t1, . . . , tn) iff
ρ |= p(t1, . . . , tn) iff ρ |= p(t1, . . . , tn) iff ρ[σ ← h] |=
p(t1, . . . , tn) and we are done.
• false: we notice that (ρ, h) 6|= false and ρ[σ← h] 6|= false,

and we are done.
• P1 ∗ P2: by the satisfaction of separation logic formulae,

(ρ, h) |= P1 ∗ P2 iff there exist mapping h1, h2 with disjoint
domains such that h is the disjoint union of h1 and
h2, (ρ, h1) |= P1 and (ρ, h2) |= P1. By the induction
hypothesis, (ρ, h1) |= P1 iff ρ[σ1 ← h1] |= ψ1 and
(ρ, h2) |= P2 iff ρ[σ2 ← h2] |= ψ2. Since σ does not
occur in ψ1 or ψ2, σ1 does not occur in ψ2 and σ2 does
not occur in ψ1, we have that ρ[σ1 ← h1] |= ψ1 iff
ρ[σ← h][σ1 ← h1][σ2 ← h2] |= ψ1 and ρ[σ2 ← h2] |=
ψ2 iff ρ[σ← h][σ1 ← h1][σ2 ← h2] |= ψ2. Notice that
ρ[σ← h][σ1 ← h1][σ2 ← h2] |= σ = (σ1, σ2) iff h is
the concatenation of h1 and h2 and the concatenation
is different from ⊥, that is, if h1 and h2 have disjoint

domains. Thus, we conclude that (ρ, h) |= P1 ∗ P2 iff
ρ[σ ← h] |= ∃σ1∃σ2(σ = (σ1, σ2) ∧ ψ1 ∧ ψ2), and
we are done.
• t1 7→ t2: by the satisfaction of separation logic formulae,

(ρ, h) |= t1 7→ t2 iff h is the singleton heap mapping ρ(t1)
into ρ(t2). On the other hand, ρ[σ ← h] |= σ = t1 7→ t2
iff h consists of exactly one entry mapping ρ(t1) into ρ(t2),
and we are done.
• emp: by the satisfaction of separation logic formulae,

(ρ, h) |= emp iff h is the empty heap, or equivalently, the
map unit. On the other hand, ρ[σ ← h] |= σ = · iff h is
the map unit, and we are done.

�

Lemma 3. IfA `C ϕ⇒ ϕ′ thenA `C ∃X ϕ⇒ ∃X ϕ′.

Proof. We have |= ϕ′ → ∃X ϕ′. By Consequence, we derive
A `C ϕ ⇒ ∃X ϕ′. Since X ∩ FreeVars(∃X ϕ′) = ∅, by
Abstraction we getA `C ∃X ϕ⇒ ∃X ϕ′ is derivable. �

Lemma 4. If A `C ϕ ⇒ ϕ′ is derivable and θ : Var →
TΣ(Var), thenA`C θ(ϕ)⇒θ(ϕ′) is also derivable.

Proof. We prove the lemma by showing how to deriveA `C
θ(ϕ) ⇒ θ(ϕ′) from A `C ϕ ⇒ ϕ′ with the proof system in
Figure 7. Let X = {x1, . . . xn} be the set of variables freely
occurring in the rule, that is, FreeVars(ϕ)∪ FreeVars(ϕ′). Let
Y = {y1, . . . , yn} be a set of variables which do not occur in
ϕ or in ϕ′, and further which do not occur in θ(x1), . . . , θ(xn).
By Logic framing with ψ ≡ x1 = y1 ∧ . . . ∧ xn = yn followed
by Lemma 3 with X, we derive

A `C ∃X(ϕ ∧ x1 = y1 ∧ . . . ∧ xn = yn)
⇒ ∃X(ϕ′ ∧ x1 = y1 ∧ . . . ∧ xn = yn)

Further, by using Consequence and the facts that y1, . . . , yn

do not occur in ϕ or ϕ′, and that they are different from
x1, . . . , xn, we eliminate the existential quantifiers to derive

A `C ϕ[x/y]⇒ ϕ′[x/y]

where ϕ[x/y] is the formula obtained from ϕ by simulta-
neously substituting x1 with y1, . . . , xn with yn. Again, by
Logic Framing with y1 = θ(x1), . . . , yn = θ(xn) followed by
Lemma 3 with Y , we derive

A `C ∃Y(ϕ ∧ y1 = θ(x1) ∧ . . . ∧ yn = θ(xn))
⇒ ∃X(ϕ′ ∧ y1 = θ(x1) ∧ . . . ∧ yn = θ(xn))

Finally, by using Consequence and the fact that y1, . . . , yn

do not occur in θ(x1), . . . , θ(xn), we eliminate the existential
quantifiers to derive A `C θ(ϕ) ⇒ θ(ϕ′), and we are
done. �

Lemma 5. Suppose that A ⊆ A′. If A `C ϕ ⇒ ϕ′ then
A′ `C ϕ⇒ ϕ′, and ifA `C ϕ⇒+ ϕ′ thenA′ `C ϕ⇒+ ϕ′.

Proof. The proof goes by straightforward induction on the
structure of the derivation tree. �

Lemma 6. IfA `C ϕ⇒+ϕ′ and C ⊆ C′ thenA `C′ ϕ⇒+ϕ′.

Proof. The proof goes by induction on the structure of the
derivation tree. If the last step is one of Logic Framing, Con-
sequence, Case Analysis or Abstraction, the result follows
trivially from the induction hypothesis and the fact that these
proof rules do not modify C. Similarly, if the last step is Cir-
cularity, the result follows from the induction hypothesis and
the fact that C ∪ {ϕ ⇒ ϕ′} ⊆ C′ ∪ {ϕ ⇒ ϕ′}. If the last case
is Axiom, again the result trivially holds since C does not
constrain the use of this rule. Finally, if the last step is Tran-
sitivity, by the induction hypothesis A `C′ ϕ1 ⇒

+ ϕ2. We
notice that ifA∪ C ` ϕ2 ⇒ ϕ3 thenA∪ C′ ` ϕ2 ⇒ ϕ3 by
Lemma 5. Thus, the result follows by Transitivity. Reflexivity
is not a valid step, so we are done. �

Theorem 1. (partial correctness) Let S be a weakly well-
defined reachability system and let S ` ϕ⇒ ϕ′ be a sequent
derived with the proof system in Figure 7. Then S |= ϕ⇒ ϕ′.

Proof. Recall that T is a fixed configuration model, and S a
fixed weakly well-defined set of reachability rules. We define
the relation (T , <S) as follows:

γ1 <
S γ2 iff γ1 and γ2 terminate in (T ,⇒T

S
) and γ2 ⇒

+T
S
γ1

We notice that <S has the following properties:
irreflexivity if γ ∈ T terminates in (T ,⇒T

S
), then

¬(γ ⇒+T
S
γ), hence ¬(γ <S γ);

asymmetry if γ1, γ2 ∈ T terminate in (T ⇒T
S

), and
γ1 <

S γ2, then γ2 ⇒
+T
S
γ1 and ¬(γ1 ⇒

+T
S
γ2),

hence ¬(γ2 <
S γ1);

transitivity if γ1, γ2, γ3 ∈ T terminate in (T ,⇒T
S

), and
γ1 <S γ2 and γ2 <S γ3, then γ2 ⇒

+T
S

γ1

and γ3 ⇒
+T
S
γ2; by the transitivity of⇒+T

S
, it

follows that γ3 ⇒
+T
S
γ1, hence γ1 <

S γ3.
We can conclude that <S is a partial order relation. Moreover,
since any decreasing chain has associated a sequence contain-
ing only terms which terminate in (T ,⇒T

S
), it follows that

there are no infinite decreasing chains, or equivalently, that
<S is well-founded.

Let Pfixed be a fixed matching logic proof tree deriving
the sequent S ` ϕ ⇒ ϕ′. We consider the domain Dfixed of
triples

(γ,A,P)

where γ ∈ T is a ground configuration that terminates in
(T ,⇒T

S
), A is set of reachability rules appearing in one

of the sequents in Pfixed, and P is a matching logic proof
subtree of Pfixed. Notice that since Pfixed is fixed, bothA and
P range over a finite number of instances. We define the

lexicographical order (Dfixed,≺) as follows:

(γ1,A1,P1) ≺ (γ2,A2,P2)
iff γ1 <

S γ2
or γ1 = γ2 andA1 (A2
or γ1 = γ2 andA1 = A2 and P1 is a proper subtree of P2

We notice that ≺ is a lexicographic order based on three
well-founded partial order relations, namely: (1) (T , <S); (2)
strict inclusion relation (() on a finite number of sets; and
(3) proper subtree relation on proof trees. It is known that the
lexicographic ordering of sequences of fixed length 1 based
on well-founded orders for each component of the sequence
is itself well-founded, thus ≺ is well-founded.

Definition 8. If (γ,A,P) ∈ Dfixed is such that P derives
the sequent A `C ϕ ⇒ ϕ′, then let Prop(γ,A,P) be the
following property: for all ρ : Var→ T such that (γ, ρ) |= ϕ,
there exists some γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ;

moreover, if P does not use Reflexivity, the last step in P
is Circularity or C is not empty, then γ ⇒+T

S
γ′ (that is, γ

reaches γ′ in one or more steps).

With these definitions, it is easy to see that Theorem 1
becomes a corollary of the following result: for all γ ∈ T such
that γ terminates in (T ,⇒T

S
), the property Prop(γ,S,Pfixed)

holds. Also, note that the triple (γ,S,Pfixed) belongs toDfixed

for all the terminating γ. These observations imply that it
suffices to prove the following more general result:

Lemma. Prop(γ,A,P) holds for all (γ,A,P) ∈ Dfixed.

We prove Lemma above by well-founded induction on
the ≺ partial order. Let us pick a (γ,A,P) ∈ Dfixed and let
ρ : Var → T be such that (γ, ρ) satisfy the left-hand-side
formula of the rule derived by P. We have the following
cases based on the structure of P:

• P is a Reflexivity step:

·

A ` ϕ⇒ ϕ

We pick γ′ to be γ. Trivially, we have that γ ⇒?T
S
γ′, and

(γ′, ρ) |= ϕ, so we are done.
• P is an Axiom step:

ϕ⇒ ϕ′ ∈ A

A `C ϕ⇒ ϕ′

We distinguish two cases:
ϕ⇒ ϕ′ belongs to S. Since (γ, ρ) |= ϕ and S is weakly
well-defined, there exists some γ′ such that (γ′, ρ) |= ϕ′.
By the definition of the transition system (T ,⇒T

S
), we

have that γ ⇒T
S
γ′, which implies that γ ⇒+T

S
γ′, and

we are done.
1 Note that this is not true for sequences or arbitrary lengths. For example,
the set of finite sequences of elements of ({0, 1}, <) is not well-founded, even
if < is well-founded on {0, 1}.

ϕ ⇒ ϕ′ belongs to A \ S. Since the only way to add
rules to the set of axioms is by using the Circularity
rule, there exist setsA′, C′ and a proof treeP′ deriving
A′ `C′ ϕ ⇒ ϕ′ such that: (1) ϕ ⇒ ϕ′ < A′, (2)
the last step in P is a Circularity step, (3) P′ is a
subtree of Pfixed, and (4) P is a leaf of P′. Rules cannot
be removed from the set of axioms as we traverse a
matching logic proof tree bottom-up, hence it must be
the case that A′ ⊆ A. Further, since ϕ ⇒ ϕ′ < A′, it
follows that A′ (A, hence (γ,A′,P′) ≺ (γ,A,P).
By the induction hypothesis, Prop(γ,A′,P′) holds.
The last step in P′ is Circularity, hence there exists
some γ′ such that γ ⇒+T

S
γ′ and (γ′, ρ) |= ϕ′ and we

are done.
• The last step in P is a Transitivity step:

A `C ϕ1 ⇒
+ ϕ2 A∪ C ` ϕ2 ⇒ ϕ3

A `C ϕ1 ⇒ ϕ3

LetP1 andP2 be the proof trees derivingA `C ϕ1 ⇒
+ ϕ2

and A∪ C ` ϕ2 ⇒ ϕ3. Notice that P1 is a subtree of P,
hence (γ,A,P1) ≺ (γ,A,P). By the induction hypothesis,
Prop(γ,A,P1) holds. Since (γ, ρ) |= ϕ1 and P1 does not
use the Reflexivity rule, there exists some γ′′ such that
γ ⇒+T

S
γ′′ and (γ′′, ρ) |= ϕ2. It follows that γ′′ <S γ,

hence (γ′′,A∪C,P2) ≺ (γ,A,P). Again, by the induction
hypothesis, Prop(γ′′,A∪ C,P′) holds. Thus, there exists
some γ′ such that γ′′ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ3. Due to the

transitivity of the transition relation⇒?T
S

in T , it follows
that γ ⇒+T

S
γ′′, and we are done.

• The last step in P is a Logic framing step:

A `C ϕ⇒ ϕ′ ψ is a (patternless) FOL formula
A `C ϕ ∧ ψ⇒ ϕ′ ∧ ψ

Since ψ is patternless, by the definition of satisfaction for
conjunction and FOL formulae, (γ, ρ) |= ϕ ∧ ψ implies
(γ, ρ) |= ϕ and ρ |= ψ. By the induction hypothesis, there
exists some γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ′. It

follows that (γ′, ρ) |= ϕ′ ∧ ψ. We notice that if P does not
use the Reflexivity rule or C is not empty, then γ ⇒+T

S
γ′

by the induction hypothesis, and we are done.
• The last step in P is a Consequence step:

|= ϕ1 → ϕ′1 A `C ϕ
′
1 ⇒ ϕ′2 |= ϕ′2 → ϕ2

A `C ϕ1 ⇒ ϕ2

Since |= ϕ1 → ϕ′1 and (γ, ρ) |= ϕ1, by the definition of
satisfaction for implication (γ, ρ) |= ϕ′1. By the induction
hypothesis, there exists some γ′ such that γ ⇒?T

S
γ′ and

(γ′, ρ) |= ϕ′2. Since |= ϕ′2 → ϕ2, it follows that (γ′, ρ) |= ϕ2.
We notice that if P does not use the Reflexivity rule or C
is not empty, then γ ⇒+T

S
γ′ by the induction hypothesis,

and we are done.
• The last step in P is a Case Analysis step:

A `C ϕ1 ⇒ ϕ A `C ϕ2 ⇒ ϕ

A `C ϕ1 ∨ ϕ2 ⇒ ϕ

Since (γ, ρ) |= ϕ1 ∨ ϕ2, by the definition of satisfaction
for disjunction (γ, ρ) |= ϕ1 or (γ, ρ) |= ϕ2. We can
assume without loss of generality that (γ, ρ) |= ϕ1. By
the induction hypothesis there exists some γ′ such that
γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ. We notice that if P does not use

the Reflexivity rule or C is not empty, then γ ⇒+T
S
γ′ by

the induction hypothesis, and we are done.
• the last step in P is an Abstraction step:

A `C ϕ⇒ ϕ′ X ∩ FreeVars(ϕ′) = ∅

A `C ∃X ϕ⇒ ϕ′

Since the variables in X do not appear free in ϕ′, and
(γ, ρ) |= ∃Xϕ, by the definition of the satisfaction for
existential quantification, there exists some valuation ρ′

which agrees with ρ on the free variables of ϕ′, such
that (γ, ρ′) |= ϕ. By the induction hypothesis, there exists
some γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ′) |= ϕ′. Since ρ′

and ρ agree on the free variables of ϕ′, we can conclude
that (γ′, ρ) |= ϕ′. We notice that if P does not use the
Reflexivity rule or C is not empty, then γ ⇒+T

S
γ′ by the

induction hypothesis, and we are done.
• the last step in P is a Circularity step:

A `C∪{ϕ⇒ϕ′} ϕ⇒ ϕ′

A `C ϕ⇒ ϕ′

Since (γ, ρ) |= ϕ, by the induction hypothesis there exists
some γ′ such that γ ⇒?T

S
γ′ and (γ′, ρ) |= ϕ′. Moreover,

since C∪ {ϕ⇒ ϕ′} is trivially not empty, by the induction
hypothesis we have that in fact γ ⇒+T

S
γ′, and we are done.

�

Lemma 7. ρ |= step(c, c′) iff ρ(c)⇒T
S
ρ(c′).

Proof. Assume ρ |= step(c, c′). Then, by the definition of
step(c, c′), there exists some rule left⇒ right ∈ S such that
ρ |= ∃VarS (left[c/�]∧right[c′/�]). Further, there exists some
ρ′ which agrees with ρ on Var \ VarS such that ρ′ |= left[c/�]
and ρ′ |= right[c′/�]. By Lemma 1, ρ′ |= left[c/�] iff
(ρ′(c), ρ′) |= left and ρ′ |= right[c′/�] iff (ρ′(c′), ρ′) |= right,
so (ρ′(c), ρ′) |= left and (ρ′(c′), ρ′) |= right. Since ρ and ρ′

agree on Var \ VarS, and c, c′ < VarS, it must be the case
that ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′). Thus (ρ(c), ρ′) |= left and
(ρ(c′), ρ′) |= right. By Definition 4, we conclude ρ(c) ⇒T

S

ρ(c′).
Conversely, assume ρ(c)⇒T

S
ρ(c′). Then, by Definition 4,

there exist some rule left ⇒ right ∈ S and some ρ′ for
which (ρ(c), ρ′) |= left and (ρ(c′), ρ′) |= right. Further,
since the variables in Var \ VarS do not appear in left or
in right, we can choose ρ′ to agree with ρ on Var \ VarS.
In particular, since c, c′ < VarS, it must be the case that
ρ′(c) = ρ(c) and ρ′(c′) = ρ(c′). Hence, (ρ′(c), ρ′) |= left and
(ρ′(c′), ρ′) |= right. Again, by Lemma 1, (ρ′(c), ρ′) |= left iff
ρ′ |= left[c/�] and (ρ′(c′), ρ′) |= right iff ρ′ |= right[c′/�].
Thus ρ′ |= left[c/�] and ρ′ |= right[c′/�]. Since ρ and ρ′

agree on Var \ VarS, it follows that ρ |= ∃VarS (left[c/�] ∧
right[c′/�]). By the definition of step(c, c′), we conclude
ρ |= step(c, c′). �

Lemma 8. Let n be a natural number. Then ρ |= pathn(c, c′)
iff ρ(c)⇒nT

S
ρ(c′).

Proof. Assume ρ |= pathn(c, c′). Then, by the definition of
pathn(c, c′), there exists some ρ′ which agrees with ρ on
Var \ {c0, . . . , cn} such that

ρ′ |= c = c0 ∧ c′ = cn ∧
∧

1≤i≤n

step(ci−1, ci)

In particular, since ρ′ |= step(c0, c1), . . . , ρ′ |= step(cn−1, cn),
by Lemma 7 we have that ρ′(c0)⇒T

S
ρ′(c1), . . . , ρ′(cn−1)⇒T

S

ρ′(cn). Thus, ρ′(c0) ⇒nT
S
ρ′(cn). Further, ρ′ |= c = c0 and

ρ′ |= c′ = cn imply ρ′(c0) = ρ′(c) and ρ′(cn) = ρ′(c′). Since
ρ and ρ′ agree on Var \ {c0, . . . , cn}, and c, c′ are different
from c0, . . . , cn, it must be the case that ρ′(c0) = ρ(c) and
ρ′(cn) = ρ(c′). Thus, we conclude ρ(c)⇒nT

S
ρ(c′).

Conversely, assume there exist γ0, . . . , γn with γ0 = ρ(c)
and γn = ρ(c′) such that γ0 ⇒

T

S
γ1, . . .γn−1 ⇒

T

S
γn. We

choose ρ′ to agree with ρ on Var \ {c0, . . . , cn} and with
ρ′(c0) = γ0, . . . , ρ′(cn) = γn. Since c, c′ are different from
c0, . . . , cn, it must be the case that ρ′(c) = ρ′(c0) = ρ(c) and
ρ′(c′) = ρ′(cn) = ρ(c′). Thus, ρ′ |= c = c0 and ρ′ |= c′ = cn.
Further, since ρ′(c0) ⇒T

S
ρ′(c1), . . . , ρ′(cn−1) ⇒T

S
ρ′(cn),

by Lemma 7, we have that ρ′ |= step(c0, c1), . . . , ρ′ |=
step(cn−1, cn). Thus

ρ′ |= c = c0 ∧ c′ = cn ∧
∧

1≤i≤n

step(ci−1, ci)

Since ρ and ρ′ agree on Var \ {c0, . . . , cn}, by the definition of
pathn(c, c′), we conclude ρ |= pathn(c, c′). �

Lemma 9. |= pathn(c, c′)↔ pathn(c, c′).

Proof. For the direct implication, let ρ : Var → T be a
valuation such that ρ |= pathn(c, c′). Then, by the definition
of pathn(c, c′), there exists some ρ′ which agrees with ρ on
Var \ {c0, . . . , cn} such that

ρ′ |= c = c0 ∧ c′ = cn ∧
∧

1≤i≤n

step(ci−1, ci)

By the definition of pathn(c, c′), it suffices to prove that there
exists some ρ′ which agrees with ρ on Var \ {a, b} such that

ρ′ |= ∃c0 (β(a, b, 0, α(c0)) ∧ c = c0)
ρ′ |= ∃cn (β(a, b, n, α(cn)) ∧ c′ = cn)
ρ′ |= ∀i (1 ≤ i ∧ i ≤ n→ ∃ci−1∃ci (β(a, b, i − 1, α(ci−1))

∧β(a, b, i, α(ci)) ∧ step(ci−1, ci)))

By the canonical property of β, there exist natural numbers a
and b such that the predicate β(a, b, i, α(ρ′(ci))) holds for all
i with 0 ≤ i and i ≤ n. We can choose ρ′ to agree with those

particular values of a and b. Thus, there exists some ρc,0 with
ρc,0(c0) = ρ′(c0) which agrees with ρ′ on Var \ {c0} such that
ρc,0 |= β(a, b, 0, α(c0)). Since ρc,0 and ρ′ agree on c, and ρ′ |=
c = c0, it follows that ρc,0 |= c = c0. We can conclude that
ρc,0 |= β(a, b, 0, α(c0))∧ c = c0. Similarly, there exists some
ρc′,n with ρn(cn) = ρ′(cn) which agrees with ρ′ on Var \ {cn}

such that ρc′,n |= β(a, b, n, α(cn)) ∧ c′ = cn. Further, recall
that β(a, b, i, α(ρ′(ci))) holds for all i with 0 ≤ i and i ≤ n.
Thus, for each i with 1 ≤ i and i ≤ n, there exists some ρi

with ρi(ci−1) = ρ′(ci−1) and ρi(ci) = ρ′(ci) which agrees with
ρ′ on Var \ {i, ci−1, ci} such that ρi |= β(a, b, i − 1, α(ci−1))
and ρi |= β(a, b, i, α(ci)). Since ρ′ |= step(ci−1, ci), and
ci−1, ci are the only free variables occurring in step(ci−1, ci),
it follows that ρi |= step(ci−1, ci). We can conclude that
ρi |= β(a, b, i − 1, α(ci−1))∧β(a, b, i, α(ci))∧ step(ci−1, ci),
and we are done.

Conversely, assume ρ |= pathn(c, c′). By the definition
of pathn(c, c′), it suffices to prove that there exists some ρ′

which agrees with ρ on Var \ {c0, . . . , cn} such that

ρ′ |= c = c0 ∧ c′ = cn ∧
∧

1≤i≤n

step(ci−1, ci)

By the definition of pathn(c, c′), there exists some ρ′ which
agrees with ρ on Var \ {a, b} such that

ρ′ |= ∃c0 (β(a, b, 0, α(c0)) ∧ c = c0)
ρ′ |= ∃cn (β(a, b, n, α(cn)) ∧ c′ = cn)
ρ′ |= ∀i (1 ≤ i ∧ i ≤ n→ ∃ci−1∃ci (β(a, b, i − 1, α(ci−1))

∧β(a, b, i, α(ci)) ∧ step(ci−1, ci)))

In particular, for each i with 1 ≤ i and i ≤ n, there exists
some ρi which agrees with ρ′ on Var \ {i, ci−1, ci} such
that ρi |= β(a, b, i − 1, α(ci−1)), ρi |= β(a, b, i, α(ci)) and
ρi |= step(ci−1, ci). Notice that by the definition of the β
predicate, for fixed values of a, b and i, there exists a unique
value of x such that β(a, b, i, x) holds. Thus, the fact that for
all i with 1 ≤ i and i ≤ n − 1 both β(a, b, i, α(ρi(ci)))
and β(a, b, i, α(ρi+1(ci))) hold, implies that α(ρi(ci)) =

α(ρi+1(ci)). Since α is injective, it follows that ρi(ci) =

ρi+1(ci). We choose ρ′ to agree with ρ on Var\{c0, . . . , cn} and
with ρ′(c0) = ρ1(c0) and ρ′(c1) = ρ1(c1), . . . , ρ′(cn) = ρn(cn).
Then, since ρi |= step(ci−1, ci), and ci−1, ci are the only free
variables occurring in step(ci−1, ci), it must be the case that
ρ′ |= step(ci−1, ci). Recall that ρ′ |= ∃c0 (β(a, b, 0, α(c0)) ∧
c = c0). Thus, there exists some ρc,0 which agrees with ρ′ on
Var \ {c0} such that ρc,0 |= β(a, b, 0, α(c0)) and ρc,0 |= c = c0.
Since β(a, b, 0, α(ρ1(c0)) holds, and α is injective, it follows
that ρc,0(c0) = ρ1(c0). Further, since ρ′(c0) = ρ1(c0) by
construction, it must be the case that ρ′(c0) = ρc,0(c0). Also,
all of ρ, ρ′, ρ′ and ρc,0 agree on c, thus ρ′(c) = ρc,0(c). We
conclude that ρ′ |= c = c0. Similarly, ρ′ |= c′ = cn, and we
are done. �

Lemma 10. ρ |= infinite(c) iff ρ(c) does not terminate in
(T,⇒T

S
).

Proof. First assume ρ |= infinite(c). For an arbitrary γ, we let
Prop(γ) be the property stating that there exists an infinite
set Pγ of finite ⇒T

S
-sequences starting at γ. We first show

Prop(ρ(c)) holds and then we inductively construct an infinite
sequence of configurations starting with ρ(c), each satisfying
Prop. By the definition of infinite(c), we have that ρ |=
infinite(c) implies that for each natural number n there exists
some ρ′ which agrees with ρ on Var \ {n, c′}, in particular
with ρ′(c) = ρ(c), such that ρ′ |= pathn(c, c′). Then, Lemma 8
implies ρ(c)⇒nT

S
ρ′(c′). Thus, we can conclude Prop(ρ(c)).

Next, we inductively construct an infinite⇒T
S

-sequence
γ0, . . . , γn, . . . such that γ0 = γ and Prop(γn) holds for
all n. Prop(γ0) holds because γ0 = γ and Prop(γ) holds.
Now, let us inductively assume Prop(γn) holds and let⇒T

S

(γn) = {γ | γn ⇒
T

S
γ} be the set of successors of γn in

(T , ⇒T
S

). For each γ ∈ ⇒T
S

(γn), let P′γ be the set {τ |
τ ∈ Pγn and γnγ is a prefix of τ}. Clearly, the sets P′γ form a
partition of Pγn . Since S is finite branching,⇒T

S
(γn) is finite.

Since Pγn is infinite (because we assumed Prop(γn)), there is
at least one γ ∈⇒T

S
(γn) with P′γ infinite. Then we choose γn+1

to be γ. Note that γn ⇒
T

S
γn+1 and Pγn+1 = {τ | γnτ ∈ P′γn+1

}

is infinite, thus Prop(γn+1) holds. We can conclude that ρ(c)
does not terminate.

Conversely, let γ0 = γ and γ0, . . . , γn, . . . be an infinite
⇒T
S

-sequence starting at γ. For each n, we choose ρ′ to agree
with ρ on Var \ {n, c′} and with ρ′(c′) = γn. Then ρ′(c)⇒nT

S

ρ′(c′), and by Lemma 8, we have that ρ′ |= pathn(c, c′).
Thus, by the definition of infinite(c), we conclude ρ |=
infinite(c). �

Lemma 11. |= infinite(c)→ ∃c′(step(c, c′) ∧ infinite(c′)).

Proof. Let ρ : Var → T be a valuation such that ρ |=
infinite(c). All we need is to show that ρ |= ∃c′(step(c, c′) ∧
infinite(c′)). By Lemma 10, we have that ρ(c) does not
terminate in (T , ⇒T

S
). Let γ0, γ1, . . . , γn, . . . be an infinite

⇒T
S

-sequence with γ0 = ρ(c). We choose ρ′ to agree with
ρ on Var \ {c′} and with ρ′(c′) = γ1. In particular, since c
and c′ are distinct, it must be the case that ρ′(c) = γ0. Since
ρ′(c)⇒T

S
ρ′(c′), by Lemma 7, we have that ρ′ |= step(c, c′).

Further, since ρ′(c′) does not terminate in (T , ⇒T
S

), by
Lemma 10, we have that ρ′ |= infinite(c′). Finally, we can
conclude that ρ |= ∃c′(step(c, c′) ∧ infinite(c′)). �

Lemma 12. (γ, ρ) |= coreach(ϕ) iff there exists some γ′ with
(γ′, ρ) |= ϕ and γ ⇒?T

S
γ′.

Proof. Assume (γ, ρ) |= coreach(ϕ). Then, by the defini-
tion of coreach(ϕ), there exist a natural number n and a
valuation ρ′ which agrees with ρ on Var \ {n, c, c′} such
that (γ, ρ′) |= c = � ∧ ϕ[c′/�] ∧ pathn(c, c′). In particular,
(γ, ρ′) |= c = � implies ρ′(c) = γ. Note that � does not
occur in either ϕ[c′/�] or pathn(c, c′). Thus, (γ, ρ′) |=
ϕ[c′/�] ∧ pathn(c, c′) implies ρ′ |= ϕ[c′/�] ∧ pathn(c, c′).
Further, by Lemma 1, ρ′ |= ϕ[c′/�] iff (ρ′(c′), ρ′) |= ϕ. We

choose γ′ = ρ′(c′) and we have that (γ′, ρ′) |= ϕ. Since n, c,
c′ < FreeVars(ϕ) and ρ and ρ′ agree on Var \ {n, c, c′}, it fol-
lows that (γ′, ρ) |= ϕ. Finally, by Lemma 8, ρ′ |= pathn(c, c′)
implies ρ′(c)⇒?T

S
ρ′(c′), that is, γ ⇒?T

S
γ′.

Conversely, assume there exists γ′ such that (γ′, ρ) |= ϕ
and γ ⇒nT

S
γ′. Let ρ′ be a valuation which agrees with ρ on

Var \ {n, c, c′} such that ρ′(c) = γ and ρ′(c′) = γ′. First,
(γ, ρ′) |= c = �. Further, since n, c, c′ < FreeVars(ϕ), it
follows that (γ′, ρ′) |= ϕ. Again, by Lemma 1, (ρ′(c′), ρ′) |=
ϕ iff ρ′ |= ϕ[c′/�]. Thus, ρ′ |= ϕ[c′/�]. Finally, since
ρ′(c)⇒nT

S
ρ′(c′), by Lemma 8, we have that ρ′ |= pathn(c, c′).

Since � does not occur in either ϕ[c′/�] or pathn(c, c′),
it follows that (γ, ρ′) |= c = � ∧ ϕ[c′/�] ∧ pathn(c, c′). We
notice that ρ and ρ′ agree on Var\ {n, c, c′}, and we conclude
(γ, ρ) |= coreach(ϕ). �

Lemma 13. |= coreach(ϕ)↔ ϕ ∨ coreach+(ϕ).

Proof. Recall the definition of coreach(ϕ)

coreach(ϕ) ≡ ∃n∃c∃c′ (c = � ∧ ϕ[c′/�] ∧ pathn(c, c′))

We analyse the cases when n = 0 and n , 0. For the first case,
we have the following equivalences

∃n∃c∃c′ (n = 0 ∧ c = � ∧ ϕ[c′/�] ∧ pathn(c, c′))
↔ ∃c∃c′ (c = � ∧ ϕ[c′/�] ∧ ∃c0 (c = c0 ∧ c′ = c0)
↔ ∃c∃c′ (c = � ∧ ϕ[c′/�] ∧ c = c′)
↔ ϕ

For the case when n , 0, we also have the following
equivalences

∃n∃c∃c′ (n , 0 ∧ c = � ∧ ϕ[c′/�] ∧ pathn(c, c′))
↔ ∃n∃c∃c′ (n , 0 ∧ c = � ∧ ϕ[c′/�]

∧∃c0c1 . . . cn (c = c0 ∧ c′ = cn

∧
∧

1≤i≤n

step(ci−1, ci)))

↔ ∃n∃c∃c′ ∃c′′ (n , 0 ∧ c = � ∧ ϕ[c′/�]
∧∃c0c1 . . . cn (c = c0 ∧ c′′ = c1 ∧ c′ = cn

∧ step(c0, c1) ∧
∧

2≤i≤n

step(ci−1, ci)))

↔ ∃n∃c∃c′ ∃c′′ (n , 0 ∧ c = � ∧ step(c, c′′) ∧ ϕ[c′/�]
∧∃c1 . . . cn (c′′ = c1 ∧ c′ = cn

∧
∧

2≤i≤n

step(ci−1, ci)))

↔ ∃n∃c∃c′ ∃c′′ (c = � ∧ step(c, c′′) ∧ ϕ[c′/�]
∧pathn(c′′, c′))

↔ ∃c′′ (∃c (� = c ∧ step(c, c′′)) ∧ coreach(ϕ)[c′′/�])
↔ coreach+(ϕ)

Thus, we conclude that |= coreach(ϕ)↔ ϕ∨coreach+(ϕ). �

Proposition 3. If S |= ϕ⇒ ϕ′ then the FOL validity

|= ϕ→ ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ′)

holds in T .

Proof. Let configuration γ ∈ TCfg and valuation ρ : Var→ T
be such that (γ, ρ) |= ϕ. We show that it is either the
case that (γ, ρ) |= ∃c (� = c ∧ infinite(c)), and that happens
when γ does not terminate in (T , ⇒T

S
), or the case that

(γ, ρ) |= coreach(ϕ′), and that happens when γ does terminate
in (T , ⇒T

S
).

• γ does not terminate. We choose ρ′ to agree with ρ on
Var \ {c} and with ρ′(c) = γ. Then it suffices to prove
(γ, ρ′) |= � = c ∧ infinite(c). Since ρ′(c) = γ, it follows
that (γ, ρ′) |= � = c. Since, ρ′(c) does not terminates, by
Lemma 10, ρ′ |= infinite(c). Note that � does not occur in
infinite(c). Thus, (γ, ρ′) |= infinite(c), and we are done.
• γ terminates. Then, according to the semantic validity of

the reachability rule (see Definition 7), there exists a γ′

such that (γ′, ρ) |= ϕ′ and γ ⇒?T
S
γ′. Thus, By Lemma 12,

(γ, ρ) |= coreach(ϕ′), and we are done.

�

Lemma 14. S ` ∃c (� = c ∧ step(c, c′))⇒+ � = c′.

Proof. We show that S ` left ∧ right[c′/�] ⇒+ � = c′ for
each rule left ⇒ right ∈ S. Then, since c′ < VarS and S is
finite, by Abstraction and Case Analysis we derive

S `
∨

left⇒right∈S

∃VarS (left ∧ right[c′/�])⇒+ � = c′

and since neither � nor c belongs to VarS, by Consequence
we derive

S ` ∃c (� = c∧
∨

left⇒right∈S

∃VarS (left[c/�]∧right[c′/�])⇒+ � = c′

that is, we conclude S ` ∃c (� = c ∧ step(c, c′) ⇒+ � = c′.
Thus, it suffices to derive S ` left ∧ right[c′/�] ⇒+ � =

c′ for each rule left ⇒ right ∈ S. By Axiom with the
rule ϕ ≡ left ⇒ right ∈ S followed by Logic Framing
with the patternless formula ψ ≡ right[c′/�] we derive
S ` left ∧ right[c′/�] ⇒+ right ∧ right[c′/�]. Since S is
well-defined, then right is well-defined and, by Lemma 2,
|= right ∧ right[c′/�]→ � = c′. Thus, by Consequence, we
derive S ` left∧right[c′/�]⇒+ � = c′, and we are done. �

Lemma 15. S `∃c(�=c∧infinite(c))⇒+∃c(�=c∧infinite(c))

Proof. By Lemma 14 and Logic Framing with infinite(c′)
(notice that infinite(c′) is a patternless formula), we derive

S ` ∃c (� = c ∧ step(c, c′)) ∧ infinite(c′)
⇒+ � = c′ ∧ infinite(c′)

Further, by using Lemma 3 with X ≡ {c′}, we derive

S ` ∃c′ (∃c (� = c ∧ step(c, c′)) ∧ infinite(c′))
⇒+ ∃c′ (� = c′ ∧ infinite(c′))

Finally, by Lemma 11, we have that

|= infinite(c)→ ∃c′ (step(c, c′) ∧ infinite(c′))

By FOL reasoning, it follows that

|= ∃c (� = c ∧ infinite(c))
→ ∃c′ (∃c (� = c ∧ step(c, c′)) ∧ infinite(c′))

By using Consequence with the semantic implication above
and with

|= ∃c′ (� = c′ ∧ infinite(c′))→ ∃c (� = c ∧ infinite(c))

we derive the result. Note that Circularity is not needed in the
derivation above. At first, it may sound surprising, since the
rule has the same left-hand-side and right-hand-side, namely
∃c (� = c ∧ infinite(c)), and thus circular in nature. However,
a non-terminating configurations reaches in one step another
non-terminating configuration, and therefore it is possible to
derive the rule above by just just one Axiom. �

Lemma 16. If S ∪A ` coreach+(ϕ)⇒ ϕ, then

S ∪A ` coreach(ϕ)⇒ ϕ

Proof. By Lemma 13 |= coreach(ϕ) ↔ ϕ ∨ coreach+(ϕ).
Thus, by Consequence and Case Analysis, it suffices to derive
S ∪A ` ϕ⇒ ϕ and S ∪A ` coreach+(ϕ)⇒ ϕ. The former
trivially follows by Reflexivity, while the latter is part of the
hypothesis. �

Lemma 17. S ` ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ)⇒ ϕ.

Proof. We separately derive each of

S ` ∃c (� = c ∧ infinite(c))⇒ ϕ
S ` coreach(ϕ)⇒ ϕ

and then the result follows by Case Analysis. Let ϕinf be the
formula ∃c (� = c ∧ infinite(c)). Then the first reachability
rule becomes S ` ϕinf ⇒ ϕ. It follows by Circularity and
Transitivity with the premises

S `{ϕinf⇒ϕ} ϕinf ⇒
+ ϕinf (Lemma 15 and Lemma 6)

S ∪ {ϕinf ⇒ ϕ} ` ϕinf ⇒ ϕ (Axiom)

The non-trivial part is to derive S ` coreach(ϕ)⇒ ϕ. By
Lemma 16, it suffices to derive S ` coreach+(ϕ)⇒ ϕ, which
follows by Circularity and Transitivity with

S `{coreach+(ϕ)⇒ϕ} coreach+(ϕ)⇒+ coreach(ϕ)
S ∪ {coreach+(ϕ)⇒ ϕ} ` coreach(ϕ)⇒ ϕ

For the former, by Lemma 14 and Logic Framing with
coreach(ϕ)[c′′/�] (notice that the formula coreach(ϕ)[c′′/�]
is patternless), we derive

S ` ∃c (� = c ∧ step(c, c′′)) ∧ coreach(ϕ)[c′′/�]
⇒+ � = c′′ ∧ coreach(ϕ)[c′′/�]

Further, by using Lemma 3 with X ≡ {c′′} and Consequence,
we derive

S ` ∃c′′ (∃c (� = c ∧ step(c, c′′)) ∧ coreach(ϕ)[c′′/�])
⇒+ coreach(ϕ)

that is, S ` coreach+(ϕ)⇒+ coreach(ϕ). By Lemma 6

S `{coreach+(ϕ)⇒ϕ} coreach+(ϕ)⇒+ coreach(ϕ)

Thus, all we are left to do is to derive

S ∪ {coreach+(ϕ)⇒ ϕ} ` coreach(ϕ)⇒ ϕ

By Lemma 16, it suffices to derive S ∪ {coreach+(ϕ) ⇒
ϕ} ` coreach+(ϕ) ⇒ ϕ, which holds by Axiom, and we are
done. �

Theorem 2. If S |= ϕ⇒ ϕ′ then S ` ϕ⇒ ϕ′.

Proof. Assume that S |= ϕ⇒ ϕ′. Then, by Proposition 3, we
have that

|= ϕ→ ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ′)

Further, by Lemma 17, we have that

S ` ∃c (� = c ∧ infinite(c)) ∨ coreach(ϕ)⇒ ϕ

Then the theorem follows by Consequence. �

	Introduction
	Related Work
	Examples using MatchC
	Matching Logic: A Logic of Configurations
	Patterns and General Notions
	An Instance
	Relationship to Separation Logic

	Reachability Rules
	Language-Independent Proof System
	Derived Proof Rules
	Examples
	Partial Correctness

	Relative Completeness
	Gödelization of Configurations
	Encoding Transition System Operations in FOL
	Encoding Semantic Validity in FOL
	Relative Completeness

	Implementation and Evaluation
	Conclusion and Future Work
	Proofs

