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We establish transport relations for integrals over evolving fluid interfaces. These relations
make it possible to localize integral balance laws over nonmaterial interfaces separating
fluid phases and, therefore, obtain associated interface conditions in differential form.

1. Introduction
In formulating integral balance laws for a nonmaterial evolving interface S(t) separat-

ing two fluid phases, one often encounters terms of the form

d
dt

∫
A(t)

ϕ(x, t) da, (1.1)

with ϕ(x, t) a surface field on S(t) and A(t) an arbitrary evolving subsurface of S(t).
To obtain the local differential consequences of such laws necessitates an appropriate
transport relation. We here establish such relations.

To see the difficulties involved in deriving such transport relations it is useful to consider
the analogous problem associated with the integral

d
dt

∫
R(t)

Φ(x, t) dv (1.2)

of a bulk scalar-field Φ(x, t) over a time-dependent region R(t) migrating through a
fluid. Specifically, assume that the boundary ∂R(t) moves with (scalar) normal velocity
V∂R(x, t) in the direction of its outward unit normal m(x, t) and write V mig

∂R = V∂R−u·m
for the normal velocity of ∂R relative to the fluid. Two well-known generalizations of the
Reynolds (1903) transport relation then read

d
dt

∫
R

Φ dv =
∫
R

{
∂Φ
∂t

+ div(Φu)
}

dv +
∫
∂R

ΦV mig
∂R da,

d
dt

∫
R

Φ dv =
∫
R

{
Φ̇ + Φ divu

}
dv +

∫
∂R

ΦV mig
∂R da.




(1.3)
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Here Φ̇ (often written DΦ/Dt) denotes the material time-derivative of Φ, and the second
of (1.3) follows from the first using the standard identity

Φ̇ =
∂Φ
∂t

+ u · gradΦ. (1.4)

A difficulty in deriving counterparts for surfaces of the bulk relations (1.3) is associated
with determining appropriate superficial analogs of the time derivatives Φ̇ and ∂Φ/∂t.
In this regard, bear in mind that, for ϕ a surface field, if the surface is not material,
then ϕ̇ is not well-defined : since material points flow across S(t), it is not generally
possible to compute a time-derivative holding material points fixed. Further, while one
finds in the literature time-derivatives of surface fields ϕ expressed as conventional partial
derivatives ∂ϕ/∂t, such expressions without explanation are meaningless: the difference
quotient {ϕ(x, t + τ) − ϕ(x, t)}/τ underlying the partial derivative ∂ϕ/∂t of a surface
field is generally undefined because there is no assurance that a point x on S(t) will
also lie on S(t + τ), even for sufficiently small τ . These observations hold even when
S(t) is material. Of course, ∂ϕ/∂t may be defined using an extension of ϕ(x, t), at each
t, to a three-dimensional region containing the surface; unfortunately, ∂ϕ/∂t so defined
generally depends on the particular extension used.

The main results of this study are surface analogs of the transport relations (1.3) for
the integral (1.1). To state these results, suppose that S(t) is oriented by a unit-normal
field n(x, t), let V (x, t) denote the (scalar) normal velocity of S(t) in the direction of
n(x, t), and let K(x, t) denotes the total (i.e., twice the mean) curvature of S(t). Further,
let u(x, t) denote the velocity of the fluid and suppose that the tangential component
utan(x, t) of u(x, t) is continuous across S(t). Then for ϕ(x, t) a scalar field defined on
S(t), and for A(t) an arbitrary evolving subsurface of S(t) with V mig

∂A (x, t) the normal
velocity of ∂A(t) relative to the fluid,

d
dt

∫
A

ϕ da =
∫
A

{
�
ϕ+ divS(ϕutan)− ϕKV

}
da+

∫
∂A

ϕV mig
∂A ds,

d
dt

∫
A

ϕ da =
∫
A

{
◦
ϕ+ ϕ divSutan − ϕKV

}
da+

∫
∂A

ϕV mig
∂A ds.




(1.5)

Here:
(i) �

ϕ, the normal time derivative, is the time-derivative of ϕ following the motion of
S along its normal trajectories; that is, along the trajectories associated with the vector
normal-velocity vn = V n of S;

(ii) ◦ϕ, the migrationally normal time-derivative, is the time-derivative of ϕ along the
trajectories associated with the velocity v for S defined by v − u = (V − u · n)n.
We show that the time-derivatives ◦ϕ and �

ϕ are related through the identity

◦
ϕ = �

ϕ+ utan · gradSϕ, (1.6)

which should be compared with its bulk counterpart (1.4).
A geometrically meaningful method of extending a surface field ϕ(x, t), at each t,

to a three-dimensional region containing the surface is obtained by requiring that ϕ be
constant on normal lines, where a normal line at time t is a line through a point x on
S(t) parallel to n(x, t). We refer to an extension ϕ̂ obtained in this manner as a normally
constant extension of ϕ and show that such an extension provides a simple relation for
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�
ϕ; namely,

�
ϕ =

∂ϕ̂

∂t
. (1.7)

The normal time-derivative is therefore the conventional partial time-derivative of ϕ when
ϕ is extended to be constant on normal lines.

Since the interface S need not be material, the transport relations (1.5) are applicable
to the general description of phase transitions. On the other hand, when S is a material
surface and A a material subsurface of S,

�
ϕ = ϕ̇− utan · gradSϕ, V = u · n, V mig

∂A = 0, (1.8)

and (1.5)1 reduces to a classical transport relation for surfaces (e.g., Slattery 1990, eqt.
(3-6)).

Our results apply, for instance, to the study of evaporating surfactant solutions. For
a binary solution, with bulk surfactant concentration and flux c and h and surface con-
centration and flux Γ and j, the balance of surfactant concentration for an arbitrary
migrating subsurface A of the evaporation surface S has the form†

d
dt

∫
A

Γ da = −
∫
∂A

{
h · ν − ΓV mig

∂A

}
ds+

∫
A

{
j · n− cV mig

}
da. (1.9)

Invoking the transport relation (1.5)2 and the surface divergence theorem, we may localize
(1.9) to yield the differential balance

◦
Γ + ΓdivSutan − ΓKV = −divSj + h · n− cV mig, (1.10)

valid pointwise on the evaporation surface.
When evaporation is neglected, so that S is a material surface, then Γ◦= Γ̇, V = u ·n,

and the balance (1.10) becomes

Γ̇ + ΓdivSutan − ΓKu · n = −divSj + h · n. (1.11)

The first two terms on the left side of (1.11) differ from those presented in the literature
(e.g., Scriven 1960; Aris 1962; Slattery 1971; Waxman 1984; and Stone 1989). Instead,
what one consistently finds are the terms

∂Γ
∂t

+ divS(γutan), (1.12)

which agree with those on the left side of (1.10) only if the partial time-derivative of Γ
is computed using the normally constant extension of Γ, since then, by (1.7) and (1.8),
we have the identification

∂Γ
∂t

= Γ̇− utan · gradSΓ. (1.13)

Without this interpretation the meaning of the equation that arises on replacing the first
two terms on the left side of (1.11) by (1.12) is ambiguous. Further, the identification of
∂Γ/∂t with the partial time-derivative determined using the normally constant extension
Γ̂ of Γ provides a precise geometrical definition that may be useful for computations.

Returning to the topic of evaporating surfactant solutions, it is important to note that
previous statements of the surfactant balance on the solution surface have been in error.
In particular, consider equation (3b) of Danov, Alleborn, Raszillier & Durst (1998). To

† We neglect surfactant evaporation; it is generally assumed that only the fluid solvent evap-
orates.
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clarify the comparison between (1.10) and that equation, suppose that the bulk and
surface fluxes are given by j = −Dgradc and h = −DSgradSΓ, in which case (1.10)
specializes to

◦
Γ + ΓdivSutan − ΓKV = divS(DSgradSΓ)− n · (Dgradc)− cV mig. (1.14)

In place of the left side of (1.14), Danov, Alleborn, Raszillier & Durst (1998) write

∂Γ
∂t

+ divS(Γutan). (1.15)

By (1.6) and (1.7), the normally constant extension of Γ yields the identification

∂Γ
∂t

=
◦
Γ− utan · gradSΓ, (1.16)

which is the counterpart of (1.13) appropriate for a nonmaterial surface. Even with this
identification, equation (3b) of Danov, Alleborn, Raszillier & Durst (1998) is missing the
term −ΓKV on its left side.

2. Surfaces
2.1. Gradient and divergence on a surface

Let S be a surface oriented by a unit-normal field n(x). A surface field is a field defined
on S. A tangential vector-field is a surface vector-field f(x) that satisfies f · n = 0. We
write gradS and divS for the surface gradient and surface divergence on S.†

gradSϕ is a tangential vector-field . (2.1)

Surface Divergence Theorem Let A be a subsurface of S with ν, a tangential
vector-field, the outward unit normal to ∂A. Then given any tangential vector-field f ,∫

∂A

f · ν ds =
∫
A

divSf da. (2.2)

The field defined by

K = −divSn (2.3)

is the total (i.e., twice the mean) curvature.

2.2. Surface fields determined by limits of bulk fields
Often in continuum mechanics a surface field is the restriction of a field that is well-
defined and smooth up to the surface from one or both sides. In this case the surface
gradient is simply the tangential component of the standard gradient; e.g., for such a
bulk-field Φ,

gradSΦ = gradΦ− (n · gradΦ)n. (2.4)

(If a bulk field Φ is smooth up to the interface from each side, but not across the interface,
then we would have two surface gradients gradSΦ±, one for each of the limiting values
Φ± of Φ.)

† We omit smoothness assumptions associated with surfaces, evolving surfaces, and surface
fields. We refer the reader to a treatise on differential geometry for precise definitions of gradS
and divS .
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zn(t)

zn(t+ τ)

S(t)S(t) S(t+ τ)

Figure 1. Two-dimensional schematic illustrating a normal trajectory passing through the
points zn(t) and zn(t+ τ) on S(t) and S(t+ τ).

3. Evolving surfaces
3.1. Local parametrization. Normal velocity

We now consider an evolving surface S(t) oriented by a unit-normal field n(x, t). S(t)
may be parametrized locally — that is, near any time t0 and point x0 on S(t0) — by a
mapping

x = x̂(ξ1, ξ2, t) (3.1)

that, at each time t, establishes a one-to-one correspondence between points (ξ1, ξ2) —
in an open set in a two-dimensional parameter space — and points x on S(t). Writing
(ξ1, ξ2) = ξ̂(x, t) for the corresponding inverse map at fixed time, the function

v(x, t) =
∂x̂
∂t

∣∣∣
(ξ1,ξ2)=ξ̂(x,t)

(3.2)

represents a local velocity field for S(t). This velocity field depends on the choice of
parametrization: specifically, the normal component of v, the scalar normal-velocity

V = v · n, (3.3)

is independent of the parametrization, but the tangential velocity is not.
The vectorial counterpart of V is the vector normal-velocity

vn = V n. (3.4)

3.2. Velocity fields. Trajectories. Normal time-derivative
Given any tangential vector-field t(x, t), consider the surface vector-field

v def= V n + t.

Any such v represents a velocity field for S, in the sense that there exists a local
parametrization (3.1) such that (3.2) holds. Fix x0 ∈ S(t0) and write x0 = x̂(ξ01 , ξ

0
2 , t0):

the curve

z(t) = x̂(ξ01 , ξ
0
2 , t) (3.5)

is referred to as the trajectory corresponding to the velocity field v, since

dz(t)
dt

= v(z(t), t), z(t0) = x0. (3.6)

Trajectories corresponding to the vector normal-velocity vn are called normal trajectories
(Figure 1).

Let ϕ be a scalar surface-field. The notion of a normal time-derivative �
ϕ of ϕ following
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S is basic. The field �
ϕ may be defined as follows: choose, arbitrarily, a time t0 and a

point x0 on S(t0), and let zn(t) denote the normal trajectory through x0 at t0; then

�
ϕ(x0, t0) =

d
dt
ϕ(zn(t), t)

∣∣∣∣
t=t0

. (3.7)

3.3. Basic transport relation for surface integrals

3.3.1. Evolving subsurfaces of S(t)

Consider an arbitrary evolving subsurface A(t) of S(t) with boundary-curve ∂A(t)
oriented by its exterior unit-normal field ν(x, t); ν is normal to ∂A, but tangent to S.

The curve ∂A(t) evolves through space, and its motion is described by a velocity field
v∂A(x, t) with x ∈ ∂A(t). Only the component of v∂A normal to the curve is independent
of the parametrization of ∂A and, hence, intrinsic to the motion. On the other hand,
since ∂A(t) ⊂ S(t) for all t, v∂A · n = V .

Noting that, at each point of ∂A, {n,ν} provides an orthonormal basis on the normal
plane to the curve and writing V∂A = v∂A · ν, we may therefore express the intrinsic
component of every velocity field for ∂A in the form

V n + V∂Aν. (3.8)

We refer to V∂A(x, t) as the scalar normal-velocity of ∂A(t); the field V∂A(x, t) describes
the intrinsic instantaneous motion of ∂A(t) in the tangent space to S(t) at x.

3.3.2. Transport relation

In stating integral balance laws for an evolving phase interface S(t), one is often con-
fronted with terms of the form

d
dt

∫
A

ϕda, (3.9)

with A(t) an arbitrary migrating subsurface of S(t). An essential ingredient in localizing
such balances is the following transport relation:†

Let A(t) be an evolving subsurface of S(t) with V∂A(x, t) the scalar normal-velocity of
∂A(t). Then given any scalar surface-field ϕ(x, t),

d
dt

∫
A

ϕ da =
∫
A

{
�
ϕ− ϕKV

}
da+

∫
∂A

ϕV∂A ds, (3.10)

with �
ϕ the normal time-derivative of ϕ following S.

An illustrative specialization of (3.10) arises on taking ϕ ≡ 1, in which case it follows
that the area of A evolves according to

d
dt

area(A) = −
∫
A

KV da

︸ ︷︷ ︸
area change

due to curvature

+
∫
∂A

V∂A ds.

︸ ︷︷ ︸
area change due
to motion of ∂A

(3.11)

† Established independently by Petryk & Mroz (1986) and Gurtin, Struthers & Williams
(1989); see also Estrada & Kanwal (1991). A simple derivation of (3.10) for curves evolving in
a planar domain is given by Angenent & Gurtin (1991).
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S(t) S(t+ τ)

x

Figure 2. Two-dimensional schematic illustrating why a point x lying on an interface S at time
t need not lie on the interface at a subsequent time t+τ and, thus, why the partial time-derivative
of a surface field ϕ is generally undefined.

3.4. Normally constant extension of a surface field. The derivative ∂ϕ/∂t for such an
extension

In applications one is often faced with the need to compute the time-derivative of, say, a
scalar surface-field ϕ(x, t). In the literature one typically finds such derivatives specified
as standard partial derivatives ∂ϕ/∂t, but such partial derivatives, without explanation,
are meaningless: difference quotients of the form

ϕ(x, t+ τ)− ϕ(x, t)
τ

(3.12)

are generally undefined because there is no assurance that x lies on S(t+ τ) when x lies
on S(t), even for sufficiently small τ (Figure 2). In fact, there are an infinite number of
partial derivatives ∂ϕ/∂t that one may compute, one for any given extension of ϕ, at
each t, to a three three-dimensional neighborhood of S(t). We now give a natural method
of extending ϕ.

A simple but useful method of smoothly extending a surface field ϕ(x, t), at each time,
to a three-dimensional region containing the surface is obtained by requiring that ϕ be
constant on normal lines, where a normal line at time t is a line through a point x on S(t)
parallel to n(x, t). The extension ϕ̂ obtained in this manner is referred to as a normally
constant extension of ϕ.† Since ϕ̂ is constant on normal lines,

n · grad ϕ̂ = 0,

so that, by (2.4),

gradSϕ = grad ϕ̂. (3.13)

Further, gradSϕ · vn = 0, so that, by (3.7),

�
ϕ =

∂ϕ̂

∂t
. (3.14)

This identity asserts that the normal time-derivative is the conventional partial time-
derivative of ϕ when ϕ is extended to be constant on normal lines.

4. Migrating surfaces in fluids
While valid for a surface migrating through a fluid, the transport relation (3.10) is

peculiar in that it exhibits no influence of the flow field. We turn now to deriving al-
ternative versions of (3.10) that account for that influence. In this regard, bear in mind

† Since normal lines may cross, such an extension is generally valid, at each t, at most in a
neighborhood of S(t).
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that, for ϕ a surface field, if the surface is not material then the material time-derivative
ϕ̇ is not well-defined : since material points flow across S(t), it is not generally possible
to compute a time-derivative holding material points fixed.

4.1. Fluid velocity. Migrational velocities
We now suppose that the evolving surface S(t) is migrating through a fluid. We write
u(x, t) for the velocity of the fluid and assume that this velocity has limiting values
u+(x, t) and u−(x, t) on each side of S(t), where u+ denotes the limiting value from that
side of S into which n points. We assume that the tangential component utan of u is
continuous across S, so that

u+ − u− = (u+ · n− u− · n)n. (4.1)

We continue to write V (x, t) and vn(x, t) for the scalar and vector normal-velocities
for S(t). In addition, we let v(x, t) denote a (for now arbitrary) velocity field for S(t).
Then the fields

v − u± (4.2)

represent migrational velocites of S relative to the fluid material on each of its sides.
Consider an arbitrary migrating subsurface A(t) of S(t). The velocities v∂A and V∂A

of ∂A are as discussed in the paragraph containing (3.8). The motion of ∂A relative to
the bulk material is described by the migrational velocities v∂A − u±. Further, bearing
in mind that ν is tangential,

u+ · ν = u− · ν = utan · ν, (4.3)

and hence

V mig
∂A

def= V∂A − u± · ν = V∂A − utan · ν (4.4)

represents the normal migrational velocity of ∂A; that is, the normal velocity of ∂A
relative to the fluid.

4.2. Migrationally normal velocity. Migrationally normal time-derivative
In discussing the formulation of integral balance laws for a surface S(t) migrating through
a fluid, what is needed is a velocity field for S that characterizes its migration. Specifically,
we seek a velocity field v for S that renders each of the migrational velocities v − u±

normal. With this in mind, note that

v − u± = v − (u± · n)n− utan = (V − u± · n)n + (vtan − utan),

so that, taking vtan = utan, we arrive at a choice of velocity field v for S that renders its
migrational velocities v − u± normal:

v − u± = (V − u± · n)n. (4.5)

The resulting velocity field v, called the migrationally normal velocity-field for S, has
the specific form

v = V n + utan (4.6)

and is important because it is normal when computed relative to the material on either
side of S(t).

The migrationally normal time-derivative of ϕ(x, t) following S(t) is defined — at an
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arbitrary time t0 and point x0 on S(t0) — as follows:

◦
ϕ(x0, t0) =

d
dt
ϕ(z(t), t)

∣∣∣∣
t=t0

, (4.7)

where z(t) is the trajectory through x0 at time t0 corresponding to the migrationally
normal velocity-field v = V n + utan (cf. the paragraph containing (3.6)).

4.3. Relation between the normal time-derivative and the migrationally normal
time-derivative

Let ϕ be a scalar surface-field and let ϕ̂ denote its normally constant extension as defined
in §3.4. Then, bearing in mind that the velocity field underlying the definition of ◦ϕ is the
migrationally normal field v = V n+utan, we find, using (3.13), (4.7), and the chain-rule,
that

◦
ϕ = vtan · gradSϕ+

∂ϕ̂

∂t
. (4.8)

Thus, by (3.14), the time-derivatives ◦ϕ and �
ϕ are related through the important identity

◦
ϕ = �

ϕ+ utan · gradSϕ. (4.9)

4.4. Transport relations for a surface migrating through a fluid
In stating integral balance-laws for a phase interface S(t) migrating through a fluid, one
is again confronted with terms of the form (3.9). Of course, the transport relation (3.10)
remains valid, but the more important results are obtained when (3.10) is combined with
kinematical results that account, explicitly, for the migration of the surface.

Let A(t) be an evolving subsurface of S(t) with V∂A(x, t) the scalar normal-velocity of
∂A(t). Further, let ϕ(x, t) be a scalar surface-field and let ◦ϕ(x, t) denote the migrationally
normal time-derivative of ϕ(x, t) following S(t). Then

d
dt

∫
A

ϕ da =
∫
A

{
�
ϕ+ divS(ϕutan)− ϕKV

}
da+

∫
∂A

ϕV mig
∂A ds,

d
dt

∫
A

ϕ da =
∫
A

{
◦
ϕ+ ϕdivSutan − ϕKV

}
da+

∫
∂A

ϕV mig
∂A ds.




(4.10)

To establish the first of (4.10), we use (3.10), (4.4), and the divergence theorem to
justify the following chain of relations:

d
dt

∫
A

ϕ da =
∫
A

{
�
ϕ− ϕKV

}
da+

∫
∂A

ϕV∂A ds,

=
∫
A

{
�
ϕ+ divS(ϕutan)− ϕKV

}
da+

∫
∂A

ϕ(V∂A − utan · ν) ds,

=
∫
A

{
�
ϕ+ divS(ϕutan)− ϕKV

}
da+

∫
∂A

ϕV mig
∂A ds.

Further, granted (4.10)1, the second of (4.10) follows upon noting that, by (4.6) and
(4.9),

�
ϕ+ divS(ϕutan) = ◦

ϕ− utan · gradSϕ+ divS(ϕutan) = ◦
ϕ+ ϕdivSutan.
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5. Material surfaces
5.1. Kinematical relations

Assume that S(t) is a material surface so that, necessarily, the fluid velocity is continuous
across S(t). Assume further that A(t) is a material subsurface of S(t), so that boundary
curve ∂A(t) a material curve.† Then:

(i) The fluid velocity u is a velocity field for S; hence the normal velocity of S and
the normal fluid-velocity coincide,

V = u · n. (5.1)

(ii) The migrationally normal velocity-field for S coincides with the fluid velocity,

u = V n + utan. (5.2)

(iii) The material time-derivative ϕ̇ coincides with the time-derivative ◦ϕ following the
surface as described by the migrationally normal velocity-field (4.6),

ϕ̇ = ◦
ϕ. (5.3)

(iv) The normal migrational velocity V mig
∂A vanishes.

Assertion (i) is immediate, as is the relation

V∂A = u · ν, (5.4)

which implies (iv). By (i),

v = V n + utan = (u · n)n + utan = u,

which is (ii). Finally, by (ii) and (3.6), the trajectories used to compute (4.7) satisfy

dz(t)
dt

= u(z(t), t)

and hence represent trajectories of material points. Thus (iii) is satisfied.

5.2. Transport relations for material surfaces
The following transport relations follow as consequences of (4.10)2:

If S(t) is a material surface and A(t) a material subsurface of S(t), with boundary
curve ∂A(t) a material curve, then given any scalar surface-field ϕ(x, t),

d
dt

∫
A

ϕ da =
∫
A

{
ϕ̇+ ϕdivSutan − ϕ(u · n)K

}
da,

d
dt

∫
A

ϕ da =
∫
A

{
ϕ̇+ ϕdivSu

}
da.




(5.5)

The first of (5.5) follows directly upon using (5.1) and (5.3) in (4.10)2. To establish
the second of (5.5), note that, by (2.3),

−(u · n)K = (u · n)divSn = divS
(
(u · n)n

)
− n · gradS(u · n)︸ ︷︷ ︸

=0

,

so that
−(u · n)K + divSutan = divSu,

† Stated differently: S, A, and ∂A convect with the fluid.
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and (5.5)1 reduces to (5.5)2.

Remarks
(i) The relation (4.9) between the time-derivatives ◦ϕ and �

ϕ of a scalar surface-field is,
in some respects, an analog of the relation

Φ̇ =
∂Φ
∂t

+ u · gradΦ (5.6)

between the material and spatial time-derivatives of a field Φ(x, t) whose spatial variable
x, at each time, belongs to an open region in three-dimensional space: ◦ϕ is analogous
to the material time-derivative Φ̇, �

ϕ to the spatial time-derivative ∂Φ/∂t (cf. (3.14) and
(5.3)).

(i) A consequence of the relation (5.5)1 is that if

d
dt

∫
A

ϕ da = 0

for all A, then

ϕ̇− ϕ(u · n)K + ϕdivSutan = 0. (5.7)

This relation is consistent with (6) of Stone (1990) provided ∂ϕ/∂t is computed via the
normally constant extension of ϕ as defined in §3.4, so that

∂ϕ

∂t
= ϕ̇− utan · gradSϕ. (5.8)

The relation (5.8) is formally analogous to the relation between the material and spatial
time-derivatives of a bulk field.

(ii) The version (5.5)2 of the transport relation for a material surface is established,
for example, by Slattery (1972).

(iii) For an evolving flat material surface, the equation (5.5)1 represents the two-
dimensional version of the Reynolds (1903) transport relation (cf. Gurtin (1981, p. 78)).
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