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In this work we investigate the dynamics of self-sustained detonation waves that have an embedded infor-
mation boundary such that the dynamics is influenced only by a finite region adjacent to the lead shock. We
introduce the boundary of such a domain which is shown to be the separatrix of the forward characteristic lines
as a generalization of the concept of a sonic locus to unsteady detonations. The concept plays a fundamental
role both in steady detonations and in theories of much more frequently observed unsteady detonations. The
definition has a precise mathematical form from which its relationship to known theories of detonation stability
and non-linear dynamics can be clearly identified. With a new numerical algorithm for integration of reactive
Euler equations in a shock-attached frame that we have also developed we demonstrate the main properties of
the unsteady sonic locus such as its role as an information boundary. In addition we introduce the so-called
“non-reflecting” boundary condition at the far end of computational domain in order to minimize the influence
of the spurious reflected waves.

I. INTRODUCTION

A self-sustained detonation wave can be defined as a detonation that once initiated does not require any external
support to sustain its subsequent evolution. Such detonations propagate by means of the interaction of the lead shock
with the following reaction zone only. This is unlike overdriven detonations which require additional external support,
such as a piston, to maintain the detonation structure at its nominal speed. Self-sustained detonations are of great
theoretical and practical interest precisely because of the property of their autonomous dynamics and because they
can produce useful work on their own without continuous external energy input. Existing theoretical and numerical
studies have dealt principally with overdriven detonations because of their simpler mathematical formulation.

The steady planar Chapman-Jouguet (CJ) detonation is the classical example of a self-sustained detonation. The
distinct feature of the CJ detonation is the existence of a sonic point at the end of the reaction zone. We emphasize two
fundamental properties of the sonic point. First, the condition of local sonicity, namely that the Mach number defined
in terms of the particle speed relative to the lead shock is unity at the sonic point. In one dimension, enforcement of
a sonic state at the end of the reaction zone as a point-wise condition (i.e. a boundary condition) serves as a closure
equation that determines the detonation speed for a given explosive mixture. A second fundamental property is that
the flow between the lead shock and the sonic locus is acoustically isolated from the far-field flow, that is the sonic
locus is an information boundary such that acoustic information on the downstream side of this boundary cannot
penetrate into the detonation reaction zone. The second property is important in a generalization of the sonic point to
unsteady detonations. The lack of understanding of the nature of the confinement of self-sustained detonation (also
sometimes referred to as “freely propagating” detonation) has been a source of tremendous confusion in the subject
and a satisfactory resolution has been a long-standing open problem in detonation theory.

In this work we define a sonic locus in an unsteady detonation as a separatrix of the family of forward characteristics.
On the upstream side of the separatrix, the characteristics flow into the shock in a finite time, while on the downstream
side, they flow away from the shock. In this view the sonic locus (in one dimension) is a point on a particular forward
space-time characteristics. It agrees entirely with the standard definition of the sonic locus when the flow is steady. The
definition can be put in precise mathematical terms. By means of a new numerical approach that we have developed
for this study, we demonstrate the physical properties of the unsteady sonic locus by computing a pulsating detonation
wave with a finite reaction zone. By placing variety of different initial states behind the sonic locus, we demonstrate
that the separatrix is an information boundary. We show that as long as the flow within the reaction zone evolves
smoothly, the separatrix exists and indeed acoustically isolates the reaction zone from the subsequent flow.

The present findings about the nature of the sonic locus in unsteady detonations have important implications for
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theories of detonation stability and nonlinear dynamics. We show that the conditions that must be satisfied at the sonic
locus have a direct relationship to radiation conditions of detonation stability theory (see e.g. [9]) as well as conditions
that have been used in nonlinear theories of detonation shock dynamics, [10].

The computation of detonation dynamics is difficult due to the need for tremendous resolution and because there are
many sources of noise and error from the numerics, and first-order error from the lead shock in particular. Therefore
we have developed a highly accurate numerical method based on a transformation to a frame attached to the lead
shock. In this approach the lead shock is treated as a boundary instead of being tracked, or captured. This allows us
to carry out simulations of the dynamics of self-sustained detonations, in particular, and enables direct comparisons
with theories cast in terms of the detonation shock speed and its derivatives. It is fair to say that despite the number of
high-resolution simulations carried out by various researchers over recent years (see e.g. [1–7]), a definitive conclusion
as to what it means to have an adequate resolution has yet to be made, even for one-dimensional detonations. Close
to the stability boundary when detonation propagates in the form of regular pulsations, one can obtain a converged
solution provided sufficient resolution is used and the computational domain size is sufficiently large. But far from the
stability boundary when detonation propagation is irregular with seemingly chaotic pulsations, interpretation of the
calculations is not straightforward. There can be a strong dependence of the computed solution on the grid size and
the size of the computational domain as well as on the numerical algorithm. As simulations show, for a wide range
of system parameters, complex multi-mode or chaotic solutions are much more common than regular ones. Clearly,
understanding the nature of such complex solutions is of great interest. In order to attain such understanding one needs
to have reliable tools in hand. If the problem is addressed by means of a numerical integration of governing equations,
effects of all possible sources of numerical error must be minimized, and a high-resolution numerical algorithm must
be used. In terms of numerical algorithms for solving Euler equations, variety of highly accurate discretization schemes
are available presently. Still an accurate treatment of detonation shocks is a problem in schemes that capture or track
the shock because of inherent oscillations present near the shock that preclude accurate calculations of the shock
position, speed, and hence the shock pressure. Inaccurate (first order) calculation of the lead shock generates errors
in the pressure and density (and hence the temperature) and in turn generate accuracy errors in the initial chemical
reaction rate at the shock that in turn propagate into the reaction zone.

In addition to the errors that have their origin in discretization and shock tracking, the rear boundary conditions
can also be a source of error. In all previous studies the issue of the far-field boundary condition has been avoided
by simply using very large computational domains and applying “outflow” or “soft” boundary condition. Outflow
boundary condition extrapolates the flow variables from the interior side of the numerical boundary into the ghost
points, thus imposing zero gradients of the flow variables, see e.g. [4, 5]. The outflow boundary condition is not
based on physical reasoning and is used because it does not produce anyvisible reflections and because it is efficient
and simple to implement when the flow is supersonic. As we will show below the outflow condition does produce
spurious reflected waves. Various other conditions have also been used, such as continuous gradients, fixed pressure
[2, 6, 7], etc., but again these are all non-physical, because strong outgoing oscillating waves generated by the pulsating
detonation reaction zone do change both the gradients of flow variables and pressure at the outflow boundary.

In order to contribute to proper theoretical understanding of detonation dynamics, numerically generated results
must be unambiguous and independent of discretization schemes and unphysical effects of domain size and boundary
conditions. That said, it must be realized that such a requirement may not be achievable in certain cases, one such being
the computation of chaotic dynamics. If a detonation wave is chaotic by its nature, it implies exponential sensitivity
to initial conditions; that is small differences in initial conditions will be amplified over time leading to completely
different long-time solutions. It may be possible to demonstrate the existence of “chaos” in such cases, but nearly
impossible to compute a “converged” solution in the conventional sense. In such cases the strong grid dependence will
be intrinsic to the computed dynamics and thus higher resolutions would not appear to produce a converged solution.
At the time of this writing, careful analysis of such chaotic solutions is absent in literature.

In order to address the issues related to the errors in determining shock location and speed as well as to the effects
of outflow boundary conditions, we employ simple to implement method for calculation of the one-dimensional deto-
nation waves in a frame of reference attached to the leading shock front and have implemented dynamic rear boundary
condition that reduces the spurious reflections at the outflow boundary. High accuracy, simplicity of implementation,
and convenience in analyzing the results makes our approach appealing as it can be used as a tool for careful compar-
isons of high-resolution simulations with theoretical results. Detonation theories are often posed in the shock-attached
frame. For example, the entire theory of detonation instability is posed in terms of shock-attached coordinates, see
e.g. [8, 9]. Similarly, the theory of detonation shock dynamics, which is a weak disturbance theory is also formulated
in shock-attached coordinates, see e.g. [10].

For the region behind the shock we use a standard shock-capturing algorithm but posed in the shock-attached frame.
As a consequence of the coordinate transformation to the lead shock, the shock speed,D(t) enters the governing equa-
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tions explicitly as an unknown and must be calculated at each time step. We do this by local method of characteristics
integration of the equation for the forward characteristics near the shock, combined with the application of the shock
relations to determineD(t). The method eliminates the ambiguities and inaccuracies in the computation of the lead
shock speed. Computation in the shock-attached frame gives us the luxury of placing tremendously large number of
points in the reaction zone if we so desire. We do not have to a posteriori place or filter the shock location, rather it is
a boundary set at the origin at all times.

The study and testing of non-reflecting outflow boundary conditions have been a subject of interest for computations
of compressible flows and turbulent flows. For a general discussion, the reader is referred to the papers by Thompson
[14] and by Poinsot and Lele [15]. In this paper, we formulate a non-reflecting boundary condition in terms of the
method of characteristics similar to the earlier works and give the implementation details. We tested this boundary
condition on the problem of an acoustic pulse that is propagating in a uniformly shocked region behind a shock. We
demonstrate that our boundary condition reduces the acoustic reflections by an order of magnitude compared to the
“soft” boundary condition. We also demonstrate that reflecting outflow boundary condition can noticeably affect the
detonation dynamics.

For the purpose of validation and comparison, we have tested our method with an example of a shock overtaking
another shock in an inert medium and have computed several cases of detonation that have also been previously
published [2, 5, 6]. Our calculations agree with predictions of linear stability analysis and with known results for
detonations that are known to have a converged solution namely for low-frequency pulsating detonations. But we
found that for one, still controversial, case of a detonation wave that undergoes initial decay with subsequent reignition,
the spurious errors that are always present near the shock at the start of computations in traditional shock-capturing
methods, play a significant role in the initial evolution of the wave. Namely, the shock-based errors are responsible for
the formation of strong high-frequency pulsations before the reaction front starts to decouple from the lead shock. Such
oscillations have been shown in [4] to be responsible for the appearance of unburnt pockets of fuel and an irregular grid-
dependent reignition process. For exactly the same problem we show that the initial errors are significantly reduced
in magnitude, more so with higher resolutions, and we do not observe the growth of high-frequency oscillations. The
result is that the dynamics is governed by the nonlinear instability and dominated by the low-frequency mode, quite
similar to that of the original work of He and Lee [6]; therefore, the subsequent reignition process is also much more
regular, that is localized explosions due to the unburnt pockets are absent, as opposed to the results of [4, 5], where
such explosions were observed. We observe the high-frequency oscillations only if an artificial initial perturbation is
introduced behind the shock. Even extremely high resolution simulations that used 533 grid points per half-reaction
length led to the same regular dynamics with no high-frequency oscillations if no initial perturbations were present.

In order to clarify the physical role played by the unsteady sonic locus (the acoustic information boundary for the
lead shock) in self-sustained detonations we carried out a series of simulations of an initially steady CJ detonation
with a reaction zone of finite thickness. We used an Arrhenius rate law with depletion factor ofν = 0.9 which makes
the reaction zone finite. The location of the sonic locus for the steady detonation coincides with the end of the reaction
zone. By demonstration we show that the information boundary exists and can be given a precise meaning, namely
that it is a separatrix of the family of forward characteristic lines that delineates the characteristics that reach the lead
shock in finite time and those that leave to infinity. We show that if the post-sonic state remains sufficiently smooth
then the detonation dynamics is not influenced by the processes behind the separatrix and is determined entirely by
the finite region between the lead shock and the separatrix. The general version of this argument is simply based on a
domain of influence considerations for hyperbolic partial differential equations.

The present study considers a mixture with an ideal equation of state, that undergoes single-step irreversible chem-
ical reaction. With straightforward modifications this work can be generalized for one-dimensional detonations with
multiple-step chemistry and/or non-ideal equation of state.

II. GOVERNING EQUATIONS IN THE SHOCK-ATTACHED FRAME

The reactive Euler equations are rewritten in the shock-attached frame(x, t) where

x = xl −
Z t l

0
Ddt, t = t l , (1)
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and superscriptl denotes the laboratory frame. We consider the wave moving from left to right, hencex < 0 is the
region behind the lead shock. The governing equations in conservative form are as follows:

∂y
∂t

+
∂
∂x

(F−Dy) = S, (2)

where

y =




ρ
ρu

ρET
ρλ


 , S=




0
0
0

ρω


 ,

F =




ρu
p+ρu2

ρu(ET + pv)
ρuλ


 . (3)

Note thatu = U + D(t) here is the particle velocity in thelaboratory frame,U < 0 is the particle velocity in the
shock-attachedframe,D is the shock speed,ET = e+ u2/2 is the total specific energy,Q is the heat release,e =
pv/(γ− 1)− λQ is the specific internal energy of the ideal explosive mixture,ω = k(1− λ)ν exp(−E/RT) is the
Arrhenius reaction rate with activation energyE, reaction orderν, and pre-exponentk, R is the universal gas constant
andT is temperature.

The exact Rankine-Hugoniot conditions applied at the lead shock are

ρ0D = ρsUs, (4)

p0 +ρ0D2 = ps+ρsU
2, (5)

γ
γ−1

p0

ρ0
+

D2

2
=

γ
γ−1

ps

ρs
+

U2
s

2
. (6)

The lead shock speedD enters the governing equations explicitly in contrast to the traditional formulations that used
shock-capturing methods in whichD is determined by the solution generated by the conservative, shock-capturing
numerical scheme. In the shock-attached formulation,D must be calculated explicitly by some other means.

From now on we use tilde to denote a dimensional quantity. The governing equations are rescaled as follows.
Pressure and density are scaled with respect to their initial values,p̃0 andρ̃0 in the fresh mixture, the velocity is scaled
asũ =

√
p̃0/ρ̃0, the length scale is that of the half-reaction lengthl̃1/2, and the time scale is̃t1/2 = l̃1/2/ũ. In these

scales the governing equations retain their form.

III. CALCULATION OF THE SHOCK SPEED

In order to integrate the governing system of equations, Eqs. (2), one needs to be able to calculate the front speed
D at each time step. While the flow variables can be advanced in time by any finite-difference scheme, the front speed
calculation must be based on an independent algorithm. We update the speed by integrating the governing equation
on theC+ characteristics near the shock from its location att = t j to the location of the shock, Fig. 1, over the time
interval∆t, given by the Courant condition. The exact Rankine-Hugoniot conditions (4)-(6) are imposed at the shock
located at the right boundary of the computational domain,x = 0. All the state variables at the shock are extended
into the ghost points ahead of the shock,x > 0. This procedure is somewhat similar to what is traditionally done in
shock-tracking methods (see e.g. [11]), but in our approach we do not track the shock as a moving boundary, but rather
it is always fixed atx = 0.

The governing equations written in characteristic form on theC+ characteristics are

dp
dt

+ρc
du
dt
− (γ−1)Qρω = 0, (7)
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Figure 1: Integration on theC+ characteristics fromx = x∗ near the shock to the location of the shock.

and

dx
dt

= c+u−D. (8)

In discretized form with first order differencing of the derivatives and semi-implicit treatment ofρc and implicit
treatment of the reaction term we obtain the following equations:

p j+1− p∗+0.5
[
(ρc)∗+(ρc) j+1

]
(u j+1−u∗)

−(γ−1)Qρ j+1ω j+1∆t = 0. (9)

−x∗ = (c∗+u∗−D∗)∆t, (10)

The state at timet j is considered known. The unknowns here are the pointx = x∗ of the origin of theC+ character-
istics from timet j to time t j+1, and the front speedD j+1 at t = t j+1. All the state variables att j+1 that appear in Eq.
(9), are explicit functions ofD j+1 by means of the Rankine-Hugoniot conditions (4)-(6). The variables atx = x∗ can
be calculated in terms of the known grid values atxN, xN−1, etc. by interpolation (N is the number of grid points). We
use a linear interpolation in all calculations below. For example,

p∗ = pN− x∗
∆x

(pN−1− pN) , (11)

where∆x is a fixed grid size.
The Rankine-Hugoniot relations (4)-(6) can be recast in terms of the detonation Mach numberM j+1 = D j+1/c0 to

eliminate all variables att j+1 in favor ofM j+1 as follows:

p j+1

p0
=

2γ
γ+1

M2
j+1−

γ−1
γ+1

, (12)

ρ j+1

ρ0
=

(γ+1)M2
j+1

2+(γ−1)M2
j+1

, (13)

u j+1

c0
=

U j+1 +D

c0
=

2
γ+1

M2
j+1−1

M j+1
. (14)
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Figure 2: Characteristics at the subsonic outflow at the left boundary for non-reflecting boundary condition:C− : dx/dt = u− c,
C0 : dx/dt = u, C+ : dx/dt = u+c.

Substitution of these relations together with the linear interpolations such as Eq. (11) into Eqs. (10) and (9) results in
a system of two nonlinear algebraic equations forx∗ andM j+1. The latter can be solved with any standard root solver.

Once we findD j+1 by the above procedure, we can then integrate the governing Eqs. (2) to determine the entire flow
behind the shock at the next time levelt j+1. We use UNO2 (Uniformly Non-Oscillatory) scheme [12] of second order
spatial accuracy and third order Runge-Kutta method for temporal integration, based on a numerical code developed
in [13]. We have tested a variety of ENO type schemes and found that the most accurate solution is provided with a
fifth-order WENO, but UNO2 was only slightly less accurate while faster than WENO by about 25 %. For this reason
we used UNO2 in all of the following calculations.

IV. FAR-FIELD NON-REFLECTING BOUNDARY CONDITION

At the far-left end of the computational domain,x = −L, we apply the non-reflecting boundary condition. For
a subsonic outflow, the forward characteristicsC+ carries information from outside region into the interior domain.
Therefore, one boundary condition must be provided that specifies the details of the flow in the exterior. If no waves
are assumed to enter the domain from outside, the boundary condition must reflect this fact. The appropriate condition
is then the non-reflecting boundary condition (NRBC).

We formulate the non-reflecting condition in terms of the values at the ghost points, that is we have to update the
ghost points at each time step so that the incoming wave is suppressed. The latter is accomplished by the method of
characteristics as follows. The state variables in the ghost points will change in time due to the waves carried along
theC− andC0 characteristics from the interior and the wave along theC+ characteristics from outside, Fig. 2. But
if the latter is assumed not to propagate into the interior domain, theC+ characteristics cannot have a positive slope.
And since the flow is assumed to be subsonic (or sonic), the direction must be vertical as shown in Fig. 2. The basic
physics behind NRBC is that there should be no incoming wave. It means that the amplitude of any incoming wave
does not change in space, that is the wave does not propagate. It can be shown (see, e.g. [15]) that the equation for the
C+ characteristics is actually an amplitude equation for the incoming wave. Constancy of the amplitude means that the
origin of theC+ characteristics can be placed at any spatial position at the previous time level. All such characteristics
will carry a wave of the same amplitude. The choice we have made is the simplest one, that is we place the origin
exactly at the boundary of the computational domain.

Thus we write the governing equations in characteristic form and generate the following discretized set of equations
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that are used to calculate the updated state at the ghost pointi =−1:

J0 : p+− p0−c2
0(ρ+−ρ0) = 0, (15)

C0 : x+−x0 = ∆t (u0−D), (16)

J− : p+− p−−ρ−c−(u+−u−) = 0, (17)

C− : x+−x− = ∆t (u−−D−c−), (18)

J+ : p+− p0
+ +ρ0

+c0
+(u+−u0

+) = 0, (19)

C+ : x+ =−L−∆x. (20)

Herex+, x−, x0 are the values of the intersections of the characteristic lines withx-axis at the current time levelt.
Exceptp+, ρ+, andu+ which are evaluated att = t + ∆t, all other variables are evaluated at timet at corresponding
values ofx. The unknowns in the above system arex0, x− andp+, ρ+, u+. The superscript0 indicates the state atx+ at
time t. Linear interpolation is used to calculate the interior states in terms of the known grid values. Once we findp+,
ρ+, u+ at i =−1, we extend them into the remaining ghost points. If the outflow is supersonic, then the extrapolation
can be used to find the ghost point values (which we have done below) or the above system can be integrated on all
three characteristics, which now carry information from the interior only.

It is interesting to note the close relationship between the non-reflecting boundary condition, which is expressed by
Eq. (19) in the above system, and the radiation condition used in the linear stability theory [9]. In fact, the two are
exactly the same as they both express the condition that there is no radiation from the outflow boundary. Linearization
of Eq. (19) does indeed yield the one-dimensional radiation condition of the linear stability theory of detonation.

We tested the boundary condition on a problem of an acoustic pulse propagating downstream behind a steady shock.
At time t = 0, we have a uniform state of lengthL = 10 behind a shock of Mach numberM = 6 and a superimposed

acoustic perturbation of densityρ′=ε exp
[
−2(x+0.5L)2

]
, pressurep′ = c2

0ρ′, and velocityu′ = −p′/ρ0c0; hereε =

10−4, the base-state densityρ0 = 10.33, pressurep0 = 39.18, sound speedc0 = 2.13, specific heat ratioγ = 1.2. The
perturbation propagates downstream and partially reflects off the left boundary. Figure 3 shows the results for two
resolutions,N = 100 andN = 200 points in the computational domain at timet = 3.07. For N = 100 and with the
outflow boundary condition (RBC, which is the soft boundary condition that extrapolates values from the interior to the
ghost points), the reflected wave is a step-like decrease of pressure of amplitude of aboutδp = 6·10−7 which remains
at this level as long as no other perturbation changes it. The new boundary condition produces a smaller reflection of
amplitude of aboutδp= 7·10−8 or less which dissipates as it propagates to the right and there is no sustained pressure
increase or decrease behind the reflected wave. For a higher resolution ofN = 200 the RBC produces a reflection
of a smaller amplitude but now it is a step-like increase in pressure. The reflection produced by the non-reflecting
boundary condition (NRBC) is similar to theN = 100case but is of smaller amplitude.

V. RESULTS

The main purpose of the study is to gain an understanding of the dynamics of self-sustained detonations and the
nature of their rear confinement. But first we demonstrate that the numerical approach in the shock-attached frame
described in the last section produces highly accurate results by computing: (a) the interaction of two shock waves,
one overtaking the other, and (b) the low-frequency pulsating detonation. The problem (a) of shock interaction has an
analytic solution first obtained by von Neumann [16], which is used to validate the code. In the case (b) of a pulsat-
ing detonation with simple-depletion Arrhenius kinetics, we perform several calculations near the stability boundary
predicted by the linear stability theory, [9], in order to capture the stability threshold and periods of pulsations. In
addition we also perform several calculations far from the stability boundary in order to gain insight into the behavior
of detonation when the reaction front detaches significantly from the lead shock.

A. A shock overtaking another shock

The details of von Neumann’s analytical solution can also be found in [17]. For the sake of completeness, we
reproduce here the basic idea of the solution. The schematics of the interaction in thex− t plane is shown in Fig. 4,
while Fig. 5 shows the initial pressure profiles (not to scale) and the front speeds of the two shocks. The trailing shock
S2, propagating with speedD2 = 12 in the lab frame overtakes the leading shockS1 of speedD1 = 6 with the new
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Figure 3: Propagation of an acoustic pulse behind a shock: initial pressure perturbation profile (thin dashed line, only bottom part of
the profile is shown since the maximum of the initial profile is4.5·10−4) and spurious reflections after the pulse leaves the domain,
for non-reflecting (NRBC) and soft reflecting (RBC) boundary conditions at resolutions ofN = 100andN = 200.
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Figure 4: Schematic of a shock-overtaking-a-shock interaction: (a)x− t diagram of the interaction; (b)p− u diagram of the
interaction.
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Figure 5: Schematic of a shock-overtaking-a-shock interaction with initial condition as used in calculations below.

shockS3 of speedD3, a rarefaction waveR, and a contact discontinuityC forming as a result of the interaction. The
computational domain is fixed at the leading shock front at all times.

The analytical solution of this problem is conveniently obtained with the help of thep−u diagram shown in Fig.
4(b). The initial state is denoted by(0), the state behind the first shock is(1), that behind the second shock is(2), and
the state behind the transmitted shock is(3). The goal is to find the state(3). As we can see from the figure, it is found
as the intersection point of the shock curveS1 and the rarefaction curveR. The latter originates at point(2), the state
behind the second shock, since it is the state into which the rarefaction wave propagates.

The equations ofS1 andR are as follows:

S1 : u = (p− p0)

√
2/ρ0

(γ−1)p0 +(γ+1)p
,

R : p = p2

(
1− γ−1

2
u−u2

c2

)2γ/(γ−1)

.

The solution of these equations gives the pressure at state(3) and hence the front speedD3. The point(2) in these
equations is found by application of the Rankine-Hugoniot conditions first for state(1) in front of the shockS2, and
then for the state(2) behind it.

Figure 6 shows the numerically calculated front speed as a function of time for three levels of resolution,N =
20, 100, and500grid points in the domain of lengthL = 10. We can see that the front speed after the interaction is
calculated with very high accuracy even for the lowest resolution of20 points. ForN = 500points, the numerically
found front speed after the interaction isDnum = 13.727which to this accuracy is the same as the theoretical value.
The main difference between the curves is in the width of the transition region, which in theory must be zero, but is
smeared in the calculations due to the smearing of the impinging shockS2 by the spatial discretization scheme.

Figure 6(b) shows the density profiles after the interaction has occurred. One can see the rarefaction wave and
a smeared contact discontinuity propagating to the left away from the lead shock. The effect of the resolution that
is more pronounced in this figure can be seen in smearing the contact discontinuity and the rarefaction wave by the
spatial discretization scheme.

B. Pulsating detonation with simple-depletion kinetics

In this section we present several calculations for the development of a detonation wave from an initially prescribed
steady Chapman-Jouguet solution. We obtain high-resolution solutions for a stable detonation, weakly unstable deto-
nation with periodic limit cycle, detonation with irregular oscillations, and highly unstable detonation with re-ignition.
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Figure 6: (a) Numerically calculated speed of the lead-shock as a function of time for three levels of resolution. (b) Density profiles
at various resolutions at timet = 2.5.
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Figure 7: Stable detonation withE = 25; N = 4000points on the domain of lengthL = 20, N1/2 = 200.

We fix the specific heat ratio atγ = 1.2 and the heat release atQ = 50, and vary the activation energyE similar to that
done in, e.g. [5, 6]. The steady CJ speed for this detonation isDc j = 6.809. The linear stability theory predicts that
detonation with these parameters is unstable forE > Ec = 25.26.

Figure 7 shows the calculated front speed for detonation below the stability boundary. We usedN = 4000points
on the computational domain of lengthL = 20. This givesN1/2 = 200 grid points per half-reaction length. The
oscillations are seen to damp out with time as expected. The weakly unstable case of Fig. 8(a) corresponds toE = 26.
The period of the limit cycle solution isT = 12.11, while the linear stability theory, [9], predictsTLS = 11.99. The
present resolution predicts the amplitude within a fraction of a percent of that withN = 8000. The case of an irregular
dynamics is shown in Fig. 8(b). For this detonation wave, we have used a higher resolution ofN1/2 = 400due to the
stronger dependence of its dynamics on the grid size. This is a possible case of a chaotic dynamics understanding of
which requires further investigations both numerically and theoretically.

We have also computed the dynamics of a strongly unstable detonation which results in a decay and subsequent
re-ignition of the detonation similar to what has been published in earlier studies, [2, 4–6]. Figure 9 shows the time-
snapshots of the distribution of pressure and reaction rate. The numbers near the curves indicate corresponding times.
The reaction front is seen to detach from the lead shock to a large distance approaching the left end of the computational
domain. Eventually it reverses its direction and starts propagating back toward the shock. In the process, a strong
compression wave is generated that develops into a detonation wave overtaking the lead shock front. Figure 10 shows
the corresponding speed of the lead shock, the large jump in it corresponding to the moment of overtaking of the lead
shock by the internal detonation wave. A similar sequence of events was also found to occur for strongly unstable
detonations with chain-branching kinetics in [18]. The reader is referred to [18] for a more detailed discussion of the
underlying mechanisms of such detonations. The computed details of the re-ignition process are very sensitive to the
grid resolution in agreement with previous findings. For example, with low resolution ofN = 2000(N1/2 = 33) grid
points with other parameters the same as in Fig. 9, a series of internal shock waves can be seen to emerge which
overtake one another to form a single detonation front in the interior.

With the parameters of Fig. 10, the underlying steady detonation wave is linearly unstable and has two unstable
oscillatory modes. The low frequency first mode has a smaller growth rate than the higher-frequency second mode,
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Figure 10: The front speed vs time for the strongly unstable case.E = 35, N = 16000, domain lengthL = 60, N1/2 = 266.

thus one might expect the high-frequency oscillations to appear first. The phenomenon has in fact been reported by
Sharpe and Falle in [4] which they claim contradicted the original calculations by He and Lee, in that He and Lee’s
results did not show any early oscillations. Sharpe and Falle attributed the difference to inadequate resolutions used in
He and Lee, although both of these works used about 50 grid points per half-reaction length. Our calculations, shown
in Fig. 10(a), do not have high-frequency oscillations in agreement with He and Lee, and are computed with higher
resolution of 266 points per half-reaction length. We have also carried out calculations using as many as 533 grid
points per half-reaction zone and find no early high-frequency oscillations.

The explanation of the absence of oscillations has to do with the initial disturbances to the detonation wave. It is well
known that when starting detonation simulations with a steady solution with a discontinuous shock front, one always
sees strong overshoots/undershoots in the shock pressure within a few time steps before the discretization scheme
smears the shock out. These spurious initial errors are amplified if the underlying detonation structure is unstable.
But in our method the shock is always at the origin therefore no significant initial overshoots due to shock-capturing
errors. The amplitude of the initial disturbance is so small that the high-frequency instability does not develop before
the reaction front decoupling starts. To verify the statement, we computed a case with an artificial initial disturbance
introduced by increasing the pressure within 5 cells adjacent to the shock by∆p= 1, which is about 2.4 % of the initial
post-shock pressure. Indeed, the growth of this disturbance can be clearly seen in Figs. 11 which corresponds to the
same settings as Fig. 10. The period of the oscillations agrees closely with linear stability theory, which predicts that
the faster growing second mode of the two unstable modes has a period ofT = 1.455. The oscillations can be seen
with initial perturbation of magnitude smaller or larger than the present one. In agreement with previous simulations,
higher resolutions tend to make the pulsations persist over longer times, in particular even after the decoupling of
the lead shock and reaction front takes place. The oscillations were shown in [4] to be responsible for the formation
of unburnt pockets of gas. Thus we conclude that the absence of the early high-frequency oscillations in Fig. 10 is
explained by the absence of the spurious start-up errors near the shock and a dominant low-frequency evolution of the
wave. This conclusion is confirmed by Fig. 11(b) which shows very early dynamics of the shock corresponding to
Fig. 11(a).

As to the role of the outflow boundary condition in the cases computed above, it was found to be of minor signif-
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Figure 11: The early-stage evolution of the strongly unstable detonation: (a) with (solid line) and without (dashed line) initial
perturbation of the lead shock; (b) zoom into the very early dynamics for the two cases showing no overshoots by the present
algorithm (dashed line) and an initial artificial perturbation placed at the shock (solid line).

icance compared to that of a spatial resolution. For the re-ignition case, the non-reflecting boundary caused a slight
delay of the re-ignition time and a small increase of the maximum shock speed, after the internal detonation wave
caught up with the lead shock. The reasons for such a small difference are high resolutions used which tend to re-
duce the spurious reflections off the boundary and near-sonic character of the flow at the boundary. In simulations of
overdriven detonations in which the subsonic character of the flow behind the shock front allow the reflected waves
to catch the front, the non-reflecting boundary condition may play a significant role. As an example, Fig. 12 shows
the dynamics of an overdriven detonation withQ = E = 50, γ = 1.2 and the degree of overdrivef = 1.25. The com-
putational domain of sizeL = 40 hadN = 4000grid points, which placesN1/2 = 100points within the half-reaction
length. The two curves in the figure differ only by the type of the outflow boundary condition used. That the latter has
a significant effect on the solution, especially over long times, can be clearly seen.

C. Self-sustained detonation with a finite reaction zone

All calculations above have been carried out for detonation with simple-depletion reaction for which a steady det-
onation has an infinite length and therefore the sonic locus is located at infinity. One implication of such kinetics for
numerical calculations is that no matter how long a computational domain is, the finite size of the domain can influence
the computation of the detonation dynamics.

Next we consider an evolution of a detonation wave that starts from a steady CJ solution with a finite reaction zone.
In such detonations the domain of influence of the detonation shock is the finite region between the shock and the sonic
locus. For unsteady detonations the Mach number defined in terms of the particle velocity relative to the lead shock
does not have the same significance as in steady detonations. Instead, the present interpretation of the sonic locus as
an information boundary is something that retains its significance, in which case the unsteady sonic locus must be
defined in terms of characteristics. Specifically, we define the sonic locus as a separatrix of forward characteristic
lines that remains at a finite non-vanishing distance from the shock at all times. All forward characteristics ahead
of the separatrix between the shock and the separatrix will reach the front in finite time, while those characteristics
downstream the separatrix will never reach the shock.

Such a definition can be given precisely mathematically as a boundary condition since the separatrix belongs to the
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Figure 12: The shock speed vs time for an overdriven detonation withQ = E = 50, γ = 1.2, overdrive f = 1.25: solid line is
computed with NRBC, dotted line uses “soft” outflow condition.

family of forward characteristics. Two conditions must be satisfied at the sonic locus:

dx∗
dt

= c∗+U∗ (21)

and

dp∗
dt

+ρ∗c∗
(

dU∗
dt

+
dD
dt

)
= (γ−1)Qρ∗ω∗, (22)

where subscript∗ denotes the sonic state and time derivative is taken along the separatrix in(x, t) plane.
Equations (21) and (22) are of course the governing equations for forward characteristics and therefore hold for any

such characteristics. In fact, any forward characteristics can be considered an information boundary, but the separatrix
is the only one that can be such a boundary for all time and always at a finite distance from the shock. If for example,
one takes a characteristics which is ahead of the separatrix, one would be able to use it as a boundary condition only
for a finite time, before the characteristics hits the shock. If on the other hand, one takes a characteristics behind
the separatrix, one would have to deal with increasingly larger computational domain. The special initial condition,
namelyc∗(0)+U∗(0) = 0 atx = x∗0, defines the separatrix.

The existence of an information boundary (i.e. a trailing sonic locus) identifies that detonation wave is self-sustained
because the locus is a boundary such that all of the information needed to determine the subsequent motion of the lead
shock originates between the lead shock and that boundary. The reaction zone powering the shock is acoustically
isolated from the flow trailing this locus. The following calculations were carried out for a detonation wave that has
an embedded sonic locus. Same ideal-gas equation of state withγ = 1.2 andQ= 50 is used but now the reaction order
is taken to beν = 0.9. Since the reaction zone is now finite, the initial state behind the reaction zone can be chosen
essentially arbitrarily. In order to understand the role played by the flow behind the steady sonic locus, we compute
the unsteady dynamics for two different initial profiles. In the first case, the state behind the sonic point is uniform and
the same as the sonic state. For the second case, we put a strong rarefaction wave behind the sonic point. We compute
the evolution of the wave at activation energy ofE = 26.2. At these parameters the detonation dynamics is that of a
low-frequency pulsation.

In order to illustrate the character of the sonic locus we track the paths of a range of forward characteristic lines
that emanate from the neighborhood of the initial sonic locus, which is located atx∗(0) = −7.92. Some of the
characteristics have their origin in between the steady sonic locus and the shock and as Fig. 13 shows they reach
the front in finite time. As for the remainder of the characteristic lines, they tend to infinity, which means that, on
average all forward waves that propagate along these characteristics retreat from the reaction zone. But there exists a
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Figure 13: Characteristic lines emanating from the neighborhood of the steady sonic locus with uniform initial post-sonic state (a)
and with a rarefaction wave initially present behind the sonic locus (b) for detonation withγ = 1.2, Q = 50, E = 26.2 andν = 0.9.
Dots in (a) indicate the loci ofM =−U/c = 1.

separatrixof the characteristic lines, which itself is a characteristics that remains at a finite non-zero distance from the
front at all times.

Figure 13 shows that although the flow behind the separatrix is quite different in cases (a) and (b), the flow ahead
of it is unchanged. This is consistent with the fact that the domain of influence of the region ahead of the separatrix is
between the shock and the initial sonic locus. Consequently, as the front evolves, the domain of influence of the shock
front is bounded by the shock and the separatrix. The flow behind the separatrix has no influence on the continuous
dynamics of the flow ahead of the separatrix and on the motion of the shock front. Thus, the detonation wave can be
looked at as a two-front phenomenon with two free boundaries, namely the shock and the sonic locus.

Figure 14(a) shows the shock speed and the location of the sonic locus as functions of time. An important point
to make is that Figs. 14 are exactly the same for both cases shown in Figs. 13, which are solutions with different
post-sonic initial states. This serves to illustrate the fact that the post-sonic flow has no influence on neither the shock
dynamics nor the motion of the sonic locus. Thus the shock dynamics is determined entirely by the finite region
between the shock and the sonic locus as well as an information supplied by the Rankine-Hugoniot conditions.
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Figure 14: (a) Shock speedD and the position of the sonic locusn∗ as functions of time; (b) The phase plane(D,n∗). Gas parameters
areγ = 1.2, Q = 50, E = 26.2 andν = 0.9.

The above discussion implicitly assumes that a sonic locus that was present in the initial steady solution remains
in the flow during subsequent evolution of the detonation. In fact, it may not always be true that an initially present
sonic locus will exist for all time. This is true if the flow in the neighborhood of the sonic locus is continuous. But if a
shock wave is generated by some mechanism (on either side of the separatrix) that interacts with the sonic locus, then
the separatrix will be destroyed. The information carried along the characteristic lines will now be cut by the shock
wave and the premise underlying the previous scenario will no longer be true. A smoothly evolving reaction zone is
necessary for the information boundary to exist.

The phase plane inD vs n∗ is shown in figure 14(b), in which one can see the characteristic limit cycle behavior
with the attractor of a triangular shape. As the strong pulsations of the detonation wave set on, the dynamics of the
sonic locus tends to be coupled to that of the shock front as follows. Within one cycle, we see that as the detonation
wave decelerates from its steady state speed, the sonic locus starts to move toward the shock from its farthest position
of aboutx∗ =−9. As the sonic locus approaches the shock, the shock starts to accelerate which causes the sonic locus
to reverse its direction at aboutx =−5.5. As the shock speed reaches the maximum, the sonic locus passes its steady
position,x = −7.92. After that the shock decelerates and the sonic locus reaches its minimum atx = −9. The cycle

18



is repeated. As we can see, the shock deceleration causes the sonic locus approach the shock, where the approach is
fastest at the lowest shock speed. Subsequently the shock starts to accelerate with fastest acceleration when the sonic
locus is near the shock and then causes the sonic locus to retreat.

That the sonic locus in unsteady detonations defined by Eqs. (21) and (22) have important implications for theories
of detonation stability and nonlinear dynamics can be seen by comparing the equations to radiation conditions of linear
stability theory, e.g. [9] and sonic conditions of detonation dynamics, e.g. [10]. The fact that a linearized version of
equation (22) reduces exactly to the radiation condition of Lee and Stewart, [9] has its roots in the basic physics of the
conditions. Both conditions express the same notion of acoustic isolation of the reaction zone from the following flow.
Equation (22) holds under much more general conditions, of course, but expresses the same physics as the radiation
condition. In fact, we note that the radiation condition of Lee and Stewart is actually more general than a derivation
of it given in [9] would imply, because it can be obtained directly from the compatibility condition, which is exact,
by simple linearization. Comparison to the sonic conditions of the detonation shock dynamics shows that Eq. (22)
reduces to what is called a thermicity condition in an appropriate limit of slow evolution.

VI. CONCLUSIONS

In this work we have discussed a role played by the far-field flow in self-sustained one-dimensional detonation
waves. If such detonations are steady, than a sonic locus is present at the end of the reaction zone. For detonations
that have a finite reaction zone the sonic locus will also be at a finite location from the lead shock. One of the most
important properties of a sonic locus in steady detonations is that the reaction zone is separated by the locus from the
influence of the flow behind it. We have generalized the concept of a sonic locus to unsteady detonations and have
shown that it is also defined as a separatrix of forward characteristics but which are now unsteady. By means of a
new and highly accurate numerical algorithm for the integration of the reactive Euler equations in a frame of reference
attached to the lead shock front, we have shown that the separatrix exists and serves as an information boundary that
isolates the lead shock from the influence of the far-field flow. We have defined the sonic locus mathematically and
have shown that it is a generalization of the radiation conditions of linear stability theory and sonic conditions of
detonation shock dynamics. That is, the definition that we have introduced holds for essentially arbitrary detonations
(non-linear and not necessarily slowly-evolving) with the only assumptions that the sonic locus be present and the flow
evolution be smooth. Although in this work we restrict ourselves to one-dimensional planar detonations with one-step
Arrhenius kinetics and an ideal-gas equation of state, a quite general theory of the sonic conditions can be formulated
that holds for three-dimensional detonations with an arbitrary equation of state and complex kinetics (details can be
found in A. R. Kasimov’s PhD thesis, Department of Theoretical and Applied Mechanics, University of Illinois, 2003).

The numerical method of calculating detonations in the shock-attached frame can be conveniently used for the
purpose of comparison with analytical results which are often done in a shock-attached frame. We have also introduced
a non-reflecting boundary condition that significantly reduces the effects of the spurious reflections of waves off the
far-field numerical boundary. And finally we emphasize that the numerical method we propose can be implemented as
an extension to any existing numerical scheme. Such an extension makes computations of the shock dynamics much
more accurate and affordable and allows for a simple analysis of the physical processes within the reaction zone.
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