From Hoare Logic to Matching Logic Reachability

Grigore Rosu'? and Andrei Stefinescu!
! University of Illinois at Urbana-Champaign, USA
2 Alexandru Ioan Cuza University, Iasi, Romania
{grosu, stefanell}@illinois.edu

Abstract. Matching logic reachability has been recently proposed as an alter-
native program verification approach. Unlike Hoare logic, where one defines a
language-specific proof system that needs to be proved sound for each language
separately, matching logic reachability provides a language-independent and sound
proof system that directly uses the trusted operational semantics of the language
as axioms. Matching logic reachability thus has a clear practical advantage: it
eliminates the need for an additional semantics of the same language in order
to reason about programs, and implicitly eliminates the need for tedious sound-
ness proofs. What is not clear, however, is whether matching logic reachability
is as powerful as Hoare logic. This paper introduces a technique to mechanically
translate Hoare logic proof derivations into equivalent matching logic reachability
proof derivations. The presented technique has two consequences: first, it suggests
that matching logic reachability has no theoretical limitation over Hoare logic;
and second, it provides a new approach to prove Hoare logics sound.

1 Introduction

Operational semantics are undoubtedly one of the most accessible semantic approaches.
Language designers typically do not need an extensive theoretical background in order
to define an operational semantics to a language, because they can think of it as if
“implementing” an interpreter for the language. For example, consider the following two
rules from the (operational) reduction semantics of a simple imperative language:

while(e) s = if(e) s;while(e) s else skip
proc() = body where “proc() body” is a procedure

The former says that loops are unrolled and the second says that procedure calls are
inlined (for simplicity, we assumed no-argument procedures and no local variables). In
addition to accessibility, operational semantics have another major advantage: they can
be efficiently executable, and thus testable. For example, one can test an operational
semantics as if it was an interpreter or a compiler, by executing large test suites of
programs. This way, semantic or design flaws can be detected and confidence in the
semantics can be incrementally build. We refer the interested reader to [[1,|3,/6] for
examples of large operational semantics (for C) and examples of how they are tested.
Because of all the above, it is quite common that operational semantics are considered
trusted reference models of the programming languages they define, and thus serve as a
formal basis for language understanding, design, and implementation.

With few notable exceptions, e.g. [[10]], operational semantics are typically considered
inappropriate for program verification. That is to a large extent due to the fact that
program reasoning with an operational semantics typically reduces to reasoning within
the transition system associated to the operational semantics, which can be quite low
level. Instead, semantics which are more appropriate for program reasoning are typically
given to programming languages, such as axiomatic semantics in the form of Hoare
logic proof systems for deriving Hoare triples {precondition} code {postcondition}. For
example, the proof rules below correspond to the operational semantics rules above:

Hr{yAe+0}s{y}
H+ {y}while(e)s{y A e =0}

H U {y}proc() {¢'} + {¢} body {'}
H + {y}proc() (¥}

The second rule takes into account the fact that the procedure proc might be recursive
(the claimed procedure specification is assumed as hypothesis when deriving its body’s
property). One may need to use several instances of this rule in order to derive the
properties of mutually recursive procedures. Both proof rules above define the notion
of an invariant, the former for while loops (we assume a C-like language, where zero
means false and non-zero means true) and the latter for recursive procedures. These proof
rules are so compact only because we are making (unrealistic) simplifying assumptions
about the language. Hoare logic proof systems for real languages are quite involved
(see, e.g., [1]] for C and [9] for Java), which is why, for trusted verification, one needs
to prove them sound with respect to more trusted (typically operational) semantics; the
state-of-the-art approaches in mechanical verification do precisely that [[1,8510,[12}|17].

Matching logic reachability [[15]] is a new program verification approach, based on
operational semantics. Instead of proving properties at the low level of a transition
system, matching logic reachability provides a high-level proof system for deriving
program properties, like Hoare logic. State properties are specified as (matching logic)
patterns [16]], which are program configuration terms with variables, containing both
program and state fragments like in operational semantics, but the variables can be
constrained using logical formulae, like in Hoare logic. Program properties are specified
as reachability rules ¢ = ¢’ between patterns ¢ and ¢’; intuitively, ¢ = ¢’ states that
a program configuration vy that matches pattern ¢ takes zero, one or more steps in the
associated transition system to reach a configuration y’ that matches ¢’. Unlike in Hoare
logic, the matching logic reachability proof rules are all language-independent, taking as
axioms an operational semantics given as a set of reachability rules. The key proof rule
of matching logic reachability is Circularity, which language-independently captures the
various circular behaviors in languages, due to loops, recursion, etc.

where “proc () body” is a procedure

Are="¢" AUlp=¢} re' =¢
Arp=¢

A initially contains the operational semantics rules. Circularity adds new reachability
rules to A during the proof derivation process, which can be used in their own proof! Its
correctness is given by the fact that progress is required to be made (indicated by =* in
A + o =7 @) before a circular reasoning step is allowed.

Everything else being equal, matching logic reachability has a clear pragmatic
advantage over Hoare logic: it eliminates the need for an additional semantics of the
same language, and implicitly eliminates the need for non-trivial and tedious correctness
proofs. The soundness of matching logic reachability has already been shown in [15].
Its practicality and usability have been demonstrated by the MatchC automatic program
verifier for a C fragment [14], which is a faithful implementation of the matching logic
reachability proof system. What is missing is a formal treatment of its completeness.
Since Hoare logic is relatively complete [5]], any semantically valid program property
expressed as a Hoare triple can also be derived using the Hoare logic proof system
(provided an oracle that knows all the properties of the state model is available). Of
course, since Hoare logic is language-specific, its relative completeness needs to be
proved for each language individually. Nevertheless, such relative completeness proofs
are quite similar and not difficult to adapt from one language to another.

This paper addresses the completeness of matching logic reachability. A technique to
mechanically translate Hoare logic triples into reachability rules and Hoare logic proof
derivations into equivalent matching logic reachability proof derivations is presented
and proved correct. The generated matching logic reachability proof derivations are
within a linear factor larger in size than the original Hoare logic proofs. Because of
the language-specific nature of Hoare logic, we define and prove our translation in the
context of a specific but canonical imperative language, IMP. However, the underlying
idea is general. We also apply it to an extension with mutually recursive procedures.

Although we can now regard Hoare logic as a methodological fragment of matching
logic reachability, where any Hoare logic proof derivation can be mimicked using
the matching logic reachability proof system, experience with MatchC tells us that
in general one should nor want to verify programs following this route in practice.
Specifying program properties and verifying them directly using the matching logic
reachability capabilities, without going through its Hoare logic fragment, gives us
shorter and more intuitive specifications and proofs. Therefore, in our view, the result
of this paper should be understood through its theoretical value. First, it shows that
matching logic reachability has no theoretical limitation over Hoare logic, in spite of
being language-independent and working directly with the trusted operational semantics.
Second, it provides a new and abstract way to prove Hoare logics sound, where one does
not need to make use of low-level transition systems and induction, instead relying on
the soundness of matching logic reachability (proved generically, for all languages).

The reminder of this paper is organized as follows. Section [2] recalls operational
semantics and Hoare logic, by means of the IMP language. Section [3|recalls matching
logic notions, including the sound proof system for matching logic reachability. Section[d]
illustrates the differences between Hoare logic and matching logic reachability. Section 3]
presents our translation technique and proves its correctness. Section [6] concludes.

2 IMP: Operational Semantics and Hoare Logic

Here we recall operational semantics, Hoare logic, and related notions, and introduce our
notation and terminology for these. We do so by means of the simple IMP imperative
language. Figure [I] shows its syntax, an operational semantics based on evaluation
contexts [7]], and a Hoare logic for it. IMP has only integer expressions, which can

IMP language syntax

PVar := program variables

Exp := PVar | Int | Exp op Exp

Stmt = skip | PVar:=Exp | Stmt;Stmt | if(Exp)StmtelseStmt | while(Exp) Stmt
IMP evaluation contexts syntax Generic

HL-csq

Eyr = Y3 Wals{s) Eva— i,
{1} s {2}

IMP axiomatic semantics

Context == O
| (Context, State)
| Contextop Exp | Expop Context
| PVar:=Context | Context;Stmt |HL-skip
|

if(Context) Stmt else Stmt {y} skip {y}
IMP operational semantics HL-asgn {yle/x]}x = e{y}
lookup (C, o)[x] = (C, o)[o(x)] HL-seq {1} s1 {y} {2} s2 {3}
op il op iz = il oDt iz {wl} S15 S2 Ws}

asgn (C, o)[x:=i] = (C, o[x « i])[skip]
seq skip; s = 5

{1 Ae#0}s; (o}
{1 A e =0}s; (o}

cond; if(i) s;elses, = s; if i#0 HL-cond -
cond, if(0)s,elses, = s, Wilif(e)sielses; {yo)
while while(e) s = . {yne+0}s{y}

. . . HL-whil

if(e) s;while(e) selseskip while {y}while(e)s{y A e =0}

Fig. 1. IMP language syntax (top), operational semantics (left) and Hoare logic (right).

also be used as conditions of if and while (zero means false and any non-zero integer
means true, like in C). Expressions are built with integer constants, program variables,
and conventional arithmetic constructs. For simplicity, we only show a generic binary
operation, op. IMP statements are the variable assignment, if, while and sequential
composition.

The IMP program configurations are pairs (code, o), where code is a program
fragment and o is a state term mapping program variables into integers. As usual,
we assume appropriate definitions of the domains of integers (including arithmetic
operations i opy,, is, etc.) and of maps (including lookup o(x) and update o[x < i]
operations). IMP’s operational semantics has seven reduction rule schemas between
program configurations, which make use of first-order variables: o is a variable of sort
State; x is a variable of sort PVar; i, i, i are variables of sort Int; e is a variable of sort
Exp; s, 51, s, are variables of sort Stmt. A rule mentions a context and a redex, which
form a configuration, and reduces the said configuration by rewriting the redex and
possibly the context. As a notation, the context is skipped if not used. E.g., the rule op is
in fact (C, o)[i; opir] = (C, o)li) op;,, i»]. The code context meta-variable C allows
us to instantiate a schema into reduction rules, one for each redex of each code fragment.
For example, (x := 5; y := 0, x — 0) can be splitas (O0; y := 0, x — 0)[x := 5], which
by asgn reduces to (O0; y := 0, x — 5)[skip], or equivalently to (skip; y := 0, x — 5).

We can therefore regard the operational semantics of IMP above as a (recursively
enumerable) set of reduction rules of the form “I = r if b”, where [and r are program
configurations with variables constrained by boolean condition b. There are several
operational semantics styles based on such rules. Besides the popular reduction semantics

with evaluation contexts, we also have the chemical abstract machine [2] and K [[13]].
Large languages have been given semantics with only rules of the form “I = r if b”,
including C [6] (defined in K with more than 1200 such rules). The matching logic
reachability proof system works with any such rules (taking them as axioms), and is
agnostic to the particular semantics or any other method used to produce them.

The major role of an operational semantics is to yield a canonical and typically trusted
model of the defined language, as a transition system over program configurations. Such
transition systems are important in this paper, so we formalize them here. We also recall
some mathematical notions and notations, although we generally assume the reader is
familiar with basic concepts of algebraic specification and first-order logic. Given an
algebraic signature X, Tx denotes the initial X-algebra of ground terms (terms without
variables), Ts(Var) the free 2-algebra of terms with variables in Var, and Tx ((Var) the
set of 2-terms of sort s. Valuations p : Var — 7 with 7 a 2-algebra extend uniquely
to morphisms of X-algebras p : Ts(Var) — 7 . These notions extend to algebraic
specifications. Many mathematical structures needed for language semantics have been
defined as initial 2-algebras: boolean algebras, natural/integer/rational numbers, lists,
sets, bags (or multisets), maps (used as IMP’s states), trees, queues, stacks, etc. We refer
the reader to the CASL [11]] and Maude [4]] manuals for examples.

Let us fix the following: (1) an algebraic signature 2, associated to some desired
configuration syntax, with distinguished sorts Cfg and Bool; (2) a sort-wise infinite set
of variables Var; and (3) a 2-algebra 7, the configuration model, which may but need
not necessarily be the initial or free X-algebra. As usual, 77, denotes the elements of 7
of sort Cfg, which we call (concrete) configurations. Let S (for “semantics”) be a set of
reduction rules “/ = r if b” like above, where [, r € Ts ¢ (Var) and b € Ts oo (Var).
Definition 1. S yields a transition system (7, :>g) on the configuration model T,
where y =>§ ¥’ fory,y € Ty, if and only if there exist a reduction rule “I = rifb” in
S and a valuation p : Var — T such that p(l) = vy, p(r) = v’ and p(b) holds.

7, =>§) is a conventional transition system, i.e. a set with a binary relation on it (in fact,
=>§Q Tcre X Icre), and captures the operational behaviors of the language defined by S.

Hence, an operational semantics defines a set of reduction rules which can be used in
some implicit way to yield program behaviors. On the other hand, a Hoare logic defines
a proof system that explicitly tells how to derive program properties formalized as Hoare
triples. Operational semantics are easy to define, test and thus build confidence in, since
we can execute them against benchmarks of programs; e.g., the C semantics have been
extensively tested against compiler test-suites [3,6]. On the other hand, Hoare logics are
more involved and need to be proved sound w.r.t. another, more trusted semantics.
Definition 2. (partial correctness) For the IMP language in Fig. |l| a Hoare triple
{y} code {y'} is semantically valid, written = {¢} code {y’}, if and only if for all states
o and o', it is the case that if o E ¥ and (code, o) terminates in (T, =>§) and
(code, o) :>’t;r (skip, o’) then o’ | . The Hoare logic proof system in Fig. |l|is
sound if and only if + {y} code {y'} implies E {y} code {y/'}.

In Definition [2} we tacitly identified the ground configurations (code, o) and
(skip, o) with their (unique) interpretation in the configuration model 7. First-order
logic (FOL) validity, both in Definition [2]and in the HL-csq in Fig.[I] is relative to 7.
Partial correctness says the postcondition holds only when the program terminates. We
do not address total correctness (i.e., the program must also terminate) in this paper.

5

3 Matching Logic Reachability

This section recalls matching logic and matching logic reachability notions and nota-
tions from [15}/16]]. In matching logic reachability, patterns specify configurations and
reachability rules specify operational transitions or program properties. A language-
independent proof system takes a set of reachability rules (operational semantics) as
axioms and derives new reachability rules (program properties). Matching logic is para-
metric in a model of program configurations. For example, as seen in Section [T} IMP’s
configurations are pairs (code, o) with code a fragment of program and o a State.
Like in Section |1} let us fix an algebraic signature 2 (of configurations) with a
distinguished sort Cfg, a sort-wise infinite set of variables Var, and a (configuration)
2-model 7~ (which need not be the initial model T's or the free model Ts(Var)).

Definition 3. [/6]] A matching logic formula, or a pattern, is a first-order logic (FOL)
SJormula which allows terms in Tx cr(Var), called basic patterns, as predicates. We
define the satisfaction (y,p) = ¢ over configurations y € T cg, valuations p : Var — T
and patterns ¢ as follows (among the FOL constructs, we only show 3):
(v,0) EAX ¢ iff (v0") E ¢ for some p’:Var— T with p’(y) = p(y) for all y € Var\X
P Ex iffy=p@) where € Ty y(Var)
We write = ¢ when (y,p) E ¢ forall'y € T and all p : Var — T .

A basic pattern « is satisfied by all the configurations y that match it; the pin (y,p) E 7
can be thought of as the “witness” of the matching, and can be further constrained in
a pattern. If SUM is the IMP code “s:=0; while(n>0) (s:=s+n; n:=n-1)”, then
ds ((SUM, (s, n—n)) A n >5,0) is a pattern matched by the configurations with
code SUM and state mapping program variables s,n into integers s,n with n positive.
Note that we use typewriter for program variables in PVar and italic for mathematical
variables in Var. Pattern reasoning reduces to FOL reasoning in the model 7 [15]].

Definition 4. A (matching logic) reachability rule is a pair ¢ = ¢', where ¢ (the left-
hand side, or LHS) and ¢’ (the right-hand side, or RHS), are matching logic patterns
(with free variables). A reachability system is a set of reachability rules. A reachability
system S induces a transition system (T, =>§) on the configuration model: y :g v’ for
Y,Y € Ty iff there exist ¢ = ¢’ in S and p : Var — T with (y,p) E ¢ and (v, p) E ¢’
Configuration y € T ¢y, terminates in (T, =>§) iff there is no infinite ﬁg—sequence
starting withy. A rule ¢ = ¢’ is well-defined iff for any y € Ty, and p : Var — T with
(%p) E @, there exists y' € T¢p with (Y, p) = ¢. Reachability system S is well-defined
iff each rule is well-defined, and is deterministic iff (T, =>g) is deterministic.

Operational semantics defined with rules “/ = r if b”, like those in Section 2} are
particular well-defined reachability systems with rules of the form [/ A b = r. Intuitively,
the first rule states that a ground configuration y which is an instance of the term / and
satisfies the boolean condition b reduces to an instance 7y’ of r. Matching logic was
designed to express terms with constraints: / A b is satisfied by exactly all the y above.
Thus, matching logic reachability naturally captures reduction semantics (see [|15]] for
more details). Reachability rules can also specify program properties. The rule

s ((SUM, (s = 5, N> n)) An 2, 0) = (skip, (s = nkp (0 +pe 1)/ 2, n-0))

Rules of operational nature Rules of deductive nature

Reflexivity : Case Analysis :
. Arpi=9 Arp=y

Arp=¢ Aro Ve =9

Axiom : Logic Framing :
p=>¢ € A Arp=¢ ¥ is a (patternless) FOL formula
Arp=¢ Avrpry=¢ Ay

Substitution : Consequence :

Arp=¢ 0 : Var — Tx(Var) E o — ¢ A Fy =9 E ¢, — ¢

A F0(p) = 0¢") A+ =@
Transitivity : Abstraction :
A= @ Ay = @3 Arp=¢ X N FreeVars(¢') = 0

A= e ArIXe=¢

Rule for circular behavior
Arp="¢" AUlp=¢) re' =¢
Arp=¢

Circularity :
Fig. 2. Matching logic reachability proof system (nine language-independent proof rules).

specifies the property of SUM. Unlike Hoare triples, which only specify properties
about the final states of programs, reachability rules can also specify properties about
intermediate states (see the end of Section[d] for an example). Hoare triples correspond to
particular rules with all the basic patterns in the RHS holding the code skip, like above.

Definition 5. Let S be a reachability system and ¢ = ¢’ a reachability rule. We define
Sk ¢ = ¢ iffforally € Tcgy such that y terminates in (T, :>g) andforallp : Var - T
such that (y,p) | ¢, there exists some y' € T ¢f, such that y :’g— v and (V,p) E ¢'.

Intuitively, S E ¢ = ¢’ specifies reachability: any terminating configuration matching ¢
transits, on some execution path, to a configuration matching ¢’. If S is deterministic,
then “some path” is equivalent to “all paths”, and thus ¢ = ¢’ captures partial correctness.
If ¢’ has the empty code skip, then so does y’ in the definition above, and, in the case
of IMP, v’ is unique and thus we recover the Hoare validity as a special case.

The above reachability rule for SUM is valid, although the proof is tedious, involving
low-level IMP transition system details and induction. Fig. [2] shows the language-
independent matching logic reachability proof system which derives such rules while
avoiding the transition system. Initially, A contains the operational semantics of the
target language. Reflexivity, Axiom, Substitution, and Transitivity have an operational
nature and derive concrete and (linear) symbolic executions. Case Analysis, Logic
Framing, Consequence and Abstraction have a deductive nature. The Circularity proof
rule has a coinductive nature and captures the various circular behaviors that appear
in languages, due to loops, recursion, etc. Specifically, we can derive A + ¢ = ¢’
whenever we can derive ¢ = ¢’ by starting with one or more steps in A (=" means
derivable without Reflexivity) and continuing with steps which can involve both rules
from A and the rule to be proved itself, ¢ = ¢’. For example, the first step can be a loop
unrolling in the case of loops, or a function invocation in the case of recursive functions.

Theorem 1. (soundness) [|I5|] Let S be a well-defined matching logic reachability
system (typically corresponding to an operational semantics), and let S + ¢ = ¢’ be a
sequent derived with the proof system in Fig.|2| Then S |E ¢ = ¢'.

4 Hoare Logic versus Matching Logic Reachability

This section prepares the reader for our main result, by illustrating the major differences
between Hoare logic and matching logic reachability using examples. We show how the
same program property can be specified both as a Hoare triple and as a matching logic
reachability rule, and then how it can be derived using each of the two proof systems.
Recall the SUM program “s:=0; while(n>0) (s:=s+n; n:=n-1)" in IMP. Fig. E]
gives a Hoare logic proof that SUM adds the first natural numbers (bottom left column)
and a matching logic reachability proof of the same property (bottom right column). The
top contains some useful macros. For the explanations of these proofs below, “triple n”
refers to the Hoare triple numbered with » in the bottom left column, and “rule m” refers
to the matching logic sequent numbered with m in the bottom right column in Fig. 3]
The behavior of SUM can be specified by the Hoare triple {¢/pre} SUM {¢/post}, that is

{n=0ldn An > 0}SUM{s = oldn*(oldn+1)/2 An = 0}

The oldn variable is needed in order to remember the initial value of n. Let us derive
this Hoare triple using the Hoare logic proof system in Fig.[T] We can derive our original
Hoare triple by first deriving triples 1 and 5, namely

{n=o0ldn An > 0}s:=0{in} {Vinv} LOOP {s = 0ldn*(oldn+1)/2 An = 0}

and then using the proof rule HL-seq in Fig.[T] Triple 1 follows by HL-asgn and HL-csq.
Triple 5 follows by HL-while from triple 4, which in turn follows from triples 2 and 3
by HL-seq. Finally, triples 2 and 3 follow each by HL-asgn and HL-csq.

Before we discuss the matching logic reachability proof derivation, let us recall some
important Hoare logic facts. First, Hoare logic makes no theoretical distinction between
program variables, which in the case of IMP are PVar constants, and mathematical
variables, which in the case of IMP are variables of sort Var. For example, in the
proof above, n as a program variable, n as an integer variable appearing in the state
specifications, and oldn which appears only in state specifications but never in the
program, were formally treated the same way. Second, the same applies to language
arithmetic constructs versus mathematical domain operations. For example, there is no
distinction between the + construct for IMP expressions and the +,, operation that the
integer domain provides. Third, Hoare logic takes FOL substitution for granted (see
HL-asgn), which in reality ads a linear complexity in the size of the FOL specification to
the proof. These and other simplifying assumptions make proofs like above look simple
and compact, but come at a price: expressions cannot have side effects. Since in many
languages expressions do have side effects, programs typically suffer (possibly error-
prone) transformations that extract and isolate the side effects into special statements.
Also, in practice program verifiers do make a distinction between language constructs and
mathematical ones, and appropriately translate the former into the latter in specifications.

Code macros:

SUM = s:=0; while(n>0) (s:=s+n; n:=n-1)

LOOP = while(n>0) (s:=s+n; n:=n-1)

BODY = s:=s+n; n:=n-1
IF = if(n>0) (s:=s+n; n:=n-1; while(n>0) (s:=s+n; n:=n-1)) else skip
S; = s:=s+n; n:=n-1; while(n>0) (s:=s+n; n:=n-1)
S; = n:=n-1; while(n>0) (s:=s+n; n:=n-1)

Hoare logic formula macros:

Yoe = n=0ldnAN>0

Ypost = s =o0ldn*(oldn+1)/2An=20

Viw = s = (oldn-n)*(oldn+n+1)/2 An>0
wl = l//inv An>0
Y, = s = (oldn-n+1)*(oldn+n)/2 An>0

Matching logic pattern macros:

oas = (SUM, (s> s, n—>n))yAn >, 0
¢rus = (skip, (s > np 0+ /12, n- 0))
Pinv = <LOOP’ (S = (l’l “Int i’l/) *Int (l’l Fint I’l/ Fint l)/l}ltz, ne— n’)) A l’l, 2Im‘ O
@it = (IF, (5= (1 —py ') gy (0 +pe 0" +pye /52, n> 1)) A 0" 24 0
Prrue = <IFv (S [and (l’l “Int n,) *Int (l’l +Im n/ +Im‘ 1)/11112’ nme— I’l’)} A I’l, >nt O
¢rase = (IF, (S 1o (0 +p 1)/ 12, n 0))
01 = (S1, (s> (=g) #p (M +py 1 +py D/ 12, o 0')y A n” >, 0
P = <SZ’ (S and (n ~Int n +ine 1) *Int (l’l Fine n,)/]nlza ne- n’)) A >nt 0
Aroor = Svp U (I @iy = @rus)
Hoare logic proof Matching logic reachability proof
Adtl. Reachability ASLF with |Steps
Hoare triple Proof rule |Steps| 1.Spvp+3s @rus=3In’¢inasgng, seq 1/0/1/1/0
1{¥pre} 5:=0 {{finy} |HL-asgn 1/17 | 2.8mvpt I oinv=>" @i while 0/0/0/1/0
24y} s:=s+n{y,} |HL-asgn 1/17 | 3.ALoop F Puue = ¢1 lookup,, op., [2/0/0/0/0
3.{¢n}n:=n-1{i;, }|HL-asgn 1/17 cond,
4.{y} BODY {¢;y} |HL-seq(2,3)|0/0 | 4.ArLoopte1=¢2 lookup,, 4/0/0/0/0
5.{tiny} LOOP {y05} |HL-while(4)|1/0 lookup, op,,
6~{l/’pre} SUM {l/’post} HL'SeQ(l, 5) 0/0 asgn,, seq
5. AvLoop k= A’ ¢y, |lookup,,op_, [3/0/1/0/0
asgn,, seq
6. Aroop F I’ Piny=>¢rus | I Piny = Prus|0/0/0/0/0
7. ALoop F Prase = ¢rus - [lookup,, op., (2/0/1/0/0
cond,
8. ALoop F Pif = PrHS 3/1/1/0/0
9.Svp F AN Yiny = Prus 0/0/0/0/1
10.Sivp + s ¢Lus = @Prus 1/0/0/0/0

Fig. 3. Side-by-side proofs for the property of SUM using the Hoare logic proof system (left) and,
respectively, the matching logic reachability proof system (right). The Adtl. Steps for the Hoare
proof mean: Consequence rules / substitution steps. The Steps for the matching logic reachability
proof mean: Transitivity / Case Analysis / Consequence / Abstraction / Circularity.

Now we show how to use the proof system in Fig. E]to derive ds ¢ s = ¢rus, the
reachability rule specifying the behavior of SUM already discussed in Section [3} namely

ds ((SUM, (s = s, n > n)) An 25, 0) = (skip, (s = n g (0 +p /12, n > 0))

This rule follows by Transitivity with rules 1 and 9. By Axiom asgn; (Fig. (1) followed
by Substitution with 8(c) = (s = s,n —n), 8(x) = s and 6(i) = 0, followed by Logic
Framing with n >, 0, we derive ¢ gys = (skip;LOOP, (s—0,n—n)) A n >p, 0.
This “operational” sequence of Axiom, Substitution and Logic Framing is quite com-
mon; we abbreviate it ASLF. Further, by ASLF with seq and Transitivity, we derive
¢rus = (LOOP, (s — 0, n— n)) A n >, 0. Then rule 1 follows by Consequence and
Abstraction with X = {s}. We derive rule 9 by Circularity with the rules 2 and 8. Rule 2
follows by ASLF with while and Abstraction with {n’}. Rule 8 follows by Case Analysis
with ggue = @rus and ¢pise = @rus- The latter follows by ASLF (lookup,,, op-., cond,)
together with some Transitivity and Consequence steps (the rule added by Circularity
not needed yet). The former follows by repeated Transitivity with rules 3, 4, 5, 6. Simi-
larly as before, rules 3, 4, 5 follow by ASLF (lookup,, op-, cond;, lookup,, lookups,
op., asgns, seq, lookup,, op_, asgn,, seq) together with Transitivity and Consequence
steps. Rule 6, namely Syyp U {31 @iy = @rus} F I @iy = ¢rus, follows by Axiom
(An’ piny = ¢rus). Note that rule 6 is the same as rule 9, except that its axioms now
include the rule we want to prove, so we are done. Welcome to the magic of Circularity!

The table in Fig. [3]shows the number of Hoare logic language-dependent proof rules
(6) and the number of Hoare logic language-independent proof rules (4 HL-csq rules
and 51 low-level steps due to traversing the FOL formulae as part of the application of
substitutions in HL-asgn) used in proving the property of SUM, for a total of 61 steps.
We count the number of low-level substitution steps for the Hoare proof because those
steps, which in practice do not come for free anyway, in fact do not exist in the matching
logic reachability proof, being replaced by actual reasoning steps using the proof system.
Fig. [also shows the number of matching logic reachability proof rules (79) used in
proving the same example. At a first glance, the matching logic reachability proof above
may appear low-level when compared to the Hoare logic proof. However, it is quite
mechanical, the only interesting part being to provide the invariant pattern ¢;,,, same
like in the Hoare logic proof. Out of the 79 steps, 18 uses of the ASLF sequence (rule 6
only uses the Axiom rule; each other ASLF step means 3 proof rule applications) and
16 of Transitivity account for most of them (70). Notice that the applications of ASLF
and Transitivity are entirely syntax driven, and thus completely mechanical. There are
1 step of Case Analysis (for splitting on the symbolic condition of an if statement),
2 steps of Abstraction (for eliminating existentially quantified variables), and 1 step
of applying the circularity axiom, which are also mechanical. That leaves us with 4
steps of Consequence, and one step of Circularity (for dealing with the loop), which is
similar to the number of steps used by the Hoare logic proof. In general, a matching logic
reachability proof follows the following pattern: apply the operational rules whenever
they match, except for circularities, which are given priority; when the redex is an if,
do Case Analysis; if there are existentially quantified variables, skolemize. Our current
MatchC implementation can prove the SUM example automatically, as well as much
more complex programs [14}[15]]. Although the paper Hoare logic proofs for simple

10

languages like IMP may look more compact, as discussed above they make (sometimes
unrealistic) assumptions which need to be addressed in implementations. Finally, note
that the matching logic reachability rules are more expressive than the Hoare triples,
since they can specify reachable configurations which are not necessarily final. E.g.,

(SUM, (s> s, n—> n)) An>p 0= (LOOP, (st n, n—n—p 1))

is also derivable and states that if the value n of n is strictly positive, then the loop is
taken once and, when the loop is reached again, sisn and nis n —p, 1.

S From Hoare Logic Proofs to Matching Logic Reachability Proofs

Here we show how proof derivations using the IMP-specific Hoare logic proof system in
Fig.[1|can be translated into proof derivations using the language-independent matching
logic reachability proof system in Fig. 2] with IMP’s operational semantics in Fig. [T]as
axioms. The sizes of the two proof derivations are within a linear factor.

5.1 Translating Hoare Triples into Reachability Rules

Without restricting the generality, we make the following simplifying assumptions about
the Hoare triples {1/} code {yy’} that appear in the Hoare logic proof derivation that we
translate into a matching logic reachability proof: (1) the variables appearing in code
belong to an arbitrary but fixed finite set X C PVar; (2) the additional variables appearing
in ¥ and ¢’ but not in code belong to an arbitrary but fixed finite set Y € PVar such that
XNY = 0. In other words, we fix the finite disjoint sets X, Y C PVar, and they have the
properties above for all Hoare triples that we consider in this section. Note that we used a
typewriter font to write these sets, which is consistent with our notation for variables
in PVar. We need these disjointness restrictions because, as discussed in SectionE], Hoare
logic makes no theoretical distinction between program and mathematical variables,
while matching logic does. These restrictions do not limit the capability of Hoare logic,
since we can always pick X to be the union of all the variables appearing in the program
about which we want to reason and Y to be the union of all the remaining variables
occurring in all the state specifications in any triple anywhere in the Hoare logic proof,
making sure that the names of the variables used for stating mathematical properties of
the state are always chosen different from those of the variables used in programs.

Definition 6. Given a Hoare triple {{/} code {{'}, we define
, def . ’
H2M({y} code{y'}) = 3IX ((code, ox) AyYxy) = IX (skip, ox) A¥yy)
where:

1. X, Y c Var (written using italic font) are finite sets of variables corresponding to the
sets X,Y C PVar fixed above, one variable x or 'y in Var (written using italic font)
for each variable x or y in PVar (written using typewriter font);

2. oy is the state mapping each x € X to its corresponding x € X; and

3. Yxy and Y, are Y and respectively ' with x € X or'y € Y replaced by its
corresponding x € X ory € Y, respectively, and each expression construct op
replaced by its mathematical correspondent op,,.

11

The H2M mapping in Definition [6] is quite simple and mechanical, and can be
implemented by a linear traversal of the Hoare triple. In fact, we have implemented it as
part of the MatchC program verifier, to allow users to write program specifications in a
Hoare style when possible (see, e.g., the simple folder of examples on the online MatchC
interface athttp://fsl.cs.uiuc.edu/index.php/Special :MatchCOnline).

It is important to note that, like X,Y C PVar, the sets of variables X,Y C Var in
Definition [6] are also fixed and thus the same for all Hoare triples considered in this
section. For example, suppose that X = {s,n} and Y = {oldn, z}. Then the Hoare triple

{n =o0ldn An > 0}SUM{s = oldn*(oldn+1)/2 An = 0}
from Section[]is translated into the following reachability rule:

ds,n ((SUM, (s> s, n> n)) An=oldn A n >, 0)
= ds,n ((skip, (s s, n > n)) A s = oldn =y, (oldn +p,; 1)/1:2 A n = 0)

Not surprisingly, we can use the proof system in Fig.|2|to prove this rule equivalent to
the one for SUM in Sectiond] Using FOL and Consequence the above is equivalent to

ds ((SUM, (s s, n- oldn)) Aoldn >;,0) = (skip, (s oldns*, (oldn+j,, 1)/ 12, - 0))

which, by Substitution (n < oldn), is equivalent to the rule in SectionE}
We also show an (artificial) example where the original Hoare triple contains a
quantifier. Consider the same X = {s,n} and Y = {oldn, z} as above. Then

H2M({true}n:=4*n+3 {dz (n = 2*%z+1)})
is the reachability rule

ds,n ((n:=4*n+3, (s s,n > n)) A true)
= ds,n ((skip, (s > s,n> n) A dz(n = 2%y 2 +pu 1))

Using FOL reasoning and Consequence, this rule is equivalent to

ds,n(n:=4*n+3, (s > s,n > n)) = ds,z(skip, (s> s,n > 2 %5, 7+ 1))

5.2 Helping Lemmas
The following holds for matching logic in general:
Lemma 1. If S+ ¢ = ¢ is derivable then S + AX ¢ = AX ¢’ is also derivable.

Proof. We have | ¢ — 31X ¢’. By Consequence, we derive S + ¢ = IX ¢’. Since
XN FreeVars(AX ¢") = 0, by Abstraction we get that S + X ¢ = IX ¢’ is also derivable.

The following lemma states that symbolic evaluation of IMP expressions is actually
formally derivable using the matching logic reachability proof system:

12

http://fsl.cs.uiuc.edu/index.php/Special:MatchCOnline

Lemma 2. I[f e € Exp is an expression, C € Context an appropriate context, and
o € State a state term binding each program variable in PVar of e to a term of sort Int
(possibly containing variables in Var), then the following sequent is derivable:

Sive F (C, o)le] = (C, o)[o(e)]

where o(e) replaces each x € PVar in e by o(x) (i.e., a term of sort Int) and each
operation symbol op by its mathematical correspondent in the Int domain, opy,,.

Proof. By induction on the structure of e. If e is a variable x € PVar, then the result
follows by Axiom with lookup in Fig. E} If e is of the form e; op e,, then let C;, C; be the
contexts obtained from C by replacing O with “00op e,” and respectively “o(e;) opO”.
Then, by the induction hypothesis, the following are derivable

Smvp F (Ci, o)e1]l = (Cy, o)lo(ey)]
Sivp F (Ca, o)ez] = (Cy, o)o(ez)]

We also have the following pattern identities

(C, o)le] =(Cy, o)lei]
(C1, Ho(e)] =(Cs, o)le;]
(Cy, o)o(ey)] = (C, o)lo(er)opo(ey)]

Thus, by Transitivity, we derive Spyp F (C, o)[e] = (C, o)[o(e1) op o(ez)], and then
the result follows by Axiom with op and by noticing that o-(e) = o(e1) op;,, o(e2).

Intuitively, the following lemma states that if we append some extra statement to the
code of ¢, then the execution of the original code is still possible, making abstraction of
the appended statement. This holds because of the specific (simplistic) nature of IMP
and may not hold in more complex languages (for example in ones with support for
reflection or self-generation of code). A direct consequence is that we can (symbolically)
execute a compound statement s;; s, by first executing s; until we reach skip and then
continuing from there with s;.

Lemma 3. If Spyp + ¢ = ¢’ is derivable and s € Stmt then Spyp + APPEND(p, S) =
APPEND(¢’, s) is also derivable, where APPEND(p, S) is the pattern obtained from ¢ by
replacing each basic pattern (code, o) with the basic pattern {(code; s), o).

Proof. (sketch) Let aApPEND(A, s) be the set of rules obtained from (A by replacing each
rule ¢; = ¢, € A\ Sivp by the rule ApPEND(y;, S) = APPEND(gp,, S), that is

APPEND(A, s) = (A N Siup) U {APPEND(¢;, S) = APPEND(¢;, S) | ¢; = ¢, € A\ Sivp}

Recall that A \ Spvp contains all the rules added by Circularity. Let $ be a proof
tree deriving Simp F ¢ = ¢’. We prove the more general result that for each sequent
A+ ¢ = ¢, in P, we can also derive the sequent APPEND(A, S) + APPEND(y;, S) =
APPEND(¢,, S). The lemma follows as particular case. The proof goes by induction on the
structure of P. If the last step is Reflexivity, the result trivially holds. If the last step is one
of Substitution, Transitivity, Case Analysis, Logic Framing, Consequence, Abstraction

13

or Circularity, then the result holds by applying the induction hypothesis, and by noticing
that since s does not have any logical variables, then APPEND(6(¢), S) = O(APPEND(¢p, S))
(Substitution), | ¢; — ¢} iff |F APPEND(¢1,) — APPEND(¢|, s) (Consequence) and
FreeVars(apPEND(¢p, S)) = FreeVars(yp) (Abstraction). If the last step is Axiom with a rule
in A \ Spvp, again the result trivially holds. If the last step is Axiom with a rule in Spyp,
then the redex always goes to the left of “;”, and we can conclude that ¢ = ¢’ € Spyp
implies that APPEND(yp, S) = APPEND(¢’, S) € Sivp.

5.3 The Main Result

Theorem [2] below states that, for the IMP language, any Hoare logic proof derivation
of a Hoare triple {y} code {y’} yields a matching logic reachability proof derivation of
the corresponding reachability rule H2M ({¢/} code {¢’}). This proof correspondence is
constructive and the resulting proof derivation is linear in the size of the original proof
derivation. For example, to generate the matching logic reachability proof corresponding
to a proof step using the Hoare logic proof rule for while loop, HL-while, we do the
following (see the proof of Theorem 2] for all the details):

1. We inductively assume a proof for the reachability rule corresponding to the Hoare
triple for the while loop body;

2. We apply the Axiom step with while (Fig.[I), followed by Substitution, Logic Fram-
ing, and Lemmal[T} and this way we “unroll” the while loop into its corresponding
conditional statement (in the logical context set by the Hoare triple);

3. Since the conditional statement contains the original while loop in its true branch
and since 2. above does not use Reflexivity, we issue a Circularity proof obligation
and thus add the claimed reachability rule for while to the set of axioms;

4. We “evaluate” symbolically the condition, by virtue of Lemma 2}

5. We apply a Case Analysis for the conditional, splitting the proof task in two subtasks,
the one corresponding to the false condition being trivial to discharge;

6. To discharge the care corresponding to the true condition, we use the proof given
by 1. by virtue of Lemma/[3] then the Axiom for seq, and then the reachability rule
added by Circularity and we are done.

Theorem 2. Let Syvp be the operational semantics of IMP in Fig.|l|viewed as a match-
ing logic reachability system, and let {/} code {¢/} be a triple derivable with the IMP-
specific Hoare logic proof system in Fig[I} Then we have that Spp + H2M({/} code {y/'})
is derivable with the language-independent matching logic proof system in Fig. 2]

Proof. We prove that for any Hoare logic proof of {¢/} code {’} one can construct a
matching logic proof of Spyp + H2M({¢} code {¢’})). The proof goes by structural
induction on the formal proof derived using the Hoare logic proof system in Fig.[I] We
consider each proof rule in Fig. [T|and show how corresponding matching logic proofs
for the hypotheses can be composed into a matching logic proof for the conclusion.

HL-skip (W] skip (0]

Reflexivity (Fig derives Spvp F AX ((skip, ox) Ayxy) = IX ((skip, ox) AYxy).

14

HL- '
asen Wle/xl}x = e (Y}

We have to derive Spyp F AX ((x := e, ox) A Yle/xlxy) = AX (skip, ox) A¥xy).
By using Lemma[2] Logical Framing and Lemmal([T] we derive

Sivp F X (x:= e, ox) AYle/x]xy) = X (x:=ox(e), ox) Ayle/x]yy)

Further, by using Axiom with asgn in Fig. [T} Substitution and Logic Framing, followed
by Lemmal[I] we derive

Svp F AX ((x := 0x(e), ox)A\Yle/x]xy) = X (skip, ox[x — ox(e)DAyle/x]xy)
Then, the result follows by Transitivity with the rules above and by Consequence with
F 3X ((skip, ox[x < ox(e)]) Ayle/x]xy) = X ((skip, ox) A¥xy),

which holds because ox[x « ox(e)] and y[e/x]yy are nothing but oy and respectively
Yxy with x € X replaced by ox(e).

{1} s1 o} (Y2} s2 {13}
(Y1) s1; s2 {¢3}

We have to derive Spvp + 3X ((S15 S2, 0x) AYixy) = 3X ((skip, ox) AYsyy). By
the induction hypothesis, the following sequents are derivable

HL-seq

Svp F X ((s1, 0x) AYixy) = AX ((skip, ox) Aayxy)
S + IX [(s2, ox) A lﬁzx,y) = dX ((skip, ox) A W3x,y)

By applying Lemma [3| with the former rule, we derive
Svp F AX ((S1382, 0x) AYixy) = X ((skip; sz, ox) Aayy)

Further, Axiom with seq (Fig. [T, Substitution and Logic Framing, followed by Lemma|T]
imply Spvp + 3X ({81582, 0x) AYixy) = X ((S2, 0x) A Yaxy). Then, the result
follows by Transitivity with the rule above and the second induction hypothesis.
WiAe#0lsi{yn) (Y1 Ae=0}s;{Y}
Wi1}if(e)sielses; {Yr}

HL-cond

We have to derive
Svp + IX ((if(e)sielsesy, ox) AYiyy) = X (skip, ox) Aayy)
By the induction hypothesis, the following sequents are derivable

Sivp F X ((s1, ox) A (W1 Ae#0)yy) = IX ((skip, ox) Ayoayy)
Sivp F X ((s2, ox) A (Y1 Ae=0)yxy) = IX (skip, ox) Aayy)

By using Lemma[2] Logical Framing, and Lemmal[I] we derive
Smre F X (if(e)s;elses;,, ox) A lﬁlX,Y)

= AX (if(ox(e))sielses;, ox) AYixy)

15

By using Axiom with cond; and cond, in Fig.[I] each followed by Substitution, Logic
Framing and by Lemmal([I] we also derive

SIMP FoAX (<1f(0'x(€)) S1 else Sy, Ux> A (!,01 Ne# O)X,Y)
= AX {(s1, ox) A1 Ae#0)xy)

Sivp + X (if(ox(e))sielses;, ox) AW Ae=0)yy)
= AX ({(s2, ox) A1 Ae=0)yy)

Further, by Transitivity with the rules above and the induction hypotheses, we derive

Smvp + AX (if(ox(e))sielses;, ox) AW Ae#0)yy)
= AX (skip, ox) Aayy)

Smmp F X (if(ox(e))sielses;, ox) A W Ne= O)X,Y)
= JX ((skip, ox) Aayy)

Then the result follows by Case Analysis, Consequence and Transitivity.

W ne#0}s{y)

HL-while (U}while(e)s (¢ A e = 0)

Let u be the matching logic rule that we have to derive, namely
Sivp F IX ((while(e)s, ox) Ayxy) = X (skip, ox) A W Ae=0)yy)
By the induction hypothesis, the following sequent is derivable
Smve F AX (s, ox) AW Ae#0)xy) = X (skip, ox) A¥xy)

We derive p by Circularity. First, by Axiom with while (Fig. [I)), Substitution, Logic
Framing, and Lemma we derive (note the =%, as this derivation does not use Reflex-
ivity)
Swvp + X ((while(e)s, ox) Ayxy)
=% X ((if(e)s; while(e) s else skip, ox) A ¥xy)

Therefore, all we need to do now is to derive

S U i) + 3X ((if(e)s: while(e) s else skip, ox) Ayixy)
= 3X ((skip, ox) A W A e =0)y,)

Further, by Lemma 2] Logical Framing, Lemma [T]and Transitivity, we are left with

Sivp U {u} + X ((if(ox(e))s; while(e)s else skip, ox) A ¢yy)
= X ((skip, ox) A (Y Ae=0)yy)

We apply Case Analysis with ox(e) = 0 V ox(e) # 0. The case ox(e) = 0 follows by
Axiom with cond;, Substitution, Logic Framing and Lemmam By Axiom with cond;,
Substitution, Logic Framing, Lemmaﬂ] and Transitivity, the other case reduces to

Sivp U fu} + 3X ((s; while(e)s, ox) A (4 A e # O)yy)
= X ((skip, ox) A (Y Ae=0)yy)

16

By using the induction hypothesis and Lemma 3| with s and while(e) s followed by
Axiom with skip, Substitution, Logic Framing and Lemma [I] we derive

Smvp U {u} + IX ((s; while(e)s, ox) AW Ae#0)yy)
= 3X ((while(e)s, ox) A Yxy)

Then the result follows by using Axiom with u and Transitivity with the rule above.

Theorem 2] thus tells us that anything that can be proved using Hoare logic can also
be proved using the matching logic reachability proof system. Furthermore, it gives us a
novel way to prove soundness of Hoare logic proof systems, where the low-level details
of the transition system corresponding to the target programming language, including
induction on path length, are totally avoided and replaced by an abstract, small and fixed
proof system, which is sound for all languages.

5.4 Adding Recursion

In this section we add procedures to IMP, which can be mutually recursive, and show
that proof derivations done with the corresponding Hoare logic proof rule can also be
done using the generic matching logic proof system, with the straightforward operational
semantics rule as an axiom. We consider the following syntax for procedures:

ProcedureName ::= proc|...
Procedure ::= ProcedureName() Stmt
Stmt = ...| ProcedureName()

Our procedures therefore have the syntax “proc() body”, where proc is the name of the

procedure and body the body statement. Procedure invocations are statements of the form

“proc()”. For simplicity, and to capture the essence of the relationship between recursion

and the Circularity rule of matching logic, we assume only no-argument procedures.
The operational semantics of procedure calls is trivial:

call proc() = body where “proc() body” is a procedure

The Hoare logic proof rule needs to take into account that procedures may be recursive:

H U {y}proc() (¢} + {¥} body {y}
H + {y} proc() {y’}

This rule states that if the body of a procedure is proved to satisfy its contract while
assuming that the procedure itself satisfies it, then the procedure’s contract is indeed
valid. If one has more mutually recursive procedures, then one needs to apply this rule
several times until all procedure contracts are added to the hypothesis H, and then each
procedure body proved. The rule above needs to be added to the Hoare logic proof
system in Fig.[I] but in order for that to make sense we need to first replace each Hoare
triple {y} code {¢’} in Fig. by a sequent “H + {} code {¢/'}”.

where “proc () body” is a procedure

Theorem 3. Let Syyp be the operational semantics of IMP in Fig. |l|extended with the
rule call for procedure calls above, and let H + {{} code {{/’} be a sequent derivable with
the extended Hoare logic proof system. Then Spp U H2M(H) + H2M({y/} code {y'}) is
derivable with the matching logic reachability proof system in Fig. 2]

17

Proof. Like in Theorem[2] we prove by structural induction that for any Hoare logic proof
of H + {} code {y’} one can construct a matching logic proof of Spyp U H2ZM(H) +
H2M({y/} code {¢'})), by showing for each Hoare logic proof rule how corresponding
matching logic proofs for the hypotheses can be composed into a matching logic proof
for the conclusion. The proofs for the (extended) Hoare rules in Fig. [T] are similar to
those in Theorem 2} so we only discuss the new Hoare rule for procedure calls:

H U {y}proc() {¢'} + {¢} body {'}
H + {y}proc() (¥}

Let u be the matching logic reachability rule H2M({/} proc() {¢’}), that is,

3X (proc(), ox) Ayxy) = IX ((skip, ox) A Yy y).
The induction hypothesis gives us that the matching logic sequent
Sivp U H2M(H) U {u} + 3X ({(body, ox) Ayxy) = X ((skip, ox) AY'xy)

is derivable with the generic proof system in Fig. [2] Using Axiom with call, Logic
Framing with ¢x y, and then Lemma [T} we derive (note the =7, as this derivation does
not use Reflexivity):

Sivp U H2M(H) + 3X ((proc(), ox) Ayxy) =" 3X ((body, ox) A ¥xy)

Circularity with the two rules above now derives Spyp U H2M(H) + p.

6 Conclusion

Matching logic reachability provides a sound and language-independent program rea-
soning method, based solely on the operational semantics of the target programming
language [15]. This paper addressed the other important aspect of matching logic reacha-
bility deduction, namely its completeness. A mechanical and linear translation of Hoare
logic proof trees into equivalent matching logic reachability proof trees was presented.
The method was described and proved correct for a simple imperative language with
both iterative and recursive constructs, but the underlying principles of the translation
are general and should apply to any language. The results presented in this paper have
two theoretical consequences. First, they establish the relative completeness of matching
logic reachability for a standard language, by reduction to the relative completeness of
Hoare logic, and thus show that matching logic reachability is at least as powerful as
Hoare logic. Second, they give an alternative approach to proving soundness of Hoare
logics, by reduction to the generic soundness of matching logic reachability.

Acknowledgements: We thank Michael Whalen and Cesare Tinelli for the interesting
discussions we had at Midwest Verification Day 2011, which stimulated this research. We
also thank the members of the K team (http://k-framework . org) and the anonymous
reviewers for their valuable comments on a previous version of this paper. The work in
this paper was supported in part by NSA contract H98230-10-C-0294, by NSF grant
CCF-0916893 and by (Romanian) SMIS-CSNR 602-12516 contract no. 161/15.06.2010.

18

http://k-framework.org

References

10.

11.
12.

13.

14.

15.

16.

17.

. Appel, A.W.: Verified software toolchain. In: ESOP. LNCS, vol. 6602, pp. 1-17 (2011)
. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Science 96(1),

217-248 (1992)

. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language. Journal

of Automated Reasoning 43(3), 263-288 (2009)

. Clavel, M., Duran, F., Eker, S., Meseguer, J., Lincoln, P., Marti-Oliet, N., Talcott, C.: All

About Maude, LNCS, vol. 4350. Springer (2007)

. Cook, S.A.: Soundness and completeness of an axiom system for program verification. SIAM

Journal on Computing 7(1), 70-90 (1978)

. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In: POPL. pp.

533-544 (2012)

. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex. MIT (2009)
. George, C., Haxthausen, A.E., Hughes, S., Milne, R., Prehn, S., Pedersen, J.S.: The RAISE

Development Method. BCS Practitioner Series, Prentice Hall (1995)

. Jacobs, B.: Weakest pre-condition reasoning for Java programs with JML annotations. The

Journal of Logic and Algebraic Programming 58(1-2), 61-88 (2004)

Liu, H., Moore, J.S.: Java program verification via a JVM deep embedding in ACL2. In:
TPHOLSs. LNCS, vol. 3223, pp. 184-200 (2004)

Mosses, P.D.: CASL Reference Manual, LNCS, vol. 2960. Springer (2004)

Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook. Formal
Aspects of Computing 10, 171-186 (1998)

Rosu, G., Serbédnuta, T.F.: An overview of the K semantic framework. The Journal of Logic
and Algebraic Programming 79(6), 397-434 (2010)

Rosu, G., Stefdnescu, A.: Matching logic: A new program verification approach (NIER track).
In: ICSE. pp. 868-871 (2011)

Rosu, G., Stefdnescu, A.: Towards a unified theory of operational and axiomatic semantics.
In: ICALP. LNCS, Springer (2012), to appear.

Rosu, G., Ellison, C., Schulte, W.: Matching logic: An alternative to Hoare/Floyd logic. In:
AMAST. LNCS, vol. 6486, pp. 142-162 (2010)

Sasse, R., Meseguer, J.: Java+ITP: A verification tool based on Hoare logic and algebraic
semantics. Electronic Notes in Theoretical Computer Science 176(4), 29-46 (2007)

19

	 From Hoare Logic to Matching Logic Reachability

