
c© 2012 Lev Ratinov

EXPLOITING KNOWLEDGE IN NLP

BY

LEV RATINOV

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor Dan Roth, Chair, Director of Research
Professor Jiawei Han
Associate Professor Chengxiang Zhai
Associate Professor Rada Mihalcea, University of North Texas

Abstract

In recent decades, the society depends more and more on computers for a large number of tasks. The first

steps in NLP applications involve identification of topics, entities, concepts, and relations in text. Tradi-

tionally, statistical models have been successfully deployed for the aforementioned problems. However,

the major trend so far has been: scaling up by dumbing down- that is, applying sophisticated statistical

algorithms operating on very simple or low-level features of the text. This trend is also exemplified, by ex-

pressions such as “we present a knowledge-lean approach”, which have been traditionally viewed as a positive

statement, one that will help papers get into top conferences. This thesis suggests that it is essential to use

knowledge in NLP, proposes several ways of doing it, and provides case studies on several fundamental

NLP problems.

It is clear that humans use a lot of knowledge when understanding text. Let us consider the following

text “Carnahan campaigned with Al Gore whenever the vice president was in Missouri.” and ask two questions:

(1) who is the vice president? (2) is this sentence about politics or sports? A knowledge-lean NLP approach

will have a great difficulty answering the first question, and will require a lot of training data to answer the

second one. On the other hand, people can answer both questions effortlessly.

We are not the first to suggest that NLP requires knowledge. One of the first such large-scale efforts,

CYC1 , has started in 1984, and by 1995 has consumed a person-century of effort collecting 105 concepts and

106 commonsense axioms, including “You can usually see peoples noses, but not their hearts.”. Unfortunately,

such an effort has several problems. (a) The set of facts we can deduce is significantly larger than 106 . For

example, in the above example heart can be replaced by any internal organ or tissue, as well as by a bank

account, thoughts etc., leading to thousands of axioms. (b) The axioms often do not hold. For example, if

the person is standing with their back to you, can cannot see their nose. And during an open heart surgery,

you can see someone’s heart. (c) Matching the concepts to natural-language expressions is challenging. For

example, Al Gore can be referred to as Democrat, environmentalist, vice president, Nobel prize laureate among

other things. The idea of buying a used car can be also expressed as purchasing a pre-owned automobile. The

1While CYC had a very broad set of applications in mind, NLP, Machine Translation, and Information Retrieval were some of the
key motivations, as stated in [78]

ii

lexical variability in text makes using knowledge challenging. Instead of focusing on obtaining a large set

of logic axioms, we are focusing on using knowledge-rich features in NLP solutions.

We have used three sources of knowledge: a large corpus of unlabeled text, encyclopedic knowledge de-

rived from Wikipedia and first-order-logic-like constraints within a machine learning framework. Namely,

we have developed a Named Entity Recognition system which uses word representations induced from

unlabeled text and gazetteers extracted from Wikipedia to achieve new state of the art performance. We

have investigated the implications of augmenting text representation with a set of Wikipedia concepts. The

concepts can either be directly mentioned in the documents, or not explicitly mentioned but closely re-

lated. We have shown that such document representation allows more efficient search and categorization

than the traditional lexical representations. Our next step is using the knowledge injected from Wikipedia

for co-reference resolution. While the majority of the knowledge in this thesis is encyclopedic, we have

also investigated how knowledge about the structure of the problem in the form of constraints can allow

leveraging unlabeled data in semi-supervised settings.

This thesis shows how to use knowledge to improve state-of-the-art for four fundamental problems in

NLP: text categorization, information extraction, concept disambiguation and coreference resolution, four

tasks which have been considered the bedrock of NLP since its inception.

iii

To my friends and foes.

iv

Acknowledgments

I want to thank all of those who have shaped me as a researcher and a human being. Chronologically,

perhaps I should start by thanking Anton Loginov, who called me a nerd and refused to let me into his

soccer team when I was in the third grade. Perhaps he helped me more than anybody else to unveil my

true nature and get into the world of books and thoughts. With his help, I realized I have to be Lev Ratinov,

not a wannabe Lev Yashin. Watching my friends grow, I feel that giving up on pretending to be someone

else since an early age gave me almost an unfair advantage over my peers.

Also, having moved from Kyrgyzstran to Israel and then to USA, I have to thank all the people whom

I culturally shocked, and who have culturally shocked me. This made me re-evaluate my ways, hopefully

to the better. Reuven Danino, thanks for calling me a “stinky Russian” and giving me a black eye, while

suffering a broken nose, this lesson is still cherished 18 years later. I know that what you wanted to say was

much deeper than that, and you just wanted to make me a more acceptable person in a society. Anyway,

I’m taking a better care of my hygiene these days. Thank you, the American pickup artists who have helped

me unlock the intricacies of the American dating and helped me to better understand what it means to be

a man. With my improved hygiene, I can really see the results of your coaching. . . I guess everything is

finally coming together now, everything was meant to be.

I owe most of the success in my life (professional and personal) to people who saw the goodness in me at

a young age, often when I and everybody else failed to see it. Talent hits a target no one else can hit; Genius

hits a target no one else can see. My mentors were genius in seeing the goodness and talents hidden in me

and went out of their way to pass me their knowledge and experience. Thank you, my neighbor Holocaust

survivor Genya, my wise chess coach Yossef Kagan, my youth mentor Eli Partish, my English teacher and

mentor Victor Khalepski, my mom’s friend Amnon Yitzhaki who taught me history and Derech Eretz, my

early Math mentor Arkady Leiderman, my later Research mentors - Ehud Gudes, Eyal Shimony and Mark

Last.

With time, I became increasingly proud of my old-time academic brothers from BGU: Yohai Twitto,

Assaf Klein, Guy Shani, Wisam Daka, Fadi Biadsy, Gabriel Zaccak, Yoav Goldberg, to name a few. It makes

v

me feel very lucky to have that kind of background. I appreciate people of great knowledge and rootedness

who took their time to say a kind word to me, especially Michael Elhadad.

I want to thank the warmasters from the Taekwondo scene who taught me discipline, dedication and

what being resolved really means. Thank you Eyal Fima, Alex Man, Eran Wass, Menahem Neumann,

Shai Shitrit, Shani Hecht, Yan Fraiman, and of course, the Fuchs brothers, who cannot agree whether their

last name should be Fuks or Fux. Special thanks to Tim Ghormley the coach of the Stanford Taekwondo

program, I’m still keeping the belt you took off your waist and gave me.

Thank you to my army peers, commanders and students, you taught me humility and comradeship

while generously allowing me pursue my academic and Taekwondo goals. Big thanks to people who

helped me step beyond Taekwondo and become a collaborative rather than a competitive human being,

most and foremost Igal Yachtengerg, Hila Zvilling, Dani Nevet.

I want to thank all the administrative office people who helped my studies tick in Israel and in the

USA, especially Eric Bailey, Holly Ann Bagwell, Mary-Beth Kelley, Mazal Gagulashvili, Aviva Levi, Zahava

Kubani. Your help behind the scenes did not go unnoticed.

Thanks to people who helped me when I was most vulnerable: Alexander Binshtok, who helped me to

recover from my first knee injury and also taught me so much about compassion and about being a giver.

Thank you Yael Karmi for saving me in the middle of the night, in the middle of nowhere when I injured

my other knee. Yael, you also helped me find peace with myself and with my parents, you exposed me to

the art of non-violent communication, you changed my life. Special thanks to Max Stessel, who has been a

source of positive inspiration in my final year of Phd.

I found life in Urbana Champaign hard and dull and the people who lit it up, mean the world to me.

Bonnie Nozari, ever since you’ve graduated and left, Urbana-Champaign has looked like nothing to me

but a deserted rusty car wreck on the side of the road to pass by and to momentarily look at with sadness.

Kate Insolia, without the creative outlets with you, I’d surely go crazy. Dan Goldwasser, your tranquility

and depth have enriched my life in so many ways. Some of my brightest memories from the Phd period

are our conversations and trips. Antoine Kalfi and Celina Aguilar - I carry a piece of you in my heart too.

My labmates have made my stay in Urbana more tolerable and very fruitful. Special thanks to Ming-Wei

Chang, the co-author of my first Phd paper. Thank you Nick Rizollo for being so available with technical

help. Quang Do, Kevin Small, Dan Goldwasser, Alla Rozovskaya, Yuancheng Tu, Vivek Srikumar, Rajhans

Samdani, , Mark Summons, Kai-Wei Chang.

Special thanks go to my official and unofficial mentors throughout my internship stints: Moises Gold-

szmidt, Kannan Achan, Rakesh Gupta, Baris Yuksel, Raoul-Sam Daruwala, Ryan McDonald. Each of you

vi

has taught me a special skill that is unique to you. Big thanks to my co-authors who taught me research

discipline and prowess, especially Hiroya Takamua, Joseph Turian, Ming-Wei Chang and Doug Downey.

Likewise, special thanks go to my thesis committee: Rada Michalcea, ChengXiang Zhai, Jiawei Han.

I’m forever indebted to people who had me in their mercy and who showed amazing understanding and

kindness - my advisor Dan Roth and my TA boss Cinda Heeren. You were more than just understanding

and kind but also tolerant, patient and forgiving. You are a venerable and rare example of brilliant people

who also excel in being a loving parent, spouse and friend. I admire and revere both of you. You’ve been an

inspiration for me in so many ways and you give me faith in the human kind.

Finally, and most importantly, I want to thank those who gave me life and raised me. My dad, Victor

has taught me how to be inquisitive, perceptive, kind and ubiquitously loving. My mom, Elena has taught

me how to accept the Truth even when it’s not pleasant and how to be determined, brave, uncompromising

and hard working. Thank you my grandma Sonya for connecting me to my roots. Without knowing who I

am and where I’m coming from, I’d surely be running around like a lost puppy looking for superior Bagels

and Matzo Ball soup. Most importantly, I thank both of my parents for teaching me how to deal with and

accept what may appear unfair in life. You’ve always taught me by example - by stoically and lovingly

overcoming incredible adversities and hardships.

Each word in this thesis is a collaborative effort by all who have left an imprint in my soul, from Anton

Loginov to Victor Ratinov. Big thank you, everybody!

vii

Table of Contents

List of Tables . x

List of Figures . xii

List of Abbreviations . xiv

Chapter 1 Introduction . 1
1.1 Challenges of Language Understanding . 1
1.2 The Role of Knowledge in NLP . 2
1.3 Contributions . 4
1.4 Thesis Outline . 7

Chapter 2 Background . 8
2.1 Supervised Classification with Linear Models . 8
2.2 Structured and Sequential Prediction . 9
2.3 NLP-specific Considerations . 10
2.4 Learning Protocols . 12

Chapter 3 Dataless Classification . 14
3.1 Semantic Representation . 15
3.2 Data and Experimental Methodology . 16
3.3 On-the-fly Classification . 18
3.4 Semantics of Unlabeled Data . 20
3.5 Discussion . 22
3.6 Dataless Classification for Domain Adaptation . 24
3.7 Conclusions and Future Work . 25

Chapter 4 Named Entity Recognition . 26
4.1 Contributions . 26
4.2 Design Challenges in NER . 27

Chapter 5 A Study of Word Representations . 39
5.1 Types of Word Representations . 39
5.2 Supervised evaluation tasks . 43
5.3 Unlabeled Data . 46
5.4 Experiments and Results . 47
5.5 Related Work . 52
5.6 Conclusions . 53

viii

Chapter 6 Disambiguation to Wikipedia . 54
6.1 Contributions . 54
6.2 Problem Definition and Approach . 55
6.3 System Architecture . 56
6.4 Local Features . 58
6.5 Global Features . 59
6.6 Linker Features . 60
6.7 Linker and Ranker Training . 61
6.8 Datasets . 61
6.9 Evaluation Methodology . 62
6.10 Experiments and Results . 62
6.11 TAC Entity Linking . 65

Chapter 7 Co-reference Resolution . 75
7.1 Introduction . 75
7.2 Baseline System and Data . 76
7.3 Wikipedia as Knowledge . 78
7.4 Learning-based Multi-Sieve Approach . 81
7.5 Entity-Level Inference . 84
7.6 Experiments and Results . 86
7.7 Conclusions and Related Work . 87

Chapter 8 Non-encyclopedic Knowledge in NLP . 90
8.1 Introduction . 90
8.2 Related Work . 91
8.3 Tasks, Examples and Datasets . 92
8.4 Notation and Definitions . 94
8.5 Learning and Inference with Constraints . 95
8.6 Experiments and Results . 98
8.7 Conclusions . 101

Chapter 9 Conclusion and Discussion . 103

References . 105

ix

List of Tables

3.1 Newsgroup label names. We expanded the names of the newsgroups to full words and
removed some words like misc. This table lists the expanded newsgroup names. 17

3.2 Sample Yahoo! Answers categories and subcategories. In all, we collected 20 top level cate-
gories and 280 subcategories from Yahoo! Answers. 18

3.3 The set of 10 binary classification problems used in [110] for the 20 newsgroups data. 18
3.4 Sample binary categorization problems for the Yahoo! Answers dataset – subcategory level . 19
3.5 Average accuracy of dataless classification with the bag of words and ESA representations

on the Newsgroups and Yahoo! Answers datasets. Note that in both domains, the use of ESA
representation is better than using just the words of the labels and no other training data. In
fact, the ESA representation, without any training data outperforms supervised naive Bayes
classifiers which use ten labeled examples. 19

3.6 Performance of classifiers when unlabeled data is available. The supervised baseline, in
this case, is a naive Bayes classifier that is trained on 100 labeled examples. The last three
classifiers do not use any labeled examples at all. 21

3.7 The ‘discriminative words’ found by labeled data of the task Christianity vs. Religion in 20
newsgroup. 23

3.8 Analysis for adaptation from Source→ Target for different domains. 24

4.1 Phrase-level F1 performance on CoNLL03 test data vs. Inference time (sec). The results are
reported on a quad-core IntelXeon 2.83GHz machine with 8GB of RAM. 30

4.2 End system performance with BILOU and BIO schemes. BILOU outperforms the more
widely used BIO. 31

4.3 The utility of non-local features. The system was trained on CoNLL03 data and tested on
CoNNL03, MUC7 and Webpages. No single technique outperformed the rest on all domains.
The combination of all techniques is the most robust. 33

4.4 End system performance by component. Results confirm that NER is a knowledge-intensive
task. 34

4.5 Utility of external knowledge. The system was trained on CoNLL03 data and tested on
CoNNL03, MUC7 and Webpages. 36

4.6 Comparison: token-based F1 score of LBJ-NER and Stanford NER tagger across several do-
mains . 37

4.7 Results for CoNLL03 data reported in the literature. publicly available systems marked by +. 38

5.1 Features templates used in the CRF chunker. 44
5.2 Final chunking F1 results. In the last section, we show how many unlabeled words were used. 50
5.3 Final NER F1 results, showing the cumulative effect of adding word representations, non-

local features, and gazetteers to the baseline. To speed up training, in combined experiments
(C&W plus another word representation), we used the 50-dimensional C&W embeddings,
not the 200-dimensional ones. In the last section, we show how many unlabeled words were
used. 51

x

6.1 Ranker features. I[ti−tj] is an indicator variable which is 1 iff ti links to tj or vise-versa.
I[ti↔tj] is 1 iff the titles point to each other. 58

6.2 Number of mentions and corresponding distinct titles by data set. Listed are (number of
mentions)/(number of distinct titles) for each data set, for each of three mention types. Gold
mentions include all disambiguated mentions in the data set. Identified mentions are gold
mentions whose correct disambiguations exist in GLOW’s author-title index. Solvable men-
tions are identified mentions whose correct disambiguations are among the candidates se-
lected by GLOW (see Table 3). 61

6.3 Ranker Accuracy. Bold values indicate the best performance in each feature group. The
global approaches marginally outperform the local approaches on ranker accuracy , while
combing the approaches leads to further marginal performance improvement. 63

6.4 Linker performance. The notation X → Y means that when linking all mentions, the linking
accuracy is X , while when applying the trained linker, the performance is Y . The local
approaches are better suited for linking than the global approaches. The linking accuracy is
very sensitive to domain changes. 63

6.5 End systems performance - BOT F1. The performance of the full system (GLOW) is similar to
that of the local version. GLOW outperforms [93] on all data sets. 64

6.6 Sample TAC Entity Linking queries. 66
6.7 The utility of mention selection. The Naive mention generation strategy is marking all the

mention in query text which match exactly the query surface form. The method for mention
generation proposed in Section 6.11.2 improves the micro-average performance by 3 points
and the B3 F1 by 4 points. We note that these results were obtained using the GLOW model
trained on our internal newswire dataset rather than on the TAC data and with MaxNoThres
solution aggregation strategy. 72

6.8 Comparison of the solution generation policies. We note that these results were obtained
using the GLOW model trained on our internal newswire dataset rather than on the TAC
data. All approaches are competitive. 72

6.9 Ranker Accuracy. Bold values indicate the best performance in each feature group. The
global approaches marginally outperform the local approaches on ranker accuracy , while
combing the approaches leads to further marginal performance improvement. 73

7.1 F1 performance on co-referent mention pairs by inference layer when trained with all data
versus level-specific data only. 82

7.2 Utility of knowledge and prediction features (F1 on co-referent mention pairs) by inference
layers. Both knowledge and entity-based features significantly and independently improve
the performance for all layers. The goal of entity-based features is to propagate knowledge
effectively, thus it is encouraging that the combination of entity-based and knowledge fea-
tures performed significantly better than any of the approaches individually at the final layer. 86

8.1 The list of constraints for extracting fields from citations. Constraints 1 and 2 are n-ary (or
global) and are difficult to inject into traditional models. While all the constraints hold for
the vast majority of the data, they are violated by at least some correct labeled assignments. . 93

8.2 The list of constraints for extracting fields from advertisements. Constraints 1 and 2 are n-ary
(or global) and are difficult to inject into traditional models. While all the constraints hold
for the vast majority of the data, they are violated by at least some correct labeled assignments. 94

8.3 Experimental results for extracting fields from citations. Adding constraints improves the
performance both during learning and inference. 99

8.4 Experimental results for extracting fields from advertisements. Adding constraints improves
the performance both during learning and inference. 100

xi

List of Figures

1.1 Sample text illustrating the challenges of natural language understanding. 2
1.2 The co-dependency between knowledge and NLP throughout this Thesis. 4

4.1 Example illustrating challenges in NER. 26
4.2 Key design decisions in NER. 29
4.3 An extract from word cluster hierarchy. 33
4.4 Mapping of Wikipedia categories to gazetteers. 36

5.1 Effect as we vary the scaling factor σ (Equation 5.1) on the validation set F1. We experiment
with [28] and HLBL embeddings of various dimensionality. (a) Chunking results. (b) NER
results. 48

5.2 Effect as we vary the capacity of the word representations on the validation set F1. (a) Chunk-
ing results. (b) NER results. 49

5.3 For word tokens that have different frequency in the unlabeled data, what is the total number
of per-token errors incurred on the test set? (a) Chunking results. (b) NER results. 52

6.1 An example of a Wikification system output. 55
6.2 Sample Disambiguation to Wikipedia problem with three mentions. The mention “Jiangsu”

is unambiguous. The correct mapping from mentions to titles is marked by heavy edges . . . 56
6.3 High-level pseudocode for GLOW. 57
6.4 Pseudocode for the Illinois entity linking system in TAC 2011. 66
6.5 Sample disambiguation to Wikipedia with three mentions formalized as bipartite matching

problem. The correct mapping from mentions to titles is marked by heavy edges 69
6.6 High-level pseudocode for GLOW . Step (4) is disabled for the entity-linking task. 70

7.1 Example illustrating the challenges in co-reference resolution. 75
7.2 High-level system architecture. 76
7.3 A sample output of a pairwise co-reference classifier. The full edges represent a co-ref pre-

diction and the empty edges represent a non-coref prediction. A set of knowledge attributes
for selected mentions is shown as well. 77

7.4 End performance for various systems. 87

8.1 Error analysis of the HMM model. The correct assignment was shown in (a). While the
predicted label assignment (b) is generally coherent, some obvious constraints are violated.
Most obviously, punctuation marks are ignored as cues for state transitions. 92

8.2 Semi-supervised learning with local score functions and constraints. 97
8.3 Comparison between H+N and H+N+C when both protocols use constraints for inference

after learning. When there is a lot of labeled data, doing inference with constraints is more
important than using constraints during learning. However, it is critical to use H+N+C when
the amount labeled data is small. 101

8.4 With 20 labeled examples our algorithm performs competatively to the supervised version
trained on 300 smaples. 102

xii

8.5 Comparison to results reported in Grenager et al. 2005. 102

9.1 The co-dependency between knowledge and NLP throughout this Thesis. 103

xiii

List of Abbreviations

BOW Bag of words.

CODL Constraint-drivel learning.

GLOW Global and local Wikification.

IDF Inverse document frequency.

SVM Support vector machine.

TF Term frequency.

TFIDF Term frequency–inverse document frequency.

NB Naive Bayes.

NER Named entity recognition.

xiv

Chapter 1

Introduction

In recent decades, the society depends more and more on computers for a large number of tasks. We are

using social networks to learn about activities and interests of our friends, we use search engines to find

documents. We rely on online encyclopedias to learn about concepts and events. As our interaction with

the electronic environment becomes more involved and our knowledge moves to electronic format, the

necessity of processing written information intelligently also increases. For example, modern email clients

can remind us when we want to add attachment and forgot to do it. Lawsuits over patent infringements

involve analyzing hundreds of thousands of electronic documents. Running data mining algorithms on

medical records across thousands of patients is necessary to understand the patterns of (mis)diagnosis,

symptoms and diseases. Automatic redirection of customer complaints to the correct customer service

representative is a common practice for effective business operation.

1.1 Challenges of Language Understanding

What does it take to understand language? Let us consider the the first two sentences from a CNN article1

given in Figure 1.1. We may be surprised by the amount of information a human can extract from these two

sentences alone. First, we can answer the question about the general topics of the article: the U.S. invasion

of Afghanistan and terrorism. Then, we can identify the named entities: the locations (Kabul, Afghanistan,

Paktiya province), the organizations (CNN, Haqqani network, International Security Assistance Force),

and people (Ismail Jan). We note that all but one entity have the corresponding Wikipedia pages where

the reader can find additional information. We also note that the majority of the readers would know that

Kabul is the capital of Afghanistan and would have some prior knowledge about the activities and the

agenda of the Haqqani network as well as the International Security Assistance Force. The reader of the

article can also understand that “Ismail Jan”, a “senior Haqqani commander”, and “several fighters” are

members of the Haqqani network. We also learn about two events that occurred: “a deadly attack at a

1http://www.cnn.com/2011/WORLD/asiapcf/06/30/afghanistan.kabul.attack/index.html?hpt=wo_c1

1

http://www.cnn.com/2011/WORLD/asiapcf/06/30/afghanistan.kabul.attack/index.html?hpt=wo_c1

Kabul hotel” and a “precision airstrike”. The later attack has killed “Ismail Jan”, who is also mentioned

as “top Haqqani, network leader”, but not the anonymous “senior Haqqani commander” to whom Ismail

Jan acts as a deputy. Therefore, one can expect more deadly attacks on Kabul hotels and more retaliation

airstrikes.

In the natural language processing community, the task identifying the topics of the article is what we

refer to as text categorization, identifying the entities, such as “Ismail Jan” is called named entity recognition,

mapping the entities to Wikipedia pages is called concept resolution. Understanding that “Ismail Jan” and

“top Haqqani, network leader” refer to the same entity, but distinct from “senior Haqqani commander” is

called co-reference resolution. In this thesis, we focus on improving the state of the art for these problems.

Topics:
 [1] http://en.wikipedia.org/wiki/U.S._invasion_of_Afghanistan
 [2] http://en.wikipedia.org/wiki/International_Security_Assistance_Force
 [3] http://en.wikipedia.org/wiki/Terrorism
 [4] http://en.wikipedia.org/wiki/Taliban
 [5] http://en.wikipedia.org/wiki/Northern_alliance

[LOC Kabul] , [LOC Afghanistan] ([ORG CNN]) -- A top [ORG Haqqani] network leader suspected of providing support for Tuesday's deadly attack at a [LOC Kabul]
hotel was killed in an airstrike in southeast [LOC Afghanistan] , the [ORG International Security Assistance Force] said Thursday.

[PER Ismail Jan], who is the deputy to the senior [ORG Haqqani] commander, and several fighters were killed in a precision airstrike Wednesday in [LOC Paktiya]
province.

Tuesday Wednesday

Dead

Dead

Alive

Figure 1.1: Sample text illustrating the challenges of natural language understanding.

1.2 The Role of Knowledge in NLP

So far, statistical models have been successfully deployed for the aforementioned problems. However,

the major trend so far has been: scaling up by dumbing down- that is, applying sophisticated statistical

2

algorithms operating on very simple or low-level features of the text. This trend is also exemplified, by

expressions such as “we present a knowledge-lean approach”, which have been traditionally viewed as a pos-

itive statement, one that will help papers to get into top conferences. However, our analysis of the text in

Figure 1.1 shows that humans use a lot of knowledge when understanding text. While knowledge-lean

approaches are attractive, they are ultimately limited, and as the amount of on-line text and information

resources increases, it creates an opportunity to utilize them for machine-learning purposes.

We believe that humans solve NLP tasks jointly, while using a lot of world knowledge. For instance, in

our running example, a human can infer that Haqqani network is a terrorist organization. And since the

airstrike has killed Ismail Jan, he is dead. For a computer, making these “simple” inferences is exceptionally

challenging since the current state of the art in natural language processing does not have adequate tools

for modeling common-sense knowledge, narrative and discourse structure, semantics and pragmatics.

We are not the first to suggest that NLP requires knowledge. One of the first such large-scale efforts,

CYC2 , has started in 1984, and by 1995 has consumed a person-century of effort collecting 105 concepts

and 106 commonsense axioms, such as “You can usually see peoples noses, but not their hearts.”. Unfortunately,

such an effort has several problems. (a) The set of facts we can deduce is significantly larger than 106 .

For example, in the above example heart can be replaced by any internal organ or tissue, as well as by

a bank account, thoughts etc. Transitivity can also be a factor. For example, if a medicine can relieve

headache, and Tylenol is a medicine, then Tylenol may (or may not, and here non-probabilistic inference

falls apart) relieve headache. Inference with this amount of knowledge is beyond the current state of the

art computationally (b) The axioms often do not hold. For example, if the person is standing with their

back to you, can cannot see their nose. And during an open heart surgery, you can see someone’s heart.

(c) Matching the concepts to natural-language expressions is challenging. For example, Al Gore can be

referred to as Democrat, environmentalist, vice president, Nobel prize laureate among other things. The idea of

buying a used car can be also expressed as purchasing a pre-owned automobile. The lexical variability in text

makes using knowledge challenging. This is the main reason why CYC, as well as many other attempts to

manually curate knowledge, such as OpenMind [131], WordNet [43], FrameNet [3] have had a very limited

impact in NLP.

With little progress made in applying manually curated resources in practical NLP applications, much of

the research community has turned its attention to automatically learning a large set of facts from unlabeled

text [41; 4; 161; 115; 127; 17]. The hope is that automatic fact extraction systems, being NLP-driven, might

be able to extract more information, and in a format more amenable for using in NLP applications than

2While CYC had a very broad set of applications in mind, NLP, Machine Translation, and Information Retrieval were some of the
key motivations, as stated in [78]

3

manually curated resources. However, using knowledge-lean NLP tools to extract knowledge unavoidably

results in noisy knowledge. For example, [127] reports that their basic fact extraction system induced that

Cananada is-a city from the sentence “Toronto, Canada and other cities.”. The large-scale fact extraction systems

are capable to a certain extent of taking advantage of redundancy in the data to prune out incorrect facts.

However, the pruning process is typically knowledge-lean, and cannot differentiate between pruning out

the incorrect city sense for Canada and legitimately ambiguous terms, such as New York being both city and

state. When it comes to minority senses, such as Canada being the Canadian hockey team, the situation only

gets worse. Therefore, it is clear that high quality knowledge extraction requires good NLP tools, which in

turn require knowledge, leading essentially to a chicken and egg problem.

Instead of focusing on obtaining a large set of logic axioms, we are focusing on using knowledge-rich

features in NLP solutions. In this thesis, we argue that knowledge and NLP are intertwined. Meaning,

knowledge can improve the performance of NLP systems, but at the same time, a better NLP system can

improve our ability to use and inject knowledge. We exemplify this co-dependence in our work by showing

how raw text and knowledge from Wikipedia can be exploited for the task of named entity recognition,

and how a better named entity recognition system can benefit concept resolution against Wikipedia, which

injects further knowledge into raw text. We then use this knowledge to improve a state of the art co-

reference system. This process is summarized in Figure 1.2.

NLP

Knowledge

Named entity recognition,
shallow parsing (chunking)

Raw Text,
Wikipedia,

Lists from the Web

Co-reference
resolution

Wikipedia-enriched text,
Wikipedia category structure,

WordNet

Figure 1.2: The co-dependency between knowledge and NLP throughout this Thesis.

1.3 Contributions

Understanding natural language often involves answering five types of “Wh” questions: who, what, where,

when and why. While full-blown text understanding is out of scope of this work, we focus on the first three

questions (who, what, and where), which seem to be of a particular importance. Without knowing what

are the entities in the text, it is impossible to understand the relations and the events that happen between

them. We tackle the problem of answering the “wh” questions in text as a series of four increasingly

4

complex NLP tasks described below. We have used knowledge extensively and developed state-of-the-art

systems for each task.

1.3.1 Text categorization

Text categorization is the task of categorizing documents by topics, such as: politics, sports, medicine or

science. Traditionally, the category names are ignored and treated as atomic identifiers. Hence, the task

has been studied as the problem of training a classifier using labeled data. However, people can categorize

documents into named categories without any explicit training because we know the meaning of category

names. In [21], we have introduced Dataless Classification, a learning protocol that uses world knowledge to

induce classifiers without the need for any labeled data. Like humans, a dataless classifier interprets a string

of words as a set of semantic concepts. We proposed a model for dataless classification and showed that the

label name alone is often sufficient to induce classifiers. Using Wikipedia as our (encyclopedic) source of

knowledge, we have achieved above 85% accuracy on multiple classification datasets without any labeled or

unlabeled data. When using unlabeled data, we could further improve the results and show a performance

which is quite competitive to a supervised learning algorithm trained on 100 labeled examples.

1.3.2 Information extraction

Information extraction is the task of extracting pieces of relevant information from unstructured text. In [20]

we have presented CODL, a framework for guiding semi-supervised learning with constraints. We have

applied the framework to two problems: the task of extracting fields from apartment rental advertise-

ments and the task of extracting the fields from scientific citations3. At the time the work was published, it

achieved state-of-the-art results on both datasets. CODL uses constraints as a common-sense knowledge,

and it will be the only instance of using non-encyclopedic knowledge throughout this thesis.

In [112] and in [145] we have tackled an important instance of information extraction problem known

as named entity recognition, where the task is to identify locations, organizations and people in text. We

have investigated system design challenges, techniques to capture non-local dependencies in text, and

techniques to abstract over expressions using Wikipedia and raw text. At the time of its publication [112]

achieved the best published result on CoNLL03 shared task dataset, the de-facto benchmark for the task.

3In the apartment rentals ads, the fields included the location, the number of bedrooms and the pets restrictions etc., and in the
scientific citations, the fields were the author, the title, the publisher, the editors, the location of the conference, etc.

5

1.3.3 Concept Disambiguation

In concept disambiguation we cross-link expressions in the input free-form text to a database of concepts

and entities. When the disambiguation is done against Wikipedia, we call this process disambiguation to

Wikipedia or simply Wikification (a term coined by [90]). Throughout this work, we will use these terms

interchangeably. Wikipedia is an attractive choice for reference collection dataset, since it is extremely

comprehensive, and is constantly updated by the human editors. For example, “Michael Jordan” has a

Wikipedia disambiguation page4 providing 7 disambiguation candidates in the 2010 version of Wikipedia.

Choosing the correct person in a context-sensitive way is challenging.

In [111] we have analyzed the approaches for leveraging structural information in Wikipedia (which

we call “global” approaches) and compare them to more traditional (local) approaches. We showed that

previous approaches for global disambiguation can be improved, but even then the local disambiguation

provides a baseline which is very hard to beat. We presented the GLOW system which uses a unified

optimization function to make inference over local and global features. GLOW achieved a new state-of-

the-art Wikification performance on benchmark datasets and took the fourth place in the TAC 2011 entity-

linking competition5.

1.3.4 Co-reference Resolution

The co-reference resolution problem is the task of identifying expressions in text that refer to the same real-

world entity. For example, in the text below, we want know that mentions {m1,m2,m4} refer to Barack

Obama and mentions {m3,m5} refer to the American nation.:

“[[U.S. President]{m1} Barack Obama]{m2} spoke to the [nation]{m3}. ’[I]{m4} need [your]{m5}

help’, he said. . . . ”

In Chapter7 we are using GLOW to inject Wikipedia knowledge into a state-of-the-art co-reference res-

olution system of [10]. The key idea is to use Wikipedia to build a metric for measuring “compatibility”

between two expressions. The main ingredients of the metric are nationality, gender and fine-grained typ-

ing of expressions facilitated by GLOW.

We note that one of the key reasons for superior performance of GLOW is that is uses a superior NER

system of [112]. While benefitting from a superior NLP system, GLOW is used to inject better word knowl-

edge into a co-reference resolution system of [10]. This co-dependence of knowledge and NLP is the main

theme of this thesis, as illustrated in Figure 1.2.

4http://en.wikipedia.org/wiki/Michael Jordan (disambiguation).
5http://nlp.cs.qc.cuny.edu/kbp/2011

6

http://nlp.cs.qc.cuny.edu/kbp/2011

1.3.5 Using Knowledge in NLP

While the previous discussion has focused on the contribution of this thesis for advancing the state of the

art for several applications, we also note that this thesis makes contributions in developing intuitions of

how to use knowledge in NLP. We have experimented with several resources of knowledge and several

methodologies of injecting knowledge into NLP applications. We have researched:

1. Data sparsity reduction methods based on using large quantities of unlabeled text as knowledge

(Chapters 5 and 4).

2. Enriching text via encyclopedic knowledge. This can be done either by assigning topic-specific infor-

mation (Chapter 3) or by cross-linking expressions in text to encyclopedic resources (Chapter 7).

3. Using first-order-logic-like constraints to guide self-training of a statistical model (Chapter 8).

1.4 Thesis Outline

The outline of this thesis closely follows the list of the contributions we have enumerated in the previous

section. In Chapter 2 we cover technical background. In Chapter 3 we discuss how Wikipedia can assist

with the task of texts categorization. In Chapter 4 we analyze the task of named entity recognition. We

discuss the challenges and the main misconceptions of system design and proceed to focus on using unla-

beled text and Wikipedia as means to inject knowledge into the system. In Chapter 5 we analyze methods

to address data sparsity problem in NLP. In Chapter 6 we discuss concept disambigution to Wikipedia. In

this case, rather than using knowledge to improve the system, we are building a system which will enrich

input text with semantic knowledge. We show that better NLP tools, such as named entity recognition

and shallow parsing (which benefited from knowledge derived from Wikipedia) allow us to inject higher

quality information from Wikipedia to text. In Chapter 7, we are using the injected knowledge to improve

a state-of-the-art co-reference system of [10]. While this thesis focuses on encyclopedic knowledge in NLP,

we have experimented with several non-encyclopedic directions which will be discussed in Chapter 8. We

conclude in Chapter 9.

7

Chapter 2

Background

Throughout this work we will heavily rely on techniques from machine learning for making predictions.

A good example illustrating the nature of machine learning can be found in [38], who are considering a

fish-packing plant which needs to automatically sort the fish to bass and salmon. The first step is taking

measurements of the fish, for example the weight and the length. This process is known as “feature extrac-

tion”. The second step is gathering statistics for the two types of fish and learning a function to discriminate

the fish with the highest possible accuracy given the limited information about the fish. The decision func-

tion may be simple or expressive, and generally, the more expressive functions will require more data to

learn, but will eventually be more accurate when presented sufficient amount of training data [151; 152; 98].

Clearly, based on the two measurements of weight and length, it will be impossible to sort the fish

with 100% accuracy. To achieve a good performance on the fish-sorting task, we need good measurements,

which can be potentially expensive to obtain. Understanding natural language is tremendously more com-

plex than sorting fish, and the key challenge (as is the case in most machine learning applications) is feature

extraction. Text is composed of words, and words are currently the only type of features we can reliably

extract, but the same ideas can be expressed in different words. This leads to data sparsity problems [68; 64]

and other challenges which will be discussed later in great detail. Nevertheless, we can already outline the

unique machine learning challenge of NLP: the decision functions often depend on a large vocabulary of

words, but when the input text is presented, only a small fraction of the vocabulary is observed. These

properties have led to the popularity of linear models in NLP.

2.1 Supervised Classification with Linear Models

Linear models are formalized as follows: given an input x, a possible output y and a feature extraction

function φ, the goal is to learn a weight vector w, such that

w · φ(x, y∗) > w · φ(x, y
′
) (2.1)

8

where y∗ is the correct output and y′ is any other possible output. For example, in the “fish-sorting”

example, the feature extraction function φ for a fish x0 may look as follows:

φ(x0, bass) = (0, 0, length(x0), weight(x0))

and

φ(x0, salmon) = (length(x0), weight(x0), 0, 0)

In practice, we will have an additional feature set to value 1 for bias, and we can use squares of the mea-

surements and the product of weight and length as features, but we omit these details for simplicity. A

learned weight w = (1, 3, 2, 1) would mean that if the ratio of length to weight in a fish is larger than 2 : 1,

then it will be classified as bass. To see why, consider the product w · φ(x, y) for bass and salmon of a

fish x0 of length 2 and a weight 1. For bass w · φ(x0, bass) = (1, 3, 2, 1) · (0, 0, 2, 1) = 5, while for salmon

w · φ(x0, salmon) = (1, 3, 2, 1) · (2, 1, 0, 0) = 5. This means that the fish x0 is on the decision boundary. A

fish of the same length, but a higher weight would be labeled as a bass, because the weight multiplier for

bass is 3, and for salmon it is 1. Similarly, a fish of the same weight but a higher length would be classified

as salmon. This framework can be replicated for NLP, with typically boolean features indicating presence

or absence of words. We note that the linear models are a very large family including Naive Bayes, SVM,

Perceptron, Winnow, Linear Regression, Max-Entropy classifiers [38; 19], etc. We also note that Kernel

methods allow to learn linear decision boundaries over non-linear transformations of input feature vectors

for many types of linear classifiers [71].

2.2 Structured and Sequential Prediction

A closer look at the modeling decision in Section 2.1 shows that each weight is replicated as many times

as there are classes. With binary classification, this is not an issue, but when the number of target classes

becomes very large, this approach becomes intractable. In NLP, we often deal with problems where the

output space is very large. For example, consider the task of assigning a part of speech tag to every word in

a sentence, e.g. “NN/Smoking VBZ/is VBN/forbidden”. Each word can be assigned over 40 tags, and with N

words in a sentence, there are 40N possible outputs. Clearly, replicating weights for each possible tagging

of the sentence does not scale.

Luckily, natural language has structure, which allows us to use the structured prediction formalism. The

key goal in structured prediction is to decompose the solution to inter-dependent parts and to capture the

9

dependencies between the parts through features which allow only globally reasonable solutions. In this

work, the structure under consideration will be sequential (as in the part of speech tagging, and in contrast

to dependency parsing where the structures are tress.).

In structured prediction, given an input x = (x1, . . . xn), the task is to find the best assignment y =

(y1, . . . yn) to the output variables. We denote X to be the space of the possible inputs and Y to be the set

of possible outputs. We define a structured output classifier as a function h : X → Y which uses a global

scoring function f : X × Y → < to assign scores to each possible (x, y) pair. Given an input x, a desired

function f will assign the highest score to the correct output y among all the possible outputs. The global

scoring function is often decomposed as a weighted sum of feature functions,

f(x, y) =

n∑
i=1

wiφi(x,y) = w · Φ(x,y) (2.2)

Note the similarity of Equation 2.1 and Equation 2.2. The “only” difference is that the latter operates on vec-

tors (or other structures) rather than on atomic instances. That is, the key attribute of structured prediction

is the ability to decompose the output into a set of interdependent structures. This allows to add dependen-

cies between the different components of y. Therefore, it seems natural that many “simple” linear classifier

formalisms have their “structured” twin, such as structured SVM [144] and structured perceptron [25].

However, it is important to note that learning and inference in the structured scenario become chal-

lenging. For example, it is possible to learn the weight w jointly as is done in [25], or to reconstruct the

structured output component-by-component through sequentially applying multi-class classifiers as was

done in [121]. Similarly, the search of the optimal structure y for input x can be done through dynamic pro-

gramming [107], beam search [20], or integer liear programming [149]. Moreover, it is beneficial to couple

the training and the inference [32].

2.3 NLP-specific Considerations

In Sections 2.1 and 2.2 we have discussed linear models, optionally with capability to handle structure.

There are several instances of these models which are very popular in NLP and deserve a special discussion.

In this section, we briefly discuss NLP-specific models and concepts. Consider the sentence “Michael Jordan

was the best player in the NBA”. We might ask several questions about this sentence:

1) Is this sentence about basketball or baseball?

2) What people, places, organizations etc. are mentioned in the text?

Below, we discuss ways to represent text in a way which can be used in Machine Learning.

10

2.3.1 Modeling Text as a Bag of Words

The task of deciding whether “Michael Jordan was the best player in the NBA” discusses baseball or basketball

is known as text categorization. The simplest approach (which works surprisingly well) is to map each

word in a vocabulary of size N to a symbolic feature ID. Sentences can be represented as N -dimensional

vectors, there the i-th component represents presence or absence of the i-th word of the vocabulary in

the input text. This text representation is known as bag of words (BOW). The task of text categorization

becomes the task of assigning labels to feature vectors with two main research questions: what function

to learn over the vectors and what algorithm to use to learn that function? Multiple frameworks have

been proposed, such as Naive Bayes, Perceptron, Logistic Regression, SVM etc. Surprisingly, all the above

frameworks can be shown to learn a linear classifier over a possible transformation of the feature vectors

with different loss functions [118; 119].

It is important to note that often we will prefer to use real-valued vectors, where the i-th entry will

indicate the relative importance of the i-th word, rather than its presence. TF-IDF is an important weighting

scheme, which is often used for this purpose. TF-IDF of a word w in text t is defined as c(w,t)/|t|
log(|D|/|{j:w∈dj}|) ,

where c(w, t) is the number of times w appears in t, D is a document collection, |D| is the size of the

document collection, and c(w, t) is the number of documents in which w appears. Intuitively, a word is

descriptive of text t if it appears a lot in t (has high term frequency (TF)), but is rare in the other documents

(has a low inverse document frequency (IDF)). Note that the IDF scores are computed with respect to some

document collection. When we categorize an input text, it is sometimes given as a part of a large document

collection, but sometimes this is not the case. In these cases, we can use the Wikipedia as a reference

document collection.

2.3.2 Modeling Text as a Sequence of Words

BOW representation ignores the order of words in the text. However, in structured prediction tasks, the

order of words may be crucial. For example, consider the task of detecting named entities in the follow-

ing sentence. “y0/Michael y1/Jordan y2/was y3/the y4/best y5/player y6/in y7/the y8/NBA”. Typically this is

modeled as the task of predicting the tags (y0, . . . , y8) in a way which allows to reconstruct the boundary

and the type of the text segments. While multiple text chunk segmentation schemes have been devel-

oped [85; 156; 129], we show in [112] that the BILOU tagging scheme leads to the best performance in

named entity recognition (NER). In the BILOU tagging scheme, B marks the beginning of a chunk, L marks

the last token of the chunk, I marks a token inside of a chunk, U indicates a unit-token segment, and O

indicates a non-entity.

11

With BILOU encoding, the correct NER tags for our sample sentence would be: “B-PER/Michael L-

PER/Jordan O/was O/the O/best O/player O/in O/the U-ORG/NBA”. From this tagging, it is possible to

induce that Michael Jordan is a person and NBA is an organization. Note that most tagging schemes intro-

duce dependencies between the tags. For example, in the NER task, the tag B-PER can only be followed

by I-PER or L-PER; the tags I-ORG, U-PER or O are not allowed. Therefore the feature extractor Φ(x,y) of

Equations 2.2, in addition to the obvious (yi, xi), extracts features over the pairs (yi, yi+1)1. Several models

have been suggested for solving the problem, such as hidden Markov models [107], Markov random fields,

structured preceptron [25], structured support vector machines [144], conditional random fields [75], max

entropy Markov models [105], max margin Markov models [137] etc. Interestingly, they can all be viewed

as structured linear models [119; 25].

2.4 Learning Protocols

2.4.1 Supervised Learning

The most common scenario in machine learning is when we are given a labeled training set L from which

we learn our model (the model is the weight vector w of a linear classifier in Equation 2.1). This training

protocol is called supervised learning. However, supervised learning in NLP has several limitations stem-

ming from the data sparsity problem. First, a lot of data is typically necessary for good generalization.

Second, language idiosyncrasies of the training domain can create domain adaptation issues [34; 65; 31].

These limitations of supervised learning on knowledge-lean word-based features often call us for using

unlabeled data. Much of the work in this thesis is directed towards addressing the data sparsity problem

in NLP. In Chapter 3 we show how to remove the need for the labeled data in text classification and in

Chapter 4 we show how to use knowledge-rich features to address the problem of domain adaptation in

named entity recognition.

2.4.2 Semi-supervised Learning

Semi-supervised learning is a learning protocol where unlabeled data is used to supplement the labeled data

to train a model. Several semi-supervised training algorithms have been proposed. Most notably: self train-

ing (aka bootstrapping) [166], co-training [13], alternating structure optimization [1], and various flavors

of EM [35; 89; 11]. It is important to note that using unlabeled data in most aforementioned approaches is

1Other pairs and triplets can be features as well.

12

not straightforward. In Chapter 4 we demonstrate that it is possible to induce from unlabeled data word

representations which can be computed once and may be used for a variety of tasks.

2.4.3 Unsupervised Learning

Sometimes, the number of target labels is not known or is not even defined. For example, consider the

co-reference resolution task of clustering all the mentions that refer to the same entity into a single cluster.

Similarly, consider grouping of words by meaning at some granularity level. In these scenarios, a similarity

metric is used as an input to a clustering algorithm. In this thesis, we will consider scenarios when during

testing we encounter new words which were not observed during training. In these cases, if we have a good

similarity metric, we can still induce the properties of the unfamiliar word by considering similar words

which we have already observed during the training. The distributional similarity hypothesis [59] states that

words which appear in the similar contexts carry similar meaning. The approaches for semi-supervised

training discussed in Chapters 4 and 5 are built based on the distributional similarity hypothesis, which

is in turn, an unsupervised approach. The “dataless” approach we discuss in section Chapter 3 is also an

unsupervised approach.

13

Chapter 3

Dataless Classification

In this section we start investigating the “who” and “what” questions by looking at the text categorization

task, which is traditionally seen as the problem of assigning a label to data. Often, semantic information

available in the label is ignored while making this decision and the labels are treated as atomic identifiers.

This necessitates the use of annotated data to train classifiers that map documents to these identifiers.

On the other hand, humans can perform text categorization without seeing even one training example.

For example, consider the task of deciding whether a Usenet post must be posted to comp.sys.mac.os or

sci.electronics. We can do this without explicit training because we use the meaning of the labels to categorize

documents.

In this section, we introduce the notion of Dataless Classification – a model of classification that does

not need annotated training data. Our approach is based on the use of a source of world knowledge to

analyze both labels and documents from a semantic point of view, allowing us to learn classifiers. Such

analysis by a semantic interpreter allows us to compare the concepts discussed by the document to perform

classification.

Using a semantic knowledge source which is based on Wikipedia, we experimentally demonstrate that

dataless classification can categorize text without any annotated data. We show the results of classification

on the standard 20 Newsgroups dataset and a new Yahoo! Answers dataset. Without even looking at

unlabeled instances, dataless classification outperforms supervised methods. Moreover, when unlabeled

instances are available during training, our methods are comparable to the supervised methods that need

100 training examples.

We can perform on the fly text categorization for previously unseen labels, since our classifier was not

trained on any particular labels. Furthermore, since we do not need previously labeled data, the model

is not committed into any particular domain. Therefore, we can use dataless classification across different

data sets. We experimentally show that our method works equally well across domains.

14

3.1 Semantic Representation

Traditionally, in most text categorization tasks, labels are treated as atomic identifiers, thereby losing their

meaning. The task of text categorization is regarded as the task of learning a classifier that can distinguish

between two abstract categories represented by these identifiers. However, labels often contain valuable

semantic information that could be utilized for learning the classifiers.

The simplest approach to represent the semantics of a text fragment is to treat it as a vector in the space

of words. We refer to this as the bag of words (BOW) representation. While the bag of words representation is

one of the most commonly used representation for documents, documents and labels have semantic content

which often goes beyond the words they contain. For example, though the phrase ‘American politics’ can

be treated as just the two words, it could connote discussion about a wide range of topics – Democrats,

Republicans, abortion, taxes, homosexuality, guns, etc. This indicates that a text fragment can be treated

as a vector in the space of concepts, if such a representation is available. The vector of concepts could be

thought of as the semantic interpretation of the text fragment.

In order to obtain a more meaningful semantic interpretation of a text fragment, we use Explicit Semantic

Analysis (ESA), that was introduced in [50] and uses Wikipedia as its source of world knowledge. ESA was

originally introduced to measure semantic relatedness between text fragments. Given a text fragment, the

ESA algorithm generates a set of concepts that are weighted and ordered by their relevance to the input.

Here, we provide a brief summary of this approach and refer the reader to [50] and [51] for more details.

The main assumption is that each article in Wikipedia corresponds to a concept. To get the ESA repre-

sentation of a text fragment, for each word in the text, the interpreter identifies the concepts that contain

it. These concepts are combined to form a weighted vector, where the weights are obtained by using the

TFIDF representation of the original text. The list of concepts are ordered by the weight to get the final ESA

representation.

Since Wikipedia is the largest encyclopedic source of knowledge on the web, ESA representation is suf-

ficient for many categorization tasks. Additionally, since Wikipedia was generated by humans, it provides

a natural measure of relatedness between text fragments. Previous research has shown that semantic inter-

pretation based on Wikipedia is a more reliable measure of distance between documents than the traditional

bag-of-words approach. In the Discussion section, we present brief thoughts on why dataless classification

works and what makes a resource of knowledge sufficient for this purpose.

In our experiments, we use the BOW and ESA representation schemes for both label names and the

documents.

15

3.2 Data and Experimental Methodology

To evaluate our ideas, we need datasets where the labels contain rich semantic information. Here, we

describe the two datasets that we used.

3.2.1 20 Newsgroups Dataset

The 20 Newsgroups Dataset is a common benchmark used for testing classification algorithms. The dataset,

introduced in [77], contains approximately 20,000 newsgroup posts, partitioned (nearly) evenly across 20

different newsgroups. Some of the newsgroups are very closely related to each other (e.g.

comp.sys.ibm.pc.hardware and comp.sys.mac.hardware), while others are unrelated (for example, misc.forsale

and soc.religion.christian). The 20 topics are organized into broader categories: computers, recreation, reli-

gion, science, forsale and politics. This dataset has been used for many learning tasks [110; 88].

Since our approach uses the content of label names, good label names are essential for the performance.

We cleaned the existing labels by expanding the newsgroup names that were used in the original data.

For example, we expanded os into operating system and mac to macintosh apple. We also removed irrelevant

words – misc, alt, rec and talk. The amended label names given for each class are summarized in Table 3.1.

This amendment is necessary because the existing labels are sometimes not real words or, as in the case of

for sale, the expansion contains a stop word, which necessitates further expansion.

Yahoo! Answers

The second dataset that we used for our experiments is based on Yahoo! Answers and was collected for

these tasks.1 We extracted 189,467 question and answer pairs from 20 top-level categories from the Yahoo!

Answers website (that is, about 10,000 question/answer pairs per category). These top-level categories

have a total of 280 subcategories which refine the labels, though the distribution of question/answer pairs

at the subcategory is not uniform. Table 3.2 shows a sample of category and subcategory names. For our

experiments, we used the original category and subcategory names as label names.

3.2.2 Experimental Methodology

[110] used the 20 Newsgroup dataset to construct ten binary classification problems, shown in Table 3.3.

We used these problems for our experiments. In [110], they use a logistic regression classifier. As our

1Please contact the authors for the Yahoo! Answers data.

16

Newsgroup Name Expanded Label
talk.politics.guns politics guns
talk.politics.mideast politics mideast
talk.politics.misc politics
alt.atheism atheism
soc.religion.christian society religion

christianity christian
talk.religion.misc religion
comp.sys.ibm.pc.hardware computer systems

ibm pc hardware
comp.sys.mac.hardware computer systems mac

macintosh apple hardware
sci.electronics science electronics
comp.graphics computer graphics
comp.windows.x computer windows x

windowsx
comp.os.ms-windows.misc computer os operating

system microsoft windows
misc.forsale for sale discount
rec.autos cars
rec.motorcycles motorcycles
rec.sport.baseball baseball
rec.sport.hockey hockey
sci.crypt science cryptography
sci.med science medicine
sci.space science space

Table 3.1: Newsgroup label names. We expanded the names of the newsgroups to full words and removed
some words like misc. This table lists the expanded newsgroup names.

supervised baseline, we trained a naive Bayes classifier using 10 labeled examples and observed similar

accuracies.

For the Yahoo! Answers dataset, we generated 20 random binary classification problems at the sub-

category level. Some of these problems are shown in 3.4. We report the average performance over all the

problems and then focus on specific cases which highlight the strengths and weaknesses of our approach.

Intuitively, these are ‘easy’ classification problems for humans. However, with 10 training samples,

[110] reported the error rates as high as 20% in 8 out of 10 problems, and even with 100 labeled samples,

the error rate on the religion vs. politics.guns problem was above 20%. Using the on-the-fly classification

technique described in the next section, we achieve error rates below 11.5% on 9 out of 10 problems with

no labeled data at all.

17

Top-level Category Subcategory
Arts And Humanities Theater Acting
Business And Finance Advertising Marketing
Business And Finance Taxes
Computers And Internet Security
Consumer Electronics Play Station
Entertainment And Music Jokes Riddles
Games And Recreation Video Online Games
Sports German Football Soccer
Sports Rugby League

Table 3.2: Sample Yahoo! Answers categories and subcategories. In all, we collected 20 top level categories
and 280 subcategories from Yahoo! Answers.

Id Problem
1 Motorcycles Vs Ms-Windows
2 Baseball Vs Politics.misc
3 Religion Vs Politics.guns
4 Atheism Vs Autos
5 IBM hardware Vs Forsale
6 Politics.mideast Vs Sci.med
7 Christianity Vs Hockey
8 Space Vs Mac.Hardware
9 Windows.X Vs Electronics

10 Sci.Cryptography Vs Comp.graphics

Table 3.3: The set of 10 binary classification problems used in [110] for the 20 newsgroups data.

3.3 On-the-fly Classification

3.3.1 Classification with no data

We use the term “on-the-fly classification” to refer to the situation where category names are not known

in advance and hence, no training can be done. Essentially, on-the-fly classification is a technique for

classifier induction that does not use any data at all and uses no knowledge of the datasets either. We

show that with no data other than the label names, we can get very good performance for classifying

documents. The efficacy of this approach stems from the rich semantic representation discussed earlier. In

order to demonstrate the effectiveness of the semantic representation, we use a very simple classification

technique – we perform Nearest Neighbors classification on an appropriately selected feature space. Let

ϕ(t) denotes some vector representation of text t. For a document d and labels li, we pick the category i if

argmini ||ϕ(li)− ϕ(d)||.

Using the Bag of Words (BOW) representation, which represents text fragments as vectors in the space

of words, we get the NN-BOW classifier. The ESA representation represents text as vectors in the space of

concepts. Using the ESA representation gives us the NN-ESA classifier.

18

Id Description
...

...
14 Health Diet Fitness

Health Allergies
15 Business And Finance Small Business

Consumer Electronics Other Electronics
16 Consumer Electronics DVRs

Pets Rodents
17 Business And Finance India

Business And Finance Financial Services
18 Sports Mexican Football Soccer

Social Science Dream Interpretation
19 Sports Scottish Football Soccer

Pets Horses
20 Health Injuries

Sports Brazilian Football Soccer

Table 3.4: Sample binary categorization problems for the Yahoo! Answers dataset – subcategory level

Dataset Supervised NN-BOW NN-ESA
Baseline

Newsgroups 71.71 65.73 85.29
Yahoo 84.34 66.79 88.62

Table 3.5: Average accuracy of dataless classification with the bag of words and ESA representations on the
Newsgroups and Yahoo! Answers datasets. Note that in both domains, the use of ESA representation is
better than using just the words of the labels and no other training data. In fact, the ESA representation,
without any training data outperforms supervised naive Bayes classifiers which use ten labeled examples.

3.3.2 Results

The results of dataless classification on the binary categorization tasks for the Newsgroups and the Yahoo!

Answers datasets are summarized in Table 3.5. It is clear that the NN-BOW algorithm can classify docu-

ments correctly only if the document contains words that appeared in the label names. Therefore, the recall

of this method is quite limited. We can see NN-ESA performs much better than bags of words approach.

This implies NN-ESA can categorize of documents even if they share no common words with the label

name. Since the ESA representation maps a text snippet into high-dimensional semantic space, two docu-

ments may be very close in the ESA space even if they share no common terms. This results in an on-the-fly

classifier that can use dynamic, ad-hoc labels.

In Table 3.5, we also show as baseline, the performance of a supervised naive Bayes classifier that was

learned with ten examples. We can see that with both the Newsgroups and Yahoo! Answers datasets, the

NN-ESA classifier outperforms the supervised classifier.

19

3.4 Semantics of Unlabeled Data

3.4.1 Modeling Unlabeled Data

In the previous section, we show that even without knowing anything about the data, a rich semantic

representation can perform on par with supervised methods. However, often we have access to unlabeled

documents belonging to the problem of interest. This allows us to take advantage of previous work in

semi-supervised learning (Refer, for example, [101]).

Bootstrapping

A straightforward extension of the on-the-fly scheme is to bootstrap the learning process with only the label

names as examples. Algorithm 1 presents the pseudo-code for learning a bootstrapped semi-supervised

classifier using a feature representation ϕ. Note that though we do perform training, we still do not use any

labeled data and use only the label names as the starting point in the training. (Steps 1 to 4 indicate this.)

Using the BOW and ESA representations with this algorithm gives us the BOOT-BOW and BOOT-ESA

classifiers respectively.

Algorithm 1 Bootstrap-ϕ. Training a bootstrapped classifier for a feature representation ϕ, where ϕ could be Bag of
Words or ESA.

1: Let training set T = ∅
2: for all labels li do
3: Add li to T with label i
4: end for
5: repeat
6: Train a naive Bayes classifier NB on T
7: for all di, a document in the document collection do
8: If y = NB.classify(ϕ(di)) with high confidence
9: Add di to T with label y

10: end for
11: until No new training documents are added.

Co-training

The classifiers Boot-BOW and Boot-ESA are learned by bootstrapping on the bag of words and the ESA

representations of the data respectively. The fact that BOW and ESA are parallel representation of the same

data is ignored. Prior work ([13]) has studied the scenario when two independent feature representations

(or views, as they are called in [13]) ϕ1(d) and ϕ2(d) are available for the same data and that if each feature

representation is sufficient for correct classification of the data. In such a case, we can train two classifiers

20

Dataset Supervised Supervised BOOT-BOW BOOT-ESA Co-train
10 Samples 100 Samples

Newsgroup 71.71 92.41 88.84 90.92 92.70
Yahoo! Answers 84.34 94.37 90.70 92.73 95.30

Table 3.6: Performance of classifiers when unlabeled data is available. The supervised baseline, in this case,
is a naive Bayes classifier that is trained on 100 labeled examples. The last three classifiers do not use any
labeled examples at all.

c{ϕ1} and c{ϕ2} that classify data better than chance. These two classifiers can train one another in a pro-

cedure called Co-training. We can apply a variant of this idea for our task. The algorithm for co-training

is summarized in Algorithm 2. While the ESA representation is a function of the BOW representation, vio-

lating the ‘view independence’ assumption, we show that in practice, this procedure leads to a satisfactory

performance. 2

Algorithm 2 Co-training We use the fact that BOW and ESA can independently classify the data quite well to
induce a new classifier.

1: Let training set TBOW = ∅,TESA = ∅.
2: for all labels li do
3: Add li to both TESA and TBOW with label i
4: end for
5: repeat
6: Train a naive Bayes classifier NBBOW on TBOW .
7: Train a naive Bayes classifier NBESA on TESA.
8: for all di, a document in the document collection do
9: if Both NBBOW and NBESA classify di with high confidence then

10: Add di to TBOW with label from NBBOW

11: Add di to TESA with label from NBESA

12: end if
13: end for
14: until No new training documents are added

3.4.2 Results

The performance of the different algorithms with the Newsgroup and Yahoo! Answers datasets is summa-

rized in Table 3.6. Additionally, we also show the performance of a supervised baseline system that used

a naive Bayes algorithm with 100 training examples. We can see from the table that both the BOOT-ESA

and Co-train classifiers are competitive with the supervised classifier. Even the BOOT-BOW classifier is

comparable to the supervised baseline. This indicates that using unlabeled data, we can train very strong

classifiers if we use the semantics of the labels.
2We also experimented with concatenating the BOW and the ESA representations into a single BOW+ESA view as was done in [49]

for supervised classification. Then we bootstrapped the naive Bayes classifier on the BOW+ESA view, but it consistently performed
worse than co-training.

21

3.5 Discussion

Our results have showed that using a good representation can have a dramatic impact on classification.

In this section, we discuss when and why simply using the label name is sufficient for classification and

provide a justification for our method. Our goal is to develop an understanding of what makes a dataset

a good semantic resource, so that it will be possible to apply our framework using resources other than

Wikipedia.

LetW be the set of all words. Consider a classification task in which the categories are c1, c2, . . . , cm. We

assume that there exist collections G1, G2, . . . , Gm of words that are ‘good’ for these categories. Informally,

we interpret ‘good’ to have a discriminative meaning here. That is, a word is ‘good’ for ci if it is more likely

to appear in ci-documents than in documents of other categories.

The notion of ‘good’ directly relates to a key assumption about the relation between category labels

and the semantic knowledge resource that we use (in our experiments, Wikipedia). Specifically, if a user

chooses l to be a label of a category c, and thus thinks that l is a ‘good description’ of the category, it means

that Wikipedia articles that contain l should contain other words that are ‘good’ for c. Consequently, our

approach for generating a semantic representation using l and the Wikipedia articles will bring a document

that belongs to category c closer to the representation of l, than it would a document that does not belong

to c. Even if the approximation by the label name is not of a high quality, given a good representation,

classifiers can be discriminating.

Let ϕ(.) be the semantic representation which receives a document and generates the semantic represen-

tation. First, we assume that the representation is good. This means that there exits a an oracle document

wi for category i such that all documents that belong to ci are close to wi. More formally,

‖wi − ϕ(d)‖ ≤ ‖wj − ϕ(d)‖ − γ,∀j 6= i (3.1)

where γ can be viewed as margin.

Note that our approximation for wi is by ϕ({li}) which is the representation for the label name of cate-

gory ci. We say that the approximation is reasonable, which means the distance between ϕ({li}) and wi is

not too far. Formally,

‖wi − ϕ({li})‖ < η.

22

By triangle inequality,

‖ϕ(d)− ϕ({li})‖ ≤ ‖wi − ϕ(d)‖+ ‖wi − ϕ({li})‖

= ‖ϕ(d)− wi‖+ η.

(3.2)

Combining (3.1) and (3.2), it follows that

‖ϕ(d)− ϕ({li})‖ ≤ ‖wi − ϕ(d)‖+ η

≤ ‖wj − ϕ(d)‖ − γ + η,∀j 6= i,

≤ ‖ϕ(d)− ϕ({lj})‖ − γ + 2η,∀j 6= i

The final step of the above inequality implies that if the representation is good (that is, if γ is large

enough), then η can be as large as γ/2 without changing the classification result. This justifies the intuition

that if the distance between the categories is large enough in some space, then the approximation that the

labels provide for the categories need not be perfect for good classification performance.

The previous discussion suggests that often, with the appropriate representation, dataless classification

is easy since the categories are far apart. We believe that, often, when the problem seems to be hard for

dataless classification, it could be due to a very specific definition of a category, that may be different than

the one expressed in our resources (Wikipedia).

Newsgroup name Discriminative words
Christianity morality, host, nntp, writes, koresh
Religon thanks, quite, assume, clh, rutgers

Table 3.7: The ‘discriminative words’ found by labeled data of the task Christianity vs. Religion in 20 news-
group.

Consider, for example, the difficult pair of Christianity vs. Religion in the 20 Newsgroup data. We have

listed the top five discriminative words (that is, highest weighted words for both classes according to a

discriminative classifier) for this task in Table 3.7. It is clear that (i) it is difficult to distinguish the document

based on these words even for human, and (ii) there are some unrepresentative words which happened to

be ‘good’ in this task. Since it is unlikely we can find a document in Wikipedia mentions Christianity and

nntp at the same time, it is hard for dataless classification to perform well. Therefore, it is crucial to the

success of the task is that the ‘good’ words for the specific classification task should be representative to

their label names.

23

3.6 Dataless Classification for Domain Adaptation

The problem of discriminating two concepts across several domains is an important open problem in ma-

chine learning called domain adaptation, which recently has received a lot of attention [34; 65]. In this section,

we claim that the semantic representation of documents are ‘universal’ and works across domains. There-

fore, in document classification, universal representation diminishes the necessity of domain adaptation.

In traditional approaches to text categorization, when a classifier is trained on a given domain, it may

not categorize documents well in a new domain. Informally, the classifier has learned the vocabulary used

to express the category’s documents in a specific domain because different domains might use different

words to express the same ideas.

On the other hand, using the dataless approach simplifies the problem of domain adaptation. First of all,

the label names are the same from different domains. Furthermore, documents of the same category from

different domains should project to similar concepts because of the wide coverage of Wikipedia. Therefore,

projecting the documents onto the space of concepts works well across domains. Our interpretation is that

semantic representation categorizes documents as belonging to a category based on their meaning rather

than the surface representation.

Test BOW representation ESA representation
Data Train on 20NG Train on Yahoo Train on 20NG Train on Yahoo Dataless
20 NG 0.97→ 0.60 0.96→ 0.90 0.96
Yahoo 0.89← 0.93 0.96← 0.97 0.94

Table 3.8: Analysis for adaptation from Source→ Target for different domains.

As our running example, we choose to focus on discriminating documents pertaining to baseball and

hockey. The categorization accuracy with 5-fold cross-validation are 0.97 for the Newsgroup domain, and

0.93 for the Yahoo domain using BOW approach (training data and testing data are from the same domain).

The results for domain adaptation are shown in Table 3.8. When we applied the NB classifier trained

on the BOW representation of 20NG to Yahoo data , the accuracy dropped from 0.93 down to 0.89, and

when we applied the classifier trained on Yahoo to the Newsgroup domain, the accuracy dropped down

significantly from 0.97 to 0.60. This shows that the BOW classifiers are very sensitive to data distribution.

In contrast, when ESA representation is used instead of BOW, 5-fold cross validation was 0.96 on 20NG and

0.97 for Yahoo. When the NB classifier trained on the ESA representation of Yahoo documents was applied

to 20NG, the performance dropped only slightly to 0.90. When we applied the classifier trained on ESA

representation of 20NG documents to Yahoo, the accuracy was 0.96.

However, the most significant result is that when we applied the dataless algorithm NN-ESA, presented

24

in Section 3.3.1 (where we used only the label name), the performance was 0.94 on the 20NG dataset and

0.96 on the Yahoo dataset, which are very competitive with the result by supervised learning algorithm

with in-domain training data.

These results demonstrate the good adaptation properties of the ESA-representation-based approaches

in general, and the dataless NN-ESA approach presented in this paper, which uses the universal cross-

domain semantic information present in the label to classify data across domains.

3.7 Conclusions and Future Work

Quite often, classification tasks are defined by specifying labels that carry meaning. Text categorization is

a prime example in that the labels identify a category with words that describe the category. In this paper,

we develop the notion of Dataless Classification that exploits this situation to produce on-the-fly classifiers

without the need for training. Furthermore, using the unlabeled data, we can improve our training to get

highly accurate classifiers without looking at any labeled examples.

We note that, unlike traditional learning, where we need at least two classes to learn a classifier, the idea

of using a semantic interpreter could be applied to create a one-class classifier too. For example, we could

think of a ‘baseball-classifier’, which identifies documents that discuss baseball. This bridges the notions

of classification and information retrieval.

The semantic interpreter plays an important role in the performance of our system. An appealing aspect

of ESA is that it covers a wide-ranging set of topics. However, we could replace Wikipedia with a different

source of world knowledge and define our semantic interpreter using this source. For example, in [49], the

authors use the Open Directory Project to construct a semantic interpreter. Additionally, we could create

semantic interpreters with specialized data sources if we are interested in categorizing documents related

to a specific area.

25

Chapter 4

Named Entity Recognition

In this section, we continue exploring the “who, what,” and “where” questions by considering the task of

extracting entities of interest from text. Named Entity Recognition (NER) is an information extraction

task, where the goal is to identify people, locations and organizations in the text. Like many NLP appli-

cations, NER is characterized by making complex interdependent decisions that require large amounts of

prior knowledge. Figure 4.1 shows a sample output of an NER system, illustrating some of the challenges

in named entity recognition. In the absence of mixed case information it is difficult to understand that

“BLINKER” is a person. Likewise, it is not obvious that the last mention of “Wednesday” is an organiza-

tion (in fact, the first mention of “Wednesday” can also be understood as a “comeback” which happens on

Wednesday). An NER system could take advantage of the fact that “blinker” is also mentioned later in the

text as the easily identifiable “Reggie Blinker”. It is also useful to know that Udinese is a soccer club (an

entry about this club appears in Wikipedia), and the expression “both Wednesday and Udinese” implies that

“Wednesday” and “Udinese” should be assigned the same label.

4.1 Contributions

Despite the recent progress in NER, the effort has been dispersed in several directions and there are no

published attempts to compare or combine the recent advances, leading to some design misconceptions and

less than optimal performance. In [112] we have analyzed some of the fundamental design challenges and

SOCCER - [PER BLINKER] BAN LIFTED .
[LOC LONDON] 1996-12-06 [MISC Dutch] forward [PER Reggie Blinker] had his indefinite suspension
lifted by [ORG FIFA] on Friday and was set to make his [ORG Sheffield Wednesday] comeback against
[ORG Liverpool] on Saturday . [PER Blinker] missed his club’s last two games after [ORG FIFA] slapped
a worldwide ban on him for appearing to sign contracts for both [ORG Wednesday] and [ORG Udinese]
while he was playing for [ORG Feyenoord].

Figure 4.1: Example illustrating challenges in NER.

26

misconceptions that underlie the development of an efficient and robust NER system. We find that BILOU

representation of text chunks significantly outperforms the widely adopted BIO. Surprisingly, naive greedy

inference performs comparably to beamsearch or Viterbi, while being considerably more computationally

efficient. We analyze several approaches for modeling non-local dependencies proposed in the literature

and find that none of them clearly outperforms the others across several datasets. However, as we show,

these contributions are, to a large extent, independent and, as we show, the approaches can be used together

to yield better results.

One of the key contributions of [112] is corroborating the recently published results [91; 80; 72] indicat-

ing that word class models known as Brown Clusters can significantly improve the performance of NLP

systems. Brown Clusters can be induced from unlabeled text and can be an alternative to traditional semi-

supervised learning paradigm. In [145] we have explored additional approaches to represent words for

alternative semi-supervised learning beyond Brown Clusters.

Combining recent advances, we develop a publicly available NER system1 which achieves 90.8 F1 score

on the CoNLL-2003 NER shared task, among the best reported result for this dataset. Our system is robust

– it consistently outperforms all publicly available NER systems (e.g., the Stanford NER system) on out of

domain data.

4.2 Design Challenges in NER

In this section we introduce the baseline NER system, and raise the fundamental questions underlying

robust and efficient design. NER is typically viewed as a sequential prediction problem, the typical models

include HMM [107], CRF [75], and sequential application of Perceptron or Winnow [25]. That is, let x =

(x1, . . . , xN) be an input sequence and y = (y1, . . . , yN) be the output sequence. The sequential prediction

problem is to estimate the probabilities

P (yi|xi−k . . . xi+l, yi−m . . . yi−1),

where k, l and m are small numbers to allow tractable inference and avoid overfitting. This conditional

probability distribution is estimated in NER using the following baseline set of features [163]:

1http://cogcomp.cs.illinois.edu/page/software

27

http://cogcomp.cs.illinois.edu/page/software

1. Previous two predictions yi−1 and yi−2

2. Current word xi

3. xi word type (all-capitalized, is-capitalized, all-digits, alphanumeric, etc.)

4. Prefixes and suffixes of xi

5. Tokens in the window c = (xi−2, xi−1, xi, xi+1, xi+2)

6. Capitalization pattern in the window c

7. Conjunction of c and yi−1.

Most NER systems use additional features, such as POS tags, shallow parsing information and gazetteers.

We discuss additional features in the following sections. We note that we normalize dates and num-

bers, that is 12/3/2008 becomes *Date*, 1980 becomes *DDDD* and 212-325-4751 becomes *DDD*-*DDD*-*DDDD*.

This allows a degree of abstraction to years, phone numbers, etc. We also use two types of tokenization

simultaneously- we aggressively tokenize on hyphens and punctuation marks, but we also record hyphen-

ated items as one entity, we also record full stops when we speculate it can be an abbreviation. That is,

given a sentence:

CA.-based Google Inc. has purchased YouTube. we tokenize it as follows:

[CA . - based] Google [Inc .] has purchased YouTube .

where each expression in the square brackets will contribute several types of features. Due to space limita-

tions, we do not provide the full details of the dual tokenization scheme. We notice that the main goal of

the dual tokenization scheme is to make the system robust to the different tokenization schemes existing in

CoNLL and out-of-domain data.

Our baseline NER system uses a regularized averaged perceptron [48]. Systems based on perceptron

have been shown to be competitive in NER and text chunking [69; 105; 18] We specify the model and the

features with the LBJ [117] modeling language. We now state the four fundamental design decisions in

NER system which define the structure of this paper.

4.2.1 Datasets and Evaluation Methodology

In the following sections we present various approaches to address the questions posed in Figure 4.2 and

evaluate their impact on system performance. Prior to doing that, we introduce the methodology we use

for evaluating the system performance.

28

Key design decisions in an NER system.
1) How to represent text chunks in NER system?
2) What inference algorithm to use?
3) How to model non-local dependencies?
4) How to use external knowledge resources in NER?

Figure 4.2: Key design decisions in NER.

NER system should be robust across multiple domains, as it is expected to be applied on a diverse set

of documents: historical texts, news articles, patent applications, webpages etc. Therefore, we have con-

sidered three datasets: CoNLL03 shared task data, MUC7 data and a set of Webpages we have annotated

manually. In the experiments throughout the paper, we test the ability of the tagger to adapt to new test

domains. Throughout this work, we train on the CoNLL03 data and test on the other datasets without re-

training. The differences in annotation schemes across datasets created evaluation challenges. We discuss

the datasets and the evaluation methods below.

The CoNLL03 shared task data is a subset of Reuters 1996 news corpus annotated with 4 entity types:

PER, ORG, LOC, MISC. It is important to notice that both the training and the development datasets are

news feeds from August 1996, while the test set contains news feeds from December 1996. The named

entities mentioned in the test dataset are considerably different from those that appear in the training or the

development set. As a result, the test dataset is considerably harder than the development set. Evaluation:

Following the convention, we report phrase-level F1 score.

The MUC7 dataset is a subset of the North American News Text Corpora annotated with a wide va-

riety of entities including people, locations, organizations, temporal events, monetary units, and so on.

Since there was no direct mapping from temporal events, monetary units, and other entities from MUC7

and the MISC label in the CoNLL03 dataset, we measure performance only on PER,ORG and LOC. We

note that the topic of MUC7 is aviation, with training set talking about plane accidents, the test (formal-

run) set talking about rocket launches and the development set (dryrun) talking about balloon launches.

Evaluation: There are several sources of inconsistency in annotation between MUC7 and CoNLL03. For

example, since the MUC7 dataset does not contain the MISC label, in the sentence “balloon, called the Virgin

Global Challenger” , the expression Virgin Global Challenger should be labeled as MISC according to CoNLL03

guidelines. However, the gold annotation in MUC7 is “balloon, called the [ORG Virgin] Global Challenger”.

These and other annotation inconsistencies have prompted us to relax the requirements of finding the exact

phrase boundaries and measure performance using token-level F1.

Webpages - we have assembled and manually annotated a collection of 20 webpages, including per-

29

Baseline system All Features
Algorithm F1 sec F1 sec
Greedy 83.65 11.46 90.57 67.20
Beam size=10 83.68 134.11 90.67 621.80
Beam size=50 83.70 680.21 90.67 2819.94
Viterbi 83.71 1433.73 N/A N/A

Table 4.1: Phrase-level F1 performance on CoNLL03 test data vs. Inference time (sec). The results are
reported on a quad-core IntelXeon 2.83GHz machine with 8GB of RAM.

sonal, academic and computer-science conference homepages. The dataset contains 783 entities (96-loc,

223-org, 276-per, 188-misc). Evaluation: The named entities in the webpages were highly ambiguous and

very different from the named entities seen in the training data. For example, the data included sentences

such as : “Hear, O Israel, the Lord our God, the Lord is one.” We could not agree on whether “O Israel” should

be labeled as ORG, LOC, or PER. Similarly, we could not agree on whether “God” and “Lord” is an ORG

or PER. These issues led us to report token-level entity-identification F1 score for this dataset. That is, if a

named entity token was identified as such, we counted it as a correct prediction ignoring the named entity

type.

4.2.2 Inference & Chunk Representation

In this section we compare the performance of several inference (decoding) algorithms: greedy left-to-right

decoding, Viterbi and beamsearch. It may appear that beamsearch or Viterbi will perform much better than

naive greedy left-to-right decoding, which can be seen as beamsearch of size one. The Viterbi algorithm has

the limitation that it does not allow incorporating some of the non-local features which will be discussed

later, therefore, we cannot use it in our end system. However, it has the appealing quality of finding the

most likely assignment to a second-order model, and since the baseline features only have second order

dependencies, we have tested it on the baseline configuration.

Table 4.1 compares between the greedy decoding, beamsearch with varying beam size, and Viterbi,

both for the system with baseline features and for the end system (to be presented later). Surprisingly, the

greedy policy performs well, this phenmenon was also observed in the POS tagging task [143; 121]. The

implications are subtle. First, due to the second-order of the model, the greedy decoding is over 100 times

faster than Viterbi. The reason is that with the BILOU encoding of four NE types, each token can take 21

states (O, B-PER, I-PER , U-PER, etc.). To tag a token, the greedy policy requires 21 comparisons, while the

Viterbi requires 213, and this analysis carries over to the number of classifier invocations. Furthermore, both

beamsearch and Viterbi require transforming the predictions of the classifiers to probabilities as discussed

30

Rep. CoNLL03 MUC7
Scheme Test Dev Dev Test

BIO 89.15 93.61 86.76 85.15
BILOU 90.57 93.28 88.09 85.62

Table 4.2: End system performance with BILOU and BIO schemes. BILOU outperforms the more widely
used BIO.

in [100], incurring additional time overhead. Second, this result reinforces the intuition that global inference

over the second-order HMM features does not capture the non-local properties of the task. The reason is

that the NEs tend to be short chunks separated by multiple “outside” tokens. This separation “breaks” the

Viterbi decision process to independent maximization of assignment over short chunks, where the greedy

policy performs well. On the other hand, dependencies between isolated named entity chunks have longer-

range dependencies and are not captured by second-order transition features, therefore requiring separate

mechanisms, which we discuss in Section 4.2.3.

4.2.3 Non-Local Features

The key intuition behind non-local features in NER has been that identical tokens should have identical

label assignments. The sample text discussed in the introduction shows one such example, where all occur-

rences of “blinker” are assigned the PER label. However, in general, this is not always the case; for example

we might see in the same document the word sequences “Australia” and “The bank of Australia”. The first

instance should be labeled as LOC, and the second as ORG. We consider three approaches proposed in the

literature in the following sections. Before continuing the discussion, we note that we found that adjacent

documents in the CoNLL03 and the MUC7 datasets often discuss the same entities. Therefore, we ignore

document boundaries and analyze global dependencies in 200 and 1000 token windows. These constants

were selected by hand after trying a small number of values. We believe that this approach will also make

our system more robust in cases when the document boundaries are not given.

Context aggregation

[23] used features that aggregate, for each document, the context tokens appear in. Sample features are: the

longest capitilized sequence of words in the document which contains the current token and the token appears before

a company marker such as ltd. elsewhere in text. In this work, we call this type of features context aggregation

features. Manually designed context aggregation features clearly have low coverage, therefore we used the

following approach. Recall that for each token instance xi, we use as features the tokens in the window

31

of size two around it: ci = (xi−2, xi−1, xi, xi+1, xi+2). When the same token type t appears in several

locations in the text, say xi1 , xi2 , . . . , xiN , for each instance xij , in addition to the context features cij , we

also aggregate the context across all instances within 200 tokens: C = ∪j=N
j=1 cij .

Two-stage prediction aggregation

Context aggregation as done above can lead to excessive number of features. [73] used the intuition that

some instances of a token appear in easily-identifiable contexts. Therefore they apply a baseline NER sys-

tem, and use the resulting predictions as features in a second level of inference. We call the technique

two-stage prediction aggregation. We implemented the token-majority and the entity-majority features dis-

cussed in [73]; however, instead of document and corpus majority tags, we used relative frequency of the

tags in a 1000 token window.

Extended prediction history

Both context aggregation and two-stage prediction aggregation treat all tokens in the text similarly. How-

ever, we observed that the named entities in the beginning of the documents tended to be more easily

identifiable and matched gazetteers more often. This is due to the fact that when a named entity is intro-

duced for the first time in text, a canonical name is used, while in the following discussion abbreviated

mentions, pronouns, and other references are used. To break the symmetry, when using beamsearch or

greedy left-to-right decoding, we use the fact that when we are making a prediction for token instance xi,

we have already made predictions y1, . . . , yi−1 for token instances x1, . . . , xi−1. When making the predic-

tion for token instance xi, we record the label assignment distribution for all token instances for the same

token type in the previous 1000 words. That is, if the token instance is “Australia”, and in the previous 1000

tokens, the token type “Australia” was twice assigned the label L-ORG and three times the label U-LOC,

then the prediction history feature will be: (L−ORG : 2
5 ;U − LOC : 3

5).

Utility of non-local features

Table 4.3 summarizes the results. Surprisingly, no single technique outperformed the others on all datasets.

The extended prediction history method was the best on CoNLL03 data and MUC7 test set. Context ag-

gregation was the best method for MUC7 development set and two-stage prediction was the best for Web-

pages. Non-local features proved less effective for MUC7 test set and the Webpages. Since the named

entities in Webpages have less context, this result is expected for the Webpages. However, we are unsure

why MUC7 test set benefits from nonlocal features much less than MUC7 development set. Our key con-

32

CoNLL03 CoNLL03 MUC7 MUC7 Web
Component Test data Dev data Dev Test pages

1) Baseline 83.65 89.25 74.72 71.28 71.41
2) (1) + Context Aggregation 85.40 89.99 79.16 71.53 70.76
3) (1) + Extended Prediction History 85.57 90.97 78.56 74.27 72.19
4) (1)+ Two-stage Prediction Aggregation 85.01 89.97 75.48 72.16 72.72
5) All Non-local Features (1-4) 86.53 90.69 81.41 73.61 71.21

Table 4.3: The utility of non-local features. The system was trained on CoNLL03 data and tested on
CoNNL03, MUC7 and Webpages. No single technique outperformed the rest on all domains. The com-
bination of all techniques is the most robust.

clusion is that no single approach is better than the rest and that the approaches are complimentary- their

combination is the most stable and best performing.

4.2.4 External Knowledge

As we have illustrated in the introduction, NER is a knowledge-intensive task. In this section, we discuss

two important knowledge resources– gazetteers and unlabeled text.

Unlabeled Text

Recent successful semi-supervised systems [1; 135] have illustrated that unlabeled text can be used to im-

prove the performance of NER systems. In this work, we analyze a simple technique of using word clusters

generated from unlabeled text, which has been shown to improve performance of dependency parsing [72],

Chinese word segmentation [80] and NER [91]. The technique is based on word class models, pioneered

by [14], which hierarchically clusters words, producing a binary tree as in Figure 4.3.

Figure 4.3: An extract from word cluster hierarchy.

The approach is related, but not identical, to distributional similarity (for details, see [14] and [80]). For

example, since the words Friday and Tuesday appear in similar contexts, the Brown algorithm will assign

them to the same cluster. Successful abstraction of both as a day of the week, addresses the data sparsity

problem common in NLP tasks. In this work, we use the implementation and the clusters obtained in [80]

from running the algorithm on the Reuters 1996 dataset, a superset of the CoNLL03 NER dataset. Within

the binary tree produced by the algorithm, each word can be uniquely identified by its path from the root,

and this path can be compactly represented with a bit string. Paths of different depths along the path from

33

CoNLL03 CoNLL03 MUC7 MUC7 Web
Component Test data Dev data Dev Test pages

1) Baseline 83.65 89.25 74.72 71.28 71.41
2) (1) + External Knowledge 88.55 92.49 84.50 83.23 74.44
3) (1) + Non-local 86.53 90.69 81.41 73.61 71.21
4) All Features 90.57 93.50 89.19 86.15 74.53
5) All Features (train with dev) 90.80 N/A 89.19 86.15 74.33

Table 4.4: End system performance by component. Results confirm that NER is a knowledge-intensive task.

the root to the word provide different levels of word abstraction. For example, paths at depth 4 closely

correspond to POS tags. Since word class models use large amounts of unlabeled data, they are essentially

a semi-supervised technique, which we use to considerably improve the performance of our system.

In this work, we used path prefixes of length 4,6,10, and 20. When Brown clusters are used as features

in the following sections, it implies that all features in the system which contain a word form will be dupli-

cated and a new set of features containing the paths of varying length will be introduced. For example, if

the system contains the feature concatenation of the current token and the system prediction on the previous word,

four new features will be introduced which are concatenations of the previous prediction and the 4,6,10,20

length path-representations of the current word.

Gazetteers

An important question at the inception of the NER task was whether machine learning techniques are

necessary at all, and whether simple dictionary lookup would be sufficient for good performance. Indeed,

the baseline for the CoNLL03 shared task was essentially a dictionary lookup of the entities which appeared

in the training data, and it achieves 71.91 F1 score on the test set [140]. It turns out that while problems

of coverage and ambiguity prevent straightforward lookup, injection of gazetteer matches as features in

machine-learning based approaches is critical for good performance [24; 70; 141; 47]. Given these findings,

several approaches have been proposed to automatically extract comprehensive gazetteers from the web

and from large collections of unlabeled text [41; 114] with limited impact on NER. Recently, [141; 70] have

successfully constructed high quality and high coverage gazetteers from Wikipedia.

It is important to note that gazetteers have a property which is often overlooked in the NLP community.

It is well known that words are often ambiguous. For example, the word “Bill” can refer to a person’s name

or a piece of legislation. The vast majority of work on word representations such as the Brown Clusters

covered in Chapter 4.2.4 and word embeddings covered in Chapter 5 are context-independent, and are

unable to capture the context-specific meaning of ambiguous words. At best, we can hope that the rep-

resetation induced for such words would be a mixture of senses, but at worst, it can be a representation

34

of the most common sense, which will lead to outlier features for minority senses. One possibility is to

develop context-sensitive embeddings, such as those used by [62]. Unfortunately, context-sensitive embed-

dings were not proved to be effective on multiple tasks, and we were unable to improve the performance of

our baseline NER system with our implementation of techniques discussed in [62]. Instead we notice that

multi-word phrases are much less ambiguous than words because the words in a phrase provide contexts

for one another. For example “Bill Clinton” clearly refers to a person, while “Bill of Rights 1689” clearly

refers to legislation.

In this work, we use a collection of 14 high-precision, low-recall lists extracted from the web that cover

common names, countries, monetary units, temporal expressions, etc. While these gazetteers have excel-

lent accuracy, they do not provide sufficient coverage. We note that [81] have used distributed k-means

clustering of 20M unique queries from an anonymized query log in a 700 billion token web corpus and

show significant performance improvement on the NER task. However, we follow [141; 70] and construct

16 high quality and high coverage gazetteers of multi-token expressions from Wikipedia which collectively

contain over 1.5M entities. We note that matches against different gazetteers are represented as separate

features in the system, which allows us to trust each gazetteer to a different degree. In the rest of this

section, we discuss the construction of gazetteers from Wikipedia.

Wikipedia is an open, collaborative encyclopedia with several attractive properties. (1) It is kept up-

dated manually by it collaborators, hence new entities are constantly added to it. (2) Wikipedia contains

redirection pages, mapping several variations of spelling of the same name to one canonical entry. For ex-

ample, Suker is redirected to an entry about Davor Šuker, the Croatian footballer (3) The entries in Wikipedia

are manually tagged with categories. For example, the entry about the Microsoft in Wikipedia has the fol-

lowing categories: Companies listed on NASDAQ; Cloud computing vendors; etc.

Both [141] and [70] used the free-text description of the Wikipedia entity to reason about the entity

type. We use a simpler method to extract high coverage and high quality gazetteers from Wikipedia. By

inspection of the CoNLL03 shared task annotation guidelines and of the training set, we manually aggre-

gated several categories into a higher-level concept (not necessarily NER type). When a Wikipedia entry

was tagged by one of the categories in the table, it was added to the corresponding gazetteer. The exact

mapping from Wikipedia categories to gazetteers is shown in Figure 4.4.

Utility of External Knowledge

Table 4.5 summarizes the results of the techniques for injecting external knowledge. It is important to

note that, although the world class model was learned on the superset of CoNLL03 data, and although the

35

1)People: people, births, deaths. Extracts 494,699 Wikipedia titles and 382,336 redirect links. 2)Or-
ganizations: cooperatives, federations, teams, clubs, departments, organizations, organisations, banks,
legislatures, record labels, constructors, manufacturers, ministries, ministers, military units, military for-
mations, universities, radio stations, newspapers, broadcasters, political parties, television networks, com-
panies, businesses, agencies. Extracts 124,403 titles and 130,588 redirects. 3)Locations: airports, dis-
tricts, regions, countries, areas, lakes, seas, oceans, towns, villages, parks, bays, bases, cities, landmarks,
rivers, valleys, deserts, locations, places, neighborhoods. Extracts 211,872 titles and 194,049 redirects.
4)Named Objects: aircraft, spacecraft, tanks, rifles, weapons, ships, firearms, automobiles, computers,
boats. Extracts 28,739 titles and 31,389 redirects. 5)Art Work: novels, books, paintings, operas, plays.
Extracts 39,800 titles and 34037 redirects. 6)Films: films, telenovelas, shows, musicals. Extracts 50,454
titles and 49,252 redirects. 7)Songs: songs, singles, albums. Extracts 109,645 titles and 67,473 redi-
rects. 8)Events: playoffs, championships, races, competitions, battles. Extracts 20,176 titles and 15,182
redirects.

Figure 4.4: Mapping of Wikipedia categories to gazetteers.

CoNLL03 CoNLL03 MUC7 MUC7 Web
Component Test data Dev data Dev Test pages

1) Baseline 83.65 89.25 74.72 71.28 71.41
2) (1) + Gazetteer Match 87.22 91.61 85.83 80.43 74.46
3) (1) + Word Class Model 86.82 90.85 80.25 79.88 72.26
4) All External Knowledge 88.55 92.49 84.50 83.23 74.44

Table 4.5: Utility of external knowledge. The system was trained on CoNLL03 data and tested on CoNNL03,
MUC7 and Webpages.

Wikipedia gazetteers were constructed based on CoNLL03 annotation guidelines, these features proved

extremely good on all datasets. Word class models discussed in Section 4.2.4 are computed offline, are

available online2, and provide an alternative to traditional semi-supervised learning. It is important to

note that the word class models and the gazetteers and independednt and accumulative. Furthermore,

despite the number and the gigantic size of the extracted gazetteers, the gazeteers alone are not sufficient

for adequate performance. When we modified the CoNLL03 baseline to include gazetteer matches, the

performance went up from 71.91 to 82.3 on the CoNLL03 test set, below our baseline system’s result of

83.65. When we have injected the gazetteers into our system, the performance went up to 87.22. Word class

model and nonlocal features further improve the performance to 90.57 (see Table 4.4), by more than 3 F1

points.

4.2.5 Final System Performance Analysis

As a final experiment, we have trained our system both on the training and on the development set, which

gave us our best F1 score of 90.8 on the CoNLL03 data, yet it failed to improve the performance on other

datasets. Table 4.4 summarizes the performance of the system.

2http://people.csail.mit.edu/maestro/papers/bllip-clusters.gz

36

Dataset Stanford-NER LBJ-NER
MUC7 Test 80.62 85.71
MUC7 Dev 84.67 87.99
Webpages 72.50 74.89

Reuters2003 test 87.04 90.74
Reuters2003 dev 92.36 93.94

Table 4.6: Comparison: token-based F1 score of LBJ-NER and Stanford NER tagger across several domains

Next, we have compared the performance of our system to that of the Stanford NER tagger, across

the datasets discussed above. We have chosen to compare against the Stanford tagger because to the best

of our knowledge, it is the best publicly available system which is trained on the same data. We have

downloaded the Stanford NER tagger and used the strongest provided model trained on the CoNLL03 data

with distributional similarity features. The results we obtained on the CoNLL03 test set were consistent

with what was reported in [45]. Our goal was to compare the performance of the taggers across several

datasets. For the most realistic comparison, we have presented each system with a raw text, and relied on

the system’s sentence splitter and tokenizer. When evaluating the systems, we matched against the gold

tokenization ignoring punctuation marks. Table 4.6 summarizes the results. Note that due to differences in

sentence splitting, tokenization and evaluation, these results are not identical to those reported in Table 4.4.

Also note that in this experiment we have used token-level accuracy on the CoNLL dataset as well. Finally,

to complete the comparison to other systems, in Table 4.7 we summarize the best results reported for the

CoNLL03 dataset in literature.

4.2.6 Conclusions

We have presented a simple model for NER that uses expressive features to achieve new state of the art

performance on the Named Entity recognition task. We explored four fundamental design decisions: text

chunks representation, inference algorithm, using non-local features and external knowledge. We showed

that BILOU encoding scheme significantly outperforms BIO and that, surprisingly, a conditional model that

does not take into account interactions at the output level performs comparably to beamsearch or Viterbi,

while being considerably more efficient computationally. We analyzed several approaches for modeling

non-local dependencies and found that none of them clearly outperforms the others across several datasets.

Our experiments corroborate recently published results indicating that word class models learned on unla-

beled text can be an alternative to the traditional semi-supervised learning paradigm. NER proves to be a

knowledge-intensive task, and it was reassuring to observe that knowledge-driven techniques adapt well

across several domains. We observed consistent performance gains across several domains, most interest-

37

System Resources Used F1

+ LBJ-NER Wikipedia, Nonlocal
Features, Word-class
Model

90.80

- [135] Semi-supervised on
1G-word unlabeled
data

89.92

- [1] Semi-supervised on
27M-word unlabeled
data

89.31

- [70] Wikipedia 88.02
- [73] Non-local Features 87.24
- [69] Non-local Features 87.17
+ [45] Non-local Features 86.86

Table 4.7: Results for CoNLL03 data reported in the literature. publicly available systems marked by +.

ingly in Webpages, where the named entities had less context and were different in nature from the named

entities in the training set. Our system significantly outperforms the current state of the art and is available

to download under a research license.

38

Chapter 5

A Study of Word Representations

Recently published results [91; 80; 72; 112; 62] show that word representations learned from unlabeled text

can significantly improve the performance of an NLP system and can act as an alternative to the traditional

semi-supervised learning paradigm. While dedicated semi-supervised approaches, such as [1; 135; 11] exist

and can be quite successful, they require task-specific and model-specific math derivations followed by cor-

responding re-design of the (supervised training) code. The appealing property of word representations is

that once computed, they provide a general approach for capturing similarity between words (or abstract-

ing over words). This allows them to be potentially used in multiple applications in a straightforward and

easy way to address the data sparsity problem common in NLP [68; 64]. Additionally, word representa-

tions can be viewed as a way to encode knowledge extracted from large quantities of unlabeled text. As

we have showed in Chapter 4, NER is a knowledge-intensive task, and throughout this thesis we argue

that so is NLP in general. Therefore, a general infrastructure for capturing word similarity, which can be

easily injected into an arbitrary NLP application seems extremely valuable. With several such approaches

proposed, it is natural to ask two questions:

1. Which approach is most useful for the current state-of-the-art NLP systems?

2. Are these approaches general enough to be useful in multiple NLP applications?

In this chapter we present an empirical study comparing between the different word representations on

two NLP tasks: NER and shallow parsing (chunking).

5.1 Types of Word Representations

In this section we cover the existing approaches for representing words. We note that in essence, all the

approaches described below share the “distributional hypothesis” assumption [58; 46], which states that

words appearing in similar contexts share similar meanings. Hence, in a sense, the differences between the

approaches are purely technical - how to capture the distributional properties of the words. Nevertheless,

39

these differences are crucial, for example, some approaches may attempt to model the polysemy of words,

while others may not. Some approaches represent a word by clustering it with similar words and assigning

each cluster a unique identifier. Yet other approaches attempt to induce latent properties of the words and

learn them from their context.

5.1.1 Distributional representations

Distributional word representations are based upon a co-occurrence matrix F of size W × C, where W

is the vocabulary size, each row Fw is the initial representation of word w, and each column Fc is some

context. [125] and [147] describe a handful of possible design decisions in constructing F , including choice

of context types (left window? right window? size of window?) and type of frequency count (raw? binary?

tf-idf?). Fw has dimensionality W , which can be too large to use Fw as features for word w in a supervised

model. One can map F to matrix f of size W × d, where d � C, using some function g, where f = g(F).

fw represents word w as a vector with d dimensions. The choice of g is another important design decision,

although perhaps not as important as the statistics used to initially construct F .

The self-organizing semantic map [116] is a distributional technique that maps words to two dimen-

sions, such that syntactically and semantically related words are nearby [61; 60].

LSA [39; 76], LSI, and LDA [12] induce distributional representations over F in which each column is

a document context. (In most of the other approaches discussed, the columns represent word contexts.) In

LSA, g computes the SVD of F .

Hyperspace Analogue to Language (HAL) is another early distributional approach [82; 83] to inducing

word representations. They compute F over a corpus of 160 million word tokens with a vocabulary size

W of 70K word types. There are 2 ·W types of context (columns): The first or second W are counted if the

word c occurs within a window of 10 to the left or right of the word w, respectively. f is chosen by taking

the 200 columns (out of 140K in F) with the highest variances.

ICA is another technique to transform F into f [153; 154; 155]. ICA is expensive, and the largest vocab-

ulary size used in these works was only 10K. As far as we know, ICA methods have not been used when

the size of the vocabulary W is 100K or more.

Explicitly computing the initial cooccurrence matrix F can be memory-intensive, and transforming F

to f can be time-consuming. It is preferable that F never be computed explicitly, and that f be constructed

incrementally. [159] describe an incremental approach to inducing LSA and LDA topic models over 270 mil-

lions word tokens with a vocabulary of 315K word types. This is similar in magnitude to our experiments.

Another incremental approach to constructing f is using a random projection: Linear mapping g is mul-

40

tiplying F by a random matrix chosen a priori. This random indexing method is motivated by the Johnson-

Lindenstrauss lemma, which states that for certain choices of random matrix, if d is sufficiently large, then

the original distances between words in F will be preserved in f [124]. [67] uses this technique to pro-

duce 100-dimensional representations of documents. [123] was the first author to use random indexing

using narrow context. [125] does a battery of experiments exploring different design decisions involved in

constructing F , prior to using random indexing. However, like all the works cited above, [125] only uses

distributional representation to improve existing systems for one-shot classification tasks, such as IR, WSD,

semantic knowledge tests, and text categorization. It is not well-understood what settings are appropriate

to induce distributional word representations for structured prediction tasks (like parsing and MT) and

sequence labeling tasks (like chunking and NER). Previous research has achieved repeated successes on

these tasks using clustering representations (Section 5.1.2) and distributed representations (Section 5.1.3),

so we focus on these representations in our work.

5.1.2 Clustering-based word representations

Another type of word representation is to induce a clustering over words. Clustering methods and distri-

butional methods can overlap. For example, [103] begin with a co-occurrence matrix and transform this

matrix into a clustering.

Brown clustering

The Brown algorithm is a hierarchical clustering algorithm which clusters words to maximize the mutual

information of bigrams [14]. So it is a class-based bigram language model. It runs in time O(V ·K2), where

V is the size of the vocabulary and K is the number of clusters.

The hierarchical nature of the clustering means that we can choose the word class at several levels in the

hierarchy, which can compensate for poor clusters of a small number of words. One downside of Brown

clustering is that it is based solely on bigram statistics, and does not consider word usage in a wider context.

Brown clusters have been used successfully in a variety of NLP applications: NER [91; 80; 112], PCFG

parsing [16], dependency parsing [72; 135], and semantic dependency parsing [164].

[86] presents algorithms for inducing hierarchical clusterings based upon word bigram and trigram

statistics. [148] presents an extension to the Brown clustering algorithm, and learn hierarchical clusterings

of words as well as phrases, which they apply to POS tagging.

41

Other work on cluster-based word representations

[81] present a K-means-like non-hierarchical clustering algorithm for phrases, which uses MapReduce.

HMMs can be used to induce a soft clustering, specifically a multinomial distribution over possible clus-

ters (hidden states). [79] use an HMM-LDA model to improve POS tagging and Chinese Word Segmenta-

tion. [62] induce a fully-connected HMM, which emits a multinomial distribution over possible vocabulary

words. They perform hard clustering using the Viterbi algorithm. (Alternately, they could keep the soft

clustering, with the representation for a particular word token being the posterior probability distribution

over the states.) However, the CRF chunker in [62], which uses their HMM word clusters as extra fea-

tures, achieves F1 lower than a baseline CRF chunker [128]. [53] use an HMM to assign POS tags to

words, which in turns improves the accuracy of the PCFG-based Hebrew parser. [36] use a latent-variable

language model to improve semantic role labeling.

5.1.3 Distributed representations

Another approach to word representation is to learn a distributed representation. (Not to be confused with

distributional representations.) A distributed representation is dense, low-dimensional, and real-valued.

Distributed word representations are called word embeddings. Each dimension of the embedding represents

a latent feature of the word, hopefully capturing useful syntactic and semantic properties. A distributed

representation is compact, in the sense that it can represent an exponential number of clusters in the number

of dimensions.

Word embeddings are typically induced using neural language models, which use neural networks as

the underlying predictive model [5]. Historically, training and testing of neural language models has been

slow, scaling as the size of the vocabulary for each model computation [6; 8; 9]. However, many approaches

have been proposed in recent years to eliminate that linear dependency on vocabulary size [96; 28; 95] and

allow scaling to very large training corpora.

[28] presented a neural language model that could be trained over billions of words, because the gra-

dient of the loss was computed stochastically over a small sample of possible outputs, in a spirit similar

to [9]. This neural model of [28] was refined and presented in greater depth in [7].

The model is discriminative and non-probabilistic. For each training update, we read an n-gram x =

(w1, . . . , wn) from the corpus. The model concatenates the learned embeddings of the n words, giving

e(w1) ⊕ · · · ⊕ e(wn), where e is the lookup table and ⊕ is concatenation. We also create a corrupted or

noise n-gram x̃ = (w1, . . . , wn−q, w̃n), where w̃n 6= wn is chosen uniformly from the vocabulary.1 For

1In [28], the middle word in the n-gram is corrupted. In [7], the last word in the n-gram is corrupted.

42

convenience, we write e(x) to mean e(w1) ⊕ · · · ⊕ e(wn). We predict a score s(x) for x by passing e(x)

through a single hidden layer neural network. The training criterion is that n-grams that are present in

the training corpus like x must have a score at least some margin higher than corrupted n-grams like x̃.

Specifically: L(x) = max(0, 1 − s(x) + s(x̃)). We minimize this loss stochastically over the n-grams in the

corpus, doing gradient descent simultaneously over the neural network parameters and the embedding

lookup table.

We implemented the approach of [28], with the following differences:

• We did not achieve as low log-ranks on the English Wikipedia as the authors reported in [7], despite

initially attempting to have identical experimental conditions.

•We corrupt the last word of each n-gram.

•We had a separate learning rate for the embeddings and for the neural network weights. We found that

the embeddings should have a learning rate generally 1000–32000 times higher than the neural network

weights. Otherwise, the unsupervised training criterion drops slowly.

• Although their sampling technique makes training fast, testing is still expensive when the size of the

vocabulary is large. Instead of cross-validating using the log-rank over the validation data as they do, we

instead used the moving average of the training loss on training examples before the weight update.

HLBL embeddings

The log-bilinear model [94] is a probabilistic and linear neural model. Given an n-gram, the model con-

catenates the embeddings of the n − 1 first words, and learns a linear model to predict the embedding of

the last word. The similarity between the predicted embedding and the current actual embedding is trans-

formed into a probability by exponentiating and then normalizing. [95] speed up model evaluation during

training and testing by using a hierarchy to exponentially filter down the number of computations that are

performed. This hierarchical evaluation technique was first proposed by [96]. The model, combined with

this optimization, is called the hierarchical log-bilinear (HLBL) model.

5.2 Supervised evaluation tasks

We evaluate the hypothesis that one can take an existing, near state-of-the-art, supervised NLP system,

and improve its accuracy by including word representations as word features. This technique for turning

a supervised approach into a semi-supervised one is general and task-agnostic.

However, we wish to find out if certain word representations are preferable for certain tasks. [81] finds

43

• Word features: wi for i in {−2,−1, 0,+1,+2}, wi ∧ wi+1 for i in {−1, 0}.

• Tag features: wi for i in {−2,−1, 0,+1,+2}, ti ∧ ti+1 for i in {−2,−1, 0,+1}. ti ∧ ti+1 ∧ ti+2 for i in
{−2,−1, 0}.

• Embedding features [if applicable]: ei[d] for i in {−2,−1, 0,+1,+2}, where d ranges over the dimen-
sions of the embedding ei.

• Brown features [if applicable]: substr(bi, 0, p) for i in {−2,−1, 0,+1,+2}, where substr takes the p-
length prefix of the Brown cluster bi.

Table 5.1: Features templates used in the CRF chunker.

that the representations that are good for NER are poor for search query classification, and vice-versa. We

apply clustering and distributed representations to NER and chunking, which allows us to compare our

semi-supervised models to those of [1] and [135].

5.2.1 Chunking

Chunking is a syntactic sequence labeling task. We follow the conditions in the CoNLL-2000 shared task

[126].

The linear CRF chunker of [128] is a standard near-state-of-the-art baseline chunker. In fact, many off-

the-shelf CRF implementations now replicate [128], including their choice of feature set:

• CRF++ by Taku Kudo (http://crfpp.sourceforge.net/)

• crfsgd by Léon Bottou (http://leon.bottou.org/projects/sgd)

• CRFsuite by by Naoaki Okazaki (http://www.chokkan.org/software/crfsuite/)

We use CRFsuite because it makes it simple to modify the feature generation code, so one can easily

add new features. We use SGD optimization, and enable negative state features and negative transition

features. (“feature.possible transitions=1, feature.possible states=1”)

Table 5.1 shows the features in the baseline chunker. As you can see, the Brown and embedding fea-

tures are unigram features, and do not participate in conjunctions like the word features and tag features

do. [72] sees further accuracy improvements on dependency parsing when using word representations in

compound features.

The data comes from the Penn Treebank, and is newswire from the Wall Street Journal in 1989. Of

the 8936 training sentences, we used 1000 randomly sampled sentences (23615 words) for development.

We trained models on the 7936 training partition sentences, and evaluated their F1 on the development

set. After choosing hyperparameters to maximize the dev F1, we would retrain the model using these

44

http://crfpp.sourceforge.net/
http://leon.bottou.org/projects/sgd
http://www.chokkan.org/software/crfsuite/

hyperparameters on the full 8936 sentence training set, and evaluate on test. One hyperparameter was l2-

regularization sigma, which for most models was optimal at 2 or 3.2. The word embeddings also required

a scaling hyperparameter, as described in Section 5.4.2.

5.2.2 Named entity recognition

NER is typically treated as a sequence prediction problem. Following [112], we use the regularized aver-

aged perceptron model. [112] describe different sequence encoding like BILOU and BIO, and show that the

BILOU encoding outperforms BIO, and the greedy inference performs competitively to Viterbi while being

significantly faster. Accordingly, we use greedy inference and BILOU text chunk representation. We use

the publicly available implementation from [112]2. In our baseline experiments, we remove gazetteers and

non-local features [73]. However, we also run experiments that include these features, to understand if the

information they provide mostly overlaps with that of the word representations.

After each epoch over the training set, we measured the accuracy of the model on the development set.

Training was stopped after the accuracy on the development set did not improve for 10 epochs, generally

about 50–80 epochs total. The epoch that performed best on the development set was chosen as the final

model. We report phrase-based F1 performance on all datasets3.

We use the following baseline set of features from [163]:

• Previous two predictions yi−1 and yi−2

• Current word xi

• xi word type information: all-capitalized, is-capitalized, all-digits, alphanumeric, etc.

• Prefixes and suffixes of xi, if the word contains hyphens, then the tokens between the hyphens

• Tokens in the window c = (xi−2, xi−1, xi, xi+1, xi+2)

• Capitalization pattern in the window c

• Conjunction of c and yi−1.

Word representation features, if present, are used the same way as in Table 5.14.

Unlike in our chunking experiments, after we chose the best model on the development set, we used

that model on the test set too. (In chunking, after finding the best hyperparameters on the development set,

we would combine the dev and training set and training a model over this combined set, and then evaluate

2http://cogcomp.cs.illinois.edu/page/software
3These settings are somewhat different than the ones used in Chapter 4, hence, the results reported in this chapter are somewhat

different as well.
4In Chapter 4, we have generated conjunctions of words and Brown clusters. However, conjunctions of words with the embedded

representations proved to be very slow. Hence for systematic comparison of Brown clusters and the embedded representations we
have removed these conjunctions altogether. This is another source of inconsistency between the results reported in this chapter and
the results reported in Chapter 4.

45

http://cogcomp.cs.illinois.edu/page/software

on test.)

The standard evaluation benchmark for NER is the CoNLL03 shared task dataset drawn from the

Reuters newswire. The training set contains 204K words (14K sentences, 946 documents), the test set

contains 46K words (3.5K sentences, 231 documents), and the development set contains 51K words (3.3K

sentences, 216 documents).

We also evaluated on an out-of-domain (OOD) dataset, the MUC7 formal run (59K words). MUC7

has a different annotation standard than the CoNLL03 data. It has several NE types that don’t appear in

CoNLL03: money, dates, and numeric quantities. CoNLL03 has MISC, which is not present in MUC7. To

evaluate on MUC7, we perform the following postprocessing steps prior to evaluation:

1. In the gold-standard MUC7 data, discard (label as ‘O’) all NEs with type NUMBER/MONEY/DATE.

2. In the predicted model output on MUC7 data, discard (label as ‘O’) all NEs with type MISC.

These postprocessing steps will adversely affect all NER models across-the-board, nonetheless allowing us

to compare different models in a controlled manner.

5.3 Unlabeled Data

Unlabeled data is used for inducing the word representations. We used the RCV1 corpus, which contains

one year of Reuters English newswire, from August 1996 to August 1997, about 63 millions words in 3.3

million sentences5. We left case intact in the corpus. By comparison, [28] downcases words and delexical-

izes numbers.

We use a preprocessing technique proposed by [80, p. 51], which was later used by [72]: Remove all

sentences that are less than 90% lowercase a–z. We assume that whitespace is not counted, although this is

not specified in Liang’s thesis. We call this preprocessing step cleaning.

In [146], we found that all word representations performed better on the supervised task when they

were induced on the clean unlabeled data, both embeddings and Brown clusters. This is the case even

though the cleaning process was very aggressive, and discarded more than half of the sentences. According

to the evidence and arguments presented in [7], the non-convex optimization process for [28] embeddings

might be adversely affected by noise and the statistical sparsity issues regarding rare words, especially

at the beginning of training. For this reason, we hypothesize that learning representations over the most
5In Chapter 4, the Brown Clusters were induced on the BLLIP corpus, which we believe is a subset of the Wall Street Journal rather

than on RCV1, as done here. We found the RCV1-induced word representations significantly more useful for NER and marginally
more useful for chunking than word representations induced on BLLIP corpus. However these representations can be combined and
indeed we observed performance improvement when using in parallel word representations induced from several resources (RCV1,
Wikipedia, BLLIP) as different feature groups. We omit these resutls from this work.

46

frequent words first and gradually increasing the vocabulary—a curriculum training strategy [40; 7; 132]—

would provide better results than cleaning.

After cleaning, there are 37 million words (58% of the original) in 1.3 million sentences (41% of the

original). The cleaned RCV1 corpus has 269K word types. This is the vocabulary size, i.e. how many word

representations were induced. Note that cleaning is applied only to the unlabeled data, not to the labeled

data used in the supervised tasks.

RCV1 is a superset of the CoNLL03 corpus. For this reason, NER results that use RCV1 word represen-

tations are a form of transductive learning.

5.4 Experiments and Results

5.4.1 Details of inducing word representations

The Brown clusters took roughly 3 days to induce, when we induced 1000 clusters, the baseline in prior

work [72; 112]. We also induced 100, 320, and 3200 Brown clusters, for comparison. (Because Brown clus-

tering scales quadratically in the number of clusters, inducing 10000 clusters would have been prohibitive.)

Because Brown clusters are hierarchical, we can use cluster supersets as features. We used clusters at path

depth 4, 6, 10, and 20 [112]. These are the prefixes used in Table 5.1.

The [28] (C&W) embeddings were induced over the course of a few weeks, and trained for about 50

epochs. One of the difficulties in inducing these embeddings is that there is no stopping criterion defined,

and that the quality of the embeddings can keep improving as training continues. Collobert (p.c.) simply

leaves one computer training his embeddings indefinitely. We induced embeddings with 25, 50, 100, or

200 dimensions over 5-gram windows. In comparison to [146], we use improved C&W embeddings in this

work:

• They were trained for 50 epochs, not just 20 epochs.

•We initialized all embedding dimensions uniformly in the range [-0.01, +0.01], not [-1,+1]. For rare words,

which are typically updated only 143 times per epoch6, and given that our embedding learning rate was

typically 1e-6 or 1e-7, this means that rare word embeddings will be concentrated around zero, instead of

spread out randomly.

The HLBL embeddings were trained for 100 epochs (7 days).7 Unlike our [28] embeddings, we did not

extensively tune the learning rates for HLBL. We used a learning rate of 1e-3 for both model parameters
6A rare word will appear 5 (window size) times per epoch as a positive example, and 37M (training examples per epoch) / 269K

(vocabulary size) = 138 times per epoch as a corruption example.
7The HLBL model updates require fewer matrix multiplies than [28] model updates. Additionally, HLBL models were trained on

a GPGPU, which is faster than conventional CPU arithmetic.

47

(a)

 93.6

 93.8

 94

 94.2

 94.4

 94.6

 94.8

 0.001 0.01 0.1 1

V
al

id
at

io
n

F
1

Scaling factor σ

C&W, 50-dim
HLBL, 50-dim

C&W, 200-dim
C&W, 100-dim
HLBL, 100-dim

C&W, 25-dim
baseline

(b)

 89

 89.5

 90

 90.5

 91

 91.5

 92

 92.5

 0.001 0.01 0.1 1

V
al

id
at

io
n

F
1

Scaling factor σ

C&W, 200-dim
C&W, 100-dim
C&W, 25-dim
C&W, 50-dim

HLBL, 100-dim
HLBL, 50-dim

baseline

Figure 5.1: Effect as we vary the scaling factor σ (Equation 5.1) on the validation set F1. We experiment
with [28] and HLBL embeddings of various dimensionality. (a) Chunking results. (b) NER results.

and embedding parameters. We induced embeddings with 100 dimensions over 5-gram windows, and

embeddings with 50 dimensions over 5-gram windows. Embeddings were induced over one pass approach

using a random tree, not two passes with an updated tree and embeddings re-estimation.

5.4.2 Scaling of Word Embeddings

Like many NLP systems, the baseline system contains only binary features. The word embeddings, how-

ever, are real numbers that are not necessarily in a bounded range. If the range of the word embeddings is

too large, they will exert more influence than the binary features.

We generally found that embeddings had zero mean. We can scale the embeddings by a hyperparame-

48

ter, to control their standard deviation. Assume that the embeddings are represented by a matrix E:

E ← σ · E/stddev(E) (5.1)

σ is a scaling constant that sets the new standard deviation after scaling the embeddings.

(a)

 94.1

 94.2

 94.3

 94.4

 94.5

 94.6

 94.7

 100 320 1000 3200

 25 50 100 200
V

al
id

at
io

n
F

1

of Brown clusters

of embedding dimensions

C&W
HLBL

Brown
baseline

(b)

 90

 90.5

 91

 91.5

 92

 92.5

 100 320 1000 3200

 25 50 100 200

V
al

id
at

io
n

F
1

of Brown clusters

of embedding dimensions

C&W
Brown
HLBL

baseline

Figure 5.2: Effect as we vary the capacity of the word representations on the validation set F1. (a) Chunking
results. (b) NER results.

Figure 5.1 shows the effect of scaling factor σ on both supervised tasks. We were surprised to find that

on both tasks, across [28] and HLBL embeddings of various dimensionality, that all curves had similar

shapes and optima. This is one contributions of our work. In [146], we were not able to prescribe a default

value for scaling the embeddings. However, these curves demonstrate that a reasonable choice of scale

factor is such that the embeddings have a standard deviation of 0.1.

49

5.4.3 Capacity of Word Representations

There are capacity controls for the word representations: number of Brown clusters, and number of dimen-

sions of the word embeddings. Figure 5.2 shows the effect on the validation F1 as we vary the capacity of

the word representations.

In general, it appears that more Brown clusters are better. We would like to induce 10000 Brown clusters,

however this would take several months.

In [146], we hypothesized on the basis of solely the HLBL NER curve that higher-dimensional word

embeddings would give higher accuracy. Figure 5.2 shows that this hypothesis is not true. For NER, the

C&W curve is almost flat, and we were suprised to find the even 25-dimensional C&W word embeddings

work so well. For chunking, 50-dimensional embeddings had the highest validation F1 for both C&W and

HLBL. These curves indicates that the optimal capacity of the word embeddings is task-specific.

System Dev Test
Baseline 94.16 93.79

HLBL, 50-dim 94.63 94.00
C&W, 50-dim 94.66 94.10

Brown, 3200 clusters 94.67 94.11
Brown+HLBL, 37M 94.62 94.13
C&W+HLBL, 37M 94.68 94.25

Brown+C&W+HLBL, 37M 94.72 94.15
Brown+C&W, 37M 94.76 94.35

[1], 15M - 94.39
[135], 15M - 94.67
[135], 1B - 95.15

Table 5.2: Final chunking F1 results. In the last section, we show how many unlabeled words were used.

5.4.4 Final results

Table 5.2 shows the final chunking results and Table 5.3 shows the final NER F1 results. We compare to

the state-of-the-art methods of [1], [135], and—for NER—[81]. Tables 5.2 and 5.3 show that accuracy can be

increased further by combining the features from different types of word representations. But, if only one

word representation is to be used, Brown clusters have the highest accuracy. Given the improvements to the

C&W embeddings since [146], C&W embeddings outperform the HLBL embeddings. On chunking, there

is only a minute difference between Brown clusters and the embeddings. Combining representations leads

to small increases in the test F1. In comparison to chunking, combining different word representations on

NER seems gives larger improvements on the test F1.

On NER, Brown clusters are superior to the word embeddings. Since much of the NER F1 is derived

50

System Dev Test MUC7
Baseline 90.03 84.39 67.48

Baseline+Nonlocal 91.91 86.52 71.80
HLBL 100-dim 92.00 88.13 75.25

Gazetteers 92.09 87.36 77.76
C&W 50-dim 92.27 87.93 75.74

Brown, 1000 clusters 92.32 88.52 78.84
C&W 200-dim 92.46 87.96 75.51
C&W+HLBL 92.52 88.56 78.64
Brown+HLBL 92.56 88.93 77.85
Brown+C&W 92.79 89.31 80.13

HLBL+Gaz 92.91 89.35 79.29
C&W+Gaz 92.98 88.88 81.44
Brown+Gaz 93.25 89.41 82.71

[81], 3.4B - 88.44 -
[1], 27M 93.15 89.31 -

[135], 37M 93.66 89.36 -
[135], 1B 94.48 89.92 -

All (Brown+C&W+HLBL+Gaz), 37M 93.17 90.04 82.50
All+Nonlocal, 37M 93.95 90.36 84.15

[81], 700B - 90.90 -

Table 5.3: Final NER F1 results, showing the cumulative effect of adding word representations, non-local
features, and gazetteers to the baseline. To speed up training, in combined experiments (C&W plus another
word representation), we used the 50-dimensional C&W embeddings, not the 200-dimensional ones. In the
last section, we show how many unlabeled words were used.

from decisions made over rare words, we suspected that Brown clustering has a superior representation

for rare words. Brown makes a single hard clustering decision, whereas the embedding for a rare word is

close to its initial value since it hasn’t received many training updates (see Footnote 6). Figure 5.3 shows

the total number of per-token errors incurred on the test set, depending upon the frequency of the word

token in the unlabeled data. For NER, Figure 5.3 (b) shows that most errors occur on rare words, and

that Brown clusters do indeed incur fewer errors for rare words. This supports our hypothesis that, for

rare words, Brown clustering produces better representations than word embeddings that haven’t received

sufficient training updates. For chunking, Brown clusters and C&W embeddings incur almost identical

numbers of errors, and errors are concentrated around the more common words. We hypothesize that non-

rare words have good representations, regardless of the choice of word representation technique. For tasks

like chunking in which a syntactic decision relies upon looking at several token simultaneously, compound

features that use the word representations might increase accuracy more [72].

Using word representations in NER brought larger gains on the out-of-domain data than on the in-

domain data. We were surprised by this result, because the OOD data was not even used during the

unsupervised word representation induction, as was the in-domain data. We are curious to investigate this

51

(a)

 0

 50

 100

 150

 200

 250

0 1 10 100 1K 10K 100K 1M

of

 p
er

-t
ok

en
 e

rr
or

s
(t

es
t s

et
)

Frequency of word in unlabeled data

C&W, 50-dim
Brown, 3200 clusters

(b)

 0

 50

 100

 150

 200

 250

0 1 10 100 1K 10K 100K 1M

of

 p
er

-t
ok

en
 e

rr
or

s
(t

es
t s

et
)

Frequency of word in unlabeled data

C&W, 50-dim
Brown, 1000 clusters

Figure 5.3: For word tokens that have different frequency in the unlabeled data, what is the total number
of per-token errors incurred on the test set? (a) Chunking results. (b) NER results.

phenomenon further.

5.5 Related Work

[1] present a semi-supervised learning algorithm called alternating structure optimization (ASO). They find

a low-dimensional projection of the input features that gives good linear classifiers over auxiliary tasks.

These auxiliary tasks are sometimes specific to the supervised task, and sometimes general language mod-

eling tasks like “predict the missing word”. [135] present a semi-supervised extension of CRFs. (In [136],

they extend their semi-supervised approach to more general conditional models.) One of the advantages

of the semi-supervised learning approach that we use is that it is simpler and more general than that of

52

[1] and [135]. Their methods dictate a particular choice of model and training regime and could not, for

instance, be used with an NLP system based upon an SVM classifier.

[81] present a K-means-like non-hierarchical clustering algorithm for phrases, which uses MapReduce.

Since they can scale to millions of phrases, and they train over 800B unlabeled words, they achieve state-

of-the-art accuracy on NER using their phrase clusters. This suggests that extending word representations

to phrase representations is worth further investigation.

5.6 Conclusions

Word features can be learned in advance in an unsupervised, task-inspecific, and model-agnostic manner.

These word features, once learned, are easily disseminated with other researchers, and easily integrated

into existing supervised NLP systems. The disadvantage, however, is that accuracy might not be as high

as a semi-supervised method that includes task-specific information and that jointly learns the supervised

and unsupervised tasks [1; 135; 136].

Unsupervised word representations have been used in previous NLP work, and have demonstrated

improvements in generalization accuracy on a variety of tasks. Ours is the first work to systematically

compare different word representations in a controlled way. We found that Brown clusters and word em-

beddings both can improve the accuracy of a near-state-of-the-art supervised NLP system. We also found

that combining different word representations can improve accuracy further. Error analysis indicates that

Brown clustering induces better representations for rare words than C&W embeddings that have not re-

ceived many training updates.

Another contribution of our work is a default method for setting the scaling parameter for word em-

beddings. With this contribution, word embeddings can now be used off-the-shelf as word features, with

no tuning.

Future work should explore methods for inducing phrase representations, as well as techniques for

increasing in accuracy by using word representations in compound features.

Replicating our experiments

You can visit http://metaoptimize.com/projects/wordreprs/ to find: The word representations

we induced, which you can download and use in your experiments; The code for inducing the word repre-

sentations, which you can use to induce word representations on your own data; The NER and chunking

system, with code for replicating our experiments.

53

http://metaoptimize.com/projects/wordreprs/

Chapter 6

Disambiguation to Wikipedia

Disambiguating concepts and entities in a context sensitive way is a fundamental problem in natural lan-

guage processing. The comprehensiveness of Wikipedia has made the online encyclopedia an increasingly

popular target for disambiguation. Recently, disambiguation to Wikipedia (D2W) has been shown to form

a valuable component for numerous natural language processing tasks including text classification [51; 21],

measuring semantic similarity between texts [50], cross-document co-reference resolution [44; 87], and

other tasks [74].

D2W is similar to a traditional Word Sense Disambiguation task, but distinct in that the Wikipedia link

structure provides additional information about which disambiguations are compatible. In this section we

analyze approaches that utilize this information to arrive at coherent sets of disambiguations for a given

document (which we call “global” approaches), and compare them to more traditional (local) approaches.

Local D2W approaches disambiguate each mention in a document separately, utilizing clues such as the

textual similarity between the document and each candidate disambiguation’s Wikipedia page. Recent

work on D2W has tended to focus on more sophisticated global approaches to the problem, in which all

mentions in a document are disambiguated simultaneously to arrive at a coherent set of disambiguations

[29; 93; 162]. For example, if a mention of “Michael Jordan” refers to the computer scientist rather than

the basketball player, then we would expect a mention of “Monte Carlo” in the same document to refer

to the statistical technique rather than the location. Global approaches utilize the Wikipedia link graph to

estimate coherence.

6.1 Contributions

We show that previous approaches for global disambiguation can be improved, but even then the local

disambiguation provides a baseline which is very hard to beat. Our contributions are as follows:

• We present a formulation of the D2W task as an optimization problem with local and global variants,

and identify the strengths and the weaknesses of each.

54

• Using this formulation, we present a new global D2W system, called GLOW. In experiments on

existing and novel D2W data sets, GLOW is shown to outperform the previous state-of-the-art system

of [93]

• We present an error analysis and identify the key remaining challenge: determining when mentions

refer to concepts not captured in Wikipedia.

6.2 Problem Definition and Approach

Itʼs a version of Chicago – the standard
classic Macintosh menu font, with that
distinctive thick diagonal in the ”N”.

Chicago was used by default for
Mac menus through MacOS 7.6,
and OS 8 was released mid-
1997..

Chicago VIII was one of the early
70s-era Chicago albums to catch
my ear, along with Chicago II.

Figure 6.1: An example of a Wikification system output.

We formalize our Disambiguation to Wikipedia (D2W) task as follows. We are given a document d with

a set of mentions M = {m1, . . . ,mN}, and our goal is to produce a mapping from the set of mentions to

the set of Wikipedia titles W = {t1, . . . , t|W |}. Often, mentions correspond to a concept without a Wikipedia

page; we treat this case by adding a special null title to the set W . Figure 6.1 shows sample output of a

Wikification system on three input documents.

The D2W task can be visualized as finding a many-to-one matching on a bipartite graph, with mentions

forming one partition and Wikipedia titles the other (see Figure 6.2). We denote the output matching as an

N -tuple Γ = (t1, . . . , tN) where ti is the output disambiguation for mention mi.

A local D2W approach disambiguates each mention mi separately. Specifically, let φ(mi, tj) be a score

function reflecting the likelihood that the candidate title tj ∈ W is the correct disambiguation for mi ∈ M .

A local approach solves the following optimization problem:

Γ∗local = arg max
Γ

N∑
i=1

φ(mi, ti) (6.1)

Local D2W approaches, exemplified by [15] and [90], utilize φ functions that assign higher scores to

55

m1 = Taiwan m2 = China m3 = Jiangsu Province..............

t1 = Taiwan t5 =People's Republic of China t7 = Jiangsu

..............

Document text with mentions

t2 = Chinese Taipei t3 =Republic of China t4 = China t6 = History of China

φ(m1, t1)

φ(m1, t2)

φ(m1, t3)

ψ(t1, t7) ψ(t3, t7) ψ(t5, t7)

Figure 6.2: Sample Disambiguation to Wikipedia problem with three mentions. The mention “Jiangsu” is
unambiguous. The correct mapping from mentions to titles is marked by heavy edges

titles with content similar to that of the input document.

We expect, all else being equal, that the correct disambiguations will form a “coherent” set of related

concepts. Global approaches define a coherence function ψ, and attempt to solve the following disambigua-

tion problem:

Γ∗ = arg max
Γ

[

N∑
i=1

φ(mi, ti) + ψ(Γ)] (6.2)

The global optimization problem in Equation 6.2 is NP-hard, and approximations are required [29]. The

common approach is to utilize the Wikipedia link graph to obtain an estimate pairwise relatedness between

titles ψ(ti, tj) and to efficiently generate a disambiguation context Γ′, a rough approximation to the optimal

Γ∗. We then solve the easier problem:

Γ∗ ≈ arg max
Γ

N∑
i=1

[φ(mi, ti) +
∑
tj∈Γ′

ψ(ti, tj)] (6.3)

Eq. 6.3 can be solved by finding each ti and then mappingmi independently as in a local approach, but still

enforces some degree of coherence among the disambiguations.

6.3 System Architecture

In this section, we present our global D2W system, which solves the optimization problem in Equation 6.3.

We refer to the system as GLOW, for Global Wikification. We use GLOW as a test bed for evaluating local and

global approaches for D2W. GLOW combines a powerful local model φ with an novel method for choosing

an accurate disambiguation context Γ′, which as we show in our experiments allows it to outperform the

previous state of the art.

56

Algorithm: Disambiguate to Wikipedia
Input: document d, Mentions M = {m1, . . . ,mN}
Output: a disambiguation Γ = (t1, . . . , tN).
1) Let M ′ = M∪ { Other potential mentions in d}
2) For each mention m′i ∈ M ′, construct a set of disambiguation candidates Ti =
{ti1, . . . , tiki

}, tij 6= null
3) Ranker: Find a solution Γ = (t′1, . . . , t

′
|M ′|), where t′i ∈ Ti is the best non-null disam-

biguation of m′i.
4) Linker: For each m′i, map t′i to null in Γ iff doing so improves the objective function 6.3
5) Return Γ entries for the original mentions M .

Figure 6.3: High-level pseudocode for GLOW.

We represent the functions φ and ψ as weighted sums of features. Specifically, we set:

φ(m, t) =
∑
i

wiφi(m, t) (6.4)

where each feature φi(m, t) captures some aspect of the relatedness between the mention m and the

Wikipedia title t. Feature functions ψi(t, t
′) are defined analogously. We detail the specific feature functions

utilized in GLOW in following sections. The coefficients wi are learned using a Support Vector Machine

over bootstrapped training data from Wikipedia, as described in Section 6.7.

At a high level, the GLOW system optimizes the objective function in Eq. 6.3 in a two-stage process. We

first execute a ranker to obtain the best non-null disambiguation for each mention in the document, and

then execute a linker that decides whether the mention should be linked to Wikipedia, or whether instead

switching the top-ranked disambiguation to null improves the objective function. As our experiments

illustrate, the linking task is the more challenging of the two by a significant margin.

Figure 6.3 provides detailed pseudocode for GLOW. Given a document d and a set of mentions M , we

start by augmenting the set of mentions with all phrases in the document that could be linked to Wikipedia,

but were not included in M . Introducing these additional mentions provides context that may be infor-

mative for the global coherence computation (it has no effect on local approaches). In the second step, we

construct for each mention mi a limited set of candidate Wikipedia titles Ti that mi may refer to. Con-

sidering only a small subset of Wikipedia titles as potential disambiguations is crucial for tractability (we

refer the reader for the details to [111]). In the third step, the ranker outputs the most appropriate non-null

disambiguation ti for each mention mi.

In the final step, the linker decides whether the top-ranked disambiguation is correct. The disambigua-

tion (mi, ti) may be incorrect for several reasons: (1) mention mi does not have a corresponding Wikipedia

page, (2) mi does have a corresponding Wikipedia page, but it was not included in Ti, or (3) the ranker

57

Baseline Feature: P (t|m), P (t)
Local Features: φi(t,m)
cosine-sim(Text(t),Text(m)) : Naive/Reweighted
cosine-sim(Text(t),Context(m)): Naive/Reweighted
cosine-sim(Context(t),Text(m)): Naive/Reweighted
cosine-sim(Context(t),Context(m)): Naive/Reweighted
Global Features: ψi(ti, tj)
I[ti−tj]∗PMI(InLinks(ti),InLinks(tj)) : avg/max
I[ti−tj]∗NGD(InLinks(ti),InLinks(tj)) : avg/max
I[ti−tj]∗PMI(OutLinks(ti),OutLinks(tj)) : avg/max
I[ti−tj]∗NGD(OutLinks(ti),OutLinks(tj)) : avg/max
I[ti↔tj] : avg/max
I[ti↔tj]∗PMI(InLinks(ti),InLinks(tj)) : avg/max
I[ti↔tj]∗NGD(InLinks(ti),InLinks(tj)) : avg/max
I[ti↔tj]∗PMI(OutLinks(ti),OutLinks(tj)) : avg/max
I[ti↔tj]∗NGD(OutLinks(ti),OutLinks(tj)) : avg/max

Table 6.1: Ranker features. I[ti−tj] is an indicator variable which is 1 iff ti links to tj or vise-versa. I[ti↔tj] is
1 iff the titles point to each other.

erroneously chose an incorrect disambiguation over the correct one.

In the below sections, we describe each step of the GLOW algorithm, and the local and global features

utilized, in detail. Because we desire a system that can process documents at scale, each step requires

trade-offs between accuracy and efficiency.

6.4 Local Features

Following previous work, we use Wikipedia hyperlinks to perform these steps. GLOW utilizes an anchor-

title index, computed by crawling Wikipedia, that maps each distinct hyperlink anchor text to its target

Wikipedia titles. For example, the anchor text “Chicago” is used in Wikipedia to refer both to the city in

Illinois and to the movie. From the anchor-title index, we compute two local features φi(m, t). The first,

P (t|m), is the fraction of times the title t is the target page for an anchor text m. This single feature is a very

reliable indicator of the correct disambiguation [42], and we use it as a baseline in our experiments. The

second, P (t), gives the fraction of all Wikipedia articles that link to t.

In addition to the two above baseline features, we compute a set of text-based local features φ(t,m).

These features capture the intuition that a given Wikipedia title t is more likely to be referred to by mention

m appearing in document d if the Wikipedia page for t has high textual similarity to d, or if the context

surrounding hyperlinks to t are similar to m’s context in d.

For each Wikipedia title t, we construct a top-200 token TF-IDF summary of the Wikipedia page t, which

we denote as Text(t) and a top-200 token TF-IDF summary of the context within which t was hyperlinked

58

to in Wikipedia, which we denote as Context(t). We keep the IDF vector for all tokens in Wikipedia, and

given an input mention m in a document d, we extract the TF-IDF representation of d, which we denote

Text(d), and a TF-IDF representation of a 100-token window aroundm, which we denoteContext(m). This

allows us to define four local features described in Table 6.1.

We additionally compute weighted versions of the features described above. Error analysis has shown

that in many cases the summaries of the different disambiguation candidates for the same surface form

s were very similar. For example, consider the disambiguation candidates of “China” and their TF-IDF

summaries in Figure 6.2. The majority of the terms selected in all summaries refer to the general issues

related to China, such as “legalism, reform, military, control, etc.”, while a minority of the terms actually allow

disambiguation between the candidates. The problem stems from the fact that the TF-IDF summaries are

constructed against the entire Wikipedia, and not against the confusion set of disambiguation candidates of

m. Therefore, we re-weigh the TF-IDF vectors using the TF-IDF scheme on the disambiguation candidates as

a ad-hoc document collection, similarly to an approach in [139] for classifying documents. In our scenario,

the TF of the a token is the original TF-IDF summary score (a real number), and the IDF term is the sum

of all the TF-IDF scores for the token within the set of disambiguation candidates for m. This adds 4 more

“re-weighted local” features in Table 6.1.

6.5 Global Features

Global approaches require a disambiguation context Γ′ and a relatedness measure ψ in Equation 6.3. In

this section, we describe our method for generating a disambiguation context, and the set of global features

ψi(t, t
′) forming our relatedness measure.

In previous work, Cucerzan defined the disambiguation context as the union of disambiguation can-

didates for all the named entity mentions in the input document [29]. The disadvantage of this approach

is that irrelevant titles are inevitably added to the disambiguation context, creating noise. Milne and Wit-

ten, on the other hand, use a set of unambiguous mentions [93]. This approach utilizes only a fraction of

the available mentions for context, and relies on the presence of unambiguous mentions with high disam-

biguation utility. In GLOW, we utilize a simple and efficient alternative approach: we first train a local

disambiguation system, and then use the predictions of that system as the disambiguation context. The

advantage of this approach is that unlike [93] we use all the available mentions in the document, and

unlike [29] we reduce the amount of irrelevant titles in the disambiguation context by taking only the top-

ranked disambiguation per mention.

59

Our global features are refinements of previously proposed semantic relatedness measures between

Wikipedia titles. We are aware of two previous methods for estimating the relatedness between two

Wikipedia concepts: [133], which uses category overlap, and [92], which uses the incoming link struc-

ture. Previous work experimented with two relatedness measures: NGD, and Specificity-weighted Cosine

Similarity. Consistent with previous work, we found NGD to be the better-performing of the two. Thus we

use only NGD along with a well-known Pointwise Mutual Information (PMI) relatedness measure. Given

a Wikipedia title collection W , titles t1 and t2 with a set of incoming links L1, and L2 respectively, PMI and

NGD are defined as follows:

NGD(L1, L2) =
Log(Max(|L1|, |L2|))− Log(|L1 ∩ L2|)
Log(|W |)− Log(Min(|L1|, |L2|))

PMI(L1, L2) =
|L1 ∩ L2|/|W |
|L1|/|W ||L2|/|W |

The NGD and the PMI measures can also be computed over the set of outgoing links, and we include

these as features as well. We also included a feature indicating whether the articles each link to one another.

Lastly, rather than taking the sum of the relatedness scores as suggested by Equation 6.3, we use two

features: the average and the maximum relatedness to Γ′. We expect the average to be informative for

many documents. The intuition for also including the maximum relatedness is that for longer documents

that may cover many different subtopics, the maximum may be more informative than the average.

We have experimented with other semantic features, such as category overlap or cosine similarity be-

tween the TF-IDF summaries of the titles, but these did not improve performance in our experiments. The

complete set of global features used in GLOW is given in Table 6.1.

6.6 Linker Features

Given the mention m and the top-ranked disambiguation t, the linker attempts to decide whether t is

indeed the correct disambiguation ofm. The linker includes the same features as the ranker, plus additional

features we expect to be particularly relevant to the task. We include the confidence of the ranker in t

with respect to second-best disambiguation t′, intended to estimate whether the ranker may have made a

mistake. We also include several properties of the mention m: the entropy of the distribution P (t|m), the

percent of Wikipedia titles in which m appears hyperlinked versus the percent of times m appears as plain

text, whether m was detected by NER as a named entity, and a Good-Turing estimate of how likely m is to

be out-of-Wikipedia concept based on the counts in P (t|m).

60

Mentions/Distinct titles
data set Gold Identified Solvable

ACE 257/255 213/212 185/184
MSNBC 747/372 530/287 470/273

AQUAINT 727/727 601/601 588/588
Wikipedia 928/813 855/751 843/742

Table 6.2: Number of mentions and corresponding distinct titles by data set. Listed are (number of men-
tions)/(number of distinct titles) for each data set, for each of three mention types. Gold mentions include
all disambiguated mentions in the data set. Identified mentions are gold mentions whose correct disam-
biguations exist in GLOW’s author-title index. Solvable mentions are identified mentions whose correct
disambiguations are among the candidates selected by GLOW (see Table 3).

6.7 Linker and Ranker Training

We train the coefficients for the ranker features using a linear Ranking Support Vector Machine, using

training data gathered from Wikipedia. Wikipedia links are considered gold-standard links for the training

process. The methods for compiling the Wikipedia training corpus are given in Section 6.8.

We train the linker as a separate linear Support Vector Machine. Training data for the linker is obtained

by applying the ranker on the training set. The mentions for which the top-ranked disambiguation did not

match the gold disambiguation are treated as negative examples, while the mentions the ranker got correct

serve as positive examples.

6.8 Datasets

We evaluate GLOW on four data sets, of which two are from previous work. The first data set, from [93],

is a subset of the AQUAINT corpus of newswire text that is annotated to mimic the hyperlink structure in

Wikipedia. That is, only the first mentions of “important” titles were hyperlinked. Titles deemed uninter-

esting and redundant mentions of the same title are not linked. The second data set, from [29], is taken

from MSNBC news and focuses on disambiguating named entities after running NER and co-reference

resolution systems on newsire text. In this case, all mentions of all the detected named entities are linked.

We also constructed two additional data sets. The first is a subset of the ACE co-reference data set, which

has the advantage that mentions and their types are given, and the co-reference is resolved. We asked an-

notators on Amazon’s Mechanical Turk to link the first nominal mention of each co-reference chain to

Wikipedia, if possible. Finding the accuracy of a majority vote of these annotations to be approximately

85%, we manually corrected the annotations to obtain ground truth for our experiments. The second data

set we constructed, Wiki, is a sample of paragraphs from Wikipedia pages. Mentions in this data set corre-

61

spond to existing hyperlinks in the Wikipedia text. Because Wikipedia editors explicitly link mentions to

Wikipedia pages, their anchor text tends to match the title of the linked-to-page—as a result, in the over-

whelming majority of cases, the disambiguation decision is as trivial as string matching. In an attempt to

generate more challenging data, we extracted 10,000 random paragraphs for which choosing the top dis-

ambiguation according to P (t|m) results in at least a 10% ranker error rate. 40 paragraphs of this data was

utilized for testing, while the remainder was used for training.

The data sets are summarized in Table 6.2. The table shows the number of annotated mentions which

were hyperlinked to non-null Wikipedia pages, and the number of titles in the documents (without counting

repetitions). For example, the AQUAINT data set contains 727 mentions,1 all of which refer to distinct titles.

The MSNBC data set contains 747 mentions mapped to non-null Wikipedia pages, but some mentions

within the same document refer to the same titles. There are 372 titles in the data set, when multiple

instances of the same title within one document are not counted.

6.9 Evaluation Methodology

To isolate the performance of the individual components of GLOW, we use multiple distinct metrics for

evaluation. Ranker accuracy, which measures the performance of the ranker alone, is computed only over

those mentions with a non-null gold disambiguation that appears in the candidate set. It is equal to the

fraction of these mentions for which the ranker returns the correct disambiguation. Thus, a perfect ranker

should achieve a ranker accuracy of 1.0, irrespective of limitations of the candidate generator. Linker ac-

curacy is defined as the fraction of all mentions for which the linker outputs the correct disambiguation

(note that, when the title produced by the ranker is incorrect, this penalizes linker accuracy). Lastly, we

evaluate our whole system against other baselines using a previously-employed “bag of titles” (BOT) eval-

uation [93], [111]. In BOT, we compare the set of titles output for a document with the gold set of titles for

that document (ignoring duplicates), and utilize standard precision, recall, and F1 measures.

6.10 Experiments and Results

In this section, we evaluate and analyze GLOW’s performance on the D2W task. We begin by evaluating the

mention detection component (Step 1 of the algorithm). The second column of Table 6.2 shows how many

of the “non-null” mentions and corresponding titles we could successfully identify (e.g. out of 747 mentions

1The data set contains votes on how important the mentions are. We believe that the results in [93] were reported on mentions
which the majority of annotators considered important. In contrast, we used all the mentions.

62

Data sets
Features ACE MSNBC AQUAINT Wiki
P (t|m) 94.05 81.91 93.19 85.88

P (t|m)+Local
Naive 95.67 84.04 94.38 92.76
Reweighted 96.21 85.10 95.57 93.59
All above 95.67 84.68 95.40 93.59

P (t|m)+Global
NER 96.21 84.04 94.04 89.56
Unambiguous 94.59 84.46 95.40 89.67
Predictions 96.75 88.51 95.91 89.79

P (t|m)+Local+Global
All features 97.83 87.02 94.38 94.18

Table 6.3: Ranker Accuracy. Bold values indicate the best performance in each feature group. The global
approaches marginally outperform the local approaches on ranker accuracy , while combing the approaches
leads to further marginal performance improvement.

Data set Local Global Local+Global
ACE 80.1→ 82.8 80.6→ 80.6 81.5→ 85.1
MSNBC 74.9→ 76.0 77.9→ 77.9 76.5→ 76.9
AQUAINT 93.5→ 91.5 93.8→ 92.1 92.3→ 91.3
Wiki 92.2→ 92.0 88.5→ 87.2 92.8→ 92.6

Table 6.4: Linker performance. The notation X → Y means that when linking all mentions, the linking
accuracy is X , while when applying the trained linker, the performance is Y . The local approaches are
better suited for linking than the global approaches. The linking accuracy is very sensitive to domain
changes.

in the MSNBC data set, only 530 appeared in our anchor-title index). Missing entities were primarily due

to especially rare surface forms, or sometimes due to idiosyncratic capitalization in the corpus. Improving

the number of identified mentions substantially is non-trivial; [165] managed to successfully identify only

59 more entities than we do in the MSNBC data set, using a much more powerful detection method based

on search engine query logs.

Next, we evaluate the accuracy of the ranker. Table 6.3 compares the ranker performance with baseline,

local and global features. The reweighted local features outperform the unweighted (“Naive”) version, and

the global approach outperforms the local approach on all data sets except Wikipedia. As the table shows,

our approach of defining the disambiguation context to be the predicted disambiguations of a simpler local

model (“Predictions”) performs better than using NER entities as in [29], or only the unambiguous entities

as in [93].2 Combining the local and the global approaches typically results in minor improvements.

While the global approaches are most effective for ranking, the linking problem has different charac-

teristics as shown in Table 6.4. We can see that the global features are not helpful in general for predicting

2In NER we used only the top prediction, because using all candidates as in [29] proved prohibitively inefficient.

63

System ACE MSNBC AQUAINT Wiki
Baseline: P (t|m) 69.52 72.83 82.67 81.77
GLOW Local 75.60 74.39 84.52 90.20
GLOW Global 74.73 74.58 84.37 86.62
GLOW 77.25 74.88 83.94 90.54
M&W 72.76 68.49 83.61 80.32

Table 6.5: End systems performance - BOT F1. The performance of the full system (GLOW) is similar to that
of the local version. GLOW outperforms [93] on all data sets.

whether the top-ranked disambiguation is indeed the correct one.

Further, although the trained linker improves accuracy in some cases, the gains are marginal—and the

linker decreases performance on some data sets. One explanation for the decrease is that the linker is

trained on Wikipedia, but is being tested on non-Wikipedia text which has different characteristics. How-

ever, in separate experiments we found that training a linker on out-of-Wikipedia text only increased test

set performance by approximately 3 percentage points. Clearly, while ranking accuracy is high overall,

different strategies are needed to achieve consistently high linking performance.

A few examples from the ACE data set help illustrate the tradeoffs between local and global features in

GLOW. The global system mistakenly links “<Dorothy Byrne>, a state coordinator for the Florida Green Party,

said . . . ” to the British journalist, because the journalist sense has high coherence with other mentions in the

newswire text. However, the local approach correctly maps the mention to null because of a lack of local

contextual clues. On the other hand, in the sentence “Instead of Los Angeles International, for example, consider

flying into<Burbank> or John Wayne Airport in Orange County, Calif.”, the local ranker links the mention Bur-

bank to Burbank, California, while the global system correctly maps the entity to Bob Hope Airport, because

the three airports mentioned in the sentence are highly related to one another.

Lastly, in Table 6.5 we compare the end system BOT F1 performance. The local approach proves a

very competitive baseline which is hard to beat. Combining the global and the local approach leads to

marginal improvements. The full GLOW system outperforms the existing state-of-the-art system from [93],

denoted as M&W, on all data sets. An important question is why M&W underperforms the baseline on the

MSNBC and Wikipedia data sets. In an error analysis, M&W performed poorly on the MSNBC data not

due to poor disambiguations, but instead because the data set contains only named entities, which were

often delimited incorrectly by M&W. Wikipedia was challenging for a different reason: M&W performs less

well on the short (one paragraph) texts in that set, because they contain relatively few of the unambiguous

entities the system relies on for disambiguation.

64

6.11 TAC Entity Linking

Traditional information extraction evaluations, such as the Message Understanding Conferences (MUC)

and Automatic Content Extraction (ACE), assess the ability to extract information from individual docu-

ments in isolation. In practice, however, we may need to gather information about a person or organization

that is scattered among the documents of a large collection. This requires the ability to identify the rele-

vant documents and to integrate facts, possibly redundant, possibly complementary, possibly in conflict,

coming from these documents. Furthermore, we may want to use the extracted information to augment an

existing data base. This requires the ability to link individuals mentioned in a document, and information

about these individuals, to entries in the data base.

The Knowledge Base Population (KBP) shared task was established to address and evaluate these ca-

pabilities. This is done through two separate subtasks, Entity Linking and Slot Filling. For both tasks, the

system is given a name and a document in which this name appears. For Entity Linking, it must decide

whether this name corresponds to an entry in a data base and, if so, which one. For Slot Filling, the sys-

tem must determine from a large corpus the values of specified attributes of the entity, such as the age and

birthplace of a person or the top employees of a corporation. We wanted to evaluate the performance of our

Wikification system [111] by competing in the 2011 KBP Entity Linking task. While the task is somewhat

different from Wikification, it is similar enough to shed light on the strengths and the weaknesses of our

Wikifier.

The Entity Linking task in KBP is formalized as follows. The organizers provide a set KB = {E1, E2,

. . . , E|KB|} of reference entities Ei, which is a subset of Wikipedia3. The organizers also provide a list of

queries, which are tripples of the form (Qid, Qform, Qtext), where Qid is a reference number for the query,

Qform is the surface form of the query, and Qtext is the context within which the surface form appears. Not

each query can be mapped to KB or to Wikipedia. For those queries which can be mapped, the goal of the

entity-linking task is to provide the mapping to KB. For those queries which cannot be mapped to KB, as

of 2011, the goal is to cluster together the queries which refer to the same entity. Therefore, the TAC Entity

Linking task is a combination of a Wikification-like task and cross-document co-reference resolution-like

task.

We note that the structure of the queries makes the task somewhat different than traditional Wikification

or cross-document co-reference resolution. The subtlety is that the surface form of the query is not always

the “canonical” representation of the queried entity in the text. We clarify this point in Table 6.6 and show

sample queries from the 2011 evaluation dataset. We note that for the query EL 02067, if we could resolve

3The TAC knowledge base contains 818,741 reference entities, which is about a third of 2009 Wikipedia pages.

65

Query ID EL 02067 EL 02243
Form Titans Zanesville
Text “Tenn. - Jeff Fisher issued his most positive

report yesterday on Vince Young’s status,
but the Tennessee Titans[m1] coach still is
not prepared to declare that the quarter-
back is to start tomorrow’s AFC wild-card
playoff game against the Chargers. Young
is dealing with a right quadriceps injury.
“He’s better, like I anticipated”, Fisher said
after the Titans[m2] had worked at their in-
door facility. . .
The Tennessean, a Nashville newspaper,
is polling those who tap in concerning
who should start at quarterback for the
Titans[m3], Young or Collins. At midday
yesterday, Young led 56 percent to 44 per-
cent. For a time, Collins had led.”

OBAMA SAYS HE WOULD EN-
HANCE SOCIAL SERVICES VIA
RELIGIOUS GROUPS Jeff Zeleny re-
ported from Zanesville[m1], and Michael
Luo from New York.
As he announced his proposal on Tuesday,
standing outside the Eastside Community
Ministry in Zanesville[m2], Obama
harked back to his early days as a commu-
nity organizer in Chicago, where Catholic
charities financed his programs. . .
ZANESVILLE[m3], Ohio.

Table 6.6: Sample TAC Entity Linking queries.

Given a knowledge base KB and a query (Qid, Qform, Qtext)

1. Select a set of reference mentions R = {m1, . . . ,mN} in Qtext. The set of reference mentions
are basically anchors in the text which are likely to be co-referent with the Qform in the
context of the text. For example, in Table 6.6, { Tennessee Titans[m1], Titans[m2], Titans[m3] }
are our sample reference mentions for the query EL 02067.

2. Assign to the set of reference mentions R a set of disambiguations D = {(mi, ti, ci)}Ni=1. For
each reference mention mi, ti is the Wikipedia title assigned to mi, and ci is the confidence
of the disambiguation.

3. Given a set D of possibly inconsistent disambiguations, decide on a single disambiguation
for Qid to KB, or map to NULL if no mapping can be found.

Figure 6.4: Pseudocode for the Illinois entity linking system in TAC 2011.

the within-document co-references ”Titans”-“Tennessee Titans[m1]”, the entity linking task would become

trivial. The same applies for the query EL 02243 with the co-reference “Zanesville”- “ZANESVILLE[m3],

Ohio.”.

The KBP Entity Linking dataset was generated to respect one sense per document assumption, therefore,

whenever the query surface form (e.g. Titans) apepars in the document, we can assume it refers to the same

entity. This property of the entity linking task creates an opportunity for query expansion, which make the

task somewhat different from the traditional Wikification or cross-document co-reference resolution.

66

6.11.1 Entity Linking Approach

We focus only on the “Wikification” part of the task. For the queries which cannot be linked to the knowl-

edge base, we provide a trivial solution for cross-document co-reference resolution by clustering all the

queries with identical surface forms together. In Figure 6.4 we outline the pseudocode for the Illinois en-

tity linking system in TAC 2011. The system has three main components: reference mention generation

which we describe in detail in Section 6.11.2, reference mention disambiguation which we describe in de-

tail in Section 6.11.3, and assembling the resulting disambiguations to a single solution which we describe

in Section 6.11.4. In Section 6.11.5 we report the experimental results and conclude.

6.11.2 Reference Mentions Selection

This step is very similar to query expansion as described, for example in [22]. The difference is that unlike

the traditional query expansion, the reference mentions will be bound to specific locations in the text. For

example, we mark the reference mentions set { Tennessee Titans[m1], Titans[m2], Titans[m3] } in Table 6.6.

We note that we will disambiguate the mentions jointly, however we will ultimately allow each reference

mention have a different disambiguation. Therefore, theoretically, in our system Titans[m2] and Titans[m3]

could have different disambiguations. We believe that this architecture is more robust since it allows us

to be more flexible in suggesting reference mentions for the query form, and to recover from potentially

erroneous reference mentions. This architecture also allows us to be robust to documents which do not

have a “one sense per document” property.

Below we describe our heuristic for reference mention recommendation.

1. Annotate Qtext with Illinois NER tagger [112]4. Let NERQform
(Qtext) be the set of all named entities

inQtext which could be matched through approximate string matching toQform. Approximate string

matching we applied was acronym matching (for example, AI would be matched with Artificial Intel-

ligence) and simple rules for matching named entities, which allowed matching Mr. Bush to GEORGE

W. BUSH. That is, we have simple rules for discarding professional titles, honorifics, case-insensitive

matching and punctuation-insensitive matching.

2. If NERQform
(Qtext) 6= ∅, let CF be the longest string in NERQform

(Qtext), let CF = Qform other-

wise. The purpose of this step is to identify the “canionical form” (CF) for the query form in the text.

For example, in Table 6.6, { Tennessee Titans[m1] is the canonical form for the query EL 02067, and {

Zanesville[m1] is the canonical form for the query EL 02243.

4Available at http://cogcomp.cs.illinois.edu/page/software

67

http://cogcomp.cs.illinois.edu/page/software

3. The Wikification system of [111] does not perform an approximate string matching, it cross-links only

the expressions which appeared as hyperlinks in Wikipedia. Therefore, the system of [111] would

not be able to cross-link the string ZANESVILLE to Wikipedia. Intuitively, we want to normalize

ZANESVILLE to Zanesville and Sharm Elsheikh to Sharm el-Sheikh. This step is particularly useful for

named entities with non-English origin. For example it Sharm el-Sheikh has multiple transliterations,

including “Sharm El Sheikh”, “Sharm Al Sheikh”, ‘Sharm AlSheikh”, ‘Sharm al-Sheikh” etc. It may be

useful to pre-process the query text to make it easier for the Wikification system to disambiguate the

reference mentions to Wikipedia. In this step, we normalize the canonical form CN to the normalized

canonical form NCF . Following [90], we define linkability of an expression s as the ratio of Wikipedia

pages which contain s as a hyperlink anchor to the number of Wikipedia pages which contain s in any

form. For example, 1154 Wikipedia pages contain the expression “Michael Jordan” and out of them

959 (83%) also contain a link anchored as “Michael Jordan” to the Wikipedia page corresponding to the

correct meaning. In constrast the expression “boarding school” appeared in 5038 Wikipedia pages,

and only 1421 (28%) of them, had a hyperlink anchored with the surface from. To obtain the canonical

normalized surface form for CF we compare CF against the list of all titles, redirects and hyperlink

anchors in Wikipedia. We keep only those, which appeared in at least 10 Wikipedia pages and can

be matched using a case-insensitive, punctuation-insensitive approximate string matching heuristis.

Among the set of matched expressions, we choose the most linkable one.

4. If CF 6= Qform and CF cannot be matched to neither Wikipedia anchors nor titles nor redirects, we

are assuming that an NER error has occurred and we revert to the normalization step with CF =

Qform.

5. We replace all the instances of CF in Qtext by NCF , and mark these instances as out final set of

reference mentions. The Wikifier of [111] will be applied to this modified text.

6.11.3 Disambiguation

The disambiguation component of our entity linking system is performed through a straighforward appli-

cation of the GLOW Wikification system of [111] described in Chapter 6. In this section we provide a short

summary of GLOW .

We formalize the task as finding a many-to-one matching on a bipartite graph, with mentions forming

one partition and Wikipedia titles the other (see Figure 6.5). We denote the output matching as an N -tuple

Γ = (t1, . . . , tN) where ti is the output disambiguation for mention mi. With this formulation in mind,

68

m1 = Taiwan m2 = China m3 = Jiangsu Province..............

t1 = Taiwan t5 =People's Republic of China t7 = Jiangsu

..............

Document text with mentions

t2 = Chinese Taipei t3 =Republic of China t4 = China t6 = History of China

φ(m1, t1)

φ(m1, t2)

φ(m1, t3)

ψ(t1, t7) ψ(t3, t7) ψ(t5, t7)

Figure 6.5: Sample disambiguation to Wikipedia with three mentions formalized as bipartite matching
problem. The correct mapping from mentions to titles is marked by heavy edges

we can write down an objective function: The common approach is to utilize the Wikipedia link graph to

obtain an estimate pairwise relatedness between titles ψ(ti, tj) and to efficiently generate a disambiguation

context Γ′, a rough approximation to the optimal Γ∗. We then solve the easier problem:

Γ∗ ≈ arg max
Γ

N∑
i=1

[φ(mi, ti) +
∑
tj∈Γ′

ψ(ti, tj)] (6.5)

Where {mi}Ni=1 is the set of mentions, {ti}Ni=1 is a set of associated Wikipedia pages, φ is a local scoring

function which assigns higher scores to titles with content similar to that of the input document, ψ is a co-

herence function which assigns higher scores to related titles in Wikipedia and Γ′, a rough approximation

to the optimal solution. We can solve the equation 6.5 efficiently by finding each ti and then mappingmi in-

dependently as in a local approach, but still enforces some degree of coherence among the disambiguations

using Γ′ and ψ.

The pseudocode for the original GLOW system is given in Figure 6.6. We note that the input document d

and the mention setM = {m1, . . . ,mN}which GLOW expects as input are the normalized text ofQtext and

the set of reference mentions provided by the algorithm described in Section 6.11.2. We note that while we

mark a specific set of mentions M for GLOW to link to Wikipedia, GLOW will identify and disambiguate

other expressions in the input text as well, and use them as disambiguation context for disambiguating

M .For our entity linking system, we disable the linker component (step 4 of GLOW). The reason is that we

will form the final solution in Section 6.6.

69

Algorithm: Disambiguate to Wikipedia
Input: document d, Mentions M = {m1, . . . ,mN}
Output: a disambiguation Γ = (t1, . . . , tN).
1) Let M ′ = M∪ { Other potential mentions in d}
2) For each mention m′i ∈ M ′, construct a set of disambiguation candidates Ti =
{ti1, . . . , tiki

}, tij 6= null
3) Ranker: Find a solution Γ = (t′1, . . . , t

′
|M ′|), where t′i ∈ Ti is the best non-null disam-

biguation of m′i.
4*) Linker: For each m′i, map t′i to null in Γ iff doing so improves the objective function 6.5
5) Return Γ entries for the original mentions M .

Figure 6.6: High-level pseudocode for GLOW . Step (4) is disabled for the entity-linking task.

6.11.4 Generating a Single Solution

The given an input of a document d and a set of mentions M = {m1, . . . ,mN} the GLOW system assigns

each mention mi a Wikipedia title ti, and two confidence scores (ri, li), where ri is the ranking confidence

that ti is the most appropriate disambiguation among the disambiguation candidates proposed for mi. li is

the linker score indicating whether the objective function 6.5 would improve if we map mi to NULL instead

of ti. A positive score indicates that ti is preferred over NULL and a negative score indicates otherwise.

Given a knowledge base KB = {E1, E2, . . . , E|KB|}, a query (Qid, Qform, Qtext) and a set of tuples

{(mi, ti, ri, li)}1≤i≤N returned by GLOW , our goal is to assign a KB entry E∗ to the query or NULL if no

such entry can be matched. Our first step is selecting a single Wikipedia page t∗ out of the set {(mi, ti, ri, li)}

(possibly NULL). We have explored four strategies:

1. MaxNoThres : Let

i∗ = arg max
1≤i≤N

{ri} (6.6)

Then t∗ = ti∗ . The idea is very simple: just select a title ti∗ which was assigned the maximum ranker

confidence.

2. MaxWithThres : Let

i∗ = arg max
1≤i≤N∧li≥0

{ri} (6.7)

Then t∗ = ti∗ . This strategy is identical to MaxNoThres, but we consider only the titles which were

“linked” by GLOW. If GLOW assigned a negative linker score li to the mentionmi, we discard ti from

the list of possible results.

3. SumNoThres : Let

i∗ = arg max
1≤i≤N

∑
tj=ti

rj (6.8)

70

Then t∗ = ti∗ . This strategy is similar to MaxNoThres, except we summarize the ranker scores for all

the mentions mapped to the same title.

4. SumWithThres : Let

i∗ = arg max
1≤i≤N∧li≥0

∑
tj=ti∧lj≥0

rj (6.9)

Then t∗ = ti∗ . This strategy is identical to SumNoThres, but we consider only the titles which were

“linked” by GLOW. We also summarize only over “linked” mentions.

Once we mapped the query to a Wikipedia title t∗, our next step is to map t∗ to an entry E∗ in the KBP

TAC knowledge base. Since GLOW and KBP can use different versions of Wikipedia, we used a very recent

February 2011 version of Wikipedia redirects. Therefore, a Wikipedia title t matches the KBP TAC entry E

if both redirect to the same page in the February 2011 version of Wikipedia.

6.11.5 Experiments and Results

It is important to note that the ranking and the linking components of GLOW are SVM models which

have to be trained. In the results reported in [111], we trained the GLOW system on Wikipedia articles

themselves, training the system to mimic the Wikipedia annotation scheme. For the TAC 2011 entity linking

task, we have also trained a GLOW model on the three publicly available newswire Wikification datasets

described in [111] as well as a collection on 97 blogs which we Wikified using the Mechanical Turk, but

have not published yet. The annotation style wad consistent to the Wikification works such as [29] and

[93] , it was not a TAC entity linking style annotation. Overall, our ”newswire” training dataset contained

200 documents. Since we never train on the TAC 2011 data, throughout this section, we directly report our

results on the TAC 2011 evaluation dataset.

Utility of Reference Mention Selection

In Table 6.7 we compare the performance of our submitted system with and without mention genera-

tion policy discussed in Section 6.11.2. We note that our submitted results to TAC were obtained using a

GLOW model trained on our internal newswire dataset rather than on the TAC data and with MaxNoThres

solution aggregation strategy. The baseline is to mark all the mentions in the query text which exactly match

the query form, we call this policy Naive mention generation. We compared the performance of the Naive

strategy and the strategy discussed in Section 6.11.2, which as the table shows improves the micro-average

performance by 3 points and the B3 F1 by 4 points.

Utility of Solution Aggregation Strategies

In Section 6.11.4 we have mentioned that given a knowledge base KB = {E1, E2, . . . , E|KB|}, a query

71

Mention Generation Performance
Policy Micro-Average B3 Precision B3 Recall B3 F1
Naive 0.752 0.709 0.740 0.724
According to Sec 6.11.2 0.787 0.757 0.765 0.761

Table 6.7: The utility of mention selection. The Naive mention generation strategy is marking all the men-
tion in query text which match exactly the query surface form. The method for mention generation pro-
posed in Section 6.11.2 improves the micro-average performance by 3 points and the B3 F1 by 4 points.
We note that these results were obtained using the GLOW model trained on our internal newswire dataset
rather than on the TAC data and with MaxNoThres solution aggregation strategy.

Mention Generation Performance
Policy Micro-Average B3 Precision B3 Recall B3 F1
MaxNoThres 0.787 0.757 0.765 0.761
MaxWithThres 0.788 0.757 0.765 0.761
SumNoThres 0.794 0.763 0.773 0.768
SumWithThres 0.788 0.757 0.766 0.762

Table 6.8: Comparison of the solution generation policies. We note that these results were obtained using
the GLOW model trained on our internal newswire dataset rather than on the TAC data. All approaches
are competitive.

(Qid, Qform, Qtext) we use GLOW to generate a set of tuples {(mi, ti, ri, li)}1≤i≤N . However, our end goal

is to assign a KB single entry E∗ to the query, and we have suggested four approaches for generating

a single solution, namely: MaxNoThres, MaxWithThres, SumNoThres, SumWithThres. In Table 6.8 we

compare these approaches and conclude that all approaches are competitive.

Ablation Feature Study The GLOW system has several groups of features: baseline, lexical naive, lexical

re-weighted, and coherence5. In [111] we ran an ablation study on the Wikification task, assessing the

strengths and the weaknesses of each feature group. We concluded that the baseline features provide a

very strong baseline. Lexical features lead to state-of-the-art performance, and while adding coherence

features allow to further marginally improve the performance, the key difficulty was identifying when a

mention refers to out-of-Wikipedia entity In other words, the linker scores are not very reliable. One of our

goals of participating in the TAC KBP entity linking competition was to see whether these statements hold

true for the TAC KBP entity linking task. In the following set of experiments, we have used the models

obtained in [111] for different feature groups. All of the models were trained on around 10K paragraphs

from Wikipedia articles. In Table 6.9 we compare the performance of the different GLOW models using

different sets of features. We note that in all the experiments, we used our mention selection strategy from

Section 6.11.2 and the SumNoThres single-solution generation strategy.

There are several conclusions in place. First, both the lexical features and the coherence features have

5 [111] has compared multiple approaches to capture coherence. In this work, we only report the best-performing approach: when
disambiguating mention m, use baseline predictions for other mentions as a semantic context.

72

Performance
Features Used Micro-Average B3 Precision B3 Recall B3 F1
Baseline 0.747 0.710 0.731 0.720

Baseline+Lexical
Naive 0.784 0.749 0.764 0.756
Re-weighted — — —-
All Lexical 0.786 0.752 0.766 0.759

Baseline+Global
Coherence 0.780 0.749 0.760 0.754

Baseline+Local+Global
All features 0.783 0.754 0.759 0.756

Table 6.9: Ranker Accuracy. Bold values indicate the best performance in each feature group. The global
approaches marginally outperform the local approaches on ranker accuracy , while combing the approaches
leads to further marginal performance improvement.

improved the performance considerably over the baseline. Second, surprisingly, both the lexical and the

coherence features performed extremely competitively to one another, and combining them did not lead to

further improvement. Surprisingly, the naive lexical features performed almost as well as the re-weighted

lexical features, which in [111] performed significantly better. Finally, the best configuration of models

trained on the 10K paragraphs from Wikipedia articles achieved macro-average of 0.786 andB3 F1 of 0.759,

while the best configuration trained on 200 newswire documents achieved achieved macro-average of 0.794

and B3 F1 of 0.768. Which means that a system trained on a smaller amount of newswire data and blogs

marginally outperformed a system trained on a large amount of Wikipedia data. We hypothesize that

the majority of test document contain enough context to easily disambiguate the mentions, as long as

the correct mentions have been identified (correct being indeed matching the query form) and the correct

disambiguation appears in the disambiguation candidate list.

6.11.6 Conclusions

We have presented an approach for using the GLOW system for the TAC KBP entity linking challenge. Our

approach was based on detecting mentions matching the query form in the query text, disambiguating

them to Wikipedia using GLOW and then forming a single Wikipedia title t corresponding to the query.

Finally, we have matched the assigned Wikipedia title to the KBP knowledge base using a February 2011

set of Wikipedia redirects. We noticed that although the GLOW system did not use the TAC KBP entity

linking data for training or tuning, it achieved a surprisingly good performance. We noticed that matching

the query form against potential mentions in the query text has a major impact on the end performance,

allowing us to improve by 4 points B3 F1 over the baseline. All reasonable strategies for reconciling po-

tentially conflicting disambiguations for the identified mention set, such as MaxNoThres, MaxWithThres,

73

SumNoThres, SumWithThres led to similar performance. GLOW has several feature groups. All of them

performed similarly, and surprisingly a combination of multiple lexical features or lexical and coherence

features together did not lead to an improvement over a single feature group. We were also surprised to

discover that the GLOW system trained on 200 newswire documents outperformed the same system when

trained on 10K articles from Wikipedia. Overall, the selection of the training set did not have much impact,

and most of the performance gains were made through our approach for detecting mentions matching

the query form in the query text and a single (either lexical or coherence) feature group. We hypothesize

that the majority of test document contain enough context to easily disambiguate the mentions, as long as

the correct mentions have been identified (correct being indeed matching the query form) and the correct

disambiguation appears in the disambiguation candidate list.

74

Chapter 7

Co-reference Resolution

7.1 Introduction

Co-reference resolution is the task of grouping mentions to entities. For example, consider the text snippet

in Fig. 7.11. The correct output groups the mentions {m1,m2,m5} to one entity while leaving m3 and m4

as singletons. Resolving co-reference is fundamental for understanding natural language. For example

in Fig. 7.1, to infer that Kusrk has suffered a torpedo detonation, we have to understand that {[vessel]}m1

refers to {[Kursk]}m2.

This inference is typically trivial for humans, but proves extremely challenging for state-of-the-art co-

reference resolution systems. We believe that it is world knowledge that gives people the ability to under-

stand text with such ease. A human reader can infer that since Kursk sank, it must be a vessel and vessels

which suffer catastrophic torpedo detonations can sink. Moreover, some readers might just know that Kursk

is a Russian submarine named after the city of Kursk, where the largest tank battle in history took place in

1943.

In this work we are using Wikipedia as a source of encyclopedic knowledge. Fig. 7.2 gives a high-level

overview of our system. We are using a publicly available system for context-sensitive disambiguation

to Wikipedia. We then extract attributes from the cross-linked Wikipedia pages (covered in Section 7.3.1),

assign these attributes to the document mentions (Section 7.3.2) and develop knowledge-rich compatibility

metric between mentions (Section 7.3.3)2. To maximize the utility of the injected knowledge, we develop

1Throughout this paper, curly brackets {} denote the extent and square brackets [] denote the head.
2The extracted attributes and the related resources are available for public download at http://cogcomp.cs.illinois.edu/

Data/Ace2004CorefWikiAttributes.zip

“After the {[vessel]}m1 suffered a catastrophic torpedo detonation, {[Kursk]}m2 sank
in the waters of {[Barents Sea]}m3

with all hands lost. Though rescue attempts were
offered by a nearby {Norwegian [ship]}m4

, Russia declined initial rescue offers, and
all 118 sailors and officers aboard {[Kursk]}m5

perished.”

Figure 7.1: Example illustrating the challenges in co-reference resolution.

75

http://cogcomp.cs.illinois.edu/Data/Ace2004CorefWikiAttributes.zip
http://cogcomp.cs.illinois.edu/Data/Ace2004CorefWikiAttributes.zip

Input: document d; mentions M = {m1, . . . ,mN}
1) For each mi ∈ M , assign it a Wikipedia page pi in a context-sensitive way
(pi may be null).
- If pi 6= null: extract knowledge attributes from pi and assign to m.
- Else extract knowledge attributes directly from m via noun-phrase parsing
techinques [150].
3) Let Q = {(mi,mj)}i 6=j , be the queue of mention pairs approximately sorted
by “easy-first” [52].
4) Let G be a partial clustering graph.
5) While Q is not empty
- Extract a pair p = (mi,mj) from Q.
- Using the knowledge attributes of mi and mj as well as the structure of G,
classify whether p is co-referent.
- Update G with the classification decision.
6) Construct an end clustering from G.

Figure 7.2: High-level system architecture.

approaches for entity-level inference in Section 7.4. We conclude with experiments in Section 7.6 and dis-

cussion in Section 7.7.

The key contributions of this work are:

(1) Using Wikipedia to assign a set of knowledge attributes to mentions in a context-sensitive way.

(2) Integrating the strength of rule-based systems such as [56; 108] into a machine learning framework.

(3) A novel approach for entity-level inference.

(4) By adding word-knowledge features, we improve the performance of a state-of-the-art system of [10]

by 3 MUC, 2 B3 and 2 CEAF F1 points on the non-transcript portion of the ACE 2004 dataset.

7.2 Baseline System and Data

In this work, we are using the state-of-the-art system of [10], which relies on a pairwise scoring function

pc to assign an ordered pair of mentions a probability that they are coreferential. It uses a rich set of

features including: string edit distance, gender match, whether the mentions appear in the same sentence,

whether the heads are synonyms in WordNet etc. The function pc is modeled using regularized averaged

perceptron for a tuned number of training rounds, learning rate and margin. For the end system, we

keep these parameters intact, our only modifications will be adding knowledge-rich features and adding

intermediate classification layers to the training and the inference, which we will discuss in the following

sections.

At inference time, given a document d and a pairwise co-reference scoring function pc, [10] generate

76

a graph Gd according to the Best-Link decision model [99] as follows. For each mention m in document

d, let Bm be the set of mentions appearing before m in d. Let a be the highest scoring antecedent: a =

argmaxb∈Bm
(pc(b,m)). We will add the edge (a,m) to Gd if pc(a,m) predicts the pair to be co-referent with

a confidence exceeding a chosen threshold, then we take the transitive closure3.

The properties of the Best-Link inference are illustrated in Fig. 7.3. At this stage, we ask the reader

to ignore the knowledge attributes at the bottom of the figure. Let us assume that the pairwise classifier

labeled the mentions (m2,m5) co-referent because they have identical surface form; mentions (m1,m4) are

co-referred because the heads are synonyms in WordNet. Let us assume that since m1 and m2 appear in

the same sentence, the pairwise classifier managed to leverage the dependency parse tree to correctly co-ref

the pair (m1,m2). The transitive closure would correctly link (m1,m5) despite the incorrect prediction of

the pairwise classifier on (m1,m5), and would incorrectly link m4 with all other mentions because of the

incorrect pairwise prediction on (m1,m4) and despite the correct predictions on (m2,m4) and (m4,m5).

Figure 7.3: A sample output of a pairwise co-reference classifier. The full edges represent a co-ref prediction
and the empty edges represent a non-coref prediction. A set of knowledge attributes for selected mentions
is shown as well.

We use the official ACE 2004 English training data [102]. We started with the data split used in [30],

which used 336 documents for training and 107 documents for testing. We note that ACE data contains

both newswire text and transcripts. In this work, we are using NLP tools such as POS tagger, named entity

recognizer, shallow parser, and a disambiguation to Wikipedia system to inject expressive features into a

co-reference system.

Unfortunately, current state-of-the-art NLP tools do not work well on transcribed text. Therefore, we

discard all the transcripts. Our criteria was simple. The ACE annotators have marked the named entities

both in newswire and in the transcripts. We kept only those documents which contained named entities

(according to manual ACE annotation) and at least 1/3 of the named entities started with a capital letter.

3 We use Platt Scaling while [10] used the raw output value of pc.

77

After this pre-processing step, we were left with 275 out of the original 336 training documents, and 42 out

of the 107 testing documents.

7.3 Wikipedia as Knowledge

In this section we describe our methodology for using Wikipedia as a knowledge resource. In Section 7.3.1

we cover the process of knowledge extraction from Wikipedia pages. We describe how to inject this knowl-

edge into mentions in Section 7.3.2. The bottom part of Fig. 7.3 illustrates the knowledge attributes our

system injects to two sample mentions at this stage. Finally, in Section 7.3.3 we describe a compatibility

metric our system learns over the injected knowledge.

7.3.1 Wikipedia Knowledge Attributes

Our goal in this section is to extract from Wikipedia pages a compact and highly-accurate set of knowledge

attributes, which nevertheless possesses discriminative power for co-reference4. We concentrate on three

types of knowledge attributes: fine-grained semantic categories, gender information and nationality where

applicable.

Each Wikipedia page is assigned a set of categories. There are over 100K categories in Wikipedia, many

are extremely fine-grained and contain very few pages. The value of Wikipedia category structure for

knowledge acquisition has long been noticed in several influential works, such as [134; 97] to name a few.

However, while the recall of the above resources is excellent, we found their precision insufficient for our

purposes. We have implemented a simple high-precision low-recall heuristic for extracting the head words

of Wikipedia categories as follows.

We noticed that Wikipedia categories have a simple structure of either <noun-phrase> or (<noun-

phrase><relation-token><noun-phrase>), where in the second case the category information is always on

the left. Therefore, we first remove the text succeeding a set of carefully chosen relation tokens5. With this

heuristic “Recipients of the Gold Medal of the Royal Astronomical Society” becomes just “Recipients”; “Populated

places in Africa” becomes “places”; however “Institute for Advanced Study faculty” becomes “Institute” (rather

than “faculty”). At the second step, we apply the Illinois POS tagger and keep only the tokens labeled

as NNS. This step allows us to exclude singular nouns incorrectly identified as heads, such as “Institute”

above. To further reduce the noise in category extraction, we also remove all rare category tokens which

appeared in less than 100 titles ending up with 2088 fine-grained entity types. We manually map popular

4We justify the reasons for our choice of high-precision low-recall knowledge extraction in Section 7.3.2.
5The selected set was: {of, in, with, from, ”,”, at, who, which, for, and, by}

78

fine-grained categories to coarser-grained ones, more consistent with ACE entity typing. A sample of the

mapping is shown in the table below:

Fine-grained Coarse-grained

people, births, writers, inventors, . . . PER

departments, organizations, banks, . . . ORG

venues, trails, areas, buildings, . . . LOC

countries, towns, villages, . . . GPE

churches, highways, schools, . . . FACILITY

Manual inspection of the extracted category keywords has led us to believe that this heuristic achieves a

higher precision at a considerable loss of recall when compared to the more sophisticated approach of [97],

which correctly identifies “faculty” as the head of “Institute for Advanced Study faculty”, but incorrectly iden-

tifies “statistical organizations” as the head of “Presidents of statistical organizations” in about half the titles

containing the category6.

We assign gender to the titles using the following simple heuristic. The first paragraph of each Wikipedia

article provides a very brief summary of the entity in focus. If the first paragraph of a Wikipedia page

contains the pronoun “she”, but not “he”, the article is considered to be about a female (and vice-versa).

However, when the page is assigned a non-person-related fine-grained NE type (e.g. school) and at the

same time is not assigned a person-related fine-grained NE type (e.g. novelist), we mark the page as inan-

imate regardless of the presence of he/she pronouns. The nationality is assigned by matching the tokens

in the original (unprocessed) categories of the Wikipedia page to a list of countries. We assign nationality

not only to the Wikipedia titles, but also to single tokens. For each token, we track the list of titles it ap-

pears in, and if the union of the nationalities assigned to the titles it appears in is less than 7, we mark the

token compatible with these nationalities. This allows us to identify Ivan Lebedev as Russian and Ronen

Ben-Zohar as Israeli, even though Wikipedia may not contain pages for these specific people.

7.3.2 Injecting Knowledge Attributes

Once we have extracted the knowledge attributes of Wikipedia pages, we need to inject them into the

mentions. [109] used YAGO for similar purposes, but noticed that knowledge injection is often noisy.

Therefore they used YAGO only for mention pairs where one mention was an NE of type PER/LOC/ORG

and the other was a common noun. This implies that all MISC NEs were discarded, and all NE-NE pairs

6[97] analyze a set of categories S assigned to Wikipedia page p jointly, hence the same category expression can be interpreted
differently, depending on S.

79

were discarded as well. We also note that [109] reports low utility of FrameNet-based features. In fact, when

incrementally added to other features in cluster-ranking model the FrameNet-based features sometimes led

to performance drops. This observation has motivated our choice of high-precision low-recall heuristic in

Section 7.3.1 and will motivate us to add features conservatively when building attribute compatibility

metric in Section 7.3.3.

Additionally, while [109] uses the union of all possible meanings a mention may have in Wikipedia, we

deploy GLOW [111]7, a context-sensitive system for disambiguation to Wikipedia. Using context-sensitive

disambiguation to Wikipedia as well as high-precision set of knowledge attributes allows us to inject the

knowledge to more mention pairs when compared to [109]. Our exact heuristic for injecting knowledge

attributes to mentions is as follows:

Named Entities with Wikipedia Disambiguation

If the mention head is an NE matched to a Wikipedia page p by GLOW, we import all the knowledge

attributes from p. GLOW allows us to map “Ephraim Sneh” to http://en.wikipedia.org/wiki/Efraim Sneh and

to assign it the Israeli nationality, male gender, and the fine-grained entity types: {member, politician, person,

minister, alumnus, physician, general}.

Head and Extent Keywords

If the mention head is not mapped to Wikipedia by GLOW and the head contains keywords which appear

in the list of 2088 fine-grained entity types, then the rightmost such keyword is added to the list of mention

knowledge attributes. If the head does not contain any entity-type keywords but the extent does, we add

the rightmost such keyword of the extent. In both cases, we apply the heuristic of removing clauses starting

with a select set of punctuations, prepositions and pronouns, annotating what is left with POS tagger and

restricting to noun tokens only8. This allows us to inject knowledge to mentions unmapped to Wikipedia,

such as: “{current Cycle World publisher [Larry Little]}”, which is assigned the attribute publisher but not world

or cycle. Likewise, “{[Joseph Conrad Parkhurst], who founded the motorcycle magazine Cycle World in 1962 }”, is

not assigned the attribute magazine, since the text following “who” is discarded.

7.3.3 Learning Attributes Compatibility

In the previous section we have assigned knowledge attributes to the mentions. Some of this information,

such as gender and coarse-grained entity types are also modeled in the baseline system of [10]. Our goal is

to build a compatibility metric on top of this redundant, yet often inconsistent information.

7Available at: http://cogcomp.cs.illinois.edu/page/software_view/Wikifier
8This heuristic is similar to the one we used for extracting Wikipedia category headwords and seems to be a reasonable baseline

for parsing noun structures [150].

80

http://cogcomp.cs.illinois.edu/page/software_view/Wikifier

The majority of the features we are using are straightforward, such as: (1) whether the two mentions

mapped to the same Wikipedia page, (2) gender agreement (both Wikipedia and dictionary-based), (3)

nationality agreement (here we measure only whether the sets intersect, since mentions can have multiple

nationalities in the real world), (4) coarse-grained entity type match, etc.

The only non-trivial feature is measuring compatibility between sets of fine-grained entity types, which

we describe below. Let us assume that mention m1 was assigned the set of fine-grained entity types S1 and

the mention m2 was assigned the set of fine-grained entity types S2. We record whether S1 and S2 share

elements. If they do, than, in addition to the boolean feature, the list of the shared elements also appears

as a list of discrete features. We do the same for the most similar and most dissimilar elements of S1 and

S2 (along with their discretized similarity score) according to a WordNet-based similarity metric of [37].

The reason for explicitly listing the shared, the most similar and dissimilar elements is that the WordNet

similarity does not always correspond to co-reference compatibility. For example, the pair (company, rival)

has a low similarity score according to WordNet, but characterizes co-referent mentions. On the other hand,

the pair (city, region) has a high WordNet similarity score, but characterizes non-coreferent mentions. We

want to allow our system to “memorize” the discrepancy between the WordNet similarity and co-reference

compatibility of specific pairs.

We also note that we generate a set of selected conjunctive features, most notably of fine-grained cate-

gories with NER predictions. The reason is that the pair of mentions “(Microsoft, Google)” are not co-referent

despite the fact that they both have the company attribute. On the other hand “(Microsoft, Redmond-based com-

pany)” is a co-referent pair. To capture this difference, we generate the feature ORG-ORG&&share attribute

for the first pair, and ORG-O&&share attribute for the second pair9. These features are also used in con-

junction with string edit distance. Therefore, if our system sees two named entities which share the same

fine-grained type but have a large string edit distance, it will label the pair as non-coref.

7.4 Learning-based Multi-Sieve Approach

State-of-the-art machine-learning co-ref systems, e.g. [10; 109] train a single model for predicting co-reference

of all mention pairs. However, rule-based systems, e.g. [56; 108] characterize mention pairs by discourse

structure and linguistic properties and apply rules in a prescribed order (high-precision rules first). Some-

what surprisingly, such hybrid approach of applying rules on top of structures produced by statistical tools

(such as dependency parse trees) performs better than pure machine-learning approach10.

9The head of “Redmond-based company” is “company”, which is not a named entity, and is marked O.
10[108] recorded the best result on CoNLL 2011 shared task.

81

In this work, we attempt to integrate the strength of linguistically motivated rule-based systems with

the robustness of a machine learning approach. We started with a hypothesis that different types of mention

pairs may require a different co-ref model. For example, consider the text below:

Queen Rania of Jordan , Egypt’s [Suzanne Mubarak]m1
and others were using their charisma and

influence to campaign for equality of the sexes. [Mubarak]m2 , wife of Egyptian President [Hosni

Mubarak]m3
, and one of the conference organizers, said they must find ways to . . .

There is a subtle difference between mention pairs (m1,m2) and (m2,m3). One of the differences is purely

structural. The first pair appears in different sentences, while the second pair – in the same sentence. It

turns out that string edit distance feature between two named entities has different “semantics” depending

on whether the two mentions appear in the same sentence. The reason is that to avoid redundancy, humans

refer to the same entity differently within the sentence, preferring titles, nicknames and pronouns. There-

fore, when a similar-looking named entities appear in the same sentence, they are actually likely to refer to

different entities. On the other hand, in the sentence “Reggie Jackson, nicknamed Mr. October . . . ” we have to

rely heavily on sentence structure rather than string edit distance to make the correct co-ref prediction.

Trained on Layer-specific
Layer All Data Training
AllSentencePairs 61.37 67.46
ClosestNonProDiffSent 60.71 63.33
NonProSameSentence 62.97 63.80
NerMentionsDiffSent 86.44 87.12
SameSentenceOneNer 64.10 68.88
Adjacent 71.00 78.80
SameSenBothNer 75.30 73.75
Nested 76.11 79.00

Table 7.1: F1 performance on co-referent mention pairs by inference layer when trained with all data versus
level-specific data only.

Our second intuition is that “easy-first” inference is necessary to effectively leverage knowledge. For

example, in Figure 7.3, our goal is to link vessel to Kursk and assign it the Russian/Soviet nationality prior to

applying the pairwise co-ref classifier on (vessel, Norwegian ship). Therefore, our goal is to apply the pair-

wise classifier on pairs in prescribed order and to propagate the knowledge across mentions. The ordering

should be such that (a) maximum amount of information is injected at early stages (b) the precision at the

early stages is as high as possible [108]. Hence, we divide the mention pairs as follows:

82

Nested: are pairs such as “{{[city]m1} of [Jerusalem]m2}” where the extent of

one of the mentions contains the extent of the other. For some mentions, the

extent is the entire clause, so we also added a requirement that mention heads

are at most 7 tokens apart. Intuitively, it is the easiest case of co-reference.

There are 5,804 training samples and 992 testing samples, out of which 208 are

co-referent.

SameSenBothNer: are pairs of named entities which appear in the same sen-

tence. We already saw an example for this case involving [Mubarak]m2 and

[Hosni Mubarak]m3. There are 13,041 training samples and 1,746 testing sam-

ples, out of which 86 are co-referent.

Adjacent: are pairs of mentions which appear closest to each other on the

dependency tree. We note that most of the nested pairs are also adjacent.

There are training 5,872 samples and 895 testing samples, out of which 219 are

co-referent.

SameSentenceOneNer: are pairs which appear in the same sentence and ex-

actly one of the mentions is a named entity, and the other is not a pronoun.

Typical pairs are “Israel-country”, as opposed to “Bill Clinton - reporter”. This

type of pairs is fairly difficult, but our hope is to use encyclopedic knowledge

to boost the performance. There are 15,715 training samples and 2,635 testing

samples, out of which 207 are co-referent.

NerMentionsDiffSent: are pairs of mentions in different sentences, both of

which are named entities. There are 189,807 training samples and 24,342 test-

ing samples, out of which 1,628 are co-referent.

NonProSameSentence: are pairs in the same sentence, where both men-

tions are non-pronouns. This level includes all the pairs in the SameSen-

tenceOneNer level. Typical pairs are “city-capital” and “reporter-celebrity”.

There are 33,895 training samples and 5,393 testing samples, out of which 336 are

co-referent.

ClosestNonProDiffSent: are pairs of mentions in different sentences with no

other mentions between the two. 3,707 training samples and 488 testing sam-

ples, out of which 38 are co-referent.

AllSentencePairs: All mention pairs within same sentence. There are 49,953

training samples and 7,809 testing samples, out of which 846 are co-referent.

83

FinalLayer: The set of mention pairs classified by the baseline system. 525,398

training samples and 85,358 testing samples, out of which 1,387 are co-

referent.

In Table 7.1 we compare the performance of the model layer by layer in two scenarios. First, we train

with the entire 525,398 training samples, and then we train on whatever training data is available for the

specific layer11. We were surprised to see that the F1 on the nested mentions, when trained on the 5,804

layer-specific samples improves to 79.00 versus 76.11 when trained on the 525,398 final layer samples.

There are several things to note when interpreting the results in Tab 7.1. First, the sheer ratio of positive

to negative samples fluctuates drastically. For example, 208 out of the 992 testing samples at the nested layer

are positive, while there are only 86 positive samples out of 1,746 testing samples in the SameSenBothNer

layer. It seems unreasonable to use the same model for inference at both layers. Second, the data for

intermediate layers is not always a subset of the final layer. The reason is that final layer extracts a positive

instance only for the closest co-referent mentions, while layers such as AllSentencePairs extract samples for

all co-referent pairs which appear in the same sentence. Third, while our division to layers may resemble

witchcraft, it is motivated by the intuition that mentions appearing close to one another are easier instances

of co-ref as well as linguistic insights of [108].

7.5 Entity-Level Inference

In this section we describe our approach for building entity-level features. Let {C1, C2, . . . CN} be the set

of layer-specific classifiers. In our case, C1 is the nested mention pairs classifier, C2 is the SameSenBothNer

classifier, and C9 is the final layer classifier. We design layer-based features so that the subsequent layers

“see” the decisions of the previous layers and use entity-level features based on the intermediate clustering.

However, unlike [108], we allow the subsequent layers to change the decisions made by the lower layers

(since additional information becomes available).

Let Ri(m) be the set of all mentions which, when paired with the mention m form valid sample pairs

for layer i. E.g. in our running example of Figure 7.1, R2([Kursk]m2
) = {[Barents Sea]m3

}, since both

m1 and m2 are NEs and appear in the same sentence. Let R+
i (m) be the set of all mentions which were

labeled as co-referent to the mention m by the classifier Ci (including m, which is co-referent to itself).

We define R−i (m) similarly. We denote the union of mentions co-refed to m during inference up to layer

11 We report pairwise performance on mention pairs because it is the more natural metric for the intermediate layers. We report
only performance on co-referent pairs, because for many layers, such as the final layer, 99% of the mention pairs are non-coref, hence
a baseline of labeling all samples as non-coref would result in 99% accuracy. We are interested in a more challenging baseline, the
co-referent pairs.

84

i as E+
i (m) = ∪i−1

j=1R
+
j (m). Similarly, E−i (m) = ∪i−1

j=1R
−
j (m). Using these definitions we can introduce

entity-level prediction features which allow subsequent layers to use information aggregated from previous

layers.

Intermediate Clustering Features (IC)

ICR
i (mj ,mk) =


−1 mj ∈ R−i−1(mk)

+1 mj ∈ R+
i−1(mk)

0 Otherwise

ICE
i (mj ,mk) =


−1 mj ∈ E−i−1(mk)

+1 mj ∈ E+
i−1(mk)

0 Otherwise

ICR
i stores the pairwise prediction history, thus when classifying a pair (mj ,mk) at layer i, a classifier

can see the predictions of all the previous layers applicable on that pair. ICE
i stores the transitive closures

of the layer-specific predictions. We note that both ICR
i and ICE

i can have the values +1 and -1 active

at the same time if intermediate layer classifiers generated conflicting predictions. However, a classifier

at level i will use as features both ICR
1 ,. . . ICR

i−1 and ICE
1 ,. . . ICE

i−1, thus it will know the lowest layer at

which the conflicting evidence occurs. The classifier at level i also uses set identity, set containment, set

overlap and other set comparison features between E+/−
i−1 (mj) and E

+/−
i−1 (mk). We check whether the sets

have symmetric difference, whether the size of the intersection between the two sets is at least half the size

of the smallest set etc. We also generate subtypes of set comparison features when restricting the elements

to NE-mentions and non-pronominal mentions (e.g “what percent of named entities do the sets have in

common?”).

Surface Form Compatibility (SFC)

The intermediate clustering features do not allow us to generalize predictions from pairs of mentions

to pairs of surface strings. For example, if we have three mentions: {[vessel]m1
, [Kursk]m2

, [Kursk]m5
}, then

the prediction on the pair (m1,m2) will not be used for the prediction on the pair (m1,m5), even though

in both pairs we are asking whether Kursk can be referred to as vessel. The surface form compatibility fea-

tures mirror the intermediate clustering features, but relax mention IDs and replace them by surface forms.

Similarly to intermediate clustering features, both +1 and -1 values can be active at the same time. We also

generate subtypes of set-comparison features for NE-mentions and optionally stemmed non-pronominal

mentions.

85

7.6 Experiments and Results

(B)+Knowledge
(B)aseline (B)+Knowledge (B)+Predictions +Predictions

FinalLevel 66.58 69.08 68.77 70.43
AllSentencePairs 67.46 71.79 69.59 73.50
ClosestNonProDiffSent 63.33 65.62 65.57 70.76
NonProSameSentence 63.80 69.62 67.03 71.11
NerMentionsDiffSent 87.12 88.23 88.68 89.07
SameSentenceOneNer 68.88 70.58 67.89 73.17
Adjacent 78.80 81.32 80.00 81.79
SameSenBothNer 73.75 80.50 77.21 80.98
Nested 79.00 83.59 80.65 83.37

Table 7.2: Utility of knowledge and prediction features (F1 on co-referent mention pairs) by inference layers.
Both knowledge and entity-based features significantly and independently improve the performance for
all layers. The goal of entity-based features is to propagate knowledge effectively, thus it is encouraging
that the combination of entity-based and knowledge features performed significantly better than any of the
approaches individually at the final layer.

7.6.1 Ablation Study

In Table 7.2 we report the pairwise F1 scores on co-referent mention pairs broken down by layer and us-

ing different components. This allows us to see, for example, that adding only the knowledge attributes

improved the performance at NonProSameSentence layer from 63.80 to 69.62. We have ordered the layers

according to our initial intuition of “easy first”. We were surprised to see that co-ref resolution for named

entities in the same sentence was harder than cross-sentence (73.75 vs. 87.12 baseline F1). We were also

surprised to see that resolving all mention pairs within sentence when including pronouns was easier than

resolving pairs where both mentions were non-pronouns (67.46 vs. 63.80 baseline F1).

7.6.2 End system performance

Recall that the Best-Link algorithm applies transitive closure on the graph generated by thresholding the

pairwise co-reference scoring function pc. The lower the threshold on the positive prediction, the lower is

the precision and the higher is the recall. In Fig. 7.4 we compare the end clustering quality across a variety

of thresholds and for various system flavors using three metrics: MUC [157], B3 [2] and CEAF [84]12. The

purpose of this comparison is to see the impact of the knowledge and the prediction features on the final

output and to see whether the performance gains are due to (mis-)tuning of one of the systems or are they

consistent across a variety of thresholds.
12In the interest of space, we refer the reader to the literature for details about the different metrics.

86

 75

 76

 77

 78

 79

 80

 81

 82

0.5 0.9 0.999 1E-6 1E-9 1E-12 1E-15 0

F
1
 -

 M
U

C

Confidence threshold for a positive prediction

Baseline
Knowledge&Predictions

KnowledgeOnly
PredictionsOnly

 81.5

 82

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

0.5 0.9 0.999 1E-6 1E-9 1E-12 1E-15 0

F
1
 -

 B
3

Confidence threshold for a positive prediction

Baseline
Knowledge&Predictions

KnowledgeOnly
PredictionsOnly

 73

 74

 75

 76

 77

 78

 79

 80

0.5 0.9 0.999 1E-6 1E-9 1E-12 1E-15 0

F
1

 -
 C

E
A

F

Confidence threshold for a positive prediction

Baseline
Knowledge&Predictions

KnowledgeOnly
PredictionsOnly

Figure 7.4: End performance for various systems.

The end performance of the baseline system on our training/testing split peaks at around 78.39 MUC,

83.03 B3 and 77.52 CEAF, which is higher (e.g. 3 B3 F1 points) than the originally reported result on the

entire dataset (which includes the transcripts). This is expected, since well-formed text is easier to process

than transcripts. We note that our baseline is a state-of-the art system which recorded the highest B3 and

BLANC scores at CoNLL 2011 shared task and took the third place overall. Fig. 7.4 shows a minimum

improvement of 3 MUC, 2 B3 and 1.25 CEAF F1 points across all thresholds when comparing the baseline

to our end system. Surprisingly, the knowledge features outperformed prediction features on pairwise,

MUC and B3 metrics, but not on the CEAF metric. This shows that pairwise performance is not always

indicative of cluster-level performance for all metrics.

7.7 Conclusions and Related Work

To illustrate the strengths of our approach, let us consider the following text:

87

Another terminal was made available in {[Jiangxi]m1}, an {inland [province]m2}.

. . . The previous situation whereby large amount of goods for {Jiangxi [province]m3
}

had to be re-shipped through Guangzhou and Shanghai will be changed completely.

The baseline system assigns each mention to a separate cluster. The pairs (m1,m2) and (m1,m3) are

misclassified because the baseline classifier does not know that Jiangxi is a province and the preposition an

before m2 is interpreted to mean it is a previously unmentioned entity. The pair (m2,m3) is misclassified

because identical heads have different modifiers, as in (big province, small province). Our end system first

co-refs (m1,m2) at the AllSameSentence layer due to the knowledge features, and then co-refs (m1,m3) at

the final layer due to surface form compatibility features indicating that province was observed to refer to

Jiangxi in the document. The transitivity of Best-Link takes care of (m2,m3).

However, our approach has multiple limitations. Entity-level features currently do not propagate knowl-

edge attributes directly, but through aggregating pairwise predictions at knowledge-infused intermediate

layers. We attempted to propagate the knowledge explicitly across partial clustering without success due

to conflicting predictions and error propagation across layers. We rely on gold mention boundaries and

exhaustive gold co-reference annotation. This prevented us from applying our approach to the Ontonotes

dataset where singleton clusters and co-referent nested mentions are removed. Therefore gold annotation

for training several layers of our scheme is missing (e.g. nested mentions). Another limitation is our some-

what preliminary division to layers. [158] have experimented with approaches for automatic decomposi-

tion of data to subclasses and learning multiple models to improve data separability. We hope that similar

approach would be useful for co-reference resolution. Ideally, we want to make “simple decisions” first,

similarly to what was done in [52] for dependency parsing, and model clustering as a structured problem,

similarly to [66; 160]. However, our experience with multi-sieve approach with classifiers suggests that a

single model would not perform well for both lower layers with little entity-level information and higher

layers with a lot of entity-level features. Addressing the aforementioned challenges is a subject for future

work.

There has been an increasing interest in knowledge-rich co-reference resolution [104; 57; 109]. We

use Wikipedia differently from [104] who focus on using WikiRelate, a Wikipedia-based relatedness met-

ric [133]. [109] used the union of all possible interpretations a mention may have in YAGO, which means

that Michael Jordan could be co-refed both to a scientist and basketball player in the same document. Addi-

tionally, [109] use exact word matching, relying on YAGO’s ability to extract a comprehensive set of facts

offline13. We are the first to use context-sensitive disambiguation to Wikipedia, which received a lot of

13YAGO uses WordNet to expand its set of facts. For example, if Martha Stewart is assigned the meaning personality from category
head words analysis, YAGO adds the meaning celebrity because personality is a direct hyponym of celebrity in WordNet. However, this

88

attention recently [15; 29; 90; 93; 111]. We extract context-sensitive, high-precision knowledge attributes

form Wikipedia pages and apply (among other features) WordNet similarity metric on pairs of knowledge

attributes to determine attribute compatibility.

We have integrated the strengths of rule-based systems such as [56; 108] into a multi-sieve machine

learning framework. We show that training layer-specific models significantly increases the performance

on most intermediate layers.

We develop a novel approach for entity-level inference. Unlike [109] who construct entities left-to-right,

and similarly to [108] we resolve easy instances of co-ref to reduce error propagation in entity-level features.

Unlike [108], we allow later stages of inference to change the decisions made at lower stages as additional

entity-level evidence becomes available.

By adding word-knowledge features and refining the inference, we improve the performance of a state-

of-the-art system of [10] by 3 MUC, 2 B3 and 2 CEAF F1 points on the non-transcript portion of the ACE

2004 dataset.

is done offline in a context-insensitive way, which is inherently limited.

89

Chapter 8

Non-encyclopedic Knowledge in NLP

Over the last few years, two of the main research directions in machine learning of natural language pro-

cessing have been the study of semi-supervised learning algorithms as a way to train classifiers when the

labeled data is scarce, and the study of ways to exploit knowledge and global information in structured

learning tasks. In this paper, we suggest to incorporate domain knowledge in semi-supervised learning

algorithms. We use constraints as a general framework to represent common-sense knowledge and develop

a novel learning protocol which unifies and can exploit several kinds of constraints. The experimental re-

sults presented in the information extraction domain exhibit that applying constraints helps the model to

generate better feedback during learning, and hence the framework allows for high performance learning

with significantly less training data than was possible before on these tasks.

8.1 Introduction

Natural Language Processing (NLP) systems typically require large amounts of knowledge to achieve good

performance. Acquiring labeled data is a difficult and expensive task. Therefore, an increasing attention

has been recently given to semi-supervised learning, where large amounts of unlabeled data are used to

improve the models learned from a small training set [27; 138]. The hope is that semi-supervised or even

unsupervised approaches, when given enough knowledge about the structure of the problem, will be com-

petitive with the supervised models trained on large training sets. However, in the general case, semi-

supervised approaches give mixed results, and sometimes even degrade the model performance [101]. In

many cases, improving semi-supervised models was done by seeding these models with domain informa-

tion taken from dictionaries or ontology [24; 27; 55; 138].

On the other hand, in the supervised setting, it has been shown that incorporating domain and problem

specific structured information can result in substantial improvement in the supervised setting [142; 120].

This paper proposes a novel constraints-based learning protocol for guiding semi-supervised learning.

We develop a formalism for constraints-based learning that unifies several kinds of constraints: unary,

90

dictionary based, constraints and n-ary constraints, which encode structural information and interdepen-

dencies among possible labels. We also extend the notion of constraint violation to account for multiple

levels of violating a constraint. Our protocol can be used in the presence of any learning model, including

those that acquire additional statistical constraints from observed data while learning. In the experimental

part of this paper we use HMMs as the underlying model, and exhibit significant reduction in the number

of training examples required in two information extraction problems.

As is often the case in semi-supervised learning, the algorithm can be viewed as a process that labels

un-labeled examples, counting on an intermediate learned model. Our algorithm pushes this intuition fur-

ther, in that the use of constraints allows us to better exploit domain information as a way to label, along

with the current learned model, unlabeled examples. Given a small amount of labeled data and a large

unlabeled pool, our framework is as follows:

1) Initialize the model based on labeled data.

2) Use constraints and the learned model to label the instances in the pool.

3) Update the model by newly labeled data. Go to 2.

This way, we can generate better “training” examples during the semi-supervised learning process. The

core of our approach, (2), is described in Section 8.5. The task is described in Section 8.3 and the experimen-

tal study in Section 8.6, where we show that the improvement on the training examples via the constraints

indeed boosts the learned model and the proposed method significantly outperforms the traditional semi-

supervised framework.

8.2 Related Work

The idea of injecting common-sense knowledge into semi-supervised learning is not new, while ideas on

using knowledge as constraints in the supervised domain are more recent, but have shown a lot of promise.

Several previously suggested approaches are compared with our framework below.

In the semi-supervised domain there are two main approaches. One is using the prior knowledge to

accurately tailor the generative model so that it captures the domain structure. For example, [54] proposes

Diagonal Transition Models for sequential labeling tasks where neighboring words tend to have the same

labels. This is done by constraining the HMM transition matrix, an approach that was used also for other

models, such as CRF. However [120] showed that this approach is not expressive enough to support more

expressive, non-sequential constraints.

A second approach has been to use a small high-accuracy set of labeled tokens as a way to seed and

91

(a) [AUTHOR Lars Ole Andersen.] [TITLE Program analysis and specialization for the C programming
language .] [TECH-REPORT PhD thesis ,] [INSTITUTION DIKU , University of Copenhagen ,] [
DATE May 1994 .]

(b) [AUTHOR Lars Ole Andersen . Program analysis and] [TITLE specialization for the] [EDITOR
C] [BOOKTITLE Programming language] [TECH-REPORT . PhD thesis ,] [INSTITUTION DIKU ,
University of Copenhagen , May] [DATE 1994 .]

Figure 8.1: Error analysis of the HMM model. The correct assignment was shown in (a). While the pre-
dicted label assignment (b) is generally coherent, some obvious constraints are violated. Most obviously,
punctuation marks are ignored as cues for state transitions.

bootstrap the semi-supervised learning. This was used, for example, by [138; 27] in information extraction,

and by [122] in POS tagging. [55] extends the dictionary-based approach to sequential labeling tasks by

propagating the information given in the seeds with contextual word similarity. [24] a conceptually similar

approach, with a large named-entity dictionary, where a similarity between the candidate named-entity and

its matching prototype in the dictionary was encoded as a feature in a supervised classifier.

In our framework, dictionary lookup approaches can be seen as unary constraints on the output states.

We extend these kinds of constraints and allow for more general, n-ary constraints.

In the supervised learning setting it has been established that incorporating global information can sig-

nificantly improve performance on several NLP tasks, including information extraction and semantic role

labeling. [149; 142; 120]. Our formalism is most related to this last work. But, we develop a semi-supervised

learning based on this formalism. We also make use of soft constraints and, furthermore, extend the notion

of soft constraints to account for multiple levels of constraints’ violation. Conceptually, although not tech-

nically, the most related work to ours is [130] that, in a somewhat ad-hoc manner uses soft constraints to

guide an unsupervised model that was crafted for mention tracking. To the best of our knowledge, we are

the first to suggest a general semi-supervised protocol that is driven by soft constraints.

We propose learning with constraints - a framework that combines the approaches described above in

a unified and intuitive way.

8.3 Tasks, Examples and Datasets

In section 8.4 we will develop a general framework for learning and inference with constraints. However, it

is useful to illustrate the ideas on concrete problems. Therefore, in this section, we give a brief introduction

to the two domains for which we have implemented our algorithms. Both domain pertain to the Informa-

tion Extraction problems, the task of identifying and extracting multiple fields from a given text. Since the

fields are typically related and interdependent, this kind of applications provide a good text case for an

92

1) Each field must be a consecutive list of words, and can appear at most once
in a citation.
2) State transitions must occur on punctuation marks.
3) The citation can only start with author or editor.
4) The words pp. pages correspond to PAGE.
5) Four digit numbers starting with 20xx and 19xx correspond to DATE.
6) Quotations can appear only in titles.
7) The words ’note, submitted, appear’ correspond to in the field NOTE.
8) The words ’CA, Australia, NY’ correspond to LOCATION .
9) The words ’tech, technical’ correspond to TECH REPORT .
10) The words ’proc, journal, proceedings, ACM’ correspond to JOURNAL or
BOOKTITLE.
11) The words ’ed, editors’ correspond to EDITOR.

Table 8.1: The list of constraints for extracting fields from citations. Constraints 1 and 2 are n-ary (or global)
and are difficult to inject into traditional models. While all the constraints hold for the vast majority of the
data, they are violated by at least some correct labeled assignments.

approach like ours.1

The first task is to identify fields from citations. The data originally included 500 labeled references, and

was later extended with 5,000 unannotated citations collected from papers found on the Internet. Given

a citation, the task is to extract the fields that appear in the given reference. One example is in Figure 8.1.

There are 13 possible fields including author, title, date, journal, location, etc.

To gain an insight to how the constraints can guide semi-supervised learning, assume that the sentence

shown in Figure 8.1 appears in the unlabeled data pool. Part (a) of the figure shows the correct labeled

assignment and part (b) shows the labeled assignment of an HMM trained on 30 labeled. However, if

we apply the constraint that state transition can occur only on punctuation marks, the same HMM model

parameters will result in the correct labeling (a). Therefore, by adding the improved labeled assignement

we can generate better trainig samples during semisupervised learning.

In fact, the punctuation marks are only some of the constraints that can be applied to this problem.

The set of constraints we used in our experiments appears in Table 8.1. Note that some of the constraints

are non-local and are very intuitive for people, yet it is very difficult to inject this knowledge into most

probabilistic models.

The second problem we consider is extracting fields from advertisements. The dataset consists of 8,767

advertisements for apartment rentals in the San Francisco Bay Area downloaded in June 2004 from the

Craigslist website. 302 of the ads have been labeled with 12 fields, including size, rent, neighborhood, features,

and so on. The data was preprocessed by using regular expressions for phone numbers, email addresses

and URLs. The list of the constraints for this domain is given in Table 8.2, and was largely imported from

1The data for both problems is available at: http://www.stanford.edu/ grenager/data/unsupie.tgz

93

the list of seed words used in [55]. We had to slightly modify the set of seedwords due to difference in

preprocessing.

1) State transitions can occur only on punctuation marks or the newline sym-
bol.
2) Each field must be at least 3 words long.
3) The words laundry, kitchen, parking correspond to FEATURES.
4) The words sq ft, bdrm correspond to SIZE.
5) The word $ *MONEY* corresponds to RENT .
6) The words close, near, shopping correspond to NEIGHBORHOOD.
7) The words laundry kitchen, parking correspond to FEATURES.
8) The (normalized) words phone, email correspond to CONTACT .
9) The words immediately, begin, cheaper correspond to AV AILABLE.
10) The words roommates, respectful, drama correspond to ROOMMATES.
11) The words smoking, dogs, cats correspond to RESTRICTIONS.
12) The word *http*, image, link corresponds to PHOTOS.
13) The words address, carlmont, st, cross correspond to ADDRESS.
14) The words utilities, pays, electricity correspond to UTILITIES.

Table 8.2: The list of constraints for extracting fields from advertisements. Constraints 1 and 2 are n-ary (or
global) and are difficult to inject into traditional models. While all the constraints hold for the vast majority
of the data, they are violated by at least some correct labeled assignments.

8.4 Notation and Definitions

Consider a structured classification problem, where given an assignment x ∈ XN to a set of input variables,

X = X1, . . . , XN , the task is to find the best assignment y ∈ YM to the output variables Y = Y1, . . . , YM .

We denote X = 2X to be the space of the possible inputs and Y = 2Y to be the set of possible outputs.

We define a structured output classifier as a function h : X → Y that uses a global scoring function

f : X × Y → < to assign scores to each possible example/label pair. Given an input x, a desired function

f will assign the highest score to the correct output y among all the possible outputs. The global scoring

function is often decomposed as a weighted sum of feature functions, f(x, y) =
∑M

i=1 λifi(x, y) = λ·F (x, y).

This decomposition applies both to discriminative linear classifiers and to probabilistic models, such as

CRFs and HMMs, in which case the linear sum corresponds to log likelyhood assigned to the input/output

pair by the model. Usually the feature functions fi(x, y) are local to allow model tractability. Local feature

function can capture some context for each input or output variable, yet this context is usually very limited

to allow dynamic programming decoding during inference.

Now, consider a scenario where we have a set of constraints C1, . . . , CK . We define a constraint C :

X × Y → {0, 1} as a function that indicates whether the input/output sequence violates some desired

94

properties of the output sequence. When the constraints are hard, the solution is given by

arg max
y∈1C

λ · F (x, y)

Where 1C is a subset of X × Y for which all Ci assign the value 1.

When the constraints are soft, we want to incur some penalty for their violation. Moreover, we want to

incorporate into our cost function a measure for the amount of violation incurred to C by (x,y). A generic

way to capture this intuition is to introduce a distance function d(y,XC(x)) between the space of outputs

that respect the constraint,XCi(x) , and the given output sequence y. One possible way to implement this

distance function is by minimal Hamming distance to a sequence that respects the constraintC d(y, νC(x)) =

min(y′:C(x,y′)=1)H(y, y′). If the penalty for violating the soft constraint Ci is ρi, we write the score function

as:

arg max
y

λ · F (x, y)−
K∑
i=1

ρid(y,XCi(x)) (8.1)

We call the distance d(y, νC(x)) the valuation of the constraint C on (x, y). We will justify the choose of

Hamming distance and the implementation in Section 8.5.3.

8.5 Learning and Inference with Constraints

In this section we present a new algorithm for guiding semi-supervised learning with constraints. However,

it is useful to discuss first the inference procedure and the supervised training in presence of constraints.

In both the supervised and the semi-supervised setting, the global cost function is given by (8.1). During

the learning procedure, we will not change ρ, and d(y,XCi(x)) is also fixed. In all cases the by ”training” we

refer to the training of the parameter version λ. While our formulation allows us to train also the coefficient

of the constraints valuation, we choose not to do it, since we view this as a way to bias (or enforce) the prior

knowledge into the learned model, rather than allowing the data to brush it away.

In the inference stage the task is to find an output y that maximizes the cost function. When the feature

functions and the constraints are local, this problem can be solved efficiently by the Viterbi algorithm.

However, we want the constraints to be more expressive to guild the model and the Viterbi algorithm

cannot capture the global information. Usually in this case, search techniques are often used [63; 33; 69].

More discussion can be seen in [149]. We use the popular beamsearch decoding algorithm.

95

8.5.1 Supervised Learning: A Review

In supervised learning with constraints two training algorithms have been proposed. One is learning and

inference (or L+I), where during training, the constraints are ignored. In this case, with discriminative train-

ing the weight vector λ is updated when maximizing λ · F (x, y) does not yield the correct solution and in

the probabilistic framework, λ corresponds to maximum likelyhood estimator learned by partial counting.

The constraints are applied only at the inference stage (during testing), once the model is fully learned.

The second approach is inference based learning (or IBT) where the weights λ are updated only when the

output sequence y which maximizes the equation 8.1 does not yield the correct solution. Basically, both

algorithms can be viewed as discriminative training methods, with IBT being a more conservative version

of L+I. It has been shown that IBT outperforms L+I when the local features are unable to capture the domain

structure and large amounts of training data is available [106]. Reranking is another way to inject the global

information [26; 142]. In this framework, the model was learned locally but then multiple solutions were

chosen. Then, the global information is used to train a model to select the best solution. In this paper we

used the L+I algorithm for the supervised setting.

8.5.2 Semi-Supervised Learning

The semi-supervised learning with constraints is done by an EM-like procedure. We initialize the model

with supervised learning on a small labeled set. Given an unlabeled set: U = {xUi}, in the estimation step,

the traditional EM algorithm assigns a distribution over labeled assignments X for each x ∈ U , and in the

maximization step, the set of model parameters is learned from the distribution which was assigned in the

estimation step.

However, in the presence of constraints, assigning the complete distributions in the estimation step is

unfeasible since the constraints reshape the density distribution in arbitrary way. Moreover, in the gen-

eral case, we do not have a generative model. Rather than assigning the complete distribution over the

label assignments for each x ∈ U , we truncate the distribution to the top K assignments as returned by

beamsearch. Given a set ofK top assignments y1, . . . , yK , we approximate the estimation step by assigning

uniform probability to the top K candidates, and zero probability to all the rest of the output sequences.

We will refer this algorithm as top-K hard EM.

Another way to look at what we do is the self-training perspective. Similarly to self-training, we use the

current model to generate new training examples pooled from the unlabeled set. However there are two

important differences. One is that in self-training, once an unlabeled sample was labeled, it is never labeled

again. In our case all the samples are relabeled each iteration. The second difference is that each unlabeled

96

Input:
Cycles: number of cycles of learning.
Tr = (xTr, yTr): labeled training set.
U = {xU}: unlabeled dataset
F : set of feature functions.
{ρi}: set of penalties.
{Ci}: set of constraints.
Top-K-Inference: returns top-K labeled assignments given the cost function.

SemiSupervisedTrain:
Initialize λ = learn(Tr, {fi}).
For Cycles iterations do:

T = φ
For each x ∈ U

Let pool be the top K outputs returned by
Top-K-Inference(x,λ, F, {Ci}, {ρi}).

For each y ∈ pool.
T = T + {(x, y)}

λ = γλ + (1− γ)learn(T, {fi})

Figure 8.2: Semi-supervised learning with local score functions and constraints.

example generates K labeled instances. When we do one iteration of top-1 hard EM, this is equivalent to self

training, where all the unlabeled samples are added to the labeled pool.

There are some possible benefits from using K samples. One is that we effectively increase the training

set by a factor of K (albeit by somewhat noisy examples). In case we train a probabilistic model, so the

additional noise due to some incorrect components in the predicted model only means that some of the

probability estimates are a bit off. The second is that selection of top-K labellings allows to take into account

that constraint resolution may not be deterministic. Consider for example, the output 11101000 with the

constraint that it should belong to the language 1∗0∗. If the two possible corrections: 11111000 and 11100000

are scored similarly by λ · F (x, y) adding only one of the corrections to the labeled pool is undesirable.

Our training algorithm is summarized in figure 8.2. Recall that the key claim of this paper is the semi-

supervised learning procedure will be improved by constraints. Note that we can replace the beamsearch

procedure(with constraints) by the Viterbi algorithm, and then algorithm restores to hard EM.

One thing about the algorithm should be clarified. It is known that traditional semi-supervised training

can deteriorate the performance. [101] has suggested to balance the weight of the contribution of labeled

and unlabeled data to the parameters. The intuition is that when iteratively estimating the parameters with

EM, we do not want the parameters to drift too far from the supervised model. In this spirit, we introduced

a balancing parameter γ, that controls the convex combination of models induced by the labeled and the

unlabeled data.

97

8.5.3 Justification and Implementation of the Inference Procedure

Recall that our cost function is given by

arg max
y

λ · F (x, y)−
K∑
i=1

ρid(y,XCi(x))

We want to justify both the use of soft constraints ρi and the usage of the Hamming distance for

d(y,XCi(x)). Consider the task of extracting fields from advertisements. The constraint that the state transi-

tions can only occur on punctuation marks or on newlines holds for the large majority of the gold-labeled

instances, but is sometimes violated. Surprisingly, in this case, using hard constraints still improved the

performance. However, it is clear that using soft constraints is a superior option. Empirically, in supervised

training with 100 labeled examples on the advertisement domain, the plain HMM gave 76.3% accuracy.

When the constraint violation penalty ρwas infinity, the accuracy improved to 78.7%, but when the penalty

was set to −log(0.1)2, the accuracy of the model jumped to 80.6%.

Our choice for d(y, νC(x)) to be a Hamming distance is less obvious. First of all, we claim that setting

d(y, νC(x)) to be binary, is suboptimal. For example, consider the advertisements domain again, where we

have a single constraint: state transitions must be on punctuation marks or newlines. While vast majority

of the instances satisfy the constraint, some instance violate it. Now, the gold labeling is guaranteed to

violate the constraint at least once. Therefore, the binary distance will be set to 1 for that instance, loosing

the ability to discriminate constraint violations in other locations. This will affect both the inference stage

and the semi-supervised learning.

Approximating the Hamming distance can be a computationally hard problem. In practice, we approx-

imate it by sequentially decoding the labels sequence with beamsearch, and incrementing the violation

count for each label that violated the constraint with respect to the prefix of the current labeled assignment

in the beam.

8.6 Experiments and Results

In this section, we present empirical results of our algorithms on two domains: citation and advertisements.

Both problems are modeled with a simple token-based HMM. We stress that token-based HMM cannot

represent many of the constraints we used. The d(y, νC(x)) function we used was an approximation of

a Hamming distance function, which we discuss in section 8.5.3. All the constraints are given the same

2The logarithm is due to the fact that in our model, λF (x, y) corresponded to a log-likelyhood of an HMM model, and ρ corre-
sponded a crude estimation of log probability that a constraint does not hold

98

size Inf. sup. H H+N H+N+C H+N+C
(Top-1) (Top-k)

5 no I 55.1 60.9 63.6 70.6 71.0
I 66.6 69.0 72.5 76.0 77.8

10 no I 64.6 66.8 69.8 76.5 76.7
I 78.1 78.1 81.0 83.4 83.8

15 no I 68.7 70.6 73.7 78.6 79.4
I 81.3 81.9 84.1 85.5 86.2

20 no I 70.1 72.4 75.0 79.6 79.4
I 81.1 82.4 84.0 86.1 86.1

25 no I 72.7 73.2 77.0 81.6 82.0
I 84.3 84.2 86.2 87.4 87.6

300 no I 86.1 80.7 87.1 88.2 88.2
I 92.5 89.6 93.4 93.6 93.5

Table 8.3: Experimental results for extracting fields from citations. Adding constraints improves the perfor-
mance both during learning and inference.

penalty score ρ. The parameters ρ are tuned on the development set. We choose ρ to be− log 0.0001 for cita-

tion and − log 0.0001 for advertisements, while γ = 0.1 were fixed for all the experiments. The constraints

for the two domains are listed in Table 8.1 and Table 8.2.

In both domains we ran 5 iterations for each of the semi-supervised learning algorithms. We compared

the performance for training sets of size varying from 5 to 300 for the citations and from 5 to 100 for the

advertisements we always tested on 100 held out examples. We ran 5 experiments in each setting, randomly

choosing the training set. The results reported below are the averages over these 5 runs. In all semi-

supervised experiments, 1000 unlabeled examples are used. Note that testing data is not included in the

unlabeled data pool.

In our experiments, we verified the hypothesis that using constraints will improves the learned param-

eter, λ. Moreover, we show that semi-supervised learning without guiding is beneficial when the labeled

data is small, but can deteriorate the results when the training set is large. Furthermore, the method for

weighting the effect of unlabeled data described in [101] is very useful, even when the training set is large.

In other words, nonzero value of γ will have a positive effect in semi-supervised learning.

The experimental result for the two domains are given in Tables 8.4 and 8.3. To verify our claims we

implemented several baselines, and compared their performance when the inference was done with (I) and

without (no I) constraints. The first baseline, is the supervised model denoted by sup. The second baseline

was a simple top-1 Hard EM3 (denoted by H for Hard). The results in the fourth column of tables show that

indeed, with very little training data, H improves on sup, but when the size of the training set increases, it

deteriorates the results. The third baseline was top-1 Hard EM, but with weighting of the unlabeled model

3We also experimented with traditional EM without constraints, but the results were generally worse.

99

size Inf. sup. H H+N H+N+C H+N+C
(Top-1) (Top-k)

5 no I 55.2 61.8 60.5 66.0 66.0
I 59.4 65.2 63.6 69.3 69.6

10 no I 61.6 69.2 67.0 70.8 70.9
I 66.6 73.2 71.6 74.7 74.7

15 no I 66.3 71.7 70.1 73.0 73.0
I 70.4 75.6 74.5 76.6 76.9

20 no I 68.1 72.8 72.0 74.5 74.6
I 71.9 76.7 75.7 77.9 78.1

25 no I 70.0 73.8 73.0 74.9 74.8
I 73.7 77.7 76.6 78.4 78.5

100 no I 76.3 76.2 77.6 78.5 78.6
I 80.4 80.5 81.2 81.8 81.7

Table 8.4: Experimental results for extracting fields from advertisements. Adding constraints improves the
performance both during learning and inference.

(denoted as H+N). As expected, comparing columns 3 and 5 in the tables shows that this protocol always

outperforms the supervised one, even when the training set is large. We then compared these baselines

to our proposed protocol H+N+C, where we added the constraints to guide the H+N protocol and saw

a significant improvement. We experimented with two flavors of the algorithm: the top-1 and the top-K

version and did not observe large differences in performance.

An important comparison is to see what is the contribution of constraints in inference and in learning.

We consistently observed that I consistently outperformed no I by large margin, but looking at the I rows

shows that the learning protocol we propose does improve the performance compared to the H+N protocol

and then adding the constraints on top of it. Figure 8.3 compares two protocols on the citation domain:

H+N+I where we first run the H+N protocol and then apply the constraints during inference, and the

H+N+C+I protocol that guides the H+N with constraints during learning. When there is a lot of labeled

data, doing inference with constraints is more important than using constraints during learning. However,

it is critical to use H+N+C when the amount labeled data is small. We also checked what is the combined

effect of using constraints with semisupervised learning. Figure 8.4 shows that with just 20 labeled samples,

our protocol achieves similar performance to the supervised version without constraints that was trained

on 300 labeled samples.

In order to compare our work to [54], we run the experiments following this setting. 4

4We found that the preprocessing procedure of [54] is slightly different ours.

100

 0.65

 0.7

 0.75

 0.8

 0.85

 1 2 3 4 5 6

H+N+I
H+N+C+I

Figure 8.3: Comparison between H+N and H+N+C when both protocols use constraints for inference after
learning. When there is a lot of labeled data, doing inference with constraints is more important than using
constraints during learning. However, it is critical to use H+N+C when the amount labeled data is small.

8.7 Conclusions

We proposed to use constraints as a way to guide semi-supervised learning. The framework developed

is general both in terms of the representation and expressiveness of the constraints, and in terms of the

underlying model being learned – HMM in the current implementation. Moreover, our framework is a

useful tool when the domain knowledge cannot be expressed by the model.

The results show that constraints can not only improve the performance of the final inference stage but

also propagate useful information during the semi-supervised learning process and that training with the

constraints is especially significant when the number of labeled training data is small.

Our future work proceeds in two directions. Given that the framework allows us to train the model dis-

criminatively, we plan to do that, and extend to estimate the constraints’ penalties too. On the application

side, we would like to apply the framework to relation extraction where discriminative models has been

proved to be very useful.

101

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1 2 3 4 5 6

sup. (300)
H+N+C+I

Figure 8.4: With 20 labeled examples our algorithm performs competatively to the supervised version
trained on 300 smaples.

 0.65

 0.7

 0.75

 0.8

 0.85

 100 150 200 250 300

H+N+C+I
semi in Grenager

sup.
sup. in Grenager

Figure 8.5: Comparison to results reported in Grenager et al. 2005.

102

Chapter 9

Conclusion and Discussion

NLP

Knowledge

Named entity recognition,
shallow parsing (chunking)

Raw Text,
Wikipedia,

Lists from the Web

Co-reference
resolution

Wikipedia-enriched text,
Wikipedia category structure,

WordNet

Figure 9.1: The co-dependency between knowledge and NLP throughout this Thesis.

In this thesis we have argued that it is essential to use knowledge in NLP, proposed several ways of do-

ing it, and provided case studies on several fundamental NLP problems. Understanding natural language

often involves answering five types of “Wh” questions: who, what, where, when and why. We have fo-

cused on the first three questions (who, what, and where), which seem to be of a particular importance. We

have tackled the problem of answering the “wh” questions in text as a series of four increasingly complex

NLP tasks: text categorization, information extraction, concept disambiguation and co-reference resolu-

tion. We showed how to use knowledge encoded in form of constraints to guide semi-supervised learning

for information extraction in Chapter 8. We showed how to use Wikipedia to bridge between information

retrieval and text categorization in Chapter 3. Namely, in text categorization, we treat category names as

queries and assign them a semantic interpretation using Wikipedia. This allows us to treat text categoriza-

tion much like information extraction: we can categorize text to an unlimited number of categories without

requiring training data.

However, the most significant contribution of this thesis is a successful symbiosis between injecting

knowledge into text in order to improve NLP tools, and using better NLP tools in order to inject better

knowledge into text. In [112] and in [145] we show how to use knowledge to improve an NER system. We

use the resulting NER system to inject better knowledge into text by disambiguating important concepts to

Wikipedia [111]. Finally, we take advantage of the injected knowledge to improve a co-reference NLP sys-

103

tem in [113]. The summary of the mutual reinforcement loop between knowledge and NLP is summarized

in Figure 9.1.

We have successfully used several types of knowledge throughout this thesis:

1. Data sparsity reduction methods based on analyzing large quantities of unlabeled text (Chapters 5

and 4).

2. Enriching text via encyclopedic knowledge. This can be done either by assigning topic-specific infor-

mation (Chapter 3) or by cross-linking expressions in text to encyclopedic resources (Chapter 7).

3. Using first-order-logic-like constraints to guide self-training of a statistical model (Chapter 8).

There are several directions for future work:

1. It would be very interesting and extremely challenging to refine our understanding on the following

questions. What would be a general way to come up with soft constraints for a given problem? What

properties of a knowledge resource make it more amenable for use in NLP applications? When a new

application is being developed, what is the general roadmap for designing knowledge-rich features

within a statistical solution?

2. It is interesting to see whether it is possible to close the loop in Figure 9.1. For example, whether a

better co-reference resolution system would allow better disambiguation to Wikipedia or whether a

better system for disambiguation to Wikipedia would allow a better NER system.

3. It would be interesting to develop a general method for inducing task-specific word representations.

For example, developing an approach which would be able to induce the Brown clusters while cap-

turing gender and nationality in the co-reference setting, and sentiment (positive adjectives separate

from negative adjectives) for sentiment analysis.

104

References

[1] R. K. Ando and T. Zhang. A high-performance semi-supervised learning method for text chunking.
In ACL, 2005.

[2] A. Bagga and B. Baldwin. Algorithms for Scoring Coreference Chains. In MUC7, 1998.

[3] C. Baker, C. Fillmore, and B. Cronin. The Structure of the Framenet Database. International Journal of
Lexicography, 16(3):1–16, 2003.

[4] M. Banko, M. J. Cafarella, S. Soderl, M. Broadhead, and O. Etzioni. Open information extraction from
the web. In IJCAI, 2007.

[5] Y. Bengio. Neural net language models. Scholarpedia, 3(1):3881, 2008.

[6] Y. Bengio, R. Ducharme, and P. Vincent. A Neural Probabilistic Language Model. In NIPS, 2001.

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum Learning. In ICML, 2009.

[8] Y. Bengio, Duchar R., Pascal V., and Christian J. A neural probabilistic language model. Journal of
Machine Learning Research, 3:1137–1155, March 2003.

[9] Y. Bengio and J. Sénécal. Quick Training of Probabilistic Neural Nets by Importance Sampling. In
AISTATS, 2003.

[10] E. Bengtson and D. Roth. Understanding the Value of Features for Coreference Resolution. In
EMNLP, 2008.

[11] T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and D. Klein. Painless unsupervised learning with
features. In ACL, 2010.

[12] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3:993–
1022, 2003.

[13] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.

[14] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai. Class-based n-gram models of
natural language. Computational Linguistics, 18(4):467–479, 1992.

[15] R. C. Bunescu and M. Pasca. Using Encyclopedic Knowledge for Named entity Disambiguation. In
EACL, 2006.

[16] M. Candito and B. Crabbé. Improving generative statistical parsing with semi-supervised word clus-
tering. In Proceedings of the 11th International Conference on Parsing Technologies, 2009.

[17] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, and T. Mitchell. Toward an Architecture for Never-
Ending Language Learning. In AAAI, 2010.

[18] X. Carreras, L. Màrquez, and L. Padró. Learning a Perceptron-Based Named Entity Chunker via
Online Recognition Feedback. In CoNLL, 2003.

105

[19] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms. In
ICML, 2006.

[20] M. Chang, L. Ratinov, and D. Roth. Guiding Semi-Supervision with Constraint-Driven Learning. In
ACL, 2007.

[21] M. Chang, L. Ratinov, D. Roth, and V. Srikumar. Importance of Semantic Represenation: Dataless
Classification. In AAAI, July 2008.

[22] Z. Chen, S. Tamang, A. Lee, X. Li, W. Lin, J. Artiles, M. Snover, M. Passantino, and H. Ji. CUNY-
BLENDER TAC-KBP2010 Entity Linking and Slot Filling System Description. In Text Analytics Con-
ference, 2010.

[23] H. Chieu and H. T. Ng. Named Entity Recognition with a Maximum Entropy Approach. In CoNLL,
2003.

[24] W. W. Cohen. Exploiting dictionaries in named entity extraction: Combining semi-markov extraction
processes and data integration methods. In KDD, 2004.

[25] M. Collins. Discriminative training methods for hidden Markov models: Theory and experiments
with perceptron algorithms. In EMNLP, 2002.

[26] M. Collins and T. Koo. Discriminative Reranking for Natural Language Parsing. Computational Lin-
guistics, 31(1):25–70, 2005.

[27] M. Collins and Y. Singer. Unsupervised models for named entity classification. In SIGDAT, 1999.

[28] R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural
networks with multitask learning. In ICML, 2008.

[29] S. Cucerzan. Large-Scale Named Entity Disambiguation Based on Wikipedia Data. In EMNLP-
CoNLL, 2007.

[30] A. Culotta, M. Wick, R. Hall, and A. McCallum. First-Order Probabilistic Models for Coreference
Resolution. In NAACL, 2007.

[31] H. Daumé. Frustratingly Easy Domain Adaptation. In ACL, 2007.

[32] H. Daumé, J. Langford, and D. Marcu. Search-based structured prediction. Machine Learning,
75(3):297–325, June 2009.

[33] H. Daumé and D. Marcu. Learning as Search Optimization: Approximate Large Margin Methods for
Structured Prediction. In ICML, 2005.

[34] H. Daumé and D. Marcu. Domain Adaptation for Statistical Classifiers. Journal of Artficial Intelligence
Research, 26:101–126, 2006.

[35] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the royal statistical society, series B, 39(1):1–38, 1977.

[36] K. Deschacht and M. Moens. Semi-supervised Semantic Role Labeling Using the Latent Words Lan-
guage Model. In EMNLP, 2009.

[37] Q. Do, D. Roth, M. Sammons, Y. Tu, and V. Vydiswaran. Robust, Light-weight Approaches to com-
pute Lexical Similarity. Technical report, University of Illinois at Urbana-Champaign, 2009.

[38] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley, 2. edition, 2001.

[39] S. Dumais, G. Furnas, T. Landauer, S. Deerwester, and R. Harshman. Using Latent Semantic Analysis
To Improve Access To Textual Information. In SIGCHI Conference on Human Factors in Computing
Systems, pages 281–285. ACM, 1988.

106

[40] J. Elman. Learning and development in neural networks: The importance of starting small. Cognition,
48:781–799, 1993.

[41] O. Etzioni, M. J. Cafarella, D. Downey, A. Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Unsupervised named-entity extraction from the Web: An experimental study. Artificial Intelligence,
165(1):91–134, 2005.

[42] A. Fader, S. Soderland, and O. Etzioni. Scaling Wikipedia-based Named Entity Disambiguation to
Arbitrary Web Text. In WikiAI (IJCAI workshop), 2009.

[43] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA, 1998.

[44] T. Finin, Z. Syed, J. Mayfield, P. McNamee, and C. Piatko. Using Wikitology for Cross-Document
Entity Coreference Resolution. In AAAI Spring Symposium on Learning by Reading and Learning to
Read, 2009.

[45] J. R. Finkel, T. Grenager, and C. D. Manning. Incorporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. In ACL, 2005.

[46] J.R. Firth. A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis, pages 1–32, 1957.

[47] R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. Named Entity Recognition through Classifier Com-
bination. In CoNLL, 2003.

[48] Y. Freund and R. Schapire. Large Margin Classification Using the Perceptron Algorithm. Machine
Learning, 37(3):277–296, 1999.

[49] E. Gabrilovich and S. Markovitch. Feature generation for text categorization using world knowledge.
In IJCAI, 2005.

[50] E. Gabrilovich and S. Markovitch. Computing Semantic Relatedness using Wikipedia-based Explicit
Semantic Analysis. In IJCAI, 2007.

[51] E. Gabrilovich and S. Markovitch. Harnessing the Expertise of 70,000 Human Editors: Knowledge-
Based Feature Generation for Text Categorization. Journal of Machine Learning Research, 8:2297–2345,
2007.

[52] Y. Goldberg and M. Elhadad. An Efficient Algorithm for Easy-First Non-Directional Dependency
Parsing. In NAACL, 2010.

[53] Y Goldberg, R. Tsarfaty, M. Adler, and M. Elhadad. Enhancing Unlexicalized Parsing Performance
Using a Wide Coverage Lexicon, Fuzzy Tag-Set Mapping, and EM-HMM-Based Lexical Probabilities.
In EACL, 2009.

[54] T. Grenager, D. Klein, and C. Manning. Unsupervised Learning of Field Segmentation Models for
Information Extraction. In ACL, 2005.

[55] A. Haghighi and D. Klein. Prototype-Driven Grammar Induction. In ACL, 2006.

[56] A. Haghighi and D. Klein. Simple Coreference Resolution with Rich Syntactic and Semantic Features.
In EMNLP, 2009.

[57] A. Haghighi and D. Klein. Coreference Resolution in a Modular, Entity-Centered Model. In ACL,
2010.

[58] Z. Harris. Distributional structure. Word, 10(23):146–162, 1954.

[59] Z. Harris. Distributional structure. In J. J. Katz, editor, Philosophy of Linguistics. New York: Oxford
University Press, 1985.

107

[60] T. Honkela. Self-organizing maps of words for natural language processing applications. In Proceed-
ings of the International ICSC Symposium on Soft Computing, 1997.

[61] T. Honkela, V. Pulkki, and T. Kohonen. Contextual Relations of Words in Grimm Tales, Analyzed by
Self-Organizing Map. In ICANN, 1995.

[62] F. Huang and A. Yates. Distributional representations for handling sparsity in supervised sequence-
labeling. In ACL, 2009.

[63] L. Huang. Forest reranking: Discriminative parsing with non-local features. In ACL, 2008.

[64] F. Jelenek and R. Mercer. Interpolated Estimation of Markov Source Parameters from Sparse Data. In
Proceedings of the Workshop on Pattern Recognition in Practice, 1980.

[65] J. Jiang and C. Zhai. Instance weighting for domain adaptation in NLP. In ACL, 2007.

[66] T. Joachims, T. Hofmann, Y. Yue, and C. Yu. Predicting Structured Objects with Support Vector Ma-
chines. Communications of the ACM, Research Highlight, 52(11):97–104, November 2009.

[67] S. Kaski. Dimensionality Reduction by Random Mapping: Fast Similarity Computation for Cluster-
ing. In IJCNN, 1998.

[68] S. Katz. Estimation of probabilities from sparse data for the language model component of a speech
recognizer. In IEEE Transactions on Acoustics, Speech and Signal Processing, 1987.

[69] J. Kazama and K. Torisawa. A New Perceptron Algorithm for Sequence Labeling with Non-Local
Features. In EMNLP-CoNLL, 2007.

[70] J. Kazama and K. Torisawa. Exploiting Wikipedia as External Knowledge for Named Entity Recog-
nition. In EMNLP, 2007.

[71] R. Khardon, D. Roth, and Servedio R. Efficiency versus Convergence of Boolean Kernels for On-Line
Learning Algorithms. In NIPS, 2001.

[72] T. Koo, X. Carreras, and M. Collins. Simple Semi-supervised Dependency Parsing. In ACL, 2008.

[73] V. Krishnan and C. D. Manning. An effective two-stage model for exploiting non-local dependencies
in named entity recognition. In ACL, 2006.

[74] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti. Collective annotation of Wikipedia
entities in web text. In KDD’09, 2009.

[75] J. Lafferty, A. McCallum, and F. Pereira. Conditional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. In ICML, 2001.

[76] T Landauer, P. Foltz, and D. Laham. An Introduction to Latent Semantic Analysis. Discourse Processes,
(25):259–284, 1998.

[77] K. Lang. NewsWeeder: Learning to Filter Netnews. In ICML, 1995.

[78] D. B. Lenat. CYC: a large-scale investment in knowledge infrastructure. Communications of ACM,
38:33–38, November 1995.

[79] Wei Li and Andrew McCallum. Semi-supervised sequence modeling with syntactic topic models. In
AAAI, 2005.

[80] P. Liang. Semi-Supervised Learning for Natural Language. Masters thesis, Massachusetts Institute of
Technology, 2005.

[81] D. Lin and X. Wu. Phrase clustering for discriminative learning. In ACL-IJCNLP, 2009.

108

[82] C. Lund, K.and Burgess and R. Atchley. Semantic and associative priming in high-dimensional se-
mantic space. In Cognitive Science Proceedings, LEA, 1995.

[83] K Lund and C. Burgess. Producing highdimensional semantic spaces from lexical co-occurrence.
Behavior Research Methods, Instrumentation, and Computers, 28:203–208, 1996.

[84] X. Luo. On coreference resolution performance metrics. In HLT, 2005.

[85] M. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of English: the
penn treebank. Computational Linguistics, 19:313–330, June 1993.

[86] S. Martin, J. Liermann, and H. Ney. Algorithms for bigram and trigram word clustering. Speech
Communication, 24(1):19–37, 1998.

[87] J. Mayfield and et al. Cross-Document Coreference Resolution: A Key Technology for Learning by
Reading. In Proceedings of the AAAI 2009 Spring Symposium on Learning by Reading and Learning to
Read, March 2009.

[88] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving Text Classification by Shrinkage
in a Hierarchy of Classes. In ICML, 1998.

[89] B. Merialdo. Tagging English text with a probabilistic model. Computational Linguistics, 20:155–171,
June 1994.

[90] R. Mihalcea and A. Csomai. Wikify!: linking documents to encyclopedic knowledge. In CIKM, 2007.

[91] S. Miller, J. Guinness, and A. Zamanian. Name Tagging with Word Clusters and Discriminative
Training. In NAACL, 2004.

[92] D. Milne and I. H. Witten. An Effective, Low-Cost Measure of Semantic Relatedness Obtained from
Wikipedia Links. In In Proceedings of AAAI 2008, 2008.

[93] D. Milne and I. H. Witten. Learning to link with wikipedia. In CIKM, 2008.

[94] A. Mnih and G. Hinton. Three new graphical models for statistical language modelling. In ICML,
2007.

[95] A. Mnih and G. Hinton. A Scalable Hierarchical Distributed Language Model. In NIPS, 2009.

[96] F. Morin and Y. Bengio. Hierarchical Probabilistic Neural Network Language Model. In Robert G.
Cowell and Zoubin Ghahramani, editors, AISTATS, 2005.

[97] V. Nastase and M. Strube. Decoding wikipedia categories for knowledge acquisition. In AAAI, 2008.

[98] A. Ng and M. Jordan. On Discriminative vs. Generative classifiers: A comparison of logistic regres-
sion and Naive Bayes. In NIPS, 2001.

[99] V. Ng and C. Cardie. Improving Machine Learning Approaches to Coreference Resolution. In ACL,
2002.

[100] A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised learning. In ICML,
2005.

[101] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text Classification from Labeled and Unlabeled
Documents using EM. Machine Learning, 39:103–134, May 2000.

[102] NIST. The ACE Evaluation Plan. www.nist.gov/speech/tests/ace/index.htm, 2004.

[103] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In ACL, 1993.

[104] S. P. Ponzetto and M. Strube. Exploiting semantic role labeling, WordNet and Wikipedia for corefer-
ence resolution. In ACL, 2006.

109

[105] V. Punyakanok and D. Roth. The Use of Classifiers in Sequential Inference. In NIPS, 2001.

[106] V. Punyakanok, D. Roth, W. Yih, and D. Zimak. Learning and Inference over Constrained Output. In
IJCAI, 2005.

[107] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
In IEEE, 1989.

[108] K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu, D. Jurafsky, and C. Manning. A
multi-pass sieve for coreference resolution. In EMNLP, 2010.

[109] A. Rahman and V. Ng. Coreference Resolution withWorld Knowledge. In ACL, 2011.

[110] R. Raina, A. Y. Ng, and D. Koller. Constructing informative priors using transfer learning. In ICML,
2006.

[111] L. Ratinov, D. Downey, M. Anderson, and D. Roth. Local and Global Algorithms for Disambiguation
to Wikipedia. In ACL, 2011.

[112] L. Ratinov and D. Roth. Design Challenges and Misconceptions in Named Entity Recognition. In
CoNLL, 2009.

[113] L. Ratinov and D. Roth. Learning-based Multi-Sieve Co-reference Resolution with Knowledge. In
review at EMNLP, 2012.

[114] E. Riloff and R. Jones. Learning dictionaries for information extraction by multi-level bootstrapping.
In AAAI, 1999.

[115] A. Ritter, Mausam, and O. Etzioni. A latent dirichlet allocation method for selectional preferences. In
ACL, 2010.

[116] H. Ritter and T. Kohonen. Self-organizing semantic maps. Biological Cybernetics, (61):241–254, 1989.

[117] N. Rizzolo and D. Roth. Modeling Discriminative Global Inference. In ICSC, 2007.

[118] D. Roth. Learning to Resolve Natural Language Ambiguities: A Unified Approach. In AAAI, 1998.

[119] D. Roth. Learning in Natural Language. In IJCAI, 1999.

[120] D. Roth and W. Yih. Integer Linear Programming Inference for Conditional Random Fields. In ICML,
2005.

[121] D. Roth and D. Zelenko. Part of Speech Tagging Using a Network of Linear Separators. In COLING-
ACL, 1998.

[122] Noah A. S. and Jason E. Contrastive Estimation: Training Log-Linear Models on Unlabeled Data. In
ACL, 2005.

[123] M. Sahlgren. Vector-Based Semantic Analysis: Representing Word Meanings Based on Random La-
bels. In Proceedings of the Semantic Knowledge Acquisition and Categorisation Workshop, ESSLLI, 2001.

[124] M. Sahlgren. An introduction to random indexing. In Methods and Applications of Semantic Indexing
Workshop at the 7th International Conference on Terminology and Knowledge Engineering (TKE), 2005.

[125] M. Sahlgren. The Word-Space Model: Using distributional analysis to represent syntagmatic and paradig-
matic relations between words in high-dimensional vector spaces. PhD thesis, Stockholm University, 2006.

[126] E. T. Sang and S. Buchholz. Introduction to the CoNLL-2000 Shared Task: Chunking. In CoNLL00,
2000.

[127] S. Schoenmackers, O. Etzioni, D. S. Weld, and J. Davis. Learning first-order Horn clauses from web
text. In EMNLP, 2010.

110

[128] F. Sha and F. Pereira. Shallow Parsing with Conditional Random Fields. In NAACL, 2003.

[129] H. Shen and A. Sarkar. Voting Between Multiple Data Representations for Text Chunking. Advances
in Artificial Intelligence, 2005.

[130] W. Shen, X. Li, and A. Doan. Constraint-based entity matching. In AAAI, 2005.

[131] P. Singh, T. Lin, E.T. Mueller, G. Lim, T. Perkins, and W.L. Zhu. Open Mind Common Sense: Knowl-
edge Acquisition from the General Public. In Proceedings of the First International Conference on Ontolo-
gies, Databases, and Applications of Semantics for Large Scale Information Systems, 2002.

[132] V. Spitkovsky, h. Alshawi, and D. Jurafsky. From Baby Steps to Leapfrog: How “Less is More” in
Unsupervised Dependency Parsing. In NAACL, 2010.

[133] M. Strube and S. P. Ponzetto. WikiRelate! Computing Semantic Relatedness Using Wikipedia. In
AAAI, 2006.

[134] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic Knowledge. In WWW, 2007.

[135] J. Suzuki and H. Isozaki. Semi-Supervised Sequential Labeling and Segmentation Using Giga-Word
Scale Unlabeled Data. In ACL, 2008.

[136] J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. An empirical study of semi-supervised structured
conditional models for dependency parsing. In EMNLP, 2009.

[137] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In NIPS, 2003.

[138] M. Thelen and E. Riloff. A bootstrapping method for learning semantic lexicons using extraction
pattern contexts. In SIGDAT, 2002.

[139] J. Thorsten. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization.
In ICML, pages 143–151, 1997.

[140] K. E. Tjong and F. De Meulder. Introduction to the CoNLL-2003 Shared Task: Language-Independent
Named Entity Recognition. In CoNLL, 2003.

[141] A. Toral and R. Munoz. A proposal to automatically build and maintain gazetteers for named entity
recognition by using Wikipedia. In EACL, 2006.

[142] K. Toutanova, A.Haghighi, and C. Manning. Joint Learning Improves Semantic Role Labeling. In
ACL, 2005.

[143] K. Toutanova, D. Klein, C. Manning, and Y. Singer. Feature-rich part-of-speech tagging with a cyclic
dependency network. In NAACL, 2003.

[144] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for inter-
dependent and structured output spaces. In ICML, 2004.

[145] J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simple and general method for semi-
supervised learning. In ACL, 2010.

[146] J. Turian, L. Ratinov, Y. Bengio, and D. Roth. A preliminary evaluation of word representations for
named-entity recognition. In NIPS Workshop on Grammar Induction, Representation of Language and
Language Learning, 2009.

[147] P. Turney and P. Pantel. From Frequency to Meaning: Vector Space Models of Semantics. Journal of
Artificial Intelligence Research, 2010.

[148] A. Ushioda. Hierarchical clustering of words. In COLING, 1996.

111

[149] W. Yih V. Punyakanok, D. Roth and D. Zimak. Learning and Inference over Constrained Output. In
IJCAI, 2005.

[150] D. Vadas and J. R. Curran. Parsing noun phrase structure with CCG. In ACL, 2008.

[151] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, November
1984.

[152] V. Vapnik and A. Chervonenkis. On the Uniform Convergence of Relative Frequencies of Events to
Their Probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

[153] J. Väyrynen and T. Honkela. Word Category Maps based on Emergent Features Created by ICA. In
Proceedings of the STeP’2004 Cognition + Cybernetics Symposium, 2004.

[154] J. Väyrynen and T Honkela. Comparison of Independent Component Analysis and Singular Value
Decomposition in Word Context Analysis. In AKRR’05, International and Interdisciplinary Conference
on Adaptive Knowledge Representation and Reasoning, 2005.

[155] J. Väyrynen, T. Honkela, and L. Lindqvist. Towards explicit semantic features using independent
component analysis. In Proceedings of the Workshop Semantic Content Acquisition and Representation
(SCAR), 2007.

[156] J. Veenstra. Representing text chunks. In EACL, 1999.

[157] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. A Model-Theoretic Coreference
Scoring Scheme. In MUC6, 1995.

[158] R. Vilalta and I. Rish. A decomposition of classes via clustering to explain and improve naive bayes.
In ECML, 2003.

[159] R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large Corpora. In LREC,
2010.

[160] M. Wick, K. Rohanimanesh, K. Bellare, A. Culotta, and A. McCallum. SampleRank: Training Factor
Graphs with Atomic Gradients. In ICML, 2011.

[161] F. Wu, R. Hoffmann, and D. Weld. Information extraction from Wikipedia: moving down the long
tail. In KDD, 2008.

[162] H. Xianpei and Z. Jun. Named Entity Disambiguation by Leveraging Wikipedia Semantic Knowl-
edge. In CIKM, 2009.

[163] T. Zhang and D. Johnson. A Robust Risk Minimization based Named Entity Recognition System. In
CoNLL, 2003.

[164] H. Zhao, W. Chen, C. Kit, and G. Zhou. Multilingual dependency learning: a huge feature engineer-
ing method to semantic dependency parsing. In CoNLL, 2009.

[165] Y. Zhou, L. Nie, O. Rouhani-Kalleh, F. Vasile, and S. Gaffney. Resolving Surface Forms to Wikipedia
Topics. In COLING, 2010.

[166] X. Zhu. Semi-Supervised Learning Literature Survey, 2006.

112

	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	Challenges of Language Understanding
	The Role of Knowledge in NLP
	Contributions
	Thesis Outline

	Chapter 2 Background
	Supervised Classification with Linear Models
	Structured and Sequential Prediction
	NLP-specific Considerations
	Learning Protocols

	Chapter 3 Dataless Classification
	Semantic Representation
	Data and Experimental Methodology
	On-the-fly Classification
	Semantics of Unlabeled Data
	Discussion
	Dataless Classification for Domain Adaptation
	Conclusions and Future Work

	Chapter 4 Named Entity Recognition
	Contributions
	Design Challenges in NER

	Chapter 5 A Study of Word Representations
	Types of Word Representations
	Supervised evaluation tasks
	Unlabeled Data
	Experiments and Results
	Related Work
	Conclusions

	Chapter 6 Disambiguation to Wikipedia
	Contributions
	Problem Definition and Approach
	System Architecture
	Local Features
	Global Features
	Linker Features
	Linker and Ranker Training
	Datasets
	Evaluation Methodology
	Experiments and Results
	TAC Entity Linking

	Chapter 7 Co-reference Resolution
	Introduction
	Baseline System and Data
	Wikipedia as Knowledge
	Learning-based Multi-Sieve Approach
	Entity-Level Inference
	Experiments and Results
	Conclusions and Related Work

	Chapter 8 Non-encyclopedic Knowledge in NLP
	Introduction
	Related Work
	Tasks, Examples and Datasets
	Notation and Definitions
	Learning and Inference with Constraints
	Experiments and Results
	Conclusions

	Chapter 9 Conclusion and Discussion
	References

