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ABSTRACT 

 
This paper first discusses the relationship between Kullback-Leibler information (KL) 

and Fisher information in the context of multidimensional item response theory and is 

further interpreted for the two-dimensional case, from a geometric perspective. This 

explication should allow for a better understanding of the various item selection methods in 

multi-dimensional adaptive tests (MAT) which are based on these two information 

measures. The KL information index (KI) method is then discussed and two theorems are 

derived to quantify the relationship between KI and item parameters. Due to the fact that 

most of the existing item selection algorithms for MAT bear severe computational 

complexity, which substantially lowers the applicability of MAT, two versions of simplified 

KL index (SKI), built from the analytical results, are proposed to mimic the behavior of KI, 

while reducing the overall computational intensity.  
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CHAPTER1 INTRODUCTION 
 

Multi-dimensional item response theory (Reckase, 1985, 1997) is gaining more 

attention recently due to the increased interest in testing for diagnosis. Many 

certification and admission boards are trying to combine regular tests with 

diagnostic services to allow candidates to obtain more informative diagnostic 

profiles of their abilities (Mulder & van der Linden, 2009). The diagnostic feature of 

MIRT is reflected by viewing the underlying latent ability as a multi-dimensional 

vector, typically denoted as iq = 1( ,...... )T
i ipq q , where p is the number of dimensions 

or subscales analogous to the number of attributes in cognitive diagnosis. In addition 

to getting one overall summative score, this approach will provide a finer break 

down of the domain score for each dimension. Moreover, we can get a continuous 

estimate of each subscale as an alternative to the dichotomous master/non-master 

results provided by many cognitive diagnosis models, thereby gaining more 

information on each subscale for every examinee.  

Building adaptive tests based upon MIRT, called multi-dimensional adaptive 

testing (MAT), offers at least two advantages over unidimensional adaptive testing 

(UAT): (a) MAT includes more information than UAT since the multiple subscales 

being measured are often correlated, and (b) MAT can balance content coverage 

automatically without fully resorting to content balancing techniques (e.g., Segall, 

1996). Just like UAT, the most important component in MAT is the item selection 

algorithm, which selects items during the course of the test. To date, several 

methods for item selection have been proposed. For example, Bloxom and Vale 
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(1987) put forward a suggestion to generalize Owen’s (1969; 1975) Bayesian 

procedure from UIRT to MIRT. Segall (1996) proposed an item selection criterion 

to maximizing the determinant of Fisher information matrix (Mulder & van der 

Linden, 2009), which is further extended to include prior information. Luecht (1996) 

subsequently implemented this criterion in the context of licensure testing with 

various non-statistical constraints. Van der Linden (1999) developed a novel 

approach for estimating the weighted sum of ability elements via the trace of the 

asymptotic covariance matrix of the ability estimates (known as A-optimality). It is 

important to note that all these criterions were based on Fisher information (FI). 

However, Veldkamp and van der Linden (2002) did later introduce a multi-

dimensional Kullback-Leibler information (KL) based criterion and according to 

Chang and Ying (1996), FI is local information and KL is global information. 

Global information should be used when n (i.e., test length) is small, and local 

information when n is large. An important aspect of the index proposed by 

Veldkamp and van der Linden (2002) is that it combines both local and global 

information and thus makes appropriate usage of information throughout the entire 

test.  

Although many item selection methods have been proposed for MAT, it 

remains a matter of debate as to which method is the most appropriate in certain 

applications. To this end, the distinctive feature of each method needs to be explored. 

Specifically, the properties of FI and KL established in unidimensional IRT need to 

be validated in the multi-dimensional context. For example, in UIRT the FI at a 

specific value of ability 0q  is the second derivative of the KL with respect to q  
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evaluated at 0q . According to Chang and Ying (1996), this feature indicates that the 

value of the FI is the curvature of the KL curve at 0q . Thus, maximizing the area 

under KL is equivalent to maximizing FI when the test length is long. Therefore, this 

research will assess whether this relationship can be generalized to the multi-

dimensional space. The second goal of this research is to characterize the selective 

mechanism of the KL index (KI), such as the parameter patterns favored by KI. This 

investigation will facilitate item pool development and maintenance by diagnosing 

which items are more likely to be under- or over-exposed.  

In this paper the results will be presented in three-dimensional space in order to 

provide a more intuitive geometric visualization, and thus the latent variable space is 

two-dimensional.  In fact, due to technical complexities in both formulation and 

computation, most current MAT applications are essentially based on two or three 

dimensional IRT models (Allen, Ni, & Haley, 2008; Haley, Ni, Ludlow, & Fragala-

Pinkham, 2006; Li & Schafer, 2005; Mulder & van der Linden, 2009; van der 

Linden, 1999; Veldkamp & van der Linden, 2002). However, and more importantly, 

these theoretical results can be generalized to any number of dimensions. The 

generalization is also discussed in this paper. 

The rest of the paper is arranged by first discussing the key concepts and 

utilization of information in MIRT, followed by a set of analytical results. The next 

section then proposes a new item selection index, called the simplified KL 

information index (SKI), followed by two supporting simulation studies. The final 

section discusses directions for future work in this area. 
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CHAPTER2 TYPES OF INFORMATION MEASURES IN MAT 
ITEM SELECTION 

 

2.1 Multi-dimensional item response model 

MIRT models have been developed to capture the complexity of modern 

assessments (Adams, Wilson, & Wang, 1997), with the multi-dimensional three-

parameter model (M3PL) taking the form of (Reckase, 2009) 

 
1

( ) Prob( 1 )
1 exp[ ( )]

i
i i i T

i i

c
p u c

a b
-

º = = +
+ - -

q q
q

 , (1) 

where q = 1( ,...... )T
pq q  is the ability vector for an examinee and p is the number of 

dimensions or subscales. iu  is a binary random variable containing the response to 

item i, ic  is the pseudo-guessing parameter, ib  is the intercept term playing the 

role of item difficulty, and T
ia  is a 1 p´ vector of discrimination parameters for 

item i. The form of item response function in (1) is a direct generalization of the 

three-parameter logistical model (Birnbaum, 1968) to the multi-dimensional case. If 

the guessing parameter c is equal to 0, then the model reduces to the multi-

dimensional 2-parameter model (M2PL). Note that the multiple subscales follow a 

compensatory rule in this model and each item has only one difficulty parameter, as 

separate difficulty parameters for each dimension would render the model 

unidentifiable (Reckase, 1985). The discrimination parameter vector indicates the 

relative importance of each ability to answer item i correctly. Notice that due to the 

rotational indeterminacy of the q -space, the elements of q  may not automatically 

represent the desired abilities. However, while important, this is a scaling issue and 
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is beyond the current scope of this paper, so we assume the item pool is pre-

calibrated with the correct rotation of the ability space determined.  

 

2.2 Fisher information 

 Item information is typically defined as FI, which is a function of true q  

and therefore differs from examinee to examinee in the population. FI measures the 

amount of information that an observable random variable, for example, the item 

response X, carries about an unknown parameterq . It can be formularized as  

 ( ) [ ln ( ; )]I E f Xq q q
q
¶ì ü= í ý¶î þ

,  (2) 

where ( ; )f X q  is the likelihood function computed from item response functions 

(IRF), which usually takes the form of  

 1
0 1 2 0 0

1

( ; ) ( ; , ,..... ) [ ( ) ( )]i i

n
X X

n i i
i

f X L X X X P Qq q q q-

=

= =Õ ,  (3) 

and q  is the latent ability (Lord, 1980). IRFs can come from one-, two-, or three-

parameter models. Built upon (2), one item selection method, namely, the maximum 

Fisher information method (MFI; Thissen & Mislevy, 2000) is proposed in 

unidimensional computer-adaptive testing (CAT). This criterion tries to maximize 

the FI at the current ability estimate, ( )ˆ tq , after t items have been administered. FI is 

additive, meaning that for a test consisting of items, i=1,2,….n, the test information 

is simply the sum of the individual item information, expressed as ( )

1

( ) ( )
n

n
i

i

I Iq q
=

=å . 

Test FI is inversely related to the variance of the maximum likelihood estimator 

(MLE) following an asymptotic theory, which says that 1ˆ ˆ~ ( , ( ))mle mleN Iq q q- , and 
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this is the foundation of MFI method in CAT. Other things being equal, the larger the 

FI, the more precise the ˆmleq  will be. By selecting items that maximize FI at the 

interim ability estimate, the MFI method can force ˆmleq  to converge to the true q  

as quickly as possible.  

In the multi-dimensional case, the FI extends to a matrix instead of a scalar. 

For item i, the matrix is defined as 

 
2

( ) log ( ))
 i iTI E f uq q q

q q
é ù¶

= - ê ú¶ ¶ë û
,  (4) 

and if the MIRT model in (1) is taken, the information matrix becomes  

 

2
1 1 2 1

22
1 2 2 2

2
1 2

...

...( )[ ( ) ]
( )

:( )(1 )

...

i i i i ip

i i i i ipi i i
i

i i

i ip i ip ip

a a a a a

a a a a aQ P c
I

P c

a a a a a

q q
q

q

é ù
ê ú

- ê ú= ê ú-
ê ú
ê úë û

,  (5) 

where ( )iQ q =1- ( )iP q . The item information matrix will add up to form the test 

information matrix, maintaining the additive property. In this case, the asymptotic 

property of MLE and its relationship to the Fisher information also holds. 

Specifically, assuming q  is a p-dimensional vector, the MLE of ˆmleq  is 

distributed asymptotically as 1ˆ ˆ~ ( , ( ))mle mle
sN Iq q q- , where 1 ˆ( )mle

sI q- is the inverse 

of the information matrix evaluated at ˆmleq , with each element representing either 

the variance of one ability dimension or the covariance between two ability 

dimensions. For a more general case, please refer to Lehmann (1999) or Mulder and 

van der Linden (2009). 

 Note from (2) and (3) that FI is only a function of a single point, say, ( )ˆ tq ; 
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indicating that FI represents the item discrimination power only around ( )ˆ tq  

(Hambleton & Swaminathan, 1985). Thus, it is not a good indicator of item 

discrimination power when ( )ˆ tq is far from true q , which is often the case in the 

early stage of a CAT. Due to this limiting feature, FI is termed as local information 

(Chang & Ying, 1996). 

 

2.3 Kullback-Leibler information 

 Generally, KL measures the divergence (i.e., non-symmetric distance) 

between two probabilities over the same parameter space (Cover & Thomas, 1991; 

Lehmann & Casella, 1998), and it is usually defined as 

 
( )

[ ] log
( )f

f X
KL g f E

g X

é ù
= ê ú

ë û
. (6) 

Here, ( )f X  and ( )g X are two probability distributions. The expectation here is 

taken over ( )f X , which usually represents the “true” distribution of the observed 

data. ( )g X  often represents an approximation of ( )f X . Following Renyi (1970, 

1961), KL is sometimes called the information gain by X if f can be used instead of 

g . It is also called the relative entropy for using g  instead of f . [ ]KL g f  

measures how easy it is to tell apart the two probability distributions (Henson & 

Douglas, 2005). Statistically, KL is derived from the well-known likelihood ratio test. 

Assume ( )f X  is the likelihood function when 0q q=  and ( )g X  is the 

likelihood function when 1q q= . Using the Neyman-Pearson theory (Lehmann, 

1986), the likelihood ratio test is the best test of 0q q=  versus 1q q= . In this 
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regard, the expected value of log-likelihood ratio, also the definition of KL (see 

Equation 6), quantifies how powerful the statistical test is, and therefore measures 

the discrimination power of an item for distinguishing 1q  from 0q . Note that the 

application of KL in the context of CAT was first introduced by Chang and Ying 

(1996). For item i, KL is expressed explicitly as 

0 0
1 0 0 0

1 1

( ) 1 ( )
( ) ( ) log( ) (1 ( )) log( )

( ) 1 ( )i

p p
KL p p

p p
q q

q q q q
q q

-
= + -

-
. (7) 

One important feature of KL is that it is a function of two ability levels, 0q  and 1q , 

and it does not require 1q  to be close to 0q , which makes it suitable for use in the 

early stages of item selection in CAT (Chang & Ying, 1996). For an n-length test, the 

test KL is the summation of the item KL. In the multi-dimensional case, the only 

changes to the KL are that q  becomes a vector instead of a scalar in (7), and the 

item response function follows the MIRT model in (1).  
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CHAPTER 3 ANALYTICAL RESULTS OF KL 
 

3.1 Connections between Fisher Information and KL Information 

The asymptotic theory introduced in the previous section explicitly relates the 

performance of MLE ˆmleq  to the item/test FI. The expectation of the likelihood 

ratio, which is just the KL information, serves as one assumption in the course of the 

proof (Chang, 1996; Chang & Stout, 1993). In this sense, KL only has an indirect 

effect on the property of ˆmleq , but understanding the relations between FI an KL 

will help identify the roles of KL in the adaptive item selection process.  

In UIRT, Chang and Ying (1996) showed that FI at 0q  equals the second 

derivative of KL evaluated at the same true value 0q , which is expressed as 

 
0

2

0 02 ( ) ( )KL Iq qq q q
q =

¶
=

¶
. (8) 

For any givenq , KL represents the ease or difficulty of distinguishing q  from 0q . 

In particular, for q  varying around 0q , KL reduces to FI. Geometrically, if KL is 

viewed as a curve on the plane, FI becomes the curvature of the curve at 0q q= . 

Extending this relationship to the multi-dimensional case, it is explicitly verified that 

the FI matrix is equal to the Hessian (i.e., second partial derivative) matrix of the KL, 

mathematically expressed as  

 
2

0 0( ) ( )ij
i j

I KL
¶

=
¶ ¶

q q q
q q

. (9) 

In the two-dimensional case, the above relationship can be displayed 

geometrically. First, KL is in fact a function of four random variables 
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( 10 20 1 2q q q q， ， ， ) where 0q = 10 20( )q q，  is the examinee’s true ability level. 

However, in CAT, we always assume the interim point estimate 1ˆkq -  as the “true” 

value in calculating KL, that is, 1
10 1̂

kq q -= , 1
20 2̂

kq q -= , so KL is reduced to a function 

of only two random variables ( 1 2，q q ). In a graphical sense, imagine a three-

dimensional space ( , ,l u k ), with l corresponding to 1q , u  to 2q  and k  to KL. 

Figure 1 displays the KL surface (KLS) for two different items with discrimination 

parameters ( 1 2,a a ) and a difficulty parameter (b), assuming the true ability point 

is 10 20( 1, 1)q q= - = . KLS intersects with the undersurface ( ,l u ) exactly through this 

true ability point (-1, 1), meaning that KL is 0 at this point. However, the KLS 

intersects with the undersurface not only through this single point, but through the 

line 1 1 10 2 2 20( ) ( ) 0a aq q q q- + - = , denoted here as the “zero-KL information line”. 

The zero-KL information line will be elaborated upon later in this section. Figure 1 

displays the KLS for two items, the upper panel is a general item with non-zero 1a  

and 2a , whereas the lower panel is the item with 2a  equal to zero. 

Let us focus on the first item (i.e., upper panel in Figure 1), which is the more 

general case. If we cut the KLS by a plane 1 10q q=  parallel to the vertical 

plane 2u q= , the resulting curve is just the KL information curve of 2q , as shown in 

Figure 2. In general, the curvature of a curve ( )y f x=  at 0x x=  is  

 

0

''

2 3/ 2(1 ' )
x x

y

y
=

=
+

k . (10) 

In the case provided here, the function of the curve can be expressed as 
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2( )KL y f q= = , and 2
2

 
' ( )

d
y f

d
= q

q
 and 

2
''

22
2

 
( )

d
y f

d
= q

q
. Since this curve 

intersects the under surface at 0q = 10 20( , )q q  and
2 202'( ) 0f q qq = = , the curvature 

reduces to 
1 10 2 20

''

,
y

= =
=

q q q q
k . Therefore, it is fairly straightforward to verify that the 

curva curvature of the intersected curve at 2 20 1q q= =  is 

2
0 0 2 22( )(1 ( ))P P a I= - =
% %

k q q , the second diagonal element in the FI matrix. This 

result is in fact consistent with Chang and Ying’s (1996) conclusion. Similarly, the 

first diagonal element corresponds to the curvature of the resulting curve by cutting 

the KLS with 2 20=q q . However, if the vertical cutting plane is not parallel to either 

2u q=  or 1l q= , for example, the intersection of the vertical plane and 

undersurface is a line drilling through 10 20( , )q q  with angle a  from 1q -axis (as 

shown in Figure 3), then the curvature of the resulting curve at 10 20( , )q q  becomes 

slightly more complicated. For ease of interpretation and derivation, we transform 

the original rectangular coordinates to a cylindrical coordinate system, i.e., 

 
1 10

2 20

cos

sin

r

r

y y

q q a
q q a
= +ì

ï = +í
ï =î

,  (11) 

with y referring to the KL information. Now the curvature reduces to ''

0r
y

=
=k  for 

a fixed a . Expanding this second derivative yields,  

 2
0 0 1 2( )(1 ( ))( cos sin )P P a ak q q a a= - + . (12) 

Given this conclusion, it is interesting to find that the curvature is zero when 
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1 2cos sin 0a a+ =a a , where 1
0

2

arctan( )
a
a

= = -a a and 0a  is exactly the angle of 

the zero-KL information line from the 1q -axis. In fact, this result is quite obvious if 

viewed from Figure 3. That is, if the vertical cutting plane intersects with the 

undersurface through the zero-KL line, the resulting curve is nothing but a flat line. 

On the other hand, the curvature in (12) is maximized when 02
pa a= - , which 

means that the curvature becomes the largest along the line that is perpendicular to 

the zero-KL line. This finding is important for accurately estimating the composite 

ability 1 1 2 2a aq q q= + . For an item with discrimination parameters 1 2( , )a al l , 

where l  is a constant, it is most informative (in terms of KL information) with 

respect to the composite ability 1 1 2 2a aq q q= + . In other words, this item can best 

distinguish q  from 0 1 10 2 20a aq q q= + , because q  moves along the direction of the 

largest curvature (or one can imagine this as the largest “gradient” of KLS) toward 

/away from 0q . This conclusion illustrates that if estimating a linear composite 

ability 1 1 2 2a aq q q= +  is desirable, then items with discrimination parameters 

1 2( , )a al l  are favored. 

 Overall, although the off-diagonal elements of the FI matrix are not explicitly 

displayed from the geometric representation, we can still conclude that the whole FI 

matrix can be fully recovered from KL by taking derivatives as shown in (9). In 

other words, whenever KL is available, the FI matrix can be determined, but KL 

cannot be recovered from FI. 
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3.2 KL Information in Adaptive Tests 

The primary source for the application of KL information in CAT is Chang and 

Ying’s (1996) pioneering approach. In this section we will first introduce this 

approach in unidimensional CAT and then its extension to MAT. Secondly, a 

thorough discussion of the specific item parameter patterns favored by KL is given. 

Finally, a discussion of global information and local information in the context of 

item selection in MAT is presented. 

3.2.1 KL information index.  Motivated by the findings that KL should be 

used when n (i.e., number of items administered during the test) is small and FI 

when n is large, Chang and Ying (1996) constructed a single index, called the KL 

information index (KI),     

              
ˆ

ˆ

ˆ ˆ( ) ( )
n n

n n

n nKI K d
q d

q d

q q q q
+

-

= ò . (13) 

Here, nd determines the size of the interval over which the average is computed. 

Following the general asymptotic theory for ML estimators that n̂q  is 

asymptotically normal with mean 0q and variance ( ) 1
0[ ( )]nI q - , nd  is reasonably 

chosen as 1/2n

d
n

d =  (Chang & Ying, 1996), because ( )
0( )nI q  is of order n; d is a 

user-defined constant. This selection of nd  also reflects the smooth transition from 

KL to FI in the KI. Initially when n is small, this index summarizes the information 

of the item with respect to a wide spectrum of q  levels, which is extremely useful 

at the beginning of the test when q̂  is far away from q . As the test proceeds with 

large n, the magnitude of KI is essentially determined by the curvature of KI at n̂q . 
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Viewing KI as the area under the KL information curve, it follows that the maximum 

area is equivalent to the maximum curvature and therefore the maximum FI.  

Based upon Chang and Ying’s (1996) index, Veldkamp and van der Linden 

(2002) then proposed a Bayesian version of the KL information index for MAT 

which is expressed as 

 1 1
1 2

ˆ ˆ( ) ...... ( ) ( , ,... )k k
i nKI KL P X X X- -= ¶ò ò

q

q q q q q , (14) 

and it is equivalent to  

        

10 01/ 2 1/ 2

10 01/ 2 1/ 2

1 1
1 2

ˆ ˆ( ) ........ ( ) ( , ,... )

p

p

d d

n n
k k

i n
d d

n n

KI KL P X X X

q q

q q

q q q q q

+ +

- -

- -

= ¶ò ò  .       

(15) 

Here, 1 2, ,..., nX X X  are the responses, and the posterior probability 

1 2( , ,... )nP X X Xq  serves as a “weight” in constructing the index. To show the 

property of this index and to graphically represent it, we will assume a flat posterior 

in which each q  is given equal weight. Following Veldkamp and van der Linden’s 

(2002) logic, in the two-dimensional case, they assume the integration domain is a 

square centered at 10 20( , )q q  with side length of 1/ 2

6
n

, and the two dimensions are 

of equal priority in the item selection. However, this integration domain can be 

adjusted according to the specific test requirements, which reflects the potential 

flexibility of this method. Denote the integration domain as D, which is central 

symmetric with center 10 20( , )q q , and we can consider several cases: 

1.  Square domain 10 10 20 20[ , ] [ , ]D r r r r= - + ´ - +q q q q . 
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2.  Rectangle domain 10 1 10 1 20 2 20 2[ , ] [ , ]D r r r r= - + ´ - +q q q q . 

3.  Circular domain 2 2 2
1 2 1 2{( , ) }D rq q q q= + £ . 

4.  Elliptic domain 
2 2

1 2
1 2 2 2

1 2

{( , ) 1}D
r r
q q

q q= + £ . 

The first and third cases presume that both dimensions are equally important in a test, 

while the second and fourth cases assume the two dimensions are weighted 

differently. In terms of a graphical interpretation, the KI is actually the volume of the 

three-dimensional region between the KLS and the ( ,l n )-plane, bounded laterally 

by the circular cylinder (or other cylinders depending on the integration domain) as 

shown in Figure 4.  In adaptive testing where true values 10 20( , )q q  are unknown, 

the interim point estimates 1 2
ˆ ˆ( , )q q  are used instead as the centroid.  

3.2.2 KI and item discriminations.   

Theorem 1. Let 0q  be the true ability vector of the examinee and a  be the 

vector of item discrimination parameters. For any given q , let 0( )jKL q q be the KL 

item information. Define the item KL information Index as 

0 0( ) ( )j
D

KI KL= ¶òòq q q q , where D is the central symmetric domain centered 

around 0q . For the two-dimensional case, 0( ) ( )KI f aµq as 0D ® . In 

particular, ( )f a 2 2
1 2a a= +  when D is a square or circle, and ( )f a 2 2

1 1 2 2( ) ( )a r a r= +  

when D is a rectangle (defined by 10 1 10 1 20 2 20 2[ , ] [ , ]D r r r r= - + ´ - +q q q q ) or ellipse 

(defined by 
2 2

1 2
1 2 2 2

1 2

{( , ) 1}D
r r
q q

q q= + £  ).   

Outline of Proof.  The proof focuses on the case when D is either a circle or an 

ellipse by use of the cylindrical coordinates; the square and rectangular case, which 

can be obtained through the original Cartesian coordinates, is omitted here. This 
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theorem focuses on the two-dimensional case; however, the conclusion can be 

generalized to more than two dimensions by algebraic derivation, which will be the 

subject of future research.  

Presumably if the integration domain is a circle with diameter 2r, with the 

random variables 1 2( , )q q  taking the form in (11), the KL is expressed as 

 10 20 10 20
10 20 10 20 10 20

( , ) ( , )
( , , , ) ( , ) log( ) ( , ) log( )

( , ) ( , )
P Q

KL r P Q
P r Q r
q q q q

q q a q q q q
a a

= + , (16) 

and the KL information index is reformulated as  

 10 20 10 20( , ) ( , , , )
D

KI KL r rdrdq q q q a a= òò . (17) 

The Taylor expansion of 10 20( , , , )KL rq q a at 0r =  is written as 

 ' 2 '' 2
1 2 1 2 1 2 1 2

1
( , , , ) ( , ,0, ) ( , ,0, ) ( , ,0, ) ( )

2
KL r KL rKL r KL o rq q a q q a q q a q q a= + + + , (18) 

where 2( )o r  is the error term that can be ignored. The derivative is taken with 

respect to r. It is fairly straightforward to confirm that  

 1 2( , ,0, ) 0KL q q a = , (19) 

 '
1 2( , ,0, ) 0KL q q a = , and (20) 

 
22

'' 20 0
1 2 1 2

00

(1 )( )( ')
( , ,0, ) ( cos sin )

(1 ) (1 )
r

p p cp
KL a a

p p p c
q q a a a

=

- -
= = +

- -
, (21) 

where c is the guessing parameter, p is a short form of ( , )P r a , 0p  is the short 

form of 10 20( , )P q q , and both p and 0p  are item response functions following a 

two-dimensional IRT model in (1). Substituting (18)~(21) into (17) and ignoring the 

error term yields  
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2

4 2 20 0
10 20 1 2

0

(1 )( )
( , ) ( )

8 (1 )
p p c

KI r a a
p c

pq q
- -

» +
-

. (22) 

The magnitude of KI is proportional to ( )f a 2 2
1 2a a= +  as long as r  goes to zero. 

In addition, comparing (22) to (5), we can conclude that the size of KI is in effect 

proportional to the trace of the FI matrix. 

Now let us consider the situation in which two abilities are weighted 

differently and take the elliptical domain in case 4 as an example. We first rewrite 

the cylindrical coordinates as 

 
1 10

2 20

cos

sin

rt

rs

y y

q q a
q q a
= +ì

ï = +í
ï =î

 , (23) 

where t and s are determined by the shape of the ellipse, and they are given in 

advance to reflect the relative importance of the two abilities in the test. We can then 

verify that 

 
2

4 2 2 2 20 0
10 20 1 2

0

(1 )( )
( , ) ( )

8 (1 )
p p c

KI r st a t a s
p c

pq q
- -

» +
-

 , (24) 

and consequently, 2 2 2 2
10 20 1 2( , ) ( )KI a t a sq q µ + . In summary, the theorem indicates 

that when the area of the integration domain approximates to zero, the magnitude of 

KI is proportional to the function of the two item discrimination parameters. The 

form of the function depends on the shape of the integration domain. 

Specifically, if the domain is a circle, then the magnitude of KI, which closely 

resembles its unidimensional counterparts, is proportional to 2 2
1 2a a+  (Wang & 

Chang, 2009). Notice that this relationship holds only under large sample 

assumption that “the domain area approximates to zero”, which is satisfied if we 
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choose 3 /r n=  ( r is chosen in this way to form a 99% confidence interval 

around q̂ ; Chang & Ying, 1996; Veldkamp & van der Linden, 2002) and the test 

length is long enough. As an outcome, it is expected that when the two dimensions 

are given equal weight, item selection may capitalize on large values of 2 2
1 2a a+  at a 

later stage in the test, and therefore items with large 2 2
1 2a a+  are more likely to be 

chosen. In fact, 2 2
1 2a a+  is the so-called multi-dimensional discrimination 

(MDISC; Reckase & McKinley, 1991). As an analogue to unidimensional IRT, in 

which the discrimination parameter is related to the slope of the item response curve 

at the point where the slope is steepest, the MDISC is defined as the steepest slope 

on the item response surface (IRS) and is expressed as MDISC= 2 1/ 2

1

( )
K

ik
k

a
=
å  if the 

test measures K dimensions. The MDISC is an overall measure of the capability of 

an item to distinguish between individual examinees that are in different locations in 

the ability space.  

One important question is if two items have equal MDISC, which one is 

preferred? The answer is the item with larger discrimination difference, i.e., 

1 2a a-  should have higher priority in the two-dimensional case. Denote the FI 

matrix as 11 12

21 22

I I

I I
é ù
ê ú
ë û

, it can be verified that the variance of 1̂q is 

1 1
1 11 12 22 21
ˆvar( ) ( )I I I Iq - -= - and the variance of 2̂q is 1 1

2 22 12 11 21
ˆvar( ) ( )I I I Iq - -= - . To 

minimize 1̂var( )q , we need to simultaneously maximize 11I and minimize 1
22I - , thus 

items with maximum 1a  and minimum 2a  are desired, and vise versa for 
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minimizing 2̂var( )q . Therefore, items with larger 1 2a a-  are preferred in this 

sense. 

3.2.3 KI and item difficulty.  The objective of CAT is to select items that are 

tailored to an examinee’s ability, and thus items with difficulty values close to an 

examinee’s ability level are more likely to be selected. This trend is reflected in the 

item selection rules such as “match-b criterion” for the a-stratified method in UAT 

(Chang & Ying, 2008). In the two-dimensional case, the question would be whether 

there is an analytical form that the item difficulty b-parameter takes such that KI 

reaches maximum. The analysis of such a question may in fact illuminate the b-

parameter pattern favored by KI. In terms of FI, we already know that b should 

follow a certain linear combination of q s (Mulder & van der Linden, 2009). Thus, 

intuitively, we would expect the difficulty-parameter to follow a similar function of 

the abilities in order to maximize the item KL. Figure 5 displays a snapshot of KI as 

a function of 10 20( , )q q . Obviously, it is not at a single point where the KI reaches 

maximum, but along a line which is a linear combination of 10q  and 20q . 

The ideal situation is to find the function along which the peak line follows. 

Let us return to the previous derivation in (22), when the integration domain is small 

enough, the size of KI is approximately proportional to 
2

2 20 0
1 2

0

(1 )( )
( )

(1 )
p p c

a a
p c

- -
+

-
. 

Given the fixed 1a , 2a , and c , one only needs to maximize  

 
2

0 0

0

(1 )( )
( )

(1 )
p p c

g b
p c

- -
=

-
. (25) 

Since ( )g b  is actually the scalar part of the FI matrix (refer to Equation 5), it is 
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easy to verify that b should satisfy the following equation to maximize KI (Mulder 

& van der Linden, 2009), 

 
1 1 2 2

max

1 1 2 2

                              for c=0

     1 1 8
log( )   for c>0

4

a a

b c
a a

c

q q

q q

+ì
ï= í - + +

+ -ïî

. (26) 

However, (26) is restricted to the assumption that the integration domain 

approximates zero, and thus it will be more interesting to speculate on the more 

general case. Unfortunately, there is no closed analytical form for b when c is greater 

than zero, but we are able to obtain an analytical form for b when c is assumed to be 

zero.  

Theorem 2.  Let 0q  be the true ability vector of the examinee, a  be the vector 

of item discrimination parameters, and b be the item difficulty parameter. For any 

q , the KL information for the thj item is denoted as 0( )jKL q q . If we define the 

item KL information index as 0 0( ) ( )j
D

KI KL= ¶òòq q q q , where D is the central 

symmetric domain centered around 0q , then for the two-dimensional case, when a  

and 0q  are fixed, the 0( )KI q is maximized when 0' 0- =qa b  for c=0. 

Outline of Proof.  First simplify the integrand in KI as 

 0 0
0 0 0 0 0

0

1 exp( )
( ) log log ( ) log

1 exp( )j

P Q t
KL P Q P t t

P Q t
+

= + = - +
+

q q , (27) 

where 1 2

exp( )
 ( , ) ,   1

1 exp( )
t

P P Q P
t

q q= = = -
+

; 

0
0 10 20 0 0

0

exp( )
( , ) ,   1

1 exp( )
t

P P Q P
t

q q= = = -
+

 1 1 2 2 0 1 10 2 20;t a a b t a a bq q q q= + - = + - . 
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Regard 0( )jKL q q  as a function of b, denoted as ( )f b . For an item with fixed 

discrimination parameters, integrating (27) causes the first part in (27) to drop out 

because it is an odd function and the integration domain is symmetric, so that the 

integral of ( )f b  further simplifies to a function g(b) as given by, 

 1 2
0

1 exp( )
( ) log

1 exp( )D

t
g b d d

t
q q+

=
+òò  . (28) 

Choose two new coordinates 1 1 10s q q= - , 2 2 20s q q= -  for convenience and let 

1 1 2 2A a s a s= + ; since D is central symmetric, 1 2( , )s s- - is inside D whenever 

1 2( , )s s  is also inside, and thus 

0 1 1 2 2 0 1 1 2 2
1 2

0 0

0 0 0 0 0 1 2

1 exp( ) 1 exp( )
2 ( ) (log log )

1 exp( ) 1 exp( )

(log(1 exp(2 ) exp( ) exp( )) log(1 exp(2 ) 2exp( )))

D

D

t a s a s t a s a s
g b ds ds

t t

t t A t A t t ds ds

+ + + + - -
= +

+ +

= + + + + - - + +

òò

òò
. 

 (29) 

Therefore, the integrand in (28) is rewritten as, 

 0
2

0

exp( )
( ) log(1 ( 2))

(1 exp( ))
A At

b e e
t

j -= + + -
+

 . (30) 

Because 2 0A Ae e-+ - ³ , it is sufficient to maximize 
0

0 2(1 )

t

t

e
e+

. Taking the 

derivative with respect to b, one obtains 

 0 0
3

0

exp( )(1 exp( ))( )
(1 exp( ))

t td b
db t
j -

=
+

 . (31) 

When 0 0t > , ( )bj  is decreasing, when 0 0t < , ( )bj is increasing, thus 0 0t =  is 

the unique value to maximize ( )bj , which also maximizes ( )f b  when 1a and 2a  

are fixed. Thus, 1 10 2 20 0a a bq q+ - =  is the function that maximizes the KI. 

In all, the above discovery points to a way to select items based upon item 
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difficulty. In adaptive testing, when interim estimate q̂  is updated, we can choose 

the item with a b-parameter as close as possible to ˆ'qa , which is similar to the 

“match-b” criterion in unidimensional CAT (Chang & Ying, 1999). In fact, this 

finding will help in constructing a simplified version of KI (SKI), which will be 

explicated in the following section. Although the theorem only holds when the 

M2PL is employed, the result is still useful, as M2PL is extensively discussed in the 

literature (see van der Linden, 1996; Veldkamp & van der Linden, 2002; Reckase & 

McKinley, 1991). It is important to note that even if the M3PL is employed, the 

results in (26) could still be used, albeit for the slightly more limited situation due to 

the requirement of a longer test length. 

Note that both theorems can be generalized to the higher-dimensional case (for 

any p>2). As to Theorem 2, the conclusion can be extended in a fairly 

straightforward manner. In fact, the proof from equations (27) to (31) is applicable 

to any given number of integrations as long as the integration domain is central 

symmetric, and therefore we can conclude that KI is maximized when 

0' 0- =qa b  for c=0, where 0q  is a p-dimensional vector for any given number of p. 

As to Theorem 1, although the conclusion still holds for p>2, the strategy adopted to 

prove for p=2 is different than that for p>2. The former employs cylindrical 

coordinates, and the latter has to utilize rectangular coordinates. The application of 

cylindrical coordinates yields an interesting geometric explanation for the 

relationship between KL and Fisher information. However, it is not clear how to 

show such a relationship for p>2 geometrically. Therefore, to be consistent with the 

geometric explanations discussed in the paper, we will only present the proof for 
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p=2.  As to p>2, please refer to Wang and Chang (2010) for the proof.  

 

3.3 Global Information vs. Local Information 

KL is termed as “global information” because it quantifies the discrimination 

power between two ability levels, 0q  and 1q , whether they are close together or 

not; whereas FI only measures the item discrimination close to 0q  and in this sense 

it is called “local information”. When a local information criterion is used, item 

selection procedures may favor items with optimal properties that are far from the 

examinee’s actual ability level, a phenomenon called the “attenuation paradox” in 

test theory (Lord & Novick, 1968). A general approach to deal with the attenuation 

paradox is to replace a maximum-point information criterion with an interval-based 

criterion so that items that provide information over a larger range of trait values are 

preferred (van Rijn, Eggen, Hemker, & Sanders, 2002; Veerkamp & Berger, 1997). 

Such criterions include, for example, maximum interval information ( )
U

L

I d
q

q
q qò , 

where[ , ]L Uq q  forms a latent trait interval over which the information is 

accumulated (Veerkamp & Berger, 1997; Passos, Berger, & Tan, 2008); maximum 

posterior weighted information 1 2( ) ( , ,..... )
U

L
nI P X X X d

q

q
q q qò  (van der Linden, 

1998), and maximum expected information, such as 

1 2 1 1 2( , ,..... ) ( , ,..... )
U

L
n n n

x

P X x X X X I X X X x d
q

q
q q-= =åò , where 

1 2 1( , ,..... )n nP X x X X X -= is the posterior predictive distribution (van der Linden, 

1998). However, KI in (14) is by definition associated with an interval which is 
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close in proximity to the true ability value 0q . The main difference between KI and 

the above mentioned interval-based criterions is that KI is a dynamic combination of 

KL and FI. In UAT when n is small, KI relies on the item KL; and when n is large, 

KI gradually transitions to rely on FI, and thus KI behaves quite similar to the 

maximum FI criterion. However, in two-dimensional adaptive testing, this smooth 

transition is not so obvious. Although we can still relate the KI directly to the FI 

matrix under large-sample approximation, KI and FI based methods have distinct 

selective mechanisms, even when the test length is longer. Specifically, the D-

optimality (Segall, 1996) criterion is meant to maximize the determinant of the FI 

matrix, which is algebraically equivalent to maximizing the product of the 

eigenvalues of the FI matrix. As a result of taking the determinant, items that mainly 

test a single ability are generally most informative. Alternatively, KI tries to 

maximize the trace of the FI matrix, which is the same as the summation of the 

eigenvalues. Therefore, the distinction between D-optimality and KI reduces to the 

comparison of the multiplicative and additive rules. 
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CHAPTER 4 SIMPLIFIED KL INDEX 
 

A MAT algorithm can be used to simultaneously asses multiple abilities, while 

tailoring the test to match an examinee’s set of latent abilities, thus offering greater 

precision. However, the actual application of MAT is greatly limited by its 

computational intensity. In order to be able to use MAT in a real-time application, 

the item selection process needs to be fast and efficient, however, the existing KL 

based methods, which contain multiple integrations, are extremely time-consuming. 

Given this critical drawback in the application of MAT, it would seem promising to 

construct a simple index that could provide an adequate approximation to the item 

KL information.  

Stemming from the pervious discussion of the relationship between KI and item 

parameters, a simplified KL information index (SKI) is proposed. Depending upon 

whether the term 1 2a a-  is considered in the item selection, two versions of SKI 

can be formulized as follows,    

1SKI =
1

( )
bq -

a'a
a'

       

and      

1 22SKI a a= -
1

( )
bq -

a'a
a'

,         

where a is the column vector of item discrimination parameters, and 1 2( , )a a=a'  is 

a special case in the two-dimensional space. The parameter b represents item 

difficulty. Note that SKI1 is exactly constructed from the two theorems provided 
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earlier in the paper, whereas SKI2 adds an additional term with the understanding 

that 1 2a a-  is another criterion KI uses to select items. In fact, Theorem 1 has 

shown that the value of KI is proportional to MDISC. Thus, if KI is the primary 

criterion for item selection, then MDISC plays a pivotal role, and therefore 1 2a a-  

should be treated as a secondary criterion. Note that this belief will be further 

supported by the simulation results presented in the next section and its 

understanding is important for future development of an exposure control method. 

For example, the a-stratification method in unidimensional adaptive tests (Chang, 

Qian, & Ying, 2001; Chang & Ying, 1999; Yi & Chang, 2003) is one promising 

exposure control method. The motivation of the a-stratification method is that the 

magnitude of item Fisher information largely depends on the item discrimination. 

Thus, if we want to apply the same idea to multi-dimensional adaptive tests, we can 

stratify the item pool according to MDISC.  

In addition, SKI involves a multiplier, 
1

b-a'q
, assuming the M2PL model is 

employed. If the M3PL model is used, then this multiplier would need to be 

modified to incorporate c with (26) as a reference. If some of the abilities are more 

important then others, then SKI would need to be modified by substituting ( )a'a  

with ( )· ·a w)'(a w , where w  is a column vector (same length as a ) of weights, 

and ·  means a one-to-one multiplication of each element in a  and w . As 

described, SKI greatly reduces the computational intensity by avoiding the multiple 

integrations that have burdened the application of MAT. 
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CHAPTER 5 SIMULATION STUDIES AND RESULTS 
 

Simulation studies were carried out in this research for two important purposes: 

(a) To gather numerical evidence in support of our theoretical findings about 

MDISC and KI, and (b) to show that the two versions of SKI outperform the original 

KI. In order to show support for both of these purposes, two separate simulation 

studies were implemented. 

 

5.1 Simulation 1 

This simulation study was done in order to verify whether or not the items with 

larger MDISC values are more likely to be chosen when KI is used for item 

selection. In addition, this part of the study tried to obtain empirical evidence to 

show for items with similar MDISC, those with higher 1 2a a-  are more preferable. 

5.1.1 Item Pool Structure   

In this simulation, two dimensions are considered, and we assume the item pool is 

sufficiently rich with items of various difficulty values, so that for every given q  

value there is a corresponding item difficulty parameter b that follows the form in 

(26). For the first item pool, three types of item discrimination parameters are 

generated. The first type has 1 ~ (1.5, 2)a U , 2 ~ (1.5, 2)a U  (denoted as Type 1); the 

second type has 1 ~ (1.5, 2)a U , 2 0a =  (denoted as Type 2); and the last type has  

1 0a = , 2 ~ (1.5, 2)a U  (denoted as Type 3). Note that the items in Type 1 have the 

largest MDISC and smallest 1 2a a-  values. The second item pool also has three 



 

28 
 

types of item discrimination parameters with the last two remaining the same as the 

first pool, with the only difference being in the first type, which changes to 

1 ~ (1.0,1.5)a U  and 2 ~ (1.0,1.5)a U  (denoted as Type 4). Note that items in Type 

2 to 4 have similar MDISC, but items in Type 2 and 3 have larger 1 2a a-  values. 

For simplicity, the guessing c parameters for all items were set to zero. 

5.1.2 Examinee generation   

The true ability vector was generated from a multivariate normal distribution with 

mean of zero, and with a correlation of 0.5 between the two dimensions. The 

examinees were simulated in this way to represent a typical population of examinees, 

in which the traits are moderately correlated, with a sample size of 1000 chosen in 

order to produce stable results.  

5.1.3 Ability Estimation 

The Expected A Posterior (EAP) method was used to update q̂ s. Specifically, 

suppose (k-1) items have been administered, 1ˆkq -  is calculated as, 

 
11

1

1

.... ( ; ) ( )
ˆ ( )

.... ( ; ) ( )

--
-

-

¶
=

¶
ò ò ò
ò ò
q q q q

q q
q q q

l kk
l l k

k

L u f
E u

L u f
, (32) 

where 1-ku  is the response vector. The integration can be approximated using 

Gauss-Hermite quadrature (Stroud & Sechrest, 1966). The prior density ( )qf  is 

chosen to match the multivariate normal distribution used to generate examinees’ 

abilities.  

5.1.4 Item selection method and termination rule   

In this simulation study, only the original KL index (KI) was considered. The 

integration domain was chosen to be a circle, although it would not make any 
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difference if it were a square. The test length was fixed to be 40 items, deliberately 

chosen in order to be able to show a clear trend. 

5.1.5 Evaluation Criterion 

At each stage of the test (n=1,2,….40), the frequency of each item type will be 

recorded. 

5.1.6 Results   

Figure 6 shows the frequency of each item type being exposed during the tests 

following the first item pool structure. Type 1 items are shown to be the most 

preferred items throughout the whole test and their frequencies are even higher than 

the sum of the Type 2 and 3 items. Admittedly, allowing items to be selected from an 

infinite large item pool is not very likely in reality, however, this pool was created in 

this way in order to more clearly track the exposure frequencies associated with each 

number of administered items, which allowed for a more complete examination of 

the selection mechanism behind KI. This result shows that MDISC is the primary 

underlying criterion that controls the item selection. However, it is interesting to note 

that although KI depends heavily on MDISC only in the later stage of the test 

according to the analytical derivation, the simulation results actually posit that KI 

still tends to pick the items with high MDISC at each stage of the test as long as the 

item bank is not exhausted of high MDISC items. This result also explains the 

unbalance in item exposure under the KI method, which further highlights the need 

for the development of an SKI approach that will balance the exposure by forcing 

the item selection to follow a certain order of MDSIC. 

Figure 7 shows the longitudinal frequency results for the second item pool 
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structure. As can be seen, when MDISC is equal for each type of item, those with 

higher 1 2a a-  are much more likely to be chosen. 

 

5.2 Simulation 2 

The second simulation study was implemented in order to provide empirical 

evidence to show that both versions of SKI can actually provide comparable or even 

higher estimation accuracy when compared to the original KI, but with less 

computational intensity.  

5.2.1 Item bank construction 

A test is multi-dimensional when it assesses more then one latent trait, however, 

there are two kinds of multi-dimensionality that have been categorized. The first is 

between-item multi-dimensionality and the second is called within-item multi-

dimensionality (Adams et al., 1997). In fact, between-item multi-dimensionality can 

be regarded as a special case of within-item multi-dimensionality, in which each 

item is constrained to measure only one trait. This research utilizes the within-item 

multi-dimensionality, which is the more general condition, as the basis for this 

simulation study. The item bank is constructed following a two-dimensional two-

parameter IRT model, with the item bank size set to 900. Although there is a rule of 

thumb that states the pool needs to have at least 12 times as many items as the test 

length (Stocking, 1994) due to the item pooling effect, other researchers have 

recommended even larger ratios (Chang & Zhang, 2002). Thus, an item pool with 

900 items should be large enough for the purposes of this research. The two 

discrimination parameters were generated from a log-normal distribution, bounded 
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within 0.25 and 1.5; and the difficulty parameters were generated from a standard 

normal distribution. 

5.2.2 Examinee generation 

Two groups of examinees were generated. The first group of examinees were 

simulated to evaluate the overall estimation accuracy of each method in a general 

examinee population. The examinees were generated in the same way as in the first 

simulation study (see Section 5.1.2). The second group was generated to assess the 

conditional estimation accuracy of each method, therefore, as in Finkelman, Nering, 

and Roussos (2009), examinees were simulated with true abilities on a two-

dimensional grid spanning the square 01 02, ( 2.0, 1.6,.....2.0)= - -q q . By crossing 11 

discrete points over the two dimensions, the simulation is performed over a grid of 

121 q  values. At each q , 500 simulations are run, and the total number of 

simulated tests is 60,500. In both cases, the test length is set to be 40. 

5.2.3 Item Selection Rules  

The original KL index, both versions of the simplified KL index, and randomized 

item selection methods were used in the following study. In addition, we added 

another comparison for the first group of examinees, which was a 40-item non-

adaptive test given to all the examinees. In order to select the 40 most informative 

items from the item bank, an index K was utilized, indicating the overall KL 

information carried by each item, which is defined as, 

0 1

0

0

0 0 0 1 0 0 1 0

1 0 1 0 0

( ) ( ) ( ) ( )

( ) ( )

K KI f KL f

KL f
+¥ +

-¥ -

= ¶ = ¶ ¶

é ù= ¶ ¶ê úë û

ò ò ò

ò ò

q q

q d

q d

q q q q q q q q

q q q q q
.  (33) 

Here 1 0( )KL q q is defined in equation (7), 0( )f q  is the prior density and the 
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integration is approximated by Gauss-Hermite quadrature (Stroud & Sechrest, 1966). 

The K index is basically the integration of the KL index over the entire ability space 

weighted by the prior density of each ability point, and in this way it measures the 

overall discrimination power of an item with respect to all possible ability points in 

the space. KL information is employed here because the contribution of each item to 

the test information is independent, which simplifies the assembly of the non-

adaptive test (Veldkamp & van der Linden, 2002). The 40 items with the largest K 

index were chosen to form the psychometrically optimal non-adaptive test. These 40 

items are given to all examinees repeatedly. Lastly, the D-optimality method (Segall, 

1996, 2001; Mulder & van der Linden, 2009) based on the Fisher information matrix 

is also carried out for the first group of examinees.  

5.2.4 Evaluation Criterion 

The estimation accuracy of each method was measured by mean squared error 

(MSE),  

 2

1

1 ˆ( ) ,    1,2
N

ij ij
i

MSE j
N

q q
=

= - =å , (34) 

with bias of each element in q ,   

 ( )
1

1 ˆ  ,  1, 2
N

ij ij
i

Bias j
N

q q
-

= - =å .  (35) 

N is the population size, j indicates the ability dimension, i denotes the examinee, 

îjq  is the final EAP estimate for each examinee on each dimension and, ijq  is the 

corresponding true value. To evaluate the performance of the different methods 

conditioning on each ability point, the above two criterions are calculated as 

conditional MSE and Bias, namely, the true ability is fixed at every single value. In 
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addition, the approximate computational time taken by each approach was recorded 

to show the computational efficiency of each method. 

To investigate whether the original and simplified KL indices tend to select the 

same items, an overlap rate was calculated between these two indices, which is 

defined as the average proportion of common items selected by the two methods: 

, ,

1

#( )1 N
i KI i SKI

i

s s
overlap

N L=

Ç
= å .    (36) 

,i KIs  is the set of items administered to the thi examinee by the original KI method, 

, ,#( )i KI i SKIs sÇ  is the number of items in the intersection of the sets ,i KIs  and ,i SKIs . 

In addition, the empirical frequencies of the item exposure against the item 

discrimination parameters were assessed (Mulder & van der Linden, 2009).  

5.2.5 Results   

Table 1 shows the performance of each method for the simulated examinee group 1. 

Both the original KI and two versions of SKI produce comparable and satisfactory 

estimation accuracy as shown by the small MSE and Bias compared to the Random 

method. In addition, each of the methods outperforms the non-adaptive counterpart. 

D-optimality based on Fisher information matrix is also considered here, and this 

method produces similar results to KI and both versions of SKI. 

TABLE 1 Bias and MSE of 1q  and 2q  for different item selection rules. 

Mean Squared 
Error 

Bias Computation Time1 
(seconds) 

 

 

1q  2q  1q  2q   

Original KI 0.112 0.103 -0.025 -0.020 0.18 
 

SKI1 0.115 0.102 -0.057 -0.035 0.06 

SKI2 0.117 0.104 -0.032 -0.011 0.06 
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Random 0.242 0.251 -0.153 -0.147 0.01 
 

Non-adaptive 0.205 0.157 -0.105 -0.113 N/A 
D-optimality 0.120 0.103 0.007 -0.019 0.11 

1. Computation time is the average CPU time needed for selecting a single item for one 
examinee; the program was run on a 2.2GHz processor with Compaq Visual Fortran version 6.6. 
 

 
Since the results of the conditional MSE and Bias for both dimensions are 

quite similar, only the results for 1q  are displayed in Figure 8. As can be seen when 

reviewing the plots of MSE, all three methods exhibited the same pattern of 

precision. In particular, the lowest precision was found when 1q  was high and 2q  

was low, or vice versa. Note that this pattern was also reported in Finkelman et al. 

(2009), and they ascribe it to the prior distribution used in EAP estimation because 

little weight is given to those points in the prior. It should be noted that Figures 8a, 

8b, and 8c are all on different scales, which may indicate that both SKI1 and SKI2 

outperform KL for most of the theta points. Furthermore, SKI2 produced uniformly 

smaller MSE values at every single ability point among the three methods. However, 

the differences in absolute bias between the three methods were consistently smaller 

than the differences in MSE. 

The overlap rate between KI and SKI1 is 0.603, whereas the overlap rate 

between KI and SKI2 is 0.365. A higher overlap rate means that the two methods 

tend to select the same items, and thus the results indicate that compared with SKI2, 

SKI1 is a closer approximation to the KL index. Figure 9 illustrates the item 

exposure frequency against the item discrimination parameters, in which each circle 

represents an item with its discrimination parameters as coordinates. The area of the 

circle is proportional to the item exposure rate, and in general, the largest circles 
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correspond to roughly 0.5 exposure rate.  

As shown in Figure 9, both KL and SKI1 display similar patterns of item 

exposure, i.e., both methods prefer to select items with a high multi-dimensional 

discrimination. However, SKI2 tends to select items with high 1 2a a- , which 

explains why the overlap rate between SKI2 and KI is relatively low. Note that the 

frequency of difficulty parameters are omitted here because for any item selection 

algorithm, the distribution of difficulty parameters is close to standard normal, 

which is the same distribution used to generate the b-parameters. 
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CHAPTER 6 CONCLUSIONS 

 

This paper first discusses the relationship between KL information and the 

Fisher information matrix in the context of multi-dimensional IRT. From the 

mathematical connections between the two approaches and the fact that the FI 

matrix can be fully recovered from KL, the explication should allow for a better 

understanding of the various item selection methods that are based on these two 

different information measures.  

This research then discusses the multi-dimensional version of the KL index, 

highlighting its characteristics for the two-dimensional case. In the two-dimensional 

case, KI is viewed as the volume under the KL information surface. Specifically, two 

analytical results are provided to explore the full capacity of the KL index. The first 

analytical result shows that the magnitude of KI, when the test length is long enough, 

is asymptotically equivalent to the trace of the FI matrix and, consequently, 

proportional to the square of the item MDISC. Although KI tends to prefer items 

that are sensitive to multiple abilities, KI also favors items that have larger 

differences between the two discrimination parameters. This is indeed similar to 

Fisher information based methods, such as D-optimality, which favor items that are 

highly discriminating on a single ability (Mulder & van der Linden, 2009). This 

comparable parametric targeting illuminates the underlying connections between the 

KL and FI matrix. The second analytical result shows that an item is most 

informative only when its difficulty matches the linear combination of the current 

ability estimates.  
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One important finding is that in the multi-dimensional case, KI can no longer 

approximate the FI based methods, even when the test is long enough. This is seen 

from our first theorem, which posits that maximizing KI in the course of the test will 

reduce to maximizing the trace of FI matrix, whereas none of the FI based methods 

(such as D-optimality or A-optimality) maximize the trace directly. This is quite 

different from how KI behaves in the unidimensional case. In fact, the principle 

initiative of constructing KI is to let KL dominate item selection early in the test and 

let FI direct item selection later in the test, which follows from the belief that global 

information should be used first. In the unidimensional case, this smooth transition 

from KL and FI is perfectly mirrored in KI through the changes of integration size 

nd . Despite the fact that the desired smooth transition is not directly reflected in the 

multi-dimensional case, the “global information first” idea is still embodied. Future 

research should consider defining a new KL index that can more closely mimic the 

KI in the unidimensional case.       

According to the analytical results, the KL index can be approximated by less 

computationally intensive methods, and therefore two versions of SKI were 

proposed. The results from the simulation studies indicate that SKI1 approximates 

KL quite accurately and that SKI2 outperforms KL by producing more accurate 

ability estimation.  Furthermore, both SKI1 and SKI2 can easily incorporate the 

need for weighting each dimension differently, which is often desired in practice 

(van der Linden, 1996; Veldkamp & van der Linden, 2002; Mulder & van der 

Linden, 2009). In future research, various non-statistical constraints need to be 

considered in the item selection process, as we believe the benefit of SKI is more 
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apparent in particular when adaptive tests are trying to optimize a solution based on 

a larger number of constraints. In addition, the new finding that KI primarily 

depends on MDISC may in fact facilitate further development of a stratification-

based exposure control method (e.g., Chang & Ying, 1999, 2008). Overall, both 

SKI1 and SKI2 should be given precedence over the original KI for longer tests and 

tests with more constraints, due to their numerical simplicity, and thus its increased 

efficiency in real-time computer-based testing. However, the SKI developed in this 

research is only a prototype and many issues still remain to be further investigated. 

First, the construction of SKI1 is directly from the two theorems, whereas in SKI2, 

we intentionally embed a term 1 2a a- because the first simulation results indicated 

that this term also played an important role in item selection. In fact, adding this 

additional term does improve the accuracy of the adaptive tests, as reflected by the 

smaller conditional MSE. However, within SKI2, MDISC and 1 2a a-  are simply 

combined through multiplication, which does not reflect the relative importance of 

each component in the item selection, and thus further modifications are needed. 

Another issue originates from the fact that the relationship between KI and item 

MDISC depends on large sample approximation, which means the relationship may 

not be as strong at the beginning of the test. Although the first simulation results 

indicated a strong relationship at all stages of the test, considering the large item 

pool used in the simulation, which would most likely not be found in practice, a 

future research study should work on building an index that only relies upon 

discrimination in the later stages of the test. Another line of future research is to 

derive mathematically how the bias or MSE relies upon the item selection rule in 
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MAT, just as Chang and Ying (2008) did in the unidimensional case, which would 

allow one to assess how the different item selection rules affect estimation accuracy.  

This paper focuses on the two-dimensional case which is readily visible by 

geometric representation, displaying mathematical elegance. However, the 

conclusion can also be extended to more than two dimensions (Wang & Chang, 

2010). Note that the relationship between KI and item discrimination are derived 

from a geometric perspective in this paper, but for higher dimensional space, which 

is not observable, algebraic derivation is required. The two versions of SKI can also 

be generalized to more than two dimensions, with the only modification being to 

include the corresponding multi-dimensional discrimination parameters and a 

dissimilarity measure among the multiple discrimination parameters per item.  

 

 

 

.  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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