
c© 2012 Tianxiong Ji

THE DELAY PERFORMANCE OF ADAPTIVE ROUTING AND SCHEDULING IN
COMMUNICATION NETWORKS

BY

TIANXIONG JI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2012

Urbana, Illinois

Doctoral Committee:

Professor R. Srikant, Chair
Professor Tamer Başar
Adjunct Assistant Professor Todd P. Coleman
Associate Professor R. S. Sreenivas
Professor Nitin H. Vaidya

ABSTRACT

Throughput and latency are two important QoS metrics in communication networks. Ideally,

we would like to deliver a large amount of data from a source to its destination within a short

time period. During the past decades, researchers have designed a number of network-layer

routing algorithms and MAC-layer scheduling algorithms to deliver good QoS performance

under various network conditions.

In this dissertation, we study the delay performance of routing and scheduling algorithms in

communication networks. A collection of algorithms called MaxWeight Scheduling (MWS)

algorithms is known to be throughput optimal. A particular algorithm in this class was

conjectured to be delay-optimal as well. We disprove this conjectured by constructing a

delay-optimal algorithm for a specific network and show that it outperforms the particular

MWS algorithm.

Next, we propose a packet-by-packet adaptive routing and scheduling algorithm for multi-

hop traffic which dramatically reduces delays in the network, while maintaining near through-

put optimality. This algorithm uses a particular routing table, called a probabilistic routing

table, to adaptively find a route for every packet. The probabilistic routing table is gen-

erated by running an emulated network, called the shadow network, which is essentially a

model of the real network with a slightly higher traffic load. The scheduling decisions are

also determined by the shadow system. Our joint routing and scheduling algorithm reduces

the capacity region slightly, but provides low delay performance everywhere in this reduced

region. In addition, the queueing and routing architecture is more consistent with the ar-

chitecture of current routers and switches. We also extend our results to the case where

network coding is used to improved the throughput in the network. Our algorithm provides

ii

a low-complexity solution to optimally exploit the routing-coding tradeoff.

Lastly, we consider wireless ad hoc networks in which each connection (file) traverses only

one hop. We assume files arrive for service at each link and a file departs when all its

packets have been transmitted. We consider two cases: one in which the file size distribution

is arbitrary but has bounded support; another in which the file size distribution is a mixture

of geometric distributions. The only assumption we make about the window flow control

protocol is that the window size is always greater than zero. We show the following result:

for an appropriately chosen MAC-layer scheduling algorithm, the network is stable for all

file arrival rates within the capacity region. In other words, the MAC-layer scheduling

algorithm, by only knowing the MAC-layer information, can achieve throughput optimality

independently of the window flow control protocol used.

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my adviser, Prof. Srikant, for his exceptional

guidance and committed support during my journey of pursuing my Ph.D. He provides me

a wonderful research atmosphere and an excellent experience in his laboratory. Without his

guidance, support, caring and patience, I would never have been able to finish my disserta-

tion.

I would like to thank my other committee members, Prof. Başar, Prof. Coleman, Prof.

Sreenivas, and Prof. Vaidya. They spent their precious time to attend my preliminary and

final examinations, and provided me valuable opinions which guided me during the writing

of my dissertation.

I appreciate the guidance from, and interaction with, my collaborators Dr. Athana-

sopoulou, Dr. Bui, Dr. Stoylar and Javad Ghaderi. I am inspired by our warm discussions

about interesting problems, and we are working together towards the same objective.

I would like to thank my great labmates, Eleftheria Athanasopoulou, Loc Bui, Javad

Ghaderi, Juan Jose Jaramillo, Chong Jiang, Joohwan Kim, Jian Ni, Siva Theja, Bo Tan,

and Rui Wu for accompanying me during my journey towards the Ph.D.

I would also like to thank my dearest parents for their precious support and encouragement

every day.

Finally, I would like to give my special thanks to my wife, Siying Liu. She gives me her

strongest support, encourages me in my hardest times, and is cheered by my every success.

iv

TABLE OF CONTENTS

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 OPTIMAL SCHEDULING IN SMALL GENERALIZED
SWITCHES . 6
2.1 Related Works . 6
2.2 The Network Model . 8
2.3 Three-Link Line Network under the One-Hop Interference Model 11

2.3.1 Network Topology and the Interference Model 11
2.3.2 Scheduling Algorithm . 11
2.3.3 Workload Optimality . 12

2.4 Four-Link Line Network under the Two-Hop Interference Model 15
2.5 Four-Link Line Network under the One-Hop Interference Model 17

2.5.1 Network Topology and the Interference Model 17
2.5.2 The Scheduling Algorithms . 18
2.5.3 Throughput Optimality . 18
2.5.4 Workload Optimality . 19

2.6 Some Remarks on Various Notions of Optimality 27
2.7 Simulation Results . 28
2.8 Heavy Traffic Workload Optimality Proof for the Four-Link Network under

the One-Hop Interference Model . 32
2.9 Summary . 45

CHAPTER 3 BACKPRESSURE-BASED PACKET-BY-PACKET ADAPTIVE
ROUTING IN COMMUNICATION NETWORKS 47
3.1 The Network Model . 49
3.2 Throughput-Optimal Backpressure Algorithm and Its Limitations 50
3.3 Min-Resource Routing Using Backpressure Algorithm 53
3.4 PARN: Packet-by-Packet Adaptive Routing and Scheduling Algorithm for

Networks . 57
3.4.1 Shadow Queue Algorithm – M -Backpressure Algorithm 58
3.4.2 Adaptive Routing Algorithms . 59

v

3.5 Implementation Details . 61
3.5.1 Exponential Averaging . 61
3.5.2 Extra Link Activation . 62
3.5.3 The Choice of the Parameter ε . 63

3.6 Extension to the Network Coding Case . 63
3.6.1 System Model . 64
3.6.2 Links and Schedules . 66
3.6.3 Queueing Structure and Shadow Queue Algorithm 66
3.6.4 Implementation Details . 68
3.6.5 Extra Link Activation . 69

3.7 Simulations . 69
3.7.1 Simulation Settings . 69
3.7.2 Simulation Results . 71

3.8 The Stability of the Network Under PARN 75
3.9 To Derive the Backpressure Algorithm in the Network Coding Case 77
3.10 Summary . 79

CHAPTER 4 CONNECTION-LEVEL SCHEDULING IN WIRELESS NETWORKS
USING ONLY MAC-LAYER INFORMATION 80
4.1 System Model . 81

4.1.1 Model of Wireless Network . 81
4.1.2 Models of Transport and MAC Layers 83
4.1.3 The State of the Network . 84

4.2 A MaxWeight-Type Scheduling Algorithm 88
4.2.1 Algorithm Description . 88

4.3 Proof of Throughput-Optimality under Case 1 89
4.4 Proof of Throughput-Optimality under Case 2 96
4.5 Simulation Results . 105
4.6 Summary . 108

CHAPTER 5 CONCLUSION . 109

REFERENCES . 111

vi

LIST OF FIGURES

2.1 L-link line network. 8
2.2 A 3× 3 input-queued switch. 9
2.3 Possible maximal schedules for the 3-link line network under the 1-hop

interference model. 11
2.4 Possible maximal schedules for the 4-link line network under the 2-hop

interference model. 15
2.5 Possible maximal schedules for the 4-link line network under the 1-hop

interference model. 17
2.6 State transition diagram of a discrete-time single-server queue. 24
2.7 Scaled mean sum of queue lengths for the 3-link line network under the

1-hop interference model. 30
2.8 Scaled mean sum of queue lengths for 4-link line network under the 2-hop

interference model. 30
2.9 Scaled mean sum of queue lengths for 4-link line network under the 1-hop

interference model, where λ1 = λ2 = λ3 = λ4 = 0.5. 31
2.10 Scaled mean sum of queue lengths for 4-link line network under the 1-hop

interference model, where λ1 = λ4 = 0.6, λ2 = λ3 = 0.4. 31

3.1 Link weights under the M -backpressure algorithm. 56
3.2 Probabilistic splitting algorithm at Node n. 60
3.3 Network coding opportunity. 64
3.4 Sprint GMPLS network topology of North America with 31 nodes. 70
3.5 Wireless network topology with 30 nodes. 71
3.6 The impact of the parameter M in Sprint GMPLS network topology. 72
3.7 The delay performance of PARN and shortest path routing. 72
3.8 Packet delay as a function of λ under PARN in Sprint GMPLS network

topology. 73
3.9 Packet delay as a function of λ under PARN in the wireless network under

2-hop interference model without network coding. 74
3.10 Packet delay as a function of λ under PARN for M > 0 in the wireless

network under 2-hop interference model with network coding. 74
3.11 Packet delay as a function of λ under PARN for M = 0 in the wireless

network under 2-hop interference model with network coding. 75

vii

4.1 Transport/MAC layers: the packets at the MAC layer need not be in
separate queues as shown above, they can be in a single queue. 84

4.2 FIFO scheduling. 86
4.3 A wireless network containing 12 communication links. 106
4.4 Average delay of short files. 107
4.5 Average delay of long files. 107

viii

CHAPTER 1

INTRODUCTION

Throughput and latency are two main QoS metrics in communication networks. Since the

seminal work of Tassiulas and Ephremids [1], MaxWeight-type scheduling algorithms as well

as backpressure-type adaptive routing algorithms for communication networks have been

extensively studied under various network scenarios. The traditional backpressure algorithm

in [1] provides throughput optimality, but has very bad delay performance under multi-hop

network scenarios. Moreover, the computational complexity of the backpressure algorithm

or the MaxWeight algorithm (i.e., the backpressure algorithm under one-hop traffic case) is

extremely high.

There are two essential problems facing researchers: First, how do we reduce the com-

putational complexity while providing good throughput performance? Second, how do we

design algorithms to have good delay performance? These two problems are more difficult

in the multi-hop traffic scenario because routing should be deployed as well as scheduling.

Several scheduling algorithms are proposed to solve the first problem in a one-hop traffic

scenario [2, 3, 4, 5, 6]. Fully distributed CSMA algorithms have been developed in re-

cent years to make the scheduling algorithm completely distributed, and the throughput

optimality is maintained under some conditions [7, 8, 9]. In a multi-hop traffic scenario,

multi-path routing algorithms have been proposed to utilize network resources as much as

possible [10, 11, 12, 13, 14, 15]. However, throughput optimality is not guaranteed in these

routing algorithms. Backpressure-based routing algorithms can guarantee throughput op-

timality, but these algorithms are unrealistic due to bad delay performance or unrealistic

queueing structure [1, 4, 7, 16]. The delay performance of algorithms is not well under-

stood, especially in the multi-hop traffic scenario. The well-known shortest path routing is

1

an intuitive way to provide good delay performance in light traffic, but it will lead to insta-

bility at moderate to high loads. In [17], the authors heuristically modified the backpressure

algorithm to bias it towards taking shortest-path routes. ECMP (Equal-Cost Multi-Path)

routing algorithm distributes traffic load equally onto multiple shortest paths to provide

higher network throughput. However, it is far from optimal because it does not consider

network traffic pattern. The delay performance has been more extensively studied in net-

works with single-hop traffic only. It is shown that an appropriate function of the workload

in the system is minimized in heavy traffic region under a condition called complete resource

pooling (CRP) condtion if MWS-α algorithm is used [18]. Shah and Wischik [19] studied

the problem without the CRP condition in a fluid model. Keslassy and McKeown used

simulations to study the delay performance of MWS-α algorithms in [20].

The packet is usually the basic unit when researchers analyze the queueing system of the

network and design their algorithms. However, the file (or flow) is a more meaningful unit

when we consider the latency of a group of information-related packets. It is well known

that a small number of large flows dominate most of the traffic in the Internet. Stability of

wireless networks under connection-level dynamics has been studied in, e.g., [21], [22], [23],

[24]. Analyzing delay performance of files is attracting more attention. Good packet delay

performance does not necessarily indicate good file delay performance.

In this dissertation, we discuss three problems and study these two essential QoS issues

under various scenarios.

• In Chapter 2, we propose optimal scheduling algorithms for some small generalized

switches (including wireless networks and switches with one-hop traffic) where the

traffic load is close to the capacity boundary. We study the sum of queue lengths in

the network for each sample-path under our scheduling algorithm and compare our

algorithm using simulations with MWS-α algorithm where α is very small. It has been

conjectured that MWS-0 minimizes the total queue length in a generalized network.

Our results indicate that this conjecture is false.

• In Chapter 3, we consider a backpressure-based adaptive routing and scheduling al-

2

gorithm for communication networks. Traditional backpressure routing has very poor

delay performance. We systematically develop a routing algorithm using the backpres-

sure idea, which avoids long routes and unnecessary loops in the network, and gets

much better delay performance. We also reduce the queue complexity, which is an

important issue for the scalability of the network. The queueing structure under our

algorithm is widely used in commercial switches and routers. The extension of the

routing algorithm into a simple network coding scenario is also described in detail.

• In Chapter 4, we study the scheduling algorithm in the scenario where files arrive

into and depart from a wireless network in which each file traverses only one hop. We

assume that a window flow control protocol regulates the injection of packets from each

file into a MAC layer queue. We design a scheduling algorithm, which only uses the

MAC-layer queue information, to guarantee throughput optimality. We also consider

file latency instead of packet latency as a metric of the QoS performance. Simulation

results indicate a significant file delay improvement under our scheduling algorithm

compared to the original MaxWeight algorithm.

Our contributions are summarized as follows:

1. Optimal Scheduling Algorithms for Small Generalized Switches

• For some small networks, we have proposed optimal scheduling algorithms which min-

imize the number of backlogged packets in the network for each sample path in an

arbitrary traffic region or in a heavy traffic region.

• There is a well-known conjecture that MWS-α scheduling algorithms with α going to

zero are heavy-traffic optimal for scheduling in a generalized switch when the objec-

tive is to minimize the number of backlogged packets in the system. Our scheduling

algorithm outperforms MWS-α in a heavy traffic region; thus, it is a counter-example

to this conjecture.

2. Backpressure-based Packet-by-Packet Adaptive Routing in Communication Networks

3

• Using a novel concept of shadow queues, we decouple routing and scheduling such

that the routing decision will no longer affect the scheduling decision. A shadow

network is used to emulate the optimal traffic distribution and to update a probabilistic

routing table which packets use to decide the next hop upon arrival at a node. The

backpressure-based scheduling algorithm for the shadow network is used to serve real

FIFO queues over each link.

• The routing algorithm is designed to minimize the average number of hops used by

packets in the network. This idea, along with scheduling/routing decoupling, leads to

delay reduction compared with the traditional backpressure algorithm, and the delay

performance under our routing algorithm is very close to that of the shortest path

routing algorithm in light traffic.

• We also extend our adaptive routing and scheduling algorithm into the scenario where a

simple network coding scheme is employed. By employing network coding, the through-

put region is expanded, but the queueing structure has to be modified correspondingly.

• Each node has to maintain counters, called shadow queues, per destination. This is very

similar to the idea of maintaining a routing table per destination. But the real queues

at each node are per-next-hop queues. When network coding is employed, real packets

should not only remember the destination, but also keep the knowledge where they

come from. Therefore, per-previous-hop-per-destination queues may also be necessary,

but this is a requirement imposed by network coding, not by our algorithm.

• Our algorithm can be applied to wireline and wireless networks. Extensive simula-

tions show dramatic improvement in delay performance compared to the backpressure

algorithm.

3. Connection-Level Scheduling in Wireless Networks Using Only MAC-Layer Information

• Using the total queue length as the weight in MWS algorithms causes short files to

experience high latencies. Instead, we use the MAC-layer queues in our algorithm

4

and show that such an algorithm is still throughput optimal and its overall delay

performance is better than traditional MWS in simulations.

• In reality, scheduling is performed at the MAC-layer and the scheduler does not have

access to the total queue length information. Hence, our algorithm design is based on

a more practical assumption.

In the next three chapters, we elaborate the problems, the key ideas and the proofs for

the above three problems. We conclude this dissertation in the last chapter.

5

CHAPTER 2

OPTIMAL SCHEDULING IN SMALL
GENERALIZED SWITCHES

Scheduling algorithms for high-speed switches and wireless networks (together called gen-

eralized switches in [18]) have been widely studied since the seminal work of Tassiulas and

Ephremides [1]. Much of the work has focused on variations of the MaxWeight algorithm

proposed in [1], usually with the goal of achieving 100% throughput. To motivate the prob-

lem considered in this chapter, we briefly describe the MaxWeight algorithm: for single-hop

traffic scenario, each link is associated with one queue; a link is assigned a weight equal to

the αth power of its queue length, where α > 0. A schedule is a set of links that can be

enabled simultaneously without interfering with each other. The MaxWeight algorithm then

picks the schedule with the largest weight, where the weight of a schedule is defined to be

the sum of the weights of the links included in the schedule. To emphasize the role of α, the

corresponding MaxWeight algorithm is sometimes called MWS-α, where MWS stands for

MaxWeight scheduling. The original MaxWeight algorithm in [1] considers only the special

case of α = 1, i.e., MWS-1, but extensions to the case of general α are straightforward; see,

for example, the paper by Eryilmaz et al. [25].

2.1 Related Works

Given that MWS-α achieves 100% throughput for any value of α greater than zero, the

natural question to ask is whether α plays any role in network performance. Keslassy and

McKeown studied this problem using simulations [20] and concluded that the average number

of packets in a switch decreases as α decreases. In [18] Stolyar analyzed a much more general

model which includes both high-speed switches and wireless networks with fading as special

6

cases. Stolyar showed that
∑

l q
1+α
l , where ql is the queue length of link l in a switch, is

minimized in a sample-path sense in heavy traffic by MWS-α under a condition called the

Complete Resource Pooling (CRP) condition. Under the CRP condition, only one resource in

the network can be heavily loaded. Relaxing this condition has been a subject of considerable

interest. Shah and Wischik [19] studied the problem without the CRP condition; they

characterized the dimension of the workload space when the switch is critically loaded and

they provided further evidence to indicate that
∑

l q
1+α
l is minimized in an appropriate sense

by MWS-α. However, the notions of optimality used in [18] and [19] appear to be different.

We will comment on various notions of optimality later in this chapter. Related to the

above work is the large deviations work of Venkataramanan and Lin [26] who show that the

MWS-α algorithm maximizes the asymptotic decay-rate of the probability that the L1+α-

norm of the queue length vector exceeds some threshold B. In [27] line networks under the

1-hop interference model are considered and it is shown that an optimal algorithm schedules

the maximum number of queues (subject to interference constraints) so that the maximum

number of packets are served at each slot. Among this class of algorithms, a further subset

that does at least as well as any other given algorithm is identified. In one case (which

we will mention later), the optimal algorithm has been derived. In this chapter, we derive

heavy-traffic optimal algorithms for small generalized switches with the goal of comparing

them to MWS-α algorithms. An earlier version of this work appears in [28].

Heavy-traffic analysis of generalized switches can be traced to Brownian models of stochas-

tic networks, suggested by Harrison in [29]. The Brownian formulation approximates the

original problem by replacing all random processes (such as arrival processes and potential

service processes) by Brownian motions with a drift. In some cases, the resulting stochastic

control problem can be reduced to a lower-dimensional problem (a phenomenon referred to

as state-space collapse by Reiman in [30]) which sometimes renders the problem analytically

tractable. When the state collapses to a single dimension, it means that there is a single

critical resource in the network which determines the performance of the network. It was

shown by Laws in [31] that the problem of identifying the appropriate critical resource (or

7

Figure 2.1: L-link line network.

resources), and the corresponding state-space collapse, can be formulated as a linear pro-

gram. A number of examples illustrating the applicability of this result to scheduling and

sequencing problems were provided by Kelly and Laws in [32]. Although the Brownian for-

mulation suggests a solution for some network control problems, additional work is needed

to show that the resulting solution is indeed near-optimal for the original model. Thus, a

key contribution in [18] was to prove the heavy-traffic sample-path optimality of MWS-α

algorithm. Related papers by Shakkottai et al. [33] and Bell and Williams [34] also use the

CRP condition to establish heavy-traffic optimality of other resource allocation models. An

introduction to fluid and Brownian models of stochastic networks can be found in the recent

book by Meyn [35].

2.2 The Network Model

We consider networks consisting of L links arranged in a line as shown in Figure 2.1. Two

adjacent nodes are connected by a link to denote that communication is possible between

the pair. We assume that all traffic is single-hop, that time is slotted, and that packets are of

equal size. To model interference in wireless networks, we consider two interference models:

the 1-hop and 2-hop interference models. A valid schedule in a κ-hop interference model is a

set of links such that no two links in the schedule are within κ hops of each other. Note that

input-queued high-speed switches with special traffic patterns can also be described using

the above model as shown in Figure 2.2. In Figure 2.2, input port A has traffic destined

only to output port a, input port B has traffic destined for output ports a and b, and input

port C has traffic destined for output ports b and c. It is easy to see that this switch can be

8

Figure 2.2: A 3× 3 input-queued switch.

viewed as a line network under the 1-hop interference model.

Now we introduce some conventions and notation that will be used throughout the chapter.

We assume that, during each time slot, arrivals occur first; then we observe the queue lengths

to make the scheduling decision, and then departures occur. Let us associate a queue with

each link and use ql[k] to denote the queue length of link l at the beginning of time slot k.

Let αl[k] denote the number of arrivals at link l at time slot k. We assume that the arrival

processes to different links are mutually independent and stationary. The average arrival

rate at link l is denoted by λl, i.e., λl = E[αl[k]]. We will make additional assumptions on

the arrival processes in Section 2.5.

We say that link l or queue l is backlogged at time k if the queue length is greater than

zero after the arrival epoch, i.e., if ql[k]+al[k] > 0. If a backlogged link l is scheduled at time

slot k, then one packet is removed from its queue. Let the indicator function dl[k] denote

whether link l is scheduled at time slot k, i.e.,

dl[k] :=

 1, if link l is scheduled

0, otherwise.

Without loss of generality, we assume that each link has a unit link rate. Thus, dl[k] is the

number of potential departures from link l at time slot k, i.e., the number of link l’s packets

that can be served at time slot k. The actual number of departures from link l can be less

9

than dl[k] if link l is not backlogged. The dynamics of ql[k] are given by

ql[k + 1] =
[
ql[k] + αl[k]− dl[k]

]+
,

where
[
x
]+

= max(x, 0). We define ul[k] to be the unused service on link l at time k, i.e.,

ul[k] :=

 1, if ql[k] + αl[k] = 0 and dl[k] = 1

0, otherwise.

Let λl be the arrival rate at link l and Λ := (λ1, λ2, · · · , λL). Denote each feasible schedule

in the L-link network by an L-dimensional vector with the lth element of the vector being

1 if link l is included in the schedule and 0 otherwise. The capacity region C is defined

to be the convex hull of the feasible schedules. The set C is called the capacity region for

the following reason: if we let ρ be the traffic load on the network, which is defined as

ρ = inf{ξ > 0|Λ/ξ ∈ C}, then, for any set of arrival rates Λ ∈ C with ρ < 1, there exists

a scheduling algorithm such that the network is stable, and if ρ > 1, then there exists no

scheduling algorithm that can stabilize the network [1]. When ρ < 1, if the arrival process

is such that the system can be described as a Markov chain, then there exists a scheduling

algorithm which ensures that the Markov chain is positive recurrent. This is what we mean

by “stability” above.

A scheduling algorithm which stabilizes the network for all arrival rates with ρ < 1 is said

to be throughput optimal. We say that the network is critically loaded if the traffic load

ρ = 1, which means that the set of arrival rates is on the boundary of the capacity region.

We say that the traffic is heavy if ρ is very close to but less than 1.

We are interested in finding scheduling algorithms that minimize the total number of

packets in the network. We will refer to such algorithms as being workload optimal, where

workload refers to the total number of packets in the network.

10

2.3 Three-Link Line Network under the One-Hop Interference

Model

2.3.1 Network Topology and the Interference Model

Consider a 3-link line network under the 1-hop interference model. As shown in Figure 2.3,

there are two valid maximal schedules, one that includes link 2 and one that includes links

1 and 3; i.e., the feasible schedules are a := {2} and b := {1, 3}. (Note that we have defined

a schedule by the set of links included in the schedule instead of a vector of bits denoting

whether each link is included in the schedule or not. This is a more convenient representation

for exposition while the vector notation is more convenient to define the capacity region as

in the previous section. We will abuse our definition in this manner for the sake of clarity of

presentation.)

Figure 2.3: Possible maximal schedules for the 3-link line network under the 1-hop interfer-
ence model.

It is not very difficult to see that the capacity region of this network is given by C =

{(λ1, λ2, λ3)|λ1 + λ2 ≤ 1, λ2 + λ3 ≤ 1}. In the remainder of this section we propose a

scheduling algorithm which minimizes the total number of packets in the network at each

time slot.

2.3.2 Scheduling Algorithm

Scheduling Algorithm: At each time slot, observe the queue lengths after arrivals occur.

Then, execute the following algorithm:

11

• if (q1 > 0 and q3 > 0) or if (q2 = 0), use schedule b = {1, 3},

• if (q1 = 0 or q3 = 0) and (q2 > 0), use schedule a = {2}.

Notice that the scheduling decision is made based on whether the queues are backlogged or

not and not based on exact queue lengths.

It should be clear that the main idea behind this algorithm is to drain as many packets as

possible from the network; however, when both schedules are able to drain only one packet,

it is important to choose the right schedule. In particular, if links 1 and 3 are backlogged,

we use schedule b and remove two packets from the system. If only one of links 1 and 3

is backlogged, then we can at most remove one packet; in such a case, we choose to use

schedule a. The intuition behind this choice is straightforward: we prefer to serve links 1

and 3 simultaneously since this would allow us to drain two packets in one time slot. If this

is not possible, we give preference to link 2 and hope that both links 1 and 3 are backlogged

sometime in the future. The scheduling algorithm that we have proposed here is similar in

spirit to the optimal resource allocation algorithm for a 2-link, 3-flow connection-level model

presented in [36].

2.3.3 Workload Optimality

In Proposition 2.3.2, we will show that our algorithm minimizes the total workload along

every sample path. This automatically implies that our algorithm is throughput-optimal.

Note that any naive algorithm may not be throughput optimal. Consider, for example, the

following algorithm: at each time slot, observe the queue lengths after arrivals occur, and

then

• use schedule a = {2}, if q1 = q3 = 0,

• use schedule b = {1, 3}, otherwise.

Queues q1 and q3 have the highest priority; i.e., they are always scheduled unless they are

both zero. Queue q1 behaves as a single-server queue with arrival rate λ1 and potential

12

departure rate 1. Similarly, queue q3 behaves as a single-server queue with arrival rate λ3

and potential departure rate 1. For simplicity, assume that the arrival processes to the links

are independent, Bernoulli processes. In this case, the fraction of time we can use schedule

a is P (q1 = q3 = 0) = P (q1 = 0)P (q3 = 0) = (1 − λ1)(1 − λ3). Thus, q2 is stable only

if (1 − λ1)(1 − λ3) > λ2. This set of link arrival rates is a strict subset of the link arrival

rates that satisfy λ1 + λ2 < 1 and λ2 + λ3 < 1. Therefore, this algorithm is not throughput

optimal. We note that this example is similar to the instability of priority algorithms in

2-link connection-level models of congestion control presented in [37].

Our scheduling algorithm is sample-path optimal, i.e., the total queue length is minimized

at each step. Our algorithm is the same as the optimal algorithm derived in [27].

Lemma 2.3.1. Let ql[k], l = 1, 2, 3 be the queue lengths at time slot k under our algorithm,

and q̂l[k], l = 1, 2, 3 be the queue lengths at time slot k under some other arbitrary scheduling

algorithm. Assume that the initial queue lengths and the arrivals are the same under both

algorithms. The following inequalities hold at all times:

q1[k] + q2[k] ≤ q̂1[k] + q̂2[k]

q2[k] + q3[k] ≤ q̂2[k] + q̂3[k].

Proof. Recall that a maximum of one packet can be drained from links 1 and 2. Since our

algorithm drains one such packet whenever possible, the sum of the queue lengths at links

1 and 2 under our algorithm must be less than or equal to that of any other algorithm. A

similar observation holds for links 2 and 3.

Proposition 2.3.2. Our scheduling algorithm is sample-path optimal, i.e., at all times, we

have

q1[k] + q2[k] + q3[k] ≤ q̂1[k] + q̂2[k] + q̂3[k].

Proof. We prove the proposition by contradiction. Let r be the first time when the inequality

does not hold; i.e.,
∑3

l=1 ql[r] >
∑3

l=1 q̂l[r]. If
∑3

l=1 ql[r− 1] = 0, i.e., all queues are empty at

time slot r−1, then it is easy to see that the inequality
∑3

l=1 ql[r] ≤
∑3

l=1 q̂l[r] holds. So, we

13

assume that
∑3

l=1 ql[r−1] > 0. In this case, the following equality must hold:
∑3

l=1 ql[r−1] =∑3
l=1 q̂l[r−1]. To see this, note that, if

∑3
l=1 ql[r−1] <

∑3
l=1 q̂l[r−1], then since our algorithm

will remove at least one packet whenever possible and any other algorithm can remove at

most two packets, at time r, we cannot have the inequality
∑3

l=1 ql[r] >
∑3

l=1 q̂l[r]. Thus,

the following facts must be true at time instant r − 1 :
∑3

l=1 ql[r − 1] =
∑3

l=1 q̂l[r − 1], our

algorithm serves one packet at r−1, and the arbitrary algorithm serves two packets at r−1.

This further implies that the following condition must hold:

(q̂1[r − 1] + α1[r − 1] > 0 and q̂3[r − 1] + α3[r − 1] > 0)

and

(q1[r − 1] + α1[r − 1] = 0 or q3[r − 1] + α3[r − 1] = 0).

Without loss of generality, we assume the following:

(q̂1[r − 1] + α1[r − 1] > 0 and q̂3[r − 1] + α3[r − 1] > 0)

and

(q1[r − 1] + α1[r − 1] > 0 and q3[r − 1] + α3[r − 1] = 0).

From the fact that q3[r − 1] + α3[r − 1] = 0 we get q3[r − 1] = 0 and α3[r − 1] = 0.

Combining this with the fact that q̂3[r−1]+α3[r−1] > 0, we have q̂3[r−1] > 0. Recalling that∑3
l=1 ql[r−1] =

∑3
l=1 q̂l[r−1], we have the inequality q1[r−1]+q2[r−1] > q̂1[r−1]+ q̂2[r−1],

which directly contradicts Lemma 2.3.1. Hence, there exists no time r such that
∑3

l=1 ql[r] >∑3
l=1 q̂l[r].

While this algorithm is workload optimal, it is not clear if MWS-α can perform as well as

this algorithm. Later we will show through simulations that the optimal algorithm performs

better than MWS-α.

14

2.4 Four-Link Line Network under the Two-Hop Interference

Model

Consider a 4-link line network under the 2-hop interference model. There are three valid

maximal schedules, i.e., schedule a := {2}, b := {3}, and c := {1, 4}, as shown in Figure 2.4.

Figure 2.4: Possible maximal schedules for the 4-link line network under the 2-hop interfer-
ence model.

In this network, links 1, 2, and 3 cannot be scheduled at the same time, neither can links 2,

3, and 4. The capacity region is given by C = {(λ1, λ2, λ3, λ4)|λ1+λ2+λ3 ≤ 1, λ2+λ3+λ4 ≤ 1}.

We will show that the following scheduling algorithm for the 4-link line network under the

2-hop interference model is stable and workload optimal in a sample-path sense.

Scheduling Algorithm: At each time slot, observe the queue lengths after arrivals occur.

Then

• if (q1 > 0 and q4 > 0) or (q2 = q3 = 0), use schedule c = {1, 4},

• if (q1 = 0 or q4 = 0) and (q2 > 0 and q3 = 0), use schedule a = {2},

• if (q1 = 0 or q4 = 0) and (q2 = 0 and q3 > 0), use schedule b = {3},

• if (q1 = 0 or q4 = 0) and (q2 > 0 and q3 > 0), use schedule a = {2} or b = {3}

arbitrarily.

Again, the main idea is to drain as many packets as possible from the network in each

time slot, but to break ties carefully. If either link 1 or link 4 or both are not backlogged,

we can at most remove one packet; in that case, we give higher priority to link 2 or link 3

15

if they are backlogged. This give us a better chance to serve two packets simultaneously in

the future.

The throughput-optimality of our algorithm uses the same idea as in the stability proof

for the 3-link line network under the 1-hop interference model. Let q123 := q1 + q2 + q3 and

q234 := q2 + q3 + q4. The queues q123 and q234 can be thought of as two single-server queueing

systems with arrival rates λ1 + λ2 + λ3 and λ2 + λ3 + λ4, respectively. The queues q123 and

q234 are stable if λ1 +λ2 +λ3 < 1 and λ2 +λ3 +λ4 < 1, respectively. Therefore, (q1, q2, q3, q4)

is stable and the proposed scheduling algorithm is throughput optimal.

Next, we prove that our proposed scheduling algorithm is sample-path optimal. Let ql[k],

for l = 1, 2, 3, 4 be the queue lengths at time slot k under our algorithm, and q̂l[k], for

l = 1, 2, 3, 4 the queue lengths at time slot k under any arbitrary scheduling algorithm.

Assume that the initial queue lengths are equal, i.e., ql[0] = q̂l[0], ∀l and that the arrivals

are exactly the same under both algorithms.

Lemma 2.4.1. Let ql[k], l = 1, 2, 3, 4 be the queue lengths at time slot k under our algorithm,

and q̂l[k], l = 1, 2, 3, 4 be the queue lengths at time slot k under any arbitrary scheduling

algorithm. Assume that the initial queue lengths are equal, i.e., ql[0] = q̂l[0], ∀l and that the

arrivals are exactly the same under both algorithms. The following inequalities hold at all

times:

q1[k] + q2[k] + q3[k] ≤ q̂1[k] + q̂2[k] + q̂3[k]

q2[k] + q3[k] + q4[k] ≤ q̂2[k] + q̂3[k] + q̂4[k].

Proof. Recall that a maximum of one packet can be drained from links 1, 2, and 3. Since our

algorithm drains one such packet whenever possible, the sum of the queue lengths at links

1, 2, and 3 under our algorithm must be less than or equal to that of any other algorithm.

A similar observation holds for links 2, 3, and 4.

Proposition 2.4.2. Our scheduling algorithm is sample-path optimal; i.e., the following

inequality holds at all times:

q1[k] + q2[k] + q3[k] + q4[k] ≤ q̂1[k] + q̂2[k] + q̂3[k] + q̂4[k].

16

Proof. The proof is similar to the one of Proposition 2.3.2 and is therefore omitted. Note

that the 4-link, 2-hop model can be thought as being equivalent to the 3-link 1-hop model

as follows: the middle two links can be thought as a single link since only one of them can

be scheduled at a time.

2.5 Four-Link Line Network under the One-Hop Interference

Model

In the previous two sections, we were able to derive sample-path optimal algorithms. In

this section, we consider a model for which a simple sample-path optimal algorithm does

not seem to exist. Instead, we present a class of scheduling algorithms which is sample-path

optimal in a heavy-traffic sense.

2.5.1 Network Topology and the Interference Model

Consider a 4-link line network under the 1-hop (node-exclusive) interference model. There

are three valid maximal schedules, namely schedules a := {2, 4}, b := {1, 3}, and c := {1, 4},

as shown in Figure 2.5.

Figure 2.5: Possible maximal schedules for the 4-link line network under the 1-hop interfer-
ence model.

The capacity region is given by C = {(λ1, λ2, λ3, λ4)|λ1 +λ2 ≤ 1, λ2 +λ3 ≤ 1, λ3 +λ4 ≤ 1}.

Next, we propose a class of scheduling algorithms and show its throughput optimality and

its sample-path optimality in a heavy-traffic setting.

17

2.5.2 The Scheduling Algorithms

A Class of Scheduling Algorithms: At each time slot, observe the queue lengths after arrivals

occur. Then

• if q2 > 0 and q3 > 0, then

– use schedule a if q1 = 0 and q4 > 0,

– use schedule b if q1 > 0 and q4 = 0,

– use either schedule a or b, otherwise.

• If q2 = 0 and q3 > 0, use schedule b.

• If q2 > 0 and q3 = 0, use schedule a.

• If q2 = 0 and q3 = 0, use schedule c.

This class of scheduling algorithms tries to remove two packets from the system whenever

possible and, in addition, gives priority to schedules a and b over schedule c when all three

are capable of serving the same number of packets. Observe that the pair of links 2 and 3

cannot be scheduled simultaneously, while the pair of links 1 and 4 can. In order to avoid

situations where the only backlogged links are links 2 and 3, our algorithm gives the lowest

priority to schedule c.

2.5.3 Throughput Optimality

To establish the optimality properties of the class of scheduling algorithms, we make the

following additional assumptions on the arrival processes: the arrival process of each link is

Bernoulli, i.e., at each time slot, there is exactly one packet arrival to link l with probability

λl, and there is no arrival with probability 1− λl.

We provide an informal argument to show that our algorithms are throughput optimal.

Notice that exactly one packet is removed from the pair of links 2 and 3 unless q2 = q3 = 0.

18

Let q23 := q2 + q3. The Markov chain describing the evolution of q23 is stable if λ2 + λ3 < 1.

In this case, the fraction of time that schedule a is used (which is the same as the fraction

of time that link 2 is backlogged) is equal to λ2. Similarly, the fraction of time that schedule

b is used is equal to λ3. Since schedule c is used only when links 2 and 3 are not backlogged,

the fraction of time that schedule c is used is equal to 1− λ2− λ3. (This follows from a flow

conservation argument or by analyzing the single-server queueing dynamics of q23.) Thus,

the available service to link 1 (i.e., the fraction of time that either schedule b or c is used) is

equal to 1− λ2. Thus, queue q1 is stable if λ1 < 1− λ2 ⇒ λ1 + λ2 < 1. Similarly, queue q4 is

stable if λ3 + λ4 < 1. In summary, all queues in the network are stable if

λ1 + λ2 < 1, λ3 + λ4 < 1, λ2 + λ3 < 1.

This establishes the throughput optimality of our algorithms. As mentioned earlier, the

throughput optimality can be established under quite general assumptions on the arrival

processes. However, our proof technique for establishing workload optimality under the

heavy-traffic regime uses the Bernoulli arrival process assumption as will be seen in the next

subsection.

2.5.4 Workload Optimality

Next, we will show that our algorithms are heavy-traffic optimal. Our heavy-traffic optimal-

ity result holds for every algorithm in our class of algorithms. In particular, to specify an

algorithm, we have to specify which schedule a or b should be used when there is a choice

between the two. Our results hold for any deterministic or randomized specification of an

algorithm in such a case. For the rest of the chapter, we will not consider a particular algo-

rithm, but the reader should assume that a particular randomized or deterministic algorithm

in our class of algorithms has been specified.

In order to analyze the network in a heavy-traffic regime, we consider a sequence of net-

19

works indexed by parameter n where the nth system has arrival rates given by

λ
(n)
l = λl −

ml√
n
, for l = 1, 2, 3, 4,

λ1 + λ2 = 1; λ3 + λ4 = 1; λ2 + λ3 < 1,

where ml ≥ 0 are constants. Let Λ(n) denote the vector of arrival rates for the nth system

and let ρ(n) denote the traffic load in the nth network. For simplicity, we assume that the

arrival processes of all links are Bernoulli. To avoid further definitions, we remark that we

will use the superscript (n) to denote the arrival and departures process of the nth system.

Note that ρ(n) → 1 as n→∞ and the traffic load on the nth network satisfies

n1/2(1− ρ(n)) = min{m1 +m2,m3 +m4}, ∀n.

Further, in the limit as n → ∞, the total arrival rates on links 1 and 2 and on links 3

and 4 approach their respective capacities, while the total arrival rate on links 2 and 3 is

strictly less than its capacity. Thus, there are two critically loaded resources in the system:

links 1 and 2 considered together and links 3 and 4 considered together; see [31, 19] for a

precise definition. The third resource (links 2 and 3 considered together) is underloaded. In

heavy traffic, one would expect the performance of a well-designed scheduling algorithm to

be primarily constrained by the capacity of the two critically loaded resources, but not by

the third resource in the network. The case where all three resources are critically loaded is

harder to handle and we do not consider it here.

Let q
(n)
12 [k] := q

(n)
1 [k] + q

(n)
2 [k] be the sum of the queue lengths of links 1 and 2 under

our algorithm for the nth network at the beginning of time slot k. Let q̃
(n)
12 [k] be the queue

length at the beginning of time slot k in a single-server queueing system which serves one

packet in each time slot and whose arrival process is given by α
(n)
12 [k] := α

(n)
1 [k] + α

(n)
2 [k].

Thus, while q
(n)
12 [k] is not guaranteed to decrease by one when it is backlogged (for example,

if q
(n)
1 [k] + α

(n)
1 [k] = 0 and q

(n)
2 [k] + α

(n)
2 [k] > 0 and schedule b is used), q̃12[k] is always

guaranteed to decrease by one when it is backlogged. We assume that q̃
(n)
12 [0] = q

(n)
12 [0]. Since

20

the arrival processes to both q
(n)
12 [k] and q̃

(n)
12 [k] are identical, it immediately follows that

q̃
(n)
12 [k] ≤ q

(n)
12 [k]. Similarly, we can construct process q̃

(n)
34 [k] such that q̃

(n)
34 [k] ≤ q

(n)
34 [k]. Thus,

q̃
(n)
12 [k] + q̃

(n)
34 [k] is a lower bound on the workload in the system. In the remainder of this

section, our goal is to show that there is a matched upper bound under appropriate scaling

in heavy traffic.

Let ũ
(n)
12 [k] be the unused service of q̃

(n)
12 [k] and let u

(n)
12 [k] be the unused service of q

(n)
12 [k].

Also, we define a quantity w
(n)
12 [k], which we call the wasted service of q

(n)
12 , as

w
(n)
12 [k] :=

1, if q

(n)
1 [k] + α

(n)
1 [k] = 0,

q
(n)
2 [k] + α

(n)
2 [k] > 0, d

(n)
1 [k] = 1

0, otherwise.

Note that there is wasted service on links {1, 2} only if link 2 is backlogged and link 1 is not,

and our algorithm chooses schedule b. Also define w
(n)
34 [k], ũ

(n)
34 [k], and u

(n)
34 [k] in a similar way.

Let î(n)[k] = 1{q(n)
1 [k] = q

(n)
4 [k] = 0}, where 1 is the indicator function. A little thought

shows that, for our algorithm, we have w
(n)
12 [k] ≤ î(n)[k] and w

(n)
34 [k] ≤ î(n)[k]. To see this,

note that if q1 and q4 are empty at the beginning of a time slot, then î(n) is equal to 1 in

which case the upper bound on w
(n)
12 obviously holds. On the other hand, if either q1 or q4 is

non-empty at the beginning of a time slot, then one of these queues will be backlogged and

hence, there cannot be any wasted service.

The following lemma establishes an upper bound on q
(n)
12 [k] and q

(n)
34 [k].

Lemma 2.5.1. The following inequalities hold at all times assuming that q
(n)
12 [0] = q̃

(n)
12 [0]

and q
(n)
34 [0] = q̃

(n)
34 [0] :

q
(n)
12 [k] ≤ q̃

(n)
12 [k] +

∑k−1
r=0 î

(n)[r],

q
(n)
34 [k] ≤ q̃

(n)
34 [k] +

∑k−1
r=0 î

(n)[r].

Proof. Since d̃
(n)
12 [k] = d

(n)
12 [k] = 1, the unused services are given by

ũ
(n)
12 [k] =

[
−(q̃

(n)
12 [k] + α

(n)
12 [k]− 1)

]+

u
(n)
12 [k] =

[
−(q

(n)
12 [k] + α

(n)
12 [k]− 1)

]+

.

21

Using the fact that q̃
(n)
12 [k] ≤ q

(n)
12 [k], we get ũ

(n)
12 [k] ≥ u

(n)
12 [k], ∀k ≥ 0. And noting that

q̃
(n)
12 [0] = q

(n)
12 [0] and w

(n)
12 [k] ≤ î(n)[k], we have the following result:

q̃
(n)
12 [k] +

∑k−1
r=0 î

(n)[r] ≥ q̃
(n)
12 [k] +

∑k−1
r=0 w

(n)
12 [r]

= q̃
(n)
12 [0] +

∑k−1
r=0(α

(n)
12 [r]− 1 + ũ

(n)
12 [r] + w

(n)
12 [r])

≥ q
(n)
12 [0] +

∑k−1
r=0(α

(n)
12 [r]− 1 + u

(n)
12 [r] + w

(n)
12 [r])

= q
(n)
12 [k].

Similarly, q̃
(n)
34 [k] +

∑k−1
r=0 î

(n)[r] ≥ q
(n)
34 [k].

Next, we use the lower-bounding queueing systems to upper bound the probability of links

1 and 4 not being backlogged.

Lemma 2.5.2. Let q23[k] := q2[k] + q3[k]; the following inequality holds for the nth network

at any time slot k and for any integer B > 0 :

P (q
(n)
1 [k] = q

(n)
4 [k] = 0) ≤ P (q̃

(n)
12 [k] < B) P (q̃

(n)
34 [k] < B) + 2P (q

(n)
23 [k] ≥ B).

Proof.

P (q
(n)
1 [k] = q

(n)
4 [k] = 0)

= P (q
(n)
1 [k] = q

(n)
4 [k] = 0, q

(n)
2 [k] < B) + P (q

(n)
1 [k] = q

(n)
4 [k] = 0, q

(n)
2 [k] ≥ B)

≤ P (q
(n)
1 [k] = q

(n)
4 [k] = 0, q

(n)
2 [k] < B) + P (q

(n)
2 [k] ≥ B)

≤ P (q
(n)
1 [k] = q

(n)
4 [k] = 0, q

(n)
2 [k] < B, q

(n)
3 [k] < B) + P (q

(n)
2 [k] ≥ B) + P (q

(n)
3 [k] ≥ B)

≤ P (q
(n)
12 [k] < B, q

(n)
34 [k] < B) + 2P (q

(n)
23 [k] ≥ B)

≤ P (q̃
(n)
12 [k] < B, q̃

(n)
34 [k] < B) + 2P (q

(n)
23 [k] ≥ B)

= P (q̃
(n)
12 [k] < B)P (q̃

(n)
34 [k] < B) + 2P (q

(n)
23 [k] ≥ B),

where the last line follows from the fact that the arrival processes to q̃
(n)
12 and q̃

(n)
34 are inde-

pendent.

22

Recall that our scheduling algorithm was designed to be throughput optimal. Thus, the

Markov chain q(n)[k] := (q
(n)
1 [k], q

(n)
2 [k], q

(n)
3 [k], q

(n)
4 [k]) is positive recurrent and there exists

a stationary distribution π(n) for the nth network. The main result of this section establishes

the sample-path optimality of our scheduling algorithm in the heavy-traffic regime provided

that the initial queue lengths in the network are distributed according to the stationary

distribution. Clearly the assumption on the initial condition is restrictive; however, the

proof presented here contains the main ideas required to establish the result where the

initial conditions are not assumed to be in steady state.

Proposition 2.5.3. Assume that q(n)[0] is distributed according to π(n). Then, our algorithm

is sample-path optimal in heavy traffic; i.e., for any c > 0 and any fixed finite T > 0 :

lim
n→∞

P
(

sup
t∈[0,T]

∑
l q

(n)
l [bntc]−

∑
l q̃

(n)
l [bntc]√

n
≥ c
)

= 0.

Proof. From the lower bound on q
(n)
12 and Lemma 2.5.2, we get q̃

(n)
12 [bntc] ≤ q

(n)
12 [bntc] ≤

q̃
(n)
12 [bntc] +

bntc−1∑
k=0

î(n)[k]. Thus,

P
(

sup
t∈[0,T]

(q
(n)
12 [bntc]− q̃(n)

12 [bntc]) ≥ c
√
n

2

)
≤ P (sup

t∈[0,T]

bntc−1∑
k=0

î(n)[k] ≥ c
√
n

2
)

= P (

bnT c−1∑
k=0

î(n)[k] ≥ c
√
n

2
) (2.1)

≤ 2

c
√
n

bnT c−1∑
k=0

E(̂i(n)[k]) ≤ 2T
√
n

c
E(̂i(n)[j]),

where the second inequality is the Markov inequality and the last inequality holds for all j due

to the fact that the initial condition is distributed according to the stationary distribution.

Noticing that for all j we have

E(̂i(n)[j]) = P (q
(n)
1 [j] = q

(n)
4 [j] = 0),

23

we can use Lemma 2.5.2 and further bound (2.2) by upper-bounding P (q̃
(n)
12 [j] < B),

P (q̃
(n)
34 [j] < B), and P (q

(n)
23 [j] ≥ B) for a convenient choice of j. We will let j →∞; thus the

upper-bound (2.2) would use the steady-state distributions of the Markov chains q̃
(n)
12 , q̃

(n)
34

and q
(n)
23 which are easy to compute.

Figure 2.6: State transition diagram of a discrete-time single-server queue.

The state transition diagrams for the Markov chains q̃
(n)
12 , q̃

(n)
34 , and q

(n)
23 have the structure

shown in Figure 2.6, but each one has different values for α, γ, and β = 1− α − γ. In fact,

for q̃
(n)
12 we have α = λ

(n)
1 λ

(n)
2 and γ = (1− λ(n)

1)(1− λ(n)
2); for q

(n)
23 we have α = λ

(n)
2 λ

(n)
3 and

γ = (1 − λ(n)
2)(1 − λ(n)

3); and for q
(n)
34 we have α = λ

(n)
3 λ

(n)
4 and γ = (1 − λ(n)

3)(1 − λ(n)
4). To

simplify notation, let ν12n :=
λ
(n)
1 λ

(n)
2

(1−λ(n)1)(1−λ(n)2)
, ν23n :=

λ
(n)
2 λ

(n)
3

(1−λ(n)2)(1−λ(n)3),
and ν34n :=

λ
(n)
3 λ

(n)
4

(1−λ(n)3)(1−λ(n)4)
.

Solving for the steady-state distribution of the Markov chain depicted in Figure 2.6, we can

express the steady-state distributions P (q̃
(n)
12 [∞] < B), P (q̃

(n)
34 [∞] < B), and P (q

(n)
23 [∞] ≥ B)

(we abuse notation a bit here and use [∞] to denote that the system is in steady-state) in

terms of the ν’s defined above as

P (q̃
(n)
12 [∞] < B) = 1− νB12n

P (q̃
(n)
34 [∞] < B) = 1− νB34n

P (q
(n)
23 [∞] ≥ B) = νB23n.

Since λ1 + λ2 = 1 and λ3 + λ4 = 1, for large n, ν12n and ν34n are less than but very close

24

to 1. To quantify how close they are, we bound ν12n and ν34n as follows:

ν12n =
(λ1 − m1√

n
)(λ2 − m2√

n
)

(1− λ1 + m1√
n
)(1− λ2 + m2√

n
)

≥ (1− m1

λ1

√
n

)(1− m1

λ2

√
n

)(1− m2

λ2

√
n

)(1− m2

λ1

√
n

)

= (1− m1

λ1λ2

√
n

+
m2

1

λ1λ2n
)(1− m2

λ1λ2

√
n

+
m2

2

λ1λ2n
)

≥ 1− m1 +m2

λ1λ2

√
n

+
m1m2

λ2
1λ

2
2n

+
m2

1m
2
2

λ2
1λ

2
2n

2

≥ 1− (m1 +m2)

λ1λ2

√
n
. (2.2)

To get the second line in the previous sequence of expressions, we used the facts (1 +x)−1 ≥

1− x, ∀x ≥ 0, and λ1 + λ2 = 1.

Using the fact that (1−x)B ≥ 1−xB, for 0 ≤ x < 1, B > 1, we can bound P (q̃
(n)
12 [∞] < B)

as follows:

P (q̃
(n)
12 [∞] < B) ≤ 1−

(
1− m1 +m2

λ1λ2

√
n

)B
≤ m1 +m2

λ1λ2

√
n
B,

where the above bound holds for sufficiently large n. In a similar fashion, we can show that

P (q̃
(n)
34 [∞] < B) ≤ m3 +m4

λ3λ4

√
n
B, (2.3)

for sufficiently large n. In other words, there exists N such that, for all n ≥ N, the bounds

(2.3) and (2.3) hold.

Letting ν23 :=
λ2λ3

(1− λ2)(1− λ3)
, and noting that ν23n ≤ ν23, we have P (q

(n)
23 [∞] ≥ B) =

25

νB23n ≤ νB23. Choosing B = n0.1, for n ≥ N, we have

P
(

sup
t∈[0,T]

(q
(n)
12 [bntc]− q̃(n)

12 [bntc]) ≥ c
√
n

2

)
≤ 2T

√
n

c
P (q̃

(n)
12 [∞] < B)P (q̃

(n)
34 [∞] < B) +

4T
√
n

c
P (q

(n)
23 [∞] ≥ B)

=
2(m1 +m2)(m3 +m4)TB2

λ1λ2λ3λ4

√
nc

+
4T

c

√
nνB23

=
2(m1 +m2)(m3 +m4)T

λ1λ2λ3λ4c
n−0.3 +

4T

c

√
nνn

0.1

23 .

Noting that ν23 < 1, we have

lim
n→∞

P
(

sup
t∈[0,T]

q
(n)
12 [bntc]− q̃(n)

12 [bntc]√
n

≥ c

2

)
= 0.

Similarly, we can show that

lim
n→∞

P
(

sup
t∈[0,T]

q
(n)
34 [bntc]− q̃(n)

34 [bntc]√
n

≥ c

2

)
= 0.

Observing that

P
(

sup
t∈[0,T]

∑
l q

(n)
l [bntc]−

∑
l q̃

(n)
l [bntc]√

n
≥ c
)

≤ P
({34}∑
l={12}

sup
t∈[0,T]

q
(n)
l [bntc]− q̃(n)

l [bntc]√
n

≥ c
)

≤ P
(

sup
t∈[0,T]

q
(n)
12 [bntc]− q̃(n)

12 [bntc]√
n

≥ c

2

)
+P
(

sup
t∈[0,T]

q
(n)
34 [bntc]− q̃(n)

34 [bntc]√
n

≥ c

2

)
,

we get the desired result.

26

2.6 Some Remarks on Various Notions of Optimality

In our analysis of scheduling algorithms for line networks, we have used two notions of

workload optimality: sample-path optimality and heavy-traffic sample-path optimality. The

notion of sample-path optimality is clear: a scheduling algorithm is sample-path optimal if it

minimizes the total workload in the network at all times, i.e., it minimizes
∑

l ql[k], ∀k ≥ 0.

This is the strongest notion of optimality and we were able to show this form of optimality

for the 3-link network under the 1-hop interference model and the 4-link under the 2-hop

interference model.

In general, it is unreasonable to expect to be able to derive scheduling algorithms that

are sample-path optimal. A more reasonable goal is to try to minimize the steady-state

expected workload E[
∑

l ql[∞]] or some related performance measure such as the average

cost criterion [38]. The solution approach would be to formulate the problem as a Markov

decision problem [38], but except for some special cases, the resulting dynamic programming

equations are typically quite intractable. The scheduling problem under consideration seems

to fall into the latter category.

A further relaxation is to consider the system when the traffic load on the system is close to

its capacity. For this purpose, as in the previous section, we index the system by a parameter

n and let n→∞ so that the corresponding traffic load ρ(n) → 1. From basic queueing theory,

we know that the steady-state mean queue length would also go to infinity for all scheduling

algorithms when ρ(n) → 1. Thus, to meaningfully compare scheduling algorithms, we have to

scale the expected queue length in some manner to keep it finite. For this purpose, we first

observe that, for a single-server queue, the expected queue length increases as 1/(1 − ρ(n))

as ρ(n) → 1. Thus, it is reasonable to try to find a scheduling algorithm that minimizes

(1 − ρ(n))E(
∑

l q
(n)
l [∞]) in the limit as ρ(n) → 1. By choosing the scaling parameter n such

that 1− ρ(n) is proportional to 1/
√
n, the performance measure can be equivalently viewed

as
E(
∑

l q
(n)
l [∞])√
n

. We will refer to an algorithm that minimizes the above objective as being

heavy-traffic expected workload optimal. In the simulation section, we will use heavy-traffic

expected workload as the metric to compare scheduling algorithms.

27

It turns out that deriving heavy-traffic expected workload optimal scheduling algorithms

is also quite difficult; this leads us to the heavy-traffic sample-path optimality criterion used

in the previous section. Recall that a scheduling algorithm is heavy-traffic workload optimal

if lim
n→∞

P
(

sup
t∈[0,T]

∑
l q

(n)
l [bntc]−

∑
l q̂

(n)
l [bntc]√

n
≥ c

)
= 0, ∀ c > 0 for any fixed T > 0 where

ql is the queue length of the algorithm under consideration and q̂l is the queue length of

any other algorithm. Informally, this means that given any ε > 0, for sufficiently large n,∑
l q

(n)
l [bntc]√
n

≤
∑
l q̂

(n)
l [bntc]√
n

+ ε with very high probability. If we are able to take expectations of

the above inequality in steady state, then this condition would imply heavy-traffic expected

workload optimality. However, such an operation is often difficult to justify and therefore,

in the considerable literature on heavy-traffic analysis, heavy-traffic sample-path optimality

is used as a surrogate for expected workload optimality. This is the sense in which the result

in the previous section for the 4-link network under the 1-hop interference model should be

interpreted.

In contrast to the above notion of heavy-traffic sample-path optimality which shows that

the system behaves optimally over time intervals of the order of n, the result in [19] studies

the system over much smaller time-scales of the order of
√
n (the parameter r in [19] is

equivalent to
√
n here). Hence, it is difficult to directly compare the optimality result in [19,

Theorem 10.2] to the notions of optimality mentioned here.

2.7 Simulation Results

Under some conditions, it has been shown that MWS-α minimizes
∑

l q
1+α
l in a heavy-traffic

sense. Letting α go to zero, the following algorithm has been conjectured as the natural

limit of the MWS-α algorithm in [19, Conjecture 10.1]: first, delete all links with zero queue

lengths from the network graph, then find all maximum size schedules, and finally, among

those pick the one which has the maximum weight breaking any ties arbitrarily, where the

weight of link l is log ql. This algorithm is called the MWS-0 algorithm. In this section,

we also compare our algorithms with MWS-α for small α. Specifically, we compare the

28

scaled long-run average workload under the following three set of algorithms: the optimal

algorithms derived in this chapter, MWS-0 and MWS-α for α = 0.01.

We simulate the three network topologies considered earlier with the following traffic

demands:

• 3-link, 1-hop interference model: λ1 = λ2 = λ3 = 0.5; m1 = m3 = 0,m2 = 1.

• 4-link, 2-hop interference model: λ1 = λ4 = 0.4, λ2 = λ3 = 0.3; m1 = m4 = 0,m2 =

m3 = 0.5.

• 4-link, 1-hop interference model: λ1 = λ2 = λ3 = λ4 = 0.5; m1 = m4 = 0,m2 = m3 =

1.

• 4-link, 1-hop interference model: λ1 = λ4 = 0.6, λ2 = λ3 = 0.4; m1 = m4 = 0,m2 =

m3 = 1.

We consider the following arrival process for all cases:

α
(n)
l [k] :=

5, with probability 0.1λ

(n)
l

10, with probability 0.05λ
(n)
l

0, otherwise.

For the 4-link, 1-hop interference models above, we have chosen the arrival rates such that

all three pairs of consecutive links are in heavy traffic, and further, the arrival process is not

Bernoulli. The purpose of the simulations is to test how well our algorithms perform when

some of our assumptions do not hold. For simulation purposes, we pick an algorithm from

our class of scheduling algorithms which chooses between alternatives with equal probability.

In Figures 2.7, 2.8, 2.9, and 2.10 we plot the scaled steady-state mean sum of queue lengths

(1 − ρ(n))E(
∑

l q
(n)
l) as a function of n, where the steady-state expectation is computed as

a long-run average in the simulations. In our simulations, the scaled queue lengths under

MWS-0.01 and MWS-0 appear to be nearly equal. However, in Figures 2.7, 2.8, and 2.9, as

n→∞, i.e., as ρ(n) → 1, the difference between the scaled mean sum of queue lengths of our

29

Figure 2.7: Scaled mean sum of queue lengths for the 3-link line network under the 1-hop
interference model.

algorithms and that of the MWS-0 and MWS-0.01 scheduling algorithms becomes significant

and approaches a constant. In Figure 2.10, the performances of the MWS-0 and MWS-0.01

algorithms are nearly identical to that of our algorithm. From these figures, we can conclude

that, while MWS-α algorithms for small α perform nearly as well as our algorithm in some

cases, in general this is not the case.

Figure 2.8: Scaled mean sum of queue lengths for 4-link line network under the 2-hop
interference model.

We also simulate a MaxWeight scheduling algorithm proposed by Shah and Wischik where

30

Figure 2.9: Scaled mean sum of queue lengths for 4-link line network under the 1-hop
interference model, where λ1 = λ2 = λ3 = λ4 = 0.5.

log(1 + ql) is used as the weight of each link l. The performance of such algorithm is very

close to the performance of MWS-0 and MWS-0.01 in all of our simulations.

Figure 2.10: Scaled mean sum of queue lengths for 4-link line network under the 1-hop
interference model, where λ1 = λ4 = 0.6, λ2 = λ3 = 0.4.

We note that the MWS-0 algorithm has not been proven to be optimal. In fact, for a

specific model of a generalized switch (which does not include line networks or high-speed

switches), Stolyar has shown that MWS-0 is not throughput-optimal [39]. The example in

[39] is interesting in that it shows that max-size schedules need not be stabilizing, in general.

31

2.8 Heavy Traffic Workload Optimality Proof for the Four-Link

Network under the One-Hop Interference Model

In Proposition 2.5.3, we proved optimality by assuming that the network starts from steady

state. Here we assume that the initial queue lengths of links 1 and 4 in the nth network are

of order
√
n, and the initial queue lengths of links 2 and 3 are bounded (instead of assuming

that the network starts from its steady state). More specifically, let D1 denote the initial

condition for the nth network; that is, D1 := {q(n)
12 [0] = q0

√
n, q

(n)
34 [0] = q′0

√
n, q

(n)
23 [0] ≤ M̂},

where q0, q
′
0 and M̂ are arbitrary positive number. The initial condition is the most likely

initial state for the network if the resources are used “ideally”: links 2 and 3 are underloaded

so that their queues are small and links 1 and 2 (and 3 and 4) behave like a single-server

queue in heavy traffic. We first state a number of lemmas and then state our final result

in Proposition 2.8.7. In the proof of Proposition 2.5.3, one crucial step was to bound the

probabilities P (q̃
(n)
12 [∞] < B), P (q̃

(n)
34 [∞] < B), and P (q

(n)
23 [∞] ≥ B). But since here the

initial queueing system is not in steady state, we need to bound these transient probabilities

at each time slot k, i.e., P (q̃
(n)
12 [k] < B), P (q̃

(n)
34 [k] < B), and P (q

(n)
23 [k] ≥ B).

As before, the state transition diagrams of q̃
(n)
12 , q̃

(n)
34 , and q

(n)
23 are shown in Figure 2.6 with

different values of α, γ, and β = 1−α− γ. We consider the transient behavior of queue q̃
(n)
12

first, where α = λ
(n)
1 λ

(n)
2 and γ = (1− λ(n)

1)(1− λ(n)
2).

The work in [40] gives an expression for the transient probability distribution of a discrete-

time queue conditioned on the initial state, with the state transition diagram as shown in

Figure 2.6; i.e.,

P (q̃12[k] = h|q̃12[0] = p) = ν−p−1f(k, h+ p+ 1) + f(k, h− p) + (1− ν)νh
k∑

j=h+p+2

f(k,−j),

where ν = α/γ =
λ
(n)
1 λ

(n)
2

(1−λ(n)1)(1−λ(n)2)
< 1, and f(k, h) is the probability distribution of a random

walk which starts at the origin (at time 0) and ends at coordinate h at time slot k. According

to the random walk, at each time slot the walker moves one step to the right with probability

α, moves one step to the left with probability γ, and stays in the current position with

32

probability β. In the random walk, a denotes the number of right steps, b denotes the

number of slots that the walker does not move, and c denotes the number of left steps. Let

D = {a, b, c ∈ N|s.t. a+ b+ c = k, a− c = h}, and C(θ) = β+ 2
√
αγ cos θ. From [40], we get

the following expression for the random walk distribution:

f(k, h) =
∑

a,b,c∈D

(k

a, b, c

)
αaβbγc =

νh/2

π

∫ π

0

(coshθ)[C(θ)]kdθ, if |h| ≤ k,

and f(k, h) = 0, if |h| > k.

To find expressions for α and γ as a function of n, recall that λ
(n)
l = λl− ml√

n
; the transition

probabilities α and γ of queue q
(n)
12 are given by

α = λ
(n)
1 λ

(n)
2 = λ1λ2

[
1− m1√

nλ1

][
1− m2√

nλ2

]
,

γ = (1− λ(n)
1)(1− λ(n)

2) = λ1λ2

[
1 +

m1√
nλ2

][
1 +

m2√
nλ1

]
.

Next, we state some facts along with their proofs that will be used in the proofs of later

lemmas.

Fact (i). For any positive and arbitrary small ε1, there exists a positive number N̂ , so that

if n > N̂, we have |α−λ1λ2| ≤ ε1, |γ−λ1λ2| ≤ ε1, |
√
αγ−λ1λ2| ≤ ε1, and ν ≥ 1−m1 +m2

λ1λ2

√
n
.

Proof. From the expressions of α and γ, we know the limits of α and γ are λ1λ2 as n goes to

∞. Hence for any positive and arbitrary small ε1, there exists a positive number N̂ , so that

if n > N̂, we have |α − λ1λ2| ≤ ε1, |γ − λ1λ2| ≤ ε1, and |√αγ − λ1λ2| ≤ ε1. From (2.2), we

directly get ν ≥ 1− m1 +m2

λ1λ2

√
n
.

Fact (ii). For any 0 ≤ θ ≤ π, we have 0 ≤ C(θ) ≤ 1; especially if 0 ≤ θ ≤ π/3 and n is

sufficiently large so that Fact (i) is true, we have C(θ) ≥ 3(λ1λ2 − ε1).

Proof. Noting that C(θ) is a decreasing function if θ is between 0 and π, and using the

33

Cauchy-Schwarz inequality, we have

C(θ) ≥ C(π)

= 1− α− γ − 2
√
αγ

= 1−
(√

λ
(n)
1 λ

(n)
2 +

√
(1− λ(n)

1)(1− λ(n)
2)
)2

≥ 1−
(
λ

(n)
1 + (1− λ(n)

1)
)(
λ

(n)
2 + (1− λ(n)

2)
)

= 0

and

C(θ) ≤ C(0) = 1− α− γ + 2
√
αγ = 1− (

√
α−√γ)2 ≤ 1.

Especially if 0 ≤ θ ≤ π/3 and n is sufficiently large so that Fact (i) is satisfied, we have

C(θ) ≥ C(π/3) = C(π) + 3
√
αγ ≥ 3

√
αγ ≥ 3(λ1λ2 − ε1).

Fact (iii). (1− x)B ≥ 1− xB, for 0 ≤ x < 1, B > 1.

Proof. Let g(x) = (1− x)B − 1 + xB. Calculate the first derivative as

g′(x) = B
(
1− (1− x)B−1

)
.

Under the condition 0 ≤ x < 1, B > 1, we know g(0) = 0 and g′(x) ≥ 0 with equality if and

only if x = 0. Thus g(x) = (1− x)B − 1 + xB ≥ 0.

Fact (iv). 1− cos θ ≥ θ2/4, for 0 ≤ θ ≤ π/2.

Proof. Let g1(θ) = 1 − cos θ − θ2/4. The first order derivative is g′1(θ) = sin θ − θ/2 ≥ 0,

for 0 ≤ θ ≤ π/2, with equality if and only if θ = 0. Noting that g1(0) = 0, the inequality

holds.

34

Now let us bound the probability P (q̃
(n)
12 [k] = h|q̃(n)

12 [0] = p) under the condition that the

initial queue length p = bq0

√
nc � h, and k satisfies bn0.46tc + 1 ≤ k ≤ bntc. In order to

bound P (q̃
(n)
12 [k] = h|q̃(n)

12 [0] = p), we need to bound each of the terms in (2.4) separately. In

Lemma 2.8.1, we will bound the second term, i.e., f(k, h− p).

Lemma 2.8.1. Assume p = bq0

√
nc � h, and bn0.46tc + 1 ≤ k ≤ bntc, where q0 and t are

arbitrary positive numbers. There exists positive number N1, so that if n > N1, f(k, h−p) ≤

M1 · n−0.29 for some positive number M1 which is independent of h.

Proof. We will consider two cases. For the first case, k is between bn0.46tc + 1 and bn0.6tc.

For the second case, k is between bn0.6tc+1 and bntc. Then we will combine these two cases

and complete the lemma. Note that throughout the proof we assume that n is sufficiently

large (at least greater than N̂) so that Facts (i)-(ii) are true.

We bound f(k, h− p) using the integral in (2.4), i.e., if |h− p| ≤ k,

f(k, h− p) =
ν
h−p
2

π

∫ π

0

cos[(h− p)θ][C(θ)]kdθ,

and if |h− p| > k, f(k, h− p) = 0, which is always bounded by any positive number. So we

do not care about this case. First let us bound the coefficient ν
h−p
2 . Using Fact (i), ν < 1,

and p = bq0

√
nc we have

ν
h−p
2 ≤ ν−p/2 ≤

(
1− m1 +m2

λ1λ2

√
n

)−q0√n/2
and

lim
n→∞

ν
h−p
2 ≤ lim

n→∞

(
1− m1 +m2

λ1λ2

√
n

)−q0√n/2 = exp
[
−q0(m1 +m2)

2λ1λ2

]
.

This means that for some fixed number M > exp
[
−q0(m1 +m2)

2λ1λ2

]
, there exists a positive

number N10, so that if n > N10, we have ν
h−p
2 ≤M.

Case 1. Consider bn0.46tc+ 1 ≤ k ≤ bn0.6tc.

Let φ1 = n−0.2. We would like to bound the integrals
∫ π
φ1

and
∫ φ1

0
separately first.

35

Step 1. Bound
ν
h−p
2

π

∫ π

φ1

cos[(h− p)θ][C(θ)]kdθ.

By Facts (i), (ii), (iv), if θ satisfies φ1 ≤ θ ≤ π, we have

C(θ) ≤ C(φ1) = C(0)− 2
√
αγ(1− cosφ1) ≤ 1− 2(λ1λ2 − ε1)(1− cosφ1)

≤ 1− 2(λ1λ2 − ε1)φ1
2/4 = 1− λ1λ2 − ε1

2n0.4
. (2.4)

Because k ≥ n0.46t and (2.4), for any small positive ε2, there exists a positive number N11,

so that if n > N11, we have the following inequality by using (2.4):

1

π

∫ π

φ1

cos[(h− p)θ][C(θ)]kdθ ≤ 1

π

∫ π

φ1

[C(θ)]kdθ ≤ [C(φ1)]k

≤
[(

1− λ1λ2 − ε1
2n0.4

)n0.4]n0.06t ≤
[
e−(λ1λ2−ε1)/2 + ε2

]n0.06t
.

In summary, if n > max(N10, N11), we have

ν
h−p
2

π

∫ π

φ1

cos[(h− p)θ][C(θ)]kdθ ≤M ·
[
e−

λ1λ2−ε1
2 + ε2

]n0.06t
.

Notice that
ν
h−p
2

π

∫ π

φ1

cos[(h− p)θ][C(θ)]kdθ goes to zero exponentially.

Step 2. Bound
ν
h−p
2

π

∫ φ1

0

cos[(h− p)θ][C(θ)]kdθ.

Noting that h� p, we have

p− h = bq0

√
nc − h ≥ q0

√
n/2.

Let N0 =
2π

p− h
=

2π

bq0

√
nc − h

≤ 4π

q0

√
n
, and θj = N0j; we can bound the following integral:

1

π

∫ φ1

0

cos[(h− p)θ][C(θ)]kdθ ≤
∣∣∣ 1
π

b φ1
N0
c−1∑

j=0

∫ θj+1

θj

cos(
2πθ

N0

)[C(θ)]kdθ
∣∣∣+

N0

π
.

Now we consider θ between θj and θj+1, i.e., θ = θj + N0x, where 0 ≤ x ≤ 1. Because C(θ)

36

is a decreasing function when θ is between 0 and φ1, the difference between C(θ) and C(θj)

is bounded as follows:

0 ≥ C(θ)− C(θj)

= 2
√
αγ[cos(θj +N0x)− cos θj]

≥ 2
√
αγ[cos(θj +N0)− cos θj]

= 2
√
αγ[−2 sin(θj +N0/2) sin(N0/2)]

≥ 2
√
αγ[−2(θj +N0/2)(N0/2)]

≥ −2(λ1λ2 + ε1)φ1N0. (2.5)

In (2.5), we used the fact that θj is small to go from line 4 to line 5, and Fact (i) to go from line

5 to line 6. Now we calculate [C(θ)]k/[C(θj)]
k using Facts (ii) and (iii) when θj ≤ θ ≤ θj+1.

Noting that bn0.46tc + 1 ≤ k ≤ bn0.6tc, ε1 � λ1λ2, and C(θ) > C(π/3) for 0 ≤ θ ≤ φ1, we

have

1 ≥ [C(θ)]k

[C(θj)]k
=

[
1 +

C(θ)− C(θj)

C(θj)

]k
≥

[
1 +

C(θ)− C(θj)

C(π/3)

]k
≥

[
1− 2(λ1λ2 + ε1)φ1N0

3(λ1λ2 − ε1)

]k
≥ 1− 2(λ1λ2 + ε1)φ1N0

3(λ1λ2 − ε1)
k

≥ 1− 2(λ1λ2 + ε1) N0n
0.4t

3(λ1λ2 − ε1)

≥ 1−N0n
0.4t. (2.6)

From line 1 to line 2, we used the fact that C(θ) is positive and also a decreasing function

when θ is between 0 to π/3. From line 2 to line 3, we used (2.5) and Fact (ii). We used Fact

(iii) to go from line 3 to line 4. By substituting for φ1 = n−0.2 and considering k ≤ n0.6t, we

go from line 4 to line 5. Because [C(θj)]
k ≤ 1, ∀ j, we have

37

∣∣∣∫ θj+1

θj

cos(
2πθ

N0

)[C(θ)]kdθ
∣∣∣

=
∣∣∣∫ θj+1

θj

cos(
2πθ

N0

)[C(θj)]
kdθ +

∫ θj+1

θj

cos(
2πθ

N0

)
[
[C(θ)]k − [C(θj)]

k
]
dθ
∣∣∣

=
∣∣∣ 0 +

∫ θj+1

θj

cos(
2πθ

N0

)
[
[C(θ)]k − [C(θj)]

k
]
dθ
∣∣∣

≤
∣∣∣∫ θj+1

θj

cos(
2πθ

N0

)
[[C(θ)]k

[C(θj)]k
− 1
]
dθ
∣∣∣

≤
∣∣∣∫ θj+1

θj

[[C(θ)]k

[C(θj)]k
− 1
]
dθ
∣∣∣

≤
∣∣∣∫ θj+1

θj

N0n
0.4t · dθ

∣∣∣
= N2

0n
0.4t. (2.7)

In (2.7), we used (2.6) to go from line 5 to line 6. From (2.5) and (2.7), by substituting for

φ1 = n−0.2 and N0 ≤
4π

q0

√
n
, we have

1

π

∫ φ1

0

cos[(h− p)θ][C(θ)]kdθ

≤ 1

π

b φ1
N0
c−1∑

j=0

∣∣∣∫ θj+1

θj

cos(
2πθ

N0

)[C(θ)]kdθ
∣∣∣+N0/π

≤ 1

π
N2

0n
0.4tb φ1

N0

c+N0/π ≤
1

π
N0n

0.4tφ1 +N0/π

≤ 1

π
N0n

0.2t+N0/π ≤ 4(n−0.3t+ n−0.5)/q0.

Combining the two steps, we can say that there exist positive numbers M11 and N12 so that

38

if n > N12 we have

ν
h−p
2

π

∫ π

0

cos[(h− p)θ][C(θ)]kdθ

≤ M ·
[
e−(λ1λ2−ε1)/2 + ε2

]n0.06t
+M · 4(n−0.3t+ n−0.5)/q0

≤ M11 · n−0.3.

Notice that N12 needs to satisfy N12 > max(N10, N11). Also notice that for large n, the rest

of the terms go to zero much faster than the term 4Mtn−0.3/q0 in the previous expression.

Case 2. Consider bn0.6tc+ 1 ≤ k ≤ bntc.

Let φ2 = n−0.29. As in the proof of case 1, we try to bound f(k, h− p) using the integral

expression. We would like to bound the integrals
∫ φ2

0
and

∫ π
φ2

separately first.

Step 1. Bound ν
h−p
2

π

∫ φ2
0

cos[(h− p)θ][C(θ)]kdθ.

1

π

∫ φ2

0

cos[(h− p)θ][C(θ)]kdθ ≤ 1

π

∫ φ2

0

1 · dθ = n−0.29/π.

If n > N10, we have

ν
h−p
2

π

∫ φ2

0

cos[(h− p)θ][C(θ)]kdθ ≤M · n−0.29/π,

because ν
h−p
2 ≤M for large n > N10.

Step 2. Bound ν
h−p
2

π

∫ π
φ2

cos[(h− p)θ][C(θ)]kdθ.

By Facts (i), (ii), (iv), if θ satisfies φ2 ≤ θ ≤ π, we have

C(θ) ≤ C(φ2) = C(0)− 2
√
αγ(1− cosφ2)

≤ 1− 2(λ1λ2 − ε1)(1− cosφ2) ≤ 1− (λ1λ2 − ε1)φ2
2/2

= 1− λ1λ2 − ε1
2n0.58

. (2.8)

Because k ≥ n0.6t and from (2.8), for any small positive ε3, there exists a positive number

39

N13, so that if n > N13, we have

1

π

∫ π

φ2

cos[(h− p)θ][C(θ)]kdθ ≤ 1

π

∫ π

φ2

[C(θ)]kdθ

≤ [C(φ2)]k ≤
[(

1− λ1λ2 − ε1
2n0.58

)n0.58
]n0.02t

≤
[
e−(λ1λ2−ε1)/2 + ε3

]n0.02t

.

In summary, if n ≤ max(N10, N13), we have

ν
h−p
2

π

∫ π

φ2

[cos(h− p)θ][C(θ)]kdθ ≤M ·
[
e−(λ1λ2−ε1)/2 + ε3

]n0.02t
.

Combining the two steps, we can say that there exists positive number M12 and N14, so

that if n > N14 we have

ν
h−p
2

π

∫ π

0

cos[(h− p)θ][C(θ)]kdθ ≤ M ·
[
e−(λ1λ2−ε1)/2 + ε2

]n0.02

+M · n−0.29/π

≤ M12 · n−0.29.

Notice that N14 needs to satisfy N14 ≥ max(N10, N13). Also notice that for large n, the rest

of the terms go to zero much faster than the term Mn−0.29/π in the previous expression.

Combining two cases and choosing M1 = max(M11,M12) and N1 = max(N12, N14), we get

our result.

So far, we have bounded the second term f(k, h − p) in (2.4); next, we try to bound the

first term.

Lemma 2.8.2. Assume that p = bq0

√
nc � h, and bn0.46tc+ 1 ≤ k ≤ bntc, where q0 and t

are arbitrary positive numbers. There exists positive number N2, so that if n > N2, we have

ν−p−1f(k, h+ p+ 1) ≤M2 · n−0.29 for some positive number M2 which is independent of h.

Proof.

ν−p−1f(k, h+ p+ 1) = ν
h−p−1

2

π

∫ π
0

cos[(h+ p+ 1)θ][C(θ)]kdθ

40

We can prove this lemma using similar ideas as in Lemma 2.8.1. More specifically, we can

bound ν
h−p−1

2 instead of ν
h−p
2 in Lemma 2.8.1 and then we can consider cos[(h + p + 1)θ]

instead of cos[(h− p)θ].

Next we focus on bounding the third term, i.e., the term (1− ν)νh
∑k

j=h+p+2 f(k,−j).

Lemma 2.8.3. Assume that p = bq0

√
nc � h. There exists positive number N3, so that if

n > N3, we have (1− ν)νh
∑k

j=h+p+2 f(k,−j) ≤M3 · n−0.5, ∀k for some positive number M3

which is independent of h.

Proof. Because ν ≤ 1 and
∑k

j=h+p+2 f(k,−j) ≤ 1, and by using Fact (i), we have

(1− ν)νh
k∑

j=h+p+2

f(k,−j) ≤ (1− ν)νh ≤ 1− ν

≤ 1√
n

(
m1 +m2

λ1λ2

+ ε1) ≤M3 · n−0.5.

We have bounded all three terms in (2.4); in Lemma 2.8.4, we show the upper bound of

the probability P (q̃
(n)
12 [k] = h|q̃(n)

12 [0] = p).

Lemma 2.8.4. Assume that p = bq0

√
nc � h, and bn0.46tc + 1 ≤ k ≤ bntc, where q0 and

t are arbitrary positive numbers. There exists positive number N̄ , if n > N̄, P (q̃
(n)
12 [k] =

h|q̃(n)
12 [0] = p) ≤M4n

−0.29 for some positive M4 which are independent of h.

Proof. Let M4 = 3 ·max(M1,M2,M3) and N̄ = max(N1, N2, N3). Considering Lemmas 2.8.1,

2.8.2, 2.8.3 and (2.4), we know that there exists a constant M4, so that for any sufficiently

large n > N̄, we have P (q̃
(n)
12 [k] = h|q̃(n)

12 [0] = p) ≤M4n
−0.29.

Lemma 2.8.5. Assume that p = bq0

√
nc, B = bn0.02c, and bn0.46tc + 1 ≤ k ≤ bntc. We

have P (q̃
(n)
12 [k] < B|q̃(n)

12 [0] = p) ≤M4n
−0.27 for some positive number M4 and n > N̄.

41

Proof. Because B � p and due to Lemma 2.8.4, we have

P (q̃
(n)
12 [k] < B|q̃(n)

12 [0] = p) =
B−1∑
h=0

P (q̃
(n)
12 [k] = h|q̃(n)

12 [0] = p)

≤ BM4n
−0.29 ≤M4n

−0.27.

A similar result applies for queue q̃
(n)
34 , for any sufficiently large n > N̄, with parameters

q′0 and M5 instead, i.e.,

P (q̃
(n)
34 [k] < B|q̃(n)

34 [0] = q′0
√
n) ≤M5n

−0.27. (2.9)

So far, we have bounded the transient probabilities of q̃
(n)
12 and q̃

(n)
34 . Now we try to bound

the transient probability of the queueing system q
(n)
23 with transition diagram as shown in

Figure 2.6; to distinguish from q̃
(n)
12 and q̃

(n)
34 we use α̂, β̂ and γ̂ instead of α, β and γ, where

α̂ = λ
(n)
2 λ

(n)
3 , γ̂ = (1−λ(n)

2)(1−λ(n)
3), and β̂ = 1− α̂− γ̂. We also know that λ

(n)
2 = λ2−

m2√
n
,

λ
(n)
3 = λ3 −

m3√
n

and λ2 + λ3 < 1. Let Ĉ(θ) = β̂ + 2
√
α̂γ̂ cos θ.

The transient probability distribution of q
(n)
23 is given by

P (q
(n)
23 [k] = h|q(n)

23 [0] = p) = ν̂−p−1f̂(k, h+ p+ 1)

+f̂(k, h− p) + (1− ν̂)ν̂h
k∑

j=h+p+2

f̂(k,−j), (2.10)

where f̂(k, h) =
ν̂h/2

π

∫ π

0

(coshθ)[Ĉ(θ)]kdθ, if k ≥ |h|, and f̂(k, h) = 0, if k < |h|, and

ν̂ = α̂/γ̂ < 1.

Lemma 2.8.6. Assume that p� B; for any k, we can bound the probability that P (q
(n)
23 [k] ≥

B|q(n)
23 [0] = p) ≤ 3

1−
√
ν̂
ν̂B/4.

Proof. The first step is to bound P (q
(n)
23 [k] = h|q(n)

23 [0] = p), where p � h using (2.10).

42

Therefore we bound three terms in (2.10) one by one as follows:

ν̂−p−1f̂(k, h+ p+ 1) =
ν̂
h−p−1

2

π

∫ π

0

(coshθ)(β̂ + 2
√
α̂γ̂ cos θ)kdθ

≤ ν̂
h−p−1

2

π

∫ π

0

1 · dθ = ν̂
h−p−1

2 ,

f̂(k, h− p) =
ν̂
h−p
2

π

∫ π

0

(coshθ)[Ĉ(θ)]kdθ ≤ ν̂
h−p
2

π

∫ π

0

1 · dθ = ν̂
h−p
2 ,

(1− ν̂)ν̂h
k∑

j=h+p+2

f̂(k,−j) ≤ (1− ν̂)ν̂h.

Because ν̂
h−p−1

2 ≥ ν̂
h−p
2 and ν̂

h−p−1
2 ≥ (1− ν̂)ν̂h, for p� h and ν̂ < 1, we have

P (q
(n)
23 [k] ≥ B|q(n)

23 [0] = p) =
∞∑
h=B

P (q
(n)
23 [k] = h|q(n)

23 [0] = p)

≤
∞∑
h=B

[ν̂
h−p
2 + ν̂

h−p−1
2 + (1− ν̂)ν̂h] ≤

∞∑
h=B

3ν̂
h−p−1

2

≤ 3

1−
√
ν̂
ν̂
B−p−1

2 ≤ 3

1−
√
ν̂
ν̂B/4.

Having established Lemmas 2.8.4, 2.8.5 and 2.8.6, we can prove Proposition 2.8.7.

Proposition 2.8.7. If the initial conditions of the nth network are according to D1 :=

{q(n)
12 [0] = q0

√
n, q

(n)
34 [0] = q′0

√
n, q

(n)
23 [0] ≤ M̂}, where q0, q

′
0 and M̂ are arbitrary positive

number, then our algorithm is sample-path optimal in heavy traffic; i.e., for any c > 0 and

any fixed T > 0,

lim
n→∞

P
(

sup
t∈[0,T]

∑
l q

(n)
l [bntc]−

∑
l q̃

(n)
l [bntc]√

n
≥ c
)

= 0.

43

Proof. Let t1 = bn0.46tc and B = bn0.02c � M̂. From Lemma 2.8.5 and (2.9), if n > N̄, we

have

bntc−1∑
r=0

P (q̃
(n)
12 [r] < B|D1)P (q̃

(n)
34 [r] < B|D1)

c
√
n/2

≤
bntc−1∑
r=t1+1

P (q̃
(n)
12 [r] < B|D1)P (q̃

(n)
34 [r] < B|D1)

c
√
n/2

+
2(t1 + 1)

c
√
n

≤ n0.46t+ 1 + (nt− n0.46t)[M4n
−0.27][M5n

−0.27]

c
√
n/2

≤ 2t

c
(2 +M4M5)n−0.04.

We went from line 1 to lines 2 and 3 by dividing the sum into two parts and bounding the

second part. From lines 2 and 3 to line 4, we used Lemma 2.8.5 and (2.9). From Lemma 2.8.6,

we have

bntc−1∑
r=0

P (q
(n)
23 [r] ≥ B|D1)

c
√
n/2

≤ 2nt
[3

1−
√
ν̂
ν̂B/4

]
/c
√
n ≤ 6t

√
n

(1−
√
ν̂)c

ν̂n
0.02/4.

Hence, using the Markov inequality and the previous expressions, we get

P
(

sup
t∈[0,T]

q
(n)
12 [bntc]− q̃(n)

12 [bntc]√
n

≥ c

2

)
≤ P (sup

t∈[0,T]

bntc−1∑
r=0

î(n)[r] ≥ c
√
n

2
) = P (

bnT c−1∑
r=0

î(n)[r] ≥ c
√
n

2
)

≤ 2

c
√
n

bnT c−1∑
r=0

E (̂i(n)[r])

≤
bnT c−1∑
r=0

P (q̃
(n)
12 [r] < B|D1)P (q̃

(n)
34 [r] < B|D1)

c
√
n/2

+

bnT c−1∑
r=0

2P (q
(n)
23 [r] ≥ B|D1)

c
√
n/2

≤ 2T

c
(2 +M4M5)n−0.04 +

12T
√
n

(1−
√
ν̂)c

ν̂n
0.02/4.

44

Thus, if the initial queue lengths are chosen according to D1, we have

lim
n→∞

P
(

sup
t∈[0,T]

q
(n)
12 [bntc]− q̃(n)

12 [bntc]√
n

≥ c

2

)
= 0.

Similarly, we can show that

lim
n→∞

P
(

sup
t∈[0,T]

q
(n)
34 [bntc]− q̃(n)

34 [bntc]√
n

≥ c

2

)
= 0.

Observing that

P
(

sup
t∈[0,T]

∑
l q

(n)
l [bntc]−

∑
l q̃

(n)
l [bntc]√

n
≥ c
)

≤ P
({34}∑
l={12}

sup
t∈[0,T]

q
(n)
l [bntc]− q̃(n)

l [bntc]√
n

≥ c
)

≤ P
(

sup
t∈[0,T]

q
(n)
12 [bntc]− q̃(n)

12 [bntc]√
n

≥ c

2

)
+P
(

sup
t∈[0,T]

q
(n)
34 [bntc]− q̃(n)

34 [bntc]√
n

≥ c

2

)
,

we get the desired result.

2.9 Summary

There has been much interest recently in understanding the optimality properties of the

MWS-α algorithm. However, in general, optimal algorithms to minimize the total queue

backlog (workload) were unknown. As a first step, in this chapter, we considered very

small generalized switches and derived scheduling algorithms that are workload-optimal in a

heavy-traffic sense. Since it is difficult to prove that our algorithms are the unique optimal

algorithms, it is interesting to try to understand how well the MWS-α algorithm performs

compared to our optimal algorithms. Our simulations show that, when the load on the system

is close to its capacity, the proposed optimal algorithms perform better than the MWS-0

and MWS-α for small α in an appropriate heavy-traffic sense described in the chapter. Our

45

results show that the conjecture of heavy-traffic workload optimality of MWS-α algorithms

is not true in general.

46

CHAPTER 3

BACKPRESSURE-BASED PACKET-BY-PACKET
ADAPTIVE ROUTING IN COMMUNICATION

NETWORKS

The backpressure algorithm introduced in [1] has been widely studied in the literature. While

the ideas behind scheduling using the weights suggested in that paper have been success-

ful in practice in base stations and routers, the adaptive routing idea of the backpressure

algorithm is rarely used. The main reason for this is that the routing algorithm can lead

to poor delay performance due to routing loops. Additionally, the implementation of the

backpressure algorithm requires each node to maintain per-destination queues which can be

burdensome for a wireline or wireless router. Motivated by these considerations, we reex-

amine the backpressure routing algorithm in this chapter and design a new algorithm which

has much superior performance and low implementation complexity.

Prior work in this area [17] has recognized the importance of doing shortest-path routing

to improve delay performance and modified the backpressure algorithm to bias it towards

taking shortest-hop routes. A part of our algorithm has similar motivating ideas, but we

do much more. In addition to provably throughput-optimal routing which minimizes the

number of hops taken by packets in the network, we decouple routing and scheduling in the

network through the use of probabilistic routing tables and the so-called shadow queues. The

min-hop routing idea was studied first in a conference paper [41] and shadow queues were

introduced in [16] and [42], but the key step of decoupling the routing and scheduling which

leads to both significant delay reduction and the use of per-next-hop queueing is original

here. In [16], the authors introduced the shadow queue to solve a fixed routing problem.

The min-hop routing idea is also studied in [43], but their solution requires even more queues

than the original backpressure algorithm.

We also consider networks where simple forms of network coding are allowed [44]. In such

47

networks, a relay between two other nodes XORs packets and broadcast them to decrease

the number of transmissions. There is a tradeoff between choosing long routes to possibly

increase network coding opportunities (see the notion of reverse carpooling in [45]) and

choosing short routes to reduce resource usage. Our adaptive routing algorithm can be

modified to automatically realize this tradeoff with good delay performance. In addition,

network coding requires each node to maintain more queues [46] and our routing solution

at least reduces the number of queues to be maintained for routing purposes, thus partially

mitigating the problem. An offline algorithm for optimally computing the routing-coding

tradeoff was proposed in [47]. Our optimization formulation bears similarities to this work,

but our main focus is on designing low-delay on-line algorithms. Backpressure solutions to

network coding problems have also been studied in [48, 49, 50], but the adaptive routing-

coding tradeoff solution that we propose here has not been studied previously.

We summarize our main results below.

• Using the concept of shadow queues, we decouple routing and scheduling. A shadow

network is used to update a probabilistic routing table which packets use upon arrival

at a node. The backpressure-based scheduling algorithm is used to serve FIFO queues

over each link.

• The routing algorithm is designed to minimize the average number of hops used by

packets in the network. This idea, along with the scheduling/routing decoupling, leads

to delay reduction compared with the traditional backpressure algorithm.

• Each node has to maintain counters, called shadow queues, per destination. This is

very similar to the idea of maintaining a routing table per destination. But the real

queues at each node are per-next-hop queues in the case of networks which do not

employ network coding. When network coding is employed, per-previous-hop queues

may also be necessary, but this is a requirement imposed by network coding, not by

our algorithm.

• The algorithm can be applied to wireline and wireless networks. Extensive simulations

48

show nice improvement in delay performance compared to the backpressure algorithm.

3.1 The Network Model

We consider a multi-hop wireline or wireless network represented by a directed graph G =

(N ,L), where N is the set of nodes and L is the set of directed links. A directed link that

can transmit packets from node n to node j is denoted by (nj) ∈ L. We assume that time

is slotted and define the link capacity cnj to be the maximum number of packets that link

(nj) can transmit in one time slot.

Let F be the set of flows that share the network. Each flow is associated with a source

node and a destination node, but no route is specified between these nodes. This means

that the route can be quite different for packets of the same flow. Let b(f) and e(f) be

source and destination nodes, respectively, of flow f. Let xf be the rate (packets/slot) at

which packets are generated by flow f. If the demand on the network, i.e., the set of flow

rates, can be satisfied by the available capacity, there must exist a routing algorithm and a

scheduling algorithm such that the link rates lie in the capacity region. To precisely state

this condition, we define µdnj to be the rate allocated on link (nj) to packets destined for

node d. Thus, the total rate allocated to all flows at link (nj) is given by µnj :=
∑
d∈N

µdnj.

Clearly, for the network to be able to meet the traffic demand, we should have:

{µnj}(nj)∈L ∈ Λ,

where Λ is the capacity region of the network for 1-hop traffic. The capacity region of

the network for 1-hop traffic contains all sets of rates that are stabilizable by some kind of

scheduling algorithm assuming all traffics are 1-hop traffic. As a special case, in the wireline

network, the constraints are:

µnj ≤ cnj, ∀(nj).

As opposed to Λ, let Υ denote the capacity region of the multi-hop network; i.e., for any set

49

of flows {xf}f∈F ∈ Υ, there exists some routing and scheduling algorithms that stabilize the

network.

In addition, a flow conservation constraint must be satisfied at each node; i.e., the total

rate at which traffic can possibly arrive at each node destined to d must be less than or equal

to the total rate at which traffic can depart from the node destined to d :

∑
f∈F

xf1{b(f)=n,e(f)=d} +
∑

l:(ln)∈L

µdln ≤
∑

j:(nj)∈L

µdnj, (3.1)

where 1 denotes the indicator function. Given a set of arrival rates x = {xf}f∈F that can be

accommodated by the network, one version of the multi-commodity flow problem is to find

the traffic splits µdnj such that (3.1) is satisfied. However, finding the appropriate traffic split

is computationally prohibitive and requires knowledge of the arrival rates. The backpressure

algorithm to be described next is an adaptive solution to the multi-commodity flow problem.

3.2 Throughput-Optimal Backpressure Algorithm and Its

Limitations

The backpressure algorithm was first described in [1] in the context of wireless networks

and independently discovered later in [51] as a low-complexity solution to certain multi-

commodity flow problems. This algorithm combines the scheduling and routing functions

together. While many variations of this basic algorithm have been studied, they primarily

focus on maximizing throughput and do not consider QoS performance. Our algorithm uses

some of these ideas as building blocks, and therefore we first describe the basic algorithm,

its drawbacks and some prior solutions.

The algorithm maintains a queue for each destination at each node. Since the number

of destinations can be as large as the number of nodes, this per-destination queueing re-

quirement can be quite large for practical implementation in a network. At each link, the

algorithm assigns a weight to each possible destination which is called backpressure. Define

50

the backpressure at link (nj) for destination d at slot t to be

wdnj[t] = Qnd[t]−Qjd[t],

where Qnd[t] denotes the number of packets at node n destined for node d at the beginning

of time slot t. Under this notation, Qnn[t] = 0,∀t. Assign a weight wnj to each link (nj),

where wnj is defined to be the maximum backpressure over all possible destinations, i.e.,

wnj[t] = max
d
wdnj[t].

Let d∗nj be the destination which has the maximum weight on link (nj),

d∗nj[t] = arg max
d
{wdnj[t]}. (3.2)

If there are ties in the weights, they can be broken arbitrarily. Packets belonging to destina-

tion d∗nj[t] are scheduled for transmission over the activated link (nj). A schedule is a set of

links that can be activated simultaneously without interfering with each other. Let Γ denote

the set of all schedules. The backpressure algorithm finds an optimal schedule π∗[t] which is

derived from the optimization problem:

π∗[t] = arg max
π∈Γ

∑
(nj)∈π

cnjwnj[t]. (3.3)

Specially, if the capacity of every link has the same value, the chosen schedule maximizes

the sum of weights in any schedule.

At time t, for each activated link (nj) ∈ π∗[t] we remove cnj packets from Qnd∗nj [t] if possible,

and transmit those packets to Qjd∗nj [t]. We assume that the departures occur first in a time

slot, and external arrivals and packets transmitted over a link (nj) in a particular time slot

are available to node j at the next time slot. Thus the evolution of the queue Qnd[t] is as

51

follows:

Qnd[t+ 1] = Qnd[t]−
∑

j:(nj)∈L

1{d∗nj [t]=d} µ̂nj[t]

+
∑

l:(ln)∈L

1{d∗ln[t]=d} µ̂ln[t] +
∑
f∈F

1{b(f)=n,e(f)=d} af [t],
(3.4)

where µ̂nj[t] is the number of packets transmitted over link (nj) in time slot t and af [t]

is the number of packets generated by flow f at time t. It has been shown in [1] that the

backpressure algorithm maximizes the throughput of the network.

A key feature of the backpressure algorithm is that packets may not be transferred over a

link unless the backpressure over a link is non-negative and the link is included in the picked

schedule. This feature prevents further congesting nodes that are already congested, thus

providing the adaptivity of the algorithm. Notice that because all links can be activated

without interfering with each other in the wireline network, Γ is the set of all links. Thus the

backpressure algorithm can be localized at each node and operated in a distributed manner

in the wireline network.

The backpressure algorithm has several disadvantages that prohibit practical implemen-

tation:

• The backpressure algorithm requires maintaining queues for each potential destination

at each node. This queue management requirement could be a prohibitive overhead

for a large network.

• The backpressure algorithm is an adaptive routing algorithm which explores the net-

work resources and adapts to different levels of traffic intensity. However it might also

lead to high delays because it may choose long paths unnecessarily. High delays are

also a result of maintaining a large number of queues at each node, and each of those

queues being large. The queues can be large because, under the backpressure algo-

rithm, average size of a per-destination queue at a node can grow with the distance

from the node to the destination. Furthermore, a large number of queues takes away

statistical multiplexing advantage: since only one queue can be scheduled at a time,

52

some of the allocated transmission capacity can be left unused if the scheduled queue

is too short; this can contribute to high latency as well.

In this chapter, we address the high delay and queueing complexity issues. The compu-

tational complexity issue for wireless networks is not addressed here. We simply use the

recently studied greedy maximal scheduling (GMS) algorithm. Here we call it the largest-

weight-first algorithm, in short, the LWF algorithm. The LWF algorithm requires the same

queueing structure that the backpressure algorithm uses. It also calculates the backpressure

at each link using the same way. The difference between these two algorithms only lies in

the methods to pick a schedule. Let S denote the set of all links initially. Let Nb(l) be

the set of links within the interference range of link l including l itself. At each time slot,

the LWF algorithm picks a link l with the maximum weight first, and removes links within

the interference range of link l from S, i.e., S = S\Nb(l); then it picks the link with the

maximum weight in the updated set S, and so forth. It should be noticed that the LWF al-

gorithm reduces the computational complexity at the cost of reduced network capacity. The

LWF algorithm where the weights are queue lengths (not backpressures) has been exten-

sively studied in [3, 52, 53, 54, 55]. While these studies indicate that there may be reduction

in throughput due to LWF in certain special network topologies, it seems to perform well in

practice and so we adopt it here for simulations.

In the rest of the chapter, we present our main results which eliminate many of the

problems associated with the backpressure algorithm.

3.3 Min-Resource Routing Using Backpressure Algorithm

As mentioned in Section 3.2, the backpressure algorithm explores all paths in the network

and as a result may choose paths which are unnecessarily long and which may even contain

loops, thus leading to poor delay performance. Loc et al. address this problem by introducing

a cost function which measures the total amount of resources used by all flows in the network

[41]. Specifically, they add up traffic loads on all links in the network and use this as their

53

cost function. The goal then is to minimize this cost subject to network capacity constraints.

Given a set of packet arrival rates that lie within the capacity region, the goal is to find the

routes for flows so that the minimum amount of resources is used in the network if possible.

Thus, the problem is formulated as the following optimization problem:

min
∑

(nj)∈L

µnj (3.5)

s.t.
∑
f∈F

xf1{b(f)=n,e(f)=d} +
∑

(ln)∈L

µdln ≤
∑

(nj)∈L

µdnj, ∀d ∈ N , n ∈ N ,

{µnj}(nj)∈L ∈ Λ.

We now show how a modification of the backpressure algorithm can be used to solve this

min-resource routing problem. (Note that similar approaches have been used in [56, 57, 58,

59, 60] to solve related resource allocation problems.)

Let {qnd} be the Lagrange multipliers corresponding to the flow conservation constraints

in problem (3.5). Appending these constraints to the objective, we get

min
µ∈Λ

∑
(nj)∈L

µnj +
∑
n,d

qnd
(∑
f∈F

xf1{b(f)=n,e(f)=d} +
∑

(ln)∈L

µdln −
∑

(nj)∈L

µdnj
)

(3.6)

= min
µ∈Λ

(
−
∑

(nj)∈L

∑
d

µdnj
(
qnd − qjd − 1

)
−
∑
n,d

qnd
∑
f∈F

xf1{b(f)=n,e(f)=d}

)
.

If the Lagrange multipliers are known, then the optimal µ can be found by solving

max
µ∈Λ

∑
(nj)∈L

µnjwnj

where wnj = max
d

(qnd − qjd − 1). The form of the constraints in (3.5) suggests the following

update algorithm to compute qnd :

qnd[t+ 1] =
[
qnd[t] +

1

M

(∑
f∈F

xf1{b(f)=n,e(f)=d} +
∑

(ln)∈L

µdln −
∑

(nj)∈L

µdnj
)]+

, (3.7)

54

where
1

M
is a step-size parameter. See [61] for details. Notice that Mqnd[t] looks very much

like a queue update equation, except for the fact that arrivals into Qnd from other links may

be smaller than µdln when Qld does not have enough packets. This suggests the following

algorithm.

Min-resource routing by backpressure: At time slot t,

• Each node n maintains a separate queue of packets for each destination d; its length

is denoted Qnd[t]. Each link is assigned a weight

wnj[t] = max
d

(Qnd[t]−Qjd[t]−M) , (3.8)

where M > 0 is a parameter.

• Scheduling/routing rule: find an optimal schedule π∗[t] such that

π∗[t] ∈ arg max
π∈Γ

∑
(nj)∈π

cnjwnj[t]. (3.9)

• For each activated link (nj) ∈ π∗[t] we remove cnj packets from Qnd∗nj [t] if possible, and

transmit those packets to Qjd∗nj [t], where d∗nj[t] achieves the maximum in (3.8).

Compared with the traditional backpressure scheduling/routing, the only difference is that

each link weight is equal to the maximum differential backlog minus parameter M . (M = 0

reverts the algorithm to the traditional one.) For simplicity, we call this algorithm the

M-backpressure algorithm.

The performance of the stationary process which is “produced” by the algorithm with

fixed parameter M is within o(1) of the optimal as M goes to ∞ (analogous to the proofs

in [57, 58]; see also the related proof in [59, 60]):∣∣∣∣∣∣ E
 ∑

(nj)∈L

µnj[∞]

− ∑
(nj)∈L

µ∗nj

∣∣∣∣∣∣ = o(1),

55

where µ∗ is an optimal solution to (3.5).

Figure 3.1 illustrates an example of how the M-backpressure algorithm works in a simple

wireline network. All links can be activated simultaneously without interfering with each

other. Notice that the backlog difference of route 1 is 6 and the backlog difference of route

2 is 4. M is chosen to be 5 in this example. Because the backlog difference of route 2 is

smaller than M, route 2 is blocked at current traffic load. The M-backpressure algorithm

will automatically choose route 1 which is shorter. Therefore, a proper M can avoid long

routes in when the traffic is not close to capacity. Throughput optimality is still achieved

by using M -backpressure algorithm. In this example, route 2 will be enabled if the traffic

load is close to the boundary of the capacity region due to large backlog difference which is

greater than M.

12 6 0

8 4M=5

route 1

route 2

1 1
-1 -1

-1

Figure 3.1: Link weights under the M -backpressure algorithm.

Although the M -backpressure algorithm could reduce the delay by forcing flows to go

through shorter routes, simulations indicate a significant problem with the basic algorithm

presented above. A link can be scheduled only if the backpressure of at least one destination

is greater than or equal to M. Thus, at light to moderate traffic loads, the delays could be

high since the backpressure may not build up sufficiently fast. Also, the upper-stream queue

backlogs could be huge if the number of hops between the source and the destination is large.

Huge upstream backlogs are detrimental to delay QoS. In practice, the residual packets in

queues can not be removed with M > 0 at the end of the transmission stage. Like the tradi-

tional backpressure algorithm, the M -backpressure algorithm also maintains per-destination

queues at each node. The queueing complexity is still high, and there are scalability issues.

56

Furthermore, the queueing structure is not compatible with today’s switches and routers.

In order to overcome all these adverse issues, we develop a new routing algorithm in the

following section. The solution also simplifies the queueing structure to be maintained at

each node.

3.4 PARN: Packet-by-Packet Adaptive Routing and Scheduling

Algorithm for Networks

In this section, we present our adaptive routing and scheduling algorithm. We will call it

PARN (Packet-by-Packet Adaptive Routing for Networks) for ease for repeated reference

later. First, we introduce the queueing structure that is used in PARN.

In the traditional backpressure algorithm, each node n has to maintain a queue qnd for each

destination d. Let |N | and |D| denote the number of nodes and the number of destinations

in the network, respectively. Each node maintains |D| queues. Generally, each pair of nodes

can communicate along a path connecting them. Thus, the number of queues maintained

at each node can be as high as one less than the number of nodes in the network, i.e.,

|D|=|N | − 1.

Instead of keeping a queue for every destination, each node n maintains a queue qnj for

every neighbor j, which is called a real queue. Notice that real queues are per-neighbor

queues. Let Jn denote the number of neighbors of node n, and let Jmax = maxn Jn. The

number of queues at each node is no greater than Jmax. Generally, Jmax is much smaller

than |N |. Thus, the number of queues at each node is much smaller compared with the case

using the traditional backpressure algorithm.

In addition to real queues, each node n also maintains a counter, which is called a shadow

queue, pnd, for each destination d. Unlike the real queues, counters are much easier to main-

tain even if the number of counters at each node grows linearly with the size of the network.

A backpressure algorithm run on the shadow queues is used to decide which links to activate.

The statistics of the link activation are further used to route packets to the per-next-hop

57

neighbor queues mentioned earlier. The details are explained next.

3.4.1 Shadow Queue Algorithm – M -Backpressure Algorithm

The shadow queues are updated based on the movement of fictitious entities called shadow

packets in the network. The movement of the fictitious packets can be thought of as an

exchange of control messages for the purposes of routing and scheduling. Just like real

packets, shadow packets arrive from outside the network and eventually exit the network.

The external shadow packet arrivals are generated as follows: when an exogenous packet

arrives at node n to the destination d, the shadow queue pnd is incremented by 1, and is

further incremented by 1 with probability ε in addition. Thus, if the arrival rate of a flow f

is xf , then the flow generates “shadow traffic” at a rate xf (1 + ε). In words, the incoming

shadow traffic in the network is (1 + ε) times the incoming real traffic.

The backpressure for destination d on link (nj) is taken to be

wdnj[t] = pnd[t]− pjd[t]−M,

where M is a properly chosen parameter. The choice of M will be discussed in the simulations

section. The evolution of the shadow queue pnd[t] is

pnd[t+ 1] = pnd[t]−
∑

j:(nj)∈L

1{d∗nj [t]=d} µ̂nj[t]

+
∑

l:(ln)∈L

1{d∗ln[t]=d} µ̂ln[t] +
∑
f∈F

I{b(f)=n,e(f)=d} âf [t],
(3.10)

where µ̂nj[t] is the number of shadow packets transmitted over link (nj) in time slot t, d∗nj[t]

is the destination that has the maximum weight on link (nj), and âf [t] is the number of

shadow packets generated by flow f at time t. The number of shadow packets scheduled over

the links at each time instant is determined by the backpressure algorithm in (3.9).

From the above description, it should be clear that the shadow algorithm is the same

as the traditional backpressure algorithm, except that it operates on the shadow queueing

58

system with an arrival rate slightly larger than the real external arrival rate of packets. Note

the shadow queues do not involve any queueing structure at each node; there are no packets

to maintain in a FIFO order in each queue. The shadow queue is simply a counter which is

incremented by 1 upon a shadow packet arrival and decremented by 1 upon a departure.

The backpressure algorithm run on the shadow queues is used to activate the links. In

other words, if π∗nj = 1 in (3.9), then link (nj) is activated and packets are served from the

real queue at the link in a first-in, first-out fashion. This is, of course, very different from the

traditional backpressure algorithm where a link is activated to serve packets to a particular

destination. Thus, we have to develop a routing scheme that assigns packets arriving to a

node to a particular next-hop neighbor so that the system remains stable.

3.4.2 Adaptive Routing Algorithms

Now we discuss how a packet is routed once it arrives at a node. Let us define a variable σdnj[t]

to be the number of shadow packets “transferred” from node n to node j for destination d

during time slot t by the shadow queue algorithm. Let us denote by σ̄dnj the expected value

of σdnj[t], when the shadow queueing process is in a stationary regime; let σ̂dnj[t] denote an

estimate of σ̄dnj, calculated at time t. (In the simulations we use the exponential averaging,

as specified in the next section.)

At each time slot, the following sequence of operations occurs at each node n. A packet

arriving at node n for destination d is inserted in the real queue qnj for next-hop neighbor j

with probability

P d
nj[t] =

σ̂dnj[t]∑
k:(nk)∈L σ̂

d
nk[t]

. (3.11)

Thus, the estimates σ̂dnj[t] are used to perform routing operations: in today’s routers, based

on the destination of a packet, a packet is routed to its next hop based on routing table

entries. Instead, here, the σ̄’s are used to probabilistically choose the next hop for a packet.

Packets waiting at link (nj) are transmitted over the link when that link is scheduled (see

59

Figure 3.2).

Probability
Updater Node n

d

P d
nj1

i

P d
nj2

i

P d
njk−1

i

P d
njk

i

qnjk−1

i

qnjk

i

qnj1

i

qnj2

i

Figure 3.2: Probabilistic splitting algorithm at Node n.

The first question that one must ask about the above algorithm is whether it is stable if the

packet arrival rates from flows are within the capacity region of the multi-hop network. This

is a difficult question, in general. Since the shadow queues are positive recurrent, “good”

estimates σ̂dnj[t] can be maintained by simple averaging (e.g. as specified in the next section),

and therefore the probabilities in (3.11) will stay close to their “ideal” values

P̄ d
nj =

σ̄dnj∑
k:(nk)∈L σ̄

d
nk

.

The following theorem asserts that the real queues are stable under the additional assumption

that the routing probabilities P d
nj are fixed at their ideal values P̄ d

nj (as opposed to being

updated via (3.11), which is what the actual algorithm does).

Theorem 3.4.1. Suppose the routing probabilities are fixed at P̄ d
nj. Assume that there exists

a delta such that {xf (1 + ε+ δ)} lies in Γ. Let af [t] be the number of packets arriving from

flow f at time slot t, with E(af [t]) = xf and E(af [t]) <∞. Assume that the arrival process is

independent across time slots and flows (this assumption can be considerably relaxed). Then,

the Markov chain, jointly describing the evolution of shadow queues and real FIFO queues

(whose state include the destination of the real packet in each position of each FIFO queue),

is positive recurrent.

Proof. The key ideas behind the proof are outlined. The details are similar to the proof in

[16] and are omitted.

60

• The average rate at which packets arrive to link (nj) is strictly smaller than the capacity

allocated to the link by the shadow process if ε > 0.

• It follows that the fluid limit of the real-queue process is same as that of the networks

in [62]. Such fluid limit is stable [62], which implies the stability of our process as well.

See Section 3.8 for details.

3.5 Implementation Details

In this section, we discuss a number of enhancements to the basic algorithm to improve

performance.

3.5.1 Exponential Averaging

In order to take most recent statistics with larger weight, one possible solution is exponential

averaging. Exponential averaging fades old values exponentially with weight 1−β and takes

new statistics into account with weight β. To compute σ̂dnj[t] we use the following iterative

exponential averaging algorithm:

σ̂dnj[t] = (1− β) σ̂dnj[t− 1] + β σdnj[t], (3.12)

where 0 < β < 1. By choosing β large or small, we can adjust how important the latest

statistics is. Another way to take recent statistics into account while fading the old ones is to

use moving averaging. However, to suppress the randomness, we should keep a large amount

of previous data. For simplicity, we consider exponential averaging in our implementation.

61

3.5.2 Extra Link Activation

Under the shadow backpressure algorithm, only links with backpressure greater than or equal

to M can be activated. The stability theory ensures that this is sufficient to render the real

queues. On the other hand, the delay performance can still be unacceptable. Recall that the

parameter M was introduced to discourage the use of unnecessarily long paths. However,

under light and moderate traffic loads, the shadow backpressure at a link may be frequently

less than M , and thus, packets at such links may have to wait a long time before they are

processed. One way to remedy the situation is to activate additional links beyond those

activated by the shadow backpressure algorithm.

The basic idea is as follows: in each time slot, first run the shadow backpressure algorithm.

Then, add additional links to make the schedule maximal. If the extra activation procedure

depends only on the state of shadow queues (but beyond that, can be random and/or arbi-

trarily complex), then the stability result of Theorem 3.4.1 still holds (with essentially same

proof). Informally, the stability prevails, because the shadow algorithm alone provides suffi-

cient average throughput on each link, and adding extra capacity “does not hurt”; thus, with

such extra activation, a certain degree of “decoupling” between routing (totally controlled

by shadow queues) and scheduling (also controlled by shadow queues, but not completely)

is achieved.

For example, in the case of wireline networks, by the above arguments, all links can be

activated all the time. The shadow routing algorithm ensures that the arrival rate at each

link is less than its capacity. In this case the complete decoupling of routing and scheduling

occurs.

In practice, activating extra links which have large queue backlogs leads to better per-

formance than activating an arbitrary set of extra links. However, in this case, the extra

activation procedure depends on the state of real queues, which makes the issue of validity

of an analog of Theorem 3.4.1 much more subtle. We believe that the argument in this

subsection provides a good motivation for our algorithm, which is confirmed by simulations.

62

3.5.3 The Choice of the Parameter ε

From basic queueing theory, we expect the delay at each link to be inversely proportional

to the mean capacity minus the arrival rate at the link. In a wireless network, the capacity

at a link is determined by the shadow scheduling algorithm. This capacity is guaranteed

to be at least equal to the shadow arrival rate. The arrival rate of real packets is of course

smaller. Thus, the difference between the link capacity and arrival rate could be proportional

to epsilon. Thus, epsilon should be large enough to ensure small delays and small enough to

ensure that the capacity region is not diminished significantly. In our simulations, we found

that choosing ε = 0.1 provides a good tradeoff between delay and network throughput.

In the case of wireline networks, recall from the previous subsection that all links are

activated. Therefore, the parameter epsilon plays no role here.

3.6 Extension to the Network Coding Case

In this section, we extend our approach to consider networks where network coding is used to

improve throughput. We consider a simple form of network coding illustrated in Figure 3.3.

When i and j each have a packet to send to the other through an intermediate relay n,

traditional transmission requires the following set of transmissions: send a packet a from i

to n, then n to j, followed by j to n and n to i. Instead, using network coding, one can first

send from i to n, then j to n, XOR the two packets and broadcast the XORed packet from n

to both i and j. This form of network coding reduces the number of transmissions from four

to three. However, the network coding can improve throughput only if such coding opportu-

nities are available in the network. Routing plays an important role in determining whether

such opportunities exist. In this section, we design an algorithm to automatically find the

right tradeoff between using possibly long routes to provide network coding opportunities

and the delay incurred by using long routes.

63

Figure 3.3: Network coding opportunity.

3.6.1 System Model

We still consider the wireless network represented by the graph G = (N ,L). Let xf be the

rate (packets/slot) at which packets are generated by flow f. To facilitate network coding,

each node must not only keep track of the destination of the packet, but also remember

the node from which a packet was received. Let µdlnj be the rate at which packets received

from either node l or external incoming flow l, destined for node d, are scheduled over link

(nj). Note that, for compactness of notation, we allow l in the definition of µdlnj to denote

either a flow or a node. We assume µdlnj is zero when such a transmission is not feasible,

i.e., when n is not the source node or d is not the destination node of flow l, or if (ln) or

(nj) is not included in L. At node n, the network coding scheme may generate a coded

packet by “XORing” two packets received from previous-hop nodes l and j destined for the

destination nodes d and d′ respectively, and broadcast the coded packet to nodes j and l.

Let µd,d
′

n|jl denote the rate at which coded packets can be transferred from node n to nodes j

and l destined for nodes d and d′, respectively. Notice that, due to symmetry, the following

equality holds: µd,d
′

n|jl = µd
′,d
n|lj. Assume µd,d

′

n|jl to be zero if at least one of (nl), (ln), (nj) and (jn)

does not belong to L. Note that µdlnj = 0 when d = l or d = n, and µd,d
′

n|jl = 0 when d = n or

d′ = n.

There are two kinds of transmissions in our network model: point-to-point transmissions

and broadcast transmissions. The total point-to-point rate at which packets received exter-

nally or from a previous-hop node are scheduled on link (nj) and destined to d is denoted

by

µdnj,pp =
∑
l:l∈F

µdlnj +
∑
l:l∈N

µdlnj,

64

and the total broadcast rate at which packets are scheduled on link (nj) and destined to d

is denoted by

µdnj,broad =
∑
d′

∑
l:l 6=j

µd,d
′

n|jl.

The total point-to-point rate on link (nj) is denoted by

µnj,pp =
∑
d

µdnj,pp

and the total broadcast rate at which packets are broadcast from node n to nodes j and l is

denoted by

µn|jl =
∑
d′

∑
d

µd,d
′

n|jl.

Let µ be the set of rates including all point-to-point transmissions and broadcast transmis-

sions, i.e.,

µ = {{µnj,pp}(nj), {µn|jl}(n|jl)}.

The multi-hop traffic should also satisfy the flow conservation constraints.

Flow conservation constraints: For each node n, each neighbor j, and each destination d, we

have

µdnj,pp + µdnj,broad ≤
∑
k

µdnjk +
∑
d′

∑
k:k 6=n

µd,d
′

j|kn, (3.13)

where the left-hand side denotes the total incoming traffic rate at link nj destined to d, and

the right-hand side denotes the total outgoing traffic rate from link nj destined to d. For

65

each node n and each destination d, we have

∑
f∈F

xf1{b(f)=n,e(f)=d} ≤
∑
f∈F

∑
j∈N

µdfnj, (3.14)

where 1 denotes the indicator function.

3.6.2 Links and Schedules

We allow broadcast transmission in our network model. In order to define a schedule, we

first define two kinds of “links:” the point-to-point link and the broadcast link. A point-

to-point link (nj) is a link that supports point-to-point transmission, where (nj) ∈ L; a

broadcast link (n|lj) is a “link” which contains links (nl) and (nj) and supports broadcast

transmission. Let B denote the set of all broadcast links, thus (n|lj) ∈ B. Let L̄ be the union

of the set of the point-to-point links L and the set of the broadcast links B, i.e., L̄ = L∪B.

We let Γ′ denote the set of links that can be activated simultaneously. By abusing notation,

Γ′ can be thought of as a set of vectors where each vector is a list of 1’s or 0’s where a 1

corresponds to an active link and a 0 corresponds to an inactive link. Then, the capacity

region of the network for 1-hop traffic is the convex hull of all schedules, i.e., Λ′ = co(Γ′).

Thus, µ ∈ Λ′.

3.6.3 Queueing Structure and Shadow Queue Algorithm

Each node n maintains a set of counters, which are called shadow queues, plnd, for each

previous hop l and each destination d, and p0nd for external flows destined for d at node n.

Each node n also maintains a real queue, denoted by qlnj, for each previous hop l and each

next-hop neighbor j, and q0nj for external flows with their next hop j.

By solving the optimization problem with flow conservation constraints, we can work out

the backpressure algorithm for the network coding case (see the brief description in Appendix

3.9). More specifically, for each link (nj) ∈ L in the network and for each destination d,

66

define the backpressure at every slot to be

wdnj[t] = max
l:(ln)∈L or l=0

wdlnj[t]

where wdlnj[t] = plnd[t]− pnjd[t]−M,

and l∗nj[t] = arg max
l:(ln)∈L or l=0

wdlnj[t].

(3.15)

For each broadcast at node n to nodes j and l destined for d and d′, respectively, define the

backpressure at every slot to be

wd,d
′

n|jl[t] = wdlnj[t] + wd
′
jnl[t]. (3.16)

The weights associated with each point-to-point link (nj) ∈ L and each broadcast link (n|jl)

are defined as follows:

wnj[t] = max
d
{wdnj[t]},

wn|jl[t] = max
d,d′
{wd,d

′

n|jl[t]},

with d∗nj[t] = arg max
d
{wdnj[t]},

{d, d′}∗n|jl[t] = arg max
d,d′
{wd,d

′

n|jl[t]}.

(3.17)

The rate vector µ̃∗[t] at each time slot is chosen to satisfy

µ̃∗[t] ∈ arg max
µ̃∈Γ′

{ ∑
(nj)∈L

µ̃nj,ppwnj[t] +
∑

(n|jl)∈B

µ̃n|jlwn|jl[t]
}
.

By running the shadow queue algorithm in network coding case, we get a set of activated

links in L̄ at each slot.

Next we describe the evolution of the shadow queue lengths in the network. Notice that the

shadow queues at each node n are distinguished by their previous hop l and their destination

d, so plnd only accepts the packets from previous hop l with destination d. A similar rule

should be followed when packets are drained from the shadow queue plnd. We assume the

67

departures occur before arrivals at each slot, and the evolution of queues is given by

plnd[t+ 1] =
[
plnd[t]−

∑
j∈N

µ̃∗nj,pp[t]1{l=l∗nj ,d=d∗nj} −
∑
d′∈N

∑
j∈N

µ̃∗n|jl[t]1{{d,d′}={d,d′}∗n|jl}

]+

+
∑
k∈N

µ̂dkln[t]1{k=l∗ln,d=d∗ln} +
∑
k∈N

∑
d′∈N

µ̂d,d
′

l|nk[t]1{{d,d′}={d,d′}∗l|nk} (3.18)

+
∑
f∈F

âf [t]1{b(f)=n,e(f)=d,l=0},

where µ̂dkln[t] is the actual number of shadow packets scheduled over link (ln) and destined

for d from the shadow queue pkld at slot t, µ̂d,d
′

l|nk[t] is the actual number of coded shadow

packets transfered from node l to nodes n and k destined for nodes d and d′ at slot t, and

âf denotes the actual number of shadow packets from external flow f received at node n

destined for d.

3.6.4 Implementation Details

The implementation details of the joint adaptive routing and scheduling algorithm with

network coding are similar to the case without using network coding, but the notation is

more cumbersome. We briefly describe it here.

The probabilistic splitting algorithm chooses the next hop of the packet based on the

probabilistic routing table. Let P d
lnj[t] be the probability of choosing node j as the next

hop once a packet destined for d arrives at node n from previous hop l or from external

flows; i.e., l = 0 at slot t. Assume that P d
lnj[t] = 0 if (nj) 6∈ L. Obviously,

∑
j∈N P

d
lnj[t] = 1.

Let σdlnj[t] denote the number of potential shadow packets “transferred” from node n to

node j destined for d whose previous hop is l during time slot t. Notice that the packet

comes from an external flow if l = 0. Also notice that σdlnj[t] is contributed by shadow traffic

point-to-point transmission as well as shadow traffic broadcast transmission, i.e.,

σdlnj[t] = µ∗nj,pp[t]1{l=l∗nj [t],d=d∗nj [t]} +
∑
d′∈N

µ∗n|jl[t]1{{d,d′}={d,d′}∗n|jl[t]}.

68

We keep track of the the average value of σdlnj[t] across time by using the following exponential

averaging updating process:

σ̂dlnj[t] = (1− β)σ̂dlnj[t− 1] + βσdlnj[t], (3.19)

where 0 < β < 1. The splitting probability P d
lnj[t] is expressed as follows:

P d
lnj[t] =

σ̂dlnj[t]∑
k∈N σ̂

d
lnk[t]

. (3.20)

3.6.5 Extra Link Activation

Like the case without network coding, extra link activation can reduce delays significantly.

As in the case without network coding, we add additional links to the schedule based on the

queue lengths at each link. For extra link activation purposes, we only consider point-to-

point links and not broadcast. Thus, we schedule additional point-to-point links by giving

priority to those links with larger queue backlogs.

3.7 Simulations

We consider two types of networks in our simulations: wireline and wireless. Next, we

describe the topologies and simulation parameters used in our simulations, and then present

our simulation results.

3.7.1 Simulation Settings

Wireline Setting

The network shown in Figure 3.4 has 31 nodes and represents the GMPLS network topol-

ogy of North America [63]. Each link is assume to be able to transmit one packets in each

slot. We assume that the arrival process is a Poisson process with parameter λ, and we

69

consider the arrivals that come within a slot are considered for service at the beginning of

the next slot. Once a packet arrives from an external flow at a node n, the destination is

decided by probability mass function P̂nd, d = 1, 2, ...N, where P̂nd is the probability that

a packet is received externally at node n destined for d. Obviously,
∑

d:d6=n P̂nd = 1, and

P̂nn = 0. The probability P̂nd is calculated by

P̂nd =
Jd + Jn∑

k:k 6=n

(Jk + Jn)
,

where Jn denotes the number of neighbors of node n. Thus, we use P̂nd to split the incoming

traffic to each destination based on the degrees of the source and the destination.

Figure 3.4: Sprint GMPLS network topology of North America with 31 nodes [63].

Wireless Setting

We generated a random network with 30 nodes which resulted in the topology in Fig-

ure 3.5. We used the following procedure to generate the random network: 30 nodes are

placed uniformly at random in a unit square; then starting with a zero transmission range,

the transmission range was increased till the network was connected. We assume that each

link can transmit one packet per time slot. We assume a 2-hop interference model in our

simulations. By a k-hop interference model, we mean a wireless network where a link acti-

vation silences all other links which are k hops from the activated link. The packet arrival

processes are generated using the same method as in the wireline case. We simulate two

cases given the network topology: the no coding case and the network coding case. In both

70

wireline and wireless simulations, we chose β in (3.12) to be 0.02, and we use probabilistic

splitting algorithm for simulations.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Wireless network with 30 nodes

Figure 3.5: Wireless network topology with 30 nodes.

3.7.2 Simulation Results

Wireline Setting

First, we compare the performance of three algorithms: the traditional backpressure algo-

rithm, the basic shadow queue routing/scheduling algorithm without the extra link activation

enhancement and PARN. Without extra link activation, to ensure that the real arrival rate

at each link is less than the link capacity provided by the shadow algorithm, we choose

ε = 0.02. Figure 3.6 shows delay as a function of the arrival rate lambda for the three al-

gorithms. As can be seen from the figure, simply using a value of M > 0 does not help to

reduce delays without extra link activation. The reason is that, while M > 0 encourages the

use of shortest paths, links with backpressure less than M will not be scheduled and thus

can contribute to additional delays. Because we exaggerate the shadow traffic by a factor of

ε, the throughput region of the algorithm without extra link activation is smaller than the

throughput region of the traditional backpressure algorithm.

We also compare the delay performance of PARN with that of the shortest path routing

in Figure 3.7. For each pair of source and destination, we find a shortest path between them

by using Dijkstra’s algorithm. When the arrival rate λ < 0.38, the difference between the

71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

500

1000

1500

2000

2500

3000

lambda (packets/slot)

de
la

y
(m

s)

Traditional Backpressure Algorithm
No Extra Link Activation M=2
PARN M=2

Figure 3.6: The impact of the parameter M in Sprint GMPLS network topology.

average packet delays of PARN and the shortest path routing is very small. This implies

that PARN can obtain similar delay performance as the shortest path routing at light traffic.

However, the shortest path routing can only achieve about 60% of the capacity region of the

network.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
2

4

6

8

10

12

14

16

18

20

22

lambda (packets/slot)

de
la

y
(m

s)

Shortest Path Routing
PARN M=2

Figure 3.7: The delay performance of PARN and shortest path routing.

Next, we study the impact of M on the performance on PARN. Figure 3.8 shows the delay

performance for various M with extra link activation in the wireline network. The delays for

different values of M (except M = 0) are almost the same in the light traffic region. Once

M is sufficiently larger than zero, extra link activation seems to play a bigger role than the

72

choice of the value of M in reducing the average delays. Once we choose M to be large, the

simulation takes longer to converge. This phenomenon is not captured in our plots, but it

is very important in the practical implementation. A good choice of M should also depend

on the network topology and the traffic pattern. Under our simulation setting, choosing M

between 2 and 10 leads to good performance.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

lambda (packets/slot)

de
la

y
(m

s)

M=0
M=2
M=4
M=10

Figure 3.8: Packet delay as a function of λ under PARN in Sprint GMPLS network topology.

The wireline simulations show the usefulness of the PARN algorithm for adaptive routing.

However, a wireline network does not capture the scheduling aspects inherent to wireless

networks, which is studied next.

Wireless Setting

In the case of wireless networks, even with extra link activation, to ensure stability even

when the arrival rates are within the capacity region, we need ε > 0. We chose ε = 0.1 in

our simulations for the reasons mentioned in Section 3.5.

In Figure 3.9, we study wireless networks without network coding. From the figure, we

see that the delay performance is relatively insensitive to the choice of M as long as it is

sufficiently greater than zero. However, M does play an important role because it suppresses

the search of long paths when the traffic load is not high. Extra link activation can be used

to decrease delays significantly for M > 0 especially in light traffic region.

73

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
0

200

400

600

800

1000

1200

1400

1600

1800

2000

lambda (packets/slot)

de
la

y
(m

s)

No Coding−−M=0
No Coding−−M=2
No Coding−−M=4
No Coding−−M=10

Figure 3.9: Packet delay as a function of λ under PARN in the wireless network under 2-hop
interference model without network coding.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800

1000

1200

1400

1600

lambda (packets/slot)

de
la

y
(m

s)

Network Coding−−M=2
Network Coding−−M=4
Network Coding−−M=10

Figure 3.10: Packet delay as a function of λ under PARN for M > 0 in the wireless network

under 2-hop interference model with network coding.

In Figures 3.10 and 3.11, we show the corresponding results for the case where both

adaptive routing and network coding are used. Comparing Figures 3.9 and 3.10, we see

that, when used in conjunction with adaptive routing, network coding can increase the

capacity region. We make the following observation regarding the case M = 0 in Figure 3.11:

in this case, no attempt is made to optimize routing in the network. As a result, the

delay performance is very bad compared to the cases with M > 0 (Figure 3.10). In other

74

0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5
x 10

4

lambda (packets/slot)

de
la

y
(m

s)

Network Coding−−M=0

Figure 3.11: Packet delay as a function of λ under PARN for M = 0 in the wireless network
under 2-hop interference model with network coding.

words, network coding alone does not increase capacity sufficiently to overcome the effects

of backpressure routing. On the other hand, PARN with M > 0 harnesses the power of

network coding by selecting routes appropriately.

Next, we make the following observation about network coding. Comparing Figures 3.10

and 3.11, we notice that at moderate to high loads (but when the load is within the capacity

region of the no coding case), network coding increases delays slightly. We believe that this

is due to fact that packets are stored in multiple queues under network coding at each node:

for each next-hop neighbor, a queue for each previous-hop neighbor must be maintained.

This seems to result in slower convergence of the routing table.

3.8 The Stability of the Network Under PARN

Our stability result uses the result in [62] and relies on the fact that the arrival rate on each

link is less than the available capacity of the link.

We will now focus on the case of wireless networks without network coding. All variables

in this section are assumed to be average values in the stationary regime of the corresponding

variables in the shadow process. Let σ̄dnj denote the mean shadow traffic rate at link (nj)

destined to d. Let µ̄nj and αdn(1 + ε) denote the mean service rate of link (nj) and the

75

exogenous shadow traffic arrival rate destined to d at node n. Notice that ε comes from our

strategy on shadow traffic. The flow conservation equation is as follows:

αdn(1 + ε) +
∑

l:(ln)∈L

σ̄dln =
∑

j:(nj)∈L

σ̄dnj,∀n, d ∈ N . (3.21)

The necessary condition on the stability of shadow queues is as follows:

∑
d∈N

σ̄dnj ≤ µ̄nj. (3.22)

Since we know that the shadow queues are stable under the shadow queue algorithm, the

expression (3.22) should be satisfied.

Now we focus on the real traffic. Suppose the system has an equilibrium distribution

and let λdnj be the mean arrival rate of real traffic at link (nj) destined to d. The splitting

probabilities are expressed as follows:

P̄ d
nj =

σ̄dnj∑
k∈N σ̄

d
nk

,where d 6= n. (3.23)

Thus, the mean arrival rates at a link satisfy the traffic equation:

λdnj = αdnP̄
d
nj +

∑
l:(ln)∈L

λdlnP̄
d
nj, ∀(nj) ∈ L, d ∈ N , (3.24)

where d 6= n.

The traffic intensity at link (nj) is expressed as

ρnj =
1

µ̄nj

∑
d∈N

λdnj. (3.25)

Now we will show ρnj < 1 for any link (nj) ∈ L. Let λdnj = σ̄dnj/(1 + ε) for every (nj) ∈ L,

and substitute it into expression (3.24). It is easy to check that the candidate solution is

valid by using expression (3.21). From (3.22), the traffic intensity at link (nj) is strictly less

76

than 1 for any link (nj) ∈ L :

ρnj =
1

µ̄nj

∑
d∈N

λdnj =
1

(1 + ε)µ̄nj

∑
d∈N

σ̄dnj < 1. (3.26)

Thus we have shown that the traffic intensity at each link is strictly less than 1.

The wireline network is a special case of a wireless network. Substitute the link capacity

cnj for µ̄nj and set ε to be zero, and stability follows directly. The stability of wireless

networks with network coding is similar to the case of wireless network with no coding.

3.9 To Derive the Backpressure Algorithm in the Network Coding

Case

Given a set of packet arrival rates that lie in the capacity region, our goal is to find routes for

flows that use as few resources as possible. Thus, we formulate the following optimization

problem for the network coding case.

min
∑

(nj)∈L̄

µnj,pp +
∑

(n|jl)∈L̄

µ(n|jl) (3.27)

s.t. µdnj,pp + µdnj,broad ≤
∑
k

µdnjk +
∑
d′

∑
k:k 6=n

µd,d
′

j|kn∑
f∈F

xfI{b(f)=n,e(f)=d} ≤
∑
f∈F

∑
j∈N

µdfnj

Let {qnjd} and {q0nd} be the Lagrange multipliers corresponding to the flow conservation

77

constraints in problem (3.27). Appending the constraints to the objective, we get

min
µ∈Λ′

∑
(nj)∈L̄

µnj,pp +
∑

(n|jl)∈L̄

µn|jl +
∑
n,d

q0nd

[∑
f∈F

xf1{b(f)=n,e(f)=d} −
∑
f∈F

∑
j∈N

µdfnj

]
+
∑
d

∑
(nj)∈L̄

qnjd

[
µdnj,pp + µdnj,broad −

∑
k

µdnjk −
∑
d′

∑
k:k 6=n

µd,d
′

j|kn

]
= min
µ∈Λ′

(
−
∑

(nj)∈L̄

∑
l:(ln)∈L̄

∑
d

µdlnj
(
qlnd − qnjd − 1

)
(3.28)

−
∑

(n|jl)∈L̄,j<l

∑
d,d′

µd,d
′

n|jl
(
qlnd − qnjd + qjnd′ − qnld′ − 2

)
−
∑

(nj)∈L̄

∑
d

∑
f∈F

µdfnj
(
q0nd − qnjd − 1

)
+
∑
n,d

q0nd

∑
f∈F

xf1{b(f)=n,e(f)=d}

)
.

If the Lagrange multipliers are known, then the optimal µ can be found by solving

max
µ∈Λ′

∑
(nj)∈L̄

µnj,ppwnj +
∑

(n|jl)∈L̄,j<l

µn|jlwn|jl (3.29)

where

wnj = max
d
{wdnj},

wn|jl = max
d,d′
{wd,d

′

n|jl},

wd,d
′

n|jl = wdlnj + wd
′
jnl

wdnj = max
l:(ln)∈L or l=0

wdlnj

wdlnj = qlnd − qnjd − 1.

Similar to the update algorithm of qnd in (3.7), we can derive the update algorithm to

compute qnjd :

qnjd[t+ 1] =
[
qnjd[t] +

1

M

(
µdnj,pp + µdnj,broad −

∑
k

µdnjk −
∑
d′

∑
k:k 6=n

µd,d
′

j|kn
)

(3.30)

+
1

M

(∑
f∈F

xfI{b(f)=n,e(f)=d} −
∑
f∈F

∑
j∈N

µdfnj
)]+

.

78

By choosing 1/M to be the step-size parameter, Mqnjd looks very much like a queue

update equation. Replacing Mqnjd by pnjd, we get (3.15)-(3.18). It can be shown using the

results in [57, 58] that the stochastic versions of the above equations are stable and that the

average rates can approximate the solution to (3.27) arbitrarily closely.

3.10 Summary

The backpressure algorithm, while being throughput-optimal, is not useful in practice for

adaptive routing since the delay performance can be very bad. In this chapter, we have pre-

sented an algorithm that routes packets on shortest hops when possible, and decouples rout-

ing and scheduling using a probabilistic splitting algorithm built on the concept of shadow

queues introduced in [42, 41]. By maintaining a probabilistic routing table that changes

slowly over time, real packets do not have to explore long paths to improve throughput;

this functionality is performed by the shadow “packets.” Our algorithm also allows extra

link activation to reduce delays. The algorithm has also been shown to reduce the queueing

complexity at each node and can be extended to optimally trade off between routing and

network coding.

79

CHAPTER 4

CONNECTION-LEVEL SCHEDULING IN
WIRELESS NETWORKS USING ONLY

MAC-LAYER INFORMATION

In order to operate wireless systems efficiently, scheduling algorithms are needed to facilitate

simultaneous transmissions of different users. Scheduling algorithms for wireless networks

have been widely studied since Tassiulas and Ephremides [1] proposed the MaxWeight algo-

rithm. The MaxWeight Scheduling (MWS) algorithm is throughput optimal in the sense that

it can stabilize the queues of the network for the largest set of arrival rates possible without

knowing the actual arrival rates. Max Weight works under very general conditions, but it

does not consider connection-level dynamics. It considers packet-level dynamics assuming

that there is a fixed set of users and that packets are generated by each user according to

some stochastic process. Moreover, there is no notion of congestion control while most mod-

ern communication networks use some congestion control mechanism for fairness purposes

or to avoid excessive congestion inside the network [64]. There is a rich body of literature

on the packet-level stability of scheduling algorithms. Stability of wireless networks under

connection-level dynamics has been studied in, e.g., [21], [22], [23], [24]. The implicit as-

sumption in these works is that the algorithm can fully observe the queue lengths for different

connections while, in practice, the scheduler is implemented as part of the MAC layer and

thus can use only the MAC-layer queue lengths.

In this chapter, we are interested in the scenario where files/connections arrive into and de-

part from an ad hoc wireless network. Upon arrival of a file, a TCP connection is established

which regulates the injection of packets to the MAC layer. The scheduling algorithm must

determine which links can transmit packets at each time instant. When the transmission

of a file ends, its corresponding TCP connection is closed and the file departs the system.

If the scheduler has access to the total queue length at Transport and MAC layers, then it

80

can use MaxWeight algorithm to achieve throughput optimality. However, this would lead

to a poor delay performance because large files might get priority over many small files for

long periods of time. An alternative is to implement a weight-based MAC algorithm as in

[1], but use the MAC-layer queue; then large files will not dominate the service because files

are stored at the Transport layer and only a few packets are released at a time to the MAC

layer. However, it is not obvious that such a system will be throughput-optimal.

For the connection-level model, we show that by appropriately choosing weights which

are functions of the MAC-layer queue and using the MaxWeight-type scheduling algorithms,

throughput optimality is achieved. The only assumption about protocols that we make is

that each TCP window size is at least one and that there is a maximum window size, both

of which are true for all implementations of TCP. We make no other assumptions on the

dynamics of the TCP window flow control mechanism. On the other hand, the fact that our

scheduler uses only the MAC-layer information is consistent with the actual implementation,

because in reality, the scheduler is part of the MAC layer and might not have access to

the Transport layer. We will present simulations that verify the fact that our scheduling

algorithm improves the delay performance.

We comment on the differences between our model and a related model considered in [65].

In [65], throughput-optimal scheduling algorithms have been derived for a connection-level

model of a wireless network assuming that each link has access to the number of files waiting

at the link. Here, we make no such assumption and use only MAC-layer queue information

which is readily available.

4.1 System Model

4.1.1 Model of Wireless Network

Consider a wireless network consisting of a set of nodes where each node could be a source

and/or a destination for another node. We assume single-hop communications, and time is

slotted. Files arrive at each link according to an i.i.d. process with some file size distribution.

81

File arrival processes at different links are also independent. We consider two cases of file

size distribution throughout this chapter.

• Case 1 (Arbitrary Distribution with Bounded File Size): File size distribution can be

arbitrary, but any file size is bounded by a positive integer σmax. We say a file is type-i

file if the file initially contains i packets. The number of file types is bounded because

the file size is bounded.

• Case 2 (Mixed Geometric Distribution): The detailed description of the mixed geo-

metric distribution is as follows. There are K possible file types where files of type

i are geometrically distributed with mean 1/ηi packets. A new file arrival at link l

belongs to type i with probability pli, i = 1, 2, .., K, where
∑K

i=1 pli = 1. It is obvious

that the file size distribution of a particular file is geometric if the file type is known.

Our motivation for selecting such a file size distribution is to model the large variance

in the file sizes in the Internet. It is believed, see e.g., [66], that most of the bytes

are generated by long files while most of the flows are short flows. By controlling the

probabilities pli, for the same average file size, we can obtain distributions with a large

range of variances.

Let λl denote the file arrival rate at link l. For simplicity, we can assume that files arrive

according to an i.i.d Bernoulli process with rate λl. Furthermore, we assume that each link

has a unit service rate, i.e., in each time slot, one packet could be successfully transmitted

over a link. We use the notion of the conflict graph to capture the interference constraints.

Let G = (V , E) denote the conflict graph of the wireless network, where each vertex in V is a

communication link in the wireless network. There is an edge (l1, l2) ∈ E between vertices l1

and l2 if simultaneous transmissions over communication links l1 and l2 are not successful.

Therefore, at each time slot, the active links should form an independent set of G, i.e., no two

scheduled vertices can share an edge in G. Let N = |V| denote the number of communication

links in the wireless network.

Formally, a schedule can be represented by a vector X = [xl : l = 1, ..., N] such that

xl ∈ {0, 1} and xi + xj ≤ 1 for all (i, j) ∈ E . A schedule can also be represented by a set s

82

of links such that l ∈ s if xl = 1 (and l 6∈ s if xl = 0). Let M denote the set of all feasible

schedules. At each time slot, a feasible schedule is chosen by the scheduling algorithm based

on the current network information. Let ml denote the mean file size of files arriving at link

l, and define the workload at link l by ρl = λlml. For example, if the file size has a mixed

geometric distribution, the mean file size is ml =
∑K

i=1 pli/ηi. Then, the capacity region of

the network is the set of all load vectors ρ = (ρ1, · · · , ρN) that make the network queues

stable. It is well known, e.g., see [1], that, under our model, the capacity region is given by

C =
{
ρ : ∃µ ∈ Co(M) s.t. ρ < µ

}
,

where Co(·) is the convex hull operator. When dealing with vectors, inequalities should

be interpreted component-wise. A scheduling algorithm is called throughput-optimal if it

stabilizes the queues in the network for any load vector inside the capacity region C.

4.1.2 Models of Transport and MAC Layers

Upon arrival of a file at a source, a TCP-connection is established that regulates the injection

of packets into the MAC layer. The transmission of MAC-layer packets is itself controlled

by the scheduling algorithm. Once transmission of a file ends, the file departs and the

corresponding TCP-connection will be closed.

At each link, we index the files according to their arrival order such that the index 1 is

given to the earliest file. This means that once transmission of a file ends, the indices of the

remaining files are updated such that indices again start from 1 and are consecutive. Note

that the indexing rule is not part of the algorithm implementation and it is used here only

for the purpose of analysis.

Let Wli[t] denote the congestion window size of file i at link l at time t. In general, Wli

is a time-varying sequence which changes as a result of TCP congestion control. But, we

can see it later, to simplify the analysis we also consider that the congestion window size is

constant. It is worth noting that Wli[t] is still time-varying because the subscript i refers to

83

congestion window

Transport Layer MAC Layer

Scheduler

Delivered MAC-layer packetMAC-layer packet

Pool of MAC-layer Packets

Figure 4.1: Transport/MAC layers: the packets at the MAC layer need not be in separate
queues as shown above, they can be in a single queue.

a different file once a file with a smaller index departs. If the congestion window of file i is

not full, TCP will continue injecting packets from the remainder of file i to the congestion

window until file i has no packets remaining at the Transport layer (see Figure 4.1). It is

important to note that the MAC layer does not know the number of remaining packets at

the Transport layer, so any scheduling decision has to be made based on the MAC-layer

information only. It is reasonable to assume that Wli[t] ≥ 1.

Let qli[t] and qmacli [t] denote the number of remaining packets and the number of MAC-

layer packets of file i at link l at time t respectively. Let nl[t] denote the number of files at

link l at time t. Therefore, the total number of packets at link l is ql[t] =
∑nl[t]

i=1 qli[t], and the

total number of MAC-layer packets at link l is qmacl [t] =
∑nl[t]

i=1 q
mac
li [t]. Based on our model

so far, we have nl[t] ≤ qmacl [t] ≤ ql[t], where the lower bound follows from the fact that each

window size is at least one. Let ql[t] = {qli[t]}i denote the vector of queue lengths of files at

link l, and W l = {Wli[t]}i denote the vector of congestion window sizes of files at link l.

4.1.3 The State of the Network

We aim to find a scheduling algorithm which only uses the MAC-layer information to sta-

bilize the system when the traffic loads are within the capacity region. We not only allow

the scheduling algorithm to choose the set of active links but also allow the algorithm to

determine which MAC-layer packets to serve at each time instant. For example, our analysis

is general enough to allow even service disciplines that are not FIFO (first-in, first-out) at

84

each MAC-layer queue. However, we assume that the scheduling algorithm is such that the

network state can be described by a Markov chain as we will specify now. To understand

the state of the network, we analyze several cases under various file size distributions.

First, we assume that the file size distribution follows Case 1, i.e., arbitrary distribution

with bounded file size. To simplify the analysis under Case 1, we make the assumption that

packets will be injected into the MAC-layer immediately as long as the congestion window

is not full and there are remaining packets at the Transport layer.

We describe the network state in detail under the following three scenarios.

1) The congestion window size for a file remains constant throughout the sojourn of the

file in the network. The initial congestion window size is determined by the file type. At the

MAC layer, packets are scheduled in random order.

The network state should keep track of the status of files at each link, including the number

of remaining packets qli[t], the number of MAC-layer packets qmacli [t] and the congestion

window size Wli[t]. Due to the immediate injection assumption that we make, we have

qmacli [t] = qli[t] if qli[t] ≤ Wli[t] or qmacli [t] = Wli[t] if qli[t] > Wli[t]. Therefore, qmacli [t] is known

if qli[t] and Wli[t] are known. Therefore, the state of link l is Sl[t] = {ql[t],W l[t]}, and the

network state is S[t] = {Sl[t]}l. At each time instant, the network state changes because

ql[t] changes and the reindexing happens if any file departs the network. Upon file arrival,

the network state changes because the number of files changes, and new elements will be

appended to ql[t] and W l[t].

2) The congestion window size for a file remains constant throughout the sojourn of the

file in the network. The initial congestion window size is determined by the file type. Packets

at the MAC layer are scheduled in FIFO order.

Similar to the previous scenario, the state of link l should include ql[t] and W l[t]. But

in order to schedule MAC-layer packets in FIFO order, we need to maintain the identity

of MAC-layer packets too (see Figure 4.2). Let Il[t] = {f 1
id, f

2
id, f

3
id, f

4
id, · · ·} denote which

MAC-layer packets belong to which file in FIFO sequence; e.g., the head of line MAC-layer

packets belong to file f 1
id. Therefore, the state of link l is Sl[t] = {ql[t],W l[t], Il[t]}, and the

85

MAC-Layer FIFO Order

Transport-Layer Queues

Figure 4.2: FIFO scheduling.

network state is S[t] = {Sl[t]}l. Upon packet departures and file arrivals, the MAC-layer

packet ordering Il[t] is updated.

3) The congestion window size is time-varying. MAC-layer packets can be scheduled either

in random order or FIFO order.

Obviously, the network state should include ql[t] and W l[t] as before. The network state

should also include Il[t] if the MAC-layer scheduling order is FIFO order. In reality, the

congestion window size decreases if no ACK is received, and the congestion window size

increases if all packets in the window are successfully transmitted. Window sizes are updated

as a function of the congestion level in the network. Congestion information can be extracted

from ql[t] and W l[t]. If we use FIFO order as the MAC-layer scheduling order, the network

state is S[t] = {Sl[t]}l, where Sl[t] = {ql[t],W l[t], Il[t]}. Let Al[t] denote the vector of files

arriving at link l at time t. The dynamics of the congestion window sizes can be written as

W l[t] = hl(S[t − 1],Al[t]), where hl(·) is a corresponding mapping function to update the

congestion window size based on the previous network state and new file arrivals.

From the above three scenarios, we can see that, under each specific scheduling algorithm

which only uses the MAC-layer information, we can define a network state such that this

state evolves according to a Markov chain.

Similarly, we show examples to indicate how the network state is defined when the file size

distribution follows Case 2, i.e., the mixed geometric distribution. Let ξli[t] be an indicator

function which indicates whether there are packets of file i at the Transport layer or not;

i.e., if ξli[t] = 1, the last packet of file i has not been injected to the MAC layer; if ξli[t] = 0,

86

then there is no remaining packet of file i at the Transport layer. Let τi[t] ∈ {1, ..., K}

denote the type of file with index i at time t. It is worth mentioning that the number

of remaining packets of file i at the Transport layer follows a geometric distribution with

mean σli[t] = 1/ητi[t], as long as ξli[t] = 1, due to the memoryless property of the geometric

distribution. Note that σli[t] is a function of time only because of re-indexing since a file

might change its index from slot to slot. The network states are slightly different under the

following cases. Under all cases, we assume the congestion window size Wli ≥ 1.

1) The congestion window size for a file remains constant throughout the sojourn of the

file in the network. The initial congestion window size is determined by the file type. At the

MAC layer, packets are scheduled in random order.

The network state should keep track of the status of files at each link, including the Trans-

port layer information ξli[t], the number of MAC-layer packets qmacli [t], the congestion window

size Wli[t] and file type τi[t]. Actually, keeping σli[t] is equivalent to keeping τi[t] because they

are one-to-one mapping. Therefore, the state of link l is Sl[t] = {ξl[t], qmacl [t],W l[t],σl[t]},

and the network state is S[t] = {Sl[t]}l.

2) The congestion window size for a file remains constant throughout the sojourn of the

file in the network. The initial congestion window size is determined by the file type. Packets

at the MAC layer are scheduled in FIFO order.

Similar to the previous scenario, the network state should keep track of the status of each

file, but it is also necessary to maintain the identity of MAC-layer packets. Let Il[t] =

{f 1
id, f

2
id, f

3
id, f

4
id, · · ·} denote which MAC-layer packets belong to which file in FIFO sequence.

The network state is S[t] = {Sl[t]}l, where Sl[t] = {ξl[t], qmacl [t],W l[t],σl[t], Il[t]}.

3) The congestion window size is time-varying. MAC-layer packets can be scheduled either

in random order or FIFO order.

Similarly, the network state is S[t] = {Sl[t]}l, where Sl[t] = {ξl[t], qmacl [t],W l[t],σl[t], Il[t]}.

The dynamics of the congestion window sizes can be written as W l[t] = hl(S[t − 1],Al[t]),

where hl(·) is a corresponding mapping function to update the congestion window size based

on the previous network state and new file arrivals.

87

Notice that the way to schedule MAC-layer packets is not limited to either random order

scheduling or FIFO order scheduling. The MAC-layer packet scheduling method could be

arbitrary as long as the corresponding Markov chain is well defined.

4.2 A MaxWeight-Type Scheduling Algorithm

4.2.1 Algorithm Description

Define a function f(x) as

f(x) :=
log(1 + x)

g(x)
, (4.1)

where g(x) is an arbitrary increasing function which makes f(x) an increasing concave func-

tion. Assume that g(0) > 0 and f(x) is a continuously differentiable function on [0,∞). Our

scheduling algorithm is as follows:

• We assign a weight of f(qmacl [t]) to each link l. At each time instant t, the algorithm

picks a schedule s̃[t] such that

s̃[t] ∈ arg max
s∈M

∑
l∈s

f(qmacl [t]). (4.2)

• If link l is scheduled, we choose a MAC-layer packet at link l to transmit. The schedul-

ing decision within link l can be based on some arbitrary service discipline, for example,

FIFO or random selection.

Recall that qmacl [t] is the total number of packets at the MAC-layer of link l at time t.

Therefore, the scheduling decision is only based on MAC-layer information.

Theorem 4.2.1. For any ε > 0, the MaxWeight-type algorithm can stabilize the network

for all ρ ∈ C/(1 + ε), independent of the Transport layer algorithm (as long as the minimum

88

window size is one and the window sizes are bounded) and the (non-idling) service discipline

used to transmit packets from active links.

In particular, one can implement service disciplines that give priority to packets from

short files if such information can be made available to the MAC layer. Such algorithms are

often used in practice to reduce file transfer delays of short files. Notice that the purpose of

choosing weight functions as in (4.1) is to achieve the throughput optimality by only using

the MAC-layer information. Furthermore, such weight functions enable us to implement a

fully distributed version of the algorithm using CSMA. But this is not considered in my

dissertation.

4.3 Proof of Throughput-Optimality under Case 1

Throughout this section, we assume the file size distribution can be arbitrary but bounded.

We will show throughput optimality of our scheduling algorithm which only needs to observe

the MAC-layer information. By choosing the weight function f(x) properly as in (4.1), we

argue that the difference between the link weight using complete queue length information

and the weight using queue length information only at the MAC-layer is sufficiently small.

Therefore, when we show the stability using Lyapunov stability analysis, we will find the

negative drift induced by our scheduling algorithm is close to that using the traditional

MaxWeight algorithm.

Lemma 4.3.1. The number of packets ql[t] and the number of files nl[t] at link l satisfy the

following inequality:

0 ≤ f(ql[t])− f(nl[t]) ≤ c0,∀l, t,

where c0 = log σmax/g(0) > 0.

Proof. Because any file size σ satisfies the inequality 1 ≤ σ ≤ σmax, we have

nl[t] ≤ ql[t] ≤ σmaxnl[t].

89

a) Since f(x) is an increasing function, we have f(nl[t]) ≤ f(ql[t]).

b) Also because g(x) is an increasing function, we have

f
(
ql[t]

)
≤ f

(
σmaxnl[t]

)
=

log
(
1 + σmaxnl[t]

)
g(σmaxnl[t])

≤
log
(
σmax + σmaxnl[t]

)
g(nl[t])

≤ f
(
nl[t]

)
+

log σmax
g(0)

.

Letting c0 = log σmax/g(0), we have proved the lemma.

Lemma 4.3.2. The number of packets ql[t] and the number of MAC-layer packets qmacl [t] at

link l satisfy the following ineqaulity:

0 ≤ f(ql[t])− f(qmacl [t]) ≤ c0,∀l, t,

where c0 = log σmax/g(0) > 0.

Proof. This lemma directly follows Lemma 4.3.1. Because nl[t] ≤ qmacl [t] ≤ ql[t], we have

0 ≤ f(ql[t])− f(qmacl [t]) ≤ f(ql[t])− f(nl[t]) ≤ c0.

Recall that the state of link l is Sl[t] = {ql[t], qmacl [t],W l[t], Il[t]} where ql[t] = {qli[t]}i,

qmacl [t] = {qmacli [t]}i, and W l[t] = {Wli[t]}i. And the network state S[t] is the set of all link

states, i.e., S[t] = {Sl[t]}l. S[t] is the state of a discrete-time Markov chain of the network,

and we will now show that the network is stable, i.e., this Markov chain with state S[t] is

positive recurrent.

Let F (q) =
∫ q

0
f(x)dx. We define the Lyapunov function V (S) as follows:

V (S) =
L∑
l=1

F (ql). (4.3)

Notice that the number of packets at link l is determined by the state S. Recall the queue

90

evolution at link l:

ql[t+ 1] =
[
ql[t]− xl[t]

]+
+ al[t] = ql[t]− xl[t] + al[t] + ul[t], (4.4)

where [x]+ = max{x, 0}, al[t] is the number of packets that arrives at link l at time t, xl[t]

is the service rate provided by link l determined by the corresponding schedule and ul[t] is

the wasted service at time t where ul[t] = max{xl[t]− ql[t], 0}. The mean packet arrival rate

is the workload, i.e., E(al[t]) = ρl = λlσl. For simplicity of notation, we denote ES [·] to be

the expectation conditioned on the network state S[t], i.e., ES [·] = E[·|S[t]].

Now we try to calculate the Lyapunov drift. Define the 1-step Lyapunov drift to be

∆V (S[t]) = V (S[t+ 1])− V (S[t]). From the mean-value theorem, we have

ES
[
∆V (S[t])

]
= ES

[
V (S[t+ 1])

]
− V (S[t]) =

N∑
l=1

(
ES
[
F (ql[t+ 1])

]
− F (ql[t])

)
=

N∑
l=1

ES
[
f(yl[t])(al[t]− xl[t] + ul[t])

]
=

N∑
l=1

ES
[(
f(yl[t])− f(ql[t])

)
(al[t]− xl[t])

]
+

N∑
l=1

ES
[
f(ql[t])(al[t]− xl[t])

]
+

N∑
l=1

ES
[
f(yl[t])ul[t]

]
, (4.5)

where yl[t] is some value between ql[t] and ql[t+ 1]. The following two lemmas provide upper

bounds on the third term and the first term in the last step of (4.5).

Lemma 4.3.3.
∑N

l=1 ES
[
f(yl[t])ul[t]

]
≤ c1, ∀t,S[t], for some positive constant c1.

Proof. Let µcl denote the link capacity of link l. Under our assumption in Section 4.1.1,

µcl = 1. If xl[t] = µcl , link l is scheduled at time t, and if xl[t] = 0, link l is not scheduled.

Because ul[t] = max{xl[t]− ql[t], 0}, then

f(yl[t])ul[t] =

{
f(yl[t])(xl[t]− ql[t]), if xl[t] > ql[t]

0, else.

91

From the queue dynamics equation (4.4), ql[t + 1] = al[t] if xl[t] > ql[t]. Therefore, yl[t] is

somewhere between ql[t] and al[t] if xl[t] > ql[t]. Because f(x) is a nonnegative increasing

function, we have f(yl[t]) ≤ f(al[t]) + f(ql[t]) ≤ f(al[t]) + f(µcl) when xl[t] > ql[t]. Therefore,

f(yl[t])ul[t] ≤
(
f(al[t]) + f(µcl)

)
µcl if xl[t] > ql[t]. Now we bound ES

[
f(yl[t])ul[t]

]
. Using

previous results and the concavity of f(x),

ES
[
f(yl[t])ul[t]

]
= ES

[
f(yl[t])ul[t]

∣∣∣xl[t] ≤ ql[t]
]
P
[
xl[t] ≤ ql[t]

∣∣∣S[t]
]

+ES
[
f(yl[t])ul[t]

∣∣∣xl[t] > ql[t]
]
P
[
xl[t] > ql[t]

∣∣∣S[t]
]

≤ 0 + ES
[
f(yl[t])ul[t]

∣∣∣xl[t] > ql[t]
]
· 1

≤ ES
[(
f(al[t]) + f(µcl)

)
µcl

]
≤ µclf

(
E
[
al[t]

])
+ µclf(µcl)

= µcl

(
f(ρl) + f(µcl)

)
.

In the previous inequality, we use the fact that P
[
xl[t] ≤ ql[t]

∣∣∣S[t]
]
≤ 1 and P

[
xl[t] >

ql[t]
∣∣∣S[t]

]
≤ 1. Letting c1 =

∑N
l=1 µ

c
l

(
f(ρl) + f(µcl)

)
, we have proved the lemma.

Lemma 4.3.4. Under the assumption that E
[
al[t]

2
]
<∞, the following inequality is satisfied

by choosing a proper positive constant c2,

N∑
l=1

ES
[(
f(yl[t])− f(ql[t])

)
(al[t]− xl[t])

]
≤ c2,∀t,S[t].

Proof. Because the wasted service cannot be greater than the departure, i.e., xl[t] ≥ ul[t],

and f(x) is a concave increasing function, we have

∣∣∣f(yl[t])− f(ql[t])
∣∣∣ ≤ f ′(0)

∣∣∣ql[t+ 1]− ql[t]
∣∣∣

= f ′(0)
∣∣∣al[t]− xl[t] + ul[t]

∣∣∣
≤ f ′(0) max{al[t], µcl}.

92

Because
∣∣∣al[t]− xl[t]∣∣∣ ≤ max{al[t], µcl}, we have

N∑
l=1

ES
[(
f(yl[t])− f(ql[t])

)
(al[t]− xl[t])

]
≤

N∑
l=1

ES
[∣∣f(yl[t])− f(ql[t])

∣∣∣∣al[t]− xl[t]∣∣]
≤

N∑
l=1

E
[
f ′(0)(max{al[t]2, (µcl)2})

]
≤ f ′(0)

N∑
l=1

[
E
[
al[t]

2
]

+ (µcl)
2
]
.

Letting c2 = f ′(0)
∑N

l=1

[
cl2 + (µcl)

2
]

where cl2 satisfies E
[
al[t]

2
]
< cl2 < ∞, we have proved

the lemma.

Substituting Lemma 4.3.3 and Lemma 4.3.4 into (4.5) and letting c12 = c1 + c2, the

Lyapunov drift can be written as:

ES [∆V (S[t])] ≤
N∑
l=1

ES
[
f(ql[t])(al[t]− xl[t])

]
+ c12

=
N∑
l=1

f(ql[t])ρl − ES
[∑
l∈s̃[t]

f(ql[t])
]

+ c12

=
N∑
l=1

f(ql[t])ρl −
∑
l∈s̃[t]

f(ql[t]) + c12,

where xl[t] = 1 if l ∈ s̃[t], and xl[t] = 0 if l 6∈ s̃[t]. Notice that ES
[∑

l∈s̃[t] f(ql[t])
]

=∑
l∈s̃[t] f(ql[t]) because the schedule s̃[t] and ql[t] are known conditioned on the network state

S[t]. Let s∗[t] be the optimal scheduling algorithm which maximizes the following objective:

s∗[t] ∈ arg max
s∈M

∑
l∈s

f(ql[t]). (4.6)

93

Now we bound the difference between
∑
l∈s∗[t]

f(ql[t]) and
∑
l∈s̃[t]

f(ql[t]). According to (4.2), we

have

∑
l∈s̃[t]

f(qmacl [t])−
∑
l∈s∗[t]

f(qmacl [t]) ≥ 0. (4.7)

From Lemma 4.3.2 and expressions (4.21) and (4.7), we have

0 ≤
∑
l∈s∗[t]

f(ql[t])−
∑
l∈s̃[t]

f(ql[t]) =
(∑
l∈s∗[t]

f(ql[t])−
∑
l∈s∗[t]

f(qmacl [t])
)

+
(∑
l∈s̃[t]

f(qmacl [t])−
∑
l∈s̃[t]

f(ql[t])
)
−
(∑
l∈s̃[t]

f(qmacl [t])−
∑
l∈s∗[t]

f(qmacl [t])
)

≤ Nc0 = N log σmax/g(0). (4.8)

The rest of the proof is standard. Assume that the traffic load is strictly within the

capacity region, i.e., there exists ε > 0 such that ρ ∈ Λ/(1 + ε). Therefore, (1 + ε)ρ ∈ Λ.

The capacity region is an N -dimensional polyhedron which is a convex hull of all possible

schedules. In linear programming, the optimal corner point of a linear optimization under

the linear constraints is an optimal point, too; i.e.,

max
s∈M

∑
l∈s

f
(
ql[t]

)
= max
µ∈Λ

N∑
l=1

f
(
ql[t]

)
µl.

Let µ∗[t] = arg max
µ∈Λ

N∑
l=1

f
(
ql[t]

)
µl, and we have the following inequality by definition:

∑
l∈s∗[t]

f
(
ql[t]

)
=

N∑
l=1

f
(
ql[t]

)
µ∗l [t] ≥

N∑
l=1

f
(
ql[t]

)
ρl(1 + ε).

We consider an N -dimensional sphere whose center is at the origin of the capacity region.

Initially, the radius of the sphere is zero. We increase the radius gradually until the surface

of the sphere touches the boundary of the capacity region Λ in the first quadrant. Let r∗

94

denote the radius of the sphere in the last step. The radius r∗ is determined by the capacity

region uniquely, and r∗ > 0. Let ||f(q[t])||2 =
(N∑
l=1

f(ql[t])
2
) 1

2 , and let

µr[t] =
{ f(q1[t])

||f(q[t])||2
r∗,

f(q2[t])

||f(q[t])||2
r∗, · · · , f(qN [t])

||f(q[t])||2
r∗
}
.

From the way of creating the sphere, we know µr[t] ∈ Λ. From (4.22), the Lyapunov drift

can be bounded by the following:

ES [∆V (S[t])] ≤
N∑
l=1

f(ql[t])ρl −
∑
l∈s̃[t]

f(ql[t]) + c12 ≤
N∑
l=1

f(ql[t])ρl −
∑
l∈s∗[t]

f(ql[t]) + c3

≤
N∑
l=1

f(ql[t])ρl −
N∑
l=1

f(ql[t])
µ∗l [t]

1 + ε
− ε

1 + ε

N∑
l=1

f(ql[t])µ
∗
l [t] + c3 (4.9)

≤ − ε

1 + ε

N∑
l=1

f(ql[t])µ
r
l [t] + c3

= − ε

1 + ε
r∗||f(q[t])||2 + c3,

where c3 = c12+Nc0. The Lyapunov drift is negative as long as the queue length is sufficiently

large. Let

B =
{
S : ||f(q)||2 ≤

1 + ε

εr∗
(c3 + δ) for some δ > 0

}
,

where q is a vector of number of packets at each link. From the definition of B, any state

in B must have a finite number of packets and a finite number of MAC-layer packets. I[t]

can also be chosen from a finite set. Therefore, B contains only a finite set of states. Let Bc

denote the complement of B. For any state S[t] ∈ Bc, we have

ES [∆V (S[t])] ≤ − ε

1 + ε
r∗||f(q[t])||2 + c3 ≤ −δ.

Therefore, we have proved throughput-optimality of our scheduling protocol by the Lyapunov

stability theorem.

95

4.4 Proof of Throughput-Optimality under Case 2

Throughout this section, we make the assumption that the file size distribution is a mixture

of geometric distributions. Since we use a discrete-time model, we have to specify the order

in which files/packets arrive and depart, which we do below:

1. At the beginning of each time slot, a scheduling decision is made by the scheduling

algorithm. Packets depart from the MAC layer of scheduled links.

2. File arrivals occur next. Once a file arrives, a new TCP connection is set up for that

file with an initial pre-determined congestion window size.

3. For each TCP connection, if the congestion window is not full, packets are injected

into the MAC layer from the Transport layer until the window size is fully used or

there are no more packets at the Transport layer.

We re-index the files at the beginning of each time slot because some files might have

departed during the last time slot.

Define q̄l[t] := E[ql[t]|Sl[t]] to be the expected queue length at link l given the state Sl[t].

Then,

q̄l[t] =

nl[t]∑
i=1

[
σli[t]ξli[t] + qmacli [t]

]
, (4.10)

where nl[t] is the number of files at link l at the beginning of time slot t, which is known

if the network state S[t] is given. Define ∆nl[t] as the number of new files arriving at link

l at time slot t. The dynamics of q̄l[t] involve the dynamics of qmacl [t], ξl[t] and nl[t], and,

thus, it consists of: (i) departure of MAC-layer packets, (ii) new file arrivals, (iii) injection

of packets into the MAC layer, and (iv) departure of files from the Transport layer:

q̄l[t+ 1] = q̄l[t]− dmacl [t] + al[t] + amacl [t]− dtcpl [t], (4.11)

96

where dmacl [t] is the number of packets that depart from the MAC layer, al[t] =
∑nl[t]+∆nl[t]

i=nl[t]+1 σli[t]

is the expected number of packet arrivals of new files, amacl [t] is the total number of packets

injected into the MAC layer to fill up the congestion window after scheduling and new file

arrival, and dtcpl [t] =
∑nl[t]+∆nl[t]

i=1 σli[t]Ili[t] is the Transport-layer “expected packet depar-

ture” because of the MAC-layer injection. Here, Ili[t] = 1 indicates the last packet of file i

leaves the Transport layer during time slot t; otherwise, Ili[t] = 0. Recall that E
[
al[t]

]
= ρl

is the mean packet arrival rate at link l.

Let bl[t] := amacl [t]− dtcpl [t]; then we rewrite (4.11) as

q̄l[t+ 1] = q̄l[t]− dmacl [t] + bl[t] + al[t], (4.12)

= q̄l[t]− xl[t] + bl[t] + al[t] + ul[t],

where ul[t] = max{xl[t] − qmacl [t], 0} is the wasted service, i.e., when l is included in the

schedule but it does not have packets to transmit. Define ES [·] = E[·|S[t]]. Lemma 4.4.1

characterizes the first and the second moments of bl[t].

Lemma 4.4.1. For the process {bl[t]},

(i) ES
[
bl[t]
]

= 0.

(ii) ES
[
bl[t]

2
]
≤
(
κl + 1

)
/η2

min.

where ηmin = min1≤i≤K ηi.

Proof. Part(i):

Let amacli [t] denote the actual number of packets of file i injected into the MAC layer, and

dtcpli [t] = σli[t]Ili[t] denote the expected “packet departure” of file i from the Transport layer.

We show a similar result for each individual file, i.e.,

ES
[
amacli [t]− dtcpli [t]

]
= 0. (4.13)

The lemma is proved by summing up equations for all individual files. We only focus on

existing files i where {i : ξli[t] = 1} for or new files where i ∈
(
nl[t] + 1, nl[t] + ∆nl[t]

)
,

97

because the equation (4.13) is automatically satisfied if no packet is in the Transport layer.

Let W r
li[t] be the remaining window size of file i at link l after MAC-layer departure but

before the MAC-layer injection. We want to show that

ES
[
amacli [t]− dtcpli [t]

∣∣∣W r
li[t] = w

]
= 0, for any w ≥ 0. (4.14)

Notice that (4.14) implies (4.13). Because the number of remaining packets at the Transport

layer is geometrically distributed with mean size σli[t], the Transport layer will continuously

inject packets into the MAC layer with probability γli = 1 − 1/σli[t] as long as all previous

packets are successfully injected and the window size is not full.

Clearly, if w = 0, no packet can be injected into the MAC layer. Therefore, amacli [t] = 0

and dtcpli [t] = 0, and (4.14) is satisfied. Next, we consider the case when w > 0. Let pw(k, j)

denote the probability that amacli [t] = k and Ili[t] = j ∈ {0, 1} given that W r
li[t] = w. Because

Transport-layer packets are injected into the MAC layer as long as the window is not full,

we have pw(k, 0) = 0 for k < w. Obviously, pw(k, 1) = 0 for k > w. The probability that

amacli [t] = k where k < w directly follows the geometric distribution of the remaining packets

of file i, i.e.,

pw(k, 1) = P (amacli [t] = k, Ili[t] = 1|W r
li[t] = w) = P (amacli [t] = k|W r

li[t] = w)

= γk−1
li (1− γli) for 1 ≤ k < w.

The probability that the window size is full (i.e., amacli [t] = w) and the last packet is injected

into the MAC-layer after injection (i.e., Ili[t] = 1) is

pw(w, 1) = P (amacli [t] = w, Ili[t] = 1|W r
li[t] = w) = γw−1

li (1− γli).

From the definition of Ili[t], we have

P (Ili[t] = 0|W r
li[t] = w) = 1−

w∑
k=1

pw(k, 1) = γwli .

98

Now we calculate the left-hand side of (4.14).

ES
[
amacli [t]− dtcpli [t]

∣∣∣W r
li[t] = w

]
=

w∑
k=1

pw(k, 1)
(
k − σli[t]

)
+ P (Ili[t] = 0|W r

li[t] = w)w

=
w∑
k=1

kγk−1
li (1− γli) + (1− γwli)σli[t] + wγwli

= (1− γli)
d

dγli

[γli − γw+1
li

1− γli

]
+

1− γwli
1− γli

+ wγwli

= 0.

Part(ii):

Let bli[t] = amacli [t]− dtcpli [t] for file i. From the definition of bl[t], we have

bl[t] =

nl[t]∑
i=1

bli[t] +

nl[t]+∆nl[t]∑
i=nl[t]+1

bli[t].

Using the fact that new arriving files are mutually independent, and are also independent of

current network state, we have

ES
[
bl[t]

2
]

= ES

[(nl[t]∑
i=1

bli[t]
)2
]

+ ES

[
nl[t]+∆nl[t]∑
i=nl[t]+1

bli[t]
2

]
. (4.15)

Notice that we also use the fact that ES
[
bli[t]

]
= 0. Because bli[t] = amacli [t] − dtcpli [t],

amacli [t] ≥ 0 and dtcpli [t] ≥ 0, we have
∣∣bli[t]∣∣ ≤ max{amacli [t], dtcpli [t]} and therefore bli[t]

2 ≤

max{amacli [t]2, dtcpli [t]2}. Because bli[t]
2 ≤ max{amacli [t]2, dtcpli [t]2}, we have

ES
[
bli[t]

2
]
≤ max

{
ES
[
amacli [t]2

]
,ES

[
dtcpli [t]2

]}
.

Because the number of packets of file i at the Transport layer is geometrically distributed with

parameter σli[t] and the number of packets injected into the MAC-layer amacli [t] cannot exceed

the total number of packets at the Transport layer, therefore, ES
[
amacli [t]2

]
≤ σli[t]

2 ≤ 1/η2
min.

99

And because ES
[
dtcpli [t]2

]
≤ σli[t]

2 ≤ 1/η2
min, we have ES

[
bli[t]

2
]
≤ 1/η2

min. The second term

of (4.15) is bounded by

ES

[
nl[t]+∆nl[t]∑
i=nl[t]+1

bli[t]
2

]
≤ 1/η2

min · ES
[
∆nl[t]

]
= κl/η

2
min.

Using Cauchy-Schwarz Inequality first term in (4.15)

ES

[(nl[t]∑
i=1

bli[t]
)2
]

= ES

[(∑
i∈Dl[t]

bli[t]
)2
]
≤ |Dl[t]| · ES

[∑
i∈Dl[t]

bli[t]
2

]
≤ |Dl[t]|2/η2

min ≤ 1/η2
min.

Therefore, ES
[
bl[t]

2
]
≤ (κl + 1)/η2

min.

The weight of a link based on its MAC queue or the total expected queue length differs

by a constant when weight is chosen carefully as stated by the following Lemma.

Lemma 4.4.2. Let f(x) = log(1 + x)/g(x), then

0 ≤ f(q̄l[t])− f(qmacl [t]) ≤ c′1, (4.16)

where c′1 = log(1 + 1/ηmin)/g(0).

Proof. Because qmacl [t] ≤ q̄l[t] and f(x) is an increasing function, the first inequality is

straight-forward. From the definition of q̄l[t] in (4.10),

q̄l[t] =

nl[t]∑
i=1

[
σli[t]ξli[t] + qmacli [t]

]
≤ 1/ηminnl[t] + qmacl [t] ≤ (1 + 1/ηmin)qmacl [t].

100

Therefore,

f(q̄l[t]) ≤ f
(

(1 + 1/ηmin)qmacl [t]
)

=
log
(

1 + (1 + 1/ηmin)qmacl [t]
)

g
(

(1 + 1/ηmin)qmacl [t]
)

≤
log
(

(1 + 1/ηmin)(1 + qmacl [t])
)

g
(
qmacl [t]

) ≤ f(qmacl [t]) +
log(1 + 1/ηmin)

g(0)
.

Letting c′1 = log(1 + 1/ηmin)/g(0) concludes the proof.

Let F (q) =
∫ q

0
f(x)dx. We define the Lyapunov function V (S) as follows:

V (S) =
L∑
l=1

F (q̄l). (4.17)

Next, we calculate the Lyapunov drift

ES
[
V (S[t+ 1])− V (S[t])

]
=

N∑
l=1

(
ES
[
F (q̄l[t+ 1])

]
− F (q̄l[t])

)
=

N∑
l=1

ES
[
f(yl[t])(ãl[t]− xl[t] + ul[t])

]
=

N∑
l=1

ES
[(
f(yl[t])− f(q̄l[t])

)
(ãl[t]− xl[t])

]
+

N∑
l=1

ES
[
f(q̄l[t])(ãl[t]− xl[t])

]
+

N∑
l=1

ES
[
f(yl[t])ul[t]

]
, (4.18)

where, by the mean-value theorem, yl[t] is some value between q̄l[t] and q̄l[t+ 1] and ãl[t] :=

al[t] + bl[t].

The first term and the third term of (4.18) are bounded as stated by the following lemmas.

101

Lemma 4.4.3. There exists a positive constant c2 such that, for all S[t],

N∑
l=1

ES
[
f(yl[t])ul[t]

]
≤ c′2.

Proof. Recall that the wasted service is ul[t] = 1{xl[t] = 1, qmacl [t] = 0}, i.e., no service is

wasted as long as qmacl [t] ≥ 1. Therefore, since the congestion window size for every file is

at least one, we know that ul[t] = 0 if nl[t] ≥ 1. Hence, based on the definition of q̄l[t],

ul[t] = 0 as long as q̄l[t] ≥ q0
l := 1 + 1/ηmin. Also recall that yl[t] is between q̄l[t] and

q̄l[t + 1] where q̄l[t + 1] = q̄l[t] + ãl[t] − dl[t]. Therefore, yl[t] ≤ max{q̄l[t], q̄l[t] + ãl[t]}, and

f(yl[t]) ≤ f(q̄l[t]) + f(q̄l[t] + ãl[t]).

Because f(x) is a nonnegative concave increasing function,

ES
[
f(yl[t])ul[t]

]
≤ ES

[
f(yl[t])1{ql[t] < q0

l }
]

≤ ES
[
f(q0

l) + f(q0
l + ãl[t])

]
≤ ES

[
2f(q0

l) + f ′(q0
l)ãl[t]

]
≤ 2f(q0

l) + f ′(q0
l)ρl = c′2.

Lemma 4.4.4. Assume E
[
al[t]

2
]
<∞; then there exists a positive constant c′3 such that

N∑
l=1

ES
[(
f(yl[t])− f(q̄l[t])

)
(ãl[t]− xl[t])

]
≤ c′3,∀t,S[t].

Proof. We first bound
∣∣f(yl[t])− f(q̄l[t])

∣∣. Because f(x) is a concave increasing function and

ul[t] ≤ xl[t],

∣∣∣f(yl[t])− f(q̄l[t])
∣∣∣ ≤ f ′(0)

∣∣∣q̄l[t+ 1]− q̄l[t]
∣∣∣

= f ′(0)
∣∣∣−xl[t] + ul[t] + al[t] + bl[t]

∣∣∣
≤ f ′(0) max

{
al[t] + bl[t], xl[t]− bl[t]

}
.

102

Now we bound
∣∣ãl[t]− xl[t]∣∣ :

∣∣ãl[t]− xl[t]∣∣ =
∣∣al[t] + bl[t]− xl[t]

∣∣ ≤ max
{
al[t] + bl[t], xl[t]− bl[t]

}
.

Therefore,

N∑
l=1

ES
[(
f(yl[t])− f(q̄l[t])

)
(ãl[t]− xl[t])

]
≤

N∑
l=1

ES
[∣∣f(yl[t])− f(q̄l[t])

∣∣ · ∣∣ãl[t]− xl[t]∣∣] (4.19)

≤ f ′(0)
N∑
l=1

ES
[
max

{
(al[t] + bl[t])

2, (xl[t]− bl[t])2
}]

≤ f ′(0)
N∑
l=1

{
ES
[(
al[t] + bl[t]

)2
]

+ ES
[(
xl[t]− bl[t]

)2
]}

≤ 2f ′(0)
N∑
l=1

{
ES
[
al[t]

2
]

+ ES
[
xl[t]

2
]

+ 2ES
[
bl[t]

2
]}
,

where we have used the the Cauchy-Schwarz inequality in the last step. Note that ES
[
xl[t]

2
]
≤

1, ES
[
bl[t]

2
]
≤
(
κl + 1

)
/η2

min from Lemma 4.4.1, and ES
[
al[t]

2
]

= E
[
al[t]

2
]
< cl5 < ∞ for

some positive cl3 by assumption. Therefore, letting

c′3 = 2f ′(0)
N∑
l=1

{
(1 +

(
κl + 1

)
/η2

min + cl3

}

concludes the proof.

Hence, letting c23 = c′2 + c′3, the Lyapunov drift can be bounded by

ES
[
∆V (S[t])

]
≤

N∑
l=1

ES
[
f(q̄l[t])(ãl[t]− xl[t])

]
+ c23

=
N∑
l=1

f(q̄l[t])ρl −
∑
l∈s̃[t]

f(q̄l[t]) + c23. (4.20)

103

Let s∗[t] be the optimal scheduling algorithm which maximizes the following objective:

s∗[t] ∈ arg max
s∈M

∑
l∈s

f(q̄l[t]). (4.21)

Then, based on definitions (4.2), (4.21), and Lemma 4.4.2, it can be shown that

0 ≤
∑
l∈s∗[t]

f(q̄l[t])−
∑
l∈s̃[t]

f(q̄l[t]) ≤ Nc′1. (4.22)

To complete the proof of Theorem 4.2.1, assume that the traffic load is strictly within the

capacity region, i.e., there exists ε > 0 such that ρ ∈ C/(1 + ε). The capacity region is

an N -dimensional polyhedron which is a convex hull of all possible schedules. In linear

programming, one of the corner points of a linear optimization over the linear constraints is

one of the optimal solutions. Hence, letting

µ∗[t] = arg max
µ∈C

N∑
l=1

f
(
q̄l[t]

)
µl, (4.23)

the following holds:

∑
l∈s∗[t]

f
(
q̄l[t]

)
=

N∑
l=1

f
(
q̄l[t]

)
µ∗l [t] ≥

N∑
l=1

f
(
q̄l[t]

)
ρl(1 + ε).

Consider the largest sphere centered at the origin and tangent to the boundary of the

capacity region C. Let r∗ be the radius of such a sphere. The radius r∗ is determined by the

capacity region uniquely and r∗ > 0. Define

µr[t] =

(
f(q̄1[t])

||f(q̄[t])||2
r∗, · · · , f(q̄N [t])

||f(q̄[t])||2
r∗
)
, (4.24)

104

where ||.||2 is the Euclidian norm in RN . Note that µr[t] ∈ C by construction. From (4.22),

the Lyapunov drift can be bounded as follows:

ES [∆V (S[t])] ≤
N∑
l=1

f(q̄l[t])ρl −
∑
l∈s̃[t]

f(q̄l[t]) + c23

≤
N∑
l=1

f(q̄l[t])ρl −
∑
l∈s∗[t]

f(q̄l[t]) + c4

≤
N∑
l=1

f(q̄l[t])ρl −
N∑
l=1

f(q̄l[t])
µ∗l [t]

1 + ε
− ε

1 + ε

N∑
l=1

f(q̄l[t])µ
∗
l [t] + c4

≤ − ε

1 + ε

N∑
l=1

f(q̄l[t])µ
r
l [t] + c4

= − ε

1 + ε
r∗||f(q̄[t])||2 + c4,

where c4 = c23 +Nc′1. Therefore, the Lyapunov drift will be negative when ‖q̄‖1 is sufficiently

large, or when the number of files is sufficiently large. Specifically, consider any constant

δ > 0 and let

Bc =
{
S : ‖n‖ ≥ f−1

(
1 + ε

εr∗
(c4 + δ)

)}
.

Then, for any S ∈ Bc, the Lyapunov drift is less than −δ. Also it is easy to check that B

contains only a finite set of states with finite drift. Therefore, the system is stable by the

Foster-Lyapunov stability theorem [67].

4.5 Simulation Results

In this section, we only show simulations for the case when the file size distribution is a

mixture of geometric distributions. The result for the bounded file size case is very similar.

Consider the simple wireless network of Figure 4.3 under the 1-hop interference model, which

implies links sharing a node cannot be active simultaneously. There are 22 distinct maximal

schedules for this network. Each link has a unit link capacity. The distribution of files is a

1When there is no subscript, ‖z‖ = ‖z‖∞ = maxi zi = zmax.

105

1 2

3 4 5
6 7

8 9 10
11 12

Figure 4.3: A wireless network containing 12 communication links.

mixture of geometric distributions as described next. Once a file is generated, the file size is

geometrically distributed with mean 2 with probability 5/6 and is geometrically distributed

with mean 100 with probability 1/6. All file arrivals are generated by Bernoulli processes.

We say a file is short if its file size is less than half of the mean file size; otherwise, it is

a long file. While this definition is somewhat arbitrary, our conclusions continue to hold if

this assumption is removed. For simplicity, we divide the links into the following two sets:

{4, 6, 7, 9} and {1, 2, 3, 5, 8, 10, 11, 12}, where the links in each set have an equal arrival rate

but the arrival rate of links in the second set is half of the arrival rate of links in the first

set. We do simulations for different traffic intensities where the traffic intensity is a number

such that the load vector divided by the traffic intensity lies on the boundary of the capacity

region.

We consider a very naive window flow control algorithm under which the window size is

always 1 for links {1, 4, 7, 10}, 2 for links {2, 5, 8, 11} and 3 for links {3, 6, 9, 12}. We assume

that MAC-layer packets are removed in a FIFO order. Once a packet is removed, a packet

from the same file is injected from the Transport layer to the tail of the MAC-layer FIFO

queue as long as there are packets at the Transport layer. In addition to FIFO, we also

do simulations for the case in which the MAC layer receives one-bit information notifying

whether the file is short or long. In this case, we give higher priority to short files. Each

class (short or long) of files is served in a FIFO order. In the simulation, our scheduling

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

traffic intensity

de
la

y
(s

lo
t)

Total Queue, MAC layer FIFO
MAC layer Queue, MAC layer FIFO
Total Queue, Short File First
MAC layer Queue, Short File First

Figure 4.4: Average delay of short files.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

traffic intensity

de
la

y
(s

lo
t)

Total Queue, MAC layer FIFO
MAC layer Queue, MAC layer FIFO
Total Queue, Short File First
MAC layer Queue, Short File First

Figure 4.5: Average delay of long files.

algorithm chooses the weight of link l to be f(qmacl [t]) where f(x) = log(1 + x) by letting

g(x) = 1. We compare our algorithm with the scheduling algorithm which uses f(ql[t]) as

the weight of link l.

Figures 4.4 and 4.5 show the average delays of short and long files for different traffic

intensities. For both FIFO and the short-file-first service disciplines for the MAC-layer

packet transmission, the short-file delay performance of the scheduling algorithm which only

uses the MAC-layer queue information is much better than the performance of the regular

maximum weight scheduling that uses the total number of packets as the weight of a link.

This is because a large total queue length at a link does not necessarily imply a large number

107

of files at that link. It is possible that the scheduling algorithm chooses a link with large

queue length but containing only a few files. Therefore, a link which contains many short

files, but has only a small number of packets, will be scheduled infrequently and short

files at such links suffer high latency. Also, as we expect, if the MAC layer knows 1-bit

additional information to identify short files and uses short-file-first in-link scheduling, the

delay performance will be even better.

Figure 4.5 shows that the delay performance of long files is almost the same under both

algorithms. However, for the same weight function, using 1-bit extra information can still

yield a slightly better delay performance compared to the FIFO performance.

4.6 Summary

Since the scheduling algorithm is part of MAC, it is desirable to design an algorithm that

uses only MAC-layer information. We showed that it is possible to design such algorithms

that are still throughput optimal. Another advantage of such algorithms is that the long

files do not block the transmission of short files and hence, the overall delay performance

can be improved. The key element of the algorithm is an appropriate choice of a weight

function. Interestingly, by using such weight functions, we can design a distributed version

of the algorithm with proven throughput optimality [68].

108

CHAPTER 5

CONCLUSION

In this chapter, we briefly summarize the contributions of this thesis and suggest possible

directions for future work. The main objective of the thesis is to design good resource

allocation algorithms, specifically scheduling and routing algorithms, to achieve optimal

throughput and good delay performance. For this purpose, we have suggested several new

algorithms, and also studied the performance of previously proposed algorithms.

In Chapter 2, we have studied the workload optimality of scheduling algorithms for small

generalized switches [69]. By providing scheduling algorithms other than MWS-α algorithm

and proving the heavy-traffic sample-path workload optimality of our algorithms, we show

that the well-known conjecture that MWS-α is workload optimal when α goes to zero is false.

The future direction of this piece of work could be to find workload-optimal scheduling

algorithms under more general network settings. However, the biggest challenge is that

multiple resources are coupled even in the heavy traffic region in a more general setting.

In Chapter 3, a backpressure-based packet-by-packet adaptive routing and scheduling

algorithm is proposed which has near-optimal throughput and good delay performance [70].

We also extend our results to the case with network coding and our algorithm determines the

tradeoff between routing and coding automatically. A possible direction for future research

is to analytically understand the tradeoff between the shadow queue parameter epsilon and

the delay performance of the network.

We present a MaxWeight-type scheduling algorithm with single-hop file arrivals and de-

partures in Chapter 4 [71, 68]. When considering the connection-level scenario, the stability

of the network with our algorithm is not obvious. We show that our algorithm does achieve

throughput optimality even though it uses only MAC-layer information for scheduling. The

109

MAC-layer packet service order can be arbitrary as long as one can define a network state

which evolves as a Markov chain. It is also shown from simulations that the delay perfor-

mance of our algorithm is much better compared with the traditional MaxWeight scheduling

algorithm. A possible future direction could be to find a set of good scheduling algorithms

when there are multi-hop routes in the network.

110

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks,” IEEE
Transactions on Automatic Control, vol. 37, no. 12, pp. 1936–1948, Dec. 1992.

[2] X. Wu and R. Srikant, “Regulated maximal matching: A distributed scheduling algo-
rithm for multi-hop wireless networks with node-exclusive spectrum sharing,” in Pro-
ceedings of the 44th IEEE Conference on Decision and Control and European Control
Conference’05, Dec. 2005, pp. 5342–5347.

[3] A. Dimakis and J. Walrand, “Sufficient conditions for stability of longest-queue-first
scheduling: Second-order properties using fluid limits,” Advances in Applied Probability,
vol. 38, no. 2, pp. 505–521, June 2006.

[4] X. Wu, R. Srikant, and J. R. Perkins, “Scheduling efficiency of distributed greedy
scheduling algorithms in wireless networks,” IEEE Transactions on Mobile Computing,
vol. 6, no. 6, pp. 595–605, June 2007.

[5] G. Zussman, A. Brzezinski, and E. Modiano, “Multihop local pooling for distributed
throughput maximization in wireless networks,” in Proceedings of the 27th IEEE IN-
FOCOM, 2008, pp. 1139–1147.

[6] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region of the greedy
maximal scheduling algorithm in multihop wireless networks,” IEEE/ACM Transaction
on Networking, vol. 17, no. 4, pp. 1132–1145, Aug. 2009.

[7] L. Jiang and J. Walrand, “A distributed csma algorithm for throughput and utility
maximization in wireless networks,” IEEE/ACM Transaction on Networking, vol. 18,
no. 3, pp. 960–972, June 2010.

[8] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-length based CSMA/CA algorithms
for achieving maximum throughput and low delay in wireless networks,” in Proceedings
of the 29th IEEE INFOCOM, March 2010, pp. 1–5.

[9] S. Rajagopalan, D. Shah, and J. Shin, “Network adiabatic theorem: An efficient
randomized protocol for contention resolution,” in Proceedings of ACM SIGMET-
RICS/Performance, 2009, pp. 133–144.

111

[10] J. He and J. Rexford, “Toward internet-wide multipath routing,” IEEE Network Mag-
azine, vol. 22, no. 2, pp. 16–21, March-April 2008.

[11] P. Narvaez, K. Y. Siu, and H. Y. Tzeng, “Efficient algorithms for multi-path link state
routing,” in Proceedings of ISCOM, 1999.

[12] S. Vutukury and J. J. Garcia-Luna-Aceves, “A simple approximation to minimum-delay
routing,” in Proceedings of ACM SIGCOMM, 1999, pp. 227–238.

[13] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,” ACM SIG-
COMM Computer Communication Review, vol. 38, no. 4, pp. 27–38, 2008.

[14] X. Yang and D. Wetherall, “Source selectable path diversity via routing deflections,”
ACM SIGCOMM Computer Communication Review, vol. 36, no. 4, pp. 159–170, 2006.

[15] D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed exponentially-weighted flow
splitting,” in Proceedings of the 26th IEEE INFOCOM 2007, May 2007, pp. 71–79.

[16] L. Bui, R. Srikant, and A. L. Stolyar, “A novel architecture for reduction of delay and
queueing structure complexity in the back-pressure algorithm,” IEEE/ACM Transac-
tion on Networking, vol. 19, no. 6, pp. 1597–1609, Dec. 2011.

[17] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and routing for
time varying wireless networks,” IEEE Journal on Selected Areas in Communications,
vol. 23, no. 1, pp. 89–103, January 2005.

[18] A. L. Stolyar, “Maxweight scheduling in a generalized switch: State space collapse and
workload minimization in heavy traffic,” The Annals of Applied Probability, vol. 14,
no. 1, pp. 1–53, 2004.

[19] D. Shah and D. J. Wischik, “Switched networks with maximum weight policies: Fluid
approximation and multiplicative state space collapse,” The Annals of Applied Proba-
bility, to be published.

[20] I. Keslassy and N. McKeown, “Analysis of scheduling algorithms that provide 100%
throughput in input-queued switches,” in Proceedings of the 39th Allerton Conference
on Communications, Control and Computing, Monticello, IL, 2001.

[21] T. Bonald, S. Borst, and A. Proutiere, “How mobility impacts the flow-level performance
of wireless data systems,” in Proceedings of the 23rd IEEE INFOCOM, 2004, pp. 1872–
1881.

[22] J. Liu, A. Proutiere, Y. Yi, M. Chiang, and V. Poor, “Flow-level stability of data
networks with non-convex and time-varying rate regions,” in Proceedings of ACM SIG-
METRICS, 2007, pp. 239–250.

112

[23] P. van de Ven, S. Borst, and S. Shneer, “Instability of maxweight scheduling algorithms,”
in Proceedings of the 28th IEEE INFOCOM, 2009, pp. 1701–1709.

[24] S. Liu, L. Ying, and R. Srikant, “Throughput-optimal opportunistic scheduling in the
presence of flow-level dynamics,” IEEE/ACM Transaction on Networking, vol. 19, no. 4,
pp. 1057–1070, Aug. 2010.

[25] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for fading wireless
channels,” IEEE/ACM Transactions on Networking, vol. 13, no. 2, pp. 411–424, 2005.

[26] V. J. Venkataramanan and X. Lin, “Structural properties of LDP for queue-length based
wireless scheduling algorithms,” in Proceedings of the 45th Annual Allerton Conference
on Communication, Control, and Computing, 2007.

[27] L. Tassiulas and A. Ephremides, “Dynamic scheduling for minimum delay in tandem
and parallel constrained queueing models,” Annals of Operation Research, vol. 18, pp.
333–355, 1994.

[28] T. Ji, E. Athanasopoulou, and R. Srikant, “Optimal scheduling policies in small general-
ized switches,” in Proceedings of the 28th IEEE INFOCOM, April 2009, pp. 2921–2925.

[29] J. M. Harrison, “Brownian models of queueing networks with heterogeneous customer
populations,” in Stochastic Differential Systems, Stochastic Control Theory and Appli-
cations, vol. 10, The IMA Volumes in Mathematics and its Applications, W. Fleming
and P.-L. Lions, Eds. New York, NY: Springer-Verlag, 1988, pp. 147–186.

[30] M. I. Reiman, “Some diffusion approximations with state space collapse,” in Modelling
and Performance Evaluation Methodology, vol. 60, Lecture Notes in Control and Infor-
mation Sciences, F. Baccelli and G. Fayolle, Eds. Berlin / Heidelberg: Springer, 1984,
pp. 207–240.

[31] C. N. Laws, “Resource pooling in queueing networks with dynamic routing,” Advances
in Applied Probability, vol. 24, no. 3, pp. 699–726, 1992.

[32] F. P. Kelly and C. N. Laws, “Dynamic routing in open queueing networks: Brownian
models, cut constraints and resource pooling,” Queueing Systems Theory and Applica-
tions, vol. 13, no. 1-3, pp. 47–86, 1993.

[33] S. Shakkottai, R. Srikant, and A. L. Stolyar, “Pathwise optimality of the exponential
scheduling rule for wireless channels,” Advances in Applied Probability, vol. 36, no. 4,
pp. 1021–1045, 2004.

[34] S. L. Bell and R. J. Williams, “Dynamic scheduling of a parallel server system in heavy
traffic with complete resource pooling: asymptotic optimality of a threshold policy,”
Electronic Journal of Probability, vol. 10, no. 33, pp. 1044–1115, 2005.

113

[35] S. P. Meyn, Control Techniques for Complex Networks. Cambridge, England: Cam-
bridge University Press, 2007.

[36] I. M. Verloop, S. C. Borst, and R. Nunez-Queija, “Delay optimization in bandwidth-
sharing networks,” in Proceedings of the Conference on Information Sciences and Sys-
tems (CISS), Princeton University, 2006, pp. 1260–1265.

[37] T. Bonald and L. Massoulie, “Impact of fairness on Internet performance,” in Proceed-
ings of ACM Sigmetrics, 2001, pp. 82–91.

[38] D. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models. Englewood
Cliffs, NJ: Prentice Hall, 1987.

[39] A. L. Stolyar, private communication, May 2008.

[40] S. G. Mohanty and W. Panny, “A discrete-time analogue of the M/M/1 queue and the
transient solution: A geometric approach,” Sankhya: The Indian Journal of Statistics,
vol. 52, pp. 364–370, 1990.

[41] L. Bui, R. Srikant, and A. L. Stolyar, “Novel architectures and algorithms for delay
reduction in back-pressure scheduling and routing,” in Proceedings of the 28th IEEE
INFOCOM, April 2009, pp. 2936–2940.

[42] L. Bui, R. Srikant, and A. L. Stolyar, “Optimal resource allocation for multicast sessions
in multi-hop wireless networks,” Philosophical Transactions of the Royal Society, Ser.
A, vol. 366, no. 1872, pp. 2059–2074, 2008.

[43] L. Ying, S. Shakkottai, and A. Reddy, “On combining shortest-path and back-pressure
routing over multihop wireless networks,” in Proceedings of the 28th IEEE INFOCOM
2009, April 2009, pp. 1674–1682.

[44] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “XORs in the
air: Practical wireless network coding,” in ACM SIGCOMM Computer Communication
Review, vol. 36, 2006, pp. 243–254.

[45] M. Effros, T. Ho, and S. Kim, “A tiling approach to network code design for wireless
networks,” in Information Theory Workshop, 2006, pp. 62–66.

[46] H. Seferoglu, A. Markopoulou, and U. Kozat, “Network coding-aware rate control and
scheduling in wireless networks,” in Special Session on “Network Coding for Multimedia
Streaming,” ICME, Cancun, Mexico, June 2009, pp. 1496–1499.

[47] S. Sengupta, S. Rayanchu, and S. Banerjee, “An analysis of wireless network coding for
unicast sessions: The case for coding-aware routing,” in Proceedings of the 26th IEEE
INFOCOM, Anchorage, Alaska, May 2007, pp. 1028–1036.

114

[48] T. Ho and H. Viswanathan, “Dynamic algorithms for multicast with intra-session net-
work coding,” IEEE Transactions on Information Theory, vol. 55, no. 2, pp. 797–815,
Feb. 2009.

[49] A. Eryilmaz and D. S. Lun, “Control for inter-session network coding,” in Proceedings
of the Workshop on Network Coding, Theory and Applications (NetCod), Jan. 2007.

[50] L. Chen, T. Ho, S. H. Low, M. Chiang, and J. C. Doyle, “Optimization based rate
control for multicast with network coding,” in Proceedings of the 26th IEEE INFOCOM,
Anchorage, Alaska, May 2007, pp. 1163–1171.

[51] B. Awerbuch and T. Leighton, “A simple local-control approximation algorithm for mul-
ticommodity flow,” in Proceedings of the 34th Annual Symposium on the Foundations
of Computer Science, 1993, pp. 459–468.

[52] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region of the greedy
maximal scheduling algorithm in multi-hop wireless networks,” in Proceeding of the
27th IEEE INFOCOM, 2008, pp. 1103–1111.

[53] A. Brzezinski, G. Zussman, and E. Modiano, “Enabling distributed throughput maxi-
mization in wireless mesh networks - a partitioning approach,” in Proceedings of ACM
MobiCom, Sep. 2006, pp. 26–37.

[54] M. Leconte, J. Ni, and R. Srikant, “Improved bounds on the throughput efficient of
greedy maximal scheduling in wireless networks,” in Proceedings of ACM MobiHoc,
2009, pp. 165–174.

[55] B. Li, C. Boyaci, and Y. Xia, “A refined performance characterization of longest-queue-
first policy in wireless networks,” in Proceedings of ACM MobiHoc, 2009, pp. 65–74.

[56] X. Lin and N. Shroff, “On the stability region of congestion control,” in Proceedings of
the 42nd Allerton Conference on Communications, Control and Computing, Monticello,
IL, 2004.

[57] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic control for hetero-
geneous networks,” in Proceedings of the 24th IEEE INFOCOM, 2005, pp. 1723–1734.

[58] A. L. Stolyar, “Maximizing queueing network utility subject to stability: Greedy primal-
dual algorithm,” Queueing Systems: Theory and Applications, vol. 50, no. 4, pp. 401–
457, Aug. 2005.

[59] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks using queue-
length-based scheduling and congestion control,” IEEE/ACM Transactions on Network-
ing, vol. 15, no. 6, pp. 1333–1344, 2007.

115

[60] A. Eryilmaz and R. Srikant, “Joint congestion control, routing and MAC for stability
and fairness in wireless networks,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 8, pp. 1514–1524, 2006.

[61] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless
networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, pp.
1452–1463, 2006.

[62] M. Bramson, “Convergence to equilbria for fluid models of FIFO queueing networks,”
Queueing Systems: Theory and Applications, vol. 22, pp. 5–45, 1996.

[63] Sprint-Nextel Corp., (2009, Dec.). Sprint IP network performance. [Online]. Available:
https://www.sprint.net/performance/.

[64] X. Lin, N. Shroff, and R. Srikant, “On the connection-level stability of congestion-
controlled communication networks,” IEEE Transactions on Information Theory,
vol. 54, no. 5, pp. 2317–2338, 2008.

[65] T. Bonald and M. Feuillet, “On the stability of flow-aware CSMA,” Performance Eval-
uation, vol. 67, no. 11, pp. 1219–1229, 2010.

[66] M. Crovella and A. Bestavros, “Self-similarity in world wide web traffic: Evidence and
possible causes,” IEEE/ACM Transaction on Networking, vol. 5, no. 6, pp. 835–846,
1997.

[67] S. Asmussen, Applied Probability and Queues. New York, NY: Springer-Verlag, 2003.

[68] J. Ghaderi, T. Ji, and R. Srikant, “Connection-level scheduling in wireless networks
using only MAC-layer information,” in Proceedings of IEEE INFOCOM, 2012, to be
published.

[69] T. Ji, E. Athanasopoulou, and R. Srikant, “On optimal scheduling algorithms for small
generalized switches,” IEEE/ACM Transaction on Networking, vol. 18, no. 5, pp. 1585–
1598, Oct. 2010.

[70] E. Athanasopoulou, L. Bui, T. Ji, R. Srikant, and A. Stoylar, “Backpressure-based
packet-by-packet adaptive routing in communication networks,” IEEE/ACM Transac-
tion on Networking, submitted for publication.

[71] T. Ji and R. Srikant, “Scheduling in wireless networks with connection arrivals and
departures,” in Proceedings of UCSD ITA Workshop, Feb. 2011.

116

