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Abstract

An autonomous vehicle is a demanding application for
our daily life. Such vehicle requires to detect other vehicles
on the road. Given the sequences of images, the algorithms
need to find other vehicles in realtime. There two types of
on-road vehicles, traveling in the same direction or travel-
ing in the opposite direction. Due to the distinct features of
two types of vehicles, different approaches are necessary to
detect vehicles in different directions. Here, we use ‘optical
flow* to detect vehicles in the opposite direction because the
coming traffics shows salient motions. We use ‘Haar-like
feature detection” for vehicles in the same direction because
the traffics represent relatively stable shape (car rear) and
little motion. We verify the detected region with estimating
3D geometry. If the detector fail to find the vehicles, we
interpolate the region from the previous frames. Then, the
detected vehicles are projected into the 3D space. Our sys-
tem detects vehicles with high accuracy in realtime for 11
frames/sec.

1. Introduction

A vehicle detection algorithm is one of the most im-
portant modules of an autonomous vehicle system because
it detects midrange and long distance (over 20m) vehicles
with low cost. However, any vehicle detection algorithm
can not detect all vehicles. Here, we consider detecting
two types of cars. The two types of cars (traveling in the
opposite direction and in the same direction) have distinct
features.

We use ‘Optical flow’ [5] to detect coming traffics.
Given the two consecutive frames, we find corner points
with corner detector [7]. The detected features are matched
by the ‘Optical flow’ algorithm [5]. The ‘Optical flow’ as-
sumes that important features are detected in both frames.
We cluster some features into a rectangle if the euclidian
distance of two features (the location of feature and the

direction of optical flow) are small. The optical flow al-
gorithms find the correspondence within a reasonable time
so that we can use the algorithms for realtime application
!. However, some of optical flows are generated by some
cracks of the road and road signs. They make false positive
rectangles.

Haar-like feature detector [11] is used to detect traffics
in the same direction. The optical flow algorithm is not so
appropriate for these traffics because they do not have any
salient movement in most case. Instead, they maintain some
consistent shapes. The shapes mostly show the rear side of
the car. To detect the rear shape of the car we choose to use
Haar-like feature detector because it is fast and efficient. In
general, template-based methods are slow for realtime de-
tections. The execution time of the methods is proportional
to the number of templates we have. That is, the execution
time increases when we have more templates. However,
Haar-like feature detector searches the frame once. The de-
tector also generates many false positives because the detec-
tor represents the various shapes of the vehicles. If we only
focus on the shapes of the cars in the training data set, the
detector easily finds those cars. However, the detector may
fail to find the cars which are not trained. It is dangerous for
the autonomous vehicle. Thus, we loosen the constraints of
the detector and receive some false positive detections.

Many false positive rectangles (or detections) can be fil-
tered out, when we process the image based on the context
of the scene [4]. We estimate 3D geometry and use it to
impose the constraints of geometry. If we find a vanishing
point in a frame, the rectangle (hypothesis) can be verified
by its size. We assume that the sizes of cars are in certain
ranges. If the cars locate near the vanishing point, the sizes
should be small. If the cars are far from the vanishing point,
the sizes should not so small. Of course, any car can not be

Ireal-time is a different term with the term in real-time operating sys-
tem. The real-time in the operating system means that the system always
finish its works within appointed time. Here, the real-time in some papers
means that the processing time of vehicle tracking is faster than the frame
rate. That is, there is no guarantee to meet the dead line



on the sky. With this simple method, we filtered out may
false positive detections.

Although there are many researches for realtime on-road
vehicle detection [1, 9, 13] so far, there is no research that
use Haar-like feature detector, optical flow and scene con-
text simultaneously on the moving vehicle with monocular
camera. Recently some researchers [&], [12] have improved
the performance of Viola’s detector. Miolos [8] reduced
the time for training parameters and Jianyu [ 2] focused on
improving the tracking performance with particle filtering.
However, those are not designed for real-time detection of
on-road vehicles.

In general, a vehicle detection algorithm has two basic
step; Hypothesis Generation (HG) and Hypothesis Verifi-
cation (HV) [6]. In the Hypothesis Generation (HG) step,
the algorithm hypothesizes the locations of vehicles in an
image. In the Hypothesis Verification (HV) step, the algo-
rithm verify the presence of vehicles in an image. The meth-
ods in the HG step can be categorized into three methods;
Knowledge-based methods using symmetry of object, color,
corners and edges; Stereo-Vision-Based methods using two
cameras; Motion-Based Methods tracking the motion of
pixels between the consecutive frames (optical flow[5]).
The methods in the HV step are Template-based methods
and Appearance methods. Template-based methods use
predefined patterns of the vehicle class. Appearance-based
methods include pattern classification system between ve-
hicle and non-vehicle.

Three previous works [, 9, 13] tried to solve realtime
on-road vehicle detection problem. All the papers used
monocular cameras and have real-time constraints. [1] used
horizontal and vertical edges (Knowledge-based methods)
in HG step. The selected regions at HG step are matched
with predefined templates in HV step. [9] used horizon-
tal and vertical edge in HG step. However, they use Haar
Wavelet Transform and SVMs (Appearance-based meth-
ods) in HV step. [13] detected long-distance stationary ob-
stacles including vehicles. They used an efficient optical
flow algorithm [3] (Motion-based methods) in HG step. Al-
though they did not use any traditional HV method, they
used Sum of squared differences(SSD) with a threshold
value to verify their hypothesis.

2. Theories

This works use three prevail methods in computer vision.
They are ‘optical flow’ [5], ‘Haar-like feature detector’ [11]
(so-called Viola and Jones), and ‘Scene analysis with con-
text’ [4]. A normalized input image is simultaneously pro-
cessed by ‘optical flow’ and “Viola and Jones detector’. The
hypothesis are analyzed by ‘Scene analysis with context’.
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Figure 1: Overall diagram of on-road vehicle detection algorithms.

2.1. Optical Flow

Overall process of optical is following: First, the algo-
rithm finds the important features (corners) in the two con-
secutive frames; Second, the algorithm matches the corre-
spondence between the features (corners); Finally, extracted
flows are clustered into a group if the Euclidean distances
of the flows (location and direction) are small.

2.1.1 Detecting Corner Features

‘We use Shi and Tomasi [7] corner detector that is modified
from the Harris corner detector. The Shi corner detector
assume the motion can be modeled by Affine, and the mo-
tion is small. The assumption is reasonable for this research
because we have enough frame rates (15 frames/sec) so that
the movement of vehicles is bounded by small range. Given
the image patch over the area (u, v), Harris corner detector
find corner with shifting it by (x,y). The SSD between
these two patches, S is given by

S =33 "U(u,0) — I(u—z,0—y))?

When I is the intensity of image a position (eg. u,v ).
The Harris matrix is found by taking the second derivative
of S around (x,y) = (0,0). A is given by

2 Ll
A" L1, I7

The strength of the corner is determined by ‘how much’
second derivative there is. The two eigenvalues (A and ;)
of A can be used to detect the corner. If the two eigenvalues
are large, distinct positive value, the a corner is found.

Shi and Tomasi [7] corner detector based on the Har-
ris corner detector. Instead of simple translation, they use



Affine transformation. Given the image patch over the area
(u, v), Shi and Tomasi corner detector find corner with ap-
plying Affine transformation(A) and shifting it by (x,y).

S = ZZ(I(U,U) — I(A(u,v) = (z,9)))?

We have a 6 by 6 matrix because Affine and transformation
have six variables. We find the corner, if the 6 by 6 matrix
have large eigenvalues.

2.1.2 Extracting Optical Flow

Lucas and Kanades optical flow [5] is used to match the
feature points. Given point (u,v) in image I; the algorithm
finds the point (u+d,, v+d,) in image ;11 that minimizes
€,
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2.1.3 Clustering into the Groups

We cluster a set of flows into a group, if the flows have
similar direction and close location. A flow (op) has four
features (z,y, vy, vy) (X, y are the location of the flow; v,
and v, are the direction of the flow). Given the two vectors
of optical flows op: (2, y', vy, vy ) and opa (2", y", v}/, vy),
Euclidean distance(dist(op1,0p2)) is defined by follow-
ing.

Ve =2+ =

We design simple nearest neighbor clustering algorithm.
Given the a flow (op;), find the closest flow (op;). If the
dist(op;, op;) is less than a threshold value 64;5;, group the
op; and op; into same group. If the case when the op; is
already included in a group G, insert op; into the group G’
(opj € G = op; € G").

If our camera is mounted in the static ground, there is
no additional problem to use the optical flow and this near-
est neighbor clustering. All the flows have some biased di-
rection in some case, because our camera is also moving.
Whenever there is any gap on the road, the camera has so
large movement that the next image has large translation.
To prevent this ‘bump it out’ effect, we find the common
biased vector biased, (vbs, vby) if there is. Thus an optical
flow (op;(z,y, v, vy)) has new flow (op}) as following.

y//)Q + (’U:E’ _ U.T”)Q + (’Uy’ _ ,Uy//)Q

Op; = ('r7y7’uw - be,’Uy - Uby)

2.2. Haar-like Feature Detector

We use Haar-like feature detector and AdaBoost to de-
tect the cars in the same direction. Recently Viola and Jones
[10, 11] suggest AdaBoost into computer vision. The ap-
proach prevails in the face detection because their method
is fast and accurate.

Figure 3: Haar wavelet features are used in this research. A Haar-like
feature is defined by one of above rectangle (or variations) and a threshold
value. Given an image I, the sum of intensity of dark region and bright
region are calculated. If the sum of intensity on the dark region is greater
(or less) than the sum of intensity on the bright region by the threshold,
the region is determined as positive example. Otherwise, the region is
determined as negative example.

2.2.1 Haar-like Feature

We use three kinds of Haar feature as in figure 3.
Denote the feature set as ' = f;|i =1,...,N and cor-
responding feature values on images observation z as
V(z) =v(2)]i=1,...,N

The number of features even in a 24 by 24 image patch
are so huge to calculate them every time. However, we may
easily calculate them if we have an accumulated sum of in-
tensity from origin.

acclj

-3 )

x=0y=0

If a rectangle is defined by the region ( [zcft, Tright] X
[Yup, Ydown), the sum of intensity in the rectangle is as fol-
lowing,

Sacc(mrighta ydown) - Sacc(xlefta ydown)
_Sacc(xrighh yup) + Sacc(:rleft? yup)

2.2.2 Learning with AdaBoost

A Haar-like feature is a classifier because a feature can clas-
sify the whole group of images into positive image and neg-
ative ones. We use the Haar-like feature as a weak classifier
of AdaBoost algorithm, as the Viola and Jones did it for
face detection. Even if a feature satisfies a simple criteria
(the error ratio is less than a guess (0.5) ), we can use the



Figure 2: The optical flow is applied to the sequence of images. The black arrows represent the detected optical flows. White rectangles represent the

regions that are clustered with nearest neighbor.

feature as a weak classifier. If we have n week classifiers
those error ratio are eq, es, es, ..., €, respectively, the total
error ratio is bounded by following,

I/, (2 Ver(1—ey))

The total error ratio monotonically decreasing whenever we
add weak classifiers, because 24/¢;(1 — ¢;) is less than 1.
(To see the detail of proof, please refer [2]. To train the car
rear image, we use 334 positive images from two data sets
(126 images from ‘Cars 1999 (Rear) 2 dataset, CALTECH’
and 194 images from ‘CBCL CAR DATBASE, MIT’ and
other 14 images). The 334 positive images are carefully
aligned, because Haar-like feature is sensitive to the align-
ment. We use 500 negative images that are cropped from the
normal road such as road, curb, trees and buildings. Figure
4. The strong classifier (which is composed of weak classi-
fiers) is evaluated against training data set and test data set
(516 car images from ‘Cars 2001(Rear), CALTECH’). In

the training set, 88.63% of cars are correctly detected and
11.38% of cars are missed. In the test set, 90.50% of cars
are correctly detected and 9.50% of cars are missed. The
roc curves are shown in Figure 5.

2.3. Context of the Scene

We apply global context of the scene, because any local
detector (the optical flow or Haar-like feature detector) does
not count on the global scene. For example, the image de-
tected with Haar-like feature detector have many false pos-
itives in Figure 6. Prior information such as the viewpoint
(vanishing point and height from the road) and the size of
car (eg. 2m) is used to impose context. The information
can be used to verify the hypothesis generated from the de-
tectors. To simplify the process, we only consider the size
of rectangles (or window) based on the location in the im-
age. Intuitively the window should be large if the window
is located on the bottom of image. The window should be



Figure 4: Three of detected Haar-like features are shown at
the upper side of figure. Three of sample images are show at
the bottom of figure. The leftmost detected feature detects
the shadow of car. Other two features show the right edge
and left edge of cars.

ROC curve for training data ROC curve for test data

True Positive
True Positive

False Positive False Positive

Figure 5: Left graph shows the roc curve for the test data
set. Right graph shows the roc curve for the training data
set.

small if the window is near the vanishing point. Moreover,
there is no window for the car above the vanishing point.
The vanishing point (vp,, vp,) is found by Hough trans-
form. If the bottom of a rectangle is on the y = Yneighe.
the size of rectangle is proportional to the Yneight — VPy
(when yneight > vpy). We estimate the probability of size
of window based on the location as following,

P(Windowgi.e|x,y) = P(Windows;.c|y — vpy)

If the probability of a hypotheses (rectangle) is so small, we
reject the rectangles.

3. Technical Details

To find the location of the vehicles in the 3D space, we
also use other methods. We improve our tracking perfor-
mance with interpolation between the frames. The Kalman

Figure 6: The red rectangles are the regions that are detected
by the Haar-like feature detector. The detector finds the lo-
cation of cars in some case (true positive). However, there
are still many false positive rectangles. Some of small rect-
angles (false positive) can be rejected based on the global
context of scene, because we know that the viewpoint and
the size of car.

filter is used to smooth the tracking process. The rectangles
in the image are mapped onto the 3D geometry.

3.1. Filtering from Multiple Frames

Not only the optical flow but also Haar-like feature de-
tector has many false positives. If we reduce the number of
false positive, we also miss many true positives. We cannot
restrict number of false positives, because it is very danger-
ous to have many true negatives. To solve this problem, we
maintain the history of detections. We define a flag function
as following,

O(z,y); =1 x,yisin any detected rectangle at time t

O(z,y): =0 otherwise

At time step k, we can lookup the previous n frames. We
regard a point has high probability of detection, if a point
(x,y) is occupied by any rectangles recently. (n x f of n
frames).

P(cary |k, O()k =1 if Y O(z,y)i>nxf
i=k—n+1
P(cary 4k, 0(.))r =0 otherwise

Given the rectangle [z1, 22] X [y1, y2], we verify the rect-
angle as a car, if the number of points determined as a car
are greater than a certain ratio (eg. 80%). Otherwise, we
reject it. The white region in the Figure 8 shows the regions
that have P(cary y|.)r = 1.



dist = h * tan( 6+ n *A ) A
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Figure 7: Detected car is mapped onto the 3D space

3.2. The Kalman filter

The detectors do not always work well. That is, a car de-
tected in time ¢ is not be detected in time ¢ + 1. It is because
the Viola and Jones detector is sensitive to the alignment.
However we cannot examine all the possible windows, be-
cause it takes so long time to prevent realtime image pro-
cessing. Especially, the detector often misses small cars
(long distant one).

To solve this problem, we maintain the list of cars de-
tected at the previous time step. All the variables such as
location, size and velocity are maintained with those confi-
dences. If the detectors miss the region, we still generate the
region as a car with low confidence. If the detectors find the
region, we update the value of variables (location, size and
velocity) with high confidence. The Kalman filter is used in
this step. One of functions of Kalman filter is smoothing.
We have large noise in our image sequences because we are
moving while tracking other vehicles. Thus, we have many
variances not only in the input image but also in the outputs.
However, we can reduce the noise because we maintain the
variable based on the previous observation.

3.3. Projection into 3D Space

Finally, the detected and verified rectangles are projected
onto the 3D space as the Figure 7.

4. Conclusion

We detect two distinct types of vehicles with ‘optical
flow’” and ‘Haar-like feature detector’. We use two algo-
rithms because of the different features between the coming
traffics and the vehicles in the same direction. The ‘opti-
cal flow’ is appropriate for the coming traffics because they
have relatively salient motion. ‘Haar-like feature detector’
developed by Viola and Jones is promising to detect the cars
in the same direction.

To reduce a number of false positives, we consider the
scene context. If we find a vanishing point, we can easily
filter many false positives out. Moreover, we look up previ-
ous n frames to reduce the false positives out. If the area has

Content Time /frame(secs) Time /15 frame(secs)
Read a frame 0.021 0.312
Corner Detection 0.014 0.214
Hough Transform (Vanishing Point) 0.029 0.429
Optical Flow 0.012 0.134
Clustering Flows 0.001 0.008
Car Verification{Viola Jones) & Kalman Filtering 0.033 0.490
Write a frame 0.059 0.891
‘Total Time(inc. image read, write) 0.168 2.527
Total Time (exc. image read/ write) 0.088 1.324

Figure 9: A table that shows the time that takes to process
each process. The total time for a frame, it takes 0.168 secs.
For the 15 frames, it takes 2.527 secs. However, we may
achieve 0.088 secs for a frame, if exclude I/0 (the read/write
movie file). That takes 1.324 secs for the 15 frames.

no evidence detecting a vehicle, the rectangle (hypotheses)
will be rejected.

We maintain the list of cars detected at the previous step.
Whenever the detectors fail to find the probable vehicles,
we interpolate the candidate in the output. Kalman filter
maintain the value and confidence of variables.

We train the Haar-like feature with AdaBoost against
334 images brought from two data sets (1999 CALTECH,
CBCL MIT). The performance is evaluated against another
516 images (2001 CALTECH). We achieve the 88.63% of
accuracy against test set and 90.50% of accuracy against the
training set. Figure 5 shows the roc curve of two results.

The system is fast enough to process 11 frames per sec-
onds. Although Viola’s detector takes rather longer time, it
is scalable when the training data set increases.' In contrast,
template-based methods are not scalable to the number of
models.

Therefore, the contribution of this work is two things: (1)
building a realtime car detection system based on the Haar-
like feature detector (2) reducing a number of false positives
based on the temporal and spatial context.
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