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Abstract

Although nonparametric regression has traditionally focused on the estimation of

conditional mean functions, nonparametric estimation of conditional quantile functions is

often of substantial practical interest. We explore a class of quantile smoothing splines,

which are defined as solutions to a penalized quantile regression problem. We character-

ize solutions, as splines, i.e. piecewise polynomials, and discuss computation by stan-

dard linear programming techniques. For sufficiently small values of the bandwidth

parameter the solutions interpolate the specified quantiles of the response variable at the

distinct design points, while for sufficiently large bandwidths solutions specialize to the

linear regression quantile fit (Koenker and Bassett(1978)) to the observations. Because

the methods estimate conditional quantile functions they possess an inherent robustness

to extreme observations in the response variable. Remarkably, the entire path of solu-

tions, in the quantile parameter or the bandwidth parameter, may be computed efficiently

by parametric linear programming methods. Finally we note that the approach may be

easily adapted to impose monotonicity, convexity, or other constraints on the fitted func-

tion. Two examples are provided to illustrate the use of the proposed methods.

KEYWORDS: Nonparametric regression, quantiles, splines, change-points, smoothing,

bandwidth selection.





1. INTRODUCTION

Several authors have recently proposed methods for nonparametric estimation of condi-

tional quantile functions: Truong (1989) following the pioneering work of Stone (1977) on

nearest neighbor methods, Chaudhuri(1991), Samanta (1989) and Antoch and Janssen (1989)

using kernel methods, and White (1991) employing neural networks. Hendricks and Koenker

(1992) discuss regression spline models and apply them to electricity demand data. Cox and

Jones in the discussion of Cole(1988), reviving a suggestion of Bloomfield and Steiger (1983),

have recently proposed estimating quantile smoothing splines which minimize

£px(yi-*te)) + xjcg
w
w)2

<fe

where px (u) = u(z- I(u < 0)) is the check function of Koenker and Bassett (1978). Here the

parameter le [0, 1] controls the quantile of interest, while X e R+ controls the smoothness of

the resulting cubic spline, thus generalizing the extensive literature on classical least-squares

smoothing splines pioneered by Wahba(1990). This is an intriguing idea, and has also been men-

tioned, for example, in Cox(1983), Eubank (1988) and Utreras (1981) in the median

pi/2(w ) = ^ \
u

I
case - However, the resulting quadratic program poses some serious computa-

tional obstacles. A recent paper by Bosch, Ye and Woodworth(1993) discusses an interior point

algorithm for this problem. Obviously the computational virtues of the piecewise linear form of

the first term of the objective function are sacrificed by the quadratic fonn of the smoothness

penalty.

One is thus naturally led to ask: "Why not replace (g"(x))~ in the penalty by \g"(x)\V
The median special case of this problem has been studied in a remarkable paper by Schuette

(1978) in the actuarial literature. We will show, expanding on Schuette's discrete version of the

problem using finite differences, that minimizing (1.1) retains the linear programming form of

the parametric version of the quantile regression problem and yields solutions which are easy to

compute. Solutions with this L \ fonn of the roughness penalty are linear splines and therefore

provide a natural, automatic approach to estimating certain piece-wise linear change-point

models. An application of this sort to the relationship between maximal running speed and body

mass of terrestrial mammals is provided in Section 3.

2. QUANTILE SMOOTHING SPLINES

2.1. The Li Roughness Penalty

. In prior work (Koenker, Ng, and Portnoy(1992)), we have considered the problem of

minimizing

^xb] = £pt(yi-*Cfi)) + A.f
1

I^W|£fc (i.i)

/=i

with 0=yq<^i< • • • <xn <xn+ \=l, over the (Sobolev) space W\ of continuous functions on [0, 1]



with absolutely continuous first derivative and absolutely integrable second derivative. However,

the argument given there that the solution to (1.1) is a parabolic spline, i.e. piecewise quadratic,

is incorrect. Indeed the problem expressed in (1.1) is ill-posed since the infimum of R x>\ is not

attained by an element of W\ . The situation can be rectified by reformulating the problem some-

what adopting the approach of Fisher and Jerome (1975) and Pinkus (1988) who consider closely

related problems of optimal interpolation.

We should begin by briefly reviewing some results on optimal interpolation. For an integer

k>2, andp e [1, «), let

l

M\P = (j\f(x)\ p )
Vp

and Wp denote the Sobolev space of real functions on [0, 1] with k - 1 absolutely continuous

derivatives and k
th

derivative existing almost everywhere as a function in L
p [0, 1]. We wish to

consider the problem of finding the smoothest interpolant of the points {(*,-, y,), i == 1, • • • , n)

in the sense of solving

mn\\g ik%:geWk
p,g(Xi)=yh i=l, •••,*} (1.2)

The case p = 2 is best known, yielding splines of degree 2k- 1 with knots at the points

{*,-,/ = 1, • • •
, n). We are primarily interested in the case of p = 1 andp = «>, which have been

treated by deBoor (1976), Fisher and Jerome (1975) and Pinkus (1988).

Forp = 1, apparently Fisher and Jerome (1975) were the first to observe that (1.2) has no

solution for g € W\. They showed that if W\ is expanded to include functions whose k
th

derivatives are measures, the expanded problem does have a solution s, as a spline of degree

k — 1, that the total variation of its (k - l)
th

derivative, VC?^
-1

^), coincides with the extremal

value of (1.2), and that the measure s^ is concentrated on n, or fewer, points. Pinkus (1988)

has refined this characterization somewhat and has provided considerable further generalization.

To bridge the gap between the smoothing problem posed in (1.1) and the optimal interpola-

tion problem (1.2), we may simply observe that any solution, g, to the former must also solve the

latter in the sense that g must interpolate itself at the observed {xt } and therefore must minimize

the roughness penalty, subject to a given fidelity constraint. Thus to determine the form of the

solution to the smoothing problem it suffices to consider the interpolation problem.

It remains to consider the question of knot selection for the p = 1 case. Pinkus (1988),

under somewhat restrictive conditions on the y/'s, notes that for k = 2, the case of primary

interest here, the knots of the optimal spline coincide with the observed JC/. That this is true for

any configuration of v,'s can be argued as follows. Let / be any interpolator of the points

{(*;> yi)' 1 = 1, - •
, n) with an absolutely continuous first derivative. Recall, e.g. Natanson

(1974, p. 259), that the total variation of an absolutely continuous function is the integral of the

absolute value of its derivative, thus we may write,



v(f)=j\r\x)\dx

Now, by the mean value theorem, let w,- e (xit jtJ+i) be such that f{u{) - 0>;+i -yi)/(xi+ i
-x{)

fori = 1, • • •
, aj-1. Then,

v (f) * Z; IJ^Vm* I * 2 Ifim + 1 )
- /*(«*)

I
= ^ (h

where /is the piecewise linear interpolator with knots at the x
%

. Finally, note for any continuous

piecewise linear g there exists a sequence of functions [gn ] with absolutely continuous first

derivative such that

lim V(gn ') = V(g')

and thus by the foregoing argument /minimizes V(g) for all such g.

Thus, following Pinkus (1988) if we expand our original space slightly from the Sobolev

space

1W l
= {g:g(x)=a + a

l
x +

jQ
(x-y)+ h(y)dy y h e L u a

{
e R, i =0,1}

to

U 2 = {g:g(x) = a +a
l
x+^(x-y)+ dii(y), V

r fti)<oo 1 fl/ eR,f = 0,l}

and replace the L
i
penalty on g" with a total variation of penalty on g' we obtain,

Theorem 1. The function g e U~ minimizing £Pt(v/ -gQr,)) + XV (g') is a linear spline with

knots at the points*,, i = 1, ••-,«.

Having established the form of the solution, it is straightforward to develop an algorithm to

compute g. We may write

g(x) = a.i + f>j(x-Xi) xe[Xi,xi+ i) i = 0, — , /i

and by the continuity of g

g(Xi-) = g(Xi+) i = l, ••-,".

Thus writing /j
(
=x/+1 -x,-, we have (3, = (a/+1 - a,- )//?;. The penalty may thus be expressed as

V(g*) = "£
I P/ + i

- ft 1= X I
(a/+2-a(+1 )//2/+1 - (a/+1 - a,)//*,

|

i=i i=i

Thus parameterizing g by the ^-vector a = (g (*;)), we may write the original problem as a linear



program,

n n-\

min 2 Px(y/ - a/) + A. J I
d/a

I

where df/ = (0, • • •
, 0, h] 1

, -(/ij+i +AJ
1
). ^J+i' 0» " * » 0), 7 = 1 ,,*'*,«— 1 . In the impor-

tant special (median) case of x = 1/2, we can view this as simple data augmentation and therefore

as an ordinary least absolute deviation (LAD) regression problem. For general x, further

modifications described in detail in Koenker and Ng (1993) and implemented for "S" (Becker,

Chambers and Wilks (1988)) are conceptually straightforward. Since we have n free parameters,

a, and In - 1 pseudo-observations, solutions must have n zero pseudo residuals by complemen-

tary slackness. And in our case these zeros correspond to either (i) exact interpolation of obser-

vations, so a, =yi, or (ii) linearity of g at an internal knot, i.e., (3;+i = (3/ for some index i.

Obviously, the parameter X controls comparative "advantage" of these two alternative means of

reducing the objective function. When X is sufficiently large all the P, will be equal and the

solution will be the bivariate linear quantile regression fit as in Koenker and Bassett (1978).

When X is sufficiently small, all n observations will be interpolated when the design points are

unique, otherwise the xth quantiles at each distinct design point are interpolated.

2.2. Bandwidth Choice

As in any smoothing problem, choice of "bandwidth", here represented by the parameter X,

is critical. For quantile smoothing splines, the problem of computing a family of solutions for

various X is greatly eased by the fact that the problem is a parametric linear program in the

parameter X. An important implication of this fact is that we may initially solve the much
smaller linear quantile regression problem corresponding to X = »> and gradually relax the rough-

ness penalty with a sequence of simplex pivots, thus avoiding a direct solution of a potentially

rather large problem. It might be noted that // would need to be quite large by the usual standards

of applied statistics in order that the resulting problem would actually loom large by the stan-

dards of contemporary linear programming.

Each transition to a new solution of the parametric linear program in X involves a single

simplex pivot of an extremely sparse tableau, and hence solving for a broad range of X is quite

efficient. The situation is quite analogous to the problem of solving for the entire family of

quantile regression solutions in the parameter x, described originally in Bassett and Koenker

(1982), and described in greater detail in Koenker and d'Orey(1987).

An interesting, and important aspect of the way that solutions depend upon the penalty

parameter X involves the number of interpolated points. In the classical L 2 smoothing spline

literature much has been made of the "effective dimensionality" or "degrees of freedom" of the

estimated curves corresponding to various X. Such measures are usually based on the trace of

various quasi-projection matrices in the least-squares theory. See, for example, Hastie and

Tibshirani (1990) for a cogent discussion. For the quantile smoothing spline the connection is

more direct in the sense that there is an explicit trade-off between the number of interpolated

points and the number of linear segments. Since "reasonable" smoothing suggests that the



number of interpolated points is small relative to n, it is probably sensible to start the parametric

programming at the linear quantile regression solution rather than at A. = 0. If the design is in

"general position" so no two observations share the same design point, there must be at least 2

and at most n interpolated ;y,'s. Call this number p\. Clearly, px is a plausible measure of the

effective dimension of the fitted model with penalty parameter X y and n-p\ + \, which

corresponds to the number of linear segments in the fitted function, is a plausible measure of the

degrees of freedom of the fit. Such decompositions may be used in conjunction with the func-

tion R [g] itself to implement data-driven bandwidth choice. The criterion

SIC (pi) = log (n~
l

£pT (y/-5(x/)) + '/2A2"
1

p x log*,

1=1

which may be interpreted as the Schwarz(1978) criterion for quantile smoothing spline problem

seems to perform well in some limited applications. Machado(1993) considers similar criteria

for parametric quantile regression and more general M-estimators of regression.

2.3. The Loo Penalty

Replacing the L j roughness penalty with the L M penalty, we have

X

Again we may focus on the corresponding interpolation problem which has an extensive litera-

ture. Favard (1940) was apparently the first to show that the problem of minimizing ||g* '|U

over

{g:g
(k) <~, g(Xi)=g (Xi) i = l, ••-,«}

for fixed function go, had a solution which was a polynomial spline of degree fc, with k^ deriva-

tive zero outside [*!,*„] and less than n -k knots all simple inside {x\,xn ). Later Karlin

(1975), deBoor (1976) and Fisher and Jerome (1975) clarified the critical role of perfect splines,

i.e. splines of degree k, with \g^ '
|
constant as solutions to this "optimal interpolation" prob-

lem. As the discussion in Powell (1981, Chapters 23-24, see especially Figure 23.1) makes evi-

dent the perfect spline solutions may not be terribly appealing. They are obviously required to be

"uniformly rough", an undesirable feature unless the target function has this property. Further-

more, the knot locations of the optimal perfect spline depend upon the configuration of interpo-

lated observations, a fact which greatly complicates their computation. Nevertheless we believe

it is still interesting and worthwhile to consider the LM penalty and to this end we propose

minimizing over quadratic splines with knots at the observed x,. Now

g(x) = a, + P/Cx
-

xi) + Ji(x -

x

t )

2 x e [x
; , xi+l ) i = 0, • • , n

This formulation allows us to rewrite the penalty as

|ls"||~=2max |y,|.
i

Again we can formulate the problem as a linear program, but now the penalty appears in the



role of linear inequality constraints. As above let h\ =jc/+1 — jc/, i

continuity constraints of the quadratic spline we have

jihf + frht + a,- = a/+1

Ijihi + p,- = p/+1

= 1, , n-\. From the

for i = 1, ..., /i-l, with po = Pi and oco = oq . We require that the quadratic spline be linear in the

exterior intervals [0, X\) and (xn , 1]. Obviously neither the roughness penalty nor the fidelity

contribution are affected by this requirement, which gives us Yo =yn = 0. Eliminating the p's

yields

Jihi+yi+ ihi+l =
ai+2 ~ a

/ + l

hi+

a,-+i - a,

hi

i = 1 , • • • , a -2

so we have 3(« + 1) parameters, and 2{n + 1) linear constraints. Writing = (ft, ai,

as the (ai + 1) vector of free parameters we have

, a„)

where Y= (Yi,
• ' •

, yn -\)', K isa.(n - 1) x (n - 1) banded matrix with

k
lf !

= 1, fcy
t y

= /7
y
-, A:

y; ; _i
= /?

; _! 7 = 2, '•,/! -1

and B is a banded (/i - 1) x (/i + 1) matrix with

bn ..ln+l =h~li j = 2, • • •
, n-1.

Now introducing the parameter a to represent the bound on g", we may write the problem as

min {Spt(y/--v I
-'e) + A.a, Q6g [-a, a]

-" 1

}.

where X = [0 : /„]. Thus we are once again faced with a linear program, a modified version of

the Bartels and Conn (1980) algorithm for linear, inequality-constrained LAD problems has been

implemented for S.

The L« roughness penalty may be viewed as uniform prior on g". Each X implies a

corresponding upper bound on the magnitude ||#"|L- This is quite different than the L\ case.

Active constraints now correspond not to consecutive segments having the same slope as in the

L\ case, but to segments on which |Y/ 1 = o\ i.e. where g" hits the permissible upper bound. Of
course in the limiting case as X -» «> so a —» 0, the solution is, as with the L

{
penalty, the linear

x regression quantile estimate. In contrast to the piecewise linear form for g with a few

"elbows" where g' jumps which characterizes the solution for the L
{
penalty, the L„ penalty

enforces a uniform bound on g" and this straightens the elbows and introduces modest curvature

over longer segments to compensate. The LM solution seems visually much smoother than the

piecewise linear L \ solution. Which seems preferable is obviously application dependent. The



comments on bandwidth selection above apply also to the L«, case.

2.4. Extensions

Clearly there is considerable scope for other forms of the roughness penalty. We have

focused on the L \ and LM penalties on g", but other L
p
norms are possible as are other differen-

tial operators. Indeed it might be interesting to explore the estimation of conditional mean
models using the L\ and £«, penalties, if efficient algorithms for the resulting quadratic pro-

gramming problems could be developed. The simple forms considered above have the virtue

that their linear programming formulation makes efficient computation immediately practical.

In many practical applications there will often be the question of extending these methods

to multivariate settings. The additive spline models of Hastie and Tibshirani (1990) and others

naturally suggest themselves. Some preliminary plots for bivariate x look quite promising.

Clearly the nonlinear character of the present smoothers vitiate the attractive iterative

"backfitting" algorithms available in the /
2 -case. But feasible estimators may- still be possible

using a limited number of simplex pivots from an initial linear (in covariates) quantile function

estimate.

There are a number of intriguing extensions incorporating further constraints. Monotoni-

city and convexity of the fitted function g may be readily imposed by simply imposing further

linear inequality constraints on the parameters of the problem. While adding such inequality

constraints to the corresponding 1 2 problem results in a significant increase in complexity,

adding linear inequality constraints to the quantile smoothing spline problems does not alter the

fundamental nature of the optimization problem to be solved.

Rates of convergence for these splines undoubtedly parallel classical results for least-

squares smoothing splines. For the case of regression splines (i.e., for unconstrained p-

dimensional classes of B-splines, with p -pn —> 00), He and Shi (1992) show that the Li con-

vergence rate is n~ . We hope to report further on the asymptotic behavior of quantile smooth-

ing splines in future work.

3. SOME EXAMPLES AND ILLUSTRATIONS

Our first example, based on Chappell (1989), explores the relationship between maximal

running speed and body mass of terrestrial mammals. The data, collected and described in detail

by Garland (1983) is plotted in Figure 3.1; 107 species are represented. Two groups are

identified for special treatment by Chappell: "hoppers" which, like the kangaroo, ambulate by

hopping and are labeled by the plotting character h in the figure, and "specialized", labeled S,

which like the hippopotamus, the porcupine, and man "were judged unsuitable for the inclusion

in analyses on account of lifestyles in which speed does not figure as an important factor." For

reference we have included Chappell's quadratic, and single-changepoint, log linear models.

Both are estimated by least-squares, both omit the S observations and fit an additive shift effect

for the "hoppers".

In Figure 3.2 we illustrate two cubic smoothing splines estimated by minimizing the penal-

ized least squares criterion



The solid line is the tit when the entire sample is included, the dotted line excludes the special

animals labeled S. In both cases X is chosen by generalized cross-validation as described, for

example, in Craven and Wahba (1979). One can immediately see the lack of robustness of the

least squares splines to the slower special animals.

Next we fit the entire family of median smoothing splines using the L
i
penalty. There are

182 distinct curves corresponding to A.'s ranging from to <». In Figure 3.3 we plot 3 of these

curves for X = {1.01, 12.23, 41.16}. The dimension of the fitted functions represented by the

number of interpolated points is given in the legend. Like the least squares spline in the previous

figure, these estimates are based on all the observations. However, unlike the least squares

splines which estimate the conditional mean function, these median splines have an inherent

robustness to outliers in the vertical direction. As in parametric quantile regression, points may
be moved up or down in the plot without effecting the fitted function so long as they do not cross

it. The property follows immediately from the fact that the subgradient of the objective function

depends upon the yt
only through the signs of the residuals not their magnitude. See Koenker

and Bassett (1978, Thm 3.5).

Using the SIC criterion to choose X selects the solid line with a single break. This fit is

remarkably similar to Chappell's preferred single changepoint model, particularly in view of the

fact that we have done none of the preliminary data editing which seems essential to the success

of the least squares based methods. The simple piecewise linear form of the L \ splines make
them a natural technique for estimating linear changepoint models.

In Figure 3.4 we illustrate several distinct quantile smoothing splines for the same data,

again based on the L
\

penalty. Here the upper quantiles are of particular interest since they

represent the envelope of biological feasibility. In this figure we have again chosen X for the

median and 90 th
percentile by the SIC criterion; however, SIC produces a rather rough fit with

p(X) = 8 for the 25 th
percentile and p(X) = 7 for the 75

th
. So we have selected somewhat larger

Vs for these curves to achieve a more consistent degree of smoothness. Even so, the viewer will

note that the 75
th

and 90
th

percentile curves cross in Figure 3.4 indicating, perhaps, that the 75
th

may still be somewhat oversmoothed, or simply that there is not enough data to distinguish these

two quantiles for the larger animals.

In Figure 3.5 we illustrate the same four quantiles this time employing the L M penalty.

Now the solutions are quadratic splines and visually smoother than the linear splines produced

by the L
i
penalty. Nevertheless the qualitative features of the estimated curves are quite similar.

Again, SIC was quite successful except at the .25 quantile. In this case we again increased X to

achieve a more consistent degree of smoothness.

Our second example is the well-known motorcycle data which has been widely analysed in

the nonparametric regression literature. The data, which appear in Hiirdle (1990), are

accelerometer readings taken through time from an experiment on the efficacy of motorcycle

crash helmets. The .r-coordinate is the time in milliseconds after a simulated impact, and the



response variable y is the acceleration (in g) of the head of the test dummy. In Figure 3.6 we
illustrate the classical smoothing spline estimate, with GCV X, as well as the L\ median

smoothing spline based on SIC selected X. An interesting feature of the piecewise linear L
i

esti-

mate is that unlike other estimates, it does not suggest that the dummy anticipates the crash,

accelerating its head prior to the initial deceleration.

In Figure 3.7 and 3.8 we illustrate several quantiles for the motorcycle data using both the

L\ and L M penalties. We might observe that the piecewise linear L \ estimate are very similar to

the L
i
-penalty estimates using quadratic splines which have appeared in our previous work. For

reasonable X the quadratic splines were also essentially piecewise linear with brief quadratic seg-

ments to connect the linear stretches. In Figure 3.7, the three estimated quantile functions cross

at the penultimate point. This is apparently due to the wide separation of the last design point

from the others, a fact that has prompted other investigators to delete it from their plots.
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