


university of
illinois library

at urbana-champaign
BOOKSTACKS



CENTRAL CIRCULATION BOOKSTACKS

The person charging this matenal^

for disciplinary action and may result

SEP 3 1997

Apr 6 1999

When renewing by phone, write new due date below

previous due date.



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/testsoflinearhyp92169gute



Faculty Working Paper 92-0169

:TX
RT.85

Tests of Linear Hypotheses Based

on Regression Rank Scores

C. Gutenbrunner
Pbilipps Universitdt

Marburg, Germany

The Ut>rary of the

J. Jure&zovd
Charles University

Prague, Czechoslovakia

IL Koenker
University of Illinois

Urbana-Cbampaign, IL

S. Portnoy
University of Illinois

Urbana-Cbampaign, IL

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign





BEBR
FACULTY WORKING PAPER NO. 92-0169

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

October 1992

Tests of Linear Hypotheses Based
on Regression Rank Scores

C. Gutenbrunner
Philipps Universitat

J. Jureckova

Charles University

R. Koenker
University of Illinois

S. Portnoy

University of Illinois





Tests of Linear Hypotheses

Based on Regression Rank Scores

C. Gutenbrunner

J. Jureckovaf
R. Koenker^
S. Portnoyt

Dedicated to the memory of Jaroslav Hajek

Philipps Universitat, Marburg, Germany
fCharles University, Prague, Czechoslovakia

^University of Illinois at Urbana-Champaign, USA

September 1992

Abstract

We propose a general class of asymptotically distribution-free tests of a

linear hypothesis in the linear regression model. The tests are based on

regression rank scores, recently introduced by Gutenbrunner and
Jureckova (1990) as dual variables to the regression quantiles of Koenker
and Bassett (1978). Their properties are analogous to those of the

corresponding rank tests in location model. Unlike the other regression

tests based on aligned rank statistics, however, our tests do not require

preliminary estimation of nuisance parameters, indeed they are invariant

with respect to a regression shift of the nuisance parameters.

AMS 1980 subject classifications: 62G10, 62J05
Key words and phrases: Ranks, Regression quantiles, Regression rank scores

The work was partially supported by NSF grants 88-02555 and 89-22472 to S.
Portnoy and R. Koenker and by support from the Australian National University to J.

Jureckova and R. Koenker.





1. Introduction

Several authors including Koul (1970), Puri and Sen (1985) and Adichie (1978)

have developed asymptotically distribution-free tests of linear hypotheses for the linear

regression model based upon aligned rank statistics. Excellent reviews of these results

including extensions to multivariate models may be found in Puri and Sen (1985) and

the survey paper of Adichie (1984). The hypothesis under consideration typically

involves nuisance parameters which require preliminary estimation; the aligned (or

signed) rank statistics are then based on residuals from the preliminary estimate. Alter-

native approaches to inference based on rank estimation have been considered by

McKean and Hettmansperger(1978), Aubuchon and Hettmansperger (1988) and Draper

(1988) among others.

A completely new approach to the construction of rank statistics for the linear

model has recently been introduced by Gutenbrunner and Jureckova (1992). Their

approach is based on the dual solutions to the regression quantile statistics of Koenker

and Bassett (1978). These regression rank scores represent a natural extension of the

"location rank scores" introduced by Hajek and Sidak (1967, Section V.3.5), which play a

fundemental role in the classical theory of rank statistics. In this paper we consider tests

of a general linear hypothesis for the linear regression model based upon regression rank

scores. These tests have the advantages of more familiar rank tests: they are robust to

outliers in the response variable and they are asymptotically distribution free in the sense

that no nuisance parameter depending on the error distribution need be estimated in order

to compute the test statistic. Furthermore, they are considerably simpler than many of

the proposed aligned rank tests which require preliminary estimation of the linear model

by computationally demanding rank estimation methods. The robustness of the proposed

tests and the sensitivity of the aligned rank procedures to response outliers is illustrated

in the sensitivity analysis of the example discussed in Section 2.

In the classical linear model,

Y = Xp + E, (1.1)

the vector (3(a) = (fj^a),..., pp (a))' e R^ of ath regression quantiles is any solution of

the problem

minXPaQ', -xu't), t € RP
(1.2)

where

pa(«)= l"l {(l-a)/[w<0] + a/[w>0]}, ueR 1

. (1.3)

Least absolute error regression corresponds to the median case with a = Vi. In the one-

sample location model, with X = 1„, solutions to (1.2) are the ordinary sample quantiles:

when na is an integer we have an interval of solutions between two adjacent order statis-

tics. Computation of the regression quantiles is greatly facilitated by expressing (1.2) as

the linear program

al„'u
+ + (l-a)l„'iT : = min

X[3 + u
+ -u- = Y (1.4)



$eRP, u
+

, ueR?
and 1„ = (1,..., 1)' g R", with < a < 1. Even in this form, the problem of finding all

the regression quantile solutions may appear computationally demanding, since there

would appear to be a distinct problem to solve for each ae(0, 1). Fortunately, there are

only a few distinct solutions. In the location model we know, of course, that there are at

most n distinct quantiles. In regression, Portnoy(1991) has shown that the number of dis-

tinct solutions to (1.2) is Op (n\ogn). Finding all the regression quantiles is a straightfor-

ward exercise in parametric linear programming. From any given solution for fixed a we
may compute the interval containing a for which is solution remains optimal, and one

simplex pivot brings us to a new solution at either endpoint of the interval. Proceeding in

this way we may compute the entire path (5() which is a piecewise constant function

from [0, 1] to Rp . Detailed descriptions of algorithms to compute the regression quantiles

may be found in Koenker and d'Orey(1990), and Osborne(1992). Finite-sample as well

as asymptotic properties of (3(a) are studied in Koenker and Bassett (1978), Ruppert and

Carroll (1980), Jureckova (1984), Gutenbrunner (1986), Koenker and Portnoy (1987),

Gutenbrunner and Jureckova (1992), and Portnoy(1991b).

The regression rank scores introduced in Gutenbrunner and Jureckova (1992) arise

as a /?-vector a„(a) = (a„i(a),..., ^(a))' of solutions to the dual form of the linear pro-

gram required to compute the regression quantiles. The formal dual program to (1.4) can

be written in the form

Y'a(cc) : = max

X'a(a) = (l-a)X'ln (1.5)

a(a)e [0, If, 0<a< 1

As shown in Gutenbrunner and Jureckova (1992), many aspects of the duality of order

statistics and ranks in the location model generalize naturally to the linear model through

(1.4) and (1.5). Moreover, as pointed out there, a is regression invariant with respect to

Xj , in the sense that a(a) is unchanged if Y is transformed to Y + Xtf for any ye Rp
.

To motivate our approach, consider (a„(a), < a < 1 } in the location model with

X = 1„. In this case, am (a) specializes to

1 if cc<(fl,-l)/Ai

Rj-an if (/?,— l)/w < a </?,/« (1.6)

if RJn < a

^nt (a) = 2Ln (Ri, a)=<

where R; is the rank of F, among Y
{
,..., Yn . The function

<£iU-> °0» y=l,..., fl. 0<cc< 1, coincides exactly with that introduced in Hajek and

Sidak (1967, Section V.3.5). Under the general model (1.1), both the finite-sample and

asymptotic properties of the regression rank scores and of the process

(a„(a), < a < 1 } are described in the next section. The regression rank score process

may be efficiently computed by standard parametric linear programming techniques,

essentially as a byproduct of the regression quantile computation requiring no additional

computational effort only some additional storage. See Koenker and d'Orey(1990) for

algorithmic details.



The formal duality between (3(a) and a(a) implies that for /=!, ..., n

a„,-(a)=<

I if
X
r

i>£jfvPy(0)
7=1

P . (1.7)

if Yi<^Xifij(a)
y=i

while the components of a„(a) corresponding to [i | y, = x,'p(a)} are determined by

the equality constraints of (1.5). Thus, as in the location model, the regression rankscore

for observation i is one while v, is above the ath quantile regression plane, and zero

when v, falls below this plane, and taking an intermediate value while v, falls on the ath

plane. Integrating the regression rankscore function for each observation over [0,1]

yields a vector of (Wilcoxon) ranks: observations falling "below" most of the others

receiving small ranks, while those falling "above" the others, and thus having rankscore

one over a wide interval, receive large ranks. This observation is completely transparent

in the location model where "above" and "below" have an obvious interpretation. In

regression, the interpretation of these terms relies on the optimization problem defining

the regression quantiles. The resulting rank scores illustrated, for example, in Figure 6.1,

are, we believe, a useful graphical diagnostic in linear regression in addition to their role

in formal hypothesis testing.

The next section of the paper surveys our results, establishes some notation, and

provides an illustrative example. Section 3 develops some theory of the regression rank

score process. Section 4 treats the theory of simple linear rank statistics based on this

process, and Section 5 contains a formal treatment of the proposed tests.

2. Notation and preliminary considerations

We will partition the classical linear regression model

Y = XP + E (2.1)

as

Y = Xip! +X2 p\ + E (2.2)

where Pi and P2 are P~ and <7 -dimensional parameters, X = X„ is a known, nx(p+q)

design matrix with rows x„/ = x,-' = (xj,', x2/
-') e R p+q

, /=1,..., n . We will assume

throughout that x (1
= 1 for i - \,...,n. Y is a vector of observations and E is an nx\

vector of i.i.d. errors with common distribution function F. As in the familiar two-

sample rank test, our test statistic is shift-invariant and hence independent of location.

Thus like other rank tests, hypotheses on the intercept cannot be tested. This is immedi-

ately apparent from the regression invariance of the test statistic noted above. The pre-

cise form of F need not be known but we shall generally assume that F has an absolutely

continuous density / on (A, B) where -00 <A = sup{;c: F(x) = 0} and

+<»>6 = mf{x: F (x) = 1 }. Moreover, we shall impose some conditions on the tails of/
assuming, among other conditions, that/monotonically decreases to when x —> A + , or

x->B- Define D„ =/i"
1 X

1
'X

1 ,



Hi =X 1
(X

1
'X

1
)-%' and Q„ = «" 1 (X2

- X2 )'(X2 - X2 ) (2.3)

with X2 = H t
X2 being the projection of X2 on the space spanned by the columns of Xj.

We shall also assume

lim Dn = D, lim Qn = Q (2 4)

where D and Q are positive definite (pxp) and (qxq) matrices, respectively.

We are interested in testing the hypothesis

H : (32 = 0, p! unspecified (2.5)

versus the Pitman (local) alternatives

Hn : $2n=n-y2% (2.6)

with (3q being a fixed vector in Rg
.

As in the classical theory of rank tests, we shall consider a score-function

9 : (0, 1) —» R which is nondecreasing and square- integrable on (0, 1). We may then

construct scores based on the regression rankscore process following Hajek and Sidak,

(1967) as,

1

Ki =
-J y(t)dani (t), i=l,..., n. (2.7)

Defining

Sn =/»-1/2(Xfl2 -Xn2)'bfl (2.8)

where b„ = (bn \ t
..., bnn )\ we propose the following statistic for testing Hq against Hn :

Tn =Sn'Q.n
l $n IA\v) (2-9)

where

1 1

A 2
(q>) = J (9(0

-<?)
2
dt, 9 -

J <p(04 (2.10)

and with Q„ defined as in (2.3). An important feature of the test statistic Tn is that it

requires no estimation of nuisance parameters, since the functional A (9) depends only on

the score function and not on (the unknown) F. This is familiar from the theory of rank

tests, but stands in sharp contrast with other methods of testing in the linear model where

typically some estimation of a scale parameter of F is required to compute the test statis-

tic. See for example the discussion in Aubuchon and Hettmansperger (1988) and Draper

(1988).

We shall show in Section 5, that the asymptotic distribution of Tn under Hq is cen-

tral X" w i tn Q degrees of freedom while under Hn it is noncentral x~ w^h Q degrees of

freedom and noncentrality parameter

ri
2 = [<y2 (<p, F) I A 2

(9)]po'QPo (2-1 1)

where



1

yiy,F) = -j(p(t)df(F-
l
(t)). (2.12)

o

Like A, y is also familiar from the classical theory of rank tests. The test statistic Tn
is first-order asymptotically distribution free in the sense that the first-order term in its

asymptotic representation is exactly distribution free, as follows from (4.2). Moreover,

it follows from (2.11) that the Pitman efficiency of the test based on Tn with respect to

the classical F test of Hq coincides with that of the two-sample rank test of shift in loca-

tion with respect to the f-test. For/unimodal, we obtain an asymptotically optimal test

if we take

(P(0 = cp/<0 = - /y(F
,

(0)
, < r < 1. (2.13)

Thus for Wilcoxon scores (see below) the asymptotic relative efficiency of the test

based on Tn relative to the classical F test is 3/JC = .955 at the normal distribution and is

bounded below by .864 for all F. When F is heavy tailed this asymptotic efficiency is

generally greater than one, and can in fact be unbounded. For normal (van der Waerden)

scores ((p(w) =
_1

(«)) the situation is even more striking. Here the test based on Tn has

asymptotic efficiency greater than one, relative to the classical F test, for all symmetric

F, attaining one at the normal distribution. See e.g. Lehmann (1959, p. 239), and Leh-

mann(1983,pp 383-87).

Let us now examine more closely the scores (2.7), which can be written as

l

ki =
-J

q<t)ani'(t)dt i=l,..., n (2.14)

o

where the functions ani'(t) = dant (t)ldt are piecewise constant on [0,1]. The piecewise

linearity of the regression rank scores follows immediately from the linear programming

formulation (1.5) of the dual, greatly simplifying the computation in (2.21). In the loca-

tion model, using (2.13) this reduces to the well-known Hajek and Sidak (1967) scores

bni- n
J

ty(t)dt, i = \,..., n

There are three typical choices of (p:

(i) Wilcoxon scores: q>(t) = t-\/2, < t < 1. The scores are

K = -\{t - l/2)da,(r) = \li{t)dt - 1/2 while A 2
(cp) = 1/12, and 7(9, F) = jf

2
(x)dx.

Wilcoxon scores are optimal when /is the logistic distribution.

(ii) Normal (van der Waerden) scores: (p(f) = O-1
(r), < t < 1, O being the d.f. of

standard normal distribution. Here A 2
((p) = 1 and y((p, F) = jf(F~

l

(Q>(x)))dx. These

scores are asymptotically optimal when /is normal.

(iii) Median (sign) scores: cp(r) = Visignit-Vz), 0<t< 1, then (2.7) leads to the

form b„i = aw ('/2) - Vi which is V2 if the tth l\ residual is positive and -Vi if it is

negative, and between —Yi and Vi otherwise.



Figure 2.

1

Regression Rank Scores for Tobacco Data
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Figure 2.

1

(continued)
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Figure 2.2

Sensitivity Curves for Rank Tests
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REMARK. Using the standard reduction to canonical form e.g. Scheffe (1959, Section

2.6) or Amemiya (1985, Section 1.4.2), we may consider a more general form of the

linear hypothesis

R'P = r e Ri

where R is a (p + q) x q matrix of rank q < p. Let \ be a (p + q) x p matrix such that

A = [V:R]' is nonsingular and R'V = 0. Set y= A(3 and Z = XA_1
. Partitioning

Y= [Yi' , TfeT where Yi = V'j3 and y2 = R'(3, under the hypothesis (2.22) we have

Y - XR(R'R)- 1
r = XVCV'V)" 1

Yi + E.

Thus, in view of the equivariance of regression quantises, see Koenker and Bassett(1978),

Theorem 3.2, we may define Y = Y - XR(R ,

RJ
_1

r, Xi = XV(V'V)
_1

, X2 = XR(R'R) 1

,

and proceed as previously discussed with (Y, Xj, X2 ) playing the roles of (Y, Xj, X2 ).

By this device the tests described above and detailed in Section 5 below may be extended

to a wide range of applications including, for example, the hypotheses of parallelism and

coincidence of regression lines discussed by Adichie (1984) and others.

To illustrate the tests proposed above we consider briefly an example taken from

Adichie (1984, Example 3) dealing with the combustion of tobacco. The log of the leaf

burn (in seconds) of 30 batches of tobacco is thought to depend upon the percent compo-

sition of nitrogen, chlorine, and potassium. Adichie suggests testing the potassium effect

and describes an aligned rank version of the test. We are unable to reproduce some
details of his calculations, however, using his approach we get least squares estimates of

the nitrogen and chlorine effects of -.529 and -.290 with an intercept of 2.653. With

these preliminary estimates we obtain aligned (Wilcoxon) ranks

7 17 2 18 6 1 11 3

25 16 4 29 26 27 21 23

28 10 8 15 24 20 22 5

which yield a test statistic of 13.59 highly significant relative to the 1% %l critical value

of 6.63.

The full set of regression rank scores a,(r) for the restricted model ecluding potas-

sium for this data are illustrated in Figure 6.1. There are 34 distinct regression quantile

solutions and therefore each a„i(t) is a piecewise linear function with at most 34 distinct

segments. Recall that ani (t) = 1 while the observed v, is above the tth regression quantile

plane, while below, and takes some intermediate value when yi falls on the tth plane.

The plots ordered according to their Wilcoxon rank score, which may be computed as

b, =-\(t - l/2)da,(r)= \dii{t)dt - 1/2 . While the Wilcoxon rank scores provide an

o o

unambiguous ranking of the observations, since the regression rank score functions typi-

cally cross in regression applications, in contrast to the location model, this ranking

depends upon the score function employed. The regression rank score plots give some

further visual evidence concerning the ranking of the sample observations. Note that if

ani {t) > anj (t) for all t, then bni
> bnj for any montone score function cp. Numerical calcu-

lations give Wilcoxon ranks

-0.27 0.06 -0.41 0.09 -0.32 -0.48 -0.17 -0.38 0.48 -0.06

30 13

19 12

14 9



0.23 0.04 -0.37 0.42 0.28 0.37 0.19 0.41 0.15 -0.26

0.38 -0.16 -0.23 -0.01 0.33 0.12 0.15 -0.42 -0.10 -0.06

and yield a test statistic of 13.17. In view of Theorem 5.1 the approximate p-value is

.0003. The two vectors of Wilcoxon ranks correspond closely. Observation 6 is smallest

in both rankings and observations 14 and 9 are largest in both. The simple correlation

between the two rankings is .978. Note that as a practical matter when (p= \ <p(t)dt = 0,

o

we may omit the X2 term in the computation of S„ in (5.3) since b„ is orthogonal to Xj.

This is in contrast with the aligned rank situation where the use of X2
- X2 is essential.

Corresponding calculations for the normal scores using

Z?/ =-J<D-
1 (0^a

/ (0=lS,'(r;
)[(l)(cD-

1

(0))-(l)(O-
1

(0-i))]
i=l

where <j) denotes the standard normal density, and t
t

is the /th regression quantile break-

point yields

-0.74 0.15 -1.41 0.23 -0.91 -2.13 -0.45 -1.17 2.08 -0.15

0.63 0.10 -1.25 1.44 0.78 1.15 0.50 1.35 0.40 -0.72

1.41 -0.40 -0.61 -0.03 0.94 0.30 0.39 -1.45 -0.26 -0.18

and a test statistic of 12.87. The corresponding normal score aligned rank statistic is

11.72.

Finally, regression rank score version of the sign test yields the scores

-1.00 1.00 -1.00 1.00 -1.00 -1.00 -1.00 -1.00 1.00 -1.00

1.00 1.00 -1.00 1.00 1.00 1.00 1.00 1.00 0.16 -1.00

1.00 -1.00 -1.00 -0.37 1.00 1.00 1.00 -1.00 -1.00 -0.79

and a test statistic of 8.42 while the aligned rank sign scores yield 10.20. Note that we
have multiplied the sign scores by 2 to conform to conventional useage. Obviously, all

versions of the tests lead to a decisive rejection of the null. Note that for the sign scores

the test coincides with the / 1 Lagrange multiplier test discussed in Koenker and

Bassett(1982).

Since an important objective of the proposed rank tests is robustness to outlying

observations, it is interesting to observe the effect of perturbing one of the y observations

of the Adichie data set on the aligned and rank scores versions of the test statistic. This

sensitivity analysis is illustrated in Figure 6.2. Even a modest perturbation in y \ is

enough to confound the initial least squares estimate and reverse the conclusion of the

aligned rank test. Adding 10 to the first response, for example, alters the aligned Wil-

coxon test statistic from 13.58 to 5.7, which is no longer significant at 1%. and the vector

of ranks based on the perturbed data has a correlation of only .48 with the aligned ranks

based on the original data. The same perturbation of v
i
changes the Wilcoxon regression

rankscore test statistic from 13.17 to 14.70 with a correlation between the two rank vec-

tors of .87. A more robust initial estimator would improve the performance of the

aligned rank test somewhat. The regression rank score version of the test is seen to be

relatively insensitive to such perturbations. One should be aware that comparable pertur-

bations in the X2 design observations may wreck havoc even with the rank score form of

the test. Recent work of Antoch and Jureckova (1985) and deJongh, deWet, and Welsh



(1988) contain suggestions on robustifying regression quantiles and therefore the

corresponding regression rank scores to the effect of influential design points.

Computation of the tests was carried out in 5+ using the algorithm described in

Koenker and d'Orey (1987, 1990) to compute regression quantiles.

3. Properties of regression rank scores

Consider the linear regression model (2.1) with design X„ of dimension n xp. Let

(3(a) e Rp be the a-regression quantile and a(a) e R n
be the vector of ath regression

rank scores defined in (2.7). We see from the form of the linear constraints in (1.5) that

the regression rank scores are regression invariant, i.e.,

a„(a, Y+Xb) = a„(a, Y), b e R^. (3.1)

Moreover, in view of the invariance, we may assume

n

£*//=0, ;'=2, ...,p (3.2)
j=l

without loss of generality.

Our primary interest in this section will be the properties of the regression rank

scores process

{a„(r): 0<r < 1}. (3.4)

Gutenbrunner and Jureckova(1992) studied the process

W^ = {W^(0 = ^idw aw (0: 0<r < 1} (3 .5)

and showed that Wd
n {t) = Ud

n {t) + o
p (1) where

U d
n (t) = n- U2 %d*I[E

i
>F- 1

(f)] (3.6)

as n —> oo uniformly on any fixed interval [e, 1-e], where < £ < 1/2 for any appropri-

ately standardized triangular array {dm : /=1,..., n } of vectors from R^ They also

showed that the process (3.4) (and hence (3.5)) has continuous trajectories and, under the
n

standardization ^d ni = 0, (3.5) is tied-down to at t = 0, and t = 1. The same authors

/=i

also established the weak convergence of (3.5) to the Brownian bridge over [e, 1-e].

Note however that Theorem V.3.5 in Hajek and Sidak (1967) establishes the weak con-

vergence of (3.5) to the Brownian bridge over the entire interval [0, 1] in the special case

of the location submodel. Here we extend the results of Gutenbrunner and Jureckova

(1992) into the tails of [0,1], in order to find the asymptotic behavior of the rank scores

and the test statistics (2.7) and (2.8), for which the score functions are not constant in the

tails.

It may be noted that this extension is rather delicate. If the rank scores involved

integration from e to 1-e (i.e., if cp were constant near and 1), then the earlier

Gutenbrunner-Jureckova (1992) representation theorem could be used to obtain the



asymptotic distribution theory here under somewhat weaker hypotheses (see the remark

following Theorem 5.1). It is the desirability of treating such tests as the Wilcoxon and

Normal Scores Tests that requires the extensions here. Nonetheless, the fact shown here

that the rank score process can be represented uniformly on an interval (oc„, 1-a^) with

a„ decreasing as a negative power of n (precisely, cc^ =^ _1/
( 1+4ft ) for some b>0) is

rather remarkable and of independent theoretical interest.

To this end, we will assume that the errors E\, ..., En in (2.1) are independent and

identically distributed according to the distribution function F(x) which has an abso-

lutely continuous density /. We will assume that / is positive for A < x < B and

decreases monotonically as X-+A + and x—>B- where

<A = sup {x:F(x) = 0} and +°°>fl = inf {x: F(x) = 1 } .

For < a < 1, let \\fa denote the score function corresponding to (1.2):

\\fa (x) = a-I[x <0], xeR 1
. (3.7)

We shall impose the following conditions on F:

(F.l) |F
_1

(a)| <c(a(l-a))~a forO<a<ao, l-a<) <a < 1, where < a <'A -e,

e > and c > 0.

(F.2) l//(F
_1

(a)) < c(a(l-a))"
1_a

for < a < Oo and l-oo < a < 1, c > 0.

(F.3) / (x) > is absolutely continuous, bounded and monotonically decreasing as

x —» A + and x —» B -. The derivative f is bounded a.e.

(F.4) I Qtt I
^ c \x | for \x |

> K > 0, c> 0.
I fix) I

REMARK. These conditions are satisfied, for example, by the normal, logistic, double

exponential and t distributions with 5, or more, degrees of freedom. Condition (F.l)

implies [\t
|

4+5
i/F(r) < +» for some 8 > 0. Hence using (F.4) also, F has finite Fisher

Information, a fact to be applied in Theorem 5.1.

The following design assumptions will also be employed.

(X.l) xn = l, i=l,...,n

(X.2) limD„ = D where D„ = n~ l Xn 'Xn and D is a positive definite p xp matrix.

(X.3) »-1

f;|te||
4 = 0(l)as«->«o.

(X.4) max|lx/|| = 0{n {2(b~a)~mi^b)
) for some b >0 and 5>0 such that < b-a < e/2

\<i<n

(hence < b < 'A - e/2).

We may now define

an = n~m+4b) and aa = ^ l-^'2

, < a < 1 . (3.8)

Let C be a fixed constant and define

Cn = C (\og2 n)'
/2

• , (3.9)
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We now prove the following crucial lemma:

LEMMA 3.1 Assume that F satisfies (F.l) - (F.4) and that X„ satisfies (X.l) - (X.3).

Then, as n ->°°,

sup{|r„(t, a) | : ||t|| <cn , a^a^l^HO (3-10)

for Cn given by (3.9), where

r„(t, a) = (aO-a))-
1^1

£[Po(E.o " «" 1/2aa x,'t)- pa(E/a )]

i=i

+ Ai-
1/2

(a(l-a))-
1/2

Xx,'tvi/a (£)a ) - >/*t'Dn t (3.11)
i=l

and

£,„=£,—
F"

1

(a), i=l, ..., n. (3.12)

PROOF.
(i) First fix a e [a*, 1-a*] and t such that |t[| < Cn .

Define for some < y < b,

B„ = max"n n
-2al{\+4b)^

n
-(2-y)(b-a)/(l+4b)

^ n
-(b-y)/(l+4b)

(3.13)

We wish to show that for any X >

P(\rn (t,a)\>(\+l)Bn)<Kn-
x

(3.14)

with a fixed K > 0. To do this, we will use the Markov inequality

P(\rn (t, a) | >sn)<exp(rusn)(M(u)+M(ru)), u>0 (3.15)

where M (u) = £exp(wr„(t, a)).

Denote

em = E„/(t, a) = «- 1/2aax (
't (3.16)

and

Ri(t, a) = (ail-a^'WiPaiEia-n^CaX/thpaiEia)] (3.17)

+ /|-1/2(a(l-a))-
1/2

x
/

/

tva(£/a)-
l
/2/i-

1
(x

/

/

t)
2

/=1, ...,«.

By definition of £/a , aa , pa and \\fa ,

R,(t, a)+ 1

/2Al

-
1

(x
/
't)

2 = (a(l-a)r
l/2G-a

l

{(Eia-Em )I[eni <Eia<0]

+ (tni -Eia)I[0<Eia <eni ]} (3.18)

and hence, uniformly for a*n < a < 1-a^, ||t|| < Cn and i=l,...,n,

|/?,(t, a) + '/2«- 1

(x
(
't)

2
|

<2«- 1/2
(a(l-a)r

1/2
|x

(
't|=0(/2-

{2a+5)/(1+4fe)
(\og2 n)'

/2
). (3.19)

If uRj is bounded, that is, < u < ai
(2 ^ l+4b

\\og2n)~'
/2

, Taylor series expansion

yields
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log MR.(u) < uERi(U a) + cw-Var(/?,(t, a)) (3.20)

for some constant c > 0. By (3.18), for e„, > and for oc^ < a < Oq, 1-a^ > a > 1-oto,

ERi(t, a) = - 1/2Ai-
1
(x

/
't)

2 + (a(l-a))- 1/2
aa1

j (eni-z)f(z + F~ l
(a))dz .

o

Now,

log f(z + F

-

1

(a)) = logAF" 1

(a)) + f
-f- log /(« + F

-

1
(a)) </u ;

o
du

or, by condition F.4,

z

/(z+F- 1 (a))</(F- 1

(a))exp{J(W + IF-^a)!)^} .

o

Also by (3.8), 3.16) and the conditions,

2(fe-a>-8

e« I/
7
"

1

(a) | = 0(n~
l/l a^~2a

/i
l+4b

(log2 A2)
v/2

) ->

Hence,

z z

exp{}(«+ |F
_1
(a)l)d"} < 1 + cj( |F

-1
(a)| + u)du .

o o

Therefore,

ERi(U a) = - 1
/2AI

-
1

(x,'t)
2 + (a(l-a))-

1/2
aa

1/(^" 1

(a)) { J(ert
,-z>fe

+ 0(1) \(eni-z)j(\F-
l

(a)\ +u)dudz) . (3.21)

By (3.8) and (3.16), the first integral in (3.21) exactly cancels - xhn~ (x,'t) ; and, there-

fore, using conditions F.l - F.4,

£/?/(t, a)<c(a(l-a)r 1/2-2aAr3/2
|x

/

,

t|
3 +c(a(l-a)r 1

-2a /r2
|x

(
't|

4
. (3.21)

We get the same inequality for zm < 0. The same expressions are 0(n |x,'t| )

+ 0(A2~
2
|x,'t|

4
) if ao<a<l-ao. Hence,

r -?r/,-rtn

XE|*/(t,a)| =0
(*-*)'

1+4*
(3.22)

Similarly, using (3.18) and (3.21),

2

{/(F-^ctf) J
(|em |-z)

2
[l+J(l^~

1 (a)l+>')^]^Var/?,-(t, a) <
—l

f(F-
l

(a))

a(l-a)

|e„,l

J
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+ /
2 (F- 1

(a))<!

1 2

J
(\eni \-z)[\+)(\F-

l (a)\+y)dy]dz
o o

Therefore, using (3.8),

,-3/2 '/2 .'*|3 _XVar^(t, a)<cn _J/- (a(l-a)r /2 2lx,t| J =
i=l /=i

-2fc

1446
(3.23)

These results hold uniformly in a and t.

Hence, using (3.15) and (3.13) with u = log nlBn = 0(n 2a/(1+4b)
), so that 3.20 holds,

P(\rn (t, a) | >a+l)Z?n)<exp {-(?i+l)log«

Kb -a) -lb

+(/Hog n IBn )-n
1+4fe + (K \og

2n/B 2
n ) • n

l+4b
}

<n -X (3.24)

for n > no where K > and aiq do not depend on a and t.

(ii) Now apply the chaining argument to extend (3.24) uniformly in (t, a). Following

the proof of Lemma A.2 in Koenker and Portnoy (1987), choose intervals of length l/n

covering [a^, l-a„] and balls of radius \ln
5 covering {t: ||t|j <Cn ). Let {a!, a^} lie in

one of the intervals and (t\ , to) lie in one of the balls covering {t:||t|| < Cn). We now use

(3.18) to bound A, = |/?,(ti, a.\)-

R

t
{U, a->)|. So define intervals jf as follows for

/ = 1,2:

J i = [F- l

(ad, em (t/,a
/ ) + F"

1 (a
/ )] JJ = [eMM) + F~ l (a

t ), F~
l

(ai)] .

Also define (for / = 1, 2):

Gi(Ei) =

Then, from (3.18),

f(F~Hai))

a/(l-a/)
(Ei-F- l

(OLi)-Eni(thai))

A, = -^-(x/'ti)
2 + ^-(x/t2 )

2 + H{Ei\
in in

(3.25)

where

//(£,) =

G l {Ei)-G 1(Ei)

G2(Pi)-Gi(JEi)

a;

E
t
e f\ nJt

Ei € (ft nJiJu (7J n f\ )

otherwise

and
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A/ < max/^ 2
a/(l - a,)

C n~'
A

||x,-|

e«(t/,a/)|

2(6 -a)

= max/=1 2

/I"*
4
IXyt/l

(a/(l-a/))'

< Cn n
-J/2

n
1+46

n
2(1+46) _

(a,(l-a,))*

Now note that for ||t|| < Cn and a* < a/ < 1 -a„,

I
eni(ti,a 1 )-em-(t2 ,a2 )| <

= Cn n L
1+46

->0

C„ «"//2

Hx.-I

+ C„ n
-'/:

mnWCF-V))

1 1

|(a
1
(l-a

1 ))
% -(a2(l-a2

))'
/
M

Hti-t2 ||

c n
-'/:

f(F-
l
(a

x )) f(F-
l
(a2 )) ' min^f- 1

(a))

By conditions F.l and F.2, for a € [a*n , 1 - a^], l/a(l-a) < n ,

mina/CF-^a)) (a(l-a))
\+a

<n 5/4

and

|F- 1 (a
1
)-F- 1

(a2 )| <—^—^— < ,T3 -75

min^F-^a))
-5 -5

Therefore, using X.4 and the fact that | ax - a2 | <n and ||ti -t2 ||<Ai^ , it is

straightforward to show that the contributions to (3.25) excluding A, are all o(l). Since,

H[(Ej) = A* (3.25d) only if F, is between F~ l

(a.i) and F _1
(oc2 ) , otherwise, the inter-

sections of intervals defining A/ must be empty,

sup
|
£/?,(ti ,a {

)~ £/?/(t2 , <x2 ) |
< o(l) + Ko{\)

1=1 1=1

where S v denotes the covering set containing (oti, ti) and (0:2, t2), and K" is the number

of times F, lies between F _1
(ai) and F _1

(cc2). Now, K - binomial^, p) where p
is the probability that F, lies between F -1

^!) and F _1
(a2 ) with |ai - a2 |

< n~5
.

Thus, since / is bounded, p <c*«~3 "75 <n . Therefore,

P< sup|r„(t
1
,a

1
)-rn (t2 ,a2)| >o(l) + Xo(l)\ < £

n r
/P

*=X

*1 «-*

1- <' —X.-C n

Since the number of sets needed to cover the set 5 =[cc„, l-a„]x{t: ||t||<C„} is

bounded by n
5(p+l) we obtain from (3.24) for X > 5(p+\)

p\ sup \rn (t,a)\>(k+l)Bn +o(l) + Xo(\)[<n 5(p+l)n-x ^O
[(o.t)e5

J

LEMMA 3.2. Assume the conditions of Lemma 3.1 and let dn = (dn \, • • • ,dnnY be a

sequence of ^-vectors satisfying



14

Xn 'd„ = 0, - £d 2
,
-> A2

, < A2 < oo

w
/=i

(D.l)

-1 3 _n-l
Z\d„i\

J =0(l) as «-+oo

;=i

max | ^m- 1 = (9

l</'<n

//
(2(6-a>-5)/(l+4&)

(D.2)

(D.3)

Then, with S* = {(t, a) : ||t|| <C, a*n <a<\ - an },

y-1/2 „ -1/2
sup ((aCl-a^^/i-^IS^tVaCE/a-rt-^aaX/'O-VaC^a)]! } -> (3.26)

(a,t)eS
/ = 1

as n —> oo for any fixed C > and for cc^ given in (3.8).

PROOF. Consider the model

Y = X*p*+E

where X* = (X„
|

d„), p* = (pi,
• •

, Pp , pp+1 . Pp^). Then

X*'X* =

X„ x„

d„'dn

and the conditions of Lemma 3.1 are satisfied even when replacing X by X and taking

te Rp+q . Now, the quantity in brackets in (3.26) is just the right derivative of (3.11)

with respect to the last q coordinates of t (evaluated when the last q coordinates of t are

zero). To obtain the desired uniform convergence, let /„(t, a) denote the right hand

side of (3.11) without the last term, xh\!Dn l, and let g(t) = Vit'Dt. Note that Vit'Dn t

can be replaced by g(t) since Dn -*D (and ||t|| is bounded on S ). By Lemma 3.1,

choose S„ so that

sup |/„(t, a)-£(t)| <6 2
.

(a,t)eS

Following Rockafellar (1970, Thm. 25.7, p. 248), the convexity of fn makes the differ-

ence quotients monotonic. That is, with u a properly chosen coordinate vector,

^/„(t,a)<^-(/-,,(t + 8nu,a)-/n (t,a))^-~(g(t + 5ll
u)-^(t)) + ~- 0(5

2
) .

Olj on o„ on

Replacing u by -u, the reverse inequality follows similarly (with minus signs on the right

side). Therefore,

S(t + 8„u)-s(t)

dt
(fn (t,a)-g(t)\ <

dt
-8(t) 0(8n )

Since g is a quadratic function, this last term tends to zero as a constant times 5„ (uni-

formly on 5*). This gives (3.26), since the contribution of the final term of (3.11) van-

ishes when differentiating with respect to the last q coordinates and setting these coordi-

nates to zero.
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Let P„(oc) be the a-regression quantile corresponding to the reduced model (2.1)

with the design matrix of order (nxp); i.e., (3„(a) is a solution of the minimization

n

ZPa(Yi ~ x
(
't) : = min, t e R p

. (3.27)

Analogously, define (3(a) = (F~ (a), 0, 0, . . . , 0); that is, the solution to (3.27) when
the summation is replaced by expectation. The following theorem establishes the rate of

consistency of regression quantiles, and is needed for the representation of the dual pro-

cess.

THEOREM 3.1. Under the conditions (F.l) - (F.4) and (X.l) - (X.4),

«
1/2a^ 1

(r3(a)-P(a)) = Al
1/2

(a(l-a)r
1/2D; 1 £ x^a(Eia ) + op (l) (3 .28)

/=i

uniformly in a*, < a < l-a„. Consequently,

sup
t

\\n
l/2G-a

l

(k(a)-m))\\ = O
p
(l). (329)

a* <,a< l-a„ v ' '

PROOF. If p„(a) minimizes (3.27), then

T„a =A2
1/2 a- 1

(Pn (a)-(3(a)) (3.30)

minimizes the convex function

G„a (t) = (a(l-a)r v2a-a
l

£[pa(E,a->r
1/2

aaX;'t)-pa (£/a )] (3.31)

with respect to t € R p
. By Lemma 3.1, for any fixed C >

min Gna (t) = min {-t'Z„a + lM'Dn t} + op {\) n 32)
||t||<C„ ||t||<C„

F V'D*>

uniformly in ajj < a < 1-a*, where

Zna = «- 1/2
(a(l-a)r

1/2
£x,va(£/a ). (3.33)
y=i

It will be necessary to provide a probabilistic bound for

B = supf Z„a : a*. < a < l-a*J. Writing

Z„a = H
' „ £ {(l-a)(/fF(£,)<a;-a) + a(/{F(£,-) < 1-a} -(1-a))) ,

(a(l-a)) /2
/= i

the invariance theorem of Shorack (1991) can be applied. Using conditions X.3, X.4, and

the fact that a* > n~v\ equation (1.10) or (1.11) of Shorack (1991) imply that

B <Op (\) +csup{(5(l-5))"
,/2

W(.s): an <s<\-an )

for some constant c, where W(s) is a Brownian Bridge. This last supremum is bounded

by (log2 Ai)
;/2

+0,(1) ( see, for example, Shorack and Wellner (1986), p. 599). Thus

Zna = O
p
((\og2 n)'

/2

) uniformly on a* < a < 1-a*. Therefore, denoting
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U„a = org min{-t'Z„a+
1/2t'D„t},

(3 34)

we immediately get

U„a =D;1Zfla = p ((log2 /i)
i4

) (3.35)

uniformly in an < a < l-a„ and

min { -t
/Zno+ ,/it'Dn t } = -lAZna \}~ 1 Zna . ,3 36)teRP \j.jvj

From (3.35) and (3.36), we can write

-t'Z„a + 1

/2t
/D

/J
t= 1/2{(t-Uria)'D/l

(t-U„a)-U„a 'D A1Una } (3.37)

and hence we could rewrite (3.10) in the form

sup |r„(t,a)|= sup {Gna (t)-V2[(t-VnaYDn (t-Vna)-VnaDn \Jna]}^0. (3.38)
(cU)eS (a,t)eS

Inserting Una = Op (S\o%2n ) )> f°r t» we further obtain

sup
<
{|G„a (U„a ) + 1/2U/ia'D„Una | } =a,(l). n3m

We would like to show that

sup ,{||Tna-Una || }-op (1). r340N

a„ < a < 1 - a„ v • /

Consider the ball Ena with center U„a and radius 5 > 0. This ball lies in a compact set

with probability exceeding (1 - e) for n > /i ; actually, for t e B„a ,

||t|| < ||t-U„a || + ||U„a ||
< 8 + K

!
(log2 «)

//2

for some ^i with probability exceeding 1 - e for n > riQ. Hence, by (3.10),

P

Ana = sup sup |r„(t, a)| -»0. (3.41)
a^ < a< 1 -a* teB„

tt

Following Pollard (1991), consider the behavior of G„a (t) outside B„a . Suppose

ta = U„a + kt,, k > 8 and ||£J|
= 1. Let t« be the boundary point of B„a that lies on the

line from U„a to ta , i.e., t« = U„a + 5^. Then t« = (1 - (S/k))Una +(8/£)ta and hence,

by (3.38) and (3.39),

S/kGna (t) + (\-b/k)Gna (\]na ) > Gna (C) > V2b
2
Xo + G„a(lU) - 2A„a

where Xq is the minimal eigenvalue of D. Hence,

inf G„a (t)> Gna(Una ) + (k/d)(V2b
2
Xo - 2Ana). (3 42)

Using (3.39) the last term is positive with probability tending to one uniformly in a for

any fixed 8 > 0. Hence, given 5 > and e > 0, there exist hq and rj > such that for

n >n ,

P{ inf [ inf G„a(t)-Gna (U„a)l>Ti)> 1-e
(3 43)

a„ < a < 1 - a; ||t-Una||>8
K^-^J)

and hence (since the event in (3.43) implies that Gna must be minimized inside the ball

of radius 8) P ( sup
<
l|T„ a - U„a ||

< 8) —> 1 for any fixed 8 > 0, as n —> °°.

a" < a < 1 - a*
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The following theorem approximates the regression rank score process by an empir-

ical process.

THEOREM 3.2. Let d„ satisfy (D.l) - (D.3), X„ satisfy (X.l) - (X.4) and F satisfy

(F.1)-(F.4). Then

(
sup ,{|n-ly2

(o(l-a)r
w
f;4l/

(a
II1-(a)-ai(a))|}^0 (3.44)

a n <a<l-a„ (=1

as n —¥°°, where

i
i
(a)=I[E

i
>F- l

(a)l i=l,...,/i. (3.45)

1/2--1.PROOF. Insert n
1/za« (M«) ~ P(«)) for t in (3.26) and notice (3.29) and the fact that

sup
(

{«-1/2
(a(l-a)r

1/2

X4i/[^ = x
<

/

P(a)]} ->"o, (3 .46)
a„<a<l-a„ (=1

from which (3.44) follows. D
The following theorem which follows from Theorem 3.2 is an extension of

Theorem V.3.5 in Hajek and Sidak (1967) to the regression rank scores. Some applica-

tions of this result to Kolmogorov-Smirnov type tests appears in Jureckova (1991).

THEOREM 3.3. Under the conditions of Theorem 3.2, as n —> °°,

n P

sup { I n
m

£<4, (a„,(a) - ara (a)) |
} -> (3.47)

0<a<l /=1

Moreover, the process

{A-
1 /*- 172

i^,aw (a) : < a < 1

}

(3.48)

converges to the Brownian bridge in the Prokhorov topology on C[0, 1].

PROOF. By Theorem 3.2,

n P

sup |n-1/2
X4/(a«/(a)-a„/(a))| ->0. (3.49)

a;<a<l-a; /=1

n

Further, using the fact that £(l - am (a)) = na, due to the linear constraints in (1.5),

(=1

sup |fl-
1/2

fym am (a)|= sup |/r
1/2 £flWl -a„,(a))| <n v2 max \dni \an

0<a<a; ;= i
0<a<a; /=1 \<i<n

=

Kb-ays _±^
[+4b 1446 = 0(n~26 ) (3.50)

n
,-1/2

and we obtain an analogous conclusion for sup \n ^dm ani (a)\ . On the other
l-a;<a<l /=1

hand,
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sup |«-1/2
X^m5/(a) I

= sup
I
A2"

1/2 £«/[£, < Z7
"

1

(a)] - a)
|

0<a<a B /=1 0<a<a n /=1

>l/2< max \dni \
- Op (an(l-an)y

u =op (\) (3.51)

and analogously

,-1/2
sup \n-' L

Yd
dnili

(a)\ =o (1).
l-a„<a<l (=1

Thus (3.47) follows, and consequently (3.48).

4. Asymptotic properties of simple linear regression rank scores statistics

Maintaining the notation of Section 3, let (g(0 : < t < 1 be a nondecreasing

square-integrable score-generating function and let /?„,, i=l,...,/i be the scores defined by

(2.7). Let {d„} be a sequence of vectors satisfying (D.l) - (D.3) . Following Hajek and

Sidak (1967), we shall call the statistics

Sn =n
u"^dnibni (4.1)

simple linear regression rank-score statistics, or just simple linear rank statistics. Our

primary objective in this section is to investigate the conditions on 9 under which we
may integrate (3.47) and obtain an asymptotic representation for Sn of the form

Sn = n~m ZdnMF(Ei)) + op {\). (4.2)
1=1

We shall prove (4.2) for 9 satisfying a condition of the Chernoff-Savage(1958) type;

thus our results will cover Wilcoxon, van der Waerden (Normal), and median scores,

among others.

THEOREM 4.1. Let cp(r) : < t < 1, be a nondecreasing square integrable function

such that q>'(0 exists for < t < Oq, 1-oco < t < 1 and satisfies

\y'(t)\<c(t(l-t))-
1
-5

'

(4.3)

for some 5 < 5 where 5 is given in condition (X.4), and for t e (0, oto) U (1-OCq, 1).

Then, under (F.l) - (F.4), (X.l) - (X.4) and (D.l) - (D.3), the statistic Sn admits the

representation (4.2) and hence is asymptotically normally distributed with zero expecta-

tion and with variance

1 1

A2
(jy

2 (t)dt-y-\ q> = Jcp(0^. (4.4)

PROOF. Let us consider S„ defined in (4.1) with the scores (2.7). Integrating by parts

(notice that a„,(r) - a,(r) = for / = 0, 1), we obtain
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n
\

n 1

-n~m J^dni J
cp(r)d(a„,(0 - a,(0) = "

_1/2
Z^m |(a„/(0 - 5,(0W) , (4.5)

i=l /'=1

which we must show is op {\). We shall split the domain of integration into the intervals

(0, a*], (a*, ao), [ocq, 1-oco], (1-cto, 1—a^), [\-an , 1) and denote the respective

integrals by I \, ... J 5. Regarding Theorem 3.2, we immediately get that 73 —> by the

dominated convergence theorem. Similarly, for some 8 > l
/i,

«o
n

|/2 1
<

J |q>'(OI l«"
1/2

S^/(a„/(0-a/(0)l^

a

<cj (r(l-r))-
1
-8

(r(l-r))
1/2

- |/i"
1/2

(r(l-r)r
1/2 5:rf*(a«(0-a/(0)|A

a.

«0

1=1

= cJ(/(W))-
5 - 1/2

£/r-o
p
(l) = 0^,(1).

Finally,

where

and

Then

\I
{ \

<Aj-
1/2 max \dni \ J

|<p'(r)| X |£ni(f)-5„,(0l^ ^11 +h:
\<i<n «=1

/„ =«" 1/2 max K,| J
|cp'(f)| 2(1-8^(0)*

\<i<n «=1

/ 12 =AI

" 1/2 max K,-| f |cp'(OI Id-Wr.

<*„

/„ <ai
1/2 max K,| f

rb'dt=0(n
1/2 +

2(fr-a)-5 (1-8')

1+46 1+46
) = (9(ai"

2(5_5
*

)
).

!</<«

Finally,

(4.6)

(4.7)

/i2 = ""1/2

5X; j <p'W/[f >F(3BjP = »"lfl

I<«1ifti(a!)-^WCr (B/) < a«]

(=1 /=i

Now we may assume that (p(a*) < for n > n , since otherwise if (p were bounded from
p

below then / 12 -» 0. Hence

Var(/ 12)<Ai-
1

X^^([2(p(/
r (E

( ))]
2/[F(£

(
)<a;])<

J f(M)^O(l)^0
/=i
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due to the square-integrability of (p. Treating the integrals / 4 , / 5 analogously, we arrive

at (4.5) and this proves the representation (4.2).

5. Tests of linear subhypotheses based on regression rank scores

Returning to the model (2.2), assume that the design matrix X = (Xi X2 ) satisfies

the conditions (X.l) - (X.4), (2.3) and (2.4). We want to test the hypothesis

Hq : (32 = (p! unspecified) against the alternative Hn : (3^ = i
_1/2

Po (Po e R q fixed).

Let a„(cc) = (a„i(ct), ..., a„„(a)) denote the regression rank scores corresponding to

the submodel

Y = X
1 p 1

+E undergo. (5.1)

Let (p(r) : (0, 1) —> R x

be a nondecreasing and square integrable score-generating func-

tion. Define the scores bn -„ i=\,...,n by the relation (2.7), and consider the test statistic

Tn =Sn
'Q-

n
l

Sn /A
2
(y) (5.2)

where

Sn =n-
m(Xn2 -Xn2ybn (5.3)

and where Q„ and A (<p) are defined in (2.4) and (2.10), respectively. The test is based

on the asymptotic distribution of Tn under H , given in the following theorem. Thus, we
shall reject Ho provided Tn > %^(co), i.e. provided Tn exceeds the co critical value of the

X" distribution with q d.f. The same theorem gives the asymptotic distribution of Tn
under Hn and thus shows that the Pitman efficiency of the test coincides with that of the

classical rank test.

THEOREM 5.1. Assume that X! satisfies (X.l) - (X.4) and (X! \ X2 ) satisfies (2.3) and

(2.4). Further assume that F satisfies (F.l) - (F.4). Let Tn defined in (5.3) and (5.4) be

generated by the score function (p satisfying (4.3), and nondecreasing and square-

integrable on (0, 1).

(i) Then, under Hq, the statistic Tn is asymptotically central x~ w^ Q degrees of free-

dom.

(ii) Under Hn , Tn is asymptotically noncentral %~ with q degrees of freedom and with

noncentrality parameter,

Tl
2 = (VQlW(<P.W 2

(<P) (5-4)

with

l

y(^F) = -j<v(t)df(F-
l
(t)). (5.5)

o

REMARKS.

(i) If cp is of bounded variation and is constant near and 1, the representation given in

Theorem 2 (ii) of Gutenbrunner and Jureckova (1992) could be used to provide the

conclusion of Theorem 5.1 under somewhat weaker hypotheses; namely, (X.l),
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1 fl

(X.2), max, \\Xj\\ =o(n ~), F has finite Fisher Information, and 0</<°° on

{0<F < 1}.

(ii) The analogy between the location and regression models concerning the noncentral-

ity parameter y((p, F) may be extended in the following way: instead of defining

local alternatives via (2.6), the definition of Behnen (1972) can be generalized to the

regression model. That is, with F/(f) = F(t -
JCi,'Pi) and G, = L(F,), consider

H : C, =Fi vs. Hn :
—f = 1 +x 2l

'?>2n hn (Fi )

dHi

where

p2«="" 1/2
Po, hn ^heL 2

(0, 1), and max,- || x 2i \\ \\ hn \\L =o(n
1/2

).

In this setting, even without the assumption of finite Fisher Information, (4.2)

implies that the conclusion of Theorem 5. 1 holds with y((p, F) in (5.4) replaced by

the F -independent constant

f((p(w)-(p)(/i(w)-Ww

Y (<P»
h) =

(\((?(u) - q)
2
du\(h(u) - h)

2
du)

l/2
'

i.e., the correlation of the functions (p and h. Such local alternatives provide insight

into the structure of the regions of constant efficiency for regression rank tests.

PROOF.

(i) It follows from Theorem 4.1 that, under Ho, S„ has the same asymptotic distribu-

tion as

Sn
=«- 1/2

(X„ 2 -X, 2 )'bn

where b„ = (bn i,...,bnnY and bni
= (p(F (£,)), i=l,...,n. The asymptotic distribution

of S„ follows from the central limit theorem and coincides with ^-dimensional nor-

mal distribution with expectation and the covariance matrix Q A ~((p).

(ii) The sequence of local alternatives Hn is contiguous with respect to the sequence of
n

null distributions with the densities { FI/(^,)}. Hence, (4.1) holds also under Hn
_ /=i

and the asymptotic distributions of S„ under Hn coincide. The proposition then fol-

lows from the fact that the asymptotic distribution of S„ under Hn is normal

JV7«P. JOQPo. CM 2
(<P))-
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