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ABSTRACT

Following Jureckova (1981) we introduce a finite-sample measure of performance of

regression estimators based on tail behavior. The least squares estimator is studied in detail,

and we find that it may achieve good tail performance under strictly Gaussian conditions.

However, the tail performance of the least-squares estimator is found to be extremely poor in

the case of heavy-tailed error distributions or when leverage points are present. Further

analysis of the least-squares estimator with light-tailed errors indicates the strong influence of

the design matrix in determining tail performance.

Turning to the tail behavior of various robust estimators of the parameters of the linear

model, we focus on tail performance under heavy (algebraic) tailed errors. The /^estimator is

seen to be a leading case: we find a simple characterization of its tail behavior in terms of the

design configuration and show that a broad class of M-estimators have the same performance.

Perhaps most significantly, it is shown that our finite-sample measure of tail performance

is, for heavy tailed error distributions, essentially the same as the finite sample concept of

breakdown point introduced by Donoho and Huber(1983). This finding provides an impor-

tant probabilistic interpretation of the breakdown point and clarifies the role of tail behavior

as a quantitative measure of robustness. This link is further explored for high-breakdown

regression estimators including Rousseeuw's (1982) least-median-of-squares estimator.

* This research was initiated while Jureckova was Miller Visiting Professor at the

University of Illinois. Support of NSF Grants SES-8707169 and DMS 88-02555 is also grate-

fully acknowledged.





1. Introduction

Several authors, including Bahadur(1967) and Sievers(1978), have studied measures of

performance for estimators Tn = Tn(Xx ,...,Xn ) of a location parameter, 9, based on the tail pro-

bability /V | Tn-9 1 >a ) for a fixed a as «-+oo. In the location model with independent observa-

tions Xx, . . . ,Xn from an absolutely continuous, symmetric distribution function F(x-9) with

density f(z) = f(-z) > 0, zeR1
, Jureckova (1981) considered the measure of performance

B(a
t
T.)--

l0g™ T^ >a)
(l.Dk

'

n)
-log(l-F(a))

for fixed n as a-*oo, and showed that for any [reasonable] translation equivariant Tn ,

1 < liminf B(a,Tn ) = B < limsup B(a,Tn ) = B < n. (1.2)

Further, it was shown that both bounds can be attained by the sample mean Tn = Xn . For F's

with exponential tails, Xn attains optimal tail performance with the log of the probability of

{\Tn-9\>a) tending to zero n times faster than the log of the probability that a single observa-

tion from F exceeds a. While for F's with algebraic tails, the probability that \Xn -9\>a

tends to zero no faster than the probability of a single observation from F exceeding a. This

striking lack of robustness of Xn , i.e. the sensitivity of its tail performance to the tail behavior

of F, leads to the question: Are there other estimators with good tail behavior over a broad

class of possible F's?

For L-estimators of location of the form,

n

Tn = S C»-^(i)
t=l

where A
,

(
1 ),...,A

,

(n) are the order statistics of the random sample, X lt ,Xn ; c,>0, / = 1 n\

£c, = l; and c,=cn _t>1 =0 for i =0,\,...,k,0<k< n /2. Jureckova (1979) proved that

A: +l<liminf 5(fl,F„)<limsup B(a,Tn )<n-k. (13)a—oo a—»oo

Thus for the sample median with n odd, \imB(a,Tn ) = (n + l)/2. Furthermore, for any



Huber-type M-estimator, Tn ,
(defined as a solution to the equation J^i>{Xi-t) for a nonde-

«=i

creasing, odd function rp such that ip(x)=ip(k) for x>A:, for some k>0), has the same tail per-

formance as the median for F's with either exponential or algebraic tails. Note that this holds

for Huber estimators with fixed scale--a sufficiently poor estimator of scale could wreck havoc

here.

The foregoing results seem to suggest a relationship between tail performance of loca-

tion estimators and the finite-sample version of breakdown point of estimators introduced by

Donoho and Huber(1983). The latter concept, originally suggested by Hampel (1968), has

played a central role in recent work on robust estimation and testing since it provides an

appealing yet tractable quantitative assessment of robustness. The finite-sample replacement

version of the breakdown point e n
* of an estimator Tn is the following. Let x° = (x x xn )

denote an initial sample, and let x m be a "contaminated" sample constructed by replacing m

arbitrary elements of x° with arbitrary values. The breakdown point of Tn at the sample x° is

then, en
* = m* In, where m* is the least integer m such that sup\\Tn (x

m )-Tn (x°)\\ = oo, i.e. the
x m

smallest number of observations which, if replaced by arbitrary values, could drive Tn beyond

all bounds. The following result clarifies the relationship between tail performance and break-

down point for a large class of location estimators.

THEOREM 1.1. Suppose Tn(X y Xn ) is a location equivariant estimator of 9 such that

Tn is nondecreasing in each argument X
{

. Then for any symmetric, absolutely continuous F , with

density f (z ) = / (-z ) > 0, z eR 1
.

m* < liminf B(a,Tn ) < limsup B(a,Tn ) < n-m* + l

a—<x> a—»oo

The key point of the proof is the following:

LEMMA 1.1. Under the conditions of Theorem 1.1, there exists a constant A such that



x {m')-A <Tn < x (n_fn «+1)+^

Proof. By equivariance,

Tn(x 1 ,xj - Tn (x (1)
-x {m) x {m_irx {m),0,+,+ +) + x {m)

> * (m)+Tn (x

(

X)-x

(

m
)

X(m_1)-x (m),0,0,0 0)

where m=m* and + denotes any positive number. By the definition of m\ \Tn \
with only

m'-l possible outliers is bounded, say by A. Hence, Tn>x^-A. The other inequality may

be established similarly.

Proof, (of Theorem 1.1.) From the lemma,

Pe(Tn-6>a) = P (Tn>a)

> Po(x {m)>a+A)

> (l-F(a+A))n^n ~1
.

Thus,

-log 2P (Tn>a) log2+log(l-F(fl-K4))
" Ka 'ln)

-log(\-F(a))
- l" m + l)

log (\-F(a))

Letting a—>oo we get limsup B(a,Tn )<n-m +1. On the other hand liminf B(a,Tn)>m fol-
a—«oo a—»oo

lows from,

P (7'
n>«)<PoU fl -m+1>fl+/l) = (\-F(a+A)) T

Remarks: Note that Theorem 2.1 holds for both exponential and algebraic tails of F

.

The conditions on Tn are satisfied for M-estimators with monotone V, L-cstimators with posi-

tive weight functions, but not, for example for redescending M-estimators or the least median

of squares. If Tn has high breakdown, like the sample median, with e„-* lh, then

limsup B(a,Tn ) < n /2 for either error distribution type. This seems to suggest that highly



robust methods necessarily sacrifice performance in light tailed circumstances. Finally, the

high breakdown estimators are seen to satisfy a minimax property: they maximize least favor-

able tail performance over the two distribution types described in Jureckovd (1981) and

defined in the next section.

The intimate connection between finite-sample breakdown and finite-sample tail perfor-

mance is developed further in subsequent sections. Section 2 introduces a measure of tail per-

formance for regression estimators and discusses some possible alternative measures. Section

3 contains a detailed analysis of the tail performance of the least squares estimator. Section 4

investigates the tail behavior of various robust estimators of the parameters of the linear

model. Some concluding remarks on the relationship between breakdown and tail performance

appear in the final section.

2. A Measure of Tail Performance for Regression Estimators

We now turn to the linear model,

Y = X0 + e (2.1)

where Y is an n vector of random responses, X is a fixed (n xp) design matrix of rank p, with

rows Xi'.i = l,...,n, f3 is an unknown p -dimensional parameter vector and e is an n -vector of

independent errors, with common absolutely continuous distribution function F. Assume

throughout that

0<F(z)<l, F(z)+F{-z)= \, zeR 1
. (2.2)

We wish to estimate the parameter fi without precise knowledge of the shape of F. Consider

estimators Tn of satisfying the affine (or regression) equivariance condition,

CONDITION A. T^Y^x^,--- ,Yn +xnb) = Tn(Y 1 Yn)+b, beRp
.

To extend the measure of tail performance (1.1) used for scalar location estimators to the

p-dimensional regression context we propose



D , „v -log P^max,- \Xj{Tn-p) \ >a

)

-log(l-F(fl))

Obviously, we would like the probability in the numerator (of a discrepancy of a between

some Yi and EY{ ) to tend to zero as quickly as possible as a—>oo. But, as in the case of loca-

tion estimators, this rate is inherently controlled by the tail behavior of the error observations.

Thus we should expect from good estimators that B(a,Tn ) is reasonable high, but since we can

not hope to control B(a,Tn ) for all a, we study the tail behavior of Tn , i.e. the limiting

behavior of B(a,Tn ) as a—»oo.

It is crucial in the sequel to distinguish between two broad classes of tail behavior for

the underlying error distribution F. Following Jureckovd (1981), a distribution F will be

called Type I (exponentially tailed) if

lim
-los(l-F(a)) =1

ba T

for some b>0, and r>0; and it will be called Type II (algebraically tailed) if

to -log d-f (a)) .,
o-k» m\o% a

for some m >0.

The tail performance bound (1.2) extends to the regression model if we impose a mild

further condition on Tn that there exists at least one nonnegative and one nonpositive residual

r, = y, - x,r„, i = 1, • • • , n. Under this condition, y (1)
> a implies y (n) > a and v (fl)

< -a

implies v (n )
< -a, thus, using the symmetry of F

,

Po{\9\(n)>a)>2P (y (l] >a)

«2(1-F(a))»

and hence

limsup B {a, Tn ) < n .

a — oo

However, as subsequent results will illustrate, achieving this upper bound may be limited to



the case of the sample mean in the location model with exponential tails. A lower bound of 1

may be derived for errors of Type II, under somewhat more stringent conditions, but for F of

Type I, it is easy to construct examples for which limsup B (a, Tn ) is less than 1. In fact, con-

sider a simple linear regression with n=3, x x =0, x 2 =\, and x 3=2, and let Tn be determined by

the first two observations. Then, if \y l \<e and \y 2 \
> b it follows that max | x,-

r

n |

=
i

x 3 \Tn \
> 2b It. Hence, P(max|,x,rj >a)> P{\ yi \

< e) P(\y 2 \
>ae/2)> cP(y 2 >ae/2).

So, for Type I distributions, B < (e/2) r
.

The measure of performance (2.3) is only one of many possible criteria of tail perfor-

mance for the p-dimensional regression estimator, and one is naturally led to ask whether

results are sensitive to the specific form of the criteria. This question is partially answered by

the following:

THEOREM 2.1 Let T be the class of all 7 = 7x : Rp — R which are strictly positive (for

non-zero arguments), continuous, and linearly homogeneous (i.e., i(cb) = ci(b) for c>0 ) . For

any 7 £ T , define the tail criterion

bit ^
-\QgP{i{Tn -P)>a )

B^(Tn,a)= —

—

(2.4)
-log (1 - F(a))

and define B = liminf B(a,Tn ) and B = limsup B(a,Tn ) Then for any 7i € T and 72 e F •

there is a constant, c , such that for all b, ii(b) < cy2(b) As a consequence, for any Type II

distribution.

Proof. For 7 G T , define

0(7) = sup 7(6) < +00

0(7) = inf 7(6) >
IIMM

Then, for any 7 X
and 72 ,



1i(b ) < c"(7i) \\b
||
< -^T Ta(* ) » C * i2{b

)

£(72)

where c = c (ii)/c(n2) ; and, hence,

P{li(Tm -fi)>a } <P{ l2(Tn -(3)>c'a }

As a consequence, letting a * = c'a ,

'-lOg /»{£?,- >fl*}
B^(Tn,a)>B~(Tn,a )'-^v.- in ** / — "72

-logP{e, >a}
(2.5)

The result follows since the roles of 7X and 72 can be interchanged and since the limit of the

ratio of logs of probabilities in (2.5) tends to one for type II distributions.

Remark. For type I distributions, the ratio of logarithms of probabilities in (2.5) tends to

(c ') T
, and so tail behavior depends on the choice of 7 .

For 7 defined in terms of residuals, it is possible to define a corresponding M-estimator

whose tail behavior is determined by one-dimensional tail behavior. Using such an estimator,

one can obtain tail behavior with B > [(n-p + l)/2] for type II distributions. Such robustness

results will discussed further in Section 4.

LEMMA 2.1. Consider the criteria 7 defined by ix(b) = i*(\Xb\) =

1*(\x ib \,- '- j\xn b \) where 7*:/?+ —> R+- Let 7* and 7 be two such functions satisfying

(0 7*(f) is non-decreasing in each coordinate of r
,

(ii) 7*(r + s) < c ( 7(r ) + 7(5 ) ) for some constant c = c (X)

,

(Hi) There exists an estimator Tn ' minimizing t"( | Xb — Y
| ) over b .

Then, for any type II distribution,

P{l\\X(Tn
' -0\)>a }</>{7(kl)> |r} •

Proof: Using the triangle inequality and the conditions above,



P{ 7 '(| X(Tn ' -j3)\)>a)<P{ 1 \\ XTn
* -Y)\ +

| Xfi - Y |) > a)

<P{ci(\ AT/ -7)| +cTf(l A-/9 - r
|
) >«}

</>{2cr(i ^-ni)>fl>

= /> {7(kl)> £} .

This result can be used to show that there exists an estimator achieving

B > [(n-p + l)/2] in type II cases. This bound may be the best possible in general, and it

corresponds exactly to the best breakdown bound possible for affine invariant estimators (see

Rousseeuw and LeRoy (1987, p. 125)).

COROLLARY. Let 7 *(r) = r (p+1) {the (p+1)* smallest r,), and with k=[(n-p + l)/2]

let 7 = /(„_* +x j
(so that Tn * minimizes the corresponding k 01 largest absolute residual). Tlien

B(Tn ')>k .

Proof. Condition (i) is clear. For condition (ii), note that if (r + s)(p+1)
= a then

r, > a /2 or s, > a /2 for at least (n-p) indices. Whence, either /-, > a /2 for k indices or

Si > a/2 for k indices. Therefore,

(r + s)(p+i) < 2(r (n _Jk+1) + 5(n _jk +1 )) .

Condition (iii) follows from general results on S-estimators, so the Lemma holds. Further-

more, for some constant c ,

P{ klM+i)>fl }<c (P{e
{
>a))k

,

and the result follows from (2.4) and Theorem 2.1.

3. Tail Behavior of the Least Squares Estimator

The tail performance of the classical least-squares estimator suffers from the same sensi-

tivity to the tail behavior of F as its counterpart from the location model the sample mean.



10

THEOREM 3.1 Let Tn be the least squares estimator of in the model (2.1) with F satis-

fying condition (2.2). Let h = max,7^- = max,- Xi(X'X)~*Xi '.

(i) If F is of Type I with l<r<2, then

/T
1-r < liminf B{a,Tn ) < limsup B{a,Tn ) < h~*.

a—co a—>oo

(it) If F is of Type I with r = \, then

/T"
1/2 < liminf B (a,Tn ) < limsup B(a,Tn ) < /T"

1
.

(Hi.) If F is normal, then

limfl (a ,rj -**.
a—*oo

(iv.) If F is of type II, then

lim B(a,Tn ) = 1.

a —
» oo

Proof. Let H = X(X'X)~lX' be the projection (hat) matrix corresponding to X, and

suppose that h = h n . Recall that 0<h < 1 and Y
{
= x {

Tn = h
t
'Y, so we may write,

iVmax,|x,(7;-/?)|>a) = PoCmax.l^'n^)

> P (h l 'Y>a) > PQ(hY 1>a,hi2Y2>0, ,h ln Yn >0)

> PoiY^a/hXW* = (\-F{a/h~Wk)n-1
.

Hence,

limsup B(a,Tn ) < limsup
'

l°^\'F^ (3-D
o-KX3 o-k» -log (\-F(a))

for F of Type I this further implies,

limsup B(a,Tn ) < limsup ^SsJhl = ft-^ ( 3-2 )
o—^» a—»oo ha T

which gives the upper bounds in (i) and (ii), respectively. For F of Type II, (3.1) implies.
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limsup B{aJn ) < limsup
mXoZ(a lh ) = j. (3.3)
m log a

And, since the least-squares estimator has at least one positive and one negative residual, (iv)

follows.

On the other hand, if F is of type I with l<r<2, then, by Markov's inequality for any

€€(0,1),

/ymax,|.x
t
(rn -/3)|>a ) = P (max<

:
| Y, \ >a

)

< £ exp{(l-e)M 1-r
(max,|i>,|)

r }exp{-(l-e)M 1^a r
}, (3.4)

so if,

<£ exp{(l-e)Mw(max,|?
f |)

r}< C
e
< 00 (3.5)

then

-log /ymax,
I Yi |

>a ) > -log C e
+ ( 1 -t)bh

l^a T

and the lower bound in (i) follows. To prove (3.5) we may write

{maXi\tt \Y = max,-

1

h
t
Y\' < max,(||*,.yr||r

)'

< max,.(E^) r/*sm r < ft
r_1sin r

where 5 = r/(r-l)>2. Hence,

£ exp{( 1 -e)bh^ (max,-
1£ |

)'} < £ exp{( 1 -e)6 £ |
F* |

'

}

<(E exp{(l-e)b\Yln)n
. (3.6)

Using an integration by parts,

< £ exp{(I-0* l^iT) = -2jexp{(l-e)by')d(\-F(y))
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K

< 2fexp{(l-e)by
r )dF(y) + 2exp{(l -e)bK')d-F(K))

00

+ 2fr(\-e)by r-1(l-F(y))exp{(l-e)by')dy
K

K
< 2jexp{(l-e)by r )dF(y) + 2(l-F(^))exp{(l-€)^ 2

}

oo

+ 2fr(\-e)by r-1exp{-(e/2)by r )dy <C t
<oo.

K

for K such that l-F(y) < exp(-(l-e/2)6y r
) for y > K. This gives the lower bound in (i) and

(iii), respectively. Analogously, if r = l, then,

P (max,- 1 Y
%; |
>a ) < E exp{( 1 -e^/T^^max,- 1 t

t \
}exp{-( 1 -e)bh~1/2a }

and

max,-|£| =max
f
.|^r| ^"^Sl^l-

A
which gives the lower bound in (ii). Finally, if F is normal jV(0,<r*) then Y-X/3 has an n-

dimensional normal distribution NiO^H). Hence,

P(max,- 1 Yi |
> a ) > P (h 1

Y>a ) = l-^(aa-lh~1/2
)

and this give the upper bound in (iii).

Remarks. In the one-sample location model h = \/n and thus (iii) specializes to

Theorem 2.2 of Jureckova (1981) but in the linear model with leverage points h may be near

one and consequently tail performance would be very poor. On the other hand, for F of Type

II, the tail behavior of the LSE is always extremely poor. In effect, its tail performance with //

observations is no better than that with a single observation, that is, here the tail performance

is the same as the breakdown. In the balanced p -sample problem, h = p In, while for stochas-

tic designs h = Op
(p/n) under some regularity conditions, so the tail-performance bound n/p
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in the Gaussian case is suggested. In heavy tailed cases much better performance is possible

with robust methods of estimation to which we now turn our attention.

4. Tail Performance of Robust Estimators of the Linear Model

Given the poor tail performance of the least-squares estimator under heavy tailed (Type

II) conditions, it is useful to know whether better performance is possible from various robust

estimators. Since any amount of Type II contamination of a Type I distribution will yield a

Type II distribution, (Jureckova (1981)), the tail performance of regression estimators under

Type II conditions appears to be an useful quantitative assessment of robustness.

An upper bound on the tail performance of L-estimators of the regression parameter

based on regression quantiles (Koenker and Bassett(1978) and Koenker and Portnoy(1987)) is

based on the following result.

LEMMA 4.1 Suppose in the linear model (2.1), the design matrix, X, contains an intercept,

i.e. Xb = l n for some b, and the error distribution F satisfies (2.2), then for any th regression

quantile, B < [min{9,l-6)n] + 1.

Proof. If max,
| y, |

< \y \(k-i), then there exist at least k strictly positive or k strictly

negative residuals, but by Theorem 3.4 of Koenker and Bassett(1978), k < min{0,l-d}n. The

result then follows for either type of error distribution.

THEOREM 4.1. Let Tn be an estimator of the form.

ai

Tn = Jj(t)kt)dt

A
where 0(t ) is the regression quantile process, and J is a non-negative function which integrates to

one on [ao,a 1
]c(0,l). // F is either Type I or Type II, then

limsup B{a,Tn ) < [rm^a^X-a^n] + 1.

a—»oo

Proof. By the convexity of the measure of performance 7(6) = max,|,x,6
|
we have

P{l(Tn )>a) < P(max
}
i(/3j)>a) where the max is over the distinct regression quantiles on the
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interval [a »<*i]- Tne result then follows from the preceeding lemma.

Thus we find that the tail performance of the l x estimator may be as good as (n +l)/2, as

for example in the case of sample median. However, the lower bound on the tail performance

of the / x estimator is much more informative. To pursue this, we define m* to be the largest

integer m such that for any subset M of TV = {1,2,...,a? } of size m
,

E 1**1

inf flgM - > %
IMI=i El** I

i&t

(N\M will denote the complement of M with respect to N.) In the special case of scalar

regression through the origin m* + l is the smallest integer k such that for some subset K, of

size k, J] |x,- 1 > %£ |jc,-|. When the x.'s are equally spaced on [0,1], for example, this m*/n

tends to l-l/>/2 = .29289 as n-+oo.

LEMMA 4.2 For the l x estimator, B > m* + l for F of Type II.

Proof It suffices to show that if all but m < m* of the y's are bounded by 1, then the

/i-estimator will be uniformly bounded. By the triangle inequality,

El*-*.-* I > E 1**1 - E In I -(El** I -Ely.- 1)

N N\M N\M M M

= E 1**1 -El** I +£I*I-2E l.v,l.

N\M M N N\M

By the definition of w«, there exists c>% such that E l**l^ cEI**l and

El** I ^( 1_C )EI**I for all subsets A/ of size m<m*. Therefore,
M N

Ely.-** I -Ely. I
>(2c-i)EI**l -2E l.v.1

N N N N\M

So if |y,| < 1 for ieN\M, there exists a constant C such that if ||6||>C then

Ely.-** I -Ely. I
> o.

N N
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The proof may be completed by noting that the l x estimator is scale-equivariant so

max, \xtTn |
< C\y

I („_,„.) where \y !(»_„».) is the m.-th largest absolute y.

Lemma 4.2 may be extended to a broad class oC'ly-type" estimators characterized by p

functions such that for some K>0 and all u,

\
P(u)- \u\ \<K . (4.1)

In fact, all such li-type estimators have exactly the same tail behavior for a wide class of tail

criteria and for both type I and type II distributions.

LEMMA 4.3. Let /? be an M-estimator minimizing XM^* -*^) , where p satisfies (4.1).

Let /?! denote the l k estimator. Then there is a constant c such that

W-PA\< ^r- • (4.2)

Proof. Without loss of generality assume that /?i is unique; for otherwise the vector y

A
could be perturbed by a very small amount so that /? x is unique and the residuals (and hence

the objective function for p also) changes by a bounded amount.

Now, consider the objective function for the / x estimator and let h = (
/':

;c,-/?i =y,- }

.

From Kocnker-Bassett (1978), the directional derivative of the objective function at 3i m

direction b (with ||6||=1 ) is

-E s8nCv.- -Xifoxfb + £|x,6| > for all b .

For each b of norm 1, define the finite set E{b) and the function g(b) as follows:

£(£) = {€, =±1, i&'.-EiiXtb + £1***1 >0}

g(b) = min {-£«**** +E\Xib\ }
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It follows that for each b, there is a neighborhood about b on which g is continuous and

g(b)>0 . Let c = inf{ g(b): ||6|| = 1 } . Then c is a positive constant (depending only on the

design matrix). Therefore, using (4.1), for ||£ -px ||
> 2nK/c ,

E p(yi-XiP)> E\yt-xtfi\ -mc
1=1 «=1

> E |y.- -XiA\ + -— c - «a:

i=i c

> E p(y* - xM •

i=i

A A A
Hence, (since p minimizes its objective function,

|| p - px ||
< 2nK /c .

THEOREM 4.2. Following Theorem 2.1, let 7 € T 6e a rtorm 50 //7a/ in addition to posi-

tive, linear homogeneity,

l(a + b)< (n(a ) + i(b )) for all a ,b e R" . (4.3)

A A — A — A
Then B^P) = 5

1(/51 ) and B
n(P)

= 5
7(/3 1 ) , /or a«y M-estimator whose p-function satisfies

A
(4.1 ) for both type I and type II distributions. In particular, B(P) > m* + l for F of Type II.

Proof. From (4.3)

- liP - Pi) < iCP ~P)~ 7(& ~0)< iCP " Pi)

It follows from the proof of Theorem 2.1 that

\ 1Cp-P)-iCp l -P)\ <c\$4a<c*.

Therefore, the tail behavior B(P,a) differs from Bifida) by a factor

-log P{e>a-c')/-\og P{e>a) , which tends to 1 (as a—»oo ) for both type I and type II dis-

tributions.

Remark: Note that i(b) = max, |,x,6
|

satisfies the hypotheses of theorem 4.2.
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The following result establishes that this lower bound on the tail performance of

/

x-type

estimators is essentially the same as their (Donoho-Huber) finite-sample breakdown point.

THEOREM 4.3 For l± type estimators, m* + \ < m* < m<+2.

Proof. In fact, it has already been shown above that if there are only m* outliers, l y type

estimators will not break down. Thus, m* > m* + l.

By the definition of m., there exists a subset M of size w» + l and a vector ||fc ||
= 1 such

that £ \x
{ b Q \

<£|x,-6 l- Thus, for m = w«+2 there exists a subset M such that

£ l*i*ol < £l*i-*ol (with strict inequality). Let r)(b) = £|x,6 |
- £ \xtb |. Clearly,

N\M M M N\M

r}{b ) > 0, and rj(b c ) - rj(cb) = c 17(b). Suppose yt
= for ieN\M and y, = cx,Z> for ieM.

Then,

Sly.-^el = £ \Xib9 \ =E\x>b c \-Cr,(b ) = Yl \yi
\-Cr,(b ).

N\M M

On the other hand, for any bounded /?,

E \yt-xt0\ > E I* I

- £l*,-0l > E \yi\-n{maXi\ Xi W\\.
N

With sufficiently large c, we have £ |y,-x,A I
< E \y%~xiP\ f°r a^ bounded 0. This implies

there is a breakdown with m*+2 outliers. The extension to / x-type estimators follows from

Lemma 4.3.

Remark. This result strengthens the close link between tail performance of estimators

under Type II errors and their finite-sample breakdown point. This connection is further

developed below in the discussion of high-breakdown regression estimators.

There seems to be a common misapprehension about the / x
estimator that for fixed xi}

-

the / x method is very robust while for random x
i3

it is more fragile. Indeed, Donoho and

Huber(1983) remark that the breakdown point of the / x estimator is
xh when there is "corrup-

tion only in y". However, as the preceeding result illustrates, the breakdown point, and there-

fore the tail-performance, of the / x
estimator can be quite poor even for "fixed" designs. Even
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in the relatively favorable case of uniformly spaced x 's the breakdown point is roughly .3 in

the through-the-origin model.

While /i-type estimators can have rather poor tail performance, and consequently low

breakdown points, we shall show that the high breakdown estimators for regression recently

introduced by Rousseeuw(1984) and Rousseeuw and Yohai(1984) possess good tail perfor-

mance as measured by (2.3) when the error distribution is of Type II. We will focus on the

least median of squares (LMS) estimator proposed by Rousseeuw(1984) which solves

Min median{{y l
- x,6)2 ,

• • • ,(vn - xnb)
2
).

The breakdown point analysis of the LMS estimator is carefully carried out in Rousseeuw and

Leroy (1987). Following their terminology we shall say that the observations {(y,,;c,) 1=1/0

are in general position if any p of them give a unique determination of b {h ) = X(h )~ly (h ).

Some slight modifications of their argument for contamination of both v and X leads to the

following result for fixed design points.

LEMMA 4.3 For the LMS estimator with observations in general position m* = [n /2]-p +2.

The lower bound on the tail performance of the LMS estimator without restriction to

observations in general position is closely related.

LEMMA 4.4 For F of Type II, the LMS estimator has B > [n/2]-k + l, where k is the

smallest integer such that inf \x:b
\ lk \ > 0.

Proof. Since the LMS estimator is scale equivariant, it suffices to show that for some

constant C,

max|x,-rj < C|.y|(,H»/2|+*)

The order statistic |x,6| (fc) is continuous in b so \x
i
b\ {k) >c>0 for all ||6||»1. Or,

\ Xi b\ {k) >c ||* ||
for all ^

.
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Now, if there are only [n /2]-k possible outliers and all the other n-[n/2]+k observa-

tions (j''s) are bounded by 1, we must show that the estimator Tn is uniformly bounded by,

say K. This is true since for at least n-[n/2]+k residuals, \yt-

x

{Tn \
> c||7*n ||-l, which

implies that median |j/,—JC,-7iJ > 1 > median |v,| if ||rj| > 2/c. Therefore the bound on

||rn||canbeK=2/c.

If the observations are in general position, then k = p, and combining Lemmas 3.3 and

3.4 we have B > m*-\. In fact, a more careful analysis enables one to strengthen Lemma 3.4

and thus to prove

THEOREM 4.4. For the LMS estimator with observations in general position

B>m'=[n /2]-p +2.

Proof. (Sketch) Suppose initially,
| v, |

< 1 for all i = l,2,...n, then for some constant C,

||7"J| < C. Set M = sup max

|

yt
-x, Tn \

. This is also finite. Let V denote a p-\ -dimensional

subspace in Rp and let S(t) be the set of all x
{
whose distance to V is no larger than t. The

quantity 8 = xh'\x\{{t>§\#S{t) > p). Clearly, 6 depends only on the design points. If the obser-

vations are in general position, it can be shown that 6 > 0.

Finally, essentially the same geometric argument given in Rousseeuw and Leroy(1987,

pp. 118-119), implies that ||rj| < 3C+2M/6 for Tn obtained by using [n/2]+p-l "good" obser-

vations, i.e. \y{ \
< 1.

Remark. When the observations are not in general position, it can be shown that

m ' < [n /2]-k +2. In that case we still have that B > m'-\.

The lower bound for the tail performance of the LMS estimator may be extended to the

general S-estimators of Rousseeuw and Yohai (1984), which minimize an estimate of scale

s(r u * * *
>
rn) derived from

«"1

E/'(''iA) =Po

where r, = y,-x,^. Using the fact that
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a median
|
r, |

< 5(r l5
• • • ,rn ) < comedian |

r,
|

for some positive constants a and a l5 and from the proof of Theorem 4.4 it can be shown that

B > m*-\ for S-estimators when the observations are in general position (see He (1988) for

details).

An upper bound on the tail performance of the LMS estimator for error distributions of

Type II is given in the following result.

THEOREM 4.6 For F of Type II the LMS estimator has B < [n /2]+ 1.

Proof. Suppose n is odd, and set m=(n + \)/2. We begin by showing that for sufficiently

large A , < A < a ,

P(\y \(m)>a,\y \(m-i)>A) < P(\y
\ {m)>a,\y \ {m^)<A). (4.4)

In fact, for some combinatoric constant cn ,

P(\y\ im)>a,\y\ (m _1)>A)<cn(2-2F(a)r(2-2F{A))

and

P(\y\ {m)>a,\y\ (m-i)<A) = cn(2-2F(a)r(2F(A)-ir-\

So for fixed n, and A sufficiently large (4.4) holds. Next, we will suppose ||x,|| < 1 for all

/ = l,2,...,n and show that if \y\[m)>a and \y \(m-i) < A then ||Tn ||
> lk\y \(m)-A. Note that

for bounded ||6||, median |>',-x,6
|
> \y |(m )-||A||. Now, choose b such that for i correspond-

ing to
|
v

| (m) , r
t
- = lk \y \ (m )

and \\b
\\
= % \y | (m) . When ,xtl = 1, this can be accomplished by

setting b = (% \y | (m) ,0,
• • • ,0). For this b , and i such that | v,- 1 < \y l^^,

\yi-x t
b\ < |y| (m -ir||x,||M.

<A + 1
/2 |.v| (m ).

Hence, including |v| (m ),
|y,-x,6

|
< lk\y\(m)+A form subscripts and

median
|
>>,-*,• 6

1
< 1k\y\ (m) +A.
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Thus, if V*\y \(m)+A < \y |(m )-||6|| or, \\b\\ < %|y \(m)-A, the median residual cannot be minim-

ized at Tn ; and consequently, \\Tn \\
> % \y \(m)-A. Finally, from (4.4),

P(\v
\ (m)>a) = P(\y

\ (m)>a ,\y \ {m -i)>A) + P(\y
\ (m)>a ,\y l^^A)

< 2P(\y
\ {m)>a,\y \ {m-i)<A) < 2PQTJ > a/2-A).

and it follows that B < (n +l)/2 from the Type II behavior of F.

For n even, we take the median of the n ordered residuals {rf, • • • /-

n
2
} to be

%0"i?/a + rl+n/i). Let Zi=|v
\ {n/2) , z 2=\y \ lMn/2)

and z 3 = max|y (l) |. And argument similar to

that for (4.4) shows that

P(z 1 >a)< 2P(z 1>a,z 3 <A)

for sufficiently large A. It remains to show that when z x>a and z 3<A (as a becomes large

enough) the LMS estimator satisfies flrjl > a /4. For \\b\\>a/4, we have

median{r,2 } > %(z 2 + z| ) + ||^|p-||^||(z 1 +z 2 ). On the other hand, if we choose

6 = (%z 1 ,0, •••,()), then median{r,-2} < %(y4 z 2 + (zZ-KzJ2
) or %(z 2 +z 2

2
)-( 1

/4 z
2 + 1

/2 z 1z 2 )

One can then show that if ||6||>a/4, then (V4zf

+

1^z 1z 2 ) > ||6||(z 1z 2) which implies that

median{r,2 } cannot be minimized at Tn . Since P(\y
\{ n/2

)>a) < 2P(\\Tn \\>a /4) implies

B < 1+/7/2, the proof is complete.

Remark. The theorem also holds if Tn minimizes the median absolute residual instead of

the median squared residual. A further extension can also be made to Tn which minimize the

k-th largest absolute residual |r|(R_*). In that case, B < k+\. A special case is considered

above in the Corollary to Lemma 2.1 where k = [(n-p + \)/2]. Combining the lower bound

there with the upper bound here, we have in this case [(n-p + l)/2] < B < B < [(n-p + l)/2]+l

5. Conclusion

The results of the prececding section emphasize the close link, suggested in the introduc-

tion, between the tail performance of estimators and their finite-sample breakdown points.



22

Theorem 1.1 clarifies this relationship for a broad class of location estimators. In the regres-

sion context, the breakdown point of /x-type estimators is seen to be essentially the same as

the lower bound on their tail performance under heavy tailed error conditions. For the least

median of squares estimator, and indeed for the broad class of S-estimators as well as for the

least squares estimator, we find that tail performance is bounded below by the breakdown

point under Type II error conditions. Others, Donoho and Huber (1983), Hampel, et al.

(1986), and Rousseeuw and Leroy (1987), have made a persuasive case that the breakdown

point of estimators is an important "figure of merit" in the assessment of quantitative robust-

ness. The conjunction of breakdown and tail performance affords, in our view, a rewarding

new window on the robustness scene.

REFERENCES

Bahadur, R.R. (1967). Rates of convergence of estimators and test statistics. Annals of

Mathematical Statistics, 38, 303-324.

Donoho, D.L. and Huber, P.J. (1983). The notion of breakdown point. A Festschrift for Eric

Lehmann, P.J. Bickel, K.A. Doksum, J.L. Hodges, (eds.) Wadsworth: Belmont, CA.

Hampel, F.R., (1968) Contributions to the Theory of Robust Estimation, Ph.d. Thesis, Depart-

ment of Statistics, University of California, Berkeley.

He, X., (1988) Contributions to the Theory of Statistical Breakdown, Ph.d. Thesis, Department
of Statistics, University of Illinois,

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W.A. (1986) Robust Statistics:

The Approach Based on Influence Functions, Wiley: New York

Jure£kova, J. (1981) Tail behavior of location estimators, Annals of Statistics, 9, 578-585.

Koenker, R. and Bassett, G. (1978). Regression quantiles, Econometrica, 46, 33-50.

Koenker, R. and Portnoy, S. (1987). L-estimation for linear models. Journal of the American
Statistical Association, 82, 851-857.

Rouseeuw, P.J. (1984) Least median of squares regression Journal of the American Statistical

Association, 79, 871-880.

Rouseeuw, P.J. and Leroy , A. (1987) Robust Regression and Outlier Detection, Wiley: New



23

York.

Rouseeuw, P.J. and Yohai, V. (1984) Robust regression by means of S-estimators, in Robust

and Nonlinear Time-Series analysis, J. Franke, W. Hardle, and R.D. Martin (eds.)

Springer: New York.

Sievers, G.L. (1978). Estimation of location: a large deviation comparison. Annals of Statis-

tics, 6, 610-618.







iCKMAN
DERY INC.

JUN95
T...IW N. MANCHESTER.

INDIANA 46962







;
t

10


