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Quantile Smoothing Splines
1

Roger Koenker a and Pin Ng b

a Department of Economics, University of Illinois, Champaign, Illinois 61820, U.S.A.

b Department of Economics, University of Houston, Houston, TX 77204-5882, U.S.A.

Abstract

Quantile smoothing splines defined as solutions to

min XPaOv -g(Xi)) + XJ
q

\g "{x)\dx
geC

with pa (w) = (a -I{u < 0))w are proposed as a simple, nonparametric approach to estimat-

ing conditional quantile functions. We show that solutions, g, are parabolic splines, i.e.

piecewise quadratics, on the mesh {x\, ..., xn ), and may be computed by standard /i-type

linear programming techniques. At X = 0, g interpolates the a^ quantiles at the distinct

design points, and for X sufficiently large g is the linear regression quantile fit to the obser-

vations. The entire path of solutions, in the penalty parameter X, may be efficiently com-

puted by linear parametric programming methods.

1. INTRODUCTION

In practice nonparametric regression is virtually always the estimation of flexible

models for conditional mean functions. Some recent theory has advanced robustified

methods of estimating alternative measures of conditional central tendency, e.g., Cox

(1983), Utreras (1981), and Hardle (1990). But aspects other than the central tendency of

conditional distributions are frequently of substantial interest. What, for example, is the

seasonal pattern of extreme temperatures, water levels, or pollution readings? Are estimated

trends in mean incomes or SAT performance consistent with trends in extreme quantiles?

Efron (1991) has persuasively argued that regression percentiles have a critical role to play

in regression diagnostics for generalized linear models.
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discussions, and Esther Portnoy for pointing out the important Schuette reference. Research support from NSF
SES 89-22472 is also gratefully acknowledged.



Several authors have proposed methods for nonparametric estimation of such condi-

tional quantile functions. Troung (1989) following the nearest neighbor approach of Stone

(1977), Samanta (1989) and Antoch and Janssen (1989) using kernel methods and White

(1990) using neural networks have all suggested methods for nonparametric estimation of

conditional quantile functions. Extending the parametric methods for estimating linear

models for conditional quantiles of Koenker and Bassett (1978), Hendricks and Koenker

(1990) discuss sieve-type regression spline models and apply them to electricity demand
data. Cox (1988) and Jones (1988), reviving an idea of Bloomfield and Steiger (1983), have

suggested estimating quantile smoothing splines which minimize

£pa(y; -£(*/)) + X\(g "(x)?dx (1.1)

where pa (") = (ot-/(w < 0))u is the Czech function of Koenker and Bassett (1978). Here

the parameter as [0, 1] controls the quantile of interest, while X e R+ controls the smooth-

ness of the resulting estimate, thus generalizing the extensive literature on 1 2 smoothing

splines pioneered by Wahba (1990). This is an intriguing idea, and has also been mentioned,

for example, in Eubank (1988) and Utreras (1981) in the median Pi/2(w) = I w I case. How-
ever, the resulting quadratic program poses some serious computational obstacles. Obvi-

ously the computational virtues of the piecewise linear form of the first term of the objective

function are sacrificed by the quadratic form of the smoothness penalty.

One is thus naturally led to ask: "why not replace (g "(x))
2

in the penalty by

\g "(x) I
?" The median special case of this problem has been studied in a remarkable paper

by Schuette (1978) in the actuarial literature. We will show, expanding on Schuette's

discrete version of the problem using finite differences, that minimizing

R^[g] = ^a(yi-g{xd)^X\
l

\g'\x)\dx (1.2)

1=1
u

over g e C l

[0, 1] retains the linear programming form of the parametric version of the

quantile regression problem and yields solutions which are parabolic, i.e., quadratic, splines.

These quantile smoothing splines have several attractive features. Unlike the familiar l^-

smoothing splines, they are qualitatively robust to gross errors in the observations {>>;}.

Like the /2-case, as X —» the estimate becomes rougher: for A. sufficiently large the esti-

mate coincides with the bivariate linear regression quantile estimate, while for X in a neigh-

borhood of zero the estimate interpolates the 01
th

sample quantiles at each distinct design

point. As X increases the number of interpolated observations decreases monotonically,

indeed an important computational aspect of the quantile smoothing problem is that all of

the distinct solutions corresponding to distinct X may be found by performing a sequence of

simplex pivots following methods of parametric linear programming, in very much the same

manner that all of the distinct regression quantile solutions may be found by parametric

variation of a, see Koenker and D'Orey (1987).

2. MEDIAN SMOOTHLNG SPLINES

Given observations {(y,, x/) : i = 1, ..., n } with < X\ < ... <xn < 1 consider the prob-

lem of minimizing



R\[g] = j:\yi-g(xi)\+xl
1

\g~(x)\dx (2.1)

overg e C l
[0, 1] , the space of continuous functions on [0, 1] with continuous first deriva-

tive.

Definition. A function g : [0, 1] —» R is a parabolic spline with mesh

0=^0 <*i < ••• <xn <Xn+i = 1 if g € C 2
[0, 1] and g(x) is piecewise quadratic in the

intervals [jc,-, *, + i), / = 0, ..., n, that is , g has the form

g (x) = a,(jt - Xi)
2 + P/(x - x,0 + 7/ JC; ^jc < xi+1 i = n (2.2)

Theorem. There exists a parabolic spline £ which solves (2.1).

Proof. Suppose g solves (2.1). We will show that there exists a parabolic spline g such that

R[g]=R[g]' Suppose, provisionally, that sgn(g"(x)) is constant on the intervals

[jc/, Xj+i), i = 0, ..., n, so we may write

j'\g'\x)\dx = j:\gxxi+l)-g\xi )\

/=0
(2.3)

Note that we may set a, = xh\g '(x«+i) - g '(*i)V(*£+i ~^/) for ^ = 0, ..., « and determine the

remaining coefficients of g from the conditions

g(Xi+)=yi=g(*i+) i-h », n

and

g'0c,+) = P/=g'(xJ+) z = l, ..., n

The parabolic spline g thus constructed is in C l

[0, 1], since g was, and clearly achieves the

same value of R. Finally, note that if g " changes sign on an interval between knots, say

[JFjtX;+i), the same construction and the fact that \\f I > if implies that the resulting g

satisfies R [g] < R [g] which contradicts our hypothesis that g
"
could change sign.

Having established the form of the solution to (2.1), it is straightforward to develop an

algorithm to compute g. Using (2.2) the penalty becomes

\l\g'Xx)\dx=2±hi\ai\.

where h\ =a:, +1 -xt
, i = 1, ..., n-\. Note that like other smoothing spline problems g must

be linear in the exterior intervals [0, X\) and (r„, 1], since otherwise, the penalty could be

reduced without affecting the "fidelity" term. From the continuity conditions

a.
i
h} + p i

h
i +yi

=yi+l

2a,A + P,
=

P, + i

* = 1, ...."-2

eliminating the P/'s we have

Y1+2-Y1+1
a

(
/2

/
+ a/+1 /2, +1 =

hi+\

Yi+i ~li

hi

i = 1, ..., n-2.

Including the exterior segments [0,X\) and [xn ,\] we have 3(n+\) free parameters and In

linear continuity constraints plus the 2 conditions that Oq = an = 0, which leaves us with

n+\ free parameters. Thus, given the Y,-'s we have one "free" a,-, say, cci, and we may
rewrite (2.1) as



min Y.\y j
— A-/JC ,*0I

e e R"
+1

wherey' as (y'.0'
ll _i), 9'=(ai, yly ..., yn), X,=I(i<n) + Xf(i > n),

(2.4)

X =

(2/i-l)x(/i+l)

,-1A=HD~ l
B, H = diag(h),

D =

1 • • • •

Ai A 2

h 2 h 3

/!n _2 /in _i
(n-l)x(n-l)

and

B =

10
h\

l

-(Ki
l

+hi
x

) h 2
l

-(hi
1 +h~3

l

) /zj
1

hi
1

-1 -1
h-l2 -(hnll+hnU) h~U

(n-l)x(/i+l)

Clearly, (2.4) is a conventional / j -regression problem and can be solved with conventional

software; an 'S' function (Becker and Chambers and Wilks (1988)) to accomplish this

appears in the Appendix.

Once we notice that the median smoothing spline may be expressed as the solution to a

particular l± -regression problem, a number of other important features of the solution are

immediately apparent. We have an /j regression with (n+l) parameters and (In - 1) obser-

vations; solutions must have n+l residuals which are zero (by complementary slackness)

and in our case^ these zero residuals correspond to either (i) exact interpolation of an obser-

vation, so v,- = Yi or (ii) linearity of g in a particular subinterval of the design mesh, so a,- =
for some i. Obviously, the parameter X controls the relative "advantage" of these two alter-

natives. When X is sufficiently large all the a,- will be zero and the solution will correspond

to the bivariate linear /pfiL When X is sufficiendy small all n observations will be



interpolated, and all but one of the a,-'s can be non-zero.

As in any smoothing problem, choice of "bandwidth" — here represented by the param-

eter X — is critical. For median smoothing splines and quantile smoothing splines in gen-

eral, this problem is ameliorated by the fact that the whole family of solutions to (2.1) for

X e [0, «») may be easily found by parametric linear programming. Suppose at some X - Xq

we consider the solution g satisfying y,- =g(x,-) =?/, i = 1, ..., n. As X increases from ,

this solution remains optimal as long as the subgradient condition

-Xj <
( ZjgnQi - XiX$)XiXiX~h

l

)j < Xj ^ ^

holds. Here, following Bassett and Koenker (1978), we use h to index n+\ element subsets

of K = { 1, 2, ..., In- 1 }, h =K-h, and Xh denotes the submatrix of X with row indices in

h. Noting that X; = 1 for ieh\, and for ieh 2 , it follows that sg/i (y/-k/Jt/9) = sgn (-/4;.9)

since X>0, equation (2.5) may be rewritten as

Xj < rj + SjX <Xj j = 1, ..., n+l

with n and Sj the yth elements of the vectors:

r= ^sgniyi-x^XiX'h

S= Zsgn(yi-XiQ)XiX~h
l

ieh 2

where we have decomposed h =h\Kj /i 2 with ^ c{l, ..., n) and h 2 c {n+l, ..., 2/i— 1 },

so the next X is

X\ =min{ min{max{X<), (l-r
;
)/5

;
-, -(l+r

;
)/5

; } }, min{max{^, -rj/(l+Sj), r
;
/(l-5

;
)}}}.

;'e/i, jeh 2

Continuing this iteration until Xm+ \ -Xm yields all distinct solutions to the problem (2.1)

with the solution for X > Xm corresponding to the linear / 1 fit to the observations. An impor-

tant implication of this fact is that we may initially solve the simpler linear l\ problem

corresponding to X = «» and gradually relax the roughness penalty with a sequence of sim-

plex pivots, thus avoiding a direct solution of the potentially rather large problem (2.4).

Each "click" to a new solution involves a single simplex pivot of an extremely sparse

constraint matrix, and hence solving (2.1) for a broad range of X appears quite feasible. One
interesting aspect of the way that solutions y(X) depend upon the penalty parameter X con-

cerns the number of interpolated points. In the l 2 smoothing spline literature much has been

made of the "effective dimensionality" or "degrees of freedom" of the estimated curves

corresponding to various X. Such measures of dimensionality are usually based on the trace

of various quasi-projection matrices in the least-squares theory. See Buja, Hastie and

Tibshirani (1989) for an extensive discussion. For the median smoothing spline the connec-

tion is more direct in the sense that there is an explicit trade-off between the number of

interpolated points and the number of linear segments. Since "reasonable" smoothing sug-

gests that the number of interpolated points is small relative to n, it is probably sensible to

start the parametric programming at the linear / \ -solution rather than at X = 0.

If the design is in "general position" so no two observations share the same design

point, there must be at least 2 and at most n interpolated V/'s. Call this number p\. Clearly,

Px is a plausible measure of the effective dimension of the fitted model with penalty



parameter X, and n -p\ + 1, which corresponds to the number of linear segments in the

fitted function, is a plausible measure of the degrees of freedom of the fit Such decomposi-

tions might be used in conjunction with the function R [|] itself to implement data-driven

bandwidth choice, for example, along the lines of Akaike (1974) or Schwarz (1978).i

3. QUANTILES AND OTHER EXTENSIONS

Smoothing splines for other quantiles may be estimated by replacing the I
*

I 's in the

fidelity term with the Czech function, as in (1.2). It seems natural to maintain the sym-

metric form of the penalty term. For a fixed quantile the entire path of solutions in the

penalty parameter X can, again, be found by methods of parametric linear programming.

Likewise for X fixed the entire set of distinct solutions for a e [0, 1] may be found by simi-

lar methods.

A simple approach to inference using these methods may be developed along the lines

suggested in Hendricks and Koenker (1990) for regression splines. For a given choice of

quantile, a, and penalty, X, we may easily compute the estimated quantile functions for

a±h, X, providing a tolerance band for g a ^. A Siddiqui (1960) estimate may then be com-

puted at each design point for the sparsity function and used to construct an estimate of the

covariance matrix of 0„.

There are a number of intriguing extensions incorporating further constraints. Mono-

tonicity and convexity of the fitted function g may be readily imposed by imposing further

inequality constraints on the parameters of the problem, using the variation reducing proper-

ties of splines developed in Schumaker (1981). See Ramsey (1988) for a discussion of some

applications of these ideas to the h smoothing spline case. Note however that while adding

such inequality constraints to the 1 2 problem results in a significant increase in complexity

adding linear inequality constraints to the quantile smoothing spline problem does not alter

the fundamental nature of the optimization problem to be solved.

Finally, there is the extension of these methods to multivariate settings where the addi-

tive spline models of Buja, Hastie and Tibshirani (1989) and others naturally suggest them-

selves. Clearly the nonlinear character of the present smoothers vitiate the attractive itera-

tive "backfitting" algorithms available in the /2-case. But feasible estimators may still be

possible using a limited number of simplex pivots from an initial linear (in covariates) quan-

tile function estimate.

Consideration of the asymptotic performance of quantile smoothing splines raises

some challenging problems which we hope to address in future work. Unfortunately, it

does not appear easy to adapt the asymptotic theory of /2-smoothing splines to the present

case. However, the asymptotic linearity results of Cox (1983) for M-type smoothing

splines, if extendable to the penalty, may suggest a way forward. The recent work of [

White(1990) on neural network models for conditional quantile functions appears to offer a

relatively straightforward approach to consistency for quantile smoothing splines.



4. SOME PICTURES IN LIEU OF A CONCLUSION

In Figure 4.1 we illustrate several estimates corresponding to various X's of the median

smoothing spline for Example 1 of Schuette (1978) which is a problem in actuarial gradua-

tion, i.e. smoothing of life tables. These figures match closely, but not exactly, Schuette 's

finite difference calculations reported in his Table 2. The interpolating nature of the solu-

tions is immediately apparent in the Figure.

Figure 4.1: Median Smoothing Splines for Schuette's Example 1

In Figure 4.2 we illustrate several estimates of the median smoothing spline for the

"motorcycle data" of Schmidt, Mattem and Schuler. See Hardle (1990) and Silverman

(1985) for discussions of li smoothing spline analyses of this data set. There is clearly

some increase in dispersion in y for x e [30, 40] and one noticeable difference between

these median estimates and the mean estimates is the reduced sensitivity of the former to the

outiying points below the curve. Another aspect of this data set which perhaps deserves

some comment is the fact that there are multiple observations at some design points, which

we have assumed away in the treatment of Section 2. This is rectified in the S functions

given in the Appendix in the following simple fashion. Knots are placed at each distinct x
observation, and we parameterize the spline by the values it takes at those knots, and the

value of second derivative in the interval between the first two knots. Obviously, the iden-

tity matrix in X must be replaced by a block diagonal matrix with columns of l's in the

diagonal blocks. It is this structure which implies as we noted in the introduction that the

X = interpolate solution passes through the sample quantiles of the distinct design points.

Of course, if the x\ are all distinct then we have a fully interpolative solution. An alternative

to this approach which has been extensively explored in the spline literature is to introduce

multiple knots at the same design point which then has the effect of relaxing the continuity

requirement on the function and its derivative. We note in conclusion that the number of



interpolated points, p\ y for the 3 illustrated curves is 41, 26, 23 for X = .5, 3, 10, respec-

tively. Results of Portnoy (1984) and Welsh (1989) suggest thatp 2
//i must tend to zero for

consistency, and this suggests since n = 133 here that even the X = 10 estimate may be

undersmoothed. Clearly, a salient advantage of this approach over the more straightforward

fixed knot regression spline approach is that the data is allowed to choose regions in which

the shape of the function changes rapidly.
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Figure 4.2: Median Smoothing Splines for Motorcycle Data

Finally, in Figure 4.3 we illustrate quantile smoothing splines for three distinct quan-

tiles: a = .1, .5, .9. The smoothing parameter X is chosen to be 10 for all three estimates,

although one might still argue that the resulting curves are undersmoothed. Clearly, these

estimates reflect substantial heterogeneity in the conditional distribution of y over the

observed range of x, thus vindicating the methods to some extent. Clearly, it is exactly this

sort of nonhomogeneity that we would hope to identify with quantile methods. The compu-

tations for Figure 4.3 were done using a modified version of the regression quantile routine

described in Koenker and d'Orey(1987) which implements the parametric programming

aspect of the bandwidth selection. We hope to report further on this algorithm at a later

date.

One feature of Figure 4.3 which is quite striking is the "near-piecewise linearity" of the

estimated curves. The L\ roughness penalty is perhaps too complaisant about the sharp

elbows of g, allowing g " to be large as long as this doesn't occur over long intervals. One
possible response to this phenomenon is to restrict the number of knots to a more regular

mesh. Another possible response is to replace the L\ penalty with an L„ penalty which

effectively controls the supremum of g "(
•
). This problem too falls within the linear pro-

gramming framework and we are currently exploring algorithms for its solution.
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Figure 4.3: Quantile Smoothing Splines for Motorcycle Data
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5. APPENDIX

"llssh"<-
function(x, y, w, lambda)
{

^Compute 11 smoothing spline with penalty parameter lambda
jjSolution is a quadratic spline:
# g(x) = a_i * (x - x_i) A2 + b_i * (x - x_i) + c_i
IInputs:
# x—explanatory variable
# y—explained variable
# w—weights
# lambda—penalty parameter
^Outputs

:

# xun—ordered vector of x with no duplicate values
# g—smoothed value at each design point with
# g[l] - a_l, g[i+l] = c_i
5

ny <- len(y)
ox <- order (x)

xun <- unique(x[ox])
h <- diff (xun)
nh <- len(h)
D <- diag(h, nrow - nh)
D[row(D) — col(D) + 1] <- h[l:(nh - 1)]
D[l, 1] <- 1
B <- diag(l/h, nrow - nh)
B[row(B) — col(B) + 1] <- - (l/h[l: (nh - 1) ] + l/h[2:(nh)])
B[row(B) — col(B) + 2] <- l/h[2:(nh - 1)]
B <- cbind(c(0, l/h[l], rep(0, nh - 2)), B)
B[l, ]

<-
B <- cbind(0, B)

B[l, 1] <- 1
A <- diag(h) %*% solve(D) %*% B
X <- matrix(0, ny, nh + 1)
X[cbind(l:ny, category(x[ox])

) ] <- 1 #fidelity part of design matrix
X <- rbind(cbind(0, diag(w[ox]) %*% X), lambda * A) #the whole^ matrix
return(x - xun, g = llfit(X, c(w[ox] * y[ox], rep(0, nh) ) , int = F)

$

coef)

"qspline"<-
function(x, g, z)

{

#compute quadratic spline at points z given knots at x
# Inputs:
# x—unique vector of ordered explanatory variable returned from
# llssh(x,y,w, lambda)
# g—smoothed value at each unique design point, component returned
# from llssh(x,y,w, lambda)
# z—points where smoothed values are desired
#Output:
# return function values at points z

8

BIG <- le+301
n <- len(x)
x <- sort(x)
h <- c(0, diff(x))
a <- rep(0, n + 1)
a[2] <- g[l]
g[l] <- g[2]
b <- rep( - a[2] * h[2] + (g[3] - g[2])/h[2], n + 1)
for(i in 3: (n + 1) ) (

b[i] <- (2 * (g[i] - g[i - l]))/h[i - 1] - b[i - l]

)

a[3:n] <- diff(b[3:(n + l)])/(2 * h[3:n]J
k <- cut(z, c(x, BIG)) + 1 #obtain bin numbers for z

k[z <= x[l]] <- 1
x <- c(x[l], x)
dz <- z - x[k]
return(g[k] + b[k] * dz + a[k] * dz A

2)
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