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ABSTRACT

In this paper, we consider the FMS planning problems of forming machine groups-and

assigning operations to these groups. An open queueing network representation of an

FMS is used to show that, under total pooling, the grouping configuration which

minimizes mean job flow time is one in which machine groups are maximally

unbalanced and the larger groups are utilized more heavily.

Three grouping configurations - no pooling, partial pooling and total pooling, and three

loading objectives are used for generating a variety of system configurations. A
simulation experiment is used to study the impact of parameters such as system

utilization, machine unreliability, batch size, and variation in operation processing times

to compare the performance of these configurations. Experimental results show that

the detrimental impact of these factors on mean job flow time can be reduced by

partial pooling of machines, aggregating operations of a job to be performed at the

same machine, and maximizing the sum of operation duplications. In particular, partial

pooling of machines is both superior and robust across a wide range of values that

these system parameters take.
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1 Introduction

Greater product proliferation and market fragmentation, and shorter product life cycles have

made firms increasingly aware of the importance of manufacturing flexibility. Unlike con-

ventional manufacturing methods, programmable automation with computer-controlled and

versatile machining and assembly capabilities promises an effective solution to the simultane-

ous requirement of manufacturing efficiency and process flexibility. Consequently, the design

and operation of flexible manufacturing systems (FMSs) and the definition and classification

of production flexibility are subjects of growing interest among researchers and practitioners

alike.

The manufacturing issues faced in an FMS can be categorized into: i) Design problems,

ii) planning problems, and iii) scheduling and control problems. FMS design problems ad-

dress the long term issues relating to the system, and they include decisions regarding the

selection of part types to be produced in the system, selection and layout of machine tools

and the material handling system, design of buffers and the computer control architecture.

FMS planning problems comprise resource allocation decisions during pre-production sys-

tem setup. They include selecting the subset of part types for imminent manufacture from

among the set of all part types that the FMS can produce, determining the ratio in which

these part types will be manufactured concurrently, the assignment of pallets, fixtures, etc.

to these part types, and the allocation of operations and cutting tools to individual machine

tools. Because the operation of the machines in an FMS are tightly coordinated, the plan-

ning decisions play a critical role in determining the overall effectiveness of the system. FMS

scheduling and control problems relate to the execution of orders and include the determina-

tion of part input sequence, the part processing sequence at each machine, and monitoring

the actual system performance and taking the necessary corrective actions.

Much of the effectiveness of an FMS is derived from the versatility of its machines and

the consequent part routing flexibility. Providing alternative routes for a part through the

system renders it less susceptible to disruptions such as machine failures. The ability of a

operation to select a machine in real time based upon the current system status also reduces

part flow time relative to a conventional system in which each operation is typically assigned



to only one machine. The number of such alternative part routes is determined by the

objectives considered at the planning level and the resulting system configurations.

The objective of this paper is to evaluate alternative configurations, and to understand

how their relative performance depend upon the underlying system characteristics. This is

done in two stages. First, we consider several planning objectives, and use a mathematical

programming model to determine machine configurations corresponding to these objectives

under some simplifying assumptions. Next, we use an experimental study to extend the

analytical results to a more general system. We also investigate the robustness of these

configurations under varying degrees of system disruptions. The performance measure used

in this study is average part flow time.

Previous research on dynamic FMSs is based primarily on queuing theoretic approaches.

Buzacott and Yao (1986) present an excellent survey of this literature. Studies which address

closely related issues include Stecke (1983), Stecke and Solberg (1985) and Stecke (1986).

These investigations model an FMS as a closed network of queues, and they derive the

optimal machine grouping configurations for the objective of maximizing system throughput.

The underlying result of these studies is that under certain service disciplines and operation

processing time distributions, the part production rate is maximized by pooling machines into

unequal groups and assigning appropriately unbalanced workloads to these groups. Stecke

(1983), in addition, considers various operation assignment objectives appropriate in an

FMS. Stecke (1986) presents a hierarchical framework for implementing these objectives.

Shanthikumar and Yao (1987, 1988) show that the throughput of a group is concave in the

number of machines. This results in an efficient heuristic algorithm for assigning a given

number of machines to individual groups.

A parallel body of research addresses the allocation of operations to machines in a static

FMS environment. Ammons, Lofgren and McGinnis (1984), Chakravarty and Shtub (1984),

Kusiak (1984), Rajagopalan (1986), Berrada and Stecke (1986), and Hwang (1986) present

mathematical programming approaches to solve this problem for various objectives. How-

ever, because of the static nature of the problem considered, they do not explicitly address

the impact of system utilization levels and unexpected disruptions.

The paper is organized as follows. In §2, we develop a general formulation of the min-
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imum flow time (MMFT) problem. Given the complexity of this problem, we decompose

it heuristically into two subproblems — the Machine Grouping Problem and the Machine

Loading Problem. In §3, we model an FMS as an open network of M/M/c queues to derive

the characteristics of an optimal solution to the machine grouping problem. These results

are used in §4 for formulating the machine loading problem and for generating various sys-

tem configurations. In §5, we present an experimental investigation of these configurations

which additionally addresses the impact of system uncertainties arising on account of ma-

chine failures, variation of processing times, and demand variations. We conclude in §6 with

a summary of the main results obtained in this paper.

2 FMS Planning Problem

We consider an FMS consisting of M machines. Let N be the number of different part

types produced in the system. These part types arrive randomly at the system; a given part

type requires a series of operations to be performed in a specified sequence. Each operation

can be assigned to one or more machines by ensuring that the tool required for processing

that operation is available at the machine(s). Each machine has a tool magazine of limited

capacity. For simplicity, we assume that each operation requires one tool, and tools are not

shared among operations.

The objective of the pre-production setup problem is to assign operations to machines

such that the expected part flow time is minimized.

We define the following notation:

rij : Number of operations in part type j, j = 1,2, . .
.

, JV,

Pij : Processing time of operation i in part j, j = 1,2, ... , iV; * = 1,2, . . . , rij,

pm '• Utilization of machine m,m = 1,2, ... ,M,

Wm : (Steady state) average time spent by a part type at m, m — 1,2,..., M,

Tm : Tool magazine capacity of machine m, m = 1,2, ... , M,

\ J
: Arrival rate of job ;, j = 1,2, . .

.
, iV,

A : Cumulative arrival rate at the system = Y2jL\ ^ J
>

x ljm = 1, if operation i in part type j is assigned to machine m, zero otherwise.



The minimum mean flow time problem can then be formulated as:

(MMFT1)

subject to

^tI^E^E 1^ (i)
A m= l j=l t=l

M
Lij< £ XHm < Uij^iJ (2)

m=l

££*,>> <r",Vm (3)

N »j

Pm = Y^jJ^PijXijm (4)

j=l «=1

. 0<pm <l,Vm (5)

Xijm € {0, l},Vi,;',m (6)

Equation (1) expresses the expected part flow time as the sum of the time spent by each

operation at the machine to which it is assigned. Equation (2) ensures that the number of

duplicate machine assignments for a given operation lies between the lower bound L tJ
and the

upper bound Utj. [These bounds are prespecified.] Equation (3) relates to the constraints on

the tool magazine capacity. Equation (4) measures the utilization of any machine in group

g. Finally, Equations (5) and (6) specify the range of valid machine utilizations and the

binary nature of the problem variables respectively.

This formulation makes three simplifying assumptions. First, we assume that all machines

can process any of the YljLi n j operations. Second, we assume that each operation requires

one cutting tool which occupies one tool slot in the tool magazine, and these tools are not

shared among operations. Third, all machines are considered to be equally efficient in terms

of the operations processing times. The first assumption can be relaxed quite easily. We

make this assumption primarily to simplify notation. It is also possible to relax the second

assumption if each tool occupies a given number of tool slots, there is no tool commonality,

and no saving results in the number of tool slots used resulting by assigning two or more

tools of given types to the same tool magazine.

(
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MMFT is a nonlinear 0-1 programming problem which is difficult to solve optimally. We

decompose it heuristically into two subproblems — the Machine Grouping Problem and the

Machine Loading Problem which are solved iteratively.

3 Machine Grouping Problem

It is possible in many FMSs to partition the available machines into groups of identically-

tooled machines. All machines in each groups are, therefore, capable of performing the same

set of operations. In addition, if each operation is assigned to only one group, the machines

are .said to be totally pooled into groups. In the machine grouping problem (MGP), we

determine the number of groups G, the assignment of machines to individual groups, and

the optimal group utilization levels.

Alternatives to total pooling include no pooling and partial pooling. No pooling refers to

the configuration in which all machines are tooled differently, and each operation is assigned

to only one machine. A conventional job shop is a typical example of no pooling. No two

machines are tooled identically in partial pooling as well. However, in this configuration, an

operation can be processed at more than one machine.

Clearly, in both no pooling and partial pooling configurations, MGP is solved trivially

because G — M. We now discuss MGP for the total pooling case; first, however, we restate

the problem appropriately.

(MMFT2)

i A/ N n
}

min tE^E AJE^ (
?

)

A g=l ;=1 t=l

subject to
M
Y^Xijg = l,V«',j (8)

3=1

M M
EEvm9

= M (9)

3=1 m=l

N ")

HT, X*J9<T
m
ymg

yT7l, 9 (10)

J=\ »=1



^ = ^M— (11)

0</>f <l,fy (12)

XijgiVmg € {0, l},Vz,j,0,m (13)

This formulation introduces the additional variable ymg which equal 1 if machine m is as-

signed to group g, and is zero otherwise. Equation (8) ensures that each operation is assigned

to only one machine. This constraint replaces Equation (2) in problem MMFT1. Equation

(9) ensures that all M are assigned to groups. Equations (10)— (13) parallel Equations (3)-(6)

in MMFT1 with subscript m replaced by g wherever appropriate.

MGP considers MMFT2 at an aggregate level by combining all part types into a single

part type. We use a Jacksonian, open queueing network to model the FMS. Let the FMS

comprise G groups such that group g consists of mg machines. Clearly, G < M, and

E£-i mg
= M. Let the (transition) probability that a part that has completed processing

at group i will next visit group j be given by ir^. The probability that the part will exit the

system after finishing at group i is 1 — Ylf=i wij- Let A be the external part arrival rate at

the system and X
g be the average part arrival rate at group g. From traffic balance, we have

G

^9 = 75 + z2^i*ig,9 = li • • • >G
t=l

where ~)
g

is the external arrival rate at group g. We define q
5 , the visit ratio at group g, as

the average number of times a part is processed at g. In addition, let 1/ fig be the average

processing time of a part at g, 1/// the average part processing time, Lg the average number

of parts at group gand T
g
the maximum number of operations that can be assigned to groups

9-

We have the following identities:

n - A
' i

P9 = m
gng

<*s
= A

s
/A = mgpgng /\ (14) 1

1
G

1
G

~ = L, a9/^9 = TE m9p9 (
15

)

Li . A .r 5=i 5=1

We also have the following relationships between the variables in MMFT and MGP:



Z!j= l
*J

2J t=l x ijg w

M
m9= J2 y<*9i v#

m=l

i z^i^E7iiPijxij9
,V<7

ftp EjLl Aj E?=i *ya

In addition, because all machines within a group are tooled identically, the maximum

number of operations Tg that can be assigned to group g is given by

T
g
= rmn{Tm

\ ymg = 1}

The expected part flow time can now be restated as

i G N '

*j

MFT = y£ W,£ A'" X> -,

5=1 J=l «=1

3=1

1
G

= fc^5=1

For a given G, the machine grouping problem MGPq can then be formulated as:

1
G

min j22Lg(mgi pg ) (16)

5=1

subject to

G

Y* Q9lN = l ll* (17)

5=1

c*
g
<T9

,Vg (IS)

G

Y,m 9
= M (19)

5=1

0<pg
<l,Vg. (20)

Using Equation (15), we rewrite Equation (17) as

G

Y. m9p9 = A/V = Mp. (21)

5=1



where p = jj- is the overall system utilization. Note that the right hand side of the above

equation is a constant for the planning level decisions.

The solution approach to MGP consists of first finding the optimal number of groups G"

.

At the next step, we solve MGPq* to obtain the optimal partition m* = {m\,m\, • • • , mG .

)

of machines into groups, as well as the group utilizations p* — [p\, p^,- • • ,p*G.). To show

that these two steps can be considered independently, we use the following result.

Lemma 1 MFT does not decrease if any group g is decomposed into two subgroups g\ and

g'2, the other groups remaining unchanged.

PROOF: See Appendix 1.

Lemma 1 directly leads to the following result.

Theorem 1 MFT is minimized by minimizing the total number of groups.

This result holds independent of how the machines are partitioned into groups, and how

the workloads are allocated.

Even for known values of G, MGP remains quite difficult to solve primarily because of

the cumbersome expression relating Lg to pg and mg . In order to develop some characteristics

of the optimal solution, we first consider specific (feasible) values of rng ,g = 1,2, • • •
, G and

determine the optimal utilization levels p* corresponding to a given m. For the case in which

mi = m 2 = = mg, we have the following result.

Theorem 2 MFT is minimized for a system of machine groups of equal sizes by allocating

balanced workloads to machines in each group.

PROOF: The proof is straightforward once we note that Lg is convex in pg , and therefore,

for equal-sized groups, MFT is a sum of identical convex functions.

However, for unequal-sized groups, the optimal group utilizations will depend upon the

number of machines in each group. In the following, we determine these utilizations for 3-,

4- and 5- machine systems ignoring tool magazine capacity restrictions, and extend these

results to the general system through Conjecture 1. [We omit the trivial case in which

G=l.]

8
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Three machines can be grouped in two ways: (1, 1, 1) and (1, 2). From Theorem 2 it

follows that MFT is minimized in the (1, 1, 1) configuration by providing equal machine

utilizations which are given by

p) =P= g-,£ = 1.2,3

and the resulting minimum mean flow time is

MFT'(l,l,l)=
1

J
±L,= 1

Ji T^- = ^-
*

S=l
A g=\ A Pg 1 P

For the (1,2) configuration, the minimum MFT is given by

In Appendix 2 we show that p\ and p\ are obtained by solving

(4 - \1p)p\ + (5 - 6/9 + 9p
2
){p

m

2 )

2 + (4 - I2p)(p*2 )

3 + 3{pl)
4 - 6p + 9p

2 = 0, and

p\ = 3p- 2p*
2

.

The resulting values of p\ and p\ are shown in Figure 1 for various values of p. Note that

P\ > P\ ^or a^ P- ^n addition, as p —* 1, p\
—* p\ —* p. MFT is minimized by providing

higher utilization to the larger group. However, as the overall system utilization increases,

the degree of imbalance reduces; in the limit, both groups have the same utilization.

INSERT FIGURE 1 HERE

Figure 2 compares the MFT values for (1, 1, 1) and (1,2) configurations. Note that

providing appropriately unbalanced utilizations to the two groups in the (1, 2) configuration

decreases MFT. The difference between these configurations increases with an increase in

overall system utilization.

INSERT FIGURE 2 HERE



Four machines can be grouped in 4 ways — (1, 1, 1, 1), (1, 1, 2), (2, 2) and (1, 3).

Similarly, alternative configurations possible in a 5-machine system are (1, 1, 1, 1, 1), (1, 1,

1, 2), (1, 2, 2), (1, 1, 3), (2, 3) and (1, 4). Figures 3 and 4 depict the MFT values obtained

under these configurations given optimal group utilization levels for 4- and 5-machine systems

respectively. These figures extend the result obtained earlier for the 3- machine system. In

addition, they bring out the relative impact of fewer groups and unequal group utilizations

independently.

INSERT FIGURES 3 AND 4 HERE

Consider, for example, the 5-machine system. MFT decreases as the number of groups

decreases from 5 to 2. For a given number of groups, MFT is minimized by maximally un-

balancing the group sizes. For instance, (1,1,3) is superior to (1,2,2) when G = 3. Similarly,

(1,4) is superior to (2,3) when G = 2. Figures 4 and 5 also show that reducing the num-

ber of groups is more effective than unbalancing groups sizes and allocating appropriately

unbalanced workloads.

These results lead to the following conjecture.

Conjecture 1 MFT is minimized by minimizing the number of machine groups, pooling

machines into unequal groups, and by allocating appropriately unbalanced workloads to these

groups.

Because of the cumbersome nature of the MFT function, it is difficult to verify the generality

of this assertion. However, it has been proved to be true for the several systems that we

have examined. Theorem 1 and Conjecture 1 parallel the conjectures stated in Stecke and

Solberg (1985) who studied the production rate function in closed queueing networks.

MGP then reduces to 1) determining the minimum number of groups required to process

all operations, 2) allocating the available machines to these groups such that these group

sizes are maximally unbalanced, and 3) determining the appropriate groups utilization levels.

These steps are now discussed.

If all machines have the same tool magazine capacity 7
1

, then the minimum number of

groups required is given by

(

i

i

Gm = Eti»ii

10



If all machines do not have the same tool magazine capacity, G* can be found by the following

procedure. Renumber all machines in the nondecreasing order of Tm . Then, G m
is the

smallest integer K such that

The optimal grouping configuration is given by

m* = (l,l,-..,M-C?* + l)

The optimal group utilizations are obtained by solving the following problem.

A L

5=i 1 - Pg
J

subject to

(Gm - l)/v+ (M -Gm + 1)pg- = A//x

Because G* is known, L(M — G" + 1,/>g«) can be expressed as a function of only p^.. This

problem can be solved in a manner similar to the 3-, 4- and 5-machine systems discussed

earlier.

4 Machine Loading Problem

Given the solution to MGP, the machine loading problem deals with the allocation of oper-

ations to individual groups such that deviations of actual utilizations from their ideal values

are minimized. This leads to the following formulation for the case of total pooling.

G*

min ^2\pg-Pg'\
3=1

subject to

f>i* = l,Vt\j (22)

j=\ «=i

11



(

d

/>, = -* (24)
TTlg

0<pa <l,Vg (25)

Sii*e{0,l},V*\j,s (26)

For the cases of no pooling and partial pooling, we replace subscript g with m. In

addition, for partial pooling we substitute Equation (22) with

G*

£<i< j>yi<0y.V*'.i (27)

5=1

Because of the combinatorial nature of the problem, an efficient solution is unlikely to

exist. We propose a heuristic solution approach which is a modification of the first fit

decreasing heuristic for the bin packing problem. The algorithm consists of the following

steps:

1. Initialization: a) Determine the target workloads gy g = 1,2, . . . , G*.

g
= mgpg ,g = 1,2, . . . ,G*.

b) Initialize the counters for the current workload, the remaining assignable workload,

and the remaining tool magazine capacity Tg for each group.

W9 = 0,0 = 1, 2,... ,G*

A9
= 0„<7 = 1,2,...,G"

T
g

= mmTm
,g = 1,2, ...,G".

meg

c) Form two lists of operations. For no pooling and total pooling, the primary list

consists of one copy of each operation, and the second list is empty. For partial pooling. 4

the primary list consists of L
tJ

copies, and the secondary list consists of Uij — L tJ

copies of each operation. Arrange all operations in both lists in the decreasing order

of Wij - XjPij.

2. Select the group g" with the largest A5/m5
. Break ties in favor of the group with the

largest rn
g

.

12
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3. Assign the operation i*j* at the head of the list of unassigned operations in the primary

list to g
m

, and update workloads and available tool magazine capacity.

wg
. <— Wg» + Wfj* ,

Ag
. +- A5

. - itfj.j.,

T9 <- T„-l.

If Tg = 0, eliminate group g from further consideration.

4. Repeat Steps 2-3 until all operations in the primary list are assigned.

5. Stop in the cases of no pooling and total pooling. For partial pooling, go to Step 6.

6. With respect to operation i*j* at the head of the unassigned operations in the secondary

list, find group g*, such that

&g- + Wi'j'
< j

m
g

*

I

A
s' ± ŵ -j- _ -

1 < A_ .i
r a I r q I

^ = arg max{—^j.
9 TTlg

If these conditions satisfied for any group, assign operation i*j* to group g" and update

workload and remaining tool magazine capacity as shown in Step 3. Otherwise, discard

all copies of operation i*j* from the secondary list.

7. Repeat Step 6 until the secondary list is empty.

In many systems, it may be appropriate considering other loading objectives in addition

to the objective of ensuring appropriate group utilizations. Following Stecke (19S3), we

consider two such objectives. First is the objective of minimizing part movements. This

objective is particularly useful for the case in which travel times are significant and/or the

material transporters are heavily utilized. In addition, this objective leads to an aggregation

of operations of a given job at any machine. Consequently, it has to join fewer machine

queues.

13



The formulation of the machine loading problem corresponding to the objective of mini-

mizing part travel (MLPMT) is given below.

min EEE I

Xij9 - X*+l,J9 I

5=1 J=l «=1

subject to

I pg
- p9 - |< e, V# (28)

and (22)-(26)

In this formulation, e denotes the maximum deviation from the ideal value permitted to

the actual utilization of any group.

The second objective considered is the maximization of the weighted number of operation

duplications; the assigned weights reflect the criticality of the individual operations. This

objective attempts to reduce system congestion by providing more alternative routes to

operations which have greater impact on the overall system performance.

Determining the criticality cy of a given operation i in job j is, however, difficult. If

processing times are a measure of criticality, then longer operations will be assigned more

often under this objective. On the other hand, if all operations are considered equally critical,

then this objective will lead to more duplications of the shorter operations. We consider the

relative merits of these two extreme scenarios in greater detail in §4.

The loading problem corresponding to the secondary objective of maximizing flexibility

MLPMF is formulated below.
G*

min V] cgXi-xj-^ljg

5=i

subject to

(22)-(26),(28)

5 Experimental Study

In this section we use simulation experiments to extend our investigation to a general FMS.

One objective of these experiments is to evaluate the robustness of the results obtained

14
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in the previous sections when the assumption regarding exponentially distributed operation

processing times is relaxed. Specifically, we now consider parts with deterministic processing

times. In addition, we measure the effectiveness of the various grouping and loading objec-

tives under different values of the system parameters and in the face of system disruptions.

The two system parameters that we study are system utilization level /?, and the coefficient

of variation of the operation processing times CVOPT. While the impact of p on MFT is

well known, different system configurations are likely to respond differently to a change in p.

In addition, the disruptive impact of system uncertainties depends strongly upon the level

at which the system is utilized.

Recent studies (see, for example, Monahan and Smunt 1989, Kochman 1989) show that

mean part flow time is affected significantly by the variability in the operation processing

times. While CVOPT can be considered as a surrogate for system disruptions, it merits

independent consideration because it affects the coefficient of variation of service times at

individual machines. An increase in CVOPT will result in larger MFT for any system. An

important measure of the effectiveness of any configuration is its robustness against changes

in CVOPT.

We consider two kinds of system disruptions. First is machine breakdowns. The degree of

unreliability of a machine is usually expressed in terms of its mean time to failure (MTTF).

[See, for example, Groff and Muth 1972.] Smaller the MTTF, greater the unreliability. The

second type of disruption that we consider is the variation in the batch size of a given part.

Such variations are caused, for example, by fluctuations in customer order quantity. In many

multi- stage manufacturing systems, they follow also as a result of variations in yield and/or

transfer batch sizes. From queueing theory (see, for example, Kleinrock 1975) that bulk

arrivals, especially in varying batch sizes, result in larger MFT.

Conway et al. (1967) note that one of the major benefits of providing routing flexibility

is that the system is less sensitive to the actual scheduling rule used. One of the major

objectives at the FMS planning stage is to simplify the decisions that need to be made at

the scheduling and control stage. Following this observation, we treat the insensitivity of

a given configuration to the quality of the scheduling rule used as another measure of its

effectiveness.

15



5.1 Experimental Design

i

We consider a dynamic FMS which produces ten part types to order; these orders arrive

randomly at the system following a Poisson process. The FMS consists of six machines. All i

machines are identical in the sense that they can process any of the required operations,

provided they are tooled accordingly, and the processing time of any operation is the same

across all machines. Each part type requires six operations with fixed processing times.

We ignore travel times between machines. In effect, we assume that parts are transported

instantaneously from one machine to another.

Grouping Configurations

Three grouping configurations — no pooling, partial pooling and total pooling are con-

sidered. No pooling results in group sizes of one. We assume that under total pooling three

groups are required. We consider the maximally unbalanced configuration (1, 1, 4), the

balanced configuration (2, 2, 2), and an intermediate configuration (1, 2, 3). Solving MGP

for (2, 2, 2), (1, 2, 3) and (1, 1, 4) configurations results in the optimal groups utilization

levels shown in Table 1 corresponding to various values of the overall system utilization p.

For the partial pooling configuration, we use L
tJ
= Uij = 2 in order to make it comparable

to the total pooling case with equal group sizes.

TABLE 1: Optimal Group Utilization Levels

p (1, 2, 3) (1, A 4) (2, 2, 2)

P\ Pi P3 Pi P2 P3 Pi = 92 — P3

0.1 0.008 0.074 0.148 0.002 0.002 0.149 0.1

0.2 0.044 0.173 0.270 0.026 0.026 0.287 0.2

0.3 0.111 0.276 0.378 0.084 0.084 0.408 0.3

0.4 0.203 0.382 0.478 0.174 0.174 0.513 0.4

0.5 0.313 0.487 0.571 0.288 0.288 0.606 0.5

0.6 0.438 0.589 0.661 0.418 0.418 0.691 0.6

0.7 0.572 0.694 0.747 0.558 0.558 0.771 0.7

0.8 0.712 0.796 0.832 0.702 0.702 0.849 0.8

0.9 0.855 0.890 0.917 0.850 0.850 0.925 0.9

«
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Loading Configurations

Alternative loading objectives discussed in §4 are used in conjunction with the grouping

configurations mentioned above to generate the system configurations listed in Table 2. Cl

through C5 are constructed by solving MLP for the three machine pooling cases. Cl is the

base configuration which corresponds to a conventional job shop. It is used primarily as a

benchmark to evaluate the relative performance of the other configurations.

TABLE 2: System Configurations Considered

. System Loading Level of Grouping

Configuration Objective Pooling Configuration

Cl MLP No Pooling (1,1,1,1,1,1)

C2 MLP Partial Pooling (1,1,1,1,1,1)

C3 MLP Total Pooling (2,2,2)

C4 MLP . Total Pooling (1,2,3)

C5 MLP Total Pooling (1,1,4)

C6 MLPMT No Pooling (1,1,1,1,1, 1)

C7 MLPMT Partial Pooling (1,1,1,1,1, 1)

C8 MLPMT Total Pooling (2,2,2)

C9 MLPMT Total Pooling (1,2,3)

CIO MLPMT Total Pooling (1,1,4)

Cll MLPMF Total Pooling (1,2,3)

C12 MLPMF Total Pooling (1,1,4)

Solving MLPMT results in configurations C6-C10 which parallel those obtained for the

MLP objective under each machine pooling scenario. Configurations Cll—C12 are obtained

by solving MLPMF for (1, 2, 3) and (1, 1, 4) groupings. Each of these two configurations

is further decomposed into two subconfigurations corresponding to the weights associated

with the different operations. In CllA and C12A, all operations are given equal weights.

This results in shorter operations being assigned to larger groups. Consequently, they are

duplicated more often. In CUB and C12B, longer operations are assigned higher weights.

This generates configurations in which the longer operations are assigned to larger groups.

17
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Four system utilization levels — 60%, 70%, 80% and 90% are considered. Operation

processing times are sampled from a uniform distribution to yield three levels — 0.0, 0.4,

and 0.8 of CVOPT. We consider three levels of machine unreliability by varying the mean

time to failure (MTTF) for each machine. An exponential distribution is used to represent

the time to next failure for any machine. MTTF is selected to be 0.0, 10 p and 5 p, where p is

the average part processing time, corresponding to the three levels of increasing unreliability.

In each case, the mean time to repair a machine is sampled from a uniform distribution with

mean 0.3*p.

Three levels of batch sizes are used in the study. In the first case, batch size is fixed at

1. In the second level batch size is sampled from the uniform distribution (3,7) while in the

third level batch size is sampled from the uniform distribution (6,14) with mean 10. Note

that in the two latter cases the ratio of the range to mean is the same.
i

Two scheduling rules — First-come-first-serve (FCFS) and Shortest Processing Time

(SPT) are used to measure the impact of routing flexibility on scheduling rule performance.

FCFS is used primarily to serve as a benchmark. SPT is widely regarded as an effective

heuristic for the mane flow time problem. Thus, a large difference between the FCFS and

SPT values for a given configuration implies that it is very sensitive to the quality of the

scheduling rule.

The method of replications is used to obtain the summary statistics. Each scenario is

replicated five times; within each replication, steady state statistics are obtained for over

4500 parts.

5.? Experimental Results

Impact of Grouping Configuration j

The reported values of MFT are normalized with respect to the average part processing

time. The first set of results corresponds to the impact of configurations C1-C5. Figure 5 a

shows the impact of CVOPT on MFT for these 5 configurations. Two results follow from

these graphs. First, the performance of partial pooling and total pooling relative to no

pooling improves with an increase in CVOPT. Second, partial pooling performs the best
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across all values of CVOPT and at all utilization levels. Once again, the relative superiority

of using partial pooling increases with CVOPT; it also increases with an increase in the

utilization level. Among the total pooling configurations, C3 is superior at low CVOPT;

however, as CVOPT increases, the unbalanced configurations C4 and C5 perform better,

especially at high utilizations. In particular, C5 is the best configuration at 90% utilization

and at CVOPT=0.8.

INSERT FIGURE 5 HERE

These configurations exhibit varying levels of sensitivity to the scheduling rule used as

shown in Table 3 for 90% utilization level. CI is most sensitive, and the impact of scheduling

rule increases with an increase in CVOPT. This is expected because as difference among

operation processing times increases, the impact of schedule quality increases. On the other

hand, C2 is least sensitive to the scheduling rule used. Its insensitivity does not depend upon

CVOPT. C3-C5 show varying degrees of sensitivity. In particular, the impact of using a

better scheduling rule increases for the unbalanced configurations C4 and C5 with an increase

in CVOPT. In particular, at CVOPT=0.8, the performance of C5 approaches that of C2.
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TABLE 3: Impact of Scheduling Rules

CVOPT Configuration MFT % Decrease

under under SPT

FCF SPT

0.0 1 3.46 3.46

2 2.40 2.40

3 2.45 2.45

4 2.72 2.72

5 3.11 3.11

0.4 1 4.50 3.49 22.6

2 2.44 2.29 6.3

3 2.90 2.57 11.4

4 2.88 2.68 7.1

5 2.97 2.89 2.7

0.8 1 8.25 4.75 42.5

2 2.69 2.52 6.0

3 4.38 3.33 23.9

4 4.31 3.04 28.8

5 4.14
1
2.77 33.2 |

<

«

Table 4 depicts the impact of machine unreliability. First, note that, in general, while

increasing the level of unreliability increases MFT, the percentage increase comes down with

an increase in CVOPT. This decrease is most prominent for the unbalanced configurations C4

and C5. Once again, C2 is the most robust configuration across all levels of unreliability, and

its relative superiority improves with an increase in unreliability. Among the total pooling

configurations, C3 is the most robust. As unreliability increases it results in increasingly \\

better values of MFT than both C4 and C5. Note that all groups have 2 machines in C3.

Therefore, if one machine fails, an alternative machine is available to process parts. At the 4

other extreme, C5 has two groups with one machine each. Hence, if any one of these machine

fail, the operations waiting at them are blocked.
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TABLE 4: Impact of Mach ine Breakdowns

CVOPT Configuration MFT under % In crease

Level over Level

1 2 Level 1 Level 2

0.0 1 3.46 4.61 6.41 33.2 85.4

2 2.40 2.80 3.37 16.5 40.3

3 2.45 3.41 4.94 39.3 101.7

4 2.72 4.94 6.86 81.9 152.4

5 3.11 5.04 9.38 62.2 201.6

0.4 1 4.50 5.91 8.40 31.2 86.5

2 2.44 2.86 3.40 16.9 38.8

3 2.90 3.95 5.56 36.5 92.1

4 2.88 4.10 6.52 42.2 126.6

5 2.97 4.38 6.94 47.7 133.5

0.8 1 8.25 10.77 13.92 30.5 68.6

2 2.69 3.08 3.58 14.9 33.2

3 4.38 5.64 7.70 28.7 75.9

4 4.31 5.92 8.31 37.5 92.8

5 4.14 5.78 8.89 39.5 146.9

The impact of varying batch sizes is shown in Table 5. Once again we notice that as

CVOPT increases the adverse impact of larger batch sizes decreases. C2 remains the most

effective configuration; however, its performance is closely matched by C3 at low CVOPT. As

CVOPT increases, the relative performance of C3 deteriorates. Interestingly, the unbalanced

configurations exhibit greater sensitivity to batch size, and they perform poorly as the batch

sizes increase. For example, while C5 is superior to C3 at batch size of 1 for CVOPT=0.8,

it is much worse when batch size increases to 10.
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TABLE 5: Impact of Batch Size

CVOPT Configuration MFT under % In crease

Batch Size over iBS = 1

1 5 10 BS = 5 BS = 10

0.0 1 3.46 8.29 13.92 139.6 302.4

2 2.40 7.54 13.50 214.1 462.5

3 2.45 7.57 13.51 208.8 451.5

4 2.72 9.20 15.86 238.6 483.9

5 3.11 11.18 18.75 259.8 503.1

0.4 1 4.50 9.77 15.31 116.8 239.9

2 2.44 7.55 13.46 208.8 450.4

3 2.90 8.02 13.70 176.8 372.9

4 2.88 8.88 15.19 208.5 427.6

5 2.97 8.90 15.31 199.7 415.3

0.8 1 8.25 14.27 19.83 72.9 140.2

2 2.69 7.79 13.80 189.9 413.3

3 4.38 10.00 16.10 128.4 267.6

4 4.31 10.87 17.72 152.3 311.4

5 4.14 10.24 16.58 147.4 300.3

i

i

Impact of Secondary Loading Objectives

Table 6 compares the performance of the configurations generated by solving MLPMT

with those obtained from MLP at 90% system utilization level. The results show that, in

general for all configurations, operation aggregation leads to higher MFT at low CVOPT; A

however, it leads to superior performance at high CVOPT values. This is partly explained

by the fact that with an increase in CVOPT, the coefficient of variation of service times (C,)

at each machine increases; this, in turn, leads to higher MFT. However, the aggregation of

operations tends to reduce C,, and therefore, MFT as well. Note, however, that in the case

of partial pooling, operation aggregation is uniformly superior.

i
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TABLE 6: Impact of Operation Aggregation

Configuration CVOPT

0.0 0.4 0.8

No Pooling

CI 3.46 4.50 8.25

C6 4.75 5.60 5.41

Partial Pooling

C2 2.40 2.44 2.69

C7 2.25 2.31 2.33

Total Pooling

C3 2.45 2.90 4.38

C8 2.85 3.10 3.79

C4 2.72 2.88 4.38

C9 2.70 2.75 2.77

C5 3.11 2.97 4.14

CIO 2.97 3.02 3.11

Table 7 shows the impact of assigning operations based on MLPMF. Recall that CllA

and C12A assign shorter operations to larger groups, and consequently, provide greater

flexibility to them. On the other hand, CllB and C12B provide greater flexibility to the

longer operations. For comparison purposes, we also show the MFT values obtained under

MLP. The results indicate that at low values of CVOPT, the CllB and C12B are better,

although they are comparable to C4 and C5 respectively. However, at higher CVOPT,

CllA and C12A are significantly superior. This shows that at such values of CVOPT, it is

preferable to provide more alternative routes to as large a number of operations as possible.

More importantly, this result shows that the weights associated with each operation to

indicate its criticality is likely to be dependent upon CVOPT.
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TABLE 7: Impact of Operation Duplication

6 Summary

Configuration CVOPT

0.4 0.8

C4 2.88 4.31

C11A 3.39 3.52

cub 3.20 3.74

C5 2.97 4.14

C12A 3.28 3.46

C12B 2.91 4.62

This paper investigates the FMS setup problems of partitioning machines into groups, deter-

mining the appropriate group utilization levels, and assigning operations to these groups. An

open queueing network representation of an FMS is used to show that, under total pooling,

the mean job flow time is minimized when machine groups are maximally unbalanced, and

the larger groups are utilized more heavily.

Three grouping configurations— no pooling, partial pooling and total pooling, and three

loading objectives are used for generating a variety of system configurations. A simulation

experiment is used to study the impact of various system parameters, and to compare the

performance of these configurations. Experimental results show the superiority and robust-

ness of partial pooling across a range of different values that these parameters can take.

Its performance is improved further if overall part movement is reduced by performing sev-

eral operations of a job at the same machine. The performance of various configurations

under total pooling depends upon, among other factors, the overall system utilization level

and CVOPT. In particular, configurations with unequal group sizes are superior under high

system utilizations and high processing time variations. A reduction in either of these two |

factors tends to favor the use of equal-sized groups with balanced groups.

Among the loading objectives, greater operation aggregation leads to superior perfor-

*
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mance at high CVOPT for all grouping configurations. For partial pooling and total pooling

with unbalanced configurations, it does so at low CVOPT as well. Experimental results also

indicate that when CVOPT is low, longer operations should be provided duplicated more

often. However, at high CVOPT, it is important to assign greater routing flexibility to a

larger number of operations.

In summary, while high CVOPT, machine unreliability and large batch sizes are all detri-

mental to system performance, their impact can be reduced by partial pooling of machines,

aggregating operations of a job to be performed at the same machine, and maximizing the

sum of operation duplications.
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Appendix 1

Proof of Lemma 1

i

First, note that group g, and after decomposition, subgroups g\ and g2 can be considered

independent of other groups. Let ag \ (0^2), ^51 (
mg2), and \g \ (Aj2 ) denote respectively the f

visit ratio, number of machines and arrival rate for gl and g2 respectively. Then, we have

trig = rrigi + mg2 (29)

Also, from workload balance

Hence,

_£ — gl
4. g2

mgPg = mglPgl + mg2Pg2 (30)

The increase in MFT because of decomposing g is

AMFT = [(Qji^ + a^WiaJ-a,^]

= \[(L9l + Lg2 )
- L9 ]

But

^ = k + Vg

where L q

g
denotes the mean queue length at group g. Hence,

AMFT = \{{(mglPsi + mg,p3,)
- m

9pg } + {{L"gl + L\2 ) - IJ}]

From the theory of queues, we know that the mean queue length L£ in a single-channel

system with c parallel servers is given by

re „ n MC
P

L
«-*d(l-p)»
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where p is the server utilization, and p) is the probability that an arriving part finds the

system empty. Note that L\ is convex in p for a given c, and convex in c for a given p.

From Equations (29) and (30), it follows that pa is a convex combination of pg \ and p9 2-

Therefore, L\ < L\x + £J2 , and consequently AMFT > 0.

This proves the lemma.
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Appendix 2

MFT under (1,2) configuration

MGP for (1, 2) configuration can be written as

minMFr=I[-^ + -^]
A (1 -/>!) 1 -p2

2

subject to

Pl +2p2 = 3p (31)

0<p9 < 1,4 = 1,2.

Associating multipliers u with constraint (31) and using the Kuhn-Tucker conditions yields

the following relationships at the optimal solution

u =
A(l-rt) 2 A(l-rf)>

or

Pi = 1 - JLLdL (32)

From (31) and (32), we have

(4 - I2p)p2 + (5 - 6p + 9/>
2
)(/>2 )

2 + (4 - 12p)(p2 )

3 + 3(/>2 )

4 - 6p 4- 9p
2 = 0, and

Pi = 3/? - 2p2

«
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Figure 1: Optimal Machine Utilizations
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Figure 2: MFT under Alternative Grouping Configurations: 3- machines
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Figure 3: MFT under Alternative Grouping Configurations: 4- machines
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Figure 4: MFT under Alternative Grouping Configurations: 5- machines
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