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ABSTRACT
Keyword query interfaces (K QIs) for databases provide easy
access to data, but often suffer from low ranking quality,
i.e. low precision and/or recall, as shown in recent bench-
marks. It would be useful to be able to identify queries that
are likely to have low ranking quality to improve the user
satisfaction. For instance, the system may suggest to the
user alternative queries for such hard queries. In this paper,
we analyze the characteristics of hard queries and propose a
novel framework to measure the degree of difficulty for a key-
word query over a database, considering both the structure
and the content of the database and the query results. We
devise efficient algorithms to compute the degree of difficulty
at query-time, and show that the overhead is very small com-
pared to the query execution time. We evaluate our query
difficulty prediction model against two relevance judgment
benchmarks for keyword search on databases, INEX and
SemSearch. Our study shows that our model predicts the
hard queries with high accuracy.

1. INTRODUCTION
Keyword query interfaces (K QIs) for databases have at-

tracted much attention in the last decade due to their flex-
ibility and ease of use in searching and exploring databases
[4, 13, 15, 9, 18, 26]. Since any entity in a data set that
contains the query keywords is a potential answer, keyword
queries typically have many possible answers. KQIs must
identify the information needs behind keyword queries and
rank the answers so that the desired answers appear at the
top of the list [4, 13, 9, 3, 26].

Databases contain entities, and entities contain attributes
that take attribute values. Some of the difficulties of answer-
ing a keyword query are as follows: First, unlike queries in
languages like SQL, users do not normally specify the desired
schema element(s) for each query term. For instance, query
Q1: Godfather on the IMDB database (http://www.imdb.com)
does not specify if the user is interested in movies whose
title is Godfather or movies distributed by the Godfather

company. Thus, a KQI must find the desired attributes as-
sociated with each term in the keyword query. Second, the
schema of the output is not specified, i.e., users do not give
enough information to single out exactly their desired en-
tities [20]. For example, Q1 may return movies or actors
or producers. We present a more complete analysis of the
sources of difficulty and ambiguity in Section 4.2.

Recently, there have been collaborative efforts to provide
standard benchmarks and evaluation platforms for keyword
search methods over databases. One effort is the data-
centric track of INEX Workshop [31] where keyword query
interfaces are evaluated over the well-known IMDB data
set that contains structured information about movies and
people in show business. Keyword queries were provided
by participants of the workshop. Another effort is the se-
ries of Semantic Search Challenges (SemSearch) at Semantic
Search Workshop [29, 30], where the data set is the Bil-
lion Triple Challenge data set at http://vmlion25.deri.de. It
is extracted from different structured data sources over the
Web such as Wikipedia. The keyword queries are taken from
Yahoo! keyword query log. Users have provided relevance
judgments for both benchmarks.

A widely accepted metric to measure the ranking quality
of a ranking method over a set of queries is Mean Average
Precision (MAP), which is a number between zero and one,
and captures both the precision and recall of a ranking. The
larger this number is the higher the ranking quality of a
search method is over the set of keyword queries. The MAP
of the best performing method(s) in the last data-centric
track in INEX Workshop and Semantic Search Challenge for
keyword queries are about 0.36 and 0.2, respectively. The
lower MAP values of methods in Semantic Search Challenge
are mainly due to the larger size and more heterogeneity of
its data set.

These results indicate that even with structured data,
finding the desired answers to keyword queries is still a hard
task. More interestingly, looking closer to the ranking qual-
ity of the best performing methods on both workshops, we
notice that they all have been performing very poorly on a
subset of queries. For instance, consider the query may the
force be with you over the IMDB data set. Users would like
to see the information about the movies where the phrase
”may the force be with you” is cited. For this query, all
methods return rankings of considerably lower qualities than
their average ranking qualities over all queries. Hence, there
are some queries that are much more difficult than others.
Moreover, no matter which ranking method is used, we can-
not deliver a reasonable ranking for these queries. Such a



trend has been also observed for keyword queries over text
document collections [32, 28].

It is important for a KQI to recognize such queries and
warn the user or employ alternative techniques like query
reformulation or query suggestions [22]. It may also use
techniques such as diversification of its returned ranked list
[33, 6]. On the other hand, if a KQI would employ these
techniques for queries with high-quality results, it may hurt
their quality and/or waste computational resources. Hence,
it is important that a KQI distinguishes difficult from easy
queries and act upon them accordingly (the latter is out of
the scope of this work).

To the best of our knowledge, there has not been any
work on predicting or analyzing the difficulties of keyword
queries over databases. Researchers have proposed some
methods to detect difficult queries over plain text document
collections [28, 37, 25]. However, these techniques are not
applicable to our problem since they ignore the structure
of the database. In particular, as mentioned earlier, a KQI
must assign each query term to a schema element(s) in the
database. It must also distinguish the desired result type(s).
We experimentally show that direct adaptations of these
techniques are ineffective for structured data.

In this paper, we analyze the characteristics of difficult
keyword queries over databases and propose a novel method
to detect such queries. We take advantage of the structure
of the data to gain insight about the degree of the difficulty
of a query given the database. We have implemented some
of the most popular and representative algorithms for key-
word search on databases and used them to evaluate our
techniques on both the INEX and SemSearch benchmarks.
The results show that our method predicts the degree of the
difficulty of a query efficiently and effectively.

We make the following contributions:

• We introduce the problem of predicting the degree of the
difficulty for keyword queries over databases. We also
analyze the reasons that make a keyword query difficult
to answer by KQIs.

• We propose the Structured Robustness (SR) score, which
measures the difficulty of a keyword query based on the
differences between the rankings of the same query over
the original and noisy (corrupted) versions of the same
database, where the noise spans on both the content and
the structure of the result entities.

• We introduce efficient algorithms to compute the SR
score, given that such a measure is only useful when it
can be computed with a small cost overhead compared
to the query execution cost. Our most efficient algorithm
accurately estimates the SR score by combining the two
seemingly independent steps (corruption and re-ranking)
into a single step.

• We show the results of extensive experiments using two
standard data sets and query workloads: INEX and Sem-
Search. Our results show that the SR score effectively
predicts the ranking quality of representative ranking al-
gorithms, and outperforms non-trivial baselines, intro-
duced in this paper. Also, the time spent to compute
the SR score is negligible compared to the query execu-
tion time.

In the remainder of the paper, Section 2 discusses re-
lated work and Section 3 presents basic definitions. Sec-
tion 4 explains the ranking robustness principle and analyzes
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Figure 1: IMDB database fragment

the properties of difficult queries over databases. Section 5
presents concrete methods to compute the SR score in (semi-
) structured data. Section 6 provides efficient algorithms to
compute the SR score. Section 7 contains the experimental
results, and Section 8 concludes the paper.

2. RELATED WORK
In this section we present an overview of the works on

predicting the query difficulty in free text collections and
explain why they generally cannot be applied to our set-
ting. Researchers have proposed methods to predict hard
queries over unstructured text documents [28, 32, 37, 12,
25, 5, 34]. Some methods use the statistical properties of
the terms in the query to predict its difficulty. Examples
of such statistical characteristics are average inverse docu-
ment frequency of the terms in the query and number of
documents that contain at least one query term [12]. The
common idea behind these methods is that the more dis-
criminative the query terms are, the easier the query will
be. Empirical evaluations indicate that these methods have
limited prediction accuracies [28, 11].

A popular approach called clarity score argues that an
easy query is sufficiently distinctive to separate the user’s
desired documents from other documents in the collection
[28, 11, 5]. Hence, its top ranked answers belong to very few
topics that are very likely to be the desired topics. On the
other hand, the top ranked documents of a difficult query
describe various topics, which many of them are irrelevant
to the user’s information need. Consider a set of docu-
ments that contain the information about different types
of news. The top ranked documents of query European fi-
nancial crises are mainly about financial news, but the top
ranked answers for query European crises may describe sev-
eral topics such as political, financial, and social news. The
latter is more difficult than the former. Researchers have
shown that this method provides a better estimation of the
difficulty of a query for text documents than clues such as
number of terms in the query or inverse document frequen-
cies of its terms [28, 11]. In order to measure the number
of topics in the top ranked document of a given query, some
systems compare the probability distribution of terms in the
top ranked documents with the probability distribution of
terms in the whole collection. If these probability distribu-
tions are relatively similar, the top ranked documents con-
tain the information about almost as many topics as the
whole collection, thus, the query is difficult [28, 11, 25].

Each text document normally contains information about
very few topics. If a text document is relevant to a query,
we can assume that almost all its topics are relevant to the
query. However, each tuple in a rich database, like IMDB,



covers a large number of aspects about an entity. If an en-
tity is relevant to a query, it is not clear which aspects of
the entity satisfy the information need behind the query.
For instance, assume that the movie rooted at node 1 in
Figure 1 is relevant to query Q1. This movie can be catego-
rized in categories such as movies about Godfather, movies
directed by Johnson, movies produced by Godfather, and so
on. It is not reasonable to assume users are equally inter-
ested in all categories of a relevant entity. Moreover, a term
might represent different pieces of information if it appears
in different attributes or entity sets. For example, term God-
father in keyword attribute of a movie conveys a different
concept from its occurrence in distributor attribute in the
IMDB database. Therefore, a straightforward extension of
the clarity score will poorly predict the difficulty of queries
over databases. One way is to address this issue is to com-
pute the probability distributions of terms over top ranked
entities and all entities in the database as the weighted linear
combination of the probability distributions of terms over
the attributes values of these entities. The attribute values
of the attributes that describe more interesting and popular
aspects of an entity will be assigned larger weights. How-
ever, it is very hard to find such weights for the attributes
without any domain knowledge about the database and its
users.

Some systems use a pre-computed set of topics and assign
each document to at least one topic in the set in order to
compute the clarity score [5]. They compare the probability
distribution of topics in the top ranked documents with the
probability distribution of topics of the whole collection to
predict the degree of the difficulty of the query. One requires
domain knowledge about the data sets and its users to create
a set of useful topics for the tuples in the database. We like
to find an effective and domain independent approach to
predict the difficulties of queries.

Some methods use machine learning techniques to learn
the properties of difficult queries and predict them [35, 34].
They have similar limitations as the other approaches when
applied to structured data. Moreover, their applications de-
pend on the amount and quality of the training data. Suffi-
cient and high quality training data is not normally available
for many databases.

3. DATA AND QUERY MODELS
We model a database as a set of entity sets. Each entity

set S is a collection of entities E. For instance, movies
and people are two entity sets in IMDB. Figure 1 depicts
a fragment of a data set where each subtree whose root’s
label is movie represents an entity. Each entity E has a set
of attribute values Ai, 1 ≤ i ≤ |E|. Each attribute value is
a bag of terms. Following current unstructured and (semi-
) structure retrieval approaches, we ignore stop words that
appear in attribute values, although this is not necessary
for our methods. Every attribute value A belongs to an
attribute T written as A ∈ T . For instance, Godfather and
Mafia are two attribute values in the movie entity shown in
the subtree rooted at node 1 in Figure 1. Node 2 depicts
the attribute of Godfather, which is title.

The above is an abstract data model. We ignore the
physical representation of data in this paper. That is, an
entity could be stored in an XML file or a set of normal-
ized relational tables. The above model has been widely
used in works on entity search [23, 7] and data-centric XML

retrieval [31], and has the advantage that it can be easily
mapped to both XML and relational data. Further, if a KQI
method relies on the intricacies of the database design (e.g.
deep syntactic nesting), it will not be robust and will have
considerably different degrees of effectiveness over different
databases [27]. Hence, since our goal is to develop princi-
pled formal models that cover reasonably well all databases
and data formats, we do not consider the intricacies of the
database design or data format in our models.

A keyword query is a set Q = {q1 · · · q|Q|} of terms, where
|Q| is the number of terms in Q. An entity E is an answer
to Q iff at least one of its attribute values A contains a term
qi in Q, written qi ∈ A1. Given database DB and query Q,
retrieval function g(E,Q,DB) returns a real number that re-
flects the relevance of entity E ∈ DB to Q. Given database
DB and query Q, a keyword search system returns a ranked
list of entities in DB called L(Q, g,DB) where entities E
are placed in decreasing order of the value of g(E,Q,DB).

4. RANKING ROBUSTNESS PRINCIPLE FOR
STRUCTURED DATA

In this section we present the Ranking Robustness Prin-
ciple, which argues that there is a (negative) correlation
between the difficulty of a query and its ranking robust-
ness in the presence of noise in the data. Section 4.1 dis-
cusses how this principle has been applied to unstructured
text data. Section 4.2 presents the factors that make a key-
word query on structured data difficult, which explain why
we cannot apply the techniques developed for unstructured
data. The latter observation is also supported by our experi-
ments in Section 7.2 on the Unstructured Robustness Method
[37], which is a direct adaptation of the Ranking Robustness
Principle for unstructured data.

4.1 Background: Unstructured Data
Researchers have shown that the effectiveness of a docu-

ment retrieval system is positively correlated with its rank-
ing stability in the presence of noise in the data [2]. Fur-
ther, Mittendorf has shown that if a text retrieval method
effectively ranks the text documents in a collection, it will
also perform well over the version of the collection that con-
tains some errors such as repeated terms [21]. More for-
mally, given scoring function g, query Q, document col-
lection C, and its corrupted version C′, let L(g,Q,C) and
L(g,Q,C′) be the ranked list of candidate answers returned
by g for Q over C and C′, respectively. Given documents
D1, D2 ∈ L(q,Q,C), where g(D1, Q,C) > g(D2, Q,C), Mit-
tendorf has shown that the probability that g(D1, Q,C

′) >
g(D2, Q,C

′), i.e. D1 andD2 have the same relative positions
in L(g,Q,C) and L(g,Q,C′), is proportional to g(D1, Q,C)−
g(D2, Q,C). Hence, the larger the value of g(D1, Q,C) −
g(D2, Q,C) is, the more similar their rankings over original
and corrupted collections will be. If the values of g(Di, Q,C)−
g(Dj , Q,C) for most documents Di and Dj in the collection
are relatively large, the scoring function is able to effectively
differentiate the relevant set of documents from the non-
relevant ones. As we discussed in Section2, query Q will be
easy. Thus, the degree of the difficulty of a query is posi-
tively correlated with the robustness of its ranking over the

1Some works on keyword search in databases [1, 13] use con-
junctive semantics, where all query keywords must appear
in a result.



original and the corrupted versions of the collection. We call
this observation the Ranking Robustness Principle.

Zhou and Croft [37] have applied this principle to predict
the degree of the difficulty of a query over free text docu-
ments. They compute the similarity between the rankings
of the query over the original and the artificially corrupted
versions of a collection to predict the difficulty of the query
over the collection. They deem a query to be more difficult
if its rankings over the original and the corrupted versions of
the data are less similar. The have empirically shown their
claim to be valid. They have also shown that this approach
is generally more effective than using methods based on the
similarities of probability distributions, that we reviewed in
Section 2. Specifically, this approach finds many difficult
queries that are classified incorrectly as easy queries using
methods based on the similarities between probability distri-
butions. This result is especially important for ranking over
structured data. As we explained in Section 2, It is gen-
erally hard to define an effective and domain independent
similarity function between attributes in databases. Hence,
we can use Ranking Robustness Principle as a domain inde-
pendent proxy metric to measure the degree of the difficul-
ties of queries. Researchers have taken similar approach to
evaluate the quality of clustering [16, 24]. The stability of
a clustering method has been shown to provide an effective
metric for the clustering quality.

4.2 Properties of Hard Queries on Structured
Data

The difficulties of answering a query over a database are
three-fold:

1. KQI has to find the desired attribute value that is re-
ferred by the terms in the query. For example, there
are more than one person called John Ford in the
IMDB data set. Hence, the keyword search method
must resolve the desired John Ford for the Q2: John
Ford.

2. Keyword queries do not specify the attributes for their
keywords, unlike queries in languages like SQL. Hence,
keyword query interface must disambiguate the key-
words in the query. For instance, consider keyword
query Q3: Ford over the IMDB data set. There are
many directors such as John Ford, actors such as Har-
rison Ford, and companies such as Ford Production
that contain the keywords in Q3. A keyword query in-
terface must recognize the attribute that is implicitly
referred in Q3.

3. The third challenge is to find the desired entity sets
that satisfy the information need behind the query.
For instance, IMDB contains both the information about
movies and the people involved in making the movies.
A user that submits Q2 may like to see the biographies
written about John Ford or some movies directed by
him. The keyword search system must identify and
rank these options.

The aforementioned observations show that we can use the
statistical properties of the query terms in the data set to
predict the difficulty of the query. Any metric that measures
the difficulty of a keyword query must reflect the aforemen-
tioned factors that cause difficulty. Intuitively, an idea is to
count the number of possible attributes, entities, and entity

sets that contain the query terms and use them to predict
the difficulty of the query. The larger this value is the more
difficult the query will be (we consider this baseline in Sec-
tion 7.2). However, the type of the distribution of query
terms over attributes and entity sets may also impact the
degree of the difficulty of the query. For instance, assume
database DB1 contains two entity sets book and movie and
database DB2 contains entity sets book and article. Let
term database appear in both entity sets in DB1 and DB2.
Assume that there are far fewer movies that contain term
database compared to books and articles. A keyword query
interface can leverage this property and rank books higher
than movies when answering query Q4: database over DB1.
However, it will be much harder to decide the desired entity
set in DB2 for Q4. Hence, a metric must take in to account
the skewness of the distributions of the query term in the
database as well. In Section 5 we discuss how these ideas are
used to create a concrete noise generation framework that
consider attribute values, attributes and entity sets.

5. A FRAMEWORK TO MEASURE STRUC-
TURED ROBUSTNESS

In Section 4 we presented the Ranking Robustness Prin-
ciple and discussed the specific challenges in applying this
principle to structured data. In this section we present con-
cretely how this principle is quantified in structured data.
Section 5.1 discusses the role of the structure and content
of the database in the corruption process, and presents the
robustness computation formula given corrupted database
instances. Section 5.2 provides the details of how we gener-
ate corrupted instances of the database. Section 5.3 suggests
methods to compute the parameters of our model. In Sec-
tion 5.4 we show real examples of how our method corrupts
the database and predicts the difficulty of queries.

5.1 Structured Robustness
Corruption of structured data. The first challenge in
using the Ranking Robustness Principle for databases is to
define data corruption for structured data. For that, we
model a database DB using a generative probabilistic model
based on its building blocks, which are terms, attribute val-
ues, attributes, and entity sets. A corrupted version of DB
can be seen as a random sample of such a probabilistic
model. Given a query Q and a retrieval function g, we
rank the candidate answers in DB and its corrupted ver-
sions DB′, DB′′, · · · to get ranked lists L and L′, L′′, · · · ,
respectively. The less similar L is to L′, L′′, · · · , the more
difficult Q will be.

According to the definitions in Section 3, we model database
DB as a triplet (S, T ,A), where S, T , and A denote the
sets of entity sets, attributes, and attribute values in DB,
respectively. |A|, |T |, |S| denote the number of attribute
values, attributes, and entity sets in the database, respec-
tively. Let V be the number of distinct terms in database
DB. Each attribute value Aa ∈ A, 1 ≤ a ≤ |A|, can
be modeled using a V-dimensional multivariate distribution
Xa = (Xa,1, · · · , Xa,V ), where Xa,j ∈ Xa is a random vari-
able that represents the frequency of term wj in Aa. The
probability mass function of Xa is:

fXa(~xa) = Pr(Xa,1 = xa,1, · · · , Xa,V = xa,V ) (1)



where ~xa = xa,1, · · · , xa,V and xa,j ∈ ~xa are non-negative
integers.

Random variable XA = (X1, · · · , X|A|) models attribute
value set A, where Xa ∈ XA is a vector of size V that
denotes the frequencies of terms in Aa. Hence, XA is a
|A|× V matrix. The probability mass function for XA is:

fXA(~x) = fXA( ~x1, · · · , ~x|A|) = Pr(X1 = ~x1, · · · , X|A| = ~x|A|)
(2)

where ~xa ∈ ~x are vectors of size V that contain non-negative
integers. The domain of ~x is all |A|× V matrices that con-
tain non-negative integers, i.e. M(|A|× V ).

We can similarly define XT and XS that model the set of
attributes T and the set of entity sets S, respectively. The
random variable XDB = (XA, XT , XS) models corrupted
versions of database DB. In this paper, we focus only on
the noise introduced in the content (values) of the database.
In other words, we do not consider other types of noise such
as changing the attribute or entity set of an attribute value
in the database. Since the membership of attribute values
to their attributes and entity sets remains the same across
the original and the corrupted versions of the database, we
can derive XT and XS from XA. Thus, a corrupted version
of the database will be a sample from XA; note that the
attributes and entity sets play a key role in the computation
of XA as we discuss in Section 5.2. Therefore, we use only
XA to generate the noisy versions of DB, i.e. we assume
that XDB = XA. In Section 5.2 we present in detail how
XDB is computed.

Structured Robustness calculation. We compute the
similarity of the answer lists using Spearman rank correla-
tion [8]. It ranges between 1 and -1, where 1, -1, and 0
indicate perfect positive correlation, perfect negative corre-
lation, and almost no correlation, respectively. Equation 3
computes the Structured Robustness score (SR score), for
query Q over database DB given retrieval function g:

SR(Q, g,DB,XDB) = E{Sim(L(Q, g,DB), L(Q, g,XDB))}

=
∑
~x

Sim(L(Q, g,DB), L(Q, g, ~x))fXDB
(~x)

(3)

where ~x ∈M(|A|× V ) and Sim denotes the Spearman rank
correlation between the ranked answer lists.

5.2 Noise Generation in Databases
In order to compute Equation 3, we need to define the

noise generation model fXDB (M) for database DB. We will
show that each attribute value is corrupted by a combination
of three corruption levels: on the value itself, its attribute
and its entity set. Now the details: Since the ranking meth-
ods for queries over structured data do not generally con-
sider the terms in V that do not belong to query Q [13, 15,
26], we consider their frequencies to be the same across the
original and noisy versions of DB. Given query Q, let ~x be a
vector that contains term frequencies for terms w ∈ Q ∩ V .
Similarly to [37], we simplify our model by assuming the
attribute values in DB and the terms in Q∩V are indepen-
dent. Hence, we have:

fXA(~x) =
∏
xa∈~x

fXa( ~xa). (4)

and

fXa(~xa) =
∏

xa,j∈~xa

fXa,j (xa,j). (5)

where xj ∈ ~xi depicts the number of times wj appears in
a noisy version of attribute value Ai and fXi,j (xj) computes
the probability of term wj to appear in Ai xj times.

The corruption model must reflect the challenges discussed
in Section 4.2 about search on structured data, where we
showed that it is important to capture the statistical proper-
ties of the query keywords in the attribute values, attributes
and entity sets. We must introduce content noise (recall
that we do not corrupt the attributes or entity sets but
only the values of attribute values) to the attributes and
entity sets, which will propagate down to the attribute val-
ues. For instance, if an attribute value of attribute title con-
tains keyword Godfather, then Godfather may appear in any
attribute value of attribute title in a corrupted database in-
stance. Similarly, if Godfather appears in an attribute value
of entity set movie, then Godfather may appear in any at-
tribute value of entity set movie in a corrupted instance.

Since the noise introduced in attribute values will propa-
gate up to their attributes and entity sets, one may question
the need to introduce additional noise in attribute and entity
set levels. The following example illustrates the necessity to
generate such noises. Let T1 be an attribute whose attribute
values are A1 and A2, where A1 contains term w1 and A2

does not contain w1. A possible noisy version of T1 will
be a version where A1 and A2 both contain w1. However,
the aforementioned noise generation model will not produce
such a version. Similarly, a noisy version of entity set S must
introduce or remove terms from its attributes and attribute
values. According to our discussion in Section 4, we must
use a model that generates all possible types of noise in the
data.

Hence, we model the noise in a DB as a mixture of the
noises generated in attribute value, attribute, and entity set
levels. Mixture models are typically used to model how the
combination of multiple probability distributions generates
the data [10]. Let Yt,j be the random variable that repre-
sents the frequency of term wj in attribute Tt. Probability
mass function fYt,j (yt,j) computes the probability of wj to
appear yt,j times in Tt. Similarly, Zs,j is the random vari-
able that denotes the frequency of term wj in entity set Ss
and probability mass function fZs,j (zs,j) computes the prob-
ability of wj to appear zs,j times in Ss. Hence, the noise
generation model attribute value Ai whose attribute is Tt
and entity set is Ss is:

f̂Xa,j (xa,j) = γAfXa,j (xa,j) + γT fYt,j (xt,j) + γSfZs,j (xs,j).
(6)

where 0 ≤ γA, γT , γS ≤ 1 and γA+γT +γS = 1. fXa,j , fYt,j ,
and fYs,j model the noise in attribute value, attribute, and
entity set levels, respectively. Parameters γA, γT and γS
have the same values for all terms w ∈ Q ∩ V and are set
empirically.

Since each attribute value Aa is a small document, we
model fXi,j as a Poisson distribution:

fXa,j (xa,j) =
e−λa,jλ

xa,j

a,j

xa,j !
. (7)

Similarly, we model each attribute Tt, 1 ≤ t ≤ |T |, as a bag
of words and use Poisson distribution to model the noise



generation in the attribute level:

fYt,j (xt,j) =
e−λt,jλ

xt,j
t,j

xt,j !
. (8)

Using similar assumptions, we model the changes in the fre-
quencies of the terms in entity set Ss, 1 ≤ s ≤ |S|, using
Poisson distribution:

fZs,j (xs,j) =
e−λs,jλ

xs,j
s,j

xs,j !
. (9)

In order to use the model in Equation 6, we have to esti-
mate λA,w, λT,w, and λS,w for every w ∈ Q ∩ V , attribute
value A, attribute T and entity set S in DB. We treat
the original database as an observed value of the space of
all possible noisy versions of the database. Thus, using the
maximum likelihood estimation method, we set the value of
λA,w to the frequency of w in attribute value A. Assuming
that w are distributed uniformly over the attribute values
of attribute T , we can set the value of λT,w to the average
frequency of w in T . Similarly, we set the value of λS,w as
the average frequency of w in S. Using these estimations,
we can generate noisy versions of a database according to
Equation 6.

5.3 Smoothing The Noise Generation Model
Equation 6 overestimates the frequency of the terms of the

original database in the noisy versions of the database. For
example, assume a bibliographic database of computer sci-
ence publications that contains attribute T2 =abstract which
constitutes the abstract of a paper. Apparently, many ab-
stracts contain term w2 =algorithm, therefore, this term
will appear very frequently with high probability in fT2,w2

model. On the other hand, a term such as w3 = Dirichlet
is very likely to have very low frequency in fT2,w3 model.
Let attribute value A2 be of attribute abstract in the bib-
liographic DB that contains both w2 and w3. Most likely,
term algorithm will appear more frequently than Dirichlet
in A2. Hence, the mean for fA2,w2 will be also larger than
the mean of fA2,w3 . Thus, a mixture model of fT2,w2 and
fA2,w2 will have much larger mean than a mixture model
of fT2,w3 and fA2,w3 . The same phenomenon occurs if a
term is relatively frequent in an entity set. Hence, a mix-
ture model such as Equation 6 overestimates the frequency
of the terms that are relatively frequent in an attribute or
entity set. Researchers have faced a similar issue in lan-
guage model smoothing for speech recognition [14]. We use
a similar approach to resolve this issue. If term w appear in
attribute value A, we use only the first term in Equation 6
to model the frequency of w in the noisy version of database.
Otherwise, we use the second or third terms if w belongs to
T and S, respectively. Hence, the noise generation model is:

f̂Xa,j (xa,j) =

 γAfXa,j (xa,j) if wj ∈ Aa
γT fYt,j (xt,j) if wj /∈ Aa, wj ∈ Tt
γSfZs,j (xs,j) if wj /∈ Aa, Tt, wj ∈ Ss

(10)
where we remove the condition γA + γT + γS = 1.

5.4 Examples
We illustrate the corruption process and the relationship

between the robustness of the ranking of a query and its
difficulty using INEX queries Q9: mulan hua animation and

Q11: ancient rome era, over the IMDB dataset. We set
γA = 1, γT = 0.9, γS = 0.8 in Equation 10. We use the
XML ranking method proposed in [15], called PRSM, which
we explain in more detail in Section 6. Given query Q,
PRSM computes the relevance score of entity E based on
the weighted linear combination of the relevance scores the
attribute values of E.

Q11: Figure 2a depicts two of the top results (ranked
as 1st and 12nd respectively) for query Q11 over IMDB.
We omit most attributes (shown as elements in XML lingo
in Figure 2a) that do not contain any query keywords due
to space consideration. Figure 2b illustrates a corrupted
version of the entities shown in Figure 2a. The new keyword
instances are shown with underline. Note that the ordering
changed according to the PRSM ranking. The reason is
that PRSM believes that title is an important attribute (for
attribute weighing in PRSM see Section 6) and hence having
a query keyword (rome) there is important. However, after
corruption, query word rome also appears in the title of the
other entity, which now ranks higher, because it contains
the query words in more attributes.

<movie id= “1025102”>
<title>rome ...</title>
<keyword>ancient-
culture</keyword>
<keyword>ancient-
civilization</keyword>
<keyword>ancient-rome</keyword>
<keyword>christian-era</keyword>
</movie>

<movie id=“1149602”>
<title>Gladiator</title>
<keyword>ancient-rome</keyword>
<character>Rome ...</character>
<person>... Rome/UK)</person>
<trivia>”Rome of the imagination...
</trivia>
<goof>Rome vs. Carthage ...</goof>
<quote>... enters Rome like a ...
Rome ... </quote>
</movie>

(a) Original ranking

<movie id=“1149602”>
<title> Gladiator rome</title>
<keyword>ancient-rome
rome</keyword>
<character>Rome ...</character>
<person> ... Rome/UK)</person>
<trivia>of the imagination
...</trivia>
<goof>Rome vs. Carthage ...</goof>
<quote>... enters Rome like a ...
Rome ...</quote>
</movie>

<movie id= “1025102”>
<title>rome ...</title>
<keyword>ancient-culture
ancient</keyword>
<keyword>-civilization</keyword>
<keyword>ancient
ancient</keyword>
<keyword>christian-</keyword>
</movie>

(b) Corrupted ranking

Figure 2: Original and corrupted results of Q11

Word rome was added to the title attribute of the origi-
nally second result through the second level (attribute-based,
second branch in Equation 10) of corruption, because rome
appears in the title attribute of other entities in the database.
If no title attribute contained rome, then it could have been
added through the third level corruption (entity set-based,
third branch in Equation 10) since it appears in attribute
values of other movie entities.

The second and third level corruptions typically have much
smaller probability of adding a word than the first level, be-
cause they have much smaller λ; specifically λT is the av-
erage frequency of the term in attribute T . However, in
hard queries like Q11, the query terms are frequent in the
database, and also appear in various entities and attributes,
and hence λT and λS are larger.

In the first keyword attribute of the top result in Figure 2b,
rome is added by the first level of corruption, whereas in
the trivia attribute rome is removed by the first level of
corruption.

Example of calculation of λt,j for term t =godfather and
attribute Tj =keyword in Equation 8: Assuming that god-
father occurs in attribute keyword 10 times in total, and
total number of attribute values under attribute keyword is
10,000, λt,j = 10/10000. Then, since γT = 0.9, the proba-
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To summarize, Q11 is difficult because its keywords are
spread over a large number of attribute values, attributes
and entities in the original database, and also most of the
top results have a similar number of occurrences of the key-
words. Thus, when the corruption process adds even a small
number of query keywords to the attribute values of the
entities in the original database, it drastically changes the
ranking positions of these entities.

Q9: Q9 (mulan hua animation) is an easy query because
most its keywords are quite infrequent in the database. Only
term animation is relatively frequent in the IMDB dataset,
but almost all its occurrences are in attribute genre. Fig-
ures 3a and 3b present two ordered top answers for Q9 over
the original and corrupted versions of IMDB, respectively.
The two results are originally ranked as 4th and 10th. The
attribute values of these two entities contain many query
keywords in the original database. Hence, adding and/or re-
moving some query keyword instances in these results, does
not considerably change their relevance score and they pre-
serve their ordering after corruption.

Since keywords mulan and hua appear in a small number
of attribute values and attributes, the value of λ for these
terms in the second and the third level of corruption is very
small. Similarly, since keyword animation only appears in
the genre attribute, the value of λ for all other attributes
(second level corruption) is zero. The value of λ for an-
imation in the third level in reasonable, 0.0007 for movie
entity set, but the noise generated in this level alone is not
considerable.

<movie id=“1492260”>
<title>The Legend of Mulan (1998)
(V)</title>
<genre>Animation</genre >
<link>Hua Mu Lan (1964)</link>
<link>Hua Mulan cong jun</link>
<link>Mulan (1998)</link>
<link>Mulan (1999)</link>
<link>The Secret of Mulan
(1998)</link>
</movie>

<movie id=“1180849”>
<title>Hua Mulan (2009)</title>
<character>Hua Hu (Mulan’s fa-
ther)</character>
<character>Young Hua Mu-
lan</character>
<character>Hua Mulan</character>
</movie>

(a) Original ranking

<movie id=“1492260”>
<title>The Legend of Mulan (1998)
(V) mulan mulan</title>
<genre></genre >
<link>Hua Mu Lan (1964)</link>
<link>Hua Mulan cong jun</link>
<link>Mulan (1998) mulan</link>
<link> (1999)</link>
<link>The Secret of Mulan (1998)
mulan </link>
<movie>

<movie id=“1180849”>
<title>Hua (2009) hua</title>
<character>Hua Hu (Mulan’s fa-
ther)</character>
<character>Young Hua Mulan mulan
mulan hua</character>
<character>Mulan</character>
</movie>

(b) Corrupted ranking

Figure 3: Original and corrupted results of Q9

6. EFFICIENT STRUCTURED ROBUSTNESS
SCORE COMPUTATION

A key requirement for this work to be useful in practice is
that the structure robustness score should be computed with
very small time overhead compared to the query execution
time. In this section we present a suite of optimization and
approximation techniques for that.

6.1 Basic Estimation Techniques
Top-K results: Generally, the basic information units

in structured data sets, attribute values, are much shorter
than text documents. Thus, a structured data set contains
a larger number of information units than an unstructured

data set of the same size. For instance, each XML document
in the INEX data centric collection constitutes hundreds of
elements with textual contents. Hence, computing Equa-
tion 3 for a large database is so inefficient as to be impracti-
cal. Hence, similar to [37], we corrupt only the top-K entity
results of the original data set. We re-rank these results and
shift them up to be the top-K answers for the corrupted
versions of database. In addition to the time savings, our
empirical results in Section 7.2 show that relatively small
values for K predict the difficulty of queries better than
large values. For instance, we found that K = 20 deliv-
ers the best performance prediction quality in our datasets.
We discuss the impact of different values of K in the query
difficulty prediction quality more in Section 7.2.

Number of corruption iterations (N): Computing
the expectation in Equation 3 for all possible values of ~x is
very inefficient. Hence, we estimate the expectation using
N > 0 samples over M(|A|× V ). That is, we use N cor-
rupted copies of the data. Obviously, smaller N is preferred
for the sake of efficiency. However, if we choose very small
values for N the corruption model becomes unstable. We
further analyze how to choose the value of N in Section 7.2.

We can limit the values of K or N in any of the algorithms
described below.

6.2 Exact Algorithm
Algorithm 1 shows the Structured Robustness Algorithm

(SR Algorithm), which computes the exact SR score based
on the top K result entities. Each ranking algorithm uses
some statistics about query terms or attributes values over
the whole content of database. Some examples of such statis-
tics are the number of occurrences of a query term in all at-
tributes values of the database or total number of attribute
values in each attribute and entity set. These global statis-
tics are stored in M (metadata) and I (inverted indexes)
in the SR Algorithm pseudocode. SR Algorithm generates
the noise in the database on-the-fly during query processing.
Since it corrupts only the top K entities, which are anyways
returned by the ranking module, it does not perform any
extra I/O access to the database, except to lookup some
statistics. Hence, it adds a relatively marginal overhead on
the query processing time. Moreover, it uses the information
which is already computed and stored in inverted indexes
and does not require any extra index.

Nevertheless, our empirical results, reported in Section 7.3,
show that SR Algorithm increases the query processing time
considerably. Some of the reasons for SR Algorithm ineffi-
ciency are the following: First, Line 5 in SR Algorithm loops
every attribute value in each top-K result and tests whether
it must be corrupted. As noted before, one entity may have
hundreds of attribute values. We must note that the at-
tribute values that do not contain any query term still must
be corrupted (Line 15 in SR Algorithm) for the second and
third levels of corruption defined in Equation 10. This is be-
cause their attributes or entity sets may contain some query
keywords. This will largely increase the number of attribute
values to be corrupted. For instance, for IMDB which has
only two entity sets, SR Algorithm corrupts all attribute
values in the top-K results for all query keywords. Second,
ranking algorithms for databases are relatively slow. SR Al-
gorithm has to re-rank the top K entities N times which is
time consuming.



Algorithm 1 CorruptTopResults(Q,L,M, I,N)

Input: Query Q, Top-K list L of Q by ranking function g, Metadata
M , Inverted indexes I, corruption iterations N .
Output: SR score for Q.

1: SR← 0; C ← {}; //C caches λT , λS for keywords in Q
2: FOR i = 1→ N DO
3: I′ ← I; M ′ ←M ; L′ ← L; //Corrupted copy of I, M and L
4: FOR each result R in L DO
5: FOR each attribute value A in R DO
6: A′ ← A; //Corrupted versions of A
7: FOR each keywords w in Q DO
8: Compute λA,w in A; Get λT,w, λS,w from C;
9: IF λA,w == 0 and λT,w not in C THEN
10: Compute λT,w by I,M and cache it to C;
11: IF λT,w == 0 and λS,w not in C THEN
12: Compute λS,w by I,M and cache it to C;
13: IF λA,w, λT,w and λS,w all equal to 0 THEN
14: NEXT;
15: Compute # of w in A′ by Equation 10;
16: IF # of w varies in A′ and A THEN
17: Update A′, M ′ and entry of w in I′;
18: Add A′ to R′;
19: Add R′ to L′;
20: Rank L′ using g, which returns L, based on I′, M ′;
21: SR += Sim(L,L′); //Sim computes Spearman correlation
22: RETURN SR← SR/N ; //AVG score over N rounds

6.3 Approximation Algorithms
In this section, we propose approximation algorithms to

improve the efficiency of SR Algorithm. Our methods are
independent of the underlying ranking algorithm.

Query-specific Attribute values Only Approximation
(QAO-Approx): QAO-Approx corrupts only the attribute
values that match at least one query term. This approxima-
tion algorithm leverages the following observations:

Observation 1: The noise in the attribute values that con-
tain query terms dominates the corruption effect.

Observation 2: The number of attribute values that con-
tain at least one query term is relatively much smaller than
the number of all attribute values in each entity.

Hence, we can significantly decrease the time spent on cor-
ruption if we corrupt only the attribute values that contain
query terms. We add a check before Line 7 in SR Algorithm
to test if A contains any term in Q. Hence, we skip the loop
in Line 7. The second and third levels of corruption (on at-
tributes, entity sets, respectively) corrupt a smaller number
of attribute values so the time spent on corruption becomes
shorter.

Static Global Stats Approximation (SGS-Approx):
SGS-Approx uses the following observation:

Observation 3: Given that only the top-K result entities
are corrupted, the global database statistics do not change
much.

Figure 4a shows the execution flow of SR Algorithm. Once
we get the ranked list of top K entities for Q, the corruption
module produces corrupted entities and updates the global
statistics of DB. Then, SR Algorithm passes the corrupted
results and updated global statistics to the ranking module
to compute the corrupted ranking list.

SR Algorithm spends a high percentage of the robustness
calculation time on the loop that re-ranks the corrupted
results (Line 20 in SR Algorithm), by taking into account
the updated global statistics. Since the value of K (e.g., 10,
20 or 50) is much smaller than the number of entities in the
database, the top K entities constitute a very small portion

(a) SR Algorithm (b) SGS-Approx

Figure 4: Execution flows of SR Algorithm and SGS-Approx

of the database. Thus, the global statistics largely remain
unchanged or change very little. Hence, we can use the
global statistics of the original version of the database to re-
rank the corrupted entities. If we refrain from updating the
global statistics, we can combine the corruption and ranking
module together. This way re-ranking is done on-the-fly
during corruption. SGS-Approx is illustrated in Figure 4b.

We use the ranking algorithm proposed in [15], called
PRMS, to better illustrate the details of our approxima-
tion algorithm. PRMS employs a language model approach
to search over structured data. It computes the language
model of each attribute value smoothed by the language
model of its attribute. It assigns each attribute a query
keyword-specific weight, which specifies its contribution in
the ranking score. It computes the keyword-specific weight
µj(q) for attribute values whose attributes are Tj and key-

word query q as µj(q) =
P (q|Tj)∑

T∈DB P (q|T )
. The ranking score

of entity E for query Q, P (Q|E) is:

P (Q|E) =
∏
q∈Q

P (q|E) =
∏
q∈Q

n∑
j=1

[µj(q)((1− λ)P (q|Aj) + λP (q|Tj))]

(11)

where Aj is an attribute value of E, Tj is the attribute of
Aj , 0 ≤ λ ≤ 1 is the smoothing parameter for the language
model of Aj , and n is the number of attribute values in E. If
we ignore the change of global statistics of DB, then µj and
P (q|Tj) parts will not change when calculating the score of
corrupted version of E, E′, for q. Hence, the score of E′

will depend only on P (q|A′j), where A′j is the corrupted ver-
sion of Aj . We compute the value of P (q|A′j) using only
the information of A′j as (# of q in A′j / # of words in
A′j). SGS-Approx uses the global statistics of the original
database to compute µj and P (q|Tj) in order to calculate
the value of P (q|E). It re-uses them to compute the score
of the corrupted versions of E. However, SR Algorithm has
to finish all corruption on all attribute values in top results
to update the global statistics and re-rank the corrupted re-
sults. Similarly, we can modify other keyword query ranking
algorithms over databases that use query term statistics to
score entities.

Combination of QAO-Approx and SGS-Approx: QAO-
Approx and SGS-Approx improve the performance of ro-
bustness calculation by approximating different parts of the
corruption and re-ranking process. Hence, we can combine



these two algorithms to further improve the performance of
the query difficulty predication. Figure 5 depicts the rela-
tionship between these two algorithms and SR Algorithm.

Figure 5: Approximation algorithms versus SR Algorithm

7. EXPERIMENTS

7.1 Experiments Setting
Data sets: Table 1 shows the characteristics of two data

sets used in our experiments. The INEX data set is from
the INEX 2010 Data Centric Track [31]. It is a subset of
the IMDB dataset. The INEX data set contains two entity
sets: movie and person. Each entity in the movie entity
set represents one movie with attributes like title, keywords,
year, actor, director etc. The person entity set contains
attributes like name, nickname, movie. The SemSearch data
set is a subset of the data set used in Semantic Search 2010
challenge [29]. The original data set contains 116 files with
about one billion RDF triplets.

Since the size of this data set is extremely large, it takes
a very long time to index and run queries over this data
set. Hence, we have used a subset of the original data set in
our experiments. We first removed duplicate RDF triplets.
Then, for each file in SemSearch data set, we calculated the
total number of distinct query terms in SemSearch query
workload in the file. We selected the 20, out of the 116,
files that contain the largest number of query keywords for
our experiments. We converted each distinct RDF subject
in this data set to an entity whose identifier is the subject
identifier. The RDF properties are mapped to attributes
in our model. The values of RDF properties that end with
substring “#type” indicates the type of a subject. Hence,
we set the entity set of each entity to the concatenation of
the values of RDF properties of its RDF subject that end
with substring “#type”. If the subject of an entity does not
have any property that ends with substring “#type”, we
set its entity set to “UndefinedType”. We have added the
values of other RDF properties for the subject as attributes
of its entity. We stored the information about each entity
in a separate XML file. We have removed the relevance
judgment information for the subjects that do not reside in
these 20 files.

The sizes of the two data sets are quite close; however,
SemSearch is more heterogeneous than INEX as it contains
a larger number of attributes and entity sets.

Query Workloads: Since we use a subset of the dataset
from SemSearch, some queries in its query workload may
not contain enough candidate answers. We picked the 55
queries from the 92 in the query workload that have at least
50 candidate answers in our dataset. Because the number of

Table 1: INEX and SemSearch datasets characteristics

INEX SemSearch
Size 9.85 GB 9.64 GB

Number of Entities 4,418,081 7,170,445
Number of Entity Sets 2 419,610
Number of Attributes 77 7,869,986

Number of Attribute values 113,603,013 114,056,158

entries for each query in the relevant judgment file has also
been reduced, we discarded another two queries (Q6 and
Q92) without any relevant answers in our dataset, according
to the relevance judgment file. Hence, our experiments is
done using 53 queries (2, 4, 5, 11-12, 14-17, 19-29, 31, 33-
34, 37-39, 41-42, 45, 47, 49, 52-54, 56-58, 60, 65, 68, 71,
73-74, 76, 78, 80-83, 88-91) from the SemSearch data set.

28 query topics are provided in the INEX 2010 Data Cen-
tric Track. However, no relevant judgments are provided for
two of them (Q3 and Q13). Thus, we use the 26 queries that
have relevance judgment in our experiments on INEX. Some
query topics contain characters “+” and “-” to indicate the
conjunctive and exclusive conditions. In our experiments,
we don’t use these conditions and remove the keywords af-
ter character “-”. Generally, keyword query interfaces over
databases return candidate answers that contain all terms
in the query [4, 13, 9, 18, 26]. However, queries in the INEX
query workload are relatively long (normally over four dis-
tinct keywords). If we retrieve only the entities that con-
tain all query terms, there will not be sufficient number of
(in some cases none) candidate answers for many queries in
the data. Hence, for every query Q, we use the following
procedure to get at least 1,000 candidate answers for each
query. First, we retrieve the entities that contain |Q| terms
in query Q. If they are not sufficient, we retrieve the entities
that contain at least |Q| − 1 keywords, and so on until we
get 1000 candidate answers for each query.

Effectiveness Metrics: We have used the widely used
effectiveness metrics Average Precision and Mean Average
Precision (MAP) to measure the quality of rankings deliv-
ered by ranking algorithms for a query and a set of queries
over a database, respectively [20].

Ranking Algorithms: To evaluate the effectiveness of
our model for different ranking algorithms, we have evalu-
ated the query performance prediction model with two rep-
resentative ranking algorithms: PRMS [15] and IR-Style
[13]. Many other algorithms are extensions of these two
methods (e.g., [19, 17, 6]).
PRMS: We explained the idea behind PRMS algorithm in
Section 6. We adjust parameter λ in PRMS in our experi-
ments to get the best MAP and then use this value of λ for
query performance prediction evaluations. Varying λ from
0.1 to 0.9 with 0.1 as the test step, we have found that differ-
ent values of λ change MAP very slightly on both datasets,
and generally smaller λs deliver better MAP. We use 0.1 on
the INEX dataset and 0.2 for the SemSearch dataset.
IR-Style: We use a variation of the ranking model proposed
in [13] for relational data model, referred as IR-Style rank-
ing. Given a keyword query, IR-Style returns a minimal
join tree that connects the tuples from different tables in
the database that contain the query terms, called MTNJT .
However, our datasets are not in relational format and the
answers in their relevance judgments files are entities and



not MTNJT s. Hence, we extend the definition of MTNJT
as the minimal subtree that connects the attribute values
containing the query keywords in an entity. The root of this
subtree is the root of the entity in its XML file. If an entity
has multiple MTNJT s, we choose the one with the maxi-
mum score as explained below. Let M be a MTNJT tree of
entity E and AM be the attribute values in M . The score

of M for query Q is: IRScore(M,Q)
size(M)

, where IRScore(M,Q) is

the score of M for query Q based on some IR ranking for-
mula. If we use a vector space model ranking formula as in
[13] to compute the IRScore(M,Q), we get very low MAP
(less than 0.1) for both datasets. Hence, we compute it us-
ing a language model ranking formula with Jelink-Mercer
smoothing [36] which is shown in equation 12. We set the
value of smoothing parameter α to 0.2 as it returns the high-
est MAP for our datasets.

IRScore(M,Q) =
∏
q∈Q

∑
A∈AM

((1− α)P (q|A) + αP (q|T ))

(12)
Configuration: We have performed our experiments on

an AMD Phenom II X6 2.8 GHz machine with 8 GB of main
memory that runs on 64-bit Windows 7. We use Berkeley
DB 5.1.25 to store and index the XML files and implement
all algorithms in Java.

7.2 Quality results
In this section, we evaluate the effectiveness of the query

quality prediction model computed using SR Algorithm. We
use Pearson’s correlation between the SR score and the av-
erage precision of a query to evaluate the prediction quality
of SR score.

Setting the value of N : Let L and L′ be the original
and corrupted top-K entities for query Q, respectively. The
SR score of Q in each corruption iteration is the Spearman’s
correlation between L and L′. We corrupt the results N
times to get the average SR score for Q. In order to get a
stable SR score, the value of N should be sufficiently large,
but this increases the computation time of the SR score. We
chose the following strategy to find the appropriate value
of N : We progressively corrupt L 50 iterations at a time
and calculate the average SR score over all iterations. If
the last 50 iterations do not change the average SR score
over 1%, we terminate. N may vary for different queries in
query workloads. Thus, we set it to the maximum number
of iterations over all queries. According to our experiments,
the value of N varies very slightly for different value of K.
Therefore, we set the value of N to 300 on INEX and 250
on SemSearch for all values of K.

Different Values for K: The number of interesting re-
sults for a keyword query is normally small [20]. Hence, it
is reasonable to focus on small values of K for query perfor-
mance prediction. We conduct our experiments on K=10,
20 and 50. All these values deliver reasonable prediction
quality (i.e. the robustness of a query is strongly correlated
with its effectiveness). We have achieved the best prediction
quality using K=20 for both datasets with different com-
bination of γA, γT , and γS which we will introduce later.
Hence, relatively smaller values for K provide not only effi-
cient prediction (short execution time), but also reasonable
effectiveness (prediction quality). Since the low ranked an-
swers are generally not relevant, their scores are consider-
ably smaller than the top ranked answers. As discussed in

Section 4.1, these low ranked answers have a low chance of
replacing the top ranked answers in the ranked list for the
corrupted versions of the data. Hence, if the value of K is
not too small, we achieve a reasonable prediction quality.

Impact of the Values for γA, γT , and γS: We denote
the coefficients combination in Equation 10 as (γA, γT , γS)
for brevity. After some preliminary experiments, we found
that large γA is effective. Hence, to reduce the number of
possible combinations, we fix γA as 1, and vary the other
two. We computed the SR score for γT and γS from 0
to 3 (we only show results up to 1 below because for more
than 1 the correlation was weaker) with step 0.1 for different
values of K. Figures 6 and 7 show the correlation between
average precision and SR score for various (γA, γT , γS) with
K=20, for INEX and SemSearch, respectively. The highest
correlation is achieved by (1, 0.1, 0.6) on SemSearch, and
(1, 0.9, 0.8) on INEX. On both datasets the second and
third levels of corruption improve the correlation over 15%
compared to (1, 0, 0).

Figure 6: Effect of (γA, γT , γS) on correlation score for the
INEX dataset using PRMS and K=20.

Figure 7: Effect of (γA, γT , γS) on correlation score for the
SemSearch dataset using PRMS and K=20.

Figures 8 and 9 depict the plot of average precision and SR
score for the queries in INEX and SemSearch, respectively.
In Figure 8, we see that Q9 is easy (has high average pre-
cision) and Q11 is relatively hard, as discussed above. As



shown in Figure 9, query Q78: sharp-pc is easy (has high
average precision), because its keywords appear together in
few results, which explains its high SR score. On the other
hand, Q19: carl lewis and Q90: university of phoenix have a
very low average precision as their keywords appear in many
attributes and entity sets. Figure 9 shows that the SR scores
of these queries are very small, which confirms our model.

Figure 8: Average precision versus SR score for queries on
INEX using PRMS, K=20, and (γA, γT , γS) = (1, 0.9, 0.8).

Figure 9: Average precision versus SR score for queries on
SemSearch using PRMS, K=20, and (γA, γT , γS) = (1, 0.1,
0.6).

Baseline Prediction Methods
Unstructured Robustness Method (URM): We use the idea
in [37] as the baseline query performance prediction algo-
rithm. Our goal in this experiment is to find how accurately
URM can predict the effectiveness of queries over a given
database DB. Since the work in [37] is for text documents,
we concatenate the XML elements and tags of each entity
into a text document. We assume all entities (now text doc-
uments) belong to one entity set. The values of all µj in
PRMS ranking formula are set to 1 for every query terms
(see calculation of µj in Section 6 for details). Hence, PRMS
becomes a language model retrieval method [20].

Prevalence of Query Keywords: As we argued in Sec-
tion 4.2, if the query keywords appear in many attribute
values, attributes or entity sets, it is harder for a ranking al-
gorithm to locate the desired entities. Given keyword query
Q, we compute the average number of attributes (AvgA(Q)),

average number of entity sets (AvgES(Q)), and the aver-
age number of entities (AvgE(Q)) where each keyword in
Q occurs. We consider each of the three as an individual
baseline, and also consider their combination. We combine
them by multiplying the three (to avoid normalization is-
sues that summation would have); we refer to the product
as AS(Q). Intuitively, if these metrics have higher value, the
query Q should be harder, and hence the average precision
of Q should be lower, Thus we use the inverse of these val-
ues, denoted as iAvgA(Q), iAvgES(Q) and iAvgE(Q) and
iAS(Q) respectively.

Table 2 shows the prediction accuracy (correlation be-
tween average precision and each measure) for SR Algo-
rithm, URM, iAvgA(Q), iAvgES(Q) and iAvgE(Q) and
iAS(Q) for different values of K. We use (γA, γT , γS)=
(1, 0.1, 0.6) on SemSearch and (1, 0.9, 0.8) on INEX for SR
Algorithm. The correlation values for SR Algorithm are sig-
nificant higher than the correlation values of URM on both
datasets. This shows that our prediction model is more effec-
tive than URM over databases. The other baselines provide
better prediction quality than URM over the INEX dataset.
This indicates that the main cause of the difficulties for the
queries over the INEX dataset is to find their desired at-
tributes. Since all query keywords in our query workloads
occur in both entity sets in the IMDB dataset, we put n/a
on the correlation score between iAvgES(Q) and average
precision.

IR-style ranking algorithm: The best value of MAP
for the IR-Style ranking algorithm over INEX is 0.105 for
K=20, which is very low. Note that we tried both Equa-
tion 12 as well as the vector space model originally used in
[13]. Thus, we do not study the quality performance predic-
tion for IR-Style ranking algorithm over INEX. On the other
hand, the IR-Style ranking algorithm using Equation 12
delivers larger MAP value than PRMS on the SemSearch
dataset. Hence, we only present results on SemSearch. Ta-
ble 3 shows Pearson’s correlation of SR score with the aver-
age precision for different values of K, for N=250 and (γA,
γT , γS) = (1, 0.1, 0.6). Figure 10 plots SR score against
the average precision when K=20. On SemSearch, we also
tried IR-Style ranking algorithm using vector space model
ranking, but it achieves very low MAP (0.08) so we do not
report results.

Figure 10: Average precision versus SR score using IR-Style
over SemSearch with K=20 and (γA, γT , γS) = (1, 0.1, 0.6).



Table 2: Pearson’s correlation of average precision against: SR score computed by SR Algorithm, URM, iAvgA, iAvgES,
iAvgE and iAS.

K 10 20 50
Method SR URM iAvgA iAvgES iAvgE iAS SR URM iAvgA iAvgES iAvgE iAS SR URM iAvgA iAvgES iAvgE iAS
INEX 0.471 0.247 0.299 n/a 0.111 0.143 0.556 0.311 0.370 n/a 0.255 0.292 0.398 0.274 0.431 n/a 0.354 0.399

SemSearch 0.486 0.093 0.066 0.052 0.040 -0.043 0.564 0.177 0.082 0.068 0.056 -0.046 0.449 0.151 0.0915 0.078 0.064 -0.038

Table 3: Effect of K on Pearson’s correlation of average
precision and SR score using IR-Style ranking on SemSearch

K 10 20 50
Correlation score 0.565 0.544 0.539

Table 4: Average query processing time and average ro-
bustness computation for K=20, N=250 on SemSearch and
N=300 on INEX.

Avg Q-time (ms) Avg SR-time (ms)
INEX 24,177 (88,271 + 29,585)

SemSearch 46,726 (11,121 + 12,110)

7.3 Performance Study
In this section we study the efficiency of our SR score

computation algorithms. We use PRMS as the ranking algo-
rithm for our experiments. We first report the performance
results for SR Algorithm, and then for the approximation
algorithms.

SR Algorithm: We report the average computation time
of SR score (SR-time) using SR Algorithm and compare it
to the average query processing time (Q-time) using PRSM
for the queries in our query workloads. These times are
presented in Table 4 for K =20. SR-time mainly consists of
two parts: the time spent on corrupting K results and the
time to re-rank the K corrupted results. We have reported
SR-time using (corruption time + re-rank time) format. We
see that SR Algorithm incurs a considerable time overhead
on query processing. This overhead is higher for queries
over the INEX dataset, because there are only two entity
sets, (person and movie), in the INEX dataset, and all query
keywords in the query load occur in both entity sets. Hence,
according to Equation 10, every attribute value in top K
entities will be corrupted due to the third level of corruption.
This does not happen for SemSearch. From Table 1, we see
that SemSearch contains far more entity sets and attributes
than INEX.

QAO-Approx: Figures 11a and 12a show the results of
using QAO-Approx on INEX and SemSearch, respectively.
We measure the prediction effectiveness for smaller values of
N using average correlation score. The QAO-Approx algo-
rithm delivers acceptable correlation scores and the corrup-
tion times of about 2 seconds for N=10 on INEX and N=20
on SemSearch. Comparing to the results of SR Algorithm
for N=250 on SemSearch and N=300 on INEX, the correla-
tion score drops, because less noise is added by second and
third level corruption. These results show the importance
of these two levels of corruption.

SGS-Approx: Figures 11b and 12b depict the results
of applying SGS-Approx on INEX and SemSearch, respec-
tively. Since re-ranking is done on-the-fly during corruption,
SR-time is reported as corruption time only. As shown in
Figure 11b, the efficiency improvement on the INEX dataset

is slightly worse than QAO-Approx, but the quality (corre-
lation score) remains high. SGS-Approx outperforms QAO-
Apporx in terms of both efficiency and effectiveness on the
SemSearch dataset.

Combination of QAO-Approx and SGS-Approx:
As noted in Section 6, we can combine QAO-Approx and
SGS-Approx algorithms to achieve better performance. Fig-
ures 11c and 12c present the results of the combined al-
gorithm for INEX and SemSearch databases, respectively.
Since we use SGS-Approx, the SR-time consists only of cor-
ruption time. Our results show that the combination of two
algorithms works more efficiently than either of them with
the same value for N .

Summary of the Performance Results: According
to our performance study of QAO-Approx, SGS-Approx,
and the combined algorithm over both datasets, we observe
that the combined algorithm delivers the best balance of im-
provement in efficiency and decrease in effectiveness for both
datasets. On both datasets, the combined algorithm can
achieve high prediction accuracy (correlation score about
0.5) with SR-time around 1 second. On INEX when the
value of N is set to 20, the correlation is 0.513 and the time
is decreased to about 1 second using the combined algo-
rithm. For SR Algorithm on INEX, when N decreases to
10, correlation score is 0.537, but SR-time is over 9.8 sec-
onds which is not ideal. On SemSearch, if we use the com-
bined algorithm, the correlation score is 0.495 and SR-time
is about 1.1 seconds when N=50. However, to achieve the
similar efficiency, SGS-Approx needs to decrease N to 10,
with SR-time is 1.2 seconds and correlation is 0.49. And SR
Algorithm spends over 2.2 and 6 seconds of SR-time when N
is set to 10 and 50 respectively. Thus, the combined algo-
rithm is the best choice to predict the difficulties of queries
efficiently and effectively.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduced the novel problem of pre-

dicting the effectiveness of keyword queries over databases.
We showed that the current prediction methods for queries
over unstructured data sources cannot be effectively used to
solve this problem. We set forth a principled framework to
measure the degree of the difficulty of a keyword query over
a database, using the ranking robustness principle. Based
on our framework, we propose novel algorithms that effi-
ciently predict the effectiveness of a keyword query. Our
extensive experiments show that the algorithms predict the
difficulty of a query with relatively low errors and negligible
time overheads.

An interesting future work is to extend this framework to
estimate the query difficulty on other top K ranking prob-
lems in databases such as ranking underspecified SQL state-
ments. Further, we plan to experiment with ranking func-
tions that may not fall under the two function classes we
used in this paper.



(a) QAO-Approx (b) SGS-Approx (c) Combination of QAO and SGS

Figure 11: Approximations on INEX.

(a) QAO-Approx (b) SGS-Approx (c) Combination of QAO and SGS

Figure 12: Approximations on SemSearch.
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