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ABSTRACT

Robust alternatives to the seemingly unrelated regression (SUR) estimator of
Zellner (1962) are proposed for the classical multivariate regression model.
These weighted M-estimators achieve an asymptotic covariance matrix analogous
to that of the SUR estimator. Comparisons for the llt least absolute deviation,
case are made with the efficient estimator in the case of elliptically contoured
distributions. An example reanalyzing the Grunfeld investment data using a smooth

"li- like" M-estimator is discussed in detail. In contrast to recent work of
Hampel, et al (1986), Rousseeuw (1987) and Oja (1983), the methods studied below
are not affine equivariant; some remarks on the potential significance of this
failing conclude the paper.
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1. Introduction

Consider the classical multivariate regression model
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with m equations and n observations on each equation, which we will express

more succinctly as

v = Xp+ u .

m
When Cov(u) = Q © / and p is an unknown p = J p,- vector, it is well
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known that the ordinary least squares estimator p = (X'X)~ lX'y is inefficient

relative to the (Gauss-Markov) generalized least squares estimator

p = (X \Q ~ l ®7 )X y l X '(Q "
* ® 7 ) v . The former has covariance matrix

V = V(p) = (X'X)- lX'(Q ® /) X(X'X)" 1

while the latter boasts,

V = V(p) = (X'CQ
-1 ® /)X) -1 .

The difference V - V is positive semi-definite. Zellner (1962, 1963) contains

the seminal analysis of this situation. See Srivastava and Giles (1987) for an

exhaustive treatment of the recent literature on this subject.

Similarly, it is easy to show under analogous conditions that the ordinary

least absolute deviation (/j) estimator, p, which minimizes

m n

R(b)= 2 2 tyij-Xijbil
i= l j= l

has asymptotic covariance matrix of the form V(P), but with Q replaced by

E sgn (K;,.) sgn (uj,)

~ <«W>
"

4/,.(0)/,(0)

where fk denotes the (marginal) density of the coordinate uk . The numerator

of co
/y
may be regarded as an /

2
correlation based on orthant probabilities

between the errors in the i
th and j

th equation and the terms in the denomina-

tor are the marginal densities of these error terms evaluated at their medians.

Since the latter are inversely proportional to the scale of the marginal distribu-

tions, Q. may be regarded as an /j-covariance matrix. The bivariate version of

the numerator has been considered in Blomqvist (1950); see also Devlin, et. al.

(1975).

In light of the least squares results it is natural to ask: can we construct a

generalized l± estimator which has an asymptotic covariance matrix of the form

V(p)? In the next section we investigate a rather broad class of weighted M-

estimators which achieve a generalized version of this objective, and we shall

see that a particular weighted /^estimator is an important special case. Since

these estimators use one-dimensional kernels, Section 3 investigates their



efficiency compared to the fully multivariate asymptotically optimal estimators.

We consider elliptically contoured error distributions and specialize specifically

to multivariate t-distributions. The basic conclusions are that although the

methods based on univariate kernels can have arbitrarily small efficiency, this

tends to occur only when the error coordinates are highly correlated (and,

hence, when the asymptotic variance is small). Thus, the simple one-

dimensional methods (particularly, the appropriate /j- estimator) will generally

achieve quite reasonable asymptotic performance. Section 4 illustrates the

methods by reestimating the well-known Grunfeld (1958) investment model.

Section 5 concludes with some comments on the issue of affine equivariance.

2. M-Estimation of Multivariate Regression

Slight departures from Gaussian behavior of u can, of course, produce

arbitrarily large disturbances in the behavior of the least-squares estimators

referred to in the previous section. To achieve some degree of robustness

against such departures from normality we might consider estimators which

minimize

*o(*)= f t POty - *<**«•) •

i= i j= i

The ordinary l
x
estimator is an important special case. Estimation of the m-

variate location and scatter model is also an important special case where

X
(
= 1„, an n -vector of ones and p is a m -vector of location parameters. Under

mild conditions on p, minimizing R (b) is equivalent to solving the equations

n

Z VOfy - Xijbi)Xij = i = 1, • • •
, m

for \\f = p'. We will refer to estimators which utilize such one-dimensional ker-

nels as ordinary M-estimators; in the location-scatter problem the terminology

"coordinate wise M-estimator" might be used. Like the ordinary least-squares

estimator they can be computed one equation (coordinate) at a time.



- 4

It should also be remarked at this stage that most of the attractive choices

for p involve some scale estimation to achieve scale invariance. For example,

for the leading case of the Huber M-estimator,

Vzz
2 \z\< k

k\z\- V± 2 \z\> k
P(z)=

<

we require some (scale-equivariant) scale estimators 5,-: /= 1, • • •
, m, e.g. the

median absolute deviation from the /pfit, which can be used to rescale the

objective function. In these cases we should presume that

Piyij ~ Xijbi) = p ((v
i;

- - Xijb^/Si)

for some standardized p and the rescaling by s, is implicitly subsumed into the

function p defined above. Of course, in the case of the l
x
estimator, scale

invariance requires no preliminary estimation of scale. The issue of scale esti-

mation is treated in the illustrative data analysis of section 5.

To relax the implausible and potentially dangerous Gaussian hypothesis on

u in Section 1 we will assume:

CONDITION Al. The m -vectors U: = (Mi*, u 2j,
• •

, wmy )' for

j = 1, • • •
, n are independent and identically distributed with joint distribution

function F

.

Following Ruppert and Carroll (1980) and Jureckova (1977), we also require:

CONDITION PI. The function \|/(w) is bounded and monotonically non-

decreasing.

CONDITION P2. The matrix

R ® / = (Ey(^)\|/(w
y/ ))

= ipifiu)

is positive definite. Either \\f or the marginal distributions F,(m,): i = 1, • • •
, m

of F , are absolutely continuous and satisfy

oo oo

+ l
s

J YM dFi(u) or s j y(u)fi(u)du
— oo — oo

for constants < <}),- < oo, / = 1, • • •
, m, and E\\f(u

ik ) = for

i = 1, • • •
, m, j = 1, • • •

, n.
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CONDITION XI. Each design matrix X,- has first column equal to a vector

of ones.

CONDITION X2. n h max \x
Lj

I = 0(1) as n -> ~ .

CONDITION X3. For each i = 1, • • •
, m, n" 1

*,'*,- -> Q; w/zere Q f

-

is a positive definite matrix.

Note that in the least-squares case p(w) = V2U
2

, so R is simply the usual

covariance matrix of the u,*, while <}>,• = 1. In the /j case, /? is the "orthant

probabilities correlation matrix" of covariances of the signs of the errors, while

+j = 2/,(0).

The asymptotic theory of the ordinary M estimator is immediately

obtained from the asymptotically linear representation of the M -estimator for

each equation,

flj - p {
- = n~ l ( l

Dsr 1
Jf

lVi + o
p
{n~ ,/r

) i = 1, • -
, m (2.1)

where D d = lim /z

_1
X,X,- and \j/,- = (\|/(w

/y
)), / = 1, • • •

, m. The joint asymp-

totic normality of these vectors follows immediately as in single equation con-

text. A typical block of the covariance matrix is

Cov ((p t
- p { ), (p, - p,)) = n-^f^j-tpijD^Xi'XjDj] 1 + o

p
{n~ l

)

Thus, the covariance matrix for the entire vector (p — p) = ((p,- — p,-)) may

be written as

v = (x
/x)- 1x ,(A® /) x(x'xy l

where A= _1/?0_1 with O = diag (<{>;). It might be noted that we can also

write,

V = (X'ffl)
-1!'^ ® /^(X'PX)-1

where P = O ® /. Clearly the block diagonality of X as well as the Kronecker

product form of P is essential to the "simplification" above. The latter form for

the asymptotic covariance matrix of the /j estimator has recently been derived

by Kuester (1987).
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As we observed above, it is natural to ask whether we can improve upon

the asymptotic performance of this ordinary M -estimator, designing a general-

ized M -estimator which would achieve asymptotic covariance matrix,

V = (X'(A
_1 ® I)X)~ l

.

This objective is easily achieved if we simply replace the "normal equations" of

the unweighted objective function, which we may express in more compact

form as,

X'y(b) =

with the weighted normal equations

X'P(R- l <3 I)y(b) = 0. (2.2)

In cases where \\f is not continuous, Theorem 2.1 below will apply to any esti-

mator satisfying X'P{R -1 ® I)\\f(b) = op (n~
'*) . A natural question at this

point is whether or not there is an optimization problem which implies (2.2),

but differentiating (2.2) with respect to b and noting that the resulting matrix is

not symmetric, resolves the question negatively. Our main result is the follow-

ing asymptotic representation of
f5 n , the estimator solving 2.2.

THEOREM 2.1. In the multivariate linear model (1.1), suppose Conditions A,

P, and X hold. Then

&„ - P = (X'/, (/?- 1 ®/)/)X)- 1I?(/?- 1 ® /)\|/(0) + o
p
{n-'

/z
) . (2.3)

where \|/(0) = (y(";y))-

Proof. Consider the normalized gradient,

g(5) = n
- l/l X'P{R- x ® /)\j/(8)

where \|/(5) = (\y(M;
;
+ n

~

'

/2
x-^;8j ) ) , an mn -vector. Familiar arguments from

Ruppert and Carroll (1980) and Bickel (1975) imply for fixed L > 0,

sup \\g(8) - g(0) - E(g(6) - g(0)) II = o(l) . (2.4)
1151 1 < L

Further, 8 = *"'/2
(p - (3) = 0,(1), Eg(0) = 0, and g(Z) = o

p
(l). Finally

expanding \|/(-) we have

sup WEg(b) - n- lX'P(R~ l ® I)PXb\\= oD {\) (2.5)
I IS II < L p
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so substituting 5 in (2.5) and then in (2.4) completes the argument for

Il8ll < L . As in Ruppert and Carroll (1980) or Jureckova" (1977), monotoni-

city of \|/ completes the argument.

An immediate application of this result is the asymptotic normality of

n'
/2
($ - p), which has mean zero (since E\\f(0) = 0). The asymptotic covari-

ance matrix of (p —
f$) is

V = (X'PiR- 1 ® I)PXy l = (X'(A~ l ® I)X)~ l
(2.6)

Note that each component (p,- - P,) is expressed in Theorem 2.1 as a weighted

sum of n independent components. Our design conditions insure that these

summands satisfy the Lindeberg condition, cf. Koenker and Bassett (1978).

It may be noted that, as in the classical case, if the design matrix is the

same in all m equations then there is no efficiency gain in solving (2.2).

Indeed, it is easy to see that any solution to the equation-by-equation M-

estimation problem will also solve (2.2).

As in the classical least-squares case it is important to consider the conse-

quences of replacing P and R in (2.2) by estimates. However, similar argu-

ments to those in the classical context yield an identical asymptotic theory pro-

vided A -» A in probability. In subsequent work we hope to explore the prac-

tical consequences of various estimation schemes for A.

3. Comparisons with Optimal Estimators in the Elliptically Contoured Case

While solving (2.2) provides an asymptotic improvement over the naive

M-estimator, this method still depends on a one-dimensional kernel. Since the

problem is inherently multidimensional, this poses the question of how much

one is sacrificing for the sake of simplicity. Two comments can be made here.

First, the results of Portnoy ((1977) and, especially, (1979), section 1)

suggest that if there is only small dependence between the equations, a one-
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dimensional kernel with a small amount of redescent provides the first order

correction to the optimal estimator. Thus, there is little sacrifice of efficiency if

the dependence is small. If the dependence is large, however, improvements

can be made by using fully multivariate estimators; for example, the maximum

likelihood estimator for model (1.1). Comparisons are somewhat difficult to

make in the completely general case, but the elliptically contoured case provides

relatively clear and simple comparisons. Consider u = (ttj, • • •
, un ) as a

matrix of a sample of size n from a multivariate density, / , on Rm which

is elliptically contoured with parameter A . That is, A-1
is the "precision

matrix", or equivalently, A~'/2
U: is spherically symmetric. The matrix A is

not uniquely defined, but is only determined up to a positive multiplicative con-

stant. Thus, when variances exist, we will generally specify the constant by tak-

ing A = Cov(Uj). Clearly, the results do not depend on having a finite vari-

ance, but this specification will permit direct comparisons to be made. The

specific examples considered below will take Uj to have a multivariate t-

distribution (with covariance A ), and will emphasize the case where the

dimension, m = 2

The results may be summarized as follows. The optimal asymptotic covari-

ance matrix is the Inverse Fisher Information Matrix, which Theorem A.l

shows to be

V* = c* (X' (A
-1®/) X) -1

(3.1)

where c is defined by (A.l). Since the asymptotic covariance for the solu-

tion to (2.2) (the weighted M-estimator) is of rather different form, we can

simplify the comparisons by considering two stages. First, consider the case

where we transform by A~
J/2

to obtain spherical symmetry. Theorem A.

2

shows that the asymptotic covariance for the weighted M-estimator applied to

the transformed data is

V
tr
= c

tr
{X'{A- l®I)Xy l

(3.2)

where c
tr

is given by (A. 2). Thus, efficiencies of weighted M-estimators

applied to the transformed data can be readily computed by comparing ctr to

c . As a specific example, consider the multivariate t-distribution with q



degrees of freedom (for q > 0) and dimensions, m = 2, 5, 10. In this case,

values for c* and c
tr

are calculated in Proposition A.l (equation (A. 3)); and

efficiencies for the weighted l± estimator, c lctr , are plotted in Figure 3.1, along

with efficiencies for the LS estimator (where the constant is c - 1). Note that

although the efficiency of the l± estimator can tend to zero, it does so only for

extreme error distributions where the asymptotic covariance is already quite

small.

Finally, we compare the asymptotic covariances for the weighted l
x
estima-

tor applied to the original data with those of the same estimator applied to the

transformed data in the case where m = 2. Proposition A.2 computes the

covariance matrix given in (2.6) under a bivariate t-distribution with q degrees

of freedom:

V = c (X'(A- l(u)®I)Xy l
, where A(w) =

1
4

• -l
1 — sin

l

\

K

4 • -i— sin *p
71

(3.3)

and where p is the correlation parameter in the specific example defined by

(A.4). It turns out that A and A have the same diagonal elements (when

m = 2); and so V
tr
< V (in the sense of having a positive definite

difference) if and only if det(A) < det(A) . In fact, the ratio of these deter-

minants is just the ratio of generalized variances, det(V,r )/det(K) . Thus,

e = (det(A)/det(A) }
2

is a measure of efficiency which is scaled as a ratio of

variances. Direct computation shows that e monotonically decreases to zero

as lp> 1
—> 1 . Furthermore, e is moderately large unless there is substantial

correlation among the equations, in which case the actual variance det(V) is

already small. In particular, e > .82 for Ip I < .7 and e > .62 for

Ip I < .9 .

As a final consequence, therefore, we can expect the weighted l\ estimator

to be reasonably efficient unless V is already quite small. That is, inference

based on the solution to (2.2) should be fairly good even though it does not

take full account of the multivariate nature of the problem.
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4. An Example

To illustrate the methods described above, we now reconsider the well

known Grunfeld (1958) investment model. Grunfeld proposed and estimated a

simple model in which a firm's investment in period t+ 1 was linear in the

firm's capital stock in period t and in the market value of the firm in period t.

Grunfeld's data which consists of annual observations on these quantities for

several major US corporations, 1935-1954, has been subsequently reanalysed

many times. See e.g., Boot and De Wit (1960) and the textbook treatment by

Theil (1971) for the data and further details on the model.

We will consider, like Theil, only two firms: General Electric (GE) and

Westinghouse (WH). Thus we have a model of the form (1.1) with

m = 2, n = 20, p\ = p 2
= 3. For numerical stability we have rescaled the

data so market values are in billions of dollars, and the investment and capital

stock variables are in 100's of million dollars. In Table 4.1 we report ordinary

least squares and normal-theory SUR estimation of the Grunfeld model.

Table 4.1

Classical Estimation of the Grunfeld Investment Model

Intercept Market Value Capital Stock

GE -0.100 0.266 0.152

OLS

(0.313) (0.156) (0.026)

WH -0.005 0.529 0.092

(0.080) (0.157) (0.056)

GE -0.277 0.383 0.139

SUR

(0.289) (0.142) (0.025)

WH -0.012 0.576 0.064

(0.074) (0.143) (0.052)

Note: Standard errors appear in parentheses.
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The estimated covariance matrix for the SUR estimates is

.066 .018

.018 .009

which implies an estimated correlation between the errors of the two equations

of .73.

We choose to illustrate our methods with a smooth /j-like M — estimator.

This avoids some difficult computational problems in solving (2.2) when \\f is

discontinuous, and facilitates the computation of standard errors for reported

estimates by avoiding the problem of sparsity estimation (e.g., see Welsh

(1987)). As in Amemiya (1982), we consider a logistic approximation to the

l
x
y- function \\f(u) = sgn(w) as

\|fx0O= -(1- 2/(1+ e~ Xu
))

where X is a scale factor which controls the /j-ness of the approximation. As

with any such M -estimation method, some concomitant scale estimation is

required to achieve scale equivariance. We adopt the prevalent device of start-

ing our iterations at the coordinatewise ^-estimate and using the mad scale

estimate, that is,

s = 2c median { \u
t

- median {£,- } I

}

where c = .7413 is chosen to achieve (approximate) Fisher consistency at the

Gaussian model.

In Table 4.2 we present single-equation estimates as well as the starting

values provided by the /j estimates. The M estimates solve the equation

Z x
j VMyj - XjbVs) = 0.

;=i

Since the Jacobian of this equation is easily computed analytically we employ

the algorithm DZONEJ from the Port3 library (Fox (1984)). To estimate stan-

dard errors we adopt a slight variation on one of the proposals of Huber (1981,

section 7.6) for which we estimate the asymptotic covariance matrix of the

M -estimate P by Vn = H~ l Gn H~ l where

Gn = Z XiXi'vlUyi ~ x&Vs) and HR = 2 Xjx/yx'Cty - x&)ls){\ls).

The scale factor X is analogous to the Huber k ; we have chosen it in such a
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way that under Gaussian conditions 20% of the observations would have

l\j/^(w)l< .99. So the resulting M-estimator behaves, roughly, like a 40%

trimmed mean. In general, we may write

%= log(( fl + !)/(!- a))

^(l - b)

where a is a bound on the ^-function and b is a desired level of trimming.

Here we have set a = .99 and b = .40 .

Table 4.2

Single-Equation M -estimation of the

Grunfeld Investment Model

Intercept Market Value Capital Stock

-0.110 0.252 0.150

GE -0.119 0.252 0.156

(0.072) (0.028) (0.020)

0.051 0.397 0.139

WH 0.036 0.417 0.134

(0.060) (0.096) (0.041)

Note: Line one in each panel contains the (/j) starting values,

line two reports M -estimates, and the numbers in parentheses

are standard errors for the M -estimates computed from Vn .

Estimating the parameters of *F and R as

n n

R
ij
= i 2 V\WiktSi)y\(Ujic/Sj) and ¥, = n £ Vjt'Mtt^iX^'i) >

*=1 k=\

we obtain,
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R =
.854 .518

.518 .865
¥ =

5.39

13.11

The final M -estimation of the two equations, obtained by solving (2.2), is

reported in Table 4.3, where we have computed standard errors in accordance

with the expression (2.6). Estimated standard errors are reported both by

evaluating (2.6) at the initial estimates R and *¥, and by reestimating R and *¥

using residuals from the multivariate fit.

Table 4.3

Multivariate M -Estimation of the

Grunfeld Investment Model

Intercept Market Value Capital Stock

-.114 .255 .151

GE (.186) (.092) (.016)

(.159) (.078) (.013)

.051 .392 .109

WH (.054) (.104) (.038)

(.049) (.094) (.034)

Note: Two sets of standard errors are reported.

The first set of figures in parentheses is based on

evaluating (2.6) at R , *F given above, while the

second row is based on reestimation of R , *P

Since the matrix A" 1 = (*F R
~

l VF)~ 1 plays the role of the covariance

matrix in our M estimation of multivariate models, it is worth noting that after

reestimating/? and W

A~ l =
.022 .006

.006 .004
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which, if viewed as a conventional covariance matrix, implies a correlation of

.65, compared to the .73 for the corresponding classical SUR estimates.

Since we are not priviledged to know the true values of the parameters for

this example, it is difficult to draw definite conclusions from the foregoing

results. Clearly, the M -estimates are quite stable with respect to the initial ^

single equation results, but rather substantial differences exist between this

group of estimates and the SUR results. One way to illustrate the robustness

of the M estimation approach is to study the effects of introducing artificial

contamination into an existing data set, like the Grunfeld data.

We undertake two simple experiments of this type. In the first we select

an arbitrary observation from the first equation and introduce additive contami-

nation to it. More explicitly, we let

yi,i2 = yi. i2+ d

and study the resulting perturbation in our estimates as a function of the scalar

d. The consequences of this contamination are displayed in the sensitivity

curves, Figures 4.1 and 4.2; and are quite different in the two equations. In

equation one, the SUR estimates appear essentially linear in d. So, as in ordi-

nary least squares estimation, a single bad observation may create an arbitrarily

large perturbation in the estimates. In the second equation the sitaution is

somewhat more complicated. The contamination in the first equation has the

effect of inflating the estimated variance of the first equation thus decreasing its

influence on the estimated parameters of equation two. Correlation between

the two equations diminishes, but does not vanish. The net effect is a modest

perturbation in the estimated parameters of the second equation which gradu-

ally attenuates as the contamination becomes more extreme.

In contrast, the effect of the contamination on the M -estimates is barely

perceptible. A slight perturbation occurs as the contaminated observation

crosses the plane determined by the initial fit, but further more extreme con-

tamination has no further consequences.

In the second experiment we contaminate both observations corresponding

to a given year. Explicitly, v^ 12
= v

i, 12 + ^» ?2, 12
= v

2, 12 + & The

results appear in Figures 4.3 and 4.4. Now, the pair of contaminated
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observations gradually comes to dominate the correlation between the two

equations, driving it to one. All of the SUR estimates behave linearly in d, for

large values of \d I. In contrast, the MSUR estimates are completely insensi-

tive to large values of the perturbation d.

5. On Affine Equivariance

To conclude, a brief apologia is required for the dereliction of affine

equivariance. Most of the recent work on robust multivariate analysis, (see

Rousseeuw(1987) and Hampel, et al (1986, Chapter 5) and references cited

there) has restricted attention to estimators which commute with affine

transformations. Suppose T(y
ly

• • • ,vn ) is an estimator of multivariate loca-

tion based on observations {y^-eR^: i=l,...,/i). Then T is said to be affine

equivariant if and only if

T(y
x
A + b, • • ,ynA+b) = T(yv • • ,yn )A + b (5.1)

for any beRp and nonsingular (pxp) matrix A. This property is particularly

compelling in physical applications where, for example, the coordinate system

for R3
is arbitrary. However, in many applications the measured coordinates

are meaningful — commodity bundles in economics, for example. Then, non-

diagonal transformations A are difficult to interpret.

The methods suggested above satisfy (5.1) for diagonal A , and therefore

are affine equivariant coordinate-by-coordinate. They do not commute, how-

ever, with arbitrary non-singular matrices A . Whether this failure is a mere

peccadillo or a mortal sin seems debatable. Unless linear combinations of indi-

vidual coordinates are meaningful quantities there appears to be little harm in

restricting affine equivariance to be a coordinate-by-coordinate property.

Unfortunately, the most appealing of the affine equivariant methods, due to

Oja(1983) and Rousseeuw(1987) are extremely difficult to compute; this may

offer another, at least temporary, rationale for the methods suggested above.
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Appendix: Theoretical Results for the Elliptically Contoured Case

THEOREM A.l. Consider the elliptically contoured case above. Define the

function g on R+
by g(u'A~ 1u) = -log /(a) for u e Rm . Assume

appropriate regularity conditions for the maximum likelihood estimator to have an

(optimal) asymptotic covariance matrix equal to the inverse of the Fisher Information

Matrix. (For example, general conditions applicable to this SUR problem can be

found in Theorem 4.2 (p. 194) of Ibragimov and Has'minskii (1981)). Then this

optimal covariance matrix is given by (3.1) where

4"= — E Nk.-II
2 (*'(Nk/N2

))
2

• (A.l)
c m J J

Proof. First consider the spherically symmetric case ( A = / ). Using the

coordinate notation of Section 1, the log-likelihood can be written

m
-L(P!, ••

, pm ) = s g ( Ety-Jtyfcr) •

For coordinates of p,- and P x

- corresponding to different equations, we have

d 2 L n

E
d a. 3B .

= 4 2 xidkl xi7jk2 E(yiJ - xufojtyy - x^fo) g'XWuj II
2
) .

This equals zero since the expectation equals zero conditional on \\u II
2

. For

coordinates of P, in the same equation, we have

"Pi*! °Pik 2 j=\

This has the appropriate form (3.2). Since each coordinate of m, has the same

marginal distribution, the expectation above is 4 times

E u
x Hg\\\Uj\\

2
))

2 = —E \\Uj\\
2
(g'(\\Uj\\

2
))

2
,

j j m J J

and the result in the spherically symmetric case follows taking inverses. For

general A , simply transform to symmetry by A~'/2
.

THEOREM A. 2. Consider the elliptically contoured case above and transform

the problem so that the succinct form of model (1.1) becomes y = X p + v where
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y = A-'^I y , X = A"^/ X , and v = A"^/ u

Assume conditions Al and A2 hold for the transformed problem. Assume also that

the function \\f is antisymmetric. Then the solution to (2.2) with y and X replaced

by y and X has asymptotic covariance matrix given by (3.2) with

c
tr
= £v2(v

1; )/(£V(vi ;
))

2
. (A.2)

Proof. It suffices to compute the matrices O and R given in Theorem

2.1 for the spherically symmetric random vector v € Rm . By spherical sym-

metry, for j> j, the coordinates (— Vj, Vy) have the same distribution as (v,-, v.).

Hence, for fc j,

Rij = EvCv.OvCy,-) = Eyi-ViWvj) = -Eyiv^yiVj) .

Whence, R
i}f

= . Also the coordinates of v have the same marginal distri-

bution. Hence,

rt(v) = (Ey2^)) / and O(v) = (Eyftvi)) I .

The result follows immediately from Theorem 2.1. D

Proposition A.l: For the multivariate t-distribution in m dimensions with q

degrees offreedom and covariance A , c* (A.l) and ctr
(A.2) are given by

c*= 0" + g+2>(*-2> and c„ = «(^«^/2)
q{m + q) 4 T2((^+l)/2)

Proof. First consider the optimal covariance. Let w = llv ll
2/(^-2) .

Then the density of w is

/(w) = c(m,«7) (1 + w)-^ +^ /2 where c(m,<7) = ^T^^kY(ml2)V(ql2)

and c will be (q-2) times the value computed using this density. So the

logarithmic derivative becomes

,, . (m + q) 1

8 (w) = -*- ——
2 (1 + w)

Therefore, from (A.l),

1 ,, 4 (m + q)
2

r v v
(m-i)/2

c*(w) m 4 J
Q (1+v) 2

m
'

(i+v )^ +m)/2
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(m + q)
2 c(m,q) (m + q)q

m c(m + 2,q+2) (m + q + 2)

from which (A. 3) follows for c .

The result for c
tr

follows easily from (A.2) and the calculations

£\j/
2(v) = 1 and £\|/(v) = 2/v (0), where fv is just the density of a univari-

ate ^-distribution times (q-2)/q .

Lastly, we calculate V (2.6) in a special case of a bivariate t-distribution.

In particular, let Uj e Rm be an observation from a bivariate t-distribution

with q degrees of freedom and covariance matrix A given by

A =
1 2p

2p 4
(A.4)

for lpl< 1. That is, let u
}
;= z /(%

2
(<7)/(m-2))^ where z~ N 2(0, A) .

Proposition A. 2: Under the above multivariate t-distribution, the asymptotic

covariance (A.2) of the weighted ^-estimator applied to the untransformed data is

given by (3.3).

Proof. We only need to compute R (u) and O(w) as given in condition

P2 for \\f(u) = sgn(w) . Clearly, the diagonal entries of R (u) are unity, and

the off-diagonal entry is

R n(u) = Esgn(u
l
)sgn(u 2 ) = £

,

sgn(z
1
)sgn(z 2)

=
2sin l

\

K

from (3.3), where formula 26.3.19 from Abramowitz and Stegun (1964) has

been applied. Also, since the marginal distribution of Uy. is the same t-

distribution as the marginal for v
1;

above, and u
2j

;

~ 2 v
2; , we have

_ „ ~'/2O(w) = c
tr

1

lh

where c
[r

is exactly the same as in the expression for V
tr . Therefore, V has

the desired form with A(w) = 0~ l (u) R (u)
_1

(w) , from which (3.3) fol-

lows by direct calculation.
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