
SCALABLE COLLECTIVE MESSAGE-PASSING ALGORITHMS

BY

PAUL D. SACK

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Professor William Gropp, Chair
Professor Laxmikant Kale
Professor David Padua
Professor Marc Snir

Abstract

Governments, universities, and companies expend vast resources building

the top supercomputers. The processors and interconnect networks become

faster, while the number of nodes grows exponentially. Problems of scale

emerge, not least of which is collective performance. This thesis identifies

and proposes solutions for two major scalability problems.

Our first contribution is a novel algorithm for process-partitioning and

remapping for exascale systems that has far better time and space scaling

than known algorithms. Our evaluations predict an improvement of up to

60x for large exascale systems and arbitrary reduction in the large temporary

buffer space required for generating new communicators.

Our second contribution consists of several novel collective algorithms for

Clos and torus networks. Known allgather, reduce-scatter, and composite

algorithms for Clos networks suffer the worst congestion when the largest

messages are exchanged, damaging performance. Known algorithms for torus

networks use only one network port, regardless of how many are available.

Unlike known algorithms, our algorithms have a small amount of redundant

communication. Unlike known algorithms, our algorithms can be reordered

so that congestion hinders small messages rather than large, and all ports

can be fully used on multi-port torus networks. The redundant communica-

tion gives us this flexibility. On a 32k-node system, we deliver improvements

of up to 11x for the reduce-scatter operation, when the native reduce-satter

algorithm does not use special hardware, and 5.5x for the allgather opera-

tion. We show large improvements over native algorithms with as few as 16

processors.

ii

Doctor, doctor, is there a doctor in the house?

IS THERE A DOCTOR IN THE HOUSE?

Yes, madam, I am a doctor.

Oh, doctor, have I got a daughter for you!

–Lou Jacobi

iii

Acknowledgments

After nine short years, this is finished.

Thank you, Jill, for your patience and for your impatience, and for always

being there.

Thank you, Mom and Dad, for encouraging me always and setting a good

example.

Thank you, Bill, for all the open-ended chats about supercomputing and

showing me how to be a researcher. That was what I needed after my erst-

while advisor left computer science in pursuit of music superstardom.

Thank you, the rest of my committe, Sanjay, David, and Marc, for helping

me shape this thesis.

Thank you, Anne, for introducing me to MPI in 2001 and sending me

across the ocean to learn a little more.

Thank you Brian, Joe, Jun, Karin, Luis “el bocagrande”, Pablo, and Radu

for all the I-ACOMA hijinx. Perhaps the simulator-support emails will cease

when I am no longer paulsack@uiuc.edu.

Thank you, Rhonda and Mary Beth for guiding me through the finish line.

Thank you, people of Argonne National Labs who tend the most pleasantly-

configured system I have ever had the pleasure to use. And finally:

This research used resources of the Argonne Leadership Computing Facility

at Argonne National Laboratory, which is supported by the Office of Science of

the U.S. Department of Energy under contract DE-AC02-06CH11357. This

work was supported in part by the U.S. Department of Energy under contract

DE-FG02-08ER25835 and by the National Science Foundation under grant

0837719.

iv

Table of Contents

List of Figures . vii

Chapter 1 Introduction . 1

Chapter 2 Scalable process partitioning and remapping algorithms . . 4
2.1 Introduction . 4
2.2 Background . 5
2.3 Scalable communicators . 6

2.3.1 Better performance through parallel sorting 7
2.3.2 Less memory usage with distributed tables 8
2.3.3 Related work . 9

2.4 Evaluation . 11
2.4.1 Comparison with related work 14
2.4.2 Small communicators 17

2.5 Conclusion . 18

Chapter 3 Scalable collective communication 19
3.1 Model . 21
3.2 Known algorithms and related work 25

3.2.1 Topology-aware algorithms 26
3.2.2 Generic-topology algorithms 29

3.3 Performance of minimal algorithms 31
3.3.1 Non-topology-aware algorithms 31
3.3.2 Topology-aware algorithms 35

3.4 Non-minimal algorithms . 35
3.4.1 Recursive-doubling algorithm 36
3.4.2 Bucket algorithm . 41
3.4.3 Recursive-doubling algorithm with irregular partitions . 45
3.4.4 Other operations . 47
3.4.5 Alternatives to redundant communication 47

3.5 Evaluation . 47
3.5.1 Bandwidth under congestion or multi-port commu-

nication . 50
3.5.2 Allgather performance 51
3.5.3 Allgather performance on subpartitions 58

v

3.5.4 Reduce-scatter performance 61
3.5.5 Broadcast performance 65
3.5.6 Measured versus predicted performance 65
3.5.7 Comparison with similar work 72

3.6 Conclusion . 72
3.6.1 Other non-minimal algorithms 72
3.6.2 Summary . 73

Chapter 4 Conclusion . 75

References . 77

vi

List of Figures

2.1 The total execution time of the conventional algorithm, the
conventional algorithm with merging after each step, and
the communication time for both. 12

2.2 The speedup of using a parallel-sort with conventional com-
municator tables over merging in-place. 13

2.3 The speedup of using a parallel-sort with distributed-tree
communicators over merging in-place. 15

3.1 Row-major and Morton ordering on a 4x4 grid; Morton
ordering recursively applied to a 16x16 grid [1]. 40

3.2 Link bandwidth vs. message size with congestion; Node
bandwidth for multi-port communication 48

3.3 Performance of single-port allgather algorithms vs message size. 52
3.4 Performance of single-port allgather algorithms vs number

of processors. 54
3.5 Performance of native and multi-port allgather algorithms

vs message size. 55
3.6 Performance of native and multi-port allgather algorithms

vs number of processors. 56
3.7 Overhead of input data shuffle stage. 58
3.8 Alternatives to input data shuffle. 59
3.9 Performance of multi-port allgather algorithms vs number

of processors on mesh subpartitions. 60
3.10 Performance of reduce-scatter algorithms vs message size. . . . 62
3.11 Performance of reduce-scatter algorithms vs number of pro-

cessors. 63
3.12 Performance of reduce-scatter algorithms vs number of pro-

cessors on mesh subpartitions. 64
3.13 Performance of broadcast algorithms. 66
3.14 Predicted and measured performance of ring allgather algorithm. 69
3.15 Predicted and measured performance of recursive-doubling,

distance-doubling and recursive-doubling, optimally-reordered
allgather algorithms. 70

vii

3.16 Predicted and measured performance of bucket and 6-way
bucket allgather algorithms. 71

viii

Chapter 1

Introduction

Petascale supercomputers, i.e., supercomputers that can sustain over a Peta-

flop of performance were once unimaginable; now the top 10 supercomputers

in the world have broken the petaflops barrier [2]. The scalability problems

faced by the designers of these systems will be familiar to those who will

build exascale supercomputers in the not-so-distant future. These designers

will face an additional challenge in obtaining high-performance collective-

communication operations.

A typical supercomputer near the top of today’s Top 500 list would be

built with multicore microprocessors with a shared cache. Several of these

would be placed on one board and share memory. Several dozen boards

would be placed in a cabinet. Then many cabinets would be connected.

The interconnects used by the systems near the top are evenly split between

proprietary 3d-torus networks and Infiniband fat trees.

Engineers design systems for efficient point-to-point communication, espe-

cially between nearby processors. Collective communication is less frequent,

e.g., a convergence test at the end of each iteration in an iterative algorithm.

As systems become larger, collective communication performance increas-

ingly suffers compared to local point-to-point communication. That torus

networks are still attractive for many workloads illustrates the primacy of

point-to-point communication performance.

This thesis explores two important areas in collective communication: pro-

cess partitioning and remapping, and collective operations. With our novel

algorithms, supercomputers can deliver better communication performance

without any additional hardware costs or runtime or compiler support. Our

algorithms can be simple additions to any MPI library.

In the next chapter, we explore how known approaches for communicator-

creation, the mechanism by which processes are partitioned or remapped, do

not scale, and we propose straightforward algorithms that rectify the situa-

1

tion. On an n-processor system, we improve the latency of communicator-

creation from O(n lg n) to O(p lg n+lg2 n+n/p lg p) and the memory require-

ment from O(n) to O(n/p). (p is a parameter used in our algorithm, and

p� n for optimal performance.) On a large exascale system with 128 million

processor cores, we reduce the time spent in creating a new communicator

sixty-fold, from 22 seconds to 370 milliseconds.

The largest supercomputer today, the K computer, has just over half a

million cores [3]. The scalability problems in communicator management are

not serious on supercomputers with under several to tens of millions of cores.

More pressingly, current algorithms for common collective-communication

operations do not deliver good performance on even small systems, such as

a 512-node partition of a BlueGene/P supercomputer.

The models used in developing collective algorithms generally either ig-

nore network topology altogether or, equivalently, assume that the delivered

bisection bandwidth meets or exceeds the injection bandwidth. When prac-

tical topologies are considered, performance declines considerably for these

algorithms. Known algorithms developed specifically for torus networks can

scale well, but only use one of the six ports typically available in 3d torus

networks.

Even on networks where bisection bandwidth meets injection bandwidth,

in practice, network performance suffers at high network loads, and these

networks deliver somewhat less than their theoretical bisection bandwidth

[4, 5]. Moreover, full bisection bandwidth is not a given. The Roadrunner

system, currently the tenth-fastest in the world, has a two-level Clos (“fat-

tree”) network, where the bisection bandwidth at the top level provides for

just over 25% of the injection bandwidth from the processor cores into the

lower level. The systems with toroidal interconnects of course have far less

bisection than injection bandwidth. The plans for the Blue Waters system

had a three-layer fat tree-like network and a bisection bandwidth of 85% of

injection bandwidth [6].

Our solution, detailed in Chapter 3, consists of loosening the restriction

on data ordering. This allows for better communication locality in Clos and

torus networks, and for the use of all ports in multi-ported torus networks.

We then add a small amount of redundant communication to restore the

correct ordering. This speeds up allgather operations by up to 5.5x; and

reduce-scatter operations by up to 11x compared to the native algorithm

2

on a BlueGene/P system, when the native reduce-scatter algorithm is not

using the special tree network which does reductions in place. Our work can

also improve the performance of the broadcast, reduce, and reduce-scatter

operations.

This thesis makes two main contributions. First, we identify and fix the

scaling problem in process-partitioning and remapping algorithms.

Second, we present algorithms for important collective-communication op-

erations that significantly improve performance through redundant commu-

nication.

This work is divided into two chapters. In Chapter 2, we share our work on

scalable process partitioning and remapping. In Chapter 3, we demonstrate

our novel collective-communication algorithms.

3

Chapter 2

Scalable process partitioning and remapping
algorithms

2.1 Introduction

The Message Passing Interface Forum began developing the message-passing

interface (MPI) standard in early 1993. MPI defines a standard communi-

cation interface for message-passing systems that includes support for point-

to-point messaging, collective operations, and communication-group manage-

ment. The core of communication-group management is the communicator :

a context in which a group of processes can exchange messages.

In 1993, the fastest supercomputer in the Top 500 was a 1024-processor

Thinking Machines system that could sustain nearly 60 Gigaflops [2]. In the

June 1997 list, the 7264-processor Intel ASCI Red system broke the Teraflop

barrier. In early 2010, the fastest supercomputer was a Cray system with

224,000 cores at 1.8 Petaflops, and a Blue Gene system ranked fourth has

nearly 300,000 cores achieves nearly 1 Petaflop. By mid-2011, the fastest

supercomputer, the K computer, attained 8 Petaflops with 550,000 cores. If

scaling trends continue, supercomputers with millions of cores will achieve

Exaflop performance. Current methods for managing communicators in MPI

do not perform well at these scales – in space or in time – and programmers

cannot program their way around using communicators.

In this chapter, we first examine the state of the art in Section 2.2 and

identify the MPI communicator-creation functions that are not inherently un-

scalable. In Section 2.3, we propose novel communicator-creation algorithms

that do scale to million-core supercomputers. In Section 2.4, we detail our

evaluation methodology and present our results. We conclude in Section 2.5.

4

2.2 Background

MPI programs start with one communicator, MPI COMM WORLD, that contains

every process in the program. It is common to form smaller communicators

containing a subset of all the processes. MPI provides two ways to do this:

• MPI Comm create: processes must enumerate all the members of the

new communicator.

• MPI Comm split: processes specify a color; processes whose colors match

become the members of new communicators.

MPI Comm create requires as input a table specifying membership in the

new communicator for every process in the old communicator. Only one com-

municator is created per call (in MPI 2.1), and ranks can not be reordered.

Each process in the old communicator must call this function with the same

table, whether or not the process is included in the new communicator.

This algorithm scales poorly as the memory and computation costs scale

linearly with the size of of the input communicator.

MPI Comm split requires only a color and a key as input. (The key is

used to reorder ranks in new communicators.) It is more versatile, since

it can create many communicators in one call, can reorder ranks, and does

not require the programmer to build a large table to specify communicator

membership. The ranks in the new communicator are assigned by sorting

the keys and using the ranks in the old communicator as a tie-breaker.

We examined the implementation of MPI Comm split in two widely-used

open-source MPI implementations: MPICH[7, 8] and OpenMPI[9], which

is derived from LAM-MPI. Unfortunately, MPI Comm split scales equally

poorly in these current MPI implementations, which operate as follows:

1. Each process builds a table containing the colors and keys of all the

other processes with an allgather operation.

2. Each process scans the table for processes whose colors match.

3. Each process sorts the keys of processes whose colors match.

MPICH makes use of “recursive doubling” to build the table [10]. In the

first step, each process exchanges its color and key information with the

5

process whose rank differs only in the last bit. In the second step, each

process exchanges its color and key table (now containing two entries) with

the process whose rank only differs in the second-last bit. This continues,

and in the final step, each process exchanges a table containing n/2 entries

with the process whose rank differs only in the first bit.

Open MPI uses an operation similar to recursive doubling to build the

table, known as Bruck’s algorithm, which works whether or not the number

of processes is a power of two. (MPICH uses this algorithm only when the

number of processes is not a power of two.) We explain it in greater detail

in Section 3.2.2. We assume the use of recursive doubling in the rest of this

work, but it makes little difference in the analysis which is used.

In both implementations, after the tables are built, the tables are scanned

for entries with matching colors, and then those entries are sorted by key.

If there are n processes in the input communicator, this algorithm incurs a

memory and communication cost of Θ(n), and a computation cost dominated

by the sorting time: O(n lg n). Only the entries in the table whose colors

match are sorted, so for smaller output communicators, the computation cost

can be much less.

As we will show, the sorting phase of MPI Comm split consumes a signifi-

cant amount of time at larger scales. Further, the table requires vast amounts

of memory. Every entry has at minimum three fields: hardware address or

rank in the source communicator; color; and key. Using 32-bit integers for

each field, this requires 192 Megabytes per process per communicator in a

16-million node system, which is clearly unreasonable. This is especially

problematic because per-core performance is growing far more slowly than

the number of cores in modern microprocessors [11], and we can only expect

memory per-core to grow as quickly as performance per-core for weak scaling.

2.3 Scalable communicators

While the memory problem is more concerning, we first present one facet of

our solution to the poor performance scaling of MPI Comm split.

6

2.3.1 Better performance through parallel sorting

As mentioned, much of the time in MPI Comm split is spent in sorting the

color and key table. In state-of-the-art algorithms, every process sorts the

entire table. Our proposal is to sort this table in parallel. The simplest

and least-effective way to do this is to have each process sort its table at

each step in the recursive doubling operation before exchanging tables with

another process. In effect, at each stage, each process merges the sorted table

it already has with the sorted table it receives from its partner process for

that stage. This turns the O(n lg n) sort problem into lg n merge operations

of size 2, 4, 8, . . . , n/4, n/2, an O(n) problem.

This gives us an O(lg n) speedup. In the final step, all n processes are

merging identical tables. In the second-to-last step, two groups of n/2 pro-

cesses merge identical tables. To do away with this redundant computation,

we adapt a parallel sorting algorithm to this problem.

Cheng et al present one parallel sorting algorithm [12]. Their algorithm

begins with an unsorted n-entry table distributed among p processes. At the

conclusion of the algorithm, the table is sorted, and the entries in the the ith

process’s table have global rank [(i− 1)n
p
, in

p
).

In brief, their algorithm works as follows:

1. Each process sorts its local table.

2. The processes cooperate to find the exact splitters between each pro-

cess’s portion of the final sorted table using the exact-splitter algorithm

from [13].

3. The processes forward entries from their input subtables to the correct

destination process’s subtable using the splitters.

4. Each process merges the p pre-sorted partitions of their subtable.

In step 1, each process takes O(n
p

lg n
p
) time to sort its subtable. However,

we use recursive doubling and merging to generate the inputs, thus we need

not sort the subtable. Recursive doubling up to the beginning of the parallel

sort, where each process has a table with n
p

elements, takes O(n
p
) time.

In step 2, exact splitters are found after lg n rounds in which the distance

between the estimate of the splitter and the correct splitter exponentially

7

decays. Each round has an execution-time cost of O(p + lg n
p
), for a total

time O(p lg n+ lg2 n).

In step 3, each process exchanges at most n
p

entries with other processes.

(For random input keys and ranks, the number of entries is expected to be
n
p
× p−1

p
.) Thus, the time complexity for the exchange is O(n

p
).

In step 4, each process recursively merges the p partitions of its subtable

in lg p stages, merging p partitions into p/2 partitions in the first stage, then

p/2 partitions into p/4 partitions, and so on, for a cost of O(n
p

lg p).

At the conclusion of the parallel sort, the p processes use recursive doubling

to build full copies of the table.

The total time spent in the parallel sort is O(n
p
)+O(p lg n+lg2 n)+O(n

p
)+

O(n
p

lg p) = O(p lg n + lg2 n + n
p

lg p). There is no closed-form expression

for p in terms of n that minimizes time. If O(1) < p < O(n
lgn

), then,

asymptotically, the parallel sort will take less time than the lg p stages of

merging in the conventional algorithm with merging.

The time spent in the final recursive-doubling stage to build full copies of

the table is O(n).

The amount of communication is more than that in a conventional recursive-

doubling implementation due to the communication incurred in finding the

splitters and exchanging table entries between sorting processes. Even so,

we observe performance improvements with a modest number of sorting pro-

cesses.

2.3.2 Less memory usage with distributed tables

For an application to scale to millions of processes, each process must only

exchange point-to-point messages with a small number of unique processes

(e.g., lg n processes for the recursive-doubling allgather algorithm). Thus,

most of the entries in a large communicator table go unused.

We propose that groups of P ′ processes share a full table, where each

process stores n/P ′ rows of the full table. When a process needs the address

of a process not in its portion of the table, it queries the process in the group

which has the address in its table. Each process will also maintain a small

cache with the results of these remote lookups. This can be implemented

with efficient one-sided communication.

8

The number of processes in each group can be the same, less than, or

greater than that used in the parallel sort. In large exascale systems with

scarce memory, the memory usage of the table can be arbitrarily tightened

by increasing the size of this group.

2.3.3 Related work

When we published our results in [14], it was the first work to address process

partitioning and remapping at large scales. Later, Moody et al [15] and

Siebert and Wolf [16] looked at scalable MPI Comm split algorithms.

In Moody et al ’s approach, communicators are stored as doubly-linked

lists. Each process in a communicator knows only the addresses of its two

adjacent rank neighbors. They present a method for implementing binary-

tree collective algorithms in lg n steps, provided that the binary-tree oper-

ation is distance-doubling, i.e., the distance between communicating ranks

doubles in each step. This precludes the use of better collective algorithms,

as we explain in Chapter 3. The linked-list structure also precludes efficient

point-to-point message-passing, according to the authors.

They present algorithms for the general MPI Comm split problem, the case

when only the ranks are reordered and the communicator is not split, and

the case when the communicator is split but ranks are not reordered. For the

general problem and the reordering-only problem, their algorithms include a

radix sort or a bitonic sort. It is not clear how they are implemented without

efficient point-to-point messaging.

They compare their algorithms for sorting-only (and not splitting) with

our merging-in-place algorithm and our first parallel-sorting algorithm, with

replicated, not distributed tables. We will compare our results with theirs in

the next section.

Siebert and Wolf present a novel parallel sorting algorithm that can be used

to sort the color-key pairs in MPI Comm split. Unlike the Cheng algorithm

we adapt, where each sorting process is responsible for sorting many color-key

pairs, in their algorithm, each process is only responsible for one color-key

pair.

Their algorithm has a divide-and-conquer approach. First, all the processes

participate in finding a good splitter. Using global-sum reductions and scan

9

operations, each process can determine how many color-key pairs fall on each

side of the splitter. The problem is then split in two, and color-key pairs are

exchanged between processes so that all color-key pairs less than the splitter

are in one group and all color-key pairs greater than the splitter are in the

second group. This iterates for O(lg n) stages with high probability for a

total runtime of O(lg2 n). Essentially, this is an extremely-parallel quick

sort. They develop specialized reduction and scan collective operations that

operate on ranges of processes to avoid creating new communicators.

The result is that the process with rank i in the input communicator has

the globally-sorted color-key pair of rank i.

Their algorithm requires far less communication and only a small amount

of temporary buffer space. They do not explain how to build a communicator

using the sorted output. In [14], we proposed a tree-like structure to store the

communicator, where each process has the rank-address mapping of itself,

its children, and its parent, along with a small rank-address cache. Rank-

address lookups consist of, at worst, a 2 lg n-hop traversal on the tree. This

tree could be built using the scattered result from their algorithm quite easily.

We later decided that distributing the full rank-address table among groups

of p processes would be a simpler, more-efficient approach with acceptable

memory usage. This could be implemented after their algorithm has com-

pleted using a recursive-doubling allgather operation that stops several stages

early. This would eliminate the space advantage of their algorithm and the

asymptotic runtime advantage, however, even at the exascale, constant fac-

tors are very important, and a more efficient sort than the Cheng sort we use

is still of great benefit.

There are many other parallel sorting algorithms we could use instead.

Many have a similar structure to ours but use inexact splitters, e.g., [17].

Solomonik and Kale [18] loosely follow the structure of the Cheng algorithm

but use inexact splitters and overlap all four stages. Processes sort their sub-

tables and find splitters at the same time. Some splitters will be found before

others; for those, the data forwarding can begin early. Each process will re-

ceive data from some processes before others; the merging can begin before

all the data is available. This overlaps communication and computation and

is likely to be far more efficient than the algorithm we use.

10

2.4 Evaluation

There are no systems yet with millions of processors, so we investigated the

possibility of simulation. All but the parallel sort with distributed tables

algorithm entail each of n processes receiving an n-entry table to sort. This

requires simulating n2/flit-size flits.

BigNetSim can simulate up to 2.5 million network events/second using

128 processors [19]. Every hop in the network counts as an event. Thus, one

experimental data point would require simulating billions of events and take

months.

Instead, we use an indirect approach. We fully implement the parallel-

sort phase of the algorithm using two through 64 processes. The recursive-

doubling exchanges, and the sorting and merging in the conventional algo-

rithm, we simulate using only two processes. These two processes exchange,

merge, or sort the correct amount of sorted or unsorted data with each other

at each iteration in each phase of MPI Comm split. In the correct algorithm,

each process would exchange data with another unique process at each level

in the recursive-doubling algorithm.

We do not capture the effect of network contention. Network contention

would have the greatest effect during the final stages of the conventional algo-

rithm, when every process exchanges messages on the order of several to tens

of Megabytes. Not modeling network contention favors the conventional al-

gorithm in our evaluation. However, in Chapter 3, we present topology-aware

allgather algorithms that avoid congestion and deliver high performance.

In our evaluation, we generate one new communicator containing all the

processes in the input communicator. The keys are randomly-generated.

Later, we discuss how the results are likely to change for smaller communi-

cators.

The experiments are run on Blueprint, a system of 120 POWER5+ nodes,

each with 16 1.9 GHz Power 5 cores. The nodes are connected with Feder-

ation switches. In all of our tests, we use only one core per node to better

simulate a million-core system. We use merge and sort functions from the

C++ STL, and compile with IBM XLC at optimization level -O4.

Each configuration was run 5 times and the mean is shown. The scale of

the standard error was too small to appear on our graphs.

Speedup data for our two parallel-sort MPI Comm split variations are re-

11

0
5

10
15

20

Time: simple algorithms

Communicator size (ranks)

S
ec

on
ds

● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

sort at end
merge after each stage
communication only

16K 64K 256k 1M 4M 16M 64M

0
5

10
15

20

Figure 2.1: The total execution time of the conventional algorithm, the
conventional algorithm with merging after each step, and the
communication time for both.

ported relative to to the conventional MPI Comm split variation with merging

after each step.

In Figure 2.1, we see the latency of the conventional MPI Comm split algo-

rithm implemented in MPICH and Open MPI, along with the time spent in

communication for both. The time for one MPI Comm split call is reduced

by a factor of four simply by replacing the O(n lg n) sort at the end with an

O(n) (total) merge after each step.

Figure 2.2 shows the speedup if we sort the color and key table in parallel

and then continue using recursive doubling to create a full copy of the new

tree. At best, we get a 2.7x advantage over serial sort.

Figure 2.3 shows the speedup if we sort in parallel and build the com-

municator as a distributed tree. We get performance benefits of up to 14x

using 64 sorting processors. Compared to the sort-at-the-end MPICH and

12

Speedup (full tables)

Communicator size (ranks)

●
●

● ● ● ● ● ● ● ● ● ● ●

0
1

2
3

4

0
1

2
3

4

64K 256K 1M 4M 16M 64M

●

Sorters

64
32
16
8
4
2

Speedup (full tables)

Number of sorting processors

●

●

●

● ●

●

2 4 8 16 32 64

0
1

2
3

4

0
1

2
3

4

●

Communicator size (M)

128
64
32

16
8
4

Figure 2.2: The speedup of using a parallel-sort with conventional
communicator tables over merging in-place.

13

Open MPI implementation, our algorithm is 60x faster. The parallel sort

with distributed communicators algorithm significantly reduces the amount

of communication and network contention, so the speedups on real systems

may be better.

More important than a single performance number is the analysis of where

the time goes. Table 2.1 gives a breakdown of the time spent in each operation

for the parallel-sort algorithm with distributed tables.

The breakdown matches expectations perfectly. The collect rows show

the time spent in the recursive-doubling stage before the parallel sort. As

expected, it is proportional to the size of each sorting process’s subtable: i.e.,

the number of processors in the MPI Comm split call divided by the number

of sorting processes.

The splitters rows show the time spent in calculating the median-of-medians.

The number of iterations in the exact-splitter algorithm increases as the log-

arithm of the size of the problem per process. (The distance between the

chosen splitter and the exact splitter exponentially decreases as a function

of the iteration count.) The time spent per iteration is dominated by a term

linear with the number of sorting processes. The time spent in this stage is

insignificant until we scale to 32 or more sorting processes.

The exchange rows show the time spent exchanging elements between sort-

ing processes once the exact splitters are found. With p sorting processes,

on average, we expect p − 1 out of every p entries on each process will be

exchanged. Thus, this term grows as the size of each sorting process’s sub-

table.

The merge rows show the time spent merging the p partitions of each

process’s subtable together. In the first iteration, p
2

pairs of n
p2

-entry subtables

are merged, in the second iteration, p
4

pairs of 2n
p2

-entry subtables are merged,

and so on, for a total cost of O(n
p

lg p) in lg p iterations. We observe that the

times for 2 or 4 sorting processes are the same, since the lg p term doubles

as the n
p

term halves.

2.4.1 Comparison with related work

In Section 2.3, we describe Moody et al ’s work and Siebert and Wolf’s work

on scalable MPI Comm split algorithms. Moody et al ’s best algorithm is

14

Speedup (distributed tables)

Communicator size (ranks)

● ● ● ● ● ● ● ● ● ● ● ● ●

0
4

8
12

16

0
4

8
12

16

64K 256K 1M 4M 16M 64M

●

Sorters

64
32
16
8
4
2

Speedup (distributed tables)

Number of sorting processors

●

●

●

●
●

●

2 4 8 16 32 64

0
4

8
12

16

0
4

8
12

16

●

Communicator size (M)

128
64
32

16
8
4

Figure 2.3: The speedup of using a parallel-sort with distributed-tree
communicators over merging in-place.

15

Communicator Operation Sorting processors
size 2 4 8 16 32 64

collect 0.16 0.08 0.03 0.02 0.01 0.00
splitters 0.00 0.00 0.01 0.01 0.03 0.08

8M exchange 0.05 0.03 0.02 0.01 0.01 0.01
merge 0.06 0.06 0.04 0.03 0.02 0.01
total 0.27 0.17 0.10 0.07 0.06 0.10

collect 0.32 0.16 0.08 0.03 0.02 0.01
splitters 0.00 0.00 0.01 0.01 0.03 0.08

16M exchange 0.10 0.06 0.03 0.02 0.01 0.01
merge 0.13 0.13 0.09 0.05 0.03 0.02
total 0.55 0.35 0.20 0.12 0.09 0.11

collect 0.64 0.32 0.16 0.08 0.03 0.02
splitters 0.00 0.00 0.01 0.02 0.03 0.08

32M exchange 0.20 0.12 0.07 0.04 0.02 0.01
merge 0.25 0.26 0.19 0.11 0.07 0.04
total 1.09 0.70 0.42 0.24 0.15 0.15

collect 1.29 0.64 0.32 0.16 0.08 0.03
splitters 0.00 0.00 0.01 0.02 0.03 0.08

64M exchange 0.44 0.24 0.13 0.07 0.04 0.02
merge 0.51 0.52 0.38 0.24 0.14 0.08
total 2.24 1.41 0.84 0.48 0.28 0.22

collect 2.58 1.29 0.64 0.32 0.16 0.08
splitters 0.00 0.00 0.01 0.02 0.03 0.08

128M exchange 0.80 0.48 0.27 0.14 0.07 0.04
merge 1.01 1.05 0.77 0.49 0.29 0.17
total 4.39 2.82 1.69 0.97 0.56 0.37

Table 2.1: Breakdown of time (seconds) in MPI Comm split with parallel
sorting and distributed tree communicators.

16

4.4 times faster than their implementation of our parallel sort, conventional-

tables algorithm. Our distributed-tables algorithm is over 5 times faster

than our conventional tables algorithm. Moreover, point-to-point messag-

ing is supported with our distributed communicator structure, whereas their

linked-list structure prevents efficient point-to-point messaging and restricts

algorithms for collective operations.

They implement our algorithm with 128, 512, 2048, or 8192 sorting pro-

cesses. These four variations take a different amount of time building com-

municators with under 128 processes–it is not explained how this is possible.

Moreover, they show communicators on a Blue Gene/P built in 20 microsec-

onds, when the ping-pong latency is 3 microseconds.

Siebert and Wolf evaluate their new sorting algorithm against several alter-

natives on a Blue Gene/P using up to 294,912 processes on 73,728 quad-core

nodes. They extrapolate their performance to 128 million processes to com-

pare against our results. On the 128-million process problem, their algorithm

is predicted to sort the color-key pairs in 12.7 ms, whereas our time at that

scale was 370 ms. Their algorithm requires only a few dozen bytes of memory,

whereas ours requires a few megabytes. Recall that Siebert and Wolf’s sort

leaves one globally-sorted color-key pair on each process. They do not fully

explain how a communicator structure can be built from this. In Section 2.3,

we present a couple of possibilities for how this might be done.

In all fairness, it is not especially meaningful to compare performance

numbers between the two new approaches given the data available; they im-

plement their MPI Comm split algorithms on a Blue Gene/P and build com-

municators with up to 64k processes or 294k processes, whereas we evaluate

exascale supercomputers with 8 million or more processes.

2.4.2 Small communicators

We experimented with the case where we take one very large input commu-

nicator and create a very large output communicator of the same size but

a different rank order. The conventional algorithm collects the entire color

and rank table and then only sorts the entries whose color matches that of

the desired new communicator. Thus, when the size of the output communi-

cators is much smaller, the performance for the conventional algorithm will

17

not be nearly as bad as that shown here.

However, observe that ignoring the sort cost, the conventional algorithm

still spends nearly 2 seconds just in communication time for a 128 million-

process input communicator. Our parallel algorithm with 128 sorting pro-

cesses takes 0.37 seconds, including the sort. Moreover, our algorithm does

not need 128 million entries worth of temporary storage in each process.

2.5 Conclusion

Existing algorithms for creating MPI communicators do not scale to exas-

cale supercomputers containing millions of cores. They use O(n) memory

and take up to O(n lg n) time in an n-process application, whereas per-core

performance and memory are expected to increase sub-linearly in the future.

Our work proposes three techniques that solve the time and space scal-

ability problem: merging after each step in the allgather phase, sorting in

parallel, and using distributed rather than replicated tables.

These techniques together reduce the time complexity to O(p lg n+lg2 n+
n
p

lg p), where we have groups of p sorting processes, and reduce the memory

footprint p-fold. In our experiments, this reduces the cost of MPI Comm split

from over 22 seconds for the largest problem to just 0.37 seconds, a 60x

reduction.

18

Chapter 3

Scalable collective communication

Point-to-point operations in MPI allow pairs of individual processes to ex-

change messages. The MPI standard also defines a handful of collective oper-

ations which involve all the processes in a communicator. Known algorithms

for collective communication in MPI have been designed to minimize data

movement, across the network and in memory, with few exceptions. The out-

put of any collective operation must be in a certain order. These constraints

curtail the options for collective algorithms. In this work, we show that a

small amount of redundant communication can have an enormous effect on

performance by reducing congestion and allowing for multi-port algorithms

on networks that support multi-port communication.

There are dozens of algorithms for these operations. Some are topology-

aware and some are not. Some work better for larger messages on smaller

systems and some work better for smaller messages on larger systems. All

but one known algorithm for large collective operations are minimal with

respect to the total number of bytes exchanged between all the processes.

E.g., in every known broadcast algorithm, if the root process broadcasts a

message of n bytes, every process besides the root process receives exactly n

bytes and no more.

The only known non-minimal collective algorithm is that often used in the

short allreduce operation and is described later.

Many supercomputers with Clos (“fat-tree”) networks have less bisection

bandwidth than injection bandwidth. The Roadrunner system, currently at

number 7 on the Top 500 list [2], has a two-level tree, where the top level

provides for just over 25% of the injection bandwidth from the processor

cores into the lower level. All supercomputers with torus networks have less

bisection bandwidth than injection bandwidth. In other words, under certain

bisect communication patterns, congestion will limit performance.

Unfortunately, many widely-used collective communication algorithms make

19

use of bisect patterns that cause the worst possible congestion. Also, multi-

ported switches on torus networks allow for nodes to exchange messages on

multiple links simultaneously, but collective algorithms do not take advan-

tage of this.

To avoid these problems, some supercomputer vendors write their own

versions of collective algorithms that are topology-aware or use special hard-

ware features. E.g., IBM’s Blue Gene series of supercomputers have a 3d

torus and a tree network, and collective algorithms use whichever network

is best [20, 21]. The network switches also have special features, including a

provision for messages containing a “deposit bit” which are then broadcast

to every node along a row or column in the torus. The tree network is only

available on collective operations performed on an entire partition. Some

features, like the deposit bit, are only available on contiguous subpartitions.

The MPI library selects the best algorithm for each operation based on the

form of the communicator, be it a full partition; a contiguous subpartition;

or scattered, non-contiguous processes. The Blue Gene system provides a

simple interface for programs to query topology information.

On the other hand, other supercomputer vendors ship job schedulers that

ignore topology altogether, making topology-aware programming difficult

[22]. This exacerbates the problem, because congestion can arise from dif-

ferent jobs competing for the same network links in addition to the use of

poorly-performing collective algorithms.

Our work diverges from known work by adding a small amount of redun-

dant communication to collective algorithms. This gives us more flexibility

in how the algorithms proceed. The benefit is reduced network congestion,

the ability to fully use multi-ported networks, and, ultimately, much better

performance.

The essence of our approach is that we temporarily relax the requirement

that the output of an operation be in a particular order as specified in the

MPI standard. Instead, we require only that the output be in the same order

on every process. We then add a small extra stage of communication either

before or after the operation that restores the correct ordering. On a P -node

system, this increases the amount of communication by a factor of only 1/P

to 2/P . On the other hand, it eliminates or sharply reduces congestion and

allows the use of multi-port algorithms.

Specifically, for all networks, we reorder the communication stages in the

20

recursive-doubling allgather and recursive-halving reduce-scatter algorithms,

and, for mesh or torus networks, we execute three or six three-dimensional

bucket operations in parallel. This produces the correct result in the wrong

order; one extra stage of communication restores the correct order.

These non-minimal algorithms deliver better performance on any network

that can suffer from congestion or allows multi-ported communication. In

tests on an IBM Blue Gene/P, our best algorithm delivers up to 6x better per-

formance for allgather, and up to 11x better performance for reduce-scatter

over the native algorithm. For larger problems, broadcast, reduce, and allre-

duce are usually decomposed into a scatter and allgather, reduce-scatter and

gather, or reduce-scatter and allgather, respectively. Our methods improve

the performance of these operations as well. We have not tested our algo-

rithms for the Clos network, but, according to our model, bandwidth should

be improved from just over the bisection bandwidth with known algorithms

to nearly the full injection bandwidth with our algorithm.

In Section 3.1, we present the network model used in our analysis. In

Section 3.2, we discuss related work and known algorithms. In Section 3.3, we

analyze the performance of known allgather and reduce-scatter algorithms on

Clos and torus networks. In Section 3.4, we introduce our novel non-minimal

algorithms. In Section 3.5, we evaluate the performance of our algorithms

on a 32k-node supercomputer, and in Section 3.6, we discuss other potential

non-minimal algorithms and conclude.

3.1 Model

Our work is based on a common three-parameter model commonly used to

analyze collective-communication algorithms. The three terms are α: the

startup cost per message, which incorporates the time between when a pro-

cess initiates sending a message and the first byte is available to the receiving

process; β, the bandwidth cost, which is proportional to the size of each mes-

sage and represents the bandwidth constraints of each link in the system, and

γ which is the cost to apply the reduction operation to two elements. This

model is useful to predict performance on systems with wormhole routing,

where the distance between communicating pairs of processes has little effect

on the latency of exchanging a message.

21

We ignore the γ term, as our work focuses on network performance and

has no bearing on the computation time spent in reduction operations.

We use two performance models based on this three-parameter model.

Both consider algorithms divided into a series of stages, where each pro-

cess cannot begin the next stage until all the processes have completed the

previous stage.

We analyze single-port networks, in which each process can send and re-

ceive one message at a time, and multi-port networks, where each process

can send and receive as many messages as each node has links. We assume

there is only one MPI process on each node. Multiple processes on a node

are best handled using a hierarchical MPI library, such as [25].

No-congestion model: The first model ignores topology and congestion.

β represents the bandwidth with which each processor is connected to the

network. Each process can only send and receive one message in each stage

in this model. The α term for an algorithm is simply the number of stages,

since each process can exchange up to one message per stage. The β term is

found by summing the maximum message size per stage over all the stages.

This model can also be seen as one in which each processor is connected by

one link to a full crossbar interconnect.

The equations derived using this model will be labeled as plain C. This

is the model that was used in developing algorithms for MPICH and other

work that ignores congestion and topology.

The tree broadcast algorithm, which is often used for small messages, is

simple to analyze with this model. This algorithm consists of lgP stages,

where there are P processes in the communicator. In the first stage, the

root process sends the input message of size n to another process. In each

subsequent stage, every process that has a copy of the message sends the

message to a process that does not. Thus, the number of processes with a

copy of the message doubles in every stage. The cost is then simply C =

(α + nβ) lgP .

Congestion-aware model: The second model incorporates topology and

congestion. δ replaces β and represents the link speed. We add a penalty

factor in the δ term to represent congestion. Topology and congestion-aware

equations we will label as CClos or Ctorus. In this model, processors on torus

networks can send and receive messages on every link simultaneously.

Each processor can send and receive zero, one, or more messages per link

22

per stage. There can be dependencies between two or more messages ex-

changed within the same stage. A stage concludes when there is global

synchronization, such as a barrier. We assume messages are routed along the

shortest path or paths between source and destination.

The α term is computed by summing the maximum number of messages

exchanged by any one processor in each stage over all the stages; we do not

allow for overlap of the startup time with communication time when multiple

messages are exchanged on different ports out of sync.

Deriving the δ term is more complex. We build a directed graph in which

each edge represents a message; edges are connected when there is a direct

dependency between messages. We assign a time to each edge representing

the duration of the message transmission and a time to each vertex repre-

senting the completion time of the predecessor messages and the start time

of the successor messages.

We start with the messages that are not dependent upon other messages.

We inspect which links each message uses. For messages whose transmission

does not compete for links with any other messages, we assign T = mδ to the

corresponding edge, where m is the message size. For messages that do suffer

from congestion, we assign T = cmδ to the edges, where c is the congestion

penalty and is equal to the maximum number of messages competing for

any link in the paths the competing messages take. Messages suffer from

congestion if they begin at the same time and their paths share any links.

The time assigned to each successor vertex is equal to the time of the

predecessor vertex plus the time assigned to each edge.

We then inspect the dependent messages which can be sent after the first

round of messages have finished and assign times to each edge and vertex

the same way. We iterate until no messages are left.

The δ term is then equal to the maximum end time for all the messages in

the stage.

We require that messages competing for a link have the same size and start

and finish transmission at the same time. We also require that messages

directed towards the same vertex have the same completion time. Relaxing

these restrictions would require a more detailed model and is unnecessary for

analyzing the algorithms we investigate.

This model is unnecessarily complex for most of our analysis, where we

could use our simple model and apply a congestion charge to each stage and

23

a simple change for multi-port algorithms: dividing the bandwidth term by

the number of ports used. This would lead us to the same result for every

algorithm but one: the 6-way bucket algorithm presented in Section 3.4.2.

The main algorithm consists of three stages, and, on non-cubic partitions,

the size and number of messages per link are different, and the messages on

different links are independent in each stage. E.g., in the second stage on

an 8x16x32-node partition, 15 8n-byte messages will be transferred on two

links, 31 16n-byte messages will be transferred on two links, and 7 32n-byte

messages will be transferred on two links, with no dependencies between

messages transferred on different links.

On a Clos network, each process has one link, so δ = β, and CClos = C for

algorithms that do not suffer from congestion.

On a 3d torus network, each process has six links, but can only use one at

a time in the simple model. Thus, δ = β and Ctorus = C for single-ported

algorithms that do not suffer from congestion.

Ctorus represents the cost of an algorithm on a 3d torus network. We also

use C2d−mesh when appropriate.

Other models: Our congestion model similar to Leiserson and Maggs’s

distributed random-access machine (DRAM) model, which added a conges-

tion and topology model to the common parallel random-access machine

(PRAM) model [23]. The DRAM model assigns the cost of an algorithm by

inspecting the amount of data transferred over each cut of a network divided

by the speed of the links crossing the cut. Dependencies between messages

are not modeled.

Wanker and Akerkar present a survey of many parallel computing mod-

els and the performance of algorithms on them [24]. This includes multi-

dimensional mesh and torus networks and reconfigurable networks, where

the links between processors can be changed dynamically. Their survey cov-

ers wormhole routing-based models like ours, where the machine size has no

bearing on message latency and a model where the latency is a function of

the base-2 logarithm of the number of processors in the machine.

In this work, topology and congestion are of primary concern. The δ

term includes a congestion penalty for the maximum number of messages

competing for the same direction on one link. We analyze two classes of

networks, the 3d torus and the Clos network (colloquially known as the “fat

tree”). It is simple to extend our analysis to handle a torus with any number

24

of dimensions, which can be equally-sized or not.

Clos model: For the Clos network, we consider networks parameterized

by R, the radix of the switches, and µ, where µ is the ratio of the minimum

bisection bandwidth to injection bandwidth and is constrained by: 0 < µ ≤ 1.

In an optimal Clos network, the number of up links and down links for any

non-root, non-terminal switch will each be R/2. The root switches will each

have R down links. Each bottom-level switch will be connected to T nodes

and R − T level-two switches, where R−T
T
≥ µ. This is the same idealized

model of a Clos network as is used in [4] to minimize the number of switches

on a system of a given size subject to constraints on µ and R. Switches with

a radix of 128 or 256 will likely be used in supercomputers in the near future

[26].

Our model for Clos networks underestimates the congestion seen in real-

world Clos networks. Hoefler studied the bandwidth delivered by Infiniband

Clos networks, which use static routing tables in the switches [27]. The

delivered bandwidth was found to be 55-60% of that which could be delivered

with ideal routing, due to hot spots. Zahavi inspected the communication

patterns of all common collective algorithms on a Clos network and presented

an algorithm for generating routing tables that prevent congestion in Clos

networks where the bisection bandwidth matches the injection bandwidth

[28]. This accelerates collective algorithms by 40%.

In our analysis, we assume that Clos networks have perfect oracular rout-

ing. We thus believe that our algorithms will improve the performance of

collective algorithms on real Clos networks more than our model predicts.

3.2 Known algorithms and related work

In this work, the following operations are considered: broadcast, where one

process broadcasts the same message to all the other processes; scatter, where

one process sends a unique message to each process; gather, where every pro-

cess sends a message to one process; allgather, where every process broadcasts

a message to every other process; reduce, where a reduction operation (e.g.,

maximum, sum, product, etc.) is applied to data from every process and the

result is stored on a single process; allreduce, which is like reduce except that

the result is broadcast to every process; and reduce-scatter, where the result

25

of the reduction is scattered among the processes.

Much thought has gone into developing fast collective-communication al-

gorithms. Some work concerns algorithms optimized for specific network

topologies; other work ignores network topologies.

3.2.1 Topology-aware algorithms

Mesh networks: In [29], a clever broadcast algorithm is developed for

two-dimensional mesh topologies, which achieves lgP scaling; before, it had

been thought that such topologies could achieve
√
P scaling at best. Their

algorithm is based on the common binary-tree algorithm. For a p×p network,

in step i, each node that has a copy of the message sends it to a node that

does not at a distance of p/2i hops away. This avoids the congestion inherent

in running generic binary-tree algorithms on meshes. With this approach,

under our two-parameter model, the cost is C2d−mesh = (α+ nδ) lgP , where

n is the size of the broadcast message.

In [30], several allreduce algorithms are analyzed and implemented on a

two-dimensional mesh. These include binomial tree-based algorithms, re-

cursive halving algorithms, a two-phase bucket-based algorithm, and several

hybrids.

The simplest algorithm considered is the fan-in, fan-out algorithm. This

is essentially a binary-tree reduce to one process followed by a binary-tree

broadcast to the rest. The cost using our model is C2d−mesh = 2(α+nδ) lgP .

This algorithm does not suffer from congestion if P is a power of two.

The next algorithm they consider is the bidirectional exchange algorithm.

It consists of lgP stages, in which every process exchanges its full vector

with another process in each stage and combines them using the reduction

operator. The processes exchanging data in each step are chosen so that, at

the end of lgP stages, each process has the correct output result. There is

much redundant computation and communication in this algorithm, but it

has fewer stages than the fan-in/fan-out algorithm and may perform better

for small messages. There will be congestion in this algorithm; congestion

can be minimized with clever selection of partners in each stage. This is the

only known algorithm we found with redundant communication.

The cost is then C2d−mesh = lgPα+
√
Pnδ after accounting for congestion.

26

The authors then analyze the recursive-halving allreduce algorithm. It

is composed of a recursive-halving reduce-scatter operation followed by a

recursive-doubling allgather operation. The reduce-scatter and allgather op-

erations are each composed of lgP stages. In the first stage of the reduce-

scatter operation, each process exchanges and combines half of the input

vector with another process. Specifically, each process sends data from one

half of the vector and receives data corresponding to the other half of the

vector, which is combined with the half of the vector that was not sent. In

each subsequent stage, the size of the data exchanged halves. The allgather

operation is the reverse. In the first stage, n/P elements are exchanged, in

the second 2n/P , and so on, until n/2 elements are exchanged in the final

step.

The partners in each stage are chosen so that the largest messages travel

the fewest hops.

The cost is then C2d−mesh = 2 lgPα + (9
4
− 3

2
√
P

)nδ.

The next algorithm analyzed is the buckets algorithm. Suppose the P

nodes are arranged in a p× p grid. The data is first divided into p buckets.

In each of the first p− 1 stages, one bucket is forwarded and combined along

a ring formed by the columns in the grid. After the p−1 stages, each process

has one bucket containing the reduction of the bucket for one column. These

buckets are then further subdivided into p buckets and the process is repeated

along the rows of the grid. The output data is now evenly scattered among

the P processes. The algorithm then proceeds in the reverse order until every

process has all the data.

The cost is: C2d−mesh = 4(
√
P − 1)α + 2 P

P−1nδ.

The authors also consider a hybrid of the recursive-halving and bidirec-

tional exchange algorithms and a hybrid of the buckets and fan algorithms.

The halving/exchange hybrid was shown theoretically and empirically to have

the best performance on a 2-d 16x32 mesh.

In [31], a multi-ported bucket algorithm is presented for the reduce-scatter

and allgather operations and implemented on a BlueGene/P. We discuss it

further in Section 3.4.2, since it is quite similar to the multi-ported bucket

algorithm we develop for mesh or torus systems.

Clos networks: In [32], an optimal broadcast algorithm is presented for

Clos (“fat tree”) topologies, with asymptotically optimal performance for sev-

eral bandwidth-tapering approaches. It, too, uses a broadcast-tree approach,

27

with the distance between communicating nodes in each step chosen to mini-

mize congestion. As expected, when the bisection bandwidth is proportional

to the injection bandwidth, the time is bounded by CClos = O(lgP)nδ for

large messages.

In [33], an allreduce algorithm for tree topologies is presented, which is

optimal with respect to the bandwidth cost. The input data on each of

the P processes is partitioned into P sections and then forwarded along a

one-dimensional embedded ring in P − 1 steps. At the end of P − 1 steps,

each rank has 1/P th of the output. Then an allgather operation is executed,

using the same ring and P − 1 more messages. By using an embedded ring,

they ensure that there is no network congestion. The authors demonstrated

good performance on 64 and 128-node systems. Their performance model

does not consider message startup costs; for large systems with hundreds

of thousands to millions of nodes, it is likely these overheads would become

significant. The cost is CClos = 2(P − 1)α + 2nδ.

Hierarchical networks: The Magpie system [34] provides collective com-

munication operations optimized for wide-area networks composed of clus-

ters. They organize their algorithms to minimize the use of the links between

clusters. E.g., reductions are performed within clusters, and then one result

from each cluster is sent to the root node.

TMPI is an MPI implementation optimized for clusters of shared-memory

nodes [25]. Processes located on the same node are mapped to threads and

communicate through shared-memory. Collective algorithms are composed

of intra-node and inter-node communication and organized such that only

one process on each node participates in inter-node communication.

Hybrid networks: IBM’s BlueGene series of supercomputers have two

networks: a 3d torus used for point-to-point messages and some collective

operations, and a tree network for other collective operations [20, 21]. The

network switches also have special features, including provision for messages

containing a “deposit bit” which are then broadcast to every node along a

row or column in the torus. The switches in the tree network have support

for integer reduction operations.

28

3.2.2 Generic-topology algorithms

The network details modeled in the work on generic-topology algorithms vary

significantly.

Barnett, Van de Geijn et al present a clever approach for long broadcast

operations [35]. The long broadcast message is scattered so that each process

gets one small piece of the message. Then all the processes execute an all-

gather operation. This method uses more of the available network bandwidth

than the simpler binary-tree algorithm and achieves a lower bandwidth term

in the two-parameter network model. This became known as the Van de

Geijn broadcast algorithm.

Juurlink et al develop an optimal broadcast algorithm using a parallel-

locality algorithm [36]. A latency function is introduced to model the latency

between two nodes for a wide variety of networks. Their algorithm, however,

does not model congestion, nor does it allow for breaking up a large broad-

cast message into smaller broadcast messages. The model is not empirically

validated.

In [37], the classical binary-tree broadcast is given a highly-detailed treat-

ment. The authors use the LogP model, which models latency, message

startup cost, link bandwidth, and total system bandwidth [38]. This is a

useful model, but it assumes bandwidth is uniform under every bisect pat-

tern, i.e., all bisect communication patterns suffer congestion equally. They

develop an algorithm for generating detailed schedules for every message in-

volved in a single-source and all-to-all broadcast. They extend the schedules

to handle reduction and global-reduction problems. Their algorithm does al-

low for dividing a large broadcast message into smaller portions. They prove

most of their algorithms to be optimal under the LogP model, in that not

even the constant factors can be improved. The others are optimal within a

factor of two. The model is not empirically validated.

One notable predecessor to MPI was CCL, which was designed by IBM

in the early 1990s for their message-passing systems [39]. CCL and MPI

provide equivalent collective communication operations. The authors of CCL

use a three-parameter model to analyze the performance of their collective

algorithms; this consists of the startup cost and bandwidth cost in our two-

parameter model and a total system bandwidth cost, which is the sum of

the bandwidth used by all the processes in an operation. This third term

29

can be used to roughly approximate congestion and is similar to the LogP

congestion term.

For allgather, when the number of processes is not a power-of-2, CCL uses

a variation of the recursive-doubling algorithm, which later became known

as Bruck’s algorithm. As with recursive-doubling, communication consists

of dlgP e stages, and the size of the messages exchanged doubles in each

stage. In the first stage, process i sends data to process i+ 1 mod P and

receives data from i− 1 mod P . In the following stages, process i sends data

to process i+ 2 mod P , then i+ 4 mod P , and so on, while receiving data

from i− 2 mod P , then i− 4 mod P . Finally, each process must circularly

rotate the data in the output buffer to restore the correct data ordering.

The algorithms used in OpenMPI [9] and MPICH [7, 8], broadly-speaking,

are chosen as those that work best under our two-parameter model, ignor-

ing network congestion. A third γ parameter is used to analyze reduction

algorithms. The specific algorithms used in MPICH are described in [40].

MPICH uses recursive-doubling or Bruck’s algorithm for the short-message

allgather operation and a ring algorithm for large messages. Recursive-

halving is used for reduce-scatter for smaller messages; a pairwise-exchange

algorithm consisting of P−1 stages is used for long messages. In the pairwise-

exchange algorithm, in stage s, process i sends data to process i + s and

receives data from process i− s. It has the same performance characteristics

as the ring algorithm apart from the communication pattern, which is likelier

to cause congestion.

The broadcast operation is implemented using the simple binary tree al-

gorithm for short messages or Van De Geijn’s algorithm for large messages,

which consists of a scatter followed by an allgather.

Rabenseifner’s algorithm [41] is used for the long allreduce operation. It

consists of a reduce-scatter followed by an allgather. The bidirectional ex-

change algorithm described above is used for short messages or non-associative

reduction operations.

Similarly, the long reduce operation is decomposed into a reduce-scatter

operation followed by a gather, whereas the short or irregular reduce opera-

tion is implemented directly using a binary tree.

In [10], more detail on several collective algorithms used in MPICH is

provided.

30

3.3 Performance of minimal algorithms

This work focuses on the performance of large allgather and reduce-scatter al-

gorithms. Our work improves the performance of the large broadcast, reduce,

and allreduce operations because they can be decomposed into combinations

of allgather or reduce-scatter operations with other operations.

We now delve into how known allgather and reduce-scatter algorithms

perform on torus and Clos networks.

In the allgather operation, each process i of P processes has an input

vector Xi of length n. After the operation is complete, each process has the

same copy of output vector Y of length nP . Vector Y consists of each Xi

concatenated in rank order. I.e., Y = X0X1X2 · · ·XP−1. Essentially, every

process broadcasts its input vector X to all the other processes.

In the reduce-scatter operation, each process has an input vector Xi of

length nP . Afterwards, each process has an output vector Yi of length n. In

the operation, blocks of n input elements from each Xi are combined using

the reduction operator, and the result from block i is stored on the process

with rank i. E.g., Y0 will be formed from the first n elements of each Xi; Y1

will be formed from the second n elements of each Xi and so on. Formally,

Yi = ⊕P−1
p=0Xp[in : (i+ 1)n− 1], where ⊕ is the reduction operator (e.g., sum,

maximum, product, etc.).

Allgather can be easily implemented as P broadcast operations. Simi-

larly, reduce-scatter can be implemented as P reduce operations, but more

sophisticated algorithms deliver better performance.

These two algorithms are particularly important, because several other

MPI operations can be efficiently implemented as combinations of allgather or

reduce-scatter and other operations. In this work, we focus on allgather; the

inverse of the communication pattern in each allgather algorithm is the same

as the communication pattern in the corresponding reduce-scatter algorithm.

3.3.1 Non-topology-aware algorithms

Ring algorithm: One simple allgather algorithm is the ring algorithm,

composed of P − 1 stages. In each stage, process i sends data to process

i−1 mod P and receives data from process i+ 1 mod P . In the first stage,

process i sends its input vector Xi and receives vector Xi+1 mod P . In the

31

subsequent P − 2 stages, each process sends the vector it received in the

previous step. In stage s, where the stages are numbered from 0 to P − 2,

each process sends Xi+s mod P and receives Xi+s+1 mod P .1

After P steps, each process has the full output vector Y = X0X1X2 · · ·XP−1.

The ring algorithm is easy to analyze: there are P − 1 stages, so the

message-startup cost is P − 1. In a mesh, torus or Clos network, the ring

algorithm will not cause any congestion, and the bandwidth term will be

n · (P − 1). The ring algorithm is optimal with respect to the bandwidth

term on single-port networks.

The cost is:

C = (P − 1)α + n(P − 1)β.

A similar ring algorithm exists for the reduce-scatter operation. In the first

stage, each process i sends process i − 1 the elements from its input vector

corresponding to process i + 1, i.e., Xi[(i + 1)n : (i + 2)n − 1]. It receives

from process i+ 1 the data corresponding to process i+ 2 and combines this

data (using the reduction operator) with the elements in Xi corresponding

to process i+ 2. This proceeds similarly for the s− 2 remaining stages.

The ring algorithms can also be run in the opposite direction.

Recursive halving/doubling algorithm: An important algorithm for

allgather is known as the recursive-doubling algorithm. It is composed of

lgP stages. In the first stage, process i exchanges its input vector Xi of

n elements with the process whose rank only differs in the last bit. In the

second stage, process i exchanges 2n elements with the process whose rank

only differs in the second-last bit. In stage s (from 0 to lgP − 1), process

i exchanges 2sn elements with process i XOR 2s. It is named the recursive-

doubling algorithm because the amount of data exchanged and the portion

of the output vector Y that is filled doubles in each stage.

The corresponding algorithm for reduce-scatter is known as the recursive-

halving algorithm. In the first stage, processes whose high bits differ exchange

half of the input vector, in the second stage, processes whose second-highest

bits differs exchange one fourth of the input vector, and so on.

If there is no congestion, the bandwidth term is given by the summation:

1Hereafter, arithmetic on process ranks is assumed to be circular on the number of
processes P .

32

∑lgP−1
s=0 2sn = n(P − 1), and the cost is:

C = lgPα + n(P − 1)β.

This algorithm is optimal with respect to the startup cost; data cannot be

broadcast from one process to P − 1 other processes in under lgP stages.

However, on a µ < 1 Clos network or a torus, there will be congestion.

Clos network: Let us consider first a Clos network where each terminal

switch is connected to T nodes and T is a power-of-two. In the first few

stages, where 2s < T , all communication will be between nodes connected to

the same switch and there will be no congestion. In the remaining stages, all

communication will be between nodes connected to different switches, and

bandwidth will suffer by a factor of 1/µ. Thus,

CClos = lgPα + nδ{
∑

1 + 2 + · · ·+ T/2

+ 1/µ
∑

T + 2T + · · ·+ P/2}

= lgPα + nδ{(T − 1) + 1/µ · (P − T)}

≈ lgPα + (nP/µ)δ,

where the approximation holds for P � T .

The effect of congestion reduces the performance of this algorithm by a fac-

tor of 1/µ on the bandwidth term, which is the ratio of bisection to injection

bandwidth.

Where T is not a multiple-of-two, even on the first stage, some communica-

tion will be between nodes on different switches. The portion will gradually

increase until 2s ≥ T . In the first stages, where 2s < T , 2s of the T nodes at-

tached to each switch will exchange messages with nodes connected to other

switches. There will be congestion only when 2s/T > µ, where the conges-

tion factor will be (2s/T)/µ rather than 1/µ. Thus, our approximation of

the bandwidth term still holds, and is in fact, more accurate than when T is

a power-of-two.

If T is a multiple-of-two, but not a power-of-two, the first stage where

there is communication between switches will be where 2s is not a factor of

T .

3d torus: Let us consider the performance of the algorithm on a system

composed of P nodes arranged in a p × p × p 3d torus, where p is a power-

33

of-two. We assume that the nodes are numbered in increasing order in the

X dimension, then the Y dimension, then the Z dimension.

In the first stage, nodes at a rank distance of one apart exchange input

vectors; these nodes will be neighbors in the X dimension, so there will be

no congestion. In the second stage, nodes at a rank distance of two apart

exchange twice as much data as in the first step. If X ≥ 4, these nodes

will be two hops away in the X dimension, and there will be a congestion

factor of two. In the third step, messages four times as large will travel four

hops in the X dimension, with 4-fold congestion, and so on. In the second-

last stage in each dimension, stage lg p − 1, messages will travel p/4 hops

and suffer p/4-way congestion. Since this is a torus, in the final stage in

each dimension, stage lg p, messages will travel p/2 hops, but will suffer only

p/4-way congestion because in this stage only, the extra wrap-around link

provided by the torus can be used.

Once we reach the stage where the rank distance between nodes is equal

to X, neighbors in the Y dimension will exchange data, and so on.

If we revisit our model, we get a bandwidth term:

n(1 + p+ p2){
∑

1 · 1 + 2 · 2 + · · ·+

(p/4) · (p/4) + (p/2) · (p/4)}

= n(1 + p+ p2){
lg p−1∑
i=0

4i − p2/8}

= n(1 + p+ p2){1/3(p2 − 1)− p2/8}

= n(1 + p+ p2)(5/24p2 − 1/3)

≈ (5/24)nP 4/3

and a total cost:

Ctorus ≈ lgPα + (5/24)nP 4/3δ.

Each factor 1, p, or p2 represents the size of the first message exchanged

in dimension X, Y, and Z, respectively. The first factor in each term in the

summation represents the message size in the lg p stages in that dimension

and the second term represents the congestion factor; note that the last two

stages in each dimension have the same congestion factor.

34

The recursive-doubling algorithm is used for shorter messages in MPICH

due to its lower startup cost term, and the ring algorithm is used for longer

messages [7, 8].

3.3.2 Topology-aware algorithms

Bucket algorithm: The 3d bucket allgather algorithm is formed by exe-

cuting the ring algorithm in each dimension in turn. E.g., on a P = p×p×p
network, messages of size n circulate in the X dimension, then messages of

size np circulate in the Y dimension, then messages of size np2 circulate in

the Z dimension.

This reduces the number of messages substantially compared to the ring

algorithm and incurs a total cost:

Ctorus = 3(
3
√
P − 1)α + n(P − 1)δ

Similarly, the 3d bucket reduce-scatter algorithm is formed by executing

three ring reduce-scatter algorithms, starting with np2 elements per message

in the Z dimension, then np elements per message in the Y dimension, then

n elements per message in the X dimension.

3.4 Non-minimal algorithms

In this section, we present several novel non-minimal recursive-doubling and

bucket algorithms. They are non-minimal in the sense that there is redundant

communication.

The emphasis is on the allgather operation; the data flow in the reduce-

scatter operation is simply the reverse. allgather is a more attractive oper-

ation to use to explain our strategies, since the application of the reduction

operator is an overhead that we do not address, and out techniques improve

the communication performance alone.

We add a stage of communication before the allgather operation and after

the reduce-scatter operation that enables us to reorder the stages of the

algorithms while preserving correctness. It also enables the use of multiple

ports in a multi-port torus network.

35

3.4.1 Recursive-doubling algorithm

The recursive-doubling allgather algorithm presented above can be described

as a distance-doubling, recursive-doubling algorithm, because the rank dis-

tance between communicating processes doubles in every stage (1, 2, 4, . . . ,

P/2) as does the size of the messages exchanged. Thus, the stages with the

largest messages suffer from the worst congestion.

To resolve this, we propose a recursive-doubling, distance-halving allgather

algorithm for Clos networks and a reordered recursive-doubling allgather al-

gorithm for mesh or torus networks.

In the distance-halving algorithm, in each stage s, processes exchange n2s

elements, as before. Process i exchanges data with process i XOR P2−(s+1).

I.e., in the first stage, processes exchange data with the process whose rank

differs only in the highest bit, in the second stage, processes exchange data

with the process whose rank differs only in the next-highest bit, and so on.

Clos networks: On a Clos network, the cost is then:

CClos = lgPα + n{1/µ
∑

1 + 2 + · · ·+ P/(2T)

+
∑

P/T + 2P/T + · · ·+ P/2}δ

= lgPα + n{(1/µ)(P/T − 1) + (P − P/T)}δ

≈ lgPα + nP{1/(µT) + 1}δ

From the first stage until the last stage where P2−s+1 ≥ T , all messages

must travel through multiple switches and incur congestion determined by

the parameter µ. The largest messages in the final stages travel through only

one switch with no congestion.

This analysis assumes P and T are powers-of-two. It is a close approxi-

mation for other values of T . If 2a is the largest power of two that evenly

divides T , then in the last a stages all the messages will travel through

only one switch. For the next handful of stages, some pairs of processes

will exchange messages through only one switch and others through sev-

eral switches. Whether or not congestion occurs in the intermediate stages

depends on the value of µ and T , but it is sharply curtailed in any case.

There is no concise equation for the exact bandwidth term when T is not a

power-of-two.

This algorithm reduces the bandwidth term in the cost from (nP/µ)δ to

36

nP{1/(µT)+1}δ, which is much closer to the optimal bandwidth term: nPδ,

however, the data is no longer in the correct order.

In the distance-doubling, recursive-doubling algorithm, each process re-

ceives a message in each stage containing elements in the output vector adja-

cent to the elements that the process already has. E.g., process 0 starts with

element 0, receives element 1 in stage 1, receives elements 2 and 3 in stage

2, 4-7 in stage 3, and so on. In each stage, each process simply concatenates

the data it receives with the data it already has.

In the distance-halving, recursive-doubling algorithm, each process still

concatenates the data it has with the data it receives in each stage, but the

output ends up in the wrong order. The input vector Xi should start at

offset ni in the output vector Y , but instead will end up at offset nĩ, where

ĩ is defined as the bit-reverse of i.

To rectify this, we simply have processes i and ĩ exchange input vectors

before the algorithm begins. Then each input vector ends up at the correct

offset in the output vector.

We add this stage to the algorithm’s cost:

CClos = lgPα + nP{1/(µT) + 1}δ +

α + (n/µ)δ

≈ (lgP + 1)α + nP{1/(µT) + 1}δ.

Each process sends and receives nP bytes instead of n(P − 1), a negligible

difference.

For the corresponding recursive-halving, distance-doubling reduce-scatter

algorithm, processes i and ĩ exchange output vectors.

We expect that even µ = 1 networks might benefit from this technique.

Network performance is known to suffer at high network loads, and full the-

oretical bisection bandwidth is not always delivered [4, 5]. Our algorithm,

on any Clos network, will greatly lower the average network load.

For µ < 1 networks, this algorithm delivers nearly the full injection band-

width for reasonable values of µ, whereas the recursive-doubling, distance-

doubling algorithm is restricted by the bisection bandwidth.

Torus networks: For mesh or torus networks, we could use the distance-

halving allgather algorithm and expect an improvement, since the largest

message in the last stage will not be delayed by congestion and the next

37

largest message will have a congestion factor of 2 instead of 3
√
P/4. The

distance-halving algorithm is really a quasi-topology-aware algorithm, since

it will perform well for any network in which nodes are numbered rationally.

We can do better if we further reorder the stages. As before, let us assume

that the network has P = p × p × p nodes, where p is a power-of-two. In

stages one through three, nodes p/2 hops apart in the X, Y, and Z dimensions,

respectively, exchange data, suffering p/4-fold congestion. In the next three

stages, processes p/4 hops apart exchange data, suffering p/4-fold congestion

again. In the next group of three stages, congestion will be reduced to a

factor of p/8, and will continue to halve for each subsequent group of three

stages. In the last three stages, immediate neighbors exchange data with no

congestion.

The bandwidth term is then:

(1 + 2 + 4)n{
∑

1 · p/4 + 8 · p/4 + 64 · p/8 + · · ·+ P/8 · 1}δ

≈ 7n(p/2){
lg p−1∑
i=0

4i}δ

≈ (7/6)np3δ

= (7/6)nPδ.

The first message exchanged in each dimensions is of size n times 1, 2, or

4. The first term in the summation reflects the size of the message; the first

message exchanged in dimension X will be of size 1n, the second message

exchanged in dimension X will be of size 8n, etc. The second term in the

summation represents the congestion in that stage of the algorithm.

The data exchange to restore the correct ordering is more complex. Let

us define a schedule, S, which dictates the distance between pairs of commu-

nicating processes in each stage. More precisely, S is a vector that specifies

which bit differs between communicating pairs of processes in each stage.

For the distance-doubling, recursive-doubling algorithm, S[s] = s, since

in stage s, process i and process i XOR 2s exchange data. For the distance-

halving algorithm, S[s] = lgP − 1 − s. For the torus-reordered algorithm

with XYZ process numbering,

38

S[s] = {3 lg p− 1, 2 lg p− 1, lg p− 1,

3 lg p− 2, 2 lg p− 2, lg p− 2,

. . . ,

2 lg p, lg p, 0}.

For example, for a 512-node system arranged as an 8x8x8 3d torus, S[s]

can range from 0 to 8 (since lg 512 − 1 = 8). For distance-doubling, S =

{0, 1, 2, 3, 4, 5, 6, 7, 8}. For distance-halving, S = {8, 7, 6, 5, 4, 3, 2, 1, 0}. For

the remapped algorithm, one optimal schedule is S = {8, 5, 2, 7, 4, 1, 6, 3, 0}.
(The entries in S for each group of three consecutive stages can be permuted.)

This table shows the full schedule:

Stage S[s] Distance Hops Congestion Size ×n
0 8 256 4 (Z) 2 1

1 5 32 4 (Y) 2 2

2 2 4 4 (X) 2 4

3 7 128 2 (Z) 2 8

4 4 16 2 (Y) 2 16

5 1 2 2 (X) 2 32

6 6 64 1 (Z) 1 64

7 3 8 1 (Y) 1 128

8 0 1 1 (X) 1 256

Note that the communication in the three stages with the largest messages

occurs without congestion.

It is simple to handle non-cube tori: the first entries in the schedule must

correspond to the largest dimensions. (In fact, only two of the eight torus

configurations we evaluate later are cubes.)

We define a mapping function R, where R(S, i) is the process which sends

its input vector to process i before the allgather operation (or to which pro-

cess i sends its output vector after the reduce-scatter operation). R(S, i)

permutes the bits in i according to S.

The process with rank i can be expressed using bit vector bi, where i =∑dlgP e
r=1 2r−1bi[r]. E.g., if P = 16, b11 = {1, 1, 0, 1}. In the data-swapping

stage, rank i then receives its data from rank R(S, i) =
∑dlgP e

r=1 2r−1bi[S[r]].

39

0 1

4 5

2 3

6 7

10 11

14 15

8 9

12 13

47
8

10

9

11

6 7

0 4

13

14

12

1

2

5

3

192

240
207

255

0

15
48

63

32

128

160

16 64 80

31 79 95
96 112

15
111 127

144 208

159 223
176 224

175

143

191 239

Figure 1. Row-major indexing of a matrix, and analogous Morton indexing.

k

4k+1 4k+2 4k+3 4k+4

2 3 41

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

!4i
l-1

i=0
4
3 (4l-1)

1
5 6

7 8
2

9 10

11 12

313 14

15 16
417 18

19 20

0

Figure 2. Level-order indexing of the order-4 quadtree and its submatrices.

memory. Address space, itself, has grown so big that chunks of it are extreme-
ly cheap, when mapped to virtual memory and never touched. (Intel’s IA-64
processor has three levels of cache, two on board.) But fast cache, local to each
processor, remains dear, and, perhaps, row-major and column-major are exactly
wrong for it.

This paper enhances Morton-order (also called Z-order) storage for matri-
ces. Consistent with the conventional sequential storage of vectors, it also pro-
vides for the usual cartesian indexing into matrices (row, column indices). It ex-
tends to higher dimensional matrices. That is, we can provide cartesian index-
ing for “dusty decks” while we write new divide-and-conquer and recursive-
descent codes for block algorithms on the same structures. HASKELL and ML
could share arrays with FORTRAN and C. Thus, parallel processing becomes ac-
cessible at a very high level in decomposing a problem. Best of all, the content
of any blocks is addressed sequentially and blocks’ sizes vary naturally (they
undulate) to fit the chunks transferred between levels of the memory hierarchy.

2 BASIC DEFINITIONS

Morton presented his ordering in 1966 to index frames in a geodetic data base
[11]. He defines the indexing of the “units” in a two-dimensional array much
as in Figure 1, and he points out the truncated indices available for enveloping
blocks (subtrees), similar to Figure 3. Finally, he points out the conversion to
and from cartesian indexing available through bit interleaving.

775Ahnentafel Indexing into Morton-Ordered Arrays, or Matrix Locality for Free

Figure 3.1: Row-major and Morton ordering on a 4x4 grid; Morton
ordering recursively applied to a 16x16 grid [1].

The mapping function and schedule, when applied to a torus, are similar

to the Morton ordering, which maps multidimensional integer coordinates

to a one-dimensional integer coordinate while preserving multidimensional

locality [1]. A one-dimensional Morton coordinate is formed by interleaving

the bits of each of the k coordinates describing a point in a k-dimensional

space. Morton orderings are typically used to form quad-trees or allow for

efficient range-searching in a multi-dimensional space. In general, nearby co-

ordinates in a k-dimensional space are likely to have a small Morton distance.

Figure 3.1 illustrates a Morton ordering of a 4x4 and 16x16 grid. The left of

the figure shows a traditional row-major ordering of a 4x4 grid, the middle

of the figure shows a 4x4 Morton ordering, and the right portion of the figure

illustrates how the Morton ordering is recursively applied.

In fact, if we reverse any optimal schedule and apply our remapping func-

tion, the result is a Morton order. Alternatively, our approach can be thought

of as applying distance-halving on the Morton ordering; each process ex-

changes data with the process whose Morton ordering is P/2 away in the

first stage, then P/4 in the second stage, and so on, with increasing com-

munication locality as the algorithm progresses and the messages become

larger.

We have investigated the exact traffic patterns in the data swapping phase

for several different network sizes and found that none cause any conges-

tion, but we cannot prove this. However, a 3d p × p × p torus has 4p2

bisection bandwidth, therefore the bandwidth cost for this phase is bound

by nP/(4p2)δ = (n/4) 3
√
Pδ from above and nδ below. The bandwidth cost

of the extra stage is marginal compared to the bandwidth cost of the main

algorithm.

40

Thus, the total cost is:

Ctorus ≤ (lgP + 1)α + ((7/6)nP + (n/4)
3
√
P)δ

≈ (lgP + 1)α + (7/6)nPδ.

Non-power-of-two processors: MPICH uses Bruck’s algorithm for the

non-power-of-two allgather operation, but it used to use recursive-doubling

with a workaround, which we borrow.

Recall that in stage s, process i exchanges data with the process î whose

sth bit only differs from i. If that process does not exist, then in stage s,

process i will do nothing. Instead, in stage s + 1, it will send the data it

would have sent in stage s to the process whose sth and s + 1th bit differs

from i; in other words, it sends data to the process whose s+ 1th bit differs

from î. This extension is straightforward to apply to our remapped recursive-

doubling algorithm using R and R−1. This can, in the worst case, double the

number of stages.

3.4.2 Bucket algorithm

The bandwidth term in the bucket algorithm is optimal for the single-port

model on a 3d torus. The number of stages, 3 3
√
P − 1, is more than the

lgP stages of the recursive-doubling algorithm but much less than the P − 1

stages of the 1d ring algorithm.

However, on a multi-port 3d torus network, each process can exchange

messages with all six of its neighbors simultaneously. The bucket algorithm

does not take advantage of this. Our approach extends the bucket algorithm

to use all six ports.

In our algorithm, we run six bucket operations simultaneously in a way

that avoids congestion. We label the six buckets XY Z+, XY Z−, Y ZX+,

Y ZX−, ZXY +, and ZXY −. The + buckets run clockwise in each dimen-

sion and the - buckets run counterclockwise in each dimension. XY Z+ and

XY Z− both circulate in the X dimension, then the Y dimension, then the Z

dimension. Similarly, both Y ZX buckets circulate in the Y dimension, then

the Z dimension, then the X dimension. We divide the input and output

vectors into six sections, one for each bucket. Buckets 0 and 1 refer to the

41

XYZ buckets, 1 and 2 to the YZX buckets, and 2 and 3 to the ZXY buckets.

The cost is then:

Ctorus = 6 · (3 3
√
P − 1)α + (n/6)n(P − 1)δ

≈ 18
3
√
Pα + (n/6)(P − 1)δ

For large problems, the performance loss from the 6-fold increase in the

number of messages is more than offset by the 6-fold decrease in the band-

width term.

However, we face the familiar problem of data that is out-of-order. If

the processes are numbered in XYZ order, then only a single XY Z bucket

operation will be correct.

Let us show how the the 6-way bucket algorithm reorders the data. Sup-

pose that each process i has 6 elements in its input vectorXi = {Ai, Bi, Ci, Di,

Ei, Fi}. The correct output would be Y = {A0−F0, A1−F1, . . . AP−1−FP−1}.
However, instead, in the first part of Y , we will get Y [0 : n/6 − 1] =

{A0, A1, . . . , AP−1}. In the second part, we will get Y [n/6 : n/3 − 1] =

{B0, B1, . . . , BP−1}. In the third part (from Y ZX+), we will get Y [n/3 :

n/2 − 1] = {C0, Cp, C2p, . . . , CP−1}, since the output will be in YZX order.

The data in the remaining three sections will be similarly perturbed.

To solve this, we number each of the six sections in each input vector Xi.

Section j in input Xi is assigned section identifier 6i + j. In the correct

output vector, all the input sections are arranged in section id order. In

total, we have 6P sections. Sections whose id is between 0 and P − 1 must

be placed in the first bucket, XY Z+; sections whose id is between P and

2P − 1 must be placed in the second bucket, XY Z−, and so on.

Next is the question of where to place each section in the correct bucket.

Section s must be at offset s mod P in the output of the corresponding

bucket. For the two XY Z buckets, this is achieved by placing section s in

the corresponding input bucket on process s mod P .

For the Y ZX buckets, section s must be placed in one of the Y ZX buckets

on the process whose rank would be s mod P if the processes were numbered

in Y ZX order. Since they are not, we circularly rotate the bits in s mod P

to find the rank of the process which have section s in its input buffer.

42

Consider an 8×8×8 torus again. The segment id of the third segment from

process 200 is s = 200 · 6 + 3 = 1203. b1203/P c = 2, therefore this segment

will be in bucket 2: Y ZX+. Its offset within Y ZX+ is 1203 mod P = 179.

This segment must start from the input vector of the process whose YZX

order is 179. We then take the 9-bit quantity 179 and rotate it clockwise 3

bits to put it in XYZ order. The rotated offset is 410. Therefore the segment

whose id is 1203 should be placed in X410[Y ZX
+].

For segments in the ZXY buckets, we rotate s mod P 6-bits clockwise

(or 3-bits counter-clockwise).

In general, for each of the 6 sections in each input vector Xi, we assign a

section id: s = 6i+ j, where j is a value from 0 to 5. This section should be

placed in bucket bs/P c. We then find the quantity s mod P . If the section

maps to either XYZ bucket, then this section should be sent to process s

mod P . If the section is in either YZX bucket, we rotate s mod P by lg p

bits clockwise and send the data to process (s mod P) >> lg p.2 If the

section is in either ZXY bucket, we rotate s mod P by lg p bits counter-

clockwise and send the data to (s mod P) << lg p.

The correct remapping may be more simply determined empirically: a

correct method is to run the 6-bucket algorithm where each process sets

its input to Xi = {(i, 0), (i, 1), (i, 2), (i, 3), (i, 4), (i, 5)}. Then each process

inspects the tuples in Y [6i : 6i + 5]; the first member in tuple Y [6i + j] is

the process that segment j from Xi should be sent to; the second member is

which bucket that segment should be placed in. This mapping can be derived

once for the system and stored in a configuration file.

Including the data-shuffling stage, the cost is:

Ctorus = (18
3
√
P + 6)α + ((n/6)(P − 1) + n)δ

≈ 18
3
√
Pα + (n/6)(P − 1)δ.

The additional data movement adds negligible overhead.

Non-cubic torus networks are easily handled. Each of the six bucket oper-

ations waits until all the others have finished circulating in each dimension

before moving on to circulate in the next dimension. We found that perfor-

mance suffered greatly if we allowed multiple bucket operations to compete

for the same links.

2>> and << are the cyclical clockwise and counter-clockwise bit rotation operators.

43

Performance in the first two stages will be limited by the pair of buckets

circulating on the largest dimension. In the last stage, in which the messages

are much larger than in the first two stages, the buckets will have more

equal performance. The buckets circulating along the longest dimension will

have the smallest messages, and the buckets circulating along the shortest

dimension will have the largest messages.

Consider a network where X < Y < Z. In the last stage, the slowest

buckets will be the XYZ buckets and the quickest the YZX buckets. XYZ

buckets will circulate Z−1 messages of XY n bytes, for a total of XY (Z−1)n

bytes. The YZX buckets will circulate X − 1 messages of Y Z bytes, for a

total of (X − 1)Y Z bytes. On large systems, the difference is not important.

Messages whose size is not a multiple of six are also simple to handle. We

use a similar technique to that used in [42] for the irregular MPI Allgatherv

problem, which is like allgather, except that each process can broadcast a

differently-sized message. We round-up the input size to the next multiple

of six bytes and shift the data from higher processes to lower processes.

Processes whose rank assignment is near P may have empty input buffers.

This will involve each process sending at most two messages or receiving

up to six messages, but typically no process will receive more than three

messages.

For 3d meshes, or partitions of 3d tori, the 6-way bucket algorithm will

cause a congestion load of 2 on each link (since there is no wrap-around

link). The 3-way bucket algorithm would then be preferred for its lower

startup cost.

Further, note that while our presentation describes the algorithm on a

3d cube torus, it is trivially extended to torus or mesh networks with any

number of dimensions, which may be equally-sized or not.

Known multi-port algorithms: A variation of this algorithm was pre-

sented in [31]. Instead of adding an extra stage of communication to restore

the correct data ordering, they reorder the data after the allgather operation

or before the reduce-scatter operation. We also considered three alterna-

tives to the extra stage: using MPI types to send and receive messages with

non-contiguous memory addresses, packing the data into temporary buffers

before sending messages and unpacking the data from temporary buffers after

receiving messages, and reordering the data in-memory at the end. We found

all three to have poor performance. The presentation in [31] is difficult to

44

follow, since they extend the bucket algorithm but present the ring algorithm

instead in their description of the base bucket algorithm. The description

of the handling of non-multiple-of-6-sized vectors is very sketchy. They ex-

plored multiple methods of multithreading the operation of the 6-way bucket

algorithm; we do not. We will compare our performance results with theirs

in the following section.

3.4.3 Recursive-doubling algorithm with irregular partitions

Handling noncontiguous blocks of processors is more challenging than han-

dling contiguous blocks. Here we provide a method to adapt the recursive-

doubling allgather or recursive-halving reduce-scatter algorithms to irregular

groups of processors. This is important for handling sparse collective opera-

tions [43].

The solution involves first finding one Hamiltonian path through all the

processors in the system. The authors of [44] present an algorithm to find

k edge-disjoint Hamiltonian paths in a k-d mesh network which is similar to

the algorithm given in [45], which finds k Hamiltonian paths in a k-d torus

network. On a Clos network, we can simply create a ring using a depth-first

traversal.

We then simply delete all the processors from the Hamiltonian path that

are not in the irregular partition.

In an immediate-neighbor pattern in a Hamiltonian path, all can commu-

nicate without any congestion if messages are routed along the Hamiltonian

path. Neighbors two apart can communicate with a congestion factor of two.

Neighbors four apart can communicate with a congestion factor of four, and

so on.

The congestion can be less if the routing algorithm considers other paths

or can be more if the irregular partition is unfavorable, since no realistic

routing algorithm will use Hamiltonian-path routing. Let us assume for now

that Hamiltonian-path routing is used.

We then run the recursive-doubling, distance-halving algorithm on the

rank of each node in the Hamiltonian path. On a mesh or torus network

with ideal routing, performance will be at least as good as that delivered by

the recursive-doubling, distance-halving algorithm on a contiguous block.

45

On a Clos network with ideal routing, this would result in performance

at least as good as that in the contiguous-partition algorithm for the first,

bisection bandwidth-bound stages of the algorithm. In the later stages, the

communication in the contiguous algorithm all takes place between proces-

sors attached to the same switch, congestion-free, if the number of processors

attached to each stage is a power of two. In this non-contiguous algorithm,

the performance in the final stages will be more similar to the non-power-of-

two case for the contiguous algorithm, which we explained in Section 3.4.1.

Performance will be limited by the switch that has the most member pro-

cessors in the irregular partition. If any of the processors attached to the

busiest switch are not in the partition, then performance will be better than

in the regular-partition algorithm, since the same amount of upstream band-

width is shared among fewer processors.

Of course, real message routing algorithms are not going to be aware of the

Hamiltonian path, and there may be more congestion caused by non-member

processors communicating.

We have to modify the data-shuffling procedure. For allgather, the process

with rank i in the non-contiguous partition must send its input data to the

process at offset ĩ in the Hamiltonian path, where ĩ is defined as the bit-

reverse of i.

Multi-port recursive-doubling operation: On contiguous partitions

on torus or mesh networks, the best algorithm, in terms of the bandwidth

cost, is the multi-port bucket operation.

We can adapt the non-contiguous recursive-doubling/distance-halving al-

gorithm described above for multi-port operation on mesh or torus networks.

Since there are three edge-disjoint Hamiltonian paths, we can run three

recursive-doubling operations in parallel by dividing the input message into

three parts. The process of reordering the input data is similar to that in

the 3-bucket or 6-bucket algorithm.

We could use the multi-port recursive-doubling algorithm on regular par-

titions as well. In Section 3.6, we discuss our unfavorable experience with a

hybrid of the triple recursive-doubling and 6-bucket algorithm. This is why

we did not pursue a multi-ported recursive-doubling algorithm for contiguous

partitions.

46

3.4.4 Other operations

Long broadcast operations in MPICH use the Van de Geijn algorithm, in

which the operation is composed of a scatter operation followed by an all-

gather operation [35]. Similarly, the long reduce operation can be composed

of a reduce-scatter, followed by a gather, and the long allreduce can be bro-

ken into an reduce-scatter call followed by allgather. Our algorithms can

accelerate all of these operations. Further, the data reordering stages can

often be made to cancel out; this happens naturally for allreduce. With

simple changes, the data reordering step can be folded into the gather or

scatter operation without any extra overhead. In fact, MPICH already uses

a recursive-halving, distance-doubling reduce-scatter as the basis for the long

reduce and allreduce operations, with no explanation given.

3.4.5 Alternatives to redundant communication

Our algorithms have the drawback of redundant communication compared to

the corresponding minimal algorithms. There are several alternatives to extra

communication. We could reorder the misordered data in memory after the

allgather operation or before the reduce-scatter operation; we could use MPI

types to exchange messages formed from non-contiguous data; and, finally, we

could simply reorder the process-rank assignments to begin with so that the

communication patterns of the minimal algorithms do not cause congestion.

A bit-reversed Morton ordering would accomplish this for recursive-doubling.

The first two alternatives we evaluate in Section 3.5. The third alterna-

tive is unattractive because it would only work for the recursive-doubling

algorithm (and not the multi-port bucket algorithm), it would make efficient

point-to-point message-passing difficult, such as for common halo operations,

and the performance of collective algorithms optimized for simple rank or-

derings would suffer.

3.5 Evaluation

All experiments were performed on the Intrepid system, a 40k-node Blue

Gene/P, at Argonne National Labs. Partitions of 512 nodes or more form 3d

47

0
10

0
20

0
30

0

Bandwidth per link vs congestion

Message size (bytes)

B
an

dw
id

th
 (

M
B

/s
)

0
10

0
20

0
30

0

●●
●

●

●

●

256 4k 64k 1M 16M 256M

●

8 messages
4 messages
2 messages
1 message

0
50

0
10

00
15

00
20

00

Bandwidth using multiple links

Message size (bytes)

B
an

dw
id

th
 p

er
 n

od
e

(M
B

/s
)

0
50

0
10

00
15

00
20

00
●●●●●

●

●

●

●

●

●

●

●

●
●●

256 1k 4k 16k 64k 256k 1M 4M

● 6 links
3 links

Figure 3.2: Link bandwidth vs. message size with congestion; Node
bandwidth for multi-port communication

48

tori. Smaller partitions form 3d meshes. The Blue Gene/P has a torus net-

work for point-to-point messages and some collective-communication opera-

tions and a tree network used for other collective-communication operations.

Both networks have special features to accelerate collective communication.

The torus network has a “deposit bit” feature in which a message can be put

on the network once and every node along a line in the torus can receive it.

This is particularly helpful for broadcast operations.

The 512-node allocation forms an 8x8x8-node cube. The 32k-node alloca-

tions forms a 32x32x32-node cube. The allocations in between are non-cubic.

The Z dimension doubles as the size of the allocation doubles until it reaches

32 nodes, then the Y dimension doubles, then the X dimension. We run one

MPI process on each node. The system provides a simple interface for find-

ing the size of each dimension in an allocation and the coordinates of each

process in the allocation. By default, processes are numbered in XYZ order.

Each node is comprised of four 850 MHz PowerPC 450 microprocessors

and a switch. Each switch has 3 bidirectional links on the tree network of

850 MB/s per switch per direction and 6 bidirectional links on the torus

network of 425 MB/s per switch per direction. The minimum packet size is

32 bytes, with 16 bytes of payload data and 16 bytes of header data. The

maximum size is 256 bytes with 240 bytes of payload data. After accounting

for the overhead in the packet headers and the acknowledgement packets,

the maximum deliverable bandwidth per link is 88% of the raw bandwidth.

According to IBM, with 6-way bidirectional communication, 93% of that is

the peak that can be delivered, i.e., 425 MB/s×6 × 2 × .88 × .93 = 4.18

GB/s [46]. In our data, we report the one-way bandwidth into or out of a

node. The bandwidth calculations count the time but not the data exchanged

in the extra stage for the reordered recursive-doubling algorithms. I.e., we

report n(P − 1)/t, where n is the input message size on each process, P is

the number of processes, and t is the amount of time each operation takes.

The output of each combination of algorithm, size, and number of processes

was verified for correctness. This includes padding messages to multiples of

3 or 6 bytes for the 3-bucket or 6-bucket algorithms. We use the IBM XLC

compiler with the -O4 level of optimization.

For each data point, we report the minimum time from four runs. We

do this to eliminate infrequent outliers that would distort the data if we

averaged several runs. Apart from a handful of outliers, there was very

49

little variation in the data for each configuration. E.g., for the 32k-node

partition with 16 kB input messages/process, the run times for the 6-bucket

algorithm were 260.797, 260.789, 260.843, and 260.804 milliseconds. For

32 kB input messages, the run times were 517.573, 517.576, 517.598, and

560.217 milliseconds. The last time is an example of an outlier due to some

interference on one of the 32k nodes in the allocation. None of the algorithms

are particularly sensitive or insensitive to system noise. The effect of noise

has been analyzed in great detail in [47].

3.5.1 Bandwidth under congestion or multi-port
communication

We first investigated whether our performance model was accurate enough

to justify development of our algorithms. In particular, we were interested in

whether or not our congestion model for the recursive-doubling algorithms

was accurate. The first plot in Figure 3.2 shows the link bandwidth versus

message size as we vary the congestion (or the number of messages competing

for the same link).

This data is from a 2048-node allocation (8x8x32 nodes). We examined

all the patterns under the recursive-doubling communication patterns (where

each process exchanges data with the process whose rank differs in only one

bit). The maximum congestion on this allocation occurs along the Z axis,

when processes whose Z coordinates differ by 16 or 32 exchange data. In

either case, the congestion is 8-fold. The plot only shows data collected

when the exchange occurs along the Z axis, but we found that the numbers

were insensitive to the axis or the partition size.

We first see that, indeed, the peak bandwidth is 88% of the raw bandwidth:

375 MB/s. This is where we place the dashed line. Second, we see that, for

large messages, the per-message bandwidth scales inversely with congestion

(since the per-message bandwidth times the amount of congestion is a con-

stant 375 MB/s). For smaller messages, congestion has less of an effect, but

still harms performance. The fixed startup cost of a message explains part

of the discrepancy. 375 MB/s is an upper bound on the bandwidth of any

one-port algorithm.

We then ran an experiment to ascertain the bandwidth in the nearest-

50

neighbor communication pattern, where each node either sends data to 3

neighbors and receives data from 3 other neighbors, or where each node

sends and receives data from all 6 neighbors. The second plot in Figure 3.2

shows the results. The dashed lines are at three and six times the maximum

single-port bandwidth. For large messages, the 3-neighbor pattern achieves

very nearly 3 · 375MB/s = 1125MB/s. For large messages, the 6-neighbor

pattern achieves 2100 MB/s, which is 93% of six times the deliverable link

bandwidth of 375 MB/s.

In the following algorithm-performance figures, the message size refers to

the size of the input vector for the allgather operation or the output vector

for the reduce-scatter operation, i.e., the value of n from Section 3.4. The

size of the output allgather vector or input reduce-scatter vector is this value

times the number of processes, i.e., n · P .

3.5.2 Allgather performance

Figure 3.3 shows the performance of the native and one-port allgather algo-

rithms as we scale the size of the problem. The upper plot shows the perfor-

mance of an 8x8x8 512-node 3d torus. The recursive-doubling, distance-

doubling algorithm (rd doubling) is the better of the two non-topology-

aware algorithms for smaller messages, due to the lower message count of

the recursive-doubling algorithms, and the ring algorithm is better for larger

messages, due to the absence of congestion in the ring algorithm. The quasi-

topology-aware recursive-doubling, distance-halving algorithm (rd halving),

with one more stage of communication, beats the recursive-doubling, distance-

halving algorithm for all message sizes.

Of the topology-aware algorithms, the bucket algorithm is better for larger

messages and the optimally-scheduled recursive-doubling algorithm (rd op-

timal) is better for smaller messages. This is expected, since the recursive-

doubling algorithm has fewer stages but a larger bandwidth term. The native

algorithm performs best for smaller messages and next-best for larger mes-

sages on the 512-node allocation. The native algorithm data was collected

using the MPI COMM WORLD communicator; performance using a copy or sub-

partition of MPI COMM WORLD can be worse, as we will see later.

The optimally-scheduled recursive-doubling algorithm significantly reduces

51

0
10

0
20

0
30

0

512 nodes

Input message size (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0

●

●

●

●

●

●

●

●

●

●

●
●

64 256 1024 4096 16384 65536

●

native
bucket
rd optimal
ring
rd halving
rd doubling

0
10

0
20

0
30

0

32768 nodes

Input message size (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0

●
●

●

●

●

●

●

●

●

●

64 256 1024 4096 16384

●

native
bucket
rd optimal
ring
rd halving
rd doubling

Figure 3.3: Performance of single-port allgather algorithms vs message size.

52

but does not eliminate congestion, whereas the bucket algorithm does not suf-

fer from congestion at all. The bucket algorithm reaches the upper bound of

375 MB/s, whereas the best recursive-doubling algorithm reaches 333 MB/s.

Our performance model of the optimal recursive-doubling algorithm has a

bandwidth congestion factor of 7/6, so we would predict the performance to

be 375/(7/6) = 321 MB/s. We calculated this figure by making some approx-

imations that introduce little error for large torus networks. In particular,

it ignores the benefit of the wrap-around links. When this is taken into ac-

count, on a small 8x8x8 torus, the corrected congestion factor is 1.09, so our

predicted performance would be 343 MB/s. In Section 3.5.6, we present a

detailed comparison of our model with measured data.

The second plot in Figure 3.3 shows the performance of the native and

single-port algorithms on a 32x32x32 32k-node 3d torus. Compared to the

smaller 512-node torus, the non-congestion-free algorithms will face more

congestion and all the algorithms will have more stages of communication.

For these reasons, we see that it is far more important to use topology-aware

algorithms to get good performance. Due to memory constraints, we cannot

run the algorithms with 64 kB or 128 kB input messages on the 32k-node

partition. Again, the bucket algorithm delivers 375 MB/s. The optimal

recursive-doubling algorithm delivers up to 323 MB/s, which is very close to

our prediction of 321 MB/s. The MPI library appears to prematurely change

algorithms for 512-byte or larger messages and performance suffers.

Figure 3.4 shows the performance when we keep the problem size constant

and vary the number of processors. We see that for large messages, perfor-

mance is relatively invariant with the size of the torus. For larger messages,

the bandwidth term in the performance model dwarfs the message startup-

cost term. On the other hand, we see that for small messages, message

startup time is important.

Figures 3.5 and 3.6 shows the performance of the multi-port algorithms

and the native BlueGene/P allgather algorithm. The 3-bucket algorithm

delivers up to 1120 MB/s into each node, or 99.5% of the achievable link

bandwidth of three ports. The 6-bucket algorithm delivers up to 2075 MB/s,

which is 99% of the achievable link bandwidth of 6 ports.

There are two native allgather algorithms used on the BlueGene/P [21]: all-

gather via randomized all-to-all, wherein each process swaps data with every

other process in P − 1 steps; and allgather via broadcast where each process

53

0
10

0
20

0
30

0

128 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0

● ● ● ● ● ● ● ●

256 1024 4096 16384

●

native
bucket
rd optimal
rd halving
ring
rd doubling

0
10

0
20

0
30

0

4096 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0

●

● ● ● ● ● ● ●

256 1024 4096 16384

●

native
bucket
rd optimal
rd halving
ring
rd doubling

Figure 3.4: Performance of single-port allgather algorithms vs number of
processors.

54

0
50

0
10

00
15

00
20

00

512 nodes

Input message size (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

0
10

00
15

00
20

00

●
●

● ●

● ●

●

●
●

●

●
●

64 256 1024 4096 16384 65536

●

6−bucket
3−bucket
native−world
native−copy

0
50

0
10

00
15

00
20

00

32768 nodes

Input message size (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

0
10

00
15

00
20

00

● ● ●
●

●

●

●

●
●

●

64 256 1024 4096 16384

●

6−bucket
3−bucket
native−world
native−copy

Figure 3.5: Performance of native and multi-port allgather algorithms vs
message size.

55

0
50

0
10

00
15

00
20

00

1024 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

0
10

00
15

00
20

00

● ● ● ● ● ● ●

1024 4096 16384

●

6−bucket
3−bucket
native−world
native−copy

0
50

0
10

00
15

00
20

00

16384 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

0
10

00
15

00
20

00

● ● ● ● ● ● ●

1024 4096 16384

●

6−bucket
3−bucket
native−world
native−copy

Figure 3.6: Performance of native and multi-port allgather algorithms vs
number of processors.

56

in turn broadcasts its message. The second algorithm can be performed on

the tree network or the torus network using line-broadcast support. It is not

known how the native MPI library chooses which algorithm to use. In these

figures, we provide data for the native algorithm running on MPI COMM WORLD

and on a copy. The Blue Gene/P MPI library uses different algorithms for

operations on the entire partition, contiguous subpartitions, or noncontigu-

ous subpartitions. We see that the copy sometimes matches the performance

of the native algorithm and sometimes performs worse. Over nearly every

combination of partition size and message size, our algorithms perform far

better than the native algorithm.

Figure 3.7 shows the amount of time spent in the additional data-exchange

steps for the optimally-remapped recursive-doubling algorithm (rd optimal)

and the 6-way bucket algorithm. The bucket algorithms have to shuffle data

once for non-multiple-of-6-sized messages and a second time to restore the

correct ordering. Moreover, in the order-restoring shuffle, each process typi-

cally exchanges data with 12 other processes. In contrast, there is only one

exchange of data in the optimally-remapped recursive-doubling algorithm

and each process sends data to one process and receives data from another.

For this reason, with 512 nodes, the recursive-doubling algorithms have an

overhead of 2.3% or less, whereas the 6-way bucket algorithm has an over-

head of up to 7%. For 32k nodes, the overhead is much less, since the total

amount of communication is proportional to the number of nodes and the

communication in the data shuffling phases is not.

Alternatives to redundant communication: We explored several al-

ternatives to having an additional stage of communication. In Figure 3.8, we

show the performance of two alternatives to the extra stage for the recursive-

doubling, distance-halving allgather operation running on 512 nodes. We

could reorder the data in memory after the recursive-doubling operation is

complete (shown as “in-memory shuffle” in the figure). We load data from

bit-reversed offsets in a temporary misordered output vector and store the

data in sequential order in the correctly-ordered output vector; this was

quicker than the reverse. We also tried using MPI types to read and write

strided, non-contiguous data. Both proved slower than our method with

an extra stage of communication (shown as “swap”). We chose to use the

distance-halving algorithm as the basis for this experiment, since the system

is likely to deliver better performance exchanging strided, non-contiguous

57

0
1

2
3

4
5

6
7

Overhead of data swap

Input size (bytes)

P
er

ce
nt

 o
f t

im
e

in
 s

w
ap

 (
%

)

0
1

2
3

4
5

6
7

●

●

●

●

●

●

●

●

●

128 512 2048 8192 32768

● 512 nodes, 6−bucket
4k nodes, 6−bucket
32k nodes, 6−bucket
512 nodes, rd optimal
4k nodes, rd optimal
32k nodes, rd optimal

Figure 3.7: Overhead of input data shuffle stage.

messages than non-contiguous messages with a more complex memory lay-

out.

According to the vendor, the streaming load bandwidth from each core to

memory is 4.6 bytes/cycle, which is 3.9 GB/second [48]. The streaming store

bandwidth is 5.6 bytes/cycle, or 4.75 GB/second. In [49], the streaming copy

bandwidth on Intrepid for large buffers was measured to be 3.85 GB/second.

This figure represents the sum of the load and store bandwidth, and is, in

fact, lower than the peak deliverable bidirectional 6-port network bandwidth

of 4.18 GB/second. The copy bandwidth on a random memory-access bench-

mark was 44 MB/s. From this, we conclude that unless memory bandwidth

dwarfs network bandwidth, our redundant communication method is supe-

rior to alternatives.

3.5.3 Allgather performance on subpartitions

As mentioned above, partitions of 512 or more nodes on Intrepid form tori.

We decided to investigate how our algorithms perform on subpartitions,

58

0
50

10
0

15
0

20
0

25
0

Comparison of swap with alternatives

Input size (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

10
0

15
0

20
0

25
0

●

●

●

●

●

●
● ● ● ●

64 256 1024 4096 16384

● swap
in−memory shuffle
MPI types

Figure 3.8: Alternatives to input data shuffle.

which form meshes. Figure 3.9 shows the performance of subpartitions of

a 32k-node partition. All dimensions are powers of two, but we make the

subpartitions as cubic as possible. Native algorithm data in these figures is

always from a copy or subpartition of MPI COMM WORLD.

Note that while the 16k subpartition is toroidal in two dimensions and

the 8k subpartition is toroidal in one dimension, performance is still lim-

ited by the one non-toroidal dimension. A 4-bucket algorithm when there is

one toroidal dimension or a 5-bucket algorithm when there are two toroidal

dimensions might perform better. Also note that the 6-bucket algorithm per-

forms worse than the 3-bucket algorithm. The 3-bucket algorithm will op-

erate without congestion, whereas the 6-bucket algorithm will operate with

a congestion factor of two on every link. In Section 3.5.1, we found that

congestion did not cause link bandwidth to suffer for single-port communica-

tion; in this experiment, with multi-port communication, congestion appears

to have a more performance-degrading effect. If the effect were solely due to

the larger number of messages, we would expect the performance divergence

between the 3-bucket algorithm and 6-bucket algorithm for smaller messages

59

0
20

0
40

0
60

0
80

0
10

00

1024 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

●●●●●
●

●●

●●
●

16 64 256 1024 4096 16384

●

3−bucket
6−bucket
native

0
20

0
40

0
60

0
80

0
10

00

16384 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

●●●●●●●

●●●●

16 64 256 1024 4096 16384

●

3−bucket
6−bucket
native

Figure 3.9: Performance of multi-port allgather algorithms vs number of
processors on mesh subpartitions.

60

(upper graph) to be larger than the divergence for larger messages (lower

graph).

Figure 3.9 also shows that that our parallel bucket algorithms deliver sig-

nificantly better performance than the native algorithm with as few as 16

processors for sufficiently large input messages.

We also observed that the native algorithm performs worse for subpar-

titions than full partitions. This is because the faster tree network is not

available on subpartitions, so the native allgather-via-broadcasts algorithm

must use the torus network.

3.5.4 Reduce-scatter performance

Figures 3.10 and 3.11 show the performance of the reduce-scatter variations.

As mentioned above, the communication pattern of reduce-scatter is the

reverse of that of the allgather operation. The input vector on each process

is arranged as 32-bit integer values and we sum them to form the output

vector.

We again observed that the performance of the native algorithm on the

default communicator, MPI COMM WORLD (native-world), was far better than

on a copy (native-copy). We suspect the contiguous subpartition algorithm,

which uses the torus network, is being used on copies of MPI COMM WORLD and

on MPI COMM WORLD when the message is smaller than 512 bytes. For larger

messages on MPI COMM WORLD, the library likely uses the tree network, which

supports in-place reduction on integers.

The non-topology-aware recursive-halving, distance-halving algorithm (rh

halving), performs the worst of the rest of the algorithms. The semi-topology-

aware distance-doubling algorithm (rh doubling) performs better, followed

by the optimally-remapped recursive-halving algorithm (rh optimal). The

bucket and 6-bucket algorithms perform best, except for smaller messages

with smaller allocations. The 6-bucket algorithm performs much better than

the others, except for small messages with the smaller 512-node allocation.

Figure 3.12 shows the performance of the reduce-scatter algorithms on

subpartitions. The native algorithm performs quite poorly for small and

large messages alike compared to the rest of the algorithms.

61

0
10

0
20

0
30

0
40

0

512 nodes

Input message size/process (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0
40

0

64 256 1024 4096 16384 65536

native−world
6−bucket
bucket
rh optimal
rh doubling
rh halving
native−copy

0
10

0
20

0
30

0
40

0

32768 nodes

Input message size/process (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0
40

0

64 256 1024 4096

native−world
6−bucket
bucket
rh optimal
rh doubling
rh halving
native−copy

Figure 3.10: Performance of reduce-scatter algorithms vs message size.

62

0
10

0
20

0
30

0
40

0

1024 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0
40

0

256 1024 4096 16384

native−world
6−bucket
bucket
rh optimal

rh doubling
rh halving
native−copy

0
10

0
20

0
30

0
40

0

16384 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
10

0
20

0
30

0
40

0

256 1024 4096 16384

native−world
6−bucket
bucket
rh optimal

rh doubling
rh halving
native−copy

Figure 3.11: Performance of reduce-scatter algorithms vs number of
processors.

63

0
50

10
0

15
0

20
0

25
0

30
0

35
0

1024 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

16 64 256 1024 4096 16384

6−bucket
bucket
rh optimal

rh doubling
rh halving
native

0
50

10
0

15
0

20
0

25
0

30
0

35
0

8192 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

16 64 256 1024 4096 16384

6−bucket
bucket
rh optimal

rh doubling
rh halving
native

Figure 3.12: Performance of reduce-scatter algorithms vs number of
processors on mesh subpartitions.

64

3.5.5 Broadcast performance

Figure 3.13 shows the performance of the broadcast algorithms. The band-

width delivered by the native algorithm far exceeds the bandwidth delivered

by the other algorithms we studied, delivering up to 940 MB/s. It uses the

hardware broadcast feature to broadcast data to all nodes along a line in the

torus network. The other algorithms are implemented as a native scatter

followed by an allgather algorithm of our choosing.

As with the allgather operation alone, the 6-way bucket algorithm is gener-

ally best. The bucket algorithm is next-best, closely followed by the optimally-

remapped recursive-doubling. They are followed by the semi-topology-aware

distance-halving, recursive-doubling algorithm, delivering far more band-

width than the non-topology-aware distance-doubling recursive-doubling al-

gorithm.

3.5.6 Measured versus predicted performance

We now compare the measured performance for several allgather algorithms

with the performance predicted by our model from Section 3.1. The δ term

is simply the reciprocal of the link speed (375 MB/s) for one or three-port

algorithms, and 7% less for six-port algorithms. The ring algorithm on the

32k-node partition consists of 32767 stages comprised of one message per

stage per process and has a latency of 206 ms with a zero-byte input message.

Thus, α = 206 ms/32767 = 6.29µs.

In Section 3.4, we developed approximate equations for the performance

of different allgather algorithms; we ignored minor terms, such as the extra

messages our algorithms introduce. On large systems, these terms are negli-

gible. In this analysis, we do not throw out any terms. Further, our equations

assumed cubic torus networks. Here, we directly apply our congestion-aware

performance model by counting messages and bytes; we do not use any equa-

tions. We will explain with two examples how we derive the predicted points

in the figures to follow which evaluate the validity of our model.

Consider the performance of the optimally-reordered recursive-doubling

algorithm on a 512-node 8x8x8 torus (P = 512;X = Y = Z = 8). The

execution consists of nine stages of recursive-doubling after one stage of the

input shuffle. Thus, the message startup cost is 10α. In the first three stages,

65

0
20

0
40

0
60

0
80

0
10

00

512 nodes

Input message size/process (bytes)

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
20

0
40

0
60

0
80

0
10

00

64 256 1024 4096 16384 65536

native
6−bucket
bucket
rd optimal
rd halving
rd doubling

0
20

0
40

0
60

0
80

0
10

00

2048 bytes/process

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

0
20

0
40

0
60

0
80

0
10

00

256 1024 4096 16384

native
6−bucket
bucket
rd optimal
rd halving
rd doubling

Figure 3.13: Performance of broadcast algorithms.

66

nodes four hops apart in each dimension exchange messages of size n, 2n, and

4n bytes. They will incur a congestion penalty of two rather than four due

to the use of wrap-around links. This is one detail ignored by our model for

this algorithm, since on large torus systems, it is a negligible term. (For the

recursive-doubling, distance-doubling algorithm, we account for the wrap-

around links in our final equations.) In the middle three stages, nodes two

hops apart in each dimension exchange messages of size 8n, 16n, and 32n

bytes with a congestion penalty of two. In the last three stages, nodes one

hop apart exchange messages of size 64n, 128n, and 256n with no congestion.

We do not have an analytical model for the input shuffle stage. Thus, we

divide the total amount of data moved (nP) by the bidirectional bisection

bandwidth (4P 2/3) and add n 3
√
P/4 = n 3

√
512/4 = 2n to the bandwidth

term. We could achieve tighter bounds on our estimation by modeling every

message and every link for every partition size, but it would make little

difference. The total cost is then:

Ctorus = (log2 512 + 1)α +

nδ{2(1 + 2 + 4) + 2(8 + 16 + 32) + 1(64 + 128 + 256)}+

2nδ

= 10α + 576nδ.

According to our prior equation, Ctorus = (log2 P + 1)α + (7/6)nPδ, we

would calculate Ctorus = 10α + 597.33nδ.

Let us look at a more complex algorithm: the 6-way bucket algorithm on

a non-cubic 4096-node 8x16x32 torus system (P = 4096;X = 8;Y = 16;Z =

32). In the first part of the algorithm, we round-up the message sizes to the

next multiple of six bytes. This involves receiving up to n+ 5 bytes in up to

three messages or sending up to n bytes in two messages. Our model charges

α once for each pair of send and receive messages; this exchange does not

fit our model well. We will charge 3α + nδ for this step; the extra 5 bytes

we will continue to ignore. In the second part, each process divides its input

message into six portions and exchanges them with other processes. This

involves an exchange of six messages accounting for n bytes.

For the first two phases, we do not have an analytical model for congestion.

67

Again, we divide the total amount of data transferred (nXY Z bytes) by the

minimal bisection bandwidth (4XY) for a bandwidth term of nZ/4 = 8n for

each phase.

Then, the main algorithm proceeds in three phases. In the first phase of the

main algorithm, each process will exchange 2((X−1)+(Y −1)+(Z−1)) = 106

messages. The bandwidth term will be bound by the ZXY buckets, which

each circulate (Z − 1)n/6 = (31/6)n bytes.

In the second phase, which begins after all the processes complete the first

phase, each process again exchanges 2((X − 1) + (Y − 1) + (Z − 1)) = 106

messages. The bandwidth term will be bound by the YZX buckets, which

each circulate (Z − 1)Y n/6 = (446/6)n bytes.

In the final phase, 106 messages are exchanged per process and the band-

width term is bound by the XYZ buckets, which each circulate (Z−1)XY n/6 =

(3968/6)n bytes.

The total cost is then:

Ttorus = (3 + 6 + 3 · 106)α + n(8 + 8 + (31/6) + (446/6) + (3968/6))δ

= 327α + (4591/6)nδ.

This is a non-cubic partition and our prior equation for 6-bucket perfor-

mance assumed cubic partitions and does not apply.

Figure 3.14 compares the performance predicted by our model for the ring

algorithm versus the actual performance on Intrepid for small 64-byte mes-

sages and large 32-kilobyte messages. We computed α using this algorithm,

hence, for the α-dominated 64-byte input message problem, the model agrees

almost perfectly. For the 32-kilobyte input message problem, our model pre-

dicts better performance than we observe.

Figure 3.15 evaluates our model on the recursive-doubling, distance-doubling

algorithm and recursive-doubling, optimally-reordered algorithm, and Fig-

ure 3.16 evaluates our model on the one-port and six-port bucket algorithms.

Recall that for the 6-bucket case, we adjust δ to account for the 7% penalty

for using all 6 ports at the same time. Thus, δ6bucket = δ/0.93.

Overall, we see that the model agrees very well for large messages with the

three topology-aware algorithms: the reordered recursive-doubling algorithm

and the two bucket algorithms. For short messages on all algorithms and

short and long messages on the ring algorithm, the startup cost becomes

68

0
10

0
20

0
30

0
40

0

ring algorithm

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

● ● ● ● ● ● ●

0
10

0
20

0
30

0
40

0

● ● ● ● ● ● ●

512 1024 2048 4096 8192 16384 32768

●

●

32 kbytes predicted
32 kbytes measured
64 bytes predicted
64 bytes measured

Figure 3.14: Predicted and measured performance of ring allgather
algorithm.

69

0
50

10
0

15
0

20
0

25
0

recursive−doubling, distance−doubling algorithm

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

●

●

● ● ● ● ●

0
50

10
0

15
0

20
0

25
0

●

●

● ● ● ● ●

512 1024 2048 4096 8192 16384 32768

●

●

32 kbytes predicted
32 kbytes measured
64 bytes predicted
64 bytes measured

0
10

0
20

0
30

0
40

0

recursive−doubling, optimally−reordered algorithm

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

●

●

●

●

●

●
●

0
10

0
20

0
30

0
40

0

●

●

●

●

●
● ●

512 1024 2048 4096 8192 16384 32768

●

●

32 kbytes predicted
32 kbytes measured
64 bytes predicted
64 bytes measured

Figure 3.15: Predicted and measured performance of recursive-doubling,
distance-doubling and recursive-doubling, optimally-reordered allgather
algorithms.

70

0
10

0
20

0
30

0
40

0

bucket algorithm

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

●

●

●

●

●

●

●

0
10

0
20

0
30

0
40

0

●

●

●

●

●

●

●

512 1024 2048 4096 8192 16384 32768

●

●

32 kbytes predicted
32 kbytes measured
64 bytes predicted
64 bytes measured

0
50

0
10

00
15

00
20

00

6−bucket allgather algorithm

Nodes

B
an

dw
id

th
 (

M
B

/s
/n

od
e)

● ● ●
●

●

●

●

0
50

0
10

00
15

00
20

00

● ● ●
●

●

●

●

512 1024 2048 4096 8192 16384 32768

●

●

32 kbytes predicted
32 kbytes measured
64 bytes predicted
64 bytes measured

Figure 3.16: Predicted and measured performance of bucket and 6-way
bucket allgather algorithms.

71

more important and our model loses some fidelity. Nonetheless, there is

a clear pattern between the performance predicted by our model and the

realized performance on Intrepid.

3.5.7 Comparison with similar work

As mentioned above in Section 3.4.2, Jain and Sabharwal also implemented

6-way bucket algorithms [31]. Their evaluation was also on a Blue Gene/P

system. Their multi-threaded allgather algorithm delivers about the same

performance as our single-threaded implementation with an extra stage.

Their single-threaded algorithm performs about 30% worse. On the other

hand, their multi-threaded reduce-scatter algorithm performs much better

than ours, since they can spread the application of the reduction operator

over multiple threads. Their single-threaded reduce-scatter algorithm has

similar performance to ours. Instead of an extra stage of communication,

they reorder the data in memory after the allgather algorithm and before

the reduce-scatter algorithm, as we do in the experiment whose results are

shown in Figure 3.8. It is unclear to us how they can do this reordering so

efficiently, since we tried this and performance suffered greatly, as Figure 3.8

shows.

3.6 Conclusion

3.6.1 Other non-minimal algorithms

Hybrid algorithm: The authors of [30] found that the best allreduce per-

formance on a 2-d mesh involved a hybrid of the bidirectional exchange and

recursive-halving algorithms. The 6-bucket algorithm performs very well for

larger problems but less well for small messages due to the large number of

messages. We implemented a hybrid triple-recursive-doubling/sextuple-ring

algorithm.

On a cubic torus, it consists of three simultaneous recursive-doubling op-

erations. Each recursive-doubling operation operates on two of the three

dimensions, and the dimensions are staggered so that the recursive-doubling

72

operations do not compete for links. This is followed by the last stage of the

6-bucket algorithm: a ring in the third dimension.

This would reduce the number of messages from approximately 18 3
√
P to

2 lgP + 6 3
√
P .

We evaluated this algorithm on an 8x8x8 torus partition on Intrepid. In

this case, the number of messages is reduced from 127 to 59, a factor of 2.15.

Unfortunately, we found that the performance of the hybrid was only better

than the 6-bucket algorithm for very small messages where the hybrid was

slower than the better single-ported algorithms. On a 32x32x32 32k-node

partition, the number of messages would be reduce from 559 to 217, a factor

of 2.57. This algorithm might be useful on an exascale supercomputer with

much larger dimensions.

3.6.2 Summary

Many widely-used allgather and reduce-scatter algorithms do not reach full

potential communication performance for several reasons. They are single-

ported or not topology-aware. In all of them, processes send and receive

the minimal amount of data. In contrast, our algorithms are non-minimal

because we add an extra stage of redundant communication to restore the

correct data order. This flexibility allows us to reorder the stages of commu-

nication or run multiple operations in parallel on a multi-port network. The

overhead of the extra stage is small and this leads to substantially better

performance compared to minimal-communication algorithms.

In sum, our contribution is two-fold. We show that collective algorithms

with redundant communication can deliver far better performance than known

collective algorithms. We also show that collective algorithms need not pre-

serve the correct ordering as long as the misordering is the same on all the

processes, since a simple extra stage can restore the correct ordering. We

present a novel semi-topology-aware recursive-doubling/distance-halving all-

gather algorithm and a recursive-halving/distance-doubling reduce-scatter

algorithm that work well on a variety of networks and are optimal on Clos

networks; a novel topology-aware reordered recursive-doubling allgather and

reordered recursive-halving reduce-scatter algorithm for single-port mesh or

torus networks; and a novel multi-port bucket algorithm for mesh or torus

73

networks. Our allgather algorithm delivers within 1% of the maximum deliv-

erable multi-port bandwidth of a Blue Gene/P system, which is 5.5x better

than the native algorithm. Our reduce-scatter algorithm delivers up to 11x

better performance than the native algorithm when the native algorithm is

not using the tree network.

74

Chapter 4

Conclusion

This thesis makes original contributions in two areas: process partitioning

and collective algorithms.

Process partitioning and remapping: We demonstrate that existing

MPI Comm split algorithms simply will not scale to exascale systems, either

in time or space. We analyze a novel MPI Comm split algorithm that does,

by replacing the sorting at the end with merging after each step, sorting in

parallel, and distributing the final table. This results in a projected speedup

of 60x on the largest exascale system we consider and an arbitrary benefit in

space.

Collective algorithms: We show that known algorithms for several im-

portant collective-communication operations do not perform well when topol-

ogy is considered. Algorithms for Clos networks are ordered so that the worst

congestion occurs when the largest messages are exchanged. Algorithms for

torus or mesh networks only use one port when the use of multiple ports can

deliver much higher performance.

Our algorithms differ from the known in that they involve redundant com-

munication. This gives us the flexibility to reorder the stages of communica-

tion in the case of the recursive-doubling or recursive-halving algorithms, or

to run multi-port algorithms on multi-ported torus networks. We provide a

generalized technique that rearranges the communication stages in these al-

gorithms that reduces network load and congestion, improving performance.

On a 32k-node system, this gives us a speedup over the native algorithm

of up to 5.5x for the allgather operation and up to 11x for the reduce-scatter

operation. Moreover, our algorithms do not only address the performance of

collective operations on large partitions of large systems. Our results hold

for 512-node torus networks and 16-node mesh networks as well. This is be-

cause the redundant communication, at worst, consumes 7% of the improved

runtime of each operation with 512 nodes and 2.6% with 32k-nodes. This is

75

a small penalty compared to the benefits of reducing congestion or using all

the ports available in a multi-ported network.

An important aspect of both portions of this thesis is that our novel algo-

rithms do not require special hardware, special compilers, special runtime-

support, or tuning. We contribute straight-forward algorithms that dramat-

ically improve the performance of communicator-management and several

important collective operations without any strings attached.

76

References

[1] D. S. Wise, “Ahnentafel indexing into Morton-ordered arrays, or matrix
locality for free,” in In Euro-Par 2000 Parallel Processing. Springer,
2000, pp. 774–784.

[2] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, TOP500
Supercomputing Sites, 2011 (accessed September 13, 2011),
http://top500.org.

[3] A. Toor, Fujitsu K supercomputer now ranked fastest in the world,
dethrones China’s Tianhe-1A, 2011 (accessed October 13, 2011),
Engadget, http://www.engadget.com/2011/06/20/fujitsu-k-

supercomputer-now-ranked-fastest-in-the-world-dethron/.

[4] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “Hy-
perX: topology, routing, and packaging of efficient large-scale networks,”
in Proceedings of the Conference on High Performance Computing Net-
working, Storage and Analysis, ser. SC ’09. New York, NY, USA: ACM,
2009, pp. 41:1–41:11.

[5] P. Geoffray and T. Hoefler, “Adaptive routing strategies for modern high
performance networks,” in Proceedings of the 2008 16th IEEE Sympo-
sium on High Performance Interconnects. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 165–172.

[6] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony, “The
PERCS high-performance interconnect,” in Proceedings of the 2010 18th
IEEE Symposium on High Performance Interconnects, ser. HOTI ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 75–82.

[7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface stan-
dard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, Sep. 1996.

[8] W. D. Gropp and E. Lusk, User’s Guide for mpich, a Portable Imple-
mentation of MPI, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 1996, aNL-96/6.

77

[9] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-
tain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI: Goals,
concept, and design of a next generation MPI implementation,” in Pro-
ceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004, pp. 97–104.

[10] R. Thakur and W. Gropp, “Improving the performance of collective op-
erations in MPICH,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Number 2840 in LNCS, Springer Ver-
lag (2003) 257-267 10th European PVM/MPI User’s Group Meeting.
Springer Verlag, 2003, pp. 257–267.

[11] H. Sutter, “The free lunch is over: A fundamental turn toward concur-
rency in software,” Dr. Dobb’s Journal, vol. 30, no. 3, March 2005.

[12] D. R. Cheng, A. Edelman, J. R. Gilbert, and V. Shah, “A novel paral-
lel sorting algorithm for contemporary architectures,” technical report,
University of California at Berkeley, 2006.

[13] E. L. G. Saukas and S. W. Song, “A note on parallel selection on coarse
grained multicomputers,” Algorithmica, vol. 24, pp. 371–380, 1999.

[14] P. Sack and W. Gropp, “A scalable mpi comm split algorithm for exas-
cale computing,” in Proceedings of the 17th European MPI users’ group
meeting conference on Recent advances in the message passing interface,
ser. EuroMPI’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 1–10.

[15] A. Moody, D. Ahn, and B. de Supinski, “Exascale algorithms for gener-
alized MPI comm split,” in Proceedings of the 18th European MPI users’
group meeting conference on Recent advances in the message passing in-
terface, ser. EuroMPI’11, Y. Cotronis, A. Danalis, D. Nikolopoulos, and
J. Dongarra, Eds., vol. 6960. Springer Berlin / Heidelberg, 2011, pp.
9–18.

[16] C. Siebert and F. Wolf, “Parallel sorting with minimal data,” in Pro-
ceedings of the 18th European MPI users’ group meeting conference on
Recent advances in the message passing interface, ser. EuroMPI’11,
Y. Cotronis, A. Danalis, D. Nikolopoulos, and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2011, vol. 6960, pp. 170–177.

[17] H. Shi, R. Council, G. N. Ogp, J. Schaeffer, and J. Schaeffer, “Parallel
sorting by regular sampling,” 1992.

[18] E. Solomonik and L. V. Kale, “Highly Scalable Parallel Sorting,” in
Proceedings of the 24th IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), April 2010.

78

[19] N. Choudhury, Y. Mehta, T. L. Wilmarth, E. J. Bohm, and L. V. Kalé,
“Scaling an optimistic parallel simulation of large-scale interconnection
networks,” in WSC ’05: Proceedings of the 37th conference on Winter
simulation. Winter Simulation Conference, 2005, pp. 591–600.

[20] G. Almási, P. Heidelberger, C. J. Archer, X. Martorell, C. C. Erway,
J. E. Moreira, B. Steinmacher-Burow, and Y. Zheng, “Optimization of
MPI collective communication on BlueGene/L systems,” in Proceedings
of the 19th annual international conference on Supercomputing, ser. ICS
’05. New York, NY, USA: ACM, 2005, pp. 253–262.

[21] A. Faraj, S. Kumar, B. Smith, A. Mamidala, J. Gunnels, and P. Hei-
delberger, “MPI collective communications on the Blue Gene/P super-
computer: algorithms and optimizations,” in Proceedings of the 23rd
international conference on Supercomputing, ser. ICS ’09. New York,
NY, USA: ACM, 2009, pp. 489–490.

[22] A. Bhatele, “Automating topology aware mapping for supercomputers,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2010.

[23] C. Leiserson and B. Maggs, “Communication-efficient parallel algo-
rithms for distributed random-access machines,” Algorithmica, vol. 3,
pp. 53–77, 1988.

[24] R. Wankar and R. Akerkar, “Reconfigurable architectures and algo-
rithms: A research survey.” International Journal of Computer Science
and Applications, pp. 108–123, 2009.

[25] H. Tang and T. Yang, “Optimizing threaded MPI execution on SMP
clusters,” in Proc. of 15th ACM international conference on supercom-
puting. ACM Press, 2001, pp. 381–392.

[26] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-
neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
R. S. Williams, K. Yelick, P. Kogge, R. S. Williams, and K. Yelick, “Ex-
ascale computing study: Technology challenges in achieving exascale
systems,” 2008.

[27] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage Switches are
not Crossbars: Effects of Static Routing in High-Performance Net-
works,” in Proceedings of the 2008 IEEE International Conference on
Cluster Computing. IEEE Computer Society, Oct. 2008.

[28] E. Zahavi, “Fat-trees routing and node ordering providing contention
free traffic for mpi global collectives,” Parallel and Distributed Processing
Workshops and PhD Forum, 2011 IEEE International Symposium on,
vol. 0, pp. 761–770, 2011.

79

[29] M. Barnett, D. G. Payne, and R. A. van de Geijn, “Optimal broadcasting
in mesh-connected architectures,” Austin, TX, USA, Tech. Rep., 1991.

[30] B. L. Payne, M. Barnett, R. Littlefield, D. G. Payne, and R. A. van de
Geijn, “Global combine on mesh architectures with wormhole routing,”
in Proc. of 7 th Int. Parallel Proc. Symp, 1993.

[31] N. Jain and Y. Sabharwal, “Optimal bucket algorithms for large MPI
collectives on torus interconnects,” in Proceedings of the 24th ACM In-
ternational Conference on Supercomputing, ser. ICS ’10. New York,
NY, USA: ACM, 2010, pp. 27–36.

[32] G. Bilardi, B. Codenotti, G. D. Corso, C. Pinotti, and G. Resta, “Broad-
cast and associative operations on fat-trees,” 1996.

[33] P. Patarasuk and X. Yuan, “Bandwidth efficient allreduce operation
on tree topologies,” in IEEE IPDPS Workshop on High-Level Parallel
Programming Models and Supportive Environments, 2007.

[34] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F.
Bhoedjang, “Magpie: MPI’s collective communication operations for
clustered wide area systems,” in ACM SIGPLAN Notices, 1999, pp.
131–140.

[35] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. van de Geijn, and
J. Watts, “Interprocessor collective communication library (intercom),”
in In Proceedings of the Scalable High Performance Computing Confer-
ence. IEEE Computer Society Press, 1994, pp. 357–364.

[36] B. Juurlink, P. Kolman, and I. Rieping, “Optimal broadcast on paral-
lel locality models,” in Proc. 7th Int. Coll. Structural Information and
Communication Complexity, SIROCCO, 2000.

[37] R. M. Karp, A. Sahay, E. E. Santos, K. E. Schauser, and A. S. E. E.
Santos, “Optimal broadcast and summation in the LogP model,” in In
Proc. 5th ACM Symp. on Parallel Algorithms and Architectures, 1993,
pp. 142–153.

[38] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. San-
tos, R. Subramonian, and T. von Eicken, “LogP: towards a realistic
model of parallel computation,” in Proceedings of the fourth ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
ser. PPOPP ’93. New York, NY, USA: ACM, 1993, pp. 1–12.

[39] V. Bala, J. Bruck, S. Member, R. Cypher, P. Elustondo, A. Ho, C. tien
Ho, S. Kipnis, M. Snir, and S. Member, “CCL: A portable and tunable
collective communication library for scalable parallel computers,” IEEE
Transactions on Parallel and Distributed Systems, p. 164, 1995.

80

[40] R. Thakur and R. Rabenseifner, “Optimization of collective communica-
tion operations in MPICH,” International Journal of High Performance
Computing Applications, vol. 19, pp. 49–66, 2005.

[41] R. Rabenseifner, “A new optimized MPI reduce algorithm,”
http://www.hlrs.de/mpi/myreduce.html, 1997.

[42] J. L. Traff, A. Ripke, C. Siebert, P. Balaji, R. Thakur, and W. Gropp,
“A pipelined algorithm for large, irregular all-gather problems,” Int. J.
High Perform. Comput. Appl., vol. 24, pp. 58–68, February 2010.

[43] T. Hoefler and J. L. Traeff, “Sparse Collective Operations for MPI,”
in Proceedings of the 23rd IEEE International Parallel & Distributed
Processing Symposium, HIPS’09 Workshop, May 2009.

[44] J.-H. Lee, C.-S. Shin, and K.-Y. Chwa, “Optimal embedding of multi-
ple directed hamiltonian rings into d-dimensional meshes,” Journal of
Parallel and Distributed Computing, vol. 60, no. 6, pp. 775 – 783, 2000.

[45] Richard and Stong, “Hamilton decompositions of cartesian products of
graphs,” Discrete Mathematics, vol. 90, no. 2, pp. 169 – 190, 1991.

[46] “Overview of the IBM Blue Gene/P project,” IBM Journal of Research
and Development, vol. 52, pp. 199–220, January 2008.

[47] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the Influ-
ence of System Noise on Large-Scale Applications by Simulation,” in
International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC’10), Nov. 2010.

[48] IBM System Blue Gene Solution: Blue Gene/P Application Develop-
ment, 2008.

[49] K. Yoshii, K. Iskra, H. Naik, P. Beckmanm, and P. C. Broekema, “Char-
acterizing the performance of “big memory” on Blue Gene Linux,” in
Proceedings of the 2009 International Conference on Parallel Processing
Workshops, ser. ICPPW ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 65–72.

81

	List of Figures
	Chapter 1 Introduction
	Chapter 2 Scalable process partitioning and remapping algorithms
	Introduction
	Background
	Scalable communicators
	Better performance through parallel sorting
	Less memory usage with distributed tables
	Related work

	Evaluation
	Comparison with related work
	Small communicators

	Conclusion

	Chapter 3 Scalable collective communication
	Model
	Known algorithms and related work
	Topology-aware algorithms
	Generic-topology algorithms

	Performance of minimal algorithms
	Non-topology-aware algorithms
	Topology-aware algorithms

	Non-minimal algorithms
	Recursive-doubling algorithm
	Bucket algorithm
	Recursive-doubling algorithm with irregular partitions
	Other operations
	Alternatives to redundant communication

	Evaluation
	Bandwidth under congestion or multi-port communication
	Allgather performance
	Allgather performance on subpartitions
	Reduce-scatter performance
	Broadcast performance
	Measured versus predicted performance
	Comparison with similar work

	Conclusion
	Other non-minimal algorithms
	Summary

	Chapter 4 Conclusion
	References

