10 Trillion Digits of Pi: A Case Study of summing Hypergeometric Series to high
precision on Multicore Systems

Alexander J. Yee
University of Illinois Urbana-Champaign®
Urbana, IL
Email: a-yee@u.northwestern.edu

Abstract— Hypergeometric series are powerful mathematical
tools with many usages. Many mathematical functions, such as
trigonometric functions, can be partly or entirely expressed in
terms of them. In most cases this allows efficient evaluation
of such functions, their derivatives and their integrals. They
are also the most efficient way known to compute constants,
such as 7 and e, to high precision. Binary splitting is a low
complexity algorithm for summing up hypergeometric series.
It is a divide-and-conquer algorithm and can therefore be
parallelized. However, it requires large number arithmetic,
increases memory usage, and exhibits asymmetric workload,
which makes it non-trivial to parallelize. We describe a high
performing parallel implementation of the binary splitting al-
gorithm for summing hypergeometric series on shared-memory
multicores. To evaluate the implementation we have computed
m to 5 trillion digits in August 2010 and 10 trillion digits
in October 2011 — both of which were new world records.
Furthermore, the implementation techniques described in this
paper are general, and can be used to implement applications
in other domains that exhibit similar features.

I. INTRODUCTION

Hypergeometric series are a large class of infinite series
that can represent many mathematical functions and con-
stants. These include, but are not limited to, the majority
of the trigonometric functions, special functions such as the
the error and Bessel functions, as well as the derivatives and
integrals of all other hypergeometric functions.

Evaluating such series to high precision is a very com-
putationally intensive task. And as such, it is a prime
target for parallelism in high-performance implementations.
However, writing an efficient implementation is a non-trivial
task that requires multi-precision arithmetic — itself a non-
trivial task. Furthermore, it is complicated by the fact that
series summation requires a large amount of memory and
inherently exhibits asymmetrical workloads.

The first difficulty in summing up a series is the load-
imbalance that is caused by the asymmetrical workload.
Terms with higher indices require more work to evaluate
than terms with lower indices. Classical parallel imple-
mentations of series summation are either unaware of or
simply ignore this imbalance and evenly distribute the terms

IThe work for this paper was done at Northwestern University.

Shigeru Kondo
Asahimatsu Food Co. LTD
lida, Japan
Email: jaOhxv@calico.jp

among the processor cores. We provide a technique that
precomputes the partition sizes, such that each core gets the
same amount of work.

The second difficulty is the amount of memory that is
needed to sum a series to high precision. Series summation
can consume a very large amount of memory and dynamic
memory allocation of large amounts of memory can incur
significant overheads. Furthermore, the memory usage can
be very erratic; this makes it difficult to place upper-
bounds on memory usage thereby increasing the risk of
overrunning physical memory. In our implementation we use
mathematical techniques to prove bounds on all memory
usage. Then we combine such methods to implement our
own custom memory allocator that provides low-overhead
memory allocation. Our memory allocator is also determin-
istic with multi-threading which greatly reduces the amount
of time spent on debugging.

For larger computations involving higher precisions, two
more issues arise which apply both to hypergeometric se-
ries as well as multi-precision arithmetic in general. The
first issue is insufficient memory. Current high-end desktop
computers rarely have more than the 144GB of memory we
used. This caps the precision of any high-precision com-
putation to about 20 billion decimal digits. To reach higher
precisions, secondary storage is needed — either in the form
of disk or a network of multiple computers. The difficulty
with secondary storage is speed. Hard drive performance is
typically orders of magnitude slower than physical memory
for both bandwidth and latency. Our implementation is based
on combining many hard drives to increase performance as
well as the total storage to allow for very large computations
that require many times more memory than is physically
available.

The other issue with large computations is reliability. Due
to the long durations of computations involving extremely
high precision, the probability of hardware failure increases.
To address this issue, we implement an elaborate system of
error-detection and correction. We also combine checkpoint-
ing with out-of-core computation to allow computations to
be restarted after catastropic failures such as a power outage
or a system crash.

Constant Previous Previous New
Record Record Holder Record
™ 2.7-1012 Bellard [2] 10-10™2
e 0.2-10'? Kondo & Pagliarulo 1.0- 1012
¢ 0.3-10'2 Anastasov & Pagliarulo 1.0 -10'2
V2 0.2 -1012 Kondo & Pagliarulo 1.0-10%2
¢(3) 10 - 10° Kondo & Pagliarulo 100 - 10°
In(2) 10 - 10° Kondo & Pagliarulo 100 - 109
In(10) 10 - 10° Kondo & Pagliarulo 31-10°
G 10- 109 Kondo & Pagliarulo 31-10°
~ 10 - 107 Kondo & Pagliarulo 30-10°

Table I
NEW RECORDS FOR DECIMAL DIGITS COMPUTED FOR CONSTANTS

We have implemented these techniques in a high per-
formance framework for summing up hypergeometric se-
quences. To evaluate our framework, we have developed an
application called y-cruncher [1]. and used it to compute
several major constants to a new world record number of
digits. The largest of these computations was for 7, which
we computed to 5 trillion digits in 90 days on a single
high-end desktop computer. A follow up computation of 10
trillion digits of 7 using the same program and the same
computer took 371 days. Table I summarizes these new
records.

II. HYPERGEOMETRIC SERIES AND BINARY SPLITTING

The hypergeometric series
plylai,ag,...;ap;01,ba, ..., b5)

is a series) -, crz® where the ratio between successive
coefficient can be expressed as:
Ck+1

(k+a1)(k+as)---(k+ap)
e (k+b1)(k+bg)-- (k+bg)(k+1)

When the series converges, it defines a hypergeometric
function.

Many important functions can be expressed partly or
entirely as special cases of hypergeometric functions:

o The majority of the trigonometric functions.

o Many special functions such as: Error Function er f(z),
Exponential Integral Ei(z), Bessel Functions Jy(x),
Airy Functions Ai(x), etc.

o The derivatives and integrals of all the aforementioned,
when convergent.

Binary Splitting [3] is an efficient technique for numeri-
cally summing up the first n terms of a series. This includes
all geometrically convergent hypergeometric functions at ra-
tional points as well as certain types of double-summations.
In addition to sums, it can also be applied to product
functions such as the factorial. The technique can also be
used to sum up sequences such as the harmonic series and
various divergent asymptotic series to a finite number of
terms. Such cases arise in the computation of the Euler-
Mascheroni Constant.

Some of the values that can be evaluated using Binary
Splitting are:

o Most of the major constants: e, m, In(2), {(3), etc.

o All the aforementioned functions at rational points.

o The Harmonic Series H, for integer x.

o The Gamma Function I'(x) at rational points.

Binary Splitting can be used to numerically sum up
n terms of a series in quasi-linear run-time — usually
O(nlog®n) or less'. By comparison, sequential evaluation
is O(n?) and Horner’s Method is O(n?logn). For geomet-
rically convergent series (where the series converges to N
digits after ©(n) terms), these complexities map directly to
the run-times needed to evaluate a series to N digits. And
given the large sizes of N that we are interested in, quasi-
linear run-time is necessary to make the task at all feasible.

We will present the Binary Splitting algorithm using
two examples. The first example is the factorial function.
Although the factorial is a product rather than a summation,
it is a simple example that covers the basics of Binary
Splitting. To implement the factorial using Binary Splitting,
we use the following recursion:

Pla,a+1)=a+1
P(a,b) = P(a,m)P(m,b)

fora<m<b

Then
b
Pla,b) =[] *
k=a+1
and
n! = P(0,n)

The recursion can be used to split a product of n consec-
utive integers a(a +1)--- (a+mn — 1) into two subproducts
of ~ n/2 consecutive integres. The method is applied
recursively to the sub-products until one is left with a
single integer.. This method allows n! to be computed in
O(nlog®n) time, rather than the O(n?log®n) needed for
a sequential evaluation, since most products involve smaller
numbers.

The second example is of computing e using its Taylor
series expansion, which is a hypergeometric series:

=1
e:ZH
k=0

To get N digits of e, n = e(mg]{ N)) terms are needed.

. . 2
If terms are summed one at a time, then it takes O(loévw)
time to compute [V digits of e as each term takes on average
O(N) time to add.

'We assume multiplication to be ©(nlogn).

Below is a two-variable Binary Splitting recursion to
compute e:

(0,n
Zkl_1+ IZHJ_1+ 0n—1;

1=1 j=1i+1
where
b b
> 11 4
k=a+1j=k+1
and

b
IT *
k=a-+1

P() and Q() are computed using the recursions
P(a,a+1) =1,
Qa,a+1)=a+1

P(a,b) = P(a,m)Q(m,b) + P(m,b)

and

Q(a,b) = Q(a.m)Q(m,).

Using recursion, P(0,n) and Q(0,n) can be computed in
time O(nlog(n)?). So the total complexity for obtaining N
digits of e is O(N log(N)?).

This approach generalizes to more complicated series,
but at the cost of more variables. Most series require three
variables — including that of the popular formulas for 7.
The minimum number of Binary Splitting variables needed
to compute various constants are shown in Table II.

For the computation of 7, we used the following formula
by the Chudnovsky brothers [4]:

1 /10005 i (6k)!1(13591409 + 545140134F)
m 4270934400 £~ (—1)k(k!)3(3k)!640320%

This series converges very fast, with about 14 addi-
tional decimal digits per term. It was implemented using
a 3-variable binary splitting recursion.

III. LARGE NUMBER ARITHMETIC OVERVIEW

The immediate consequence of using the Binary Splitting
method is that arithmetic with large numbers is needed. The
numbers returned by the recursive calls double in size at
each level of recursion. Soon, they no longer fit into a single
word.

We handle large number arithmetic much the same way
others do. Our code expresses large numbers as arrays of
32-bit integers. Arithmetic such as addition, subtraction,
and multiplication are done the same way as grade school
methods but using base 232 instead of base 10. We did not
use 64-bit integers because most compilers lack support for
the 128-bit integer type that would be needed to handle carry

Compute Constant Interface
Stress Tester
Digit Viewer
Computation Launcher

Interface
(21,000 lines of code)

L

Division
Square Root

Advanced Math Functions AGM
(47,000 lines of code) Integer Inverse Cotangent

Constants (e, pi, etc...)
L

Radix Conversion (version 1)
Object Abstractions

(6,200 lines of code)

JL

~_ =

Unsigned Integer
Large Floating-Point
Exact Floating-Point

Swap-File Floating-Point

Resource Management
Performance Critical Operations
Hardware-Specific Profiles

Low Level Modules
(276,000 lines of code)

Figure 1. Software Design Layout for y-cruncher

propagation. Other implementations do this by using inline
assembly to access the x86-64 carry flags.

We use the long multiplication algorithm, which runs in
©(N?) time, for short products. For mid-range products,
we use the Karatsuba algorithm [5] with ©(N'°823) run-
time. And for the largest products, we use a variety of
methods based on Fast Fourier Transforms which run in
approximately ©(N log N) time [6].

Division and square roots are computed using Newton’s
Method. And finally, radix conversions are done using
Scaled Remainder Trees [7].

IV. IMPLEMENTATION

Figure 1 shows the design of y-cruncher. There are 4
primary layers of abstraction. Each layer is only dependent
on the layers below it.

The top layer is the interface layer, which consists of
all the user-visible features in y-cruncher. It also contains
a dispatcher that invokes lower level functions to compute
constants. The next layer is the math layer. This layer
contains the implementations of all the constants as well
as all advanced math functions such as division and square
roots. The third is the object layer that implements the large
number objects that are used by the math layer. Finally,
the lowest layer is the modules layer, which implements
resource managements, performance critical math functions,
and hardware-specific optimizations.

Of the implementation aspects that we will discuss in
depth in this work, the interfaces for multi-threading, mem-
ory management, and disk I/O are implemented in the
modules layer, but they are used by all the layers. Binary

Constant/Function Formula/Algorithm Minimum known Binary
Splitting recursion variables

n! 1

e Taylor Series 2

b Chudnovsky/Ramanujan 3

Apery’s Constant, ¢(3) Amdeberhan-Zeilberger 3
Catalan’s Constant, G Lupas Formula 3
Euler-Mascheroni Constant, v Brent-McMillan Formula 4

Table II
MINIMUM BINARY SPLITTING RECURSION VARIABLES NEEDED FOR VARIOUS CONSTANTS

Splitting is implemented entirely in the math layer and the
code is usually specific to the value that it computes. Large
multiplication and the FFTs they depend on are implemented
in the modules layer and called internally and by the object
layer. Most linear operations such as addition and subtraction
are also implemented in the modules layer and called both
internally and by the object layer.

A. Multi-threading

In our implementation, the vast majority of the compute
time is spent in the Binary Splitting algorithm for series
summation and/or an FFT of some sort. Both of these are
recursive divide-and-conquer algorithms. As a result, they
are easily parallelized using a recursive thread fork/join
programming model.

1) Binary Splitting of Series: The Binary Splitting al-
gorithm offers several opportunities for parallelism. It is
a divide-and-conquer algorithm that splits into completely
independent tasks, and each task can therefore be run in
parallel in separate threads. Each call to the binary splitting
procedure is given a thread count. The two recursive calls are
then run in parallel — each with half the thread count. The
merge of the two halves are done using the full thread count.
Since the merge consists mostly of large multiplications,
they can utilize the multi-threaded FFT algorithms. Figure 2
shows the pseudo code for a Binary Splitting recursion with
multi-threading.

New tasks are created recursively until the thread count
reduces to 1 or when the size of the calls drops below a
certain threshold. Computing sub-series in parallel increases
memory usage, as each parallel task needs it own temporary
memory. Therefore, the recursive thread-spawning is started
several levels deep, where the tasks are smaller and less
temporary memory is needed. The higher levels are all done
sequentially, and the parallelism is in the multiplications
rather than in the recursive calls.

The binary divide-and-conquer nature of binary splitting
is the sole reason why y-cruncher only supports a power-of-
two number of threads. For systems with a non-power-of-
two hardware threads, the best results are usually achieved
by rounding up to the next power-of-two and relying on the
operating system to deal with the scheduling.

Vector<BigNum> bs_threaded (start, end, threads){
// No more threading.
if (threads == 1 || end — start < threshold)
return bs_sequential (start, end);

// Middle Index
mid = (start + end) / 2;

// Split the threads
half_threads = threads / 2;

// Run these two calls in parallel.
bottom = bs_threaded (start, mid, half_threads);
top = bs_threaded (mid , end, half_threads);

// Merge the halves using all the threads.
return merge (bottom, top, threads);

Figure 2. Pseudo code for the naive divide-and-conquer multi-threading

Load Balancing: The size of the recursive tasks pro-
duced by the Binary Splitting algorithm for a series such as
the one in the Chudnovsky Formula are inherently uneven.
This is because the terms in the series increase in size as the
indices increase; the tasks that are created to compute the
later parts of the series are therefore larger than the tasks that
compute the earlier parts. As a result, the straight forward
implementation of Binary Splitting often leads to large load
imbalance.

Figure 3 illustrates this imbalance when computing
a factorial using binary splitting. To compute 100!
one could choose 50 as the midpoint. First compute
(1-2-3-...-50) and (51 -52-53-...-100), then multiply
the result together. But (1 -2 -3 - ... - 50) has 215 digits while
(51-52-53-...-100) has 311 digits; the first product can
be computed much faster than the second.

Multiplication dominates the running time and has
O(N log N) complexity. Since multiplication is super-linear,
performing a multiplication where the operands are roughly
equal is faster than computing the same product by multi-
plying two unequal operands. A simple inductive argument
shows that the total amount of work in multiplications is
minimized by always splitting into equal size operands.
Furthermore, this also reduces memory usage. This will be
discussed in detail later.

There are no algorithmic load-balancing problems with
the FFT algorithms since all computations are symmetrical.

In our factorial example we choose 58 as the mid-
point. So we would compute (1-2-3-...-58) and
(59-52-53-...-100) — which are 260 and 265 bits long
respectively.

To determine the correct split, we implement size ()
functions that accurately estimate the sizes of each variable
after summing up a certain range of terms. Then we use
binary search to find the correct split. Since this can be
expensive, the method is only used above a threshold. Below
this threshold, we revert to selecting the midpoint as the
splitter. Implementing these size () functions is non-trivial,
and to make it efficient it is usually done with asymptotic
approximations:

o Exponentials are sized by multiplying the exponent by
the logarithm of the base. This logarithm is expensive,
but can be precomputed and cached.

« Factorials are sized using first order Stirling’s Formula.
The logarithm here is unavoidable.

¢ Products involving polynomials sometimes require mul-
tiple functions to approximate different regions of the
domain. (This is not necessary for 7w, or any of the
other constants that y-cruncher can compute. However,
it may occur in the binary splitting implementations of
other series.)

Over-decomposition: Using the load balancing meth-
ods described above, we usually achieve greater than 90%
load balance efficiency. The remaining imbalance is mostly
caused by operating system overheads. To further increase
the efficiency, we use over-decomposition to increase CPU
utilization. In certain places, we use two or four times as
many software threads as there are hardware threads. In
many cases, this achieves more than 99% CPU utilization
with negligible overhead from resource contention.

2) FFT algorithms: Parallelization of the FFT algorithms
follows a similar binary divide-and-conquer approach to
binary splitting, but is generalized to handle more than two
sub-recursions. The multi-threaded FFTs that we use are all
implemented using a modified, fully recursive Bailey’s 4-
step approach [8].

Bailey’s 4-step algorithm breaks a size N = nm FFT into
the following steps:

1) Perform n size m FFTs

2) Multiply by twiddle factors
3) Transpose the data

4) Perform m size n FFTs.

In our implementation, the twiddle factors are merged into
step 1 and the transpose is completely skipped. So our code
only has 2 steps (steps 1 and 4). Furthermore, we skip the
bit-reversals since we are only interested in convolution, and
therefore do not need the frequency domain variables to be
in-order.

Both of these remaining steps consists entirely of inde-
pendent smaller FFTs. These sub-transforms are parallelized
simply by dividing them up among the available threads.

When the number of threads exceeds the number of sub-
transforms, it is handled the same way as Binary Splitting.
The sub-transforms are done in parallel and each sub-
transform is done recursively using the same parallel FFT
function. Like Binary Splitting, this recursion continues until
the thread limit drops to 1. But unlike Binary Splitting, this
recursion rarely gets deep since n and m are usually quite
large and most machines do not have that many threads.

B. Memory Management

Memory allocation in y-cruncher is managed in a fairly
elaborate and unconventional manner. We use a custom
memory allocator with tightly managed memory.

Before we go into details, we must first explain the
motivation. A standard memory allocators such as malloc ()
or new suffers from two defficiencies: Depending on the size
of the allocation and the state of the memory heap, a call to
malloc () Or new can incur hundreds of cycles of overhead
in a multithreaded environemnt. An even larger overhead
is due to the memory zeroing that operating systems use
to enforce memory security. In applications that are already
bound by memory bandwidth, this zeroing operation can
severely degrade performance, especially on systems with
low memory bandwidth. On one of our machines, it takes
about 20 seconds to allocate and commit 60GB of memory.
By comparison, a 12 billion x 12 billion digit multiply
takes 90 seconds using the same amount of memory. When
that 60GB of memory needs to be freshly allocated, the 20
seconds is added to the time resulting in a 22% performance
degradation. Based on our experiments, the combined over-
head of synchronization and zeroing results in a performance
degradation of about 10-40% for computations of 7 depend-
ing on the hardware.

1) Memory Preallocation: To mitigate this, we preallo-
cate and commit all the memory that we need at the start
of the computation. Then we use our own custom memory
allocator. This serves three purposes:

1) It eliminates all OS-related overhead, except for the

initial allocation.

2) It allows all memory that is needed to be reserved at
the start of the computation. This reduces the chance
of a mid-computation failure due to a failed memory
allocation.

3) Memory allocation becomes deterministic once the
initial block has been allocated.

Although determinism is not required, it is strongly desired
as it simplifies debugging. However, there are many draw-
backs to this approach. First, building a custom memory
allocator that is efficient and thread-safe is non-trivial, and
making it deterministic is hard. We will show how we
achieve this later. Secondly, we restrict ourselves to a single

| 100! = 525 bits | [100! = 525 bits |

| 1%2°3*..*50 = 215 bits | 51*52*...*100 = 311 bits | | 1*2*3*...*58 = 260 bits | 5960*61*...*100 = 265 bits |

[1*.25 [26*.*50 | 51*.)75 [75°..*100 | [1*.»35 [36*."58 | 59*..*80 | 81"..*100 |
| | |2636]37-50|51-62] 63-75 | 75-87 | 88-100 | [1-21]22-35[36-47]48-58]59-69[70-80]81-90]91-100]
-«——Thread 0 > Thread 1———» - Thread 0 > Thread 1 >

(a) The Classic Approach: Selecting the midpoint by index results in an
umbalanced recursion tree. Thread 0 has less work than thread 1.

(b) Our Balanced Approach: Selecting the midpoint by operand size produces
a more balanced recursion tree. Both threads have the same amount of work.

Figure 3.

large contiguous block of memory that is allocated at the
start of the computation. This requires that the amount of
memory is known ahead of time — after considerations such
as fragmentation and multi-threading.

2) Resource Maps: The basic structure of the memory
allocator that we used is a simplified resource map (see
Figure 4). A memory allocator can be initialized from
a block of contiguous memory. Incoming allocations are
placed at the start of the heap and grow upwards. A table
containing a list of active allocations is kept at the end of
the heap and grows downwards. This design allows the heap
to remain of fixed size while supporting a large number of
active allocations.

The allocation policy is simple. Each allocation is placed
into the first sufficiently large empty space. When no empty
space is large enough for requested allocation, the allocation
fails and halts the program. This policy was chosen for its
simplicity and because it is a good match for the memory
usage patterns of the y-cruncher:

1) Small allocations tend to be persistent. These typically
map to large number objects which may have a very
long lifetime.

2) Large allocations tend to be temporary. Such large
allocations are created by the large multiplication
functions. They are allocated at the start of a mul-
tiplication and freed at the end.

3) No small, persistent allocations are made before the
large allocations are freed.

4) The large allocations may take up to 99% of the
combined free space in the heap. This is not by
coincidence. The size of the heap is often chosen to
be just large enough to fit them. We will discuss this
in a later section.

The combination of the simple greedy heuristic allocation
scheme and this usage pattern ensures that the upper unused
portion of the heap is kept contiguous.

Our simple resource map allocator may take, in the worst
case, time Q(N?) for making N allocations because each
allocation needs to traverse the entire table. This complexity
is sub-optimal. However, the logarithmic depth of the re-

Binary Splitting recursions. The diagrams are drawn to scale with respect to the size of the numbers.

Allocated (Temporary)

Free Space . Allocated (Persistent)

Increasing Address——»

T T

Memory Fragmentation Heap Index

Large Temporary
Allocations

Small Persistent
Allocations

Child Thread 0 Child Thread 1

I
|
|
|

-<+——Upper Free Space Region——»
- Parent Thread’s Heap: >

Figure 4. A Typical Memory Heap Layout: Child threads split the upper
free space region.

cursions in y-cruncher ensures that N never gets large, and
thus keeps the overhead down. This combined with low-level
optimizations to reduce memory allocation time is enough
to make our memory allocator sufficiently efficient.

3) Memory fork/join: As mentioned in an earlier section,
nearly all parallelism in y-cruncher fits into a fork/join pro-
gramming paradigm. In places where the data is structured
and pre-allocated, such as in the FFTs, no dynamic memory
allocation is needed. However, in places where the data
is unordered, such as with the binary splitting recursions,
we need a classic memory allocator that works accross all
threads. For these cases we introduce fork () and join()
functions to our memory allocator.

Every time the computation is forked into two threads,
we split the heap in half. This is done by taking the upper
unused portion of the heap and creating two child heaps in
its place. Due to our greedy allocation algorithm mentioned
earlier, this upper unused portion is (provably) very large.

Each thread is then passed a child heap where all its

allocations will go. When the threads join, the two child
heaps are also joined. All active allocations in the child
heaps are transferred to the parent. Due to the placement of
the child heaps, allocations transferred from the upper child
will fragment the free space in the parent heap. If needed,
explicit memory defragmentation is therefore used. This is
discussed in depth below.

Each thread is only allowed to access its own heap, and
each heap has at most one thread accessing it. Thus, the
threads need no synchronization. A parent heap with child
heaps is never accessed until the two child threads join.
Since this situation has no race conditions, this method is
completely deterministic in correct operation and rarely non-
deterministic in incorrect operation. Non-determinism can
only occur when a programmer error causes one thread to
access another thread’s heap. However, this is extremely rare
due to the large sizes of the heaps — a simple array-overrun
will rarely cross a heap boundary. This method of forking
heaps by splitting them in the middle requires the forked
threads to have equal memory usage. The load-balancing
methods described earlier ensures this. This method can
be generalized to unequal memory usage provided that the
ratios of the memory usage of the child threads can be
predetermined.

4) Explicit Defragmentation: Even though the memory
allocator is constructed to reduce memory fragmentation for
the memory allocation pattern of this application, memory
fragmentation still occurs. Therefore defragmentation is used
to keep the fragmentation under control. This is done explic-
itly by the client code through APIs, instead of automatically
by the memory allocator. Our memory allocator provides
a defrag () function. This function takes a pointer, shifts
its allocated block down as far as possible, and returns the
new pointer. A defrag () function is implemented into every
large number data structure that resides in memory. This is
used in many places. For example, when joining threads, the
defrag () function is called on all of objects inherited from
the upper child.

5) Precomputing Memory Requirements: In order to
make our memory allocator feasible at all, we need to be
able to predetermine how much memory is needed at the
start of the computation.

To do this, we implement space functions, space (), for
virtually every function that needs extra memory. These are
similar to the size functions used for load balancing. These
space functions return an upper bound on the amount of
memory that the corresponding function needs. For example,
the space function for multiplication will return the amount
of memory needed to perform any N - N digit multiplication
or less. Similarly, there are space functions for Binary Split-
ting recursions and Newton iteration algorithms. These space
functions typically call one another and extra care is needed
to account for multi-threading and memory fragmentation.

To compute the global memory usage, our global space

function will walk through the computation process and call
the space functions of all sub-steps — thereby computing
the maximum memory usage. This approach of propagating
space function calls down works well at the global level.
However, this approach relies on being able to compute
memory bounds at the base cases.

The space function for multiplication is implemented by
testing every possible set of parameters up to the requested
size.

The space function for binary splitting is done by calling
the size functions used for load balancing. Slight modifica-
tions are needed to ensure that the value is an upper-bound
rather than an approximation.

C. Out-of-Core

Due to the tremendous size of the computation, it is not
possible to perform the entire computation in memory. For
our computation of 5 trillion digits of 7w, we needed 22TB
of storage while only having 144GB of memory”. That is
156x more memory than we had! Therefore, the only option
was to use disk storage. For that we used an array of 16 x
2TB high-performance 7200RPM hard drives.

1) Multiple Hard Drives: Using disk in place of memory
is not without its problems. Hard drives are extremely slow,
not just for bandwidth, but also latency. Solid State Drives
(SSDs) are better, but are also much more expensive and
suffer from write wear.

To get around the bandwidth limitation, we use multiple
hard drives in a raid O configuration. In our code, we abstract
a file pointer which is like a normal memory pointer but to
a file instead of memory. This abstraction is implemented
using our own software raid 0. The advantage of using our
own software raid instead of hardware raid is that we can
combine an unlimited number of drives, while hardware
raid is typically limited to 4 or 6 drives. Operating system
supported raid can break these limits, but they tend to
be suboptimal in performance. Manually managing all the
drives allows us the freedom of specifying our own raid
parameters and to change them on the fly to whatever is
optimal for different stages of computation.

With the 16 hard drives that were used in our computation,
we achieved about 2GB/s of sequential access bandwidth.
This was enough to make large parts of overlapped compu-
tation/disk IO completely CPU bound.

2) Out-of-Core Arithmetic: At lower layers of abstrac-
tion, out-of-core support is implemented mostly by duplicat-
ing the in-memory code and modifying it to use file pointers
instead of memory pointers. In this sense, disk is treated and
used as main memory. RAM is treated as an explicit cache
and all transfers between RAM and disk are done manually.

2 Although we had 144GB of memory available to us, we chose to use
only 96GB because it allowed us increase the operating frequency of the
memory. 96GB of faster memory proved to be more desirable than 144GB
of slower memory.

For simple single-pass operations like addition, our code
streams through the operands by loading them from disk into
memory in chunks that fit into memory. Once in memory,
the in-memory versions of the same function are called to
do the actual work. Then the result is flushed back to disk.
No overlap is done since all of such single-pass operations
are extremely fast.

For multiplication, the 3-pass and 5-pass convolution
algorithms are used. The 3-pass algorithm is essentially an
optimized implementation of Bailey’s 4-step FFT algorithm
and is as follows:

o Pass 1 — Non-sequential (strided) disk access

1) Read from input
2) Process the input operand
3) Perform first steps of forward FFT.
o Pass 2 — Sequential disk access
1) Perform final steps of forward FFT
2) Perform pointwise multiplications
3) Perform first steps of inverse FFT.
o Pass 3 — Non-sequential (strided) disk access
1) Perform final steps of inverse FFT.
2) Process output.
3) Perform carry propagation.
4) Store to destination.
Note the large number of steps that are done in each pass.
Although this makes the code extremely complicated, it
is necessary to avoid introducing extra passes over disk.
Overlapping of computation and IO is done aggressively. In
general, the 1st and 3rd passes are severely disk bound while
the 2nd pass can be either disk or CPU bound depending on
the ratio of disk bandwidth to CPU throughput.

As the product size increases, the disk access of the 1st
and 3rd passes of the 3-step algorithm become increasingly
less and less sequential — at some point, the run-time be-
comes dominated by disk seeks instead of disk reads/writes.
This is where the 5-step algorithm is used. It is similar to
the 3-step algorithm, except that the FFTs are split across
3 passes (again with the central passes merged). The 5-step
algorithm has more sequential disk access at the cost of more
disk I/Os (in bytes).

We note that our approach to the 3-step algorithm is
not optimal when the 2nd pass is CPU bound. A better
approach is to re-order the data such that most of the non-
sequential disk access is in the 2nd pass. This allows the
expensive disk seeks to be overlapped with the computation.
However, this approach severely complicates the code as it
requires implementing functions that can operate on partially
transposed data. This approach is also is less effective for
the 5-step algorithm and may even backfire.

3) Out-of-Core Math and Functions: At higher layers of
abstraction, implement a high-precision floating-point object
that resides on disk. It is nearly identical to the floating-
point object that resides in memory, but has a file pointer

instead of a memory pointer. For each function that operates
on a swap object, a dispatcher chooses whether to pull all
operands into memory and call the fast in-memory code (if
there is enough memory to do so), or directly call the slower
disk code.

By introducing a separate swap object, much of the code
high level code in y-cruncher needs to be duplicated to
operate on swap objects. When operations become small
enough to fit into memory (such as lower levels of the Binary
Splitting recursions), they automatically fall through to the
in-memory implementations. Determining when something
can be done in memory is achieved using the same space ()
functions discussed in the previous sections.

Although this code replication increases overall code
size, it provides greater implementation flexibility and eases
debugging by separating disk code from in-memory code.

4) Other Notes: The out-of-core code does not use the
same fancy memory management that is used by the in-
memory code. Instead, we revert to the classic memory
allocation model — but with one difference: instead of a
global malloc () and free (), it is creating and deleting files.
However, most of the out-of-core functions will take an
extra parameter specifying how much (RAM) memory it is
allowed to use.

All out-of-core code is sequential since multi-threading
is done at lower levels. Therefore, there are no concurrency
issues that lead to messy solutions like memory fork()/join().
For file creation, the zeroing that plagues OS memory
allocation is not present in Linux and can be overridden
in Windows [9].

D. Fault Tolerance

Due to the long duration of larger computations, fault-
tolerance is needed to help ensure that the computation
will finish correctly. This is achieved using a combination
of application-specific error-detection, automatic repeat re-
quest, and checkpointing.

Faults can be caused by a large number of reasons, but
they typically fall into one of the following 4 categories:

« Software Error: A typical programming bug. These are
extremely rare at the later stages of code development.

o CPU Computation Error: A hardware error where an
execution unit returns an incorrect result.

o CPU Logic Error: A hardware error in the general CPU
logic. (such as flow control errors)

« Memory/Storage Error: This applies to memory/cache
as well as disk. Similar to CPU errors, they can silently
corrupt data. In the case of hard drive failures, it can
lead to permanent data loss.

There are generally two types of hardware faults: visible
and slient. Visible faults typically result in a segmentation
fault or a system crash. (such as a Windows Blue Screen of
Death (BSOD)) Nearly all CPU logic errors fall into this

category. In most cases, visible faults are not a problem
because they teriminate the program as soon as it occurs.

Slient faults, on the other hand, are not detected by the
hardware and do not crash the system. These are very
problematic because they do not terminate the program such
errors will propagate and poison the computation.

By their very nature, Visible are not recoverable since the
program is terminated. So we make no attempt to recover
from such faults. In general, visible faults are rare because
they tend to appear only on very unstable hardware. As a
result, they are not a problem because unstable hardware
will rarely make it far into a long computation. On the other
hand, slient faults are predominant among stable hardware
and are frequent enough to require handling.

Over a course of two years during the development of
y-cruncher, we have encountered about 20 cases of hardware
faults (excluding hard drive failures). Of these, only 4 were
visible faults that lead to a crash or a BSOD. The rest were
silent and were only detected via a failed redundancy check
or an incorrect result. Of the 20 total faults, 7 of them
occurred on an overclocked computer. Of those, only 5 could
have been caused by overclocking of which 3 were actually
confirmed to be due to overclocking.

Of peculiar interest is that our observed ratio of visible to
slient faults is in direct contrast to the results of [10]. In our
observations, roughly 80% of faults are slient whereas the
results of [10] show that the SDC (Silent Data Corruption)
rate is less than 5% for most applications, but up to 12%
for floating-point intensive applications. Although we are
unsure the cause of this discrepancy, we suspect it is due
to the differences in testing methodology. [10] uses manual
injection to generate faults, whereas our results are from
overclocking and long-term data collection of natural faults
on commodity hardware.

Since the majority of the faults we encounter are slient,
we implement our own software for error-detection. This is
accomplished in a number of case-specific methods.

1) Error Detection: Multiplication: FFT-based algo-
rithms for multiplication can be checked for errors by
examining the sizes of the coefficients before performing
carryout. If any coefficient is larger than the theoretical
maximum, it implies an error. For floating-point FFTs, any
coefficient that is not near an integer also implies an error.
However, this latter test is fairly expensive in the absence
of hardware support so we do not use it.

For all integer multiplies (where the entire product is
kept), it possible to use modular hash checks to verify the
product. A modular hash check is as follows.

Given an integer product:

C=AxB
The following property also holds:
C mod p = ((A mod p) x (B mod p)) mod p

where p is any natural number.

Should this relation fail, then it implies an error. p is
typically chosen to be a word-size prime number.

In y-cruncher we choose p = 261 — 1. The choice of
261 1 (a Mersenne prime) is done solely for the reason of
efficiency as computing a modulus over this number can be
easily done without multiplications or divisions.

This modular hash check for multiplication is actually
not used because it is expensive and redundant. FFT-based
algorithms are already checked by analyzing the coefficients,
and smaller products are covered by the Binary Splitting
checks as discussed in the next section.

2) Error Detection: Binary Splitting: The lower levels
of Binary Splitting recursions involve only integer addition,
subtraction, and multiplication. These are all closed under
the modular ring and thus can be verified by the modular
hash check.

For efficiency, we do not verify the modular hash of
every single operation. Instead we compute the hash once
each term is generated. This hash (the modulus) is stored
with the number and propagated through each operation.
For example, when two values are multiplied together, their
hashes are also multiplied together and reduced modulo p.
This keeps the overhead at a negligible O(1) for any one
operation.

Only at higher levels of the recursion are the hashes
actually verified against the numbers. This is usually done
only once and just before the data is first swapped out to
disk. When a hash fails to match the modulus of the number,
it implies an error.

3) Automatic Repeat Request: When an error is detected,
the relevant portion of the computation is repeated. It is re-
peated until the result is either correct or a certain threshold
is reached — at which the error is deemed uncorrectable.

For multiplication, the product is done again. For Binary
Splitting, the recursive call that produced the failed check-
sum is repeated. For a non-convergent Newton’s Method
iteration, the entire algorithm starts over. Figure 5 shows
how a fault in the binary splitting recursion is handled.

Most errors are fixed on the first reattempt. Repeated
failures usually indicate data corruption in some outer scope.
Our code makes no attempt to recover such errors as the
effects are no longer isolated to a small part of the program.

4) Checkpointing: In cases where the computation is
halted (uncorrectable error, system crash, power outage,
etc.), checkpointing is used to avoid needing to start the
computation over from scratch.

At various places in a large computation, checkpoints are
created. These checkpoints are created in a zero-overhead
fashion that only involves renaming a few swap files. There
is no data copying. An old checkpoint is not destroyed until
the next checkpoint has been successfully made and flushed
to disk.

| | |
L L L L
dodogdodo

Recompute thls portion only.

Figure 5. Fault-Tolerance in Binary Splitting: When a fault is detected,
only the affected portion of the recursion is recomputed.

A computation can be resumed from a checkpoint pro-
vided that the hard drives are intact. To protect against hard
drive failure, periodic backups are done manually.

Checkpointing proved crucial in both our computations
of 5 trillion and 10 trillion digits of 7. At just 8 days into
our computation of 5 trillion digits, our error-detection code
detected a silent hardware fault. The error could not be
recovered, so we had to roll the computation back to the
previous checkpoint.

In our computation of 10 trillion digits of 7, we encoun-
tered a total of 9 hard drive failures. With each failure,
the computation had to be rolled back to a checkpoint.
Although the hard drive failures ultimately extended the
total computation time from 190 days to 371 days, it
would not have been possible for it to finish at all without
checkpointing.

5) Testing: Since fault-tolerance code is activated by
hardware errors, it cannot be tested the same way normal
code is. Instead it was tested using a variety of indirect
methods including (but not limited to) :

« Injecting errors via modifying the source code.
o Triggering actual hardware faults by:

— Overclocking the hardware until instability.
— Using failing hard drives that produce I/O errors.
— Physically unplugging hard drives while in use.

V. EVALUATION
A. Methodology

We evaluate our software based on three categories:
compute time, memory usage, and reliability.

For compute time, we benchmarked our code against three
other programs: GMP-Chudnovsky [11], Parallel GMP-
Chudnovsky [12] and TachusPi [13]. These tests were done
on two different machines (Table III). The first machine is
a simple desktop with 4 physical cores and 2-way SMT for
8 threads. The second machine is a higher-end workstation
with 8 physical cores and a large amount of memory. For

Machine 1 Intel Core i7 920 @ 3.5 GHz (overclock)
12 GB DDR3 @ 1333 MHz
Windows 7 Ultimate + Ubuntu Linux 10
2 x Intel Xeon X5482 @ 3.2 GHz
64 GB DDR2 FB-DIMM @ 800 MHz

Windows 7 Ultimate + Ubuntu Linux 10

Machine 2

Table III
BENCHMARK MACHINES

consistancy, both machines dual-boot the same versions of
Windows and Linux.

These benchmarks were carried by having the programs
compute 7 to a set number of digits. Then we recorded the
total time needed to compute 7 as well as the time needed
for a full-sized multiplication. This was done for a whole
range of sizes from 1 million digits to 10 billion digits and
using 1 and 8 threads.

For sizes below 1 million digits, the benchmarks are too
fast to obtain accurate timings. For y-cruncher and GMP,
we can simply loop the benchmarks since we have access
to the source code. But TachusPi is closed source, so that
is not possible. For sizes above 10 billion digits, we simply
don’t have the memory to run them. Furthermore, our Core
17 machine can only go up to 2.5 billion digits. GMP needs
significantly more memory than both our code and TachusPi,
so it was not able to reach the maximum sizes that we were
targeting.

B. Results

1) Performance: Figure 6 shows the relative run-times
needed to compute 7 to various numbers of digits. Solid
lines are single-threaded. Dashed lines are multi-threaded.
The baseline is our y-cruncher, running in Linux on 1 thread.

Our code achieves significant gains from multi-threading.
For the Core 17, there are only 4 physical cores, but our code
manages to achieve more than 4x speedup at the larger sizes
due to hyperthreading. On the Xeon, which has 8 physical
cores, our code gets about 6.5x speedup at the larger sizes.
By comparison, neither GMP nor TachusPi scales as well.
GMP suffers because it has no support for multi-threaded
large multiplication.

The other observation is that TachusPi is faster than our
code by about 20% for the single-threaded computations.
This is due to the fact that our implementation omits some
mathematical optimizations that would provide significant
speedup. Specifically, our code does not do GCD Factor-
ization [14], Middle Product [15], and FFT reuse. TachusPi
is known to do at least the first two. (The author has not
disclosed whether FFT reuse is also used.)

GCD factorization was omitted because we lacked an in-
teger division function. Middle Product was not even known
to us at the time we implemented y-cruncher. (TachusPi is
newer than our y-cruncher.) And finally, FFT reuse was

Computation Time / Basellne Computation Time

Run-Time / Baseline Run-Time

Relative Pi Computation Times
Processor: Intel Core i7 920 @ 3.5 GHz {overclock) - 12 GB DDR3 @ 1333 MHz

15 Baseline: y-cruncher v0.5.4 {Linux - 1 thread)
{Lower is Better]
1
N
N
e
05 - .o -
~
[T T
10%6 10~7 108 1049 10°0

Decimal Digits of Pi

GMP5.0.1 Chudnovsky (Linux - 1 thread) Parallel GMP 5.0.1 Chudnovsky (Linux - 8 threads)

TachusPi0.9 (Linux - 1 thread) TachusPi0.9 (Linux - 8 threads)

= y-cruncher v0.5.4 (Linux - 1 thread) = = == y-cruncher v0.5.4 (Linux - 8 threads)

= y-cruncher v0.5.4 (Windows - 1 thread) y-cruncher v0.5.4 (Windows - 8 threads)

(a) Pi Computation Times: Intel Core i7 920 @ 3.5 GHz (overclock)

Figure 6.

Relative Multiplication Times
Processor: Intel Core i7 920 @ 3.5 GHz (overclock) - 12 GB DDR3 @ 1333 MHz
Baseline: y-cruncher v0.5.4 (Linux - 1 thread)
(Lower is Better)

1006 10~7 1048 1049 1070

Nx N -> N Decimal Digit Floating-Point Multiply

Parallel GMP 5.0.1 Chudnovsky (Linux - 8 threads)
TachusPi 0.9 (Linux - 8 threads)

= GMP 5.0.1 Chudnovsky {Linux - 1 thread)
TachusPi 0.9 (Linux - 1 thread)

= y-cruncher v0.5.4 (Linux - 1 thread) = === y-cruncher v0.5.4 (Linux - 8 threads)

= y-cruncher v0.5.4 (Windows - 1 thread) y-cruncher v0.5.4 (Windows - 8 threads)

(a) Multiplication Times: Intel Core i7 920 @ 3.5 GHz (overclock)

Figure 7.

Computation Time / Baseline Computation Time

Run-Time / Baseline Run-Time

Relative Pi Computation Times
Processor: 2 x Intel Xeon X5482 @ 3.2 GHz - 64 GB DDR2 @ 800 MHz
Baseline: y-cruncher v0.5.4 (Linux - 1 thread)

(Lower is Better)

-

106 10~7 1078 1079

Decimal Digits of Pi

——— GMP5.0.1 Chudnovsky (Linux - 1 thread)
TachusPi 0.9 (Linux - 1 thread)

Parallel GMP 5.0.1 Chudnovsky (Linux - 8 threads)
TachusPi0.9 (Linux - 8 threads)

e y-cruncher v.5.4 (Linux - 1 thread) = = = = y-cruncher v0.5.4 (Linux - 8 threads)

——— y-cruncher v0.5.4 (Windows - 1 thread) y-cruncher v0.5.4 (Windows - 8 threads)

(b) Pi Computation Times: 2 x Intel Xeon X5482 @ 3.2 GHz

Pi computation times of various programs on different machines. Note that the GMP graphs stop short due to lack of memory.

Relative Multiplication Times
Processor: 2 x Intel Xeon X5482 @ 3.2 GHz - 64 GB DDR2 @ 800 MHz
Baseline: y-cruncher v0.5.4 (Linux - 1 thread)
{Lower is Better)

25

10% 1047 108 1049
Nx N-> N Decimal Digit Floating-Point Multiply

GMP5.0.1 Chudnovsky (Linux - 1 thread) Parallel GMP 5.0.1 Chudnovsky (Linux - 8 threads)

TachusPi 0.9 (Linux - 1 thread) TachusPi0.9 (Linux - 8 threads)

——— y-cruncher v0.5.4 (Linux - 1 thread) = == ~y-cruncher v0.5.4 (Linux - 8 threads)

— y-cruncher v0.5.4 (Windows - 1 thread) y-cruncher v0.5.4 (Windows - 8 threads)

(b) Multiplication Times: 2 x Intel Xeon X5482 @ 3.2 GHz

Large multiplication times of various programs on different machines. Note that the GMP graphs stop short due to lack of memory.

omitted because it provides only marginal speedup at the
cost of needing to break through several layers of object ab-
straction. Nevertheless, for sufficiently large computations,
our code outperforms all other programs that we tested due
mostly in part to the scalability that we achieve.

Figure 7 shows the relative run-times needed to perform
a multiplication. This is important because multiplication is
typically the dominant run-time factor in large number com-
putations. Addition and subtraction is linear, and all common
non-linear functions reduce to multiplication. The Binary
Splitting algorithm is composed entirely of multiplications
with an occasional addition or subtraction. As a result, multi-
precision libraries are typically evaluated by the speed of
their large multiplication.

The multiplication graphs show a slightly different situ-
ation from the 7 graphs. In this case, our code holds up
well against TachusPi for the single-threaded case while
maintaining its strength in multi-core scalability.

Another observation is that TachusPi significantly slows
down at about 1 billion digits. This slow-down appears to
persist for larger sizes. This is possibly the result of an
algorithm switch caused by either a poorly tuned threshold
or a space-time tradeoff to reduce memory consumption. But
we cannot be sure since we have little information on the
internals of TachusPi.

Note we did not benchmark large computations that
require disk due to the resource commitment that would
be needed. However Shigeru Kondo [16] has noted that y-
cruncher runs about 30% faster than TachusPi for a 100
billion digit computation of 7 on a Core i7 with 12 GB of
ram and 8 hard drives.

2) Memory: Aside from compute time, memory is actu-
ally a big issue for large computations. The problem with
computing 7 and other constants is that the total amount
of memory that is needed is uncertain. It is rarely known
ahead of time how much memory a computation needs. This
makes it more difficult to construct hardware configurations
for the purpose of running such large computations as
underestimating memory usage will doom a computation
from the start.

Prior to y-cruncher, PiFast [17] is the only known program
that is able to predetermine memory and disk requirements.
QuickPi [18] allows the user to specify a memory limit, but
does not specify how much disk is needed. TachusPi allows
the user to specify a memory limit and provides an upper
bounds on disk usage. However, Shigeru Kondo [16] has
noted that TachusPi has a tendency to significantly overrun
the memory limit and thrash virtual memory.

Thanks to the plethora of space() functions used by
various components in our code, y-cruncher is able to
precisely determine (usually to within 1%) the memory
and disk requirements. This makes it possible to configure
“just enough” hardware for a target size without risk of
underestimating the requirements.

There are programs (such as SuperPi [19]) that provide
tight predetermined memory requirements. However, these
programs only support a small number fixed sizes - their
memory requirements are determined by actually running
all the fixed sizes and hard-coding each of their memory
requirements into the program.

In terms of the amount of memory/disk that is needed
for a particular computation, our code is second behind
TachusPi. Although we had some focus on reducing total
memory usage, we did not do optimizations that interferred
with performance or that increased the complexity of the
code. We also did not do memory optimizations that required
more than a trivial amount of effort.

At the time of our computation of 5 trillion digits of 7,
the price of hard drives was cheap compared to that of a
high-end computer. Therefore our priorities were to maxi-
mize performance and code reliability rather than to reduce
total memory usage as it was completely reasonable to
acquire as many hard drives as we needed.

The main drawback of using many hard drives is a
shortened MTTF of the array. Although none of the 16 hard
drives failed during our computation 5 trillion digits of 7,
our follow-up computation of 10 trillion digits using 24 hard
drives had a total of 9 hard drive failures.

A possible solution for future computations involving
many hard drives is to use fault-tolerant raid.

3) Reliability: Fault-tolerance is a difficult feature to
evaluate due to the difficulty of producing consistent faults
in the absence of source code. And as such, we made
no attempt to test the fault-tolerance of the programs that
we benchmarked. So our analysis is mainly based on past
performance and history.

PiFast and SuperPi are known to detect errors, but not
correct them. On the other hand, PiFast offers checkpointing
for swap computations. TachusPi also provides checkpoint-
ing and has also been observed to detect errors. It is not
known if TachusPi is capable of correcting errors and it is
not known to us if QuickPi offers any sort of fault-tolerance.
GMP is open-sourced and does not appear to have any fault-
tolerance capability.

We should note that there is a distinction between basic
“sanity checks” versus “active” error-checking. In our defi-
nition, a simple test for convergence of a Newton’s iteration
would be considered a “sanity check” whereas a modular
hash would be considered an “active” error-check.

We believe that most if not all of such programs imple-
ment sanity checks. But we expect active error-detection to
be uncommon due to the performance costs that come with
it. The documentation of TachusPi confirms that it does use
active error-checking. But in the absence of source code,
official documentation, or direct mention from the authors,
we do not know if any of the other programs have active
error-detection — let alone error-correction. It is possible that
most of the error-detection capability that we found in the

programs we tested are the result of basic sanity checks
rather than active error-detection.

In our case, we have extensively tested the fault-tolerance
of y-cruncher by artificially generating faults. However, it
has also proven to be extremely robust and effective when
faced with actual (legitimate) faults.

Generating faults by overclocking is arguably a valid way
of producing legitimate faults. But there have been many
instances of actual (unintended) hardware faults occurring
during development of y-cruncher — not all of which were
related to overclocking. Some involved overheating leading
to CPU/memory errors and one involved a failing mother-
board that failed to supply enough power to the processor.
The Xeon machine that we used for our benchmarks has had
its fair share of failures and it isn’t even overclocked.

Aside from CPU/memory faults, there were also countless
cases of hard drive failures, CRC errors, and bus transfer
errors. In nearly all cases where the fault did not crash
the program or the system, our code was able to correctly
handle the fault as intended. In one case, y-cruncher was able
to detect and recover from 3 independent hardware errors
in a single computation lasting less than 10 seconds! The
computation was also correct. (In this case, the hardware
was an Intel Core i7 2600K overclocked to 5.2 GHz with
insufficient voltage to maintain any degree of stability.)

To date there have only been three cases where a computa-
tion has finished with an incorrect value without triggering
any warnings or errors. All three have all been traced to
hard drive I/O bus errors caused by improperly over-clocked
memory controllers. Since bus transfer errors are invisible to
the system and our code implements no error-detection for
I/0O, such errors will pass through undetected if not covered
by a higher level of error-detection. (Bus transfer errors do
get logged in hard drive S.M.A.R.T. chips. This is how we
were able to trace the cause of these three failed cases.)

C. Discussion: Micro-Optimizations

We have discussed mostly high-level optimizations, but
we should mention that our code benefits heavily from low-
level micro-optimizations as well. The primary low-level
optimizations that we use are loop-unrolling and function
inlining. Most of the FFTs that we implement also make
heavy use of SIMD instructions.

Recursive functions are optimized by aggressive manual
inlining of the end-points. This allows us to maintain a
recursive structure without incurring the overhead of recur-
sion. Binary Splitting recursions are implemented on top
of the object layer. However, we manage to optimize these
by breaking below the object layer and calling the low-level
math functions directly. In our implementation of e using the
recursion given earlier, we stop the recursion at b —a < 10.
The rest is implemented directly using one-to-one hardware
instructions. For this particular example, we gain a 10%
overall speedup over terminating the recursion at b —a = 1.

Loop-unrolling is the other optimization that we use
extensively. Typically, low-level loops are unrolled enough
to fill up the registers without spills. Generally, this is very
effective and can easily speed up loops by 1.5 - 2x. In nearly
all cases, we can do better than the compilers as they tend
to unroll the wrong loops and are too conservative with
the right ones. The types of loops that gain the most from
loop-unrolling are loops involving SIMD instructions. SIMD
loops tend to be large, so compilers refuse to unroll them
for fear of code-bloat. Even worse, SIMD instructions tend
to have long latencies and such loops tend to be too large to
fit into processor instruction re-order windows. So the only
way is manual unrolling - which we find can easily give a 2
- 3x speedup. (not counting the speedup gained from SIMD)

For purposes of maintaining portability, we fall short
of using hand-written assembly. However, in current de-
velopment versions of y-cruncher we have started using
snippets of inline assembly to access otherwise inaccessible
instructions such as add-with-carry.

Overall, cache-level optimizations are done sparsely.
Much of the code is recursive and cache-oblivious, so
there is no urgent need for the code to be fully cache-
aware. Cache-optimizations are generally limited to the radix
selection in of the FFT algorithms.

In current development versions of y-cruncher, we take
micro-optimization to a new extreme. Functions and loops
are sometimes inlined or unrolled to the sizes of the in-
struction cache or the decoded uop cache. Much of the
new code is now cache-aware and makes heavy use of
explicit prefetching and data streaming. The results have
been quite impressive as some of the new code can achieve
floating point performance comparable to that of dense
matrix computations.

The downside of extreme micro-optimization is the added
stress that is brought on to the hardware. For system builders
as well as the overclocking community, this can be very
useful for stress and stability testing of new hardware. But
for long running computations, increased stress can instigate
hardware errors and put additional pressure on the fault-
tolerance capability.

VI. CONCLUSION

This paper has described a highly efficient implemen-
tation of the binary splitting algorithm for the evaluation
of hypergeometric series, and described its use for the
computations of 5 and 10 trillion digits of Pi. The paper
identifies multiple issues that need to be handled in or-
der to achieve the required level of performance: careful
algorithm design, careful management of load balancing,
custom memory management and micro-optimizations such
as loop unrolling and inlining. The paper illustrates, once
again, that the development of very efficient codes requires
a concerned, coordinated effort at the algorithm level, as
well as at the macro and micro implementation level; e.g.,

bypassing standard optimizations provided by a compiler
and doing manual loop-unrolling and inlining; and bypassing
standard system services and using a custom memory man-
ager. Regular programming environments have to balance
performance with ease of use and generality, and are not
sufficient to create highly performing codes as described in
this paper. It is interesting to speculate what would be a
performance-oriented programming environment that would
facilitate the crafting of code such as described here. Finally,
the paper illustrates the use of algorithmic fault tolerance
to overcome the high failure rate and, in particular, the
high soft-error rate. Such techniques will be increasingly
needed to support large computations as the reliability of
components decreases with increased miniaturization, and
the number of components increases.

ACKNOWLEDGMENTS

We would like to thank Shigeru Kondo for running the
actual computation of Pi and for the numerous times he has
helped in testing y-cruncher. Furthermore, we would like to
thank Fredrik Kjolstad and Marc Snir for helping us write
and review this paper.

REFERENCES

[1] A. Yee, “y-cruncher - multi-threaded pi program,” http://www.
numberworld.org/y-cruncher/, 2010.

[2] F. Bellard, “Computation of 2700 billion decimal digits of
pi using a desktop computer,” http://bellard.org/pi/pi2700e9/,
2010.

[3] B. Haible and T. Papanikolaou, “Fast multiprecision evalua-
tion of series of rational numbers,” TH Darmstadt, Tech. Rep.
TI-97-7.binsplit, 1997.

[4] D. V. Chudnosky and G. V. Chudnovsky, “Approximations
and complex multiplication according to ramanujan.” Boston,
MA: Academic Press, pp. 375472, 1987.

[5] A. Karatsuba and Y. Ofman, “Multiplication of many-digital
numbers by automatic computers,” Doklady Akad. Nauk, pp.
293-294, 1963.

[6] A. Schnhage and V. Strassen, “Schennelle multiplikation
grosser zahlen,” Computing vol. 7, pp. 281-292, 1971.

[7] D. J. Bernstein, “Fast arithmetic,” http://cr.yp.to/arith.html,
2004.

[8] D. H. Bailey, “FFTs in external or hierarchical memory,” in
The International Conference for High Performance Comput-
ing, Networking, Storage, and Analysis (SC), 1990.

[9] Microsoft, “SetFileValidData function,” http://msdn.
microsoft.com/en-us/library/aa365544%?28v=vs.85%29.aspx,
2011.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

M.-L. Li, P. Ramachandran, S. K. Shaoo., S. V. Adve,
V. S. Adve, and Y. Zhou, “Understanding the propagation of
hard errors to software and implications for resilient system
design,” in 13th International Conference on Architectural
Support for Programming Languages and Operating Systems,
2008.

H. Xue, “gmp-chudnovsky.c,” http://gmplib.org/pi- with-gmp.
html, 2011.

H. Xue and D. Carver, “Parallel gmp-chudnovsky using
openmp with factorization,” http://gmplib.org/list-archives/
gmp-discuss/2008-November/003444.html, 2011.

F. Bellard, “Tachuspi,” http://bellard.org/pi/pi2700e9/tpi.html,
2011.

H. Xue, “(no subject),”
pi-hacks/message/617, 2002.

http://groups.yahoo.com/group/

G. Hanrot, M. Quercia, and P. Zimmermann, “The middle
product algorithm i. speeding up the division and square root
of power series,” 2002.

S. Kondo, personal communication, 2010.

X. Gourdon, “Pifast: the fastest windows program to compute
pi,” http://numbers.computation.free.fr/Constants/PiProgram/
pifast.html, 2011.

S. Lyster, “The fastest pi programs that will run on your pc,”
http://members.shaw.ca/francislyster/pi/chart.html, 2011.

Y. Kanada, “Kanada laboratory home page,” http://www.
super-computing.org/, 2011.

http://www.numberworld.org/y-cruncher/
http://www.numberworld.org/y-cruncher/
http://bellard.org/pi/pi2700e9/
http://cr.yp.to/arith.html
http://msdn.microsoft.com/en-us/library/aa365544%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa365544%28v=vs.85%29.aspx
http://gmplib.org/pi-with-gmp.html
http://gmplib.org/pi-with-gmp.html
http://gmplib.org/list-archives/gmp-discuss/2008-November/003444.html
http://gmplib.org/list-archives/gmp-discuss/2008-November/003444.html
http://bellard.org/pi/pi2700e9/tpi.html
http://groups.yahoo.com/group/pi-hacks/message/617
http://groups.yahoo.com/group/pi-hacks/message/617
http://numbers.computation.free.fr/Constants/PiProgram/pifast.html
http://numbers.computation.free.fr/Constants/PiProgram/pifast.html
http://members.shaw.ca/francislyster/pi/chart.html
http://www.super-computing.org/
http://www.super-computing.org/

	Introduction
	Hypergeometric Series and Binary Splitting
	Large Number Arithmetic Overview
	Implementation
	Multi-threading
	Binary Splitting of Series
	FFT algorithms

	Memory Management
	Memory Preallocation
	Resource Maps
	Memory fork/join
	Explicit Defragmentation
	Precomputing Memory Requirements

	Out-of-Core
	Multiple Hard Drives
	Out-of-Core Arithmetic
	Out-of-Core Math and Functions
	Other Notes

	Fault Tolerance
	Error Detection: Multiplication
	Error Detection: Binary Splitting
	Automatic Repeat Request
	Checkpointing
	Testing

	Evaluation
	Methodology
	Results
	Performance
	Memory
	Reliability

	Discussion: Micro-Optimizations

	Conclusion
	References

