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Abstract

A bi-level program is a mathematical program involving functions

defined implicitly as solutions to another mathematical program. We

discuss a method for extracting derivative information on the implicit

function, which is especially efficient when the lower level problem

has simple bounds on the variables and/or many inactive constraints.

Computational experience on problems with up to 230 variables and 30

constraints is presented.





I. INTRODUCTION

Over the past decade there has been an increase in interest in

multi-level mathematical programming, and in particular bi-level math-

ematical programming. The bi-level problem consists of two parts, an

upper and lower part. Define the upper level problem (denoted hence-

forth as "PI") as:

(PI): min w(x,t) (la)

t

5./. f(x,t) < (lb)

where x(t) is implicitly defined by the lower-level problem:

(Bl(t)): x(t): min s(x,t) (Ic)

X

S./. g(x,t) ^ . (Id)

All variables and constraint functions may be vectors and all functions

are assumed to be twice continuously dif ferentiable in all arguments.

A tremendous variety of applied problems, particularly economic

problems, can be viewed as bi-level math programs. A Stackelberg

duopoly or leader-follower continuous game (e.g., Chen and Cruz, 1972;

Papavassilopoulos , 1981) can be viewed as a bi-level programming

problem with the follower's problem corresponding to Bl(t) and the

leader's problem corresponding to PI. The principal-agent problem

(Grossman and Hart, 1983) is also a bi-level programming problem. The

principal (problem PI) specifies incentives or other controls for the

agent who then acts according to Bl. Outside the economics literature,



-2-

the max-rain problem (Danskin, 1966) is that of maximizing the minimum

of some function and is thus a special case of bi-level programming.

Unfortunately, good solution methods for the bi-level problem are

2
not generally available. The implicitly defined function x(t) may

not be everjHKfhere differentiable in which case the functions of the

upper level problems will not be dif ferentiable everywhere. In addi-

tion, without significant restrictions on the lower level problem, the

upper level problem may not be convex.

Most algorithms for solving PI use first derivatives of its objec-

tive and constraints. These are easily computed at points where x(t)

is a dif ferentiable function of t, once Vx(t) is known. In Fiacco

(1968) and Fiacco and McCormick (1976), conditions for existence of

Vx(t) and methods for computing it are presented. The procedure for

computing Vx requires solving a linear system of size n+m, where n is

the dimension of x and m the dimension of g. Moreover, simple bounds

on the variables must be included in g. The purpose of this paper is

to show how this procedure can be adapted efficiently to large problems,

where Bl may have hundreds of x variables and/or constraints, and where

many components of x have simple bounds. In addition, many of the con-

straints in g may be inactive at the optimum. Then, the size of the

linear system which must be solved to compute Vx can be significantly

reduced. The purpose of this paper is to show how this reduction can

be accomplished, and to present computational experience on problems

Bl with up to 230 x variables, but only 2 or 3 t variables. We derive

a system of linear equations for Vx(t) whose dimension at a point t is

r+S, , where r is the number of active constraints of Bl(t) (not including

bounds) and i is the number of components of x(t) not at a bound. By
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not including inactive constraints and variables at bound, the complexity

of the Vx(t) calculation can be dramatically reduced. We illustrate

with a set of test problems involving a coal market cartel. The

MINOS/augmented algorithm of Murtagh and Saunders is used to solve Bl(t).

Pi is treated as a dif ferentiable problem and, being unconstrained, is

solved by the BFGS quasi-Newton method VA13A from the Harwell Subroutine

Library. Although the computations are generally successful, some dif-

ficulties are caused by ignoring the nondif ferentiability of PI. These

problems are illustrated with 3 dimensional plots of w(x(t),t).

II. BACKGROUND

Most applications of bi-level programming that have appeared in

the literature are in the economics realm, particularly central eco-

nomic planning. The typical situation is that there is a planner with

some social objective and a set of policy instruments to use for con-

trolling one (or more) economic agents with different objectives. See

Kolstad (1985) for a more thorough review of applications and algorithms.

In the context of the previously defined bi-level problem, the

"policy" problem (PI) is given by (la)-(lb), where the planner mini-

mizes w(x,t) subject to the constraints of (lb). The planner can

only affect his objective by adjusting the vector t, which may be a set

of taxes, quotas or some other instrument. The subordinate problem is

given by (lc)-(ld) and, following Candler and Townsley (1982), is

termed the "behavioral" problem (Bl(t)). Given a vector of policies,

t, the subordinate agent is assumed to optimize his objective s(x,t)

by adjusting the vector x. Obviously whatever x is chosen in the

subordinate problem influences the planner's objective.
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In the economics literature the subordinate problem (Bl(t)) often

serves a very specific purpose. It has been known for some time that

the operation of a portion of a competitive economy can be simulated

using mathematical programming (Takayama and Judge, 1971). It is thus

common that the subordinate problem (Bl(t)) is a single mathematical

program simulating the decentralized market processes of a competitive

economy. The policy problem might be to choose a tax or quota to

achieve social objectives. The effect of a per-unit tax on such an

economy can be simulated by subtracting a term for tax payments from

the objective. A quota system applied in an economically efficient

manner can be simulated by adding appropriate constraints to the

3
problem. It is within this framework that most economic applications

of bi-level mathematical programming occur: an overall social objec-

tive (the planning problem) subject to equilibrium in a market economy

(the behavioral problem) with communication between the two levels

through taxes, quotas or some other set of policy instruments.

In spirit, the bi-level problem has a long history in economics

—

social objectives vs objectives of individual agents. The earliest

explicit discussion in the economics literature of bi-level math

programming appears to be Candler and Norton (1977a). They consider a

numerical example of a milk producing monopoly in the Netherlands,

regulated by the government. The behavioral problem represents the

objectives of the monopoly as that of maximizing revenue from sales of

milk, butter and cheeses. The government is assumed to have a com-

posite objective involving consumer prices, government outlays and

farm income. Other applications of bi-level programming have been
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suggested by Candler et al. (1981), principally in the area of devel-

opment planning.

Another set of problems in the area of environmental regulation

has motivated several authors to research the question of bi-level

programming. The problem is to drive polluters to efficient levels of

emissions through an emissions tax. The same tax (per unit of emis-

sions) applies to many different sources of pollution in a region even

though each source contributes in a different way to concentrations of

pollution in the environment, due to locational differences and trans-

port of pollutants by the environment. This problem was encountered

by Schenk et al. (1980) for the case of water pollution and Kolstad

(1986) for air pollution.

A very different problem was explored by Falk and McCormick (1982):

that of a cooperative game. Their problem is that of an imperfect

cartel of several countries in the international coal market. Since

in an imperfect cartel, side-payments are not permitted, cartel objec-

tives may not be to maximize joint profits. Falk and McCormick utilize

Nash's solution to this bargaining problem. If u. is the i cartel

member's gain from joining the cartel (relative to his profit in a

noncooperative setting), then the Nash solution is to maximize IIu.,

i

the product of the u.'s. Falk and McCormick formulate this as a bi-

level problem, utilizing a very simple competitive model of coal trade

as the subproblem Bl(t). The upper level problem (PI) is Nash's product

of individual gains from cartelization, IIu.. Using a numerical example
i

with a two-member cartel, Falk and McCormick demonstrate that two local
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maxima exist for the overall problem only one of which is a global

maximum.

At least a dozen different algorithms for solving the bi-level

problem appear in the literature. Most fall into three classes. One

class is concerned exclusively with the linear bi-level problem.

These algorithms are concerned with efficiently moving from one

extreme point of Bl to another until an optimum is found (Bialas and

Karwan, 1982; Candler and Townsley, 1982; Papavassilopoulos , 1981).

Another set of algorithms utilizes the Kuhn-Tucker-Karush conditions on

the subproblem Bl as constraints on the overall problem, thus turning

the bi-level problem into a nonconvex single mathematical program

(Bard, 1983a, b; Bard and Falk, 1982; Fortuny-Amat and McCarl , 1981;

Bialas and Karwan, 1982). A third set of algorithms is based on

descent approaches for the policy problem with gradient information,

from the subproblem acquired in a variety of ways (Shimizu and

Aiyoshi, 1981; DeSilva, 1978). It is in this latter class that the

solution algorithm of this paper falls.

Til. COMPUTING Vx(t)

The major problem in solving PI is that x(t) is defined implicitly

as the solution to Bl(t). We consider only cases where x(t) is a dif-

ferentiable function of t almost everywhere, and focus on the problem

of computing Vx(t). If Vx(t) is known, first derivatives of w(x(t),t)

and f(x(t),t) are easily computed. If x(t) is a point-to-point map

then it is generally continuous for all t of interest (Hogan, 1973);

however, Vx is usually not continuous at points t where the active set
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of Bl(t) changes. If this fact is ignored, PI may be treated as a

dif ferentiable problem, for which several efficient algorithms are

available. Problems caused by ignoring the nondifferentiable nature

of PI are discussed in section IV. We now consider the procedure for

computing Vx.

Vx is computed using an adaptation of the methods and theory pre-

sented in Fiacco (1976). We first rewrite Bl to isolate simple bounds

and include equality constraints:

(B2(t)): min s(x,t) (2a)

X

5-y. g(x,t) {^} (2b)

£ £ X _< u (2c)

where some of the constraints in (2b) may be equalities and others may

be inequalities. Let B2(t) have a solution (x*,tt*,w*) = z* where •rr*,w*

are multipliers for (2b) and (2c) respectively. The following assump-

tions, taken from Fiacco (1976), guarantee that z* is a continuously

dif ferentiable function of t for all t in a neighborhood of t.

Assumption 1

1. The solution z* is unique and satisfies the second order sufficiency

conditions.

2. Gradients of all active constraints in Bl(t) (including bounds) are

independent.

3. Strict complementarity holds, i.e., any active inequality constraint

(including bounds) has a positive multiplier.
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Following the development in Fiacco (1976), we develop formulas for

Vx(t).

Theorem 1 : Let Assumption 1 hold at t. Without loss of generality,

let x*(t) be partitioned into (y,z) such that all components of y lie

strictly between their bounds and all components of z are at a bound.

Partition the constraints g(x*,t) into binding constraints b(x*,t) and

non-binding constraints n(x*,t). Similarly, partition tt* into (u,v),

corresponding to binding and non-binding constraints respectively (thus

dx^ diT*^
v = 0). For any element of t, say t , the derivatives and -

—

k dt^^ dt^

satisfy:

dz
dt.

= (3a)

3v_

3t,
= (3b)

V^ L [V b]'
y y

V b
y

dy_

fit.

du

dt.

9L,

y 8t,

8b

I

3t,

(3c)

where all derivatives are evaluated at (x*,t), L is the Lagrangian func-

tion of Bl

,

L = s(x,t) + Y. _ u.b.(x,t) = s(x,t) + u'b(x,t) (4a)

ieB*(t) ^ ^

and B*(t) is the set of active constraints not including bounds

B*(t) = {i|g.(x*,t)=0} (4b)
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Pf : From assumption 1, there exists a neighborhood of t within

which all inactive constraints remain inactive and all active

constraints remain active. Thus, (3a) and (3b) follow directly, and

the Kuhn-Tucker-Karush conditions can be written for B2(t), ignoring

bounds and inactive constraints. The Lagrangian of this problem

(B2(t)) is (4a), and the first-order optimality conditions are

V L = V s(x*,t) + u'V b(x*,t) = (5a)
y y y

b(x*,7) = 0. (5b)

Note that if variable bounds were included in (4a) , they would not

appear in (5). This is the rationale for excluding them from (5).

By assumption 1, (5) holds for all points t in some neighborhood of

t. Hence the first derivatives of (5) will respect to any component of

t, say t, , m.ay be set to zero in this neighborhood, yielding

v2s-^+-^ (V s)' + E u.[v2 b. 4^
' ^\ '\ ' isB*(7) ' ^ ' '\

+ gi-(V^b.)'] + (%b)'|H_= (6a)

where all derivatives are evaluated at (x*,t).

Note that there are the same number of equations (6a) as elements of y.

There are the same number of equations (6b) as active constraints.

These equations can be rewritten as
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[v2 s + I u.V^b.} -if + (V b)' -^

^ [V s + u'V b]' (7a)- 9tj^ y y

2
The bracketed part of (7a) is V L and the term in braces is V L where L

y y

is defined in (4b), so (7) can be rewritten to yield (3c). The matrix

in (3c) is nonsingular because the second order sufficiency conditions

for B2 are satisfied at t (see Fiacco and McCormick (1968)). Thus

(3c) can be solved for the required derivatives.

Theorem 1 is the basic result of this section and constitutes the

core of the algorithm used to solve the bi-level programming problem.

The difference between (3c) and (2.3) in Fiacco (1976) is the elimina-

tion of inactive constraints and variables at bounds from the calcula-

tions. This can greatly decrease the complexity of computing V x(t),

particularly in problems involving a large number of nonbasic variables

or inactive constraints (e.g., spatial equilibrium problems).

IV. COMPUTATIONAL EXPERIENCE

Our test problems are variants of those encountered by Falk and

McCormick (1982) in that we consider a spatial model of the inter-

national coal market as our behavioral problem Bl(t). The model and

data are described more fully in Kolstad and Abbey (1984). In es-

sence, we are considering a spatial market for a single good with

multiple producers and consumers trading through a costly transporta-

tion network. Each consumer has a constant elasticity demand function
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for the good (i.e., q = Ap ) and each producer's incremental (marginal)

costs are a linear function of quantity produced.

A subset of the producers in this market join together to form a

perfect (i.e., side payments allowed) cartel. The cartel's problem is

to determine how much to raise the price of their product, over cost,

in order to maximize cartel profits. The policy problem below, P3, is

merely a maximization of cartel monopoly profits, where, for producer

i, t. is the unit-price markup over marginal cost, s.(t) is the

resulting quantity produced and the set C identifies the producers

that belong to the cartel. Note that P3 is unconstrained:

(P3) max Z t.s.(t) (7)

t. ieC
1

where s.(t), sales from producer i, is determined by the market. Thus

s.(t) can be found by solving

(B3(t)): max [ r a .

/J x J dx - I f (a.+b.x)dx
r,s,q j=l ^0 i=l

I J
- Z Z T..q..- Z t.s.] (8a)

. . . , 11 ij . _, 1 1
1=1 j = l -^ leC

s.t. Zq.._<s. i = l,...,I (8b)

Eq..>r. 1=1,...,

J

(8c)

s.,r.,q^>^0 i = !,...,!; j=l,...,J (8d)
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The first term of the objective function of B3(t) is the area under

the (constant elasticity) demand curves for all the demand regions (j).

The second term is the area under the (linear) marginal cost curves

for all the suppliers (i). The third term is the transport cost for

moving the good (coal) from i to j where q.. is quantity moved from i

to j. The fourth term represents the cartel monopoly profits.

Equation (8b) assures that shipments out of supplier i are no more

than supplier i's production. Equation (8c) assures that consumer j

receives at least as much of the good as he demands in total. In most

cases, all of the constraints in these two sets will be binding.

We have solved three versions of this problem using an algorithm

with gradient information obtained as described in section III. All

three problems have the same structure but are of different size. In

problems A and B the cartel has two members whereas in problem C there

are three cartel members. In problem A there are six producers and

consumers, whereas in problems B and C there are thirty (see Table I).

To solve the subproblem B3, we used MINOS/Augmented (4.0), a

general-purpose efficient nonlinear program solver (Murtaugh and Saun-

ders, 1981). Default values of tolerances, etc. were used which implies

among other things, that a conjugate-gradient algorithm was used.

The choice of algorithm to solve the upper level problem is par-

ticularly important because of the time-consuming nature of solving

the subproblem. In our example, problem PI is unconstrained. Thus we

chose to use the VA13A code from the Harwell Subroutine Library, a BFGS

4 -5
variable metric algorithm, with a convergence tolerance of 10 . Eqn

(3b) was solved using the LINPAK linear algebra routines.
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Details of the iteration-by-iteration convergence of the algorithm

for these three examples are given in Table II. Although a moderately

tight convergence tolerance was specified, the algorithm converged

fairly rapidly and in a modest amount of time (5 to 60 seconds on a

Cray I - see table I). However, the performance of the algorithm

depended on the starting point. As a case in point, in problem B, when

the algorithm starts at (0,0), a flat spot in the objective function is

encountered leading to a local rather than global maximum.

These difficulties can be better understood by examining problem A

graphically. Figure 1 shows the behavior of s and s as functions of

t^ and t . As can be seen, there are flat spots. These lead to flat

spots in the objective of P3 as shown in Figure 2 where the objective

function is plotted as a function of t^ and t and shown from two

perspectives. Starting at (0,0), no problems are encountered, as indi-

cated in Table II. However, if the problem is started at (34,18), the

algorithm may terminate without finding the global maximum (Fig. 2).

It is quite possible that one might believe a solution had been found.

The existence of such flat spots is not a quirk of the test problem

considered here. There are two reasons for flat spots. If a cartel

markup rate is too high, the producers will sell nothing. Thus the

ridge along t = 18 , t >^ 24 corresponds to q = 0. Adjustment in t

above 24 lead to no change in q nor in cartel profits. When problem B

is started at (0,0) it rapidly wanders out to (33,54) and stays at

that flat spot, even though the answer is "between" these two values.

Another reason for flat spots is that producer one and two's markets

may not be strongly interrelated; i.e., as producer 1 raises his
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markup, he will drive consumers to other producers, but possibly not

to producer 2. Thus 3q /8t = 0.

One way of avoiding these problems is to check second order suf-

ficiency conditions at any optimum. This may not be satisfactory,

however, not only because of the difficulty in obtaining second deriva-

tive information from B3(t), but also because these conditions may not

be satisfied at or near a (nonunique) global optimum if it occurs at a

flat spot.

V. CONCLUSIONS

The primary contribution of this paper is in our presentation of an

efficient method of obtaining derivative information on solutions of

large nonlinear programs in order that large bi-level programs may be

easily solved. We have also tested our methods in several contexts

and found that while the method works and is efficient, there are

potential pitfalls, principally related to encountering flat spots and

sharp ridges in the objective function of the policy, or first-level,

mathematical program.
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2
It is important to distinguish the general bi-level programming

problem from the many decomposition techniques which have been in use

for a number of years (particularly the methods of Dantzig and Wolf and

Geoffrion). These methods are all concerned with breaking down a large

mathematical program into a number of smaller, more tractable units.

An important aspect of these methods is a coincidence among the objec-

tives of the multiple levels. In all cases the decomposed program can

also be written as a single mathematical program. This is not the

case for the general problem of bi-level programming.

3
A quota is a restriction on overall output from a particular sec-

tor of the economy. Within an optimization model of a competitive

economy, it would be represented as a constraint on aggregate output.

In practice, the quota would have to be translated to the firm level

through a license system or some other mechanism. For an aggregate

constraint to realistically represent the action of a quota, the

licenses must be allocated to firms in an economically efficient

manner. This can be assured by allowing private trading of licenses

among firms.

4
Convergence achieved when changes in each independent variable of

10 fail to improve objective function.
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TABLE I: CHARACTERISTICS OF THE TEST PROBLEMS

Problem A Problem B Problem C

Subprobleras

Constraints

Variables

I

J

C

CPU Time in Seconds,

CRAY I

6 30 30

14 230 230

4 10 10

2 20 20

{1.2} 1,2; {1,2.3}

5.269 35.178

((20,15) starting
point)

59.036



TABLE II: ITERATION LOG FOR SOLUTION OF THREE TEST PROBLEMS

Cumulative
Subproblem P3

Iteration Calls Objective S ^2

Problem A:

1

1 5 3.09805 17.46 18.85
2 9 3.16631 15.41 25.93
3 12 3.37351 18.29 23.51
4 18 3.38987 18.38 23.88
5 19 3.41301 17.45 23.82
6 22 3.41751 16.21 23.89

7 23 3.42640 16.32 23.89

9 26 3.42762 16.32 23.83
11 29 3.42882 16.32 23.85
14 35 3.42903 16.32 23.86
15 36 3.42903 16.32 23.86

Problem B:

1 5.19018 20.00 15.00

1 2 5.36747 19.79 16.00

2 6 6.03113 44.10 38.80
3 7 6.49260 35.64 30.56

4 9 6.59798 37.56 32.61

5 10 6.62623 36.72 33.22
6 15 6.68452 36.49 31.99

8 23 6.68869 36.65 32.00

11 31 6.69085 36.63 32.00
13 37 6.69097 36.63 32.00

Problem B (started at (0,0)):

1

1 3 3.27900 10.00 6.79
3 5 5.03343 18.55 42.62

5 11 6.09682 34.02 55.21
7 17 6.13779 33.04 54.41
9 26 6.14104 32.95 54.37

12 37 6.14360 32.94 54.37

Problem C:

1 6.26882 20.00 15.00 10.00

1 3 7.46470 20.15 23.69 12.64

2 5 9.99682 56.32 55.55 34.93
3 9 9.99879 56.37 55.60 35.08

4 11 10.0234 56.32 55.51 35.34

6 18 10.0778 56.29 55.42 35.91
7 22 12.1085 44.66 43.51 90.26
8 31 12.5706 51.86 50.79 57.21

10 41 12.6235 51.76 50.77 57.26
13 48 12.6396 51.77 51.10 55.60
16 56 12.6468 51.72 51.23 55.01

18 62 12.6488 51.76 51.23 55.04



(a) si

(b) s2

Figure 1 : si and s2 as functions of t1 and t2 , Problem A
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Figure 2 : P3 Objective as function of t1 and t2, from two perspectives'

Problem A
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