A Transformation to Convert Packing Code to Compact
Datatypes for Efficient Zero-Copy Data Transfer

Fredrik Kjolstad

Torsten Hoefler

Marc Snir

University of Illinois at Urbana-Champaign
{kjolstal,htor,snir}@ilinois.edu

Abstract

Many high performance applications spend considerable time
packing data into contiguous communication buffers. Datatypes
provide an alternative by describing the layout of the communi-
cated data. This empowers the runtime system to retrieve non-
contiguous elements directly from application data structures.
However, programmers find complex datatypes hard to use and
are reluctant to invest time and effort to rewrite packing code to
datatype code. Fortunately, the transformation from packing code
to datatypes can be automated, and the programmer can replace
packing code with datatypes at the push of a button. The transfor-
mation allows easy porting of applications to new machines that
benefit from datatypes, thus improving programmer productivity.
We present an algorithm for converting packing code to datatype
code based on a novel IR and a suite of optimizations. We have im-
plemented the algorithm in a tool that transforms C packing code
to an MPI datatype, and rewrites the packing code consumer to
instead use the datatype. Our evaluation shows that our algorithm
is applicable to real-world packing code, that it is fast enough to be
used interactively, and that the datatypes it produces are compact
and well optimized. Finally, we evaluate the performance of the
code produced by our tool, showing that it outperforms the orig-
inal packing code on a state-of-the art system. However, the real
benefit of datatypes is in the future, when hardware support for
non-contiguous gather-scatter transfers becomes ubiquitous.

1. Introduction

Data movement is a fundamental part of parallel applications on
distributed memory machines. It is also often the most costly op-
eration in terms of time and energy, and usually does not scale as
well as the rest of the application. It is therefore essential that we
move data as few times as possible, and move it efficiently when
data movement cannot be avoided.

Datatypes are objects that describe data layout. Examples in-
clude strided layouts and indexed layouts. In strided layouts each
block is located a fixed stride from the previous block. In indexed
layouts each block’s location is described by a displacement from
the first block. When datatypes are used with a data movement op-
eration such as send, receive, put or file write, non-contiguous data
can be transferred with a single call to the underlying runtime.

University of Illinois at Urbana Champaign Technical Report 2011.

Datatypes are powerful tools that enable runtimes to optimize
data movement in several ways. First, multiple blocks can be
packed into a contiguous buffer and sent in one operation. Even
with the additional copy pass, this is often a significant improve-
ment over multiple small blocking transfers due to the high latency
cost associated with each transfer. Such packing can also be per-
formed by user packing code. This is a common idiom in scientific
applications [10]. However, by describing non-contiguous data us-
ing datatypes, the runtime is free to determine the best way to
transfer the data for a given system. It can optimize data pack-
ing [4, 9, 19], or use an alternative communication scheme, such as
pipelining small asynchronous messages [7].

Moreover, many network controllers support direct memory
access (DMA) and can access user memory without involving
the CPU. Some networks, such as InfiniBand [11], also provide
support for non-contiguous data transfers. This is a very powerful
feature that enables zero-copy transfers [20, 26], which avoids
memory-to-memory data copying. This can significantly reduce
communication overheads [10, 20], but is only possible if the data
layout is provided as an argument in the communication call.

Finally, since datatypes allow known data layouts to be specified
declarative and concisely they increase the readability of the code.
This is important to reduce the cost of software maintenance, an
activity that may span decades.

MPI is a parallel programming model where a rich set of
datatypes are available to the programmer. The programmer can
specify contiguous and vector (strided) datatypes, as well as ho-
mogeneous and heterogeneous indexed datatypes. Furthermore,
the programmer can describe complex data layouts efficiently by
composing datatypes hierarchically.

A more restricted set of datatypes is available in several net-
work API’s, such as BSD Sockets, ARMCI [16] and Infiniband
OFED [18]. They are also planned for inclusion in GASNet 2.0 [2],
which is the target API for the Berkeley UPC Compiler.

However, datatypes are often underused [10, 19]. We believe
there are at least two reasons for this. First, runtimes were tradition-
ally not optimized for datatypes and datatypes were therefore often
slower than manual packing loops. However, this has changed and
runtimes are now better optimized [4, 9, 19], and provide powerful
features such as non-contiguous zero-copy transfers that can only
be exploited if datatypes are used [20, 26]. Second, datatypes are
considered hard to construct. They are declarative, and require pro-
grammers to precisely describe exact data layouts in a terse way.
Furthermore, they are very hard to debug since no tools are avail-
able to track the memory locations accessed by a communication
library. However, once constructed their terseness and preciseness
makes them easy to reason about. In short, datatypes declare the
structure of the data instead of the logic required to pack it.

Moreover, parallel programming models such as UPC [24] and
CAF [17] do not expose datatypes to the programmer (although

a UPC extension exist that implicitly supports datatypes through
indexed and strided copies). Therefore, the programmer has no
other choice than to express non-contiguous data transfers using
either multiple sends or packing code.

The potential performance, performance portability and read-
ability benefits of using datatypes, combined with the difficulty in
creating them for humans and the lack of means to express them
in some languages, motivates an automated approach. Since pack-
ing code is a common idiom for sending non-contiguous data, a
technique for converting packing code to datatype code is needed.

For programming models that expose datatypes to the program-
mer, a refactoring tool or a source-to-source compiler should be
used to port packing code to datatype code. For programming
models where datatypes are not exposed to the programmer, such
as UPC and CAF, a compiler pass that converts packing code to
datatype code is desirable. This allows the compiler to output code
that takes advantage of datatype capabilities in the network or uses
pipelined asynchronous messages where this is supported, or that
optimizes the packing for the target architecture where it is not.

We present a novel algorithm that converts packing code to
datatype code. The algorithm converts the packing code to an in-
termediate representation (IR) called the Datatype IR. The IR com-
pactly captures the information required to generate datatypes. The
algorithm then performs a number of specialization and compres-
sion passes to optimize the IR so that compact datatypes can be
emitted. After the algorithm has produced a datatype description of
the layout of the packed data, the IR can be used to replace the ex-
isting packing code with datatype code. The presentation assumes
C and MPI, but the techniques generalize to other environments.

We implemented our algorithm as a refactoring plugin for C
with MPI on top of Eclipse CDT. We used this implementation to
evaluate the approach on the NAS Parallel LU Benchmark. The
evaluation shows that the algorithm is applicable to real world code
and that it finds good datatypes.

2. Related Work

Gojun et al., developed a pre-processor tool called AutoMap that
automatically generates datatypes for user-annotated C structs [8].
Moreover, Tansey & Tilevich developed a GUI tool that can gener-
ate datatypes for C++ classes [23]. These tools automate the gener-
ation of datatypes for struct and class definitions, but do not look for
opportunities to use these datatypes in client code or for structured
accesses to arrays that can be replaced with vector or contiguous
types. In contrast, our technique generates datatypes based on ac-
cess patterns in packing code, finds indexed and vector accesses in
arrays, and rewrite the client code to use these datatypes.

There is a large body of research on optimizing the perfor-
mance of datatypes. Gropp, Lusk and Swider provide a taxonomy
of MPI datatypes according to their memory reference patterns, and
demonstrate how to efficiently implement these patterns using a va-
riety of techniques [9].

One line of research on datatype processing aims to improve the
performance of datatype packing in MPI implementations over user
packing code, by using efficient internal data structures, runtime
and machine information. Bynna et al. present a technique to im-
prove the performance of derived datatypes, by automatically chos-
ing a packing algorithm that is optimized for the memory-access
cost of the target machine [4]. Ross, Miller and Gropp describe an
efficient internal representation of datatypes called dataloops that
aids MPI implementation that performs datatype packing in main-
taining high performance during datatype processing [19].

A second line of research describes techniques to take advan-
tage of datatypes to exploit advanced network features that allows
moving non-contiguous data without any packing. Wu, Wyckoff
and Panda compare the performance of an MPI implementation that

Researchers Approach Speedup

Wu, et al. [26] Infiniband non-contiguous 3.6x
remote load/store

Santhanaraman, et al. [20] Infiniband non-contiguous 4.8x
channel communication

Worringen, et al. [25] SCI non-contiguous 2.1x
copy to global memory

Tanabe and Nakajo [22] DIMMnet-2 support for 6.8x

non-contiguous RDMA

Table 1. Previous work on speeding up datatypes through hard-
ware support, with maximum speedups reported by researchers.

performs datatype packing and an implementation that uses the Re-
mote Direct Memory Access (RDMA) feature of InfiniBand [11]
to avoid either the packing or the unpacking involved in transmit-
ting non-contiguous [26]. Santhanaraman, Wu and Panda presents a
technique they call Send Gather Receive Scatter (SGRS) that uses
InfiniBand channels to avoid both the packing and unpacking in-
volved in sending/receiving non-contiguous data [20]. Finally, Tan-
abe and Nakajo developed an hardware accelerator for datatypes,
called DIMMnet-2, that can transfer non-contiguous data.

All of these techniques require datatype to be specified explic-
itly. Our technique converts packing code to datatype code, thereby
enabling these optimizations.

Previous work has established that message bandwidth can be
increased significantly if hardware support for zero-copy transfer
of non-contiguous data is provided. Taking advantage of such fea-
tures requires datatypes to be specified. Wu, et al. showed vector
bandwidth improvements up to a factor of 3.6 for large messages
compared to manual packing code when using their Multi-W tech-
nique for InfiniBand [26]. Similarly, Santhanaraman, et al. showed
vector bandwidth improvements up to a factor of 4.75 for large
messages using their SGRS technique for InfiniBand [20]. They
also report low CPU utilization as communication workload is of-
floaded to the network, which indicates increased potential for ex-
ploiting communication-computation overlap. Furthermore, Wor-
ringen, et al. report performance improvements up to a factor of
2.1, from taking advantage of hardware support in the SCI inter-
connect to copy non-contiguous data directly to global memory.
Finally, Tanabe and Nakajo demonstrated a performance improve-
ment up to a factor of 6.8 from accelerating MPI Datatypes using
their DIMMnet-2 RDMA system [22]. Table 1, summarizes previ-
ous work on speeding up datatypes through hardware support.

Furthermore, multiple research groups have demonstrated that
datatypes can have comparable or better performance than man-
ual packing code, even when the network does not support non-
contiguous transfers. Ross et al. showed that an optimized MPI im-
plementation can have comparable performance to manual packing
code when transmitting common data structures such as vectors and
3D faces [19]. Moreover, Byna, et al. provide a technique that out-
performs manual packing code by as much as 205% for a matrix
transpose by taking advantage of knowledge of the memory system
to improve memory access cost [4]. Hoefler and Gottlieb demon-
strate speedups up to a factor of 3.8 and 18% for a Fast Fourier
Transform and a conjugate gradient solver respectively by express-
ing communication using datatypes [10].

This firmly establishes datatypes as a useful way of specify-
ing non-contiguous transfers that can provide speedups given the
right hardware and/or software. Furthermore, we expect network
capabilities to improve in the future making datatypes increasingly
relevant.

Key steps in our algorithm is the specialization from indexed
types to vector types, and from vector types to contiguous types.
These steps rely heavily on algebraic expression simplification and

Processor 2
8 9 10 11 12 13 14 15

Processor 1
012345867

°
° ol@|e
°

N O o0 WO = O

Figure 1. 5-point stencil Computation on two processors with
ghost cells (grey) and border exchanges.

loop induction variable summarization. Both of these problems
have been extensively studied in the literature.

Algebraic expression simplification is widely used in mathe-
matical packages such as Matlab and Mathematica. Moses presents
various techniques to reduce the size of expressions with the dual
goals of making them more intelligible to the user and to allow
the designer to construct useful and efficient systems [14]. Fur-
thermore, Buchberger and Loos formally describe the problem
of canonical algebraic simplification and then present two major
groups of simplification techniques [3]. Our implementation of
the datatype extraction algorithm uses the Open Source Symja li-
brary [21] to simplify expressions.

Loop induction variable detection and summarization has most
commonly been studied in the context of operator strength reduc-
tion. Induction variables are variables whose values change be-
tween iterations of a loop. Linear induction variables are induction
variables whose values follow an arithmetic sequence. That is, they
increase or decrease by a fixed amount from one loop iteration to
the next. Cocke and Kennedy developed an early algorithm for op-
erator strength reduction based on induction variables [5]. Cooper
et al. later improved on this algorithm by taking advantage of SSA
form to perform efficient sparse induction variable detection [6].
Our implementation of loop induction variable summarization is
based on the technique described by Muchnic [15].

3. Illustrative Example

We present a running example to illustrate some of the challenges
of converting packing code to datatype code. The running example
is a border-exchange between two nodes that execute a two dimen-
sional iterative stencil computation. The example is similar to one
of the simpler packing loops in the NAS LU benchmark. The ex-
ample is implemented in C99 using MPI. As mentioned before,
MPI provides a rich API for constructing datatypes and is therefore
an excellent target for our algorithm. We first provide a quick in-
troduction to MPI datatypes in section 3.1, before we describe the
details of the border exchange in section 3.2.

3.1 MPI Datatypes

MPI Derived Datatypes are opaque objects that describe data lay-
out. They define a type map, which is an ordered sequence of
primitive datatypes and displacements. Primitive datatypes corre-
spond to the primitives in C and Fortran, and include such types
as MPI_DOUBLE and MPI_INT. Datatypes are a central concept in MPI
and are used with message sends or receives, remote direct memory
access (one sided), and file 1O to specify the data to read or write.
MPI provides several constructors that can be used to construct
derived datatypes. These include MPI_Type_create hindexed () and
MPI_Type_vector (). The former creates a derived datatype given a
displacement list, while the latter creates a derived datatype that
describes a vector with a given count, block length and stride.

grid[N][N][3] -~ [double
double:
~ _ | double

pack buffer[N*3]

P ([[[TTTT]

(a) The left Ghost Cell Halo is packed into the send buffer. Each cell
contains three values

double buffer[N * 3];

for (int i=0; i < N; i++) {
buffer[3x*i] = grid[i][0][0];
buffer[3*i+1] = grid[i][O0][1];

buffer[3+i+2] grid[i J[0][2];

NN R W =

}
MPI_Send (buffer , N « 3, MPIL.DOUBLE, left, tag, comm);

(b) C99 packing code that copies the left ghost cell halo into a send
buffer

MPI_Datatype vec-t;

MPI_Type_vector(N, 3, N = 3, MPIL.DOUBLE, &vec-t);
MPI_Type_commit(&vec_t);

MPI_Send(&grid [0][0][0], 1, vec_t, left, tag, comm);
MPI_Type_free(&vec_t);

L O R S

(c) A vector that describes the layout of the data to be sent

Figure 2. Example where the left ghost cell halo is sent

3.2 Border Exchange Example

Iterative stencil computations on structured grids are a common
class of algorithms. They are used in weather and atmospheric sim-
ulations, fluid dynamics, and many other applications. The input to
many stencil computations is a regular, N-dimensional mesh. The
values of the mesh points are updated iteratively based on the val-
ues of surrounding points from the previous iteration. All points
use surrounding points in the same relative positions. This set of
relative positions is called a stencil.

Such computations are implemented on distributed memory
systems by partitioning the mesh, and adding halo points at the
boundary of each partition. Halo points are replicas of border points
from neighboring partitions that are needed to compute the local
updates. The halo region is updated between every iteration in a
process called a border exchange [12].

Figure 1 illustrates a stencil computation on two processors with
a 5-point stencil. Each point contains three double values, and the
computation uses border exchanges to communicate border values.
The white cells form the domain of the computation. The gray area
shows the ghost cell region of each processor.

Figure 2(a) illustrates how the left ghost cell region of proces-
sor 2 is packed into a communication buffer, and figure 2(b) shows
the corresponding C99 source code. The code consists of a loop
with index i that is used to address both the source and the des-
tination of the packing operations. Inside the loop there are three
packing statements that pack the three values of each border cell
into the packing buffer.

Figure 2(c) shows the equivalent MPI datatype code. The source
code constructs a vector with IV blocks, 3 elements per block, and
an N * 3 element stride between each block. The vector is then used

to parameterize the MPI_Send and specifies the layout of the data to
send, relative to location &grid[0] [0] [0].

4. Datatype Generation

The algorithm described in this section automates the conversion
from packing code to datatype code. That is, given packing the code
on lines 2-6 in figure 2(b) it produces the datatype in figure 2(c).
The input to this algorithm is a set of packing statements and
packing loops, and the output is a datatype that describes the layout
of the data that is packed. In a refactoring tool the programmer
can provide the input packing statements, while in a compiler
they can be identified through a reaching definitions analysis. This
analysis would summarize statements that define array values that
are subsequently sent, or that use array values that are received.

For ease of presentation, we only discuss packing code that
copies data from user memory to a communication buffer. Gen-
erating datatypes for unpacking code is totally symmetric and is
handled in the same way.

The problem of generating datatypes from packing statements
can be broken down to a sequence of sub-problems that can be
solved independently. Central to this process is an intermediate rep-
resentation that we call the Datatype IR. The IR and is construc-
tion is discussed in section 4.1. Once the IR has been constructed
a number of optimizations are applied to yield a compact datatype.
An optimized datatype, as demonstrated by our evaluation, leads to
significantly more efficient code than unoptimized datatypes. The
datatype optimization transformations are described in section 4.2.
Figure 4 shows three examples of the Datatype IR, in different
stages of optimization.

4.1 Datatype IR

The Datatype IR is constructed from imperative languages with
packing code, such as C, C++, Fortran and UPC. It captures the nec-
essary information to generate compact datatypes, and greatly sim-
plifies the optimizations. Once constructed, it describes a datatype
that is equivalent to the packing code, and can be used to replace the
packing code with a code that constructs a datatype. The Datatype
IR is the focal point of our algorithm and serves to simplify each
stage, and is specified in section 4.1.2.

However, before the Datatype IR can be constructed, a number
of preconditions must be checked. The preconditions are described
in section 4.1.1, and must be met before our algorithm can create
datatypes and rewrite code. The algorithm can convert any packing
code that satisfies these preconditions to datatype code. Finally,
section 4.1.3 describes how the IR can be constructed from packing
code written in C. Once the initial IR has been generated, it is
optimized by subsequent passes (see section 4.2).

4.1.1 IR Preconditions

The algorithm targets packing code blocks: a sequence of state-
ments that copy data from program data structures into a buffer
that is consumed by the target send call. The algorithm checks that
the following preconditions are met before it generates the IR:

1. The code block consist of: nested loops, assignments and con-
ditionals statements

2. The code block writes into consecutive locations in the buffer

Note that in packing code blocks where the third condition does
not hold it can often be established by an initial step where the
packing code is reordered. The reordering involves known tech-
niques such as code motion and loop transformations (loop split
and loop reversal). These have been studied extensively in the liter-
ature, and are outside the scope of this work. Furthermore, in real-
world code that we have studied precondition three holds in the

* 1
’ Packing Group ’—' Datatype ‘

Packing Statement

struct

hindexed

Packing Sequence

Packing Loop hvector

vector

contiguous

Figure 3. Datatype IR

vast majority of cases, and can easily be established with at most
one loop split where it does not hold.

4.1.2 Datatype IR Specification

The Datatype IR is defined recursively and describes the relation-
ship between packing groups in the source code and datatypes. Fig-
ure 3 depicts the Datatype IR with the most important datatypes.
However, as discussed in section 4.2.8 other datatypes are possible.
A Packing Group represents packing code and is one of:

Packing Statement A statement that copies a value from user
memory to a packing buffer. The IR node for a packing state-
ment contains the memory location the value is retrieved from,
as well as the location in the packing buffer it is packed into.

Packing Sequence A sequence of packing groups. The IR node
for a packing sequence contains the sub-groups, as well as
expressions that describe the symbolic distance between every
pair of consecutive sub-groups in the source data structure.
Section 4.1.3 describes how distances are calculated.

Packing Loop A loop whose body is a packing group. The IR
node for a packing loop contains the body sub-group as well
as a summary of loop induction variables and loop constants.
Induction variables are discussed in section 4.1.3.

Every packing group has a source location associated with it.
The location describes the first location in the source data struc-
ture that the packing group reads from. Thus, the location of a
packing group is identical to the location of its first packing state-
ment. The location of a packing statement is a pair of the form
(name, displacement). The first element is a named variable or
pointer that is used to access the source data structure. The second
element is an expression that describes the offset from the name to
where the packed element is located. The displacement could ei-
ther be a integer offset expression, in the case of arrays, or a field
describing the struct element that is accessed. For example, the lo-
cation of the following packing statement b[j1 = a[i+1], where b
is a packing buffer, is the pair (a,7 + 1). This would also be the
location of the equivalent packing statement b[j] = *(a+i+1).

A more complex example is b[i] = a[i] [j][2], where the ar-
ray a is defined as a[D1][D2][Ds]. In this case the location is de-
termined by symbolically multiplying each array subscript by the
size of every inner dimension, and then adding these products to-
gether. That is, given the source data structure access expression
Alsn]...[s1][s0], the location expression is symbolically computed
using the formula > 27 (s; [T,—¢ dimy). The location of the ex-
ample thus becomes (a,iD2Ds + jDs + 2).

In the IR each packing group is mapped to exactly one datatype,
while a datatype can describe multiple packing groups. The data-
types in our IR match the datatypes in MPI. These form a powerful
set of datatypes that can be composed to describe any data layout,

so the same IR can handle other environments. The supported
datatypes are, ordered from more general to more efficient: struct,
hindexed, hvector, vector and contiguous. Each datatype will be
discussed further in section 4.2, as the optimizations that produce
them are detailed.

4.1.3 Datatype IR Construction

The Datatype IR can be constructed from any imperative language
with packing code, but we will discuss it for C with MPI. As de-
scribed earlier, the input to the algorithm is a set of packing state-
ments and packing loop. From these, packing sequences and pack-
ing loops are constructed. Every packing group inside a packing
loop, or at the top level, is added to the same packing sequence.
Additionally, packing groups inside loops are added to a new pack-
ing loop node that represents that loop.

For each packing sequence the distance between every consec-
utive pair of sub-groups is computed. The distance between two
packing groups is only defined if their locations are in the same ar-
ray, and none of the index expressions are conditionally redefined
between the packing groups. If these conditions hold, then the dis-
tance is the location index expression of the second packing group
minus the location index expression of the first group. For exam-
ple, given two packing statements that pack the variables at loca-
tion ali] and a[i+k] the distance is (i + k) — ¢ = k, assuming i
is not redefined between the packing statements. If it is redefined
then the index expression of the second packing statement must be
updated to reflect this before the distance is computed. That is, if
i was incremented by one between the packing statements, then
the distance would be (¢ + 1 + k) — ¢ = k + 1. In general this
would require reaching definitions analysis. However, precondition
1 require the code to be “straight line code” (perfectly nested loops
without conditionals) which makes the analysis straight forward.

For each packing loop, loop constants and loop induction vari-
ables are summarized using standard approaches [5, 15]. A discus-
sion of these can be found in section 4.2.2.

Finally, to complete the IR the packing groups are assigned
datatypes. Structs are the most general datatypes, and can be used
to describe the layout of the data packed by any packing code that
passes the preconditions in section 4.1.1. The IR construction stage
therefore assigns a struct datatype to each of the packing groups.
Figure 4(a) shows the resulting IR for our border exchange exam-
ple. The loop is represented by a struct that conceptually contains
N sub-structs, one for each iteration of the loop. However, only one
struct node representing the /N sub-structs is actually constructed in
the IR. This sub-struct represents the packing sequence in the loop
body and have 3 double sub-types, one for each packing statement.

4.2 Datatype Optimization

The previous section described how to construct an IR representing
a correct datatype. Code can be emitted to construct a hierarchy of
structs, and each packing statement can be replaced with statements
that store displacements, block lengths and types.

However, the datatype constructors would require a number of
arguments proportional to the number of values in the packing
buffer. Furthermore, observe that the code to assemble these argu-
ments would mirror the original packing code, effectively replac-
ing packing code with code that packs displacements. Therefore,
to improve efficiency and readability and to ensure we can exploit
hardware features such as vector send, a sequence of optimization
transformations are applied to yield compact datatypes.

We consider a datatype to be more compact than another
datatype if it can be described with fewer arguments. A contiguous
type is therefore more compact than a vector, which is more com-
pact than an indexed type. That is, a contiguous type only requires
two arguments (count and subtype), while a vector requires four

(For each datatype, bottom up h

[Specialize to hindexed]

success

Specialize to hvector]

SUCCSSS

Specialize to vector]

success

[Specialize to contiguous] Merge structs and
indexed types
SU(@eSS

Compress contiguous into]

Compress contiguous

parent block length type into send count

]

-

Figure 5. Figure showing the datatype optimization stages. Each
datatypes is specialized, bottom up.

(count, block length, stride and subtype). Furthermore, an indexed
type requires 2n + 2 arguments, where n is the number of blocks it
describes. Compact datatypes result in higher performing code, as
shown in section 6, and they also tend to be more readable.

There are two types of optimizations: specializing substitutions
that replace a more general datatype with a more specialized and
compact one, and datatype compressions that merge datatypes.

Figure 5 shows the order in which the optimizations are applied.
Each optimization makes the datatype strictly more compact. The
sequence of specialization optimizations, as well as the “compress
into parent block length” are applied to one datatype at a time,
bottom up. The “compress into parent block length” optimization
is performed interleaved with the specialization optimizations, be-
cause it exposes additional specialization opportunities. If any op-
timization, except from a specialization to hindexed, fails then the
algorithm continues to the next datatype.

Once every datatype has been processed, the “Merge structs and
indexed types” and “Compress contiguous type into send count”
optimizations are applied to further reduce the datatypes.

Figure 4(b) shows the datatypes in our running example after
the specialization optimizations have been applied. The figure is
slightly modified for presentation, as parent block length compres-
sion is interleaved with the specialization optimizations.

Figure 4(c) shows the final IR after the compression optimiza-
tions have also been applied. The only compression that was ap-
plicable in this case was the compress contiguous types parent into
block length compression. This compression replaced the contigu-
ous type with a corresponding increase in vector block length. Note
that since the stride of vector datatypes is given in multiples of the
subtype, the stride bas increased by a factor equal to the count of
the contiguous type (i.e., from N to N*3).

The following sections each describe one of the seven datatype
optimizations that are depicted in figure 5. The specialization
substitution optimizations are described in sections 4.2.1-4.2.4,
while the datatype compression optimizations are described in sec-
tions 4.2.5,4.2.6 and 4.2.7.

4.2.1 Specialize to hindexed

After IR construction every datatype is a struct. The first special-
ization therefore transforms struct datatypes to hindexed datatypes.

vector
count: N
stride: N

vector
count: N

stride: N*3

blocklen: 3

N

struct
[loop H count: N J

struct
[sequence)—(count' 3 } [sequence

?3 ? ?3

j [contiguous]
count: 3

[statement)—(double J

[statement }(double]

[statement)—(double J

(a) Initial IR

(b) After specialization

(c) After compression

Figure 4. Datatype IR after each transformation stage for the left Border Exchange example from figure 2.

Hindexed datatypes are similar to structs as both specify a byte
displacement for each block. However, they add the constraint that
all subtypes must be the same datatype. While struct datatypes al-
low a different subtype to be specified for each block, hindexed
types only allow a single subtype to be specified for all the blocks.
This transformation therefore requires that every struct block has
the same subtype. If they do then the struct is specialized to an hin-
dexed datatype. Note that vector or contiguous types that represent
packing groups inside a loop may or may not represent a set of the
same type, depending on whether the values that construct them
change between loop iterations.

In our running example the struct representing the packing se-
quence can be specialized to an hindexed type as every subtype is
an MPI_DOUBLE. The struct representing the packing loop can also be
specialized to an hindexed type as all of its subtypes are the same.

4.2.2 Specialize to hvector

Hvector datatypes describe data layouts as a sequence of blocks
with a fixed byte stride between each block. This is a significant
constraint over hindexed datatypes, where each block is described
by independent byte displacement. However, it also leads to a sig-
nificant reduction in the number of arguments required to specify
the datatype (down to four from linear), and hence a significant im-
provement in its efficiency. Three preconditions must be met before
hindexed datatypes can be specialized to hvector types:

Every packing statement must access the same source array,
struct or scalar variable C, like most imperative languages, does
not provide any guarantees for the relative locations of distinct vari-
ables in memory. Since hvectors require the same stride between
the source data structure locations of each pair of consecutive pack-
ing groups, these locations must be in the same array, struct or
scalar variable.

All block lengths must be the same size Hvector datatypes only
allow one block length to be specified, which applies to every
block. The block length of each block must therefore be the same,
and this can be established by symbolically comparing the block
length expressions of each hindexed block.

The packing group must not contain a conditional If the pack-
ing group contains a conditional statement then it can not be spe-
cialized to an hvector type.

There must be a fixed distance between the locations in the source
data structure accessed by every pair of consecutive packing state-
ments As mentioned above, hvectors describe data blocks that are
located a fixed stride apart. The distance between the source data
structure locations of each consecutive packing group described by
the hvector must therefore be fixed. There are two cases to con-
sider when determining whether this is the case, namely packing
sequences and packing loops.

Packing Sequences For a packing sequence to be specialized to
an hvector, the distance between each consecutive pair of packing
groups must be the same. As described in section 4.1.3 the IR con-
struction phase computes these distances. The hindexed to hvector
specialization pass can therefore simply compare the distance be-
tween every consecutive pair of packing groups symbolically.

Consider the packing sequence from our running example in fig-
ure 2(b), which consists of three packing statements. The location
index expression of the first statement is 7 - N - 3, the index of the
second statement 7 - NV - 3 + 1, and the index expression of the third
statement ¢ - IV - 3 + 2. The distances between consecutive packing
statements are therefore:

((i-N-3+1)—(i-N-3),(i-N-34+2)—(i-N-3+1))

Determining that the expressions describing two distances are the
same requires expression simplification, which is key to the ef-
fectiveness of our algorithm. However, expression simplification is
widely used in mathematical software, and some techniques have
been discussed in the literature [3]. One simple method is to convert
each expression into a polynomial and then put the polynomial into
a canonical form. This can be done efficiently, and allows compar-
ison in linear time by comparing every term independently. After
symbolic simplification the above expression becomes (1, 1), and
since the distances are the same, the packing statements can be rep-
resented by an hvector. The hvector stride is the expression describ-
ing the distances, multiplied with the size of the elements in source
data structure. In the above example the stride therefore becomes
sizeof (double).

Packing Loops As defined earlier, packing loops only contain one
sub-group. However, the nature of loops means this sub-group may
be executed many times. Loop induction variables are variables
whose value changes from one loop iteration to the next. If the
location displacement expression of the loop’s sub-group is an
index expression that contains an induction variable, then it will
describe different memory locations in each iteration.

Linear induction variables are a sub-class of induction variables
whose values increase or decrease by a fixed amount in each loop
iteration. That is, their progression follows an arithmetic sequence.
A linear induction expression is an expression that only contains
loop constant expressions and linear induction variables, and the
linear induction variables are only combined through addition and
subtraction. The values of such an expression also follow an arith-
metic sequence. If the location index expression of the loop’s sub-
group is a linear induction expression, then it can be represented by
an hvector. The stride of the arithmetic sequence described by the
linear induction expression becomes the hvector’s stride.

Non-linear induction variables are induction variables whose
progression follows some non-arithmetic sequence. One example
is a variable that is multiplied by itself in each loop iteration, thus

following a geometric sequence. Another example is a variable
that is assigned a different value from an array in each iteration
of a loop (i.e., the array is indexed using one or more induction
variables). If non-linear induction variables are used in the location
index expression of a loop’s sub-group, then that loop can not be
described by an hvector.

Linear induction variables can be summarized using standard
approaches [5, 15], and a simple adaptation of these approaches
can be used to summarize induction expressions. These algorithms
summarize every linear induction variable as an affine function of
the form f(¢) = c1biv+ca, where biv is a basic induction variable,
and c; and c2 are both loop constant expressions. c¢; describes the
induction variables stride relative to the stride of the basic induction
variable, and co describes the induction variables value in the first
iteration of the loop.

A basic induction variable is a variable that is incremented or
decremented by a constant expression in each loop iteration. The
variable i in figure 2(b) is an example of a basic induction variable,
and is described with the affine function 1 - ¢ + 0, i.e., in terms
of itself. Note that ¢ is 0 as the induction variable has the value
0 in the first iteration of the loop. This can be determined using a
standard reaching definitions analysis [15]. Variables that are not
described in terms of themselves are called dependent induction
variables. An example of a dependent induction variable would be
j = i * 2. The affine function of j would be 2¢ + 0.

Given a list of the affine expressions describing linear induction
variables, we compute their stride. The stride of a basic induction
variable is simply the constant expression c;, while the stride of
a dependent induction variable is the stride of ¢; multiplied with
the stride of its basic induction variable. Induction expressions are
summarized the same way as dependent induction variables, and
their strides are computed the same way.

The algorithm calculates the stride for the location of every
packing statement contained by the packing loop, or any of its pack-
ing subgroups. If these strides are constant between loop iterations,
and the stride of every packing subgroup is the equal, then the pack-
ing loop’s hindexed datatype can be specialized to an hvector.

In the example in figure 2(b) the loop is a packing loop that
contains a packing sequence. The location of the packing sequence
is the same as the location of its first packing statement, namely
(grid,i-N-3). As mentioned above, i is a basic induction variable.
The affine function describing the stride of the location’s index
expression is therefore N - 3 - ¢ + 0. Since the stride of i is 1,
the stride of the location’s stride expression is NV - 3.

Since the packing sequence location is a linear induction ex-
pression the packing loop can be described by a hvector datatype,
with a stride of N*¥3*sizeof (double).

4.2.3 Specialize to vector

Vectors are like hvectors, with the exception that their strides are
given in number of elements (multiples of the subtype extent)
instead of bytes. That is, a vector’s stride can be multiplied by its
subtype’s extent to yield its stride in bytes.

This places an additional constraint on the packing code. For
an hvector to be specialized to a vector, the hvector’s stride must
be divisible by the extent of it’s subtype. One test for this is to
evaluate whether each term of the hvector’s stride contains a one or
more factors that are equal to the subtype’s extent.

If the hvector stride is divisible by the subtype extent, then the
hvector can be specialized to a vector and the vector’s stride is the
quotient of the division. A datatype’s extent defines the distance
from its first element to its last.

In our running example the stride of the hvector describing the
packing sequence is sizeof (double). Furthermore, the extent of
the MPI_.DOUBLE subtype is also sizeof (double). The hvector

stride is clearly divisible by the subtype extent, and the hvector can
therefore be specialized to a vector with a stride of 1.

The running example also contains a packing loop that has
so far been specialized to an hvector. The hvector’s subtype is
the datatype describing the packing sequence, and its extent is
3 - sizeof(double). This can clearly divide the stride of the pack-
ing loop’s hvector, which has a stride of N - 3 - sizeof (double),
and the quotient of the division is N. The packing loop’s hvector
can therefore be specialized to a vector with stride N.

4.2.4 Specialize to contiguous

The last IR transformation along the main specialization chain is to
specialize vectors to contiguous datatypes. A contiguous datatype
describes elements that are laid out contiguously in memory. The
precondition for this transformation is therefore that the stride of
the vector, which describes the distance between the start of each
block, is equal to its block length.

In our example, the stride and block length of the vector describ-
ing the packing sequence are both 1. It can therefore be specialized
to a contiguous type. However, the vector describing the packing
loop has a stride of IV and a block length of 1, and since these
differ, no further specialization is possible.

Figure 4(b) shows the Datatype IR after the specializations de-
scribed in section 4.2.1-4.2.4 has been applied. The packing loop is
described by a vector with count N, block length 1, and stride N. Its
subtype is the packing sequence, which is described by a contigu-
ous datatype with count 3 and whose subtype is MPI_DOUBLE.

4.2.5 Compress contiguous into parent block length

Contiguous types describe elements laid out contiguously in mem-
ory. However, struct datatypes provide a block length argument that
specifies the number of contiguous elements in each block.

If a struct has a contiguous subtype, then that subtype can be
folded into the struct’s block length argument. This involves three
operations. First, the subtype of the struct is replaced with the sub-
type of the contiguous type. Second, the block length argument of
the struct is symbolically multiplied by the count of the contiguous
type. Third, the contiguous type is deleted.

This transformation is applied to a struct datatype and its sub-
type after the subtype has been fully specialized, but before the
parent struct is specialized. It is therefore unnecessary to fold con-
tiguous types into the block length of other datatypes, as folding
will have taken place before specialization.

4.2.6 Merge structs and hindexed types

If a struct or hindexed datatype has a subtype of the same type,
then the subtype can be merged with the parent datatype. This
involves making the subtype’s subtype the subtype of the par-
ent, symbolically multiplying the subtype’s count with the parent’s
count, and deleting the subtype. This transformation is applied af-
ter all datatypes have been fully specialized. For example, consider
the case where the IR in figure 4(a) could not be specialized at
all. In that case the merge struct compression would merge the two
structs, resulting in one struct of size IV * 3.

4.2.7 Compress contiguous types into send count

Send functions provide a count argument to specify the number of
layouts described by the datatype to send. If the top datatype is a
contiguous type then it can be folded into the send count. This in-
volves multiplying the send count by the count of the contiguous
type, replacing the send call’s datatype with the contiguous type’s
subtype, and deleting the contiguous type. This compression trans-
formation is applied after all specialization has been completed.

MPI_Datatype hidx_t;

MPI_Aint displacements [N]; int blocklen[N];

unsigned int idx = 0;

MPI_Aint first_addr;

MPI_Get_address(&grid [0][0][0], &first_addr);

for(int i=0; i < N; i++) {
MPI_Get_address(&grid[i J[[0][0], &displacements[idx]);

displacements[idx] —= first_addr;
blocklen[idx] = 3;
idx ++;

}
MPI_Type_create_hindexed (idx, blocklen ,
MPLDOUBLE, &hidx.-t);

displacements ,

Figure 6. An hindexed type equivalent to the vector in figure 2(c).

4.2.8 Other Optimizations

Figure 5 shows the datatype specialization chain leading to the best
possible datatype — a contiguous type. However, most datatypes
we have seen in real-world code are not contiguous leading to one
of steps in the chain not passing its preconditions.

In these cases alternative specialization is sometimes possible.
For instance, struct or an hindexed types can sometimes be spe-
cialized to a struct or an indexed type with a fixed block length.
The precondition for this step is equivalent to one of the precondi-
tion for going from hindexed to hvector, since hvectors also have
fixed block lengths. Furthermore, byte strided hindexed types can
sometimes be specialized to element strided indexed types. This
specialization is similar to the specialization from hvector to vector
and its precondition is equivalent.

MPI provides support for indexed and blocked indexed datatypes.

However, since these do not seem to be prevalent in the code we
studied, we do not discuss them in detail in this presentation.

5. Packing Code Replacement

Once the algorithm from the previous section has generated a
datatype that represents the packed data, three steps remain to re-
place the packing code with the datatype. These steps are described
in the following sections, in the context of C and MPI. The steps
would be similar for other environments.

5.1 Datatype Emit

First the datatype must be emitted. Figure 2 shows how the pack-
ing code with a strided access pattern at lines 2—-6 in 2(b), is re-
placed with the code that constructs a vector datatype at lines 1-3
in 2(c). Datatype declaration, vector constructor call and commit
statements are inserted before the call to MPI_Send and a free state-
ment after. If nested datatypes are needed to replace the pack-
ing code, then these are emitted one after another, such that each
datatype is declared and constructed before datatypes that use it.

This scheme is sufficient for hvector, vector and contiguous
datatypes, but struct and hindexed types require more care. These
have a number of arguments proportional to the number of pack-
ing groups they describe, and must therefore be produced with
logic that is equivalent to those groups. For example, an hindexed
datatype representing the packing loop in figure 2(b), requires an
hindex construction loop with the same structure. However, instead
of packing values from the grid into the packing buffer, the hin-
dexed construction code computes and packs byte displacements
into a displacement buffer. Figure 6 shows the resulting code, as-
suming the three packing statements are still specialized to a con-
tiguous type and compressed into the block lengths.

Consider a case where the three packing statements are only
specialized to a vector. In this case, the vector construction code
could have been hoisted out of the loop. Such hoisting is important

static MPI_Datatype vec-t;

static int init = 0; static int _N;
if (N!= N || linit) {
if (init) MPI_Type_free(&vec_t);
init = 1; _N = N;

MPI_Type_vector(N, 3, N * 3, MPIL.DOUBLE, &vec_t);
MPI_Type_commit(&vec_t);

Figure 7. Boilerplate code to prevent redundant type regeneration

for the performance of the datatype construction code, since it
prevents the same datatype from being reconstructed in each loop
iteration. The requirement for hoisting datatype construction code
out of a loop is that no loop induction variables are used to construct
it. This can easily be established, given that these variables are
already known from the IR construction.

An issue with the datatype construction codes presented thus far
is that they regenerate constant datatypes for every send. In most
cases we have observed, packing codes pack the same elements ev-
ery time they are executed. Datatype construction is not without
cost, especially for hindexed and struct types, and to be performing
the code should not unnecessarily regenerate datatypes. One solu-
tion, that is easy to automate, is to insert lazy initialization code that
only constructs a datatype the first time it is executed, and when the
arguments used to construct it are changed. Thus, the datatype, an
init flag, and the previous values of each variable used to construct
the datatype must be cached. In C, these can be put in the static
code segment, by declaring them using the static keyword. Fig-
ure 7 demonstrates this approach for the construction of the vector
in figure 2(c).

5.2 Packing Code Consumer Rewrite

Once the datatype has been emitted a refactoring tool should at-
tempt to alter the code that consumes the packed data to instead use
the datatype. In the compiler scenario the compiler must do this, or
else there is no use in emitting the datatype in the first place.

This step requires matching the packing code to a packing code
consumer, and then ensuring the packing buffer is not overridden
in between. Furthermore, for unpacking codes in MPI, the number
of received elements must match the size of the unpacked data.
However, if it does not then a tool can append an overflow buffer to
the datatype to catch redundant received data.

Figure 2 shows how the MPI_Send() is rewritten to use the
datatype. The address argument is set to the address of the first
packing statement in the first iteration of the loop, the count argu-
ment to 1, and the datatype argument to the new datatype, vec_t.

5.3 Dead Packing Code Elimination

After the datatype has been emitted and the packing code con-
sumers have been altered, dead packing code remains which should
be removed through a dead packing code elimination pass. Dead
code elimination has been extensively studied before [15], and is
therefore not covered in this text.

6. Evaluation

To evaluate the usefulness our algorithm we answer the following
experimental questions in this section:

1. Is the algorithm applicable to real-world codes?
2. Does the algorithm produce compact datatypes?

3. Is the algorithm fast enough for interactive use?

6.1 Methodology

To answer the first question, we implemented our algorithm in a
refactoring tool for C with MPI. We then applied the tool to every
packing and unpacking code block in a version of the MG, LU, BT
and SP applications in the NAS parallel benchmarks. Since these
applications are written in Fortran, we first ported their communi-
cation kernels to C. Every send and receive in these applications
sends packed data, or receives data that is then unpacked.

To answer the second question, we first inspected the datatypes
and confirmed that they were compact. We then collected statistics
from the NAS parallel benchmarks, showing how many datatypes
each optimization applied to. These results also provides insight
into the structure of the data communication in these applications.

To evaluate the efficiency of datatypes on contemporary sys-
tems, and to evaluate the importance of optimizing datatypes, we
ran the benchmarks with optimized and unoptimized datatypes pro-
duced by our tool on the Cray XT-5 partition of the Jaguar system
at Oak Ridge National Lab. We then compared the execution time
with that of the original packing code.

To answer the third question, we measured the time it took for
our refactoring tool to transform packing and unpacking codes.

6.1.1 Implementation

The refactoring tool was implemented as a prototype refactoring
plugin on top of the Eclipse CDT IDE.! We used Eclipse 3.6.1 and
a patched version of CDT 7.0.2. The tool has two modes.

In the first mode the user marks packing code and a send call, or
unpacking code and a receive call, in the text editor. She then asks
Eclipse for transformation suggestions through the Eclipse Quick
Assist system. Eclipse then invokes our plugin, and if the code
passes our preconditions then one of the options will be REPLACE
PACKING CODE WITH DATATYPE CODE. If the user selects this
option then our refactoring plugin analyses the packing code and
produces a matching datatype representation. It then rewrites the
packing code to equivalent code that constructs and uses a datatype,
as was demonstrated in figure 2.

The second mode works mostly the same way as the first mode,
but instead of selecting packing code and a send call, the user only
selects packing code. As the tool can not distinguish between pack-
ing and unpacking code when a send or a receive call is not marked,
it provides two options. The first option converts packing code,
while the second option converts unpacking code. Depending on
which option the user selects, the tool generates a datatype describ-
ing the packed or unpacked data. It also creates a comment with
a send or a receive call, where the three first arguments (address,
count and datatype) are provided. It is then up to the user to copy
the datatype to the site of the send or receive, and to copy the ar-
guments in the comment into the send or receive call. This mode
was useful when porting the NAS applications, where the applica-
tions often start receives and then performed sends, before calling
MPI_Wait () and unpacking the received data.

The tool is implemented in Java and consist of nearly 7000
SLOC. It operates on the CDT AST and performs expression sim-

plification using the Symja Open Source Library version 0.0.13 [21].

6.1.2 NAS

The NAS parallel benchmarks are a set of programs designed
to evaluate the performance of parallel supercomputers [1]. The
source code for seven of these are made available with NAS 3.2.
Of these MG, LU, SP and BT contains point-to-point communi-
cation (sends and receives) of mostly non-contiguous data, where

I'The refactoring tool to convert packing code to datatypes, as well as
the experimental data can be found at http://web.mit.edu/fredrikk/
www/datatypes.html

packing code is used to serialize the data instead of datatypes [13].
We applied our tool to the packing code of every send call, and the
unpacking code of every recv call, in these applications.

The MG application uses a multigrid method to compute the
solution of the three-dimensional scalar Poisson equation. LU is a
simulated CFD application which uses symmetric successive over-
relaxation (SSOR) to solve a block lower triangular-block upper
triangular system of equations resulting from an unfactored implicit
finite-difference discretization of the Navier-Stokes equations in
three dimensions. SP an BT each solves three sets of uncoupled
systems of equations, using multi-partition schemes [1].

These applications contain a total of 48 sends and 48 receives.
Every send sends packed data, and the data from every receive is
unpacked. Thus, NAS contains a total of 96 packing and unpacking
codes. The packed/unpacked data structures are 2—6 dimensional
arrays, while the packing buffers are arrays with 1 to 3 dimensions.
The packing code range from simple loops containing one pack-
ing statement, to several deeply nested loops containing multiple
packing statements, and packing from multiple data structures.

Appendix A provides a case study of how the tool converts one
of the packing codes in the LU benchmark to datatypes.

6.2 Results

The NAS applications contain 96 packing code blocks. Half of
these pack data that is sent using MPI_Send or MPI_Isend, while the
other half unpack data received through MPI_Recv or MPI_Irecv. We
applied our tool to every packing and unpacking code block.

In 90 cases our tool was able to transform the code with little or
no programmer assistance, yielding a success ratio of 94%. In 30
cases precondition two was not met, but in each case it was estab-
lished through one loop split. In all of the unpacking codes, except
four in LU, the data was received using MPI_Irecv and the unpack-
ing code was located after the corresponding MPI_Wait. In these
cases we used our tool in its second mode, saving us from con-
structing the datatype and only leaving us the work of copying the
datatype to the site of the receive call. This highlights an important
strength of a refactoring tool. Unlike a compiler, where each trans-
formation must be fully automated or not at all, a refactoring tool
supports a workflow where automated and manual transformations
are interleaved. Thus, a refactoring tool can automate transforma-
tions that are hard for a programmer (create datatypes), while the
programmer can perform tasks that are easy for her (move code).

In one application, MG, 12 sends and 12 unpacking codes were
mapped to a single MPI_Recv, through the use of MPI_ANY_SOURCE. In
this case additional effort was required to duplicate the MPI_Irecv.
Furthermore, in some cases more data was sent to the MPI_Irecv
than was unpacked by the packing code. This required the program-
mer to extend the datatypes produced by our tool with a contiguous
buffer to hold the redundant received data. However, this feature
can easily be implemented as an extension to our tool if this corner
case shows up in other codes.

Our algorithm was not applicable in six cases, which were all
unpacking codes in the SP application. The reason why these codes
could not be represented by datatypes was that the “unpacking
buffers” were never unpacked, but instead used in the computation.

Figure 8 present statistics for the 90 packing and unpacking
codes that our tool transformed. As illustrated by the pie chart in
the center, most of the packing groups are structured, with only
25% requiring an hindexed or struct type. The hindexed and struct
types were mostly located at the top of the datatype hierarchies. As
shown in the left pie chart, 41% of the resulting datatypes were of
these types. All contiguous types were compressed into blocklen
or send/recv count arguments and are therefore not explicit in the
emitted code. The bar chart shows that the MG and LU communi-
cation is very structured, and mostly transfers vector and contigu-

http://web.mit.edu/fredrikk/www/datatypes.html
http://web.mit.edu/fredrikk/www/datatypes.html

Datatypes

Datatype IR Nodes

40

30

20

Datatype IR Nodes

[l Contiguous
M Vector

Hvector
B Hindexed
M Struct

LU BT SP

Figure 8. Tool statistics when applied to 90 packing and unpacking codes in the NAS parallel benchmarks. The pie chart on the left shows
the type distribution of the resulting 90 top-level datatypes that are used in communication calls. The pie chart in the center shows the
distribution of the 361 datatype IR nodes that contribute to these hierarchical datatypes. Each IR node represents one packing group. The bar
chart on the right shows the number of each IR node type for each of the benchmark applications.

3s
21 % MG
2s 1.89
1.58
1s 0.92
0.59
0.76 0.76
0.50 .c.a
64 128
40s
34.94 LU
30s
20.89
20s
18.58
11.19 10.83
10s
046 I 934 105 Iu.u,
64 128
Packing Code M Unoptimized Optimized

Figure 9. Application running times on 16, 32, 64 and 128 pro-
cessors of Jaguar. Running times were collected for the original
packing code, for unoptimized datatypes (structs) produced by our
tool, and for optimized datatypes (figure 8) produced by our tool.

ous types. SP is the least structured with a high number of struct
and hindexed types. It was also the only benchmark that contained
packing codes that did not meet our algorithm’s preconditions.

The unoptimized Java implementation of our algorithm took on
average 35 ms to transform each packing/unpacking code block,
with the fastest transformation taking 5 ms and the slowest taking
112 ms. Thus, the refactoring tool appears instantaneous to the user.
The measurements were performed on a MacBook Pro 6.2, with an
Intel Core i7 processor clocked at 2.66 GHz. Transformation times
were correlated with the number of packing groups that had to be
specialized, and the complexity of their expressions. We manually
inspected the packing code produced by our tool and confirmed
that it was correct and compact. Furthermore, we ran the resulting
code on two clusters and used the verification feature of the NAS
applications to verify that the tool output was correct.

Figure 9 shows the running time for three versions of the MG
and LU applications, running on 16, 32, 64 and 128 processors
of the Jaguar system. The first version is the original MG and
LU code which contains packing code. In the other versions our
tool has been used to replace packing code with datatypes. In
the first of these we configured our tool to only apply the merge
structs optimization, so that each packing and unpacking code was
replaced with one struct datatype. Thus, our tool inserted logic to
pack the addresses of each element to be sent into an displacement
array as demonstrated in figure 2(c). In the final version our tool
applied all optimizations, producing the datatypes from figure 8.

As shown, the unoptimized datatypes perform significantly
worse than the packing code on Jaguar, causing the running time of
the applications to increase by up to 26%. However, once the full
range of optimizations described in sections 4.2.1-4.2.7 has been
applied, the performance of the applications matches or outper-
forms the packing code versions by up to 1.28%. Phrased another
way, our datatype optimizations increase the performance of these
applications with up to 21% over non-optimized datatypes. These
results shows that the datatype optimizations presented in this pa-
per are essential for automatically generated datatypes. Note that
the reported running time is for the whole applications. In these ap-
plications communication only take up a small part of the running
time, so the pure communication speedups are higher.

Keep in mind that Jaguar is a contemporary system, that does
not utilize hardware support to speed up non-contiguous transfers.
As discussed in section 2, several researchers have shown that
with proper support the performance of non-contiguous transfers
can be improved by up to 6.8X. We provide these experiments to
show that datatypes can match the performance of packing code on
contemporary systems. However, the real value of datatypes will be
on future machines, and this work will help programmers be ready.

7. Future Work

Numerous lines of research could be inspired by this work. We will
first discuss future work that are natural extensions of this work.
We will then suggest research projects that are related to datatypes,
but that are not direct extensions of this work.

This work presents a general algorithm, that would fit as well
into a compiler as a refactoring tool. A natural next step is therefore
to implement it in a compiler, so that programming models without
a means of specifying datatypes can take advantage of advance
HW transfer capabilities. A compiler can not rely on the user,
and must automatically match packing statements to sends and
unpacking statements to receives. The latter is complicated by
asynchronous receives, where the packing code is located after
the wait barrier. In such cases a compiler must match receives to

their corresponding wait. Lastly, a compiler implementation should
perform enabling transformations, such as loop split and inlining,
and post-transformations such as dead packing code elimination.

The author’s experience and anecdotal evidence suggests that
datatypes are hard to construct. This motivated an automated ap-
proach, even for an environment such as MPI that expose datatypes
to the programmer. However, a user study to quantify the benefits
of automation has not yet been conducted, and would provide a
useful contribution to the datatype literature.

Our algorithm can handle packing code that packs data that
is transferred through point-to-point communication calls, moved
through RDMA operations, and written to files using 1O operations.
Future work includes handling code that packs data that is trans-
ferred using collectives such as MPI’s AllToAll. These AllToAll
collectives take a datatype, and sends one of these data layouts to
each rank that participate in the exchange. The AllToAll contains
an implicit contiguous type specifying the relative location of the
data going to each rank. However, in certain cases, such as ma-
trix transpose, it is necessary to send overlapping non-contiguous
data to the different participants. Since the current version of MPI’s
AllToAll implicitly exchanges contiguous layouts, the only way to
support this that is known to the authors is to tweak the extent of the
top datatype [10]. An extension to our algorithm would detect this
case and convert the top hvector type resulting from this use into
a contiguous type by tweaking the extent of its subtype. Knowing
that a contiguous type is implicit in the AllToAll, it could then be
removed before code is emitted. Future work also includes investi-
gating whether similar extensions are needed for other collectives.

Our algorithm targets packing code and converts it to datatype
code. Packing code is the most common way to transfer non-
contiguous data if datatypes are not used or available. The reason
for this is that packing code reduces the number of messages to
one, thus minimizing latency. However, an alternative approach
to transfer non-contiguous data is to send one message per non-
contiguous block, perhaps using asynchronous pipelined messages.
Future work could extend our algorithm to detect this pattern in
user code, and convert the non-contiguous sends to a single send
that uses datatypes to describe the layout. This would up free the
runtime to use pipelined messages where this makes sense, to pack
data where this is more efficient (e.g., on a system without support
for asynchronous sends), or non-contiguous transfer support in
hardware where this is available.

The work presented in this paper converts packing or, by exten-
sion, unpacking code to datatype code by only considering one side
of the communication. This imposes a strict requirement on the or-
dering of the elements in the layout described by the datatype. That
is, the datatype must describe a layout where every element are sent
or received in the same order as they appeared in the original pack-
ing buffer. However, if sends and receives could be matched then
both sides of the communication could be changed simultaneously.
This would free the algorithm from the ordering constraint and turn
it into an optimization process. Datatypes element ordering could
then be optimized both for our notion of datatype efficiency (least
number of arguments), and for improved memory access patterns.

Datatypes are hard to construct or change, and the programmer
has little help if the first attempt was incorrect. There are no effec-
tive way to debug datatypes, and the programmer is left guessing
what might have gone wrong. A useful future work is therefore to
build a datatype debugger. Such a debugger could print the memory
locations that are sent. Moreover, with sufficient knowledge of the
user data structure, it could even show the layout of the data de-
scribed by the datatype textually or graphically. Information about
the user data structure could either be automatically extracted from
the program, if it is regular enough, or provided by the user. Con-
sider code that sends the south face of a three dimensional mesh.

A datatype debugger could present a 3D visualization showing the
mesh with the face in question colored red.

Many current systems with MPI support do not provide hard-
ware facilities for non-contiguous transfers. Furthermore, systems
that do provide such capabilities often do not exploit them. This
creates a vicious circle: Programmers do no use datatypes as
they do not provide performance gains; and vendors do not op-
timize datatypes as they are not used by current codes. Such sys-
tems instead pack the data inside the MPI library by interpreting
the datatype. Such an interpreted solution often performs slightly
worse than user provided C packing code that has been compiled
to machine code. There are two promising ways to get around
this. The first is to provide an MPI-aware offline compiler that can
compile datatypes to optimized machine packing code. The sec-
ond approach is to embed an online datatype compiler into the
MPI_Type_Commit function call. This approach is preferable as it
is transparent to the programmer, easily deployable, and can pro-
vide increased performance without recompiling application code.
The online compiler would be able to produce code that matches
compiled user packing code, or that even outperforms it if it can
take advantage of runtime information to produce more optimal
machine code than is possible at compile time. Furthermore, the
cost of compilation over the lifetime of an execution is unlikely to
be a bottleneck, as datatypes are typically generated once and then
re-used in every communication.

8. Conclusions

We have described in this paper an algorithm for transforming
packing or unpacking messages into a compact datatype that de-
scribes the data layout. We have also described and evaluated an
implementation of this algorithm within the Eclipse framework, as
a refactoring tool for parallel codes using MPI. We expect that such
refactorings will facilitate the correct use of compact MPI datatypes
thus enabling programmers to reduce communication overheads.
We plan to make this refactoring available within Eclipse, as part
of a refactoring environment for parallel code tuning.

Transfers of noncontiguous data are prevalent in many paral-
lel codes; efficient “scatter-gather” capabilities that optimize such
transfers and reduce the amount of memory traffic generated by
such transfers will be essential in future HPC architectures. We ex-
pect that future high performance network interfaces and/or future
memory controllers will have enhanced scatter-gather capabilities,
enabling direct transfer of noncontiguous data from memory to the
network interface or to the CPU. Datatypes provide a mean of com-
munication between the executing code and such a smart scatter-
gather engine. The transformations we outlined will facilitate this
communication — as part of a compiler or a run-time capability.

References

[1] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and
M. Yarrow. The NAS parallel benchmarks 2.0. Technical Report NAS-
95-020, NASA Ames Research Center, 1995.

[2] D. Bonachea. Gasnet specification, v1.1. Technical Report UCB/CSD-
02-1207, U.C.Berkeley, 2002.

[3] B. Buchberger and R. Loos. Algebraic simplification. Computer
Algebra - Symbolic and Algebraic Computation, pages 11-44, 1982.

[4] S. Byna, W. Gropp, X.-H. Sun, and R. Thakur. Improving the perfor-
mance of MPI derived datatypes by optimizing memory-access cost.
In International Conference on Cluster Computing, 2003.

[5] J. Cocke and K. Kennedy. An algorithm for reduction of operator
strength. Communications of the ACM, 20(11):850-856, 1977.

[6] K. D. Cooper, L. T. Simpson, and C. A. Vick. Operator strength re-

duction. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(5):603-625, September 2001.

[7] A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany. Transformations to
parallel codes for communication-computation overlap. In The Inter-
national Conference for High Performance Computing, Networking,
Storage, and Analysis, 2005.

[8] D. Goujon, M. Michel, J. Peeters, and J. Devaney. AutoMap and
AutoLink: Tools for communicating complex and dynamic data-
structures using MPI. In Lecture Notes in Computer Science, volume
1362, 1997.

[91 W. Gropp, E. Lusk, and D. Swider. Improving the performance of MPI
derived datatypes. In MPI Developer’s Conference, 1999.

[10] T. Hoefler and S. Gottlieb. Parallel zero-copy algorithms for fast
fourier transform and conjugate gradient using MPI datatypes. In
Recent Advances in the Message Passing Interface, 2010.

[11] InfiniBand Trade Assoc. Infiniband architecture specification 1.1.

[12] F. Kjolstad and M. Snir. Ghost cell pattern. In Proceedings of the 2010
Workshop on Parallel Programming Patterns, 2010.

[13] Q. Lu, J. Wu, D. Panda, and P. Sadayappan. Applying MPI derived
datatypes to the nas benchmarks: A case study. In Proceedings of the
International Conference on Parallel Processing Workshops, 2004.

[14] J. Moses. Algebraic simplification a guide for the perplexed. In Pro-
ceedings of the second ACM symposium on Symbolic and algebraic
manipulation, 1971.

[15] S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[16] J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory
copy library for distributed array libraries and compiler run-time sys-
tems. volume 1586 of Lecture Notes in Computer Science.

[17] R. W. Numrich and J. Reid. Co-Array Fortran for parallel program-
ming. ACM SIGPLAN Fortran Forum, 1998.

[18] OFED. http://www.openfabrics.org/index.php.

[19] R. Ross, N. Miller, and W. Gropp. Implementing fast and reusable
datatype processing. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, 2003.

[20] G. Santhanaraman, J. Wu, and D. K. Panda. Zero-copy MPI derived

datatype communication over InfiniBand. In Recent Advances in
Farallel Virtual Machine and Message Passing Interface, 2004.

[21] Symja, June 2011. URL http://code.google.com/p/symja/.

[22] N. Tanabe and H. Nakajo. Acceleration for MPI derived datatypes
using an enhancer of memory and network. In IEEE International
Symposium on Parallel Distributed Processing Workshops, 2010.

[23] W. Tansey and E. Tilevich. Efficient automated marshaling of C++
data structures for MPI applications. In International Symposium on
Parallel and Distributed Processing, 2008.

[24] UPC Consortium. UPC language specifications, v1.2. Technical
Report LBNL-59208, Lawrence Berkeley National Lab, 2005.

[25] J. Worringen, A. Gaer, and F. Reker. Exploiting transparent remote
memory access for non-contiguous- and one-sided-communication. In
Workshop on Communication Architecture for Clusters, 2002.

[26] J. Wu, P. Wyckoff, and D. Panda. High performance implementation

of MPI derived datatype communication over infiniband. In /EEE In-
ternational Symposium on Parallel and Distributed Processing, 2004.

http://www.openfabrics.org/index.php
http://code.google.com/p/symja/

A. Datatype Extraction Case Studies

This section provides two case studies of how our tool analyzes and
converts packing code to datatypes. These case studies are meant to
supplement the rest of this report, and to help implementers. Both
of the case studies are taken from the NAS parallel benchmarks [1],
and highlights different aspects of our technique.

The first case study is presented in section A.1, and is taken from
the NAS LU application. It demonstrates how a very regular border
exchange code is converted to the Datatype IR and optimized. It
then shows how the packing code is replaced with code to initialize
the corresponding datatype, and also demonstrates how lazy initial-
ization code can be added to ensure the datatype is not regenerated
for every send operation.

The second case study is more complex and is taken from the
SP application, which has the most irregular packing code of the
applications in the NAS parallel benchmarks. The SP packing code
contains an if statement, thus requiring an indexed type and also
have datatypes whose construction depends on outer loop induction
variables, thus preventing full hoisting. Section A.2 contains this
case study. In the interest of brevity we have not shown the lazy
initialization code for this case study, but it is similar to the one
demonstrates for the first case study.

Note that we have chosen these case studies because they
demonstrate different features of our tool, and they are selected
to be significantly more complex than the illustrative example. The
first demonstrate packing sequences, specialization, compression
and lazy code insertion, while the second demonstrates code that
can only be specialized to struct and hindexed types, as well as
hoisting. The fact that both require loop splits is coincidental, and
we would remind the reader that in the NAS benchmarks, only one
third of the packing code blocks required loop splits.

A.1 LU Border Exchange

This section provides a case study of how our tool analyzes and
converts a packing code block from the NAS LU application to
datatype code.

The exchange_3.f communication kernel in the NAS LU ap-
plication contains four point-to-point send/receive pairs that per-
form border exchanges in the north-south and east-west directions.
The borders are 2-dimensional faces of a 3-dimensional structured
mesh. Each cell in the mesh has five values, so the resulting array
is 4-dimensional.

Figure 10 shows the original Fortran code for the south border
send. The loops pack two 2-dimensional faces into the packing
buffer. The first face is packed into the buf packing buffer starting
at location 1, while the second face is packed into the same buffer
starting at location ny#*nz. The first face is packed by the statements
on line 60—64, while the second face is packed by the statements on
line 65-69.

Figure 11 shows the code ported to C. The original Fortran code
used Fortran’s convenient array syntax to pass a 4-dimensional
array into the communication kernel. However, when this array
is passed to C code it becomes a 1-dimensional pointer. In the
ported code this pointer is accessed using the standard approach for
treating 1-dimensional arrays as multi-dimensional arrays, which
is to multiply each index with the inner dimensions. In practice
a programmer might hide this indexing logic behind a macro or
a function, in which case our tool would need to either expand
the macro/inline the function, or analyze the macro/function to
figure out the index expression. However, macro expansion and
function inlining are known techniques and are not covered here.
Furthermore, since our tool is a refactoring tool we can rely on the
programmer to perform these operations.

As each iteration of the loops packs into two different parts of
the packing buffer, this code does not satisfy the third precondition

from section 4.1.1. To establish this precondition the programmer
must therefore perform one loop split to produce the code in fig-
ure 12.

Once the third precondition has been established our tool can
apply our algorithm to the packing code to construct an equivalent
datatype. Our tool first summarizes the packing groups in the code,
shown in figure 13(a). Once the packing groups have been con-
structed the tool assigns a struct datatype to every packing loop and
packing sequence. These are then specialized and compressed as
described in section 4.2, yielding the datatypes in 13(b). The inner
packing sequences are described with contiguous datatypes that are
compressed into the block length of the parent datatype (vec-_t). The
inner loop is specialized to a vector, while the outer loop can only
be specialized to an hvector. Since both loops describe the same
layout they can be described with the same datatypes (vec_t and
hvec1_t). Finally, the hvector hvec_t, with a count of 2, describes
the packing sequence containing the two loops.

The datatypes in the IR are used by our tool to emit the code in
figure 14. Note that the tool does not currently perform dead-code
elimination of the packing loops (lines 51-70 in figure 12), but for
presentation purposes we have manually removed these. For the
same reasons, we also added newlines between the construction
of each datatype, although the tool does not do this for technical
reasons.

One issue with the code in figure 14 is that it constructs a
new datatype every time the south border is sent. This is costly
and unnecessary as the datatype can often be reused. Since our
tool is a refactoring tool we can leave to the user the task of
ensuring the datatypes are not unnecessarily re-created. Such tasks
are typically easy for users. However, a compiler that implements
our algorithm can not rely on the user to modify its output, and
should therefore address this problem. We therefore present two
solutions to this problem. Both solutions employ lazy initialization
to prevent unnecessary re-construction of datatypes.

Figure 15 shows the first solution, which we call reduced lazy
initialization. The hvec_t datatype is added to the static code seg-
ment through the use of the static keyword. Furthermore, a static
decision variable is used to only construct the datatype the first time
the code is executed. Note that this solution requires that the vari-
ables that are used to construct the datatype, ny, nz, isiz1l and
isiz2, are not changed before any subsequent execution of the
communication code. Using this solution the user, or an automated
tool that insert this check, would have to verify that this is the case.
This is usually easy for a user, who knows a lot about the usage
patterns of her variables. However, it would be hard for a tool to
determine this, as it would require whole program analysis.

The second solution requires no additional analysis. We call this
the full lazy initialization strategy, and it is the one shown in fig-
ure 7 and discussed in section . This is possible by adding additional
code to dynamically check at runtime that none of these variables
have been changed between executions of the communication code.
Figure 16 shows these checks for the south border send example.
The value of the variables that are used to construct the datatype
are stored in static variables when the datatype is constructed. If
the communication code is executed again with different values
for these variables, then the datatype is re-constructed. Adding this
scaffolding is trivial for a tool, and we plan to add this feature as an
option in our refactoring tool.

56 do k = 1,nz

57 do j = 1,ny

58 iposl = (k—1)*ny + j

59 ipos2 = iposl + nyxnz

60 buf(1l,iposl) = g(1,nx—1,j,k)
61 buf(2,iposl) = g(2,nx—1,j.k)
62 buf(3,iposl) = g(3,nx—1,j,k)
63 buf(4,iposl) = g(4,nx—1,j,k)
64 buf(5,iposl) = g(5,nx—1,j,k)
65 buf(1l,ipos2) = g(1l,nx,j,k)
66 buf(2,ipos2) = g(2,nx,j,k)
67 buf(3,ipos2) = g(3,nx,j,k)
68 buf(4,ipos2) = g(4,nx,j,k)
69 buf(5,ipos2) = g(5,nx,j,k)
70 end do

71 end do

72

73 call MPLSEND(buf,

74 > 10*ny*nz,

75 > dp_-type ,

76 > south ,

77 > from_n ,

78 > MPLCOMM_WORLD,
79 > IERROR)

Figure 10. LU South Border Exchange (Fortran)

for (k = 1; k <= nz; k++) {

for (j = 1; j <= ny; j++) {
iposl = (k—D)xny + j;
ipos2 = iposl + ny*nz;
buf [(ipos]l —1)x5] = gl(k—1)*(isiz2 +4)*(isizl +4)%5
buf[(iposl —1)*5 + 1] = g[(k—1)*(isiz2 +4)*(isiz] +4)*5
buf[(ipos]l —1)x5 + 2] = g[(k—1)*(isiz2 +4)*(isizl +4)%5
buf[(iposl —1)x5 + 3] = g[(k—1)x(isiz2+4)x(isiz] +4)%5
buf[(iposl —1)x5 + 4] = g[(k—1)*(isiz2+4)*(isiz] +4)*5
buf [(ipos2 —1)x5] = gl(k—1)*(isiz2 +4)*(isizl +4)%5
buf[(ipos2 —1)x5 + 1] = g[(k—1)x(isiz2+4)x(isiz] +4)%5
buf[(ipos2 —1)x5 + 2] = g[(k—1)*(isiz2 +4)*(isizl +4)%5
buf[(ipos2 —1)x5 + 3] = g[(k—1)*(isiz2 +4)*(isizl +4)%5
buf [(ipos2 —1)x5 + 4] = g[(k—1)*(isiz2 +4)*(isizl +4)%5
}
MPI_Send (buf,
10xny*nz,
MPI_DOUBLE,
south ,
from_n ,
MPIL.COMM_WORLD) ;

(j+1)*(isizl +4)%5
(j+1)x(isiz1+4)*5
(j+1D)*(isiz 1 +4)*5
(j+1)*(isizl +4)%5
(j+1)x(isiz1+4)*5
(j+D)*(isizl+4)*5
(j+1)*(isizl +4)%5
(j+1D)*(isizl +4)*5
(j+1)x(isiz1+4)%5
(j+1D)*(isizl+4)*5

T

e i S S

(nx)*5
(nx)*5
(nx)*5
(nx)*5
(nx)*5
(nx+1)*5
(nx+1)*5
(nx+1)%5
(nx+1)*5
(nx+1)*5

+ o+ + o+

+ o+ + o+

Figure 11. LU Border Exchange after port to C

51| for (k = 1; k <= nz; k++) {
52 for (j = 1; j <= ny; j++) {
53 iposl = (k—D)xny + j;
54 buf [(ipos]l —1)x5] = gl(k—=1D)=*(isiz2 +4)*(isizl +4)*5 + (j+1)*(isizl +4)*5 + (nx)=*5 1;
55 buf [(iposl —1)x5 + 1] = g[(k—1)*(isiz2 +4)*(isiz1+4)*5 + (j+1)x(isizl+4)*5 + (nx)x5 + 17;
56 buf [(iposl —1)x5 + 2] = g[(k—1)*(isiz2 +4)*(isiz1+4)*5 + (j+1)*(isizl+4)*5 + (nx)*5 + 2];
57 buf [(ipos]l —1)x5 + 3] = g[(k—1)*(isiz2 +4)*(isiz1+4)*5 + (j+1)x(isizl+4)*5 + (nx)x5 + 31];
58 buf[(iposl —1)x5 + 4] = g[(k—1)x(isiz2+4)x(isizl+4)*5 + (j+1)x(isizl +4)*5 + (nx)*5 + 47;
59 }
60| }
61| for (k = 1; k <= nz; k++) {
62 for (j = 1; j <=ny; j++) {
63 ipos2 = (k—1)*ny + j + nyxnz;
64 buf [(ipos2 —1)x5] = gl(k—1)*(isiz2 +4)x(isiz1+4)*5 + (j+1)*(isizl+4)*5 + (nx+1)*5 1;
65 buf[(ipos2 —1)x5 + 1] = g[(k—1)*(isiz2 +4)*(isiz1+4)*x5 + (j+1)*(isizl+4)*x5 + (nx+1)*5 + 1];
66 buf[(ipos2 —1)x5 + 2] = g[(k—1)*(isiz2 +4)x(isiz1+4)*5 + (j+1)x(isizl+4)*5 + (nx+1)x5 + 2];
67 buf[(ipos2 —1)x5 + 3] = g[(k—1)*(isiz2 +4)*(isiz]l +4)*5 + (j+1)*(isizl+4)*5 + (nx+1)*x5 + 3];
68 buf [(ipos2 —1)x5 + 4] = g[(k—1)*(isiz2 +4)*(isiz1+4)x5 + (j+1)x(isizl+4)*x5 + (nx+1)x5 + 4];
69 }
70| }
71
72| MPI_Send (buf,
73 10%ny=*nz,
74 MPI.DOUBLE,
75 south ,
76 from_n ,
77 MPLCOMM_WORLD) ;
Figure 12. LU Border Exchange after loop split
Packing Sequence hvector (hvec_t)
Packing Loop hvector (hvecl_t)
Packing Loop vector (vec_t)
Packing Sequence contiguous (compressed)
Packing Statement MPI_DOUBLE
Packing Statement MPI_DOUBLE
Packing Statement MPI_DOUBLE
Packing Statement MPI_DOUBLE
Packing Statement MPI_DOUBLE
Packing Loop hvector (hvecl_t)
Packing Loop vector (vec_t)
Packing Sequence contiguous (compressed)
Packing Statement MPI_DOUBLE
Packing Statement MPI_DOUBLE
Packing Statement MPI_.DOUBLE
Packing Statement MPI_DOUBLE
Packing Statement MPI_.DOUBLE
(a) Packing Groups (b) Datatypes
Figure 13. LU Border Exchange IR
54| MPI_Datatype vec-t;
55| MPI_Type_vector(ny, 5, 5 % (4 + isizl), MPI.DOUBLE, &vec_t);
56
57| MPI_Datatype hvecl_t;
58| MPI_Type_create_hvector(nz, 1, 5 % (4 + isizl) % (4 + isiz2) = sizeof (double), vec_t, &hvecl_t);
59
60| MPI_Datatype hvec_t;
61| MPI_Type_create_hvector(2, 1, 5 % sizeof (double), hvecl_t, &hvec_t);
62| MPI_Type_commit(&hvec_t);
63
64| MPI_Send(&g[5 * nx + 10 = (4 + isizl)], 1, hvec_t, south, from_n, MPLCOMM_WORLD);
65| MPI_Type_free(&hvec_t);

Figure 14. LU Border Exchange after tool conversion to datatypes, and user dead code elimination of the packing loops

54| static MPI_Datatype hvec_t;

55| static int init = 0;

56| if (!init) {

57 init = 1;

58

59 MPI_Datatype vec_t;

60 MPI_Type_vector(ny, 5, 5 * (4 +

61

62 MPI_Datatype hvecl_t;

63 MPI_Type_create_hvector(nz,

64

65 MPI_Type_create_hvector(2, 1, 5 x sizeof (double),
66 MPI_Type_commit(&hvec_t);

67| }

68

69| MPI_Send(&g[5 * nx + 10 = (4 + isizl)], 1, hvec-t,

isizl), MPILDOUBLE, &vec_t);

1, 5% (4 + isizl) * (4 + isiz2) x sizeof (double),

vec_t, &hvecl_t);

hvecl_t, &hvec_t);

south , from_n, MPLCOMM_WORLD);

Figure 15. LU Border Exchange with the reduced lazy initialization strategy (assumes ny, nz, isiz1 and isiz2 are not redefined between

executions)

54| static MPI_Datatype hvec_t;

55| static int init = 0, ny_v, isizl_v, nz_v, isiz2_v;
56| if (ny != ny_v || isizl != isizl_v || nz != nz_v || isiz2 != isiz2_v || !linit) {
57 if (init) MPI_Type_free(&hvec_t);

58 init = 1;

59 ny_-v = ny;

60 isizl_v = isizl;

61 nz_v = nz;

62 isiz2_v = isiz2;

63

64 MPI_Datatype vec-_t;

65 MPI_Type_vector(ny, 5, 5 % (4 + isizl), MPIDOUBLE, &vec_t);
66

67 MPI_Datatype hvecl_t;

68 MPI_Type_create_hvector(nz,

69

70 MPI_Type-create_hvector(2, 1, 5 x sizeof (double),

71 MPI_Type_commit(&hvec_t);
721 }

MPI_Send(&g[5 * nx + 10 * (4 + isizl)], 1,

1, 5 %« (4 + isizl) x (4 + isiz2) x sizeof (double),

hvec_t,

vec_t, &hvecl_t);

hvecl_t, &hvec_t);

south, from_n, MPLCOMM_WORLD);

Figure 16. LU Border Exchange with the full lazy initialization strategy

A.2 SP East Neighbor Transfer

This section provides a case study of how Our tool analyzes and
converts one of the packing codes from the NAS SP application.

The file copy_faces.f contains the function copy_faces, which
swaps the border values of the set of cells contained on this proces-
sor with each neighbor. Figure 17 shows excerpts from the original
Fortran code. Line 70-90 contains the packing code. Note that the
values to be sent to each of the neighbors are packed before any
send is issued, and they share two outer loop, starting on line 70
and 71. Two loop splits (one for each outer loop) followed by code
motion to the site of the MPI_Isend() per packing code block is
therefore needed.

Figure 18 shows the packing code after these transformation
has been applied to the C port. Lines 98—115 contains the packing
code: 5 nested loops. The loops on line 102-104 contains array
accesses in the loop bound expressions. These are treated as loop
constants with respect to the loops they are used in, provided the
arrays are never assigned to inside the respective loop and that
the array subscripts does not contain variables that are induction
variables of that loop. On line 101 an if statement is used to decide

if the next three dimensional array slice should be packed. This if
statement prevents the loops on lines 99 and 100 to be specialized
to hvector types.

Figure 19 and 20 shows the result of applying our tool to this
code. The three inner loops are converted to contiguous, vector
and hvector types on lines 340-344 (the contiguous type has been
compressed into the vector’s block length). Note that these have
been hoisted out of the previously outer loop on line 353, but not
out of the loop on line 339. This is because the index variable of
the loop on line 339, c is used to construct them.

The fourth loop contained an if statement, so it could not be
specialized past hindexed. Note that it could be specialized to an
hidexed type for the same reason that the contiguous, vector and
hvector subtypes could be hoisted out of its construction loop on
line 353. That is the construction of the subtypes does not depend
on the induction variables in the loop on line 354 (m), and thus
represent the same hvector for every hindex block.

Finally, the outermost loop could not be specialized at all. This
is because the hindexed type in every iteration of the loop starting
on line 339 is different, as their type hierarchies are constructed
using the index variable of the loop on line 339.

fill the buffer

to be sent to eastern neighbors

(i—dir)

if (cell_coord(l,c) .ne.
do k =0, cell_size(3,c)—1
do j =0,

do

p0 = p0 + 1
end do
end do
end do
endif

ncells) then

cell_size (2,c)—1
i = cell_size(1,c)—2,
out_buffer(ss(0)+p0)

cell_size (1,c)—1
= u(i,j,k,m,c)

m loop

end do

cell loop

end do

call mpi_isend (out_buffer(ss(0)),
> dp_type , successor (1),
> comm_rhs, requests(6),

b_size (0),

EAST,
error)

Figure 17. SP East Neighbor Transfer (Fortran)

98
99
100
101
102
103
104
105
106
107
108
109
110 }
111 }
112 }

113 }

14| }

115] }
116
117
118
119

p0 = 0;
for (¢ = 1; ¢ <= ncells; c++) {
for (m=1; m <= 5; m++) {
if (cell_coord[(c—1)%3] != ncells) {
for (k = 0; k <= cell_size [(c—1)*x3 + 2]—1; k++) {
for (j = 0; j <= cell_size[(c—Dx*3 + 11—1; j++) {
for (i = cell_size [(c—1)%3]—2; i <= cell_size [(c—1)*3]—1; i++) {
out_buffer[ss[0]+p0—1] = u[(c—1)*5x(KMAX+4)*(IMAX+4)*(IMAX+4) +
(m—1)*(KMAX+4) « (IMAX+4) % (IMAX+4) + (k+2)*x(IMAX+4)*(IMAX+4) +
(j+2)*x(IMAX+4) + (i+2)];

p0 = p0 + 1;

MPI_Isend(&out_buffer[ss[0]—1], b_size[0],
dp_type , successor[l —1], EAST,
comm_rhs, &requests [6]);

Figure 18. SP East Neighbor Transfer after port to C, loop split and code motion

Packing Loop struct (struct_t)
Packing Loop hindexed (hidx_t)
Packing Loop hvector (hvec_t)
Packing Loop vector (vec_t)
Packing Loop contiguous (compressed)
Packing Statement MPI_DOUBLE
(a) Packing Groups (b) Datatypes

330

Figure 19. SP East Neighbor Transfer IR

MPI_Datatype struct_t;
MPI_Aint displacements[ncells];
int blocklen[ncells];
MPI_Datatype types[ncells];
unsigned int idx = 0;
MPI_Aint first_addr;
MPI_Get_address(&u[8 + cell_size[0] + 2 x IMAX + 2 x (4 + IMAX) % (4 + JMAX)], &first_addr);
for(c = 1l;c <= ncells;c++){
MPI_Datatype vec_t;
MPI_Type_vector(cell_size[—2 + 3 * c], 2, 4 + IMAX, MPI.LDOUBLE, &vec-t);
MPI_Datatype hvec_t;
MPI_Type_create_hvector(cell_size[—1 + 3 * c], 1, (4 + IMAX) * (4 + JMAX) x sizeof (double),
vec_t, &hvec_t);

MPI_Datatype hidx_t;
MPI_Aint displacements] [5];
int blocklenl [5];
unsigned int idx1 = 0;
MPI_Aint first_addrl ;
MPI_Get_address(&u[8 + cell_size[—3 + 3 *x c] + 2 * IMAX + 2 x (4 + IMAX) *x (4 + IMAX) +
5% (=1 +c¢c) x (4 + IMAX) * (4 + IMAX) *x (4 + KMAX)], &first_addrl);
for(m = 1;m <= 5;m++){
if (cell_coord[(c — 1) % 3] != ncells){
MPI_Get_address(&u[8 + cell_size[—3 + 3 * c] + 2 *x IMAX + 2 x (4 + IMAX) x (4 + IMAX) +
5% (=1 + ¢) * (4 + MAX) x (4 + IMAX) * (4 + KMAX) +
(=1 +m) * (4 + IMAX) * (4 + IMAX) * (4 + KMAX)], &displacements][idx1]);

displacementsl [idx1] —= first_addrl ;
blocklenl [idx1] = 1;
idx1++;

}

MPI_Type_create_hindexed (idx1, blocklenl , displacementsl , hvec_-t, &hidx_t);

displacements[idx] = first_addrl — first_addr;
blocklen[idx] = 1;

types[idx] = hidx_t;

idx ++;

MPI_Type_create_struct(idx , blocklen, displacements, types, &struct_t);
MPI_Type_commit(&struct_t);

MPI_Isend(&u[8 + cell_size [0] + 2 x IMAX + 2 x (4 + IMAX) * (4 + IMAX)], 1,
struct_-t , successor[l — 1], EAST, comm.rhs, &requests[6]);
MPI_Type_free(&struct_t);

Figure 20. SP East Neighbor Transfer after tool conversion to datatypes, and user dead code elimination of the packing loops

	Introduction
	Related Work
	Illustrative Example
	MPI Datatypes
	Border Exchange Example

	Datatype Generation
	Datatype IR
	IR Preconditions
	Datatype IR Specification
	Datatype IR Construction

	Datatype Optimization
	Specialize to hindexed
	Specialize to hvector
	Specialize to vector
	Specialize to contiguous
	Compress contiguous into parent block length
	Merge structs and hindexed types
	Compress contiguous types into send count
	Other Optimizations

	Packing Code Replacement
	Datatype Emit
	Packing Code Consumer Rewrite
	Dead Packing Code Elimination

	Evaluation
	Methodology
	Implementation
	NAS

	Results

	Future Work
	Conclusions
	Datatype Extraction Case Studies
	LU Border Exchange
	SP East Neighbor Transfer

