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ABSTRACT

This thesis briefly reviews the important methods involved in solving the best
design selection problem in the discrete-event system simulation. The selection
of one or several best designs is a common problem people meet in real
situations. The research originally focused on the one best design selection
problem, the two-stage procedure. Later, there was literature about multiple
designs selection problems which are useful in the global optimization as well.
Most recently, some researchers have studied the problem of selecting one
simplest sufficiently good design applicable to the node activation rule in the
wireless sensor networks. However, the problem for selecting several simplest
good enough designs is still open for consideration. The second part of the thesis
introduces two new algorithms for solving the selection problem related to the
designs mentioned above. These two algorithms OCBA-mSG and OCBA-bSG
allocate the simulation budget efficiently to identify a subset of m simplest and
good enough designs among a total of K (K > m) designs. The numerical results
show that both OCBA-mSG and OCBA-bSG outperform some other approaches

on the test problems.
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PREFACE

A preliminary version consisting only OCBA-mSG in Chapter 3 has been
submitted to the 2010 Winter Simulation Conference as [1].
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CHAPTER 1

INTRODUCTION

This thesis studies the best design selection problems occurring in the
discrete-event system (DES) simulations. The discrete event systems include lots
of man-made systems such as transportation networks, communication networks
and manufacturing workshops. Because these systems follow both physical laws
and man-made rules, it is difficult to find out an analytical way to solve these
problems directly. Therefore, discrete event system simulation becomes the most
important way to study the performance of DES, such as finding the best designs
in the selection problems that are discussed in this thesis. The obstacle to the
problem is that the simulation for these man-made systems is usually complex
and time-consuming due to their complicated man-made rules and their large
search space. In order to save simulation budget and be effective in the
simulation process, it is our interest to find ways to smartly allocate the
simulation budget for selecting the best designs. In this thesis, the word “design”
is used to refer to the object under consideration, such as the ordering policy and
the node activation rule in Section 3.1.

The best designs selection problem can be formulated in different ways.
Chapter 2 introduces the problems related to selecting one or multiple best
designs from the total of K designs, and selecting one simplest good enough
designs from the total of K designs. Based on these methods, we develop new
algorithms for selecting multiple simplest and good enough designs in an
efficient way in Chapter 3. As a general introduction to the best designs selection
problems, we briefly discuss the relevant leading research in this area in the
following.

In the past decades, the selection of the best design problem is closely related
to many known results in the literature on ranking and selection (R&S). In 1958,
Gupta and Sobel [4] considered the problem of selecting a random size subset
from k experimental categories in order to find all the populations that are good

enough with a given probability. Later Gupta [5] proposed the method of



selecting a random size subset containing the best population with a given
probability P of correct selection. In Gupta’s method, the size of the subset is
unknown beforehand and the size can be as high as P x k, where k is the number
of parameters for the population. Thus, it is difficult to control the size of the
subset and if the resulting subset is very large, the method will be less effective
for researchers since the best design still lies in a big set. In 1975, Santner [6]
further extended Gupta’s method by imposing a maximum size m on the selected
subset that containing the best design, which helped to control the size of the
random selected subset.

An important statistical method for selecting the best design was developed in
1975 by Dudewicz and Dalal [7]. They first introduced the so-called two-stage
procedure for simulation budget allocation to all the designs (refer to
Section 2.1). The procedure for the first stage is to equally assign the initial
simulation budget to every design, and then use the sample variance to determine
the simulation budget allocation at the second stage. Since the simulation budget
is always limited, by efficiently allocating the simulation budget to different
designs, researchers get a high probability for the correct selection of the best
design. In 1978, Rinott [8] found another method to allocate the simulation
budget at the second stage. In 1985, Koenig and Law [9] modified the two-stage
procedure for selecting a set of z designs which contains the top m designs with
best performance from a total of K designs (1 < m < z < K), following the
results in Dudewicz and Dalal [?]. This method can either select the best design
when m = z = 1 or select the top m designs when m = z > 1. Similarly, the
variance of the design is assumed to be unknown. The modification of two-stage
method by Koenig and Law extended the application of the method to a wider
area, since in many real problems we need not only one best design but several
best designs. In 1997, Chick [10] solved the best design selection problem by
using a Bayesian decision-theoretic approach. Since Chick used the Bayesian
approach in his work, he is able to work out the best design out of multiple
designs with both independent replications and dependent replications, and both
Gaussian simulation and non-Gaussian simulation work.

Another important method for selecting the best designs called optimal
computing budget allocation (OCBA) was developed by Chen, who has been
studied the efficient simulation budget allocation for several years. In 1995, Chen
[11] found a way to smartly allocate the computing budget to discrete event

simulation. The numerical results show that the method introduced by Chen can



further reduce the computing time compared to the ordinal optimization which
selects and allocates the most computing budget to a subset of designs that has
high probability to be the best design. In 1996, Chen [12] used the so called
steepest-ascent method to solve the discrete event optimal selection problem.
However, he mentioned that this method may be further enhanced by finding a
way to reduce the computing cost occurred every iteration for searching a
solution to the budget allocation problem. Later on, Chen et al. [13] applied the
greedy heuristic to the discrete event simulation. But the problem is that the
budget allocation determined by this greedy heuristic may not be the optimized
simulation budget allocation ways since it allocated the budget to only one
design at each iteration. The method OCBA was introduced in 2000 by Chen,
Lin, Yiicesan and Chick [14] for further increasing the efficiency of ordinal
optimization for selecting one best design. They used the probability of correct
selection of the best design as the objective function and finally solved it by
applying an asymptotic limit to the objective function which helps to find an
upper bound for the objective function. In the numerical experiments, they
compared the OCBA with the other popular methods such as two-stage
procedure. The comparison shows that OCBA is much faster than the other
methods, and the larger the number of total designs is, the more efficient the
OCBA becomes. They also mentioned that although they used the asymptotic
limit to derive the simulation budget allocation, the numerical experiments
showed that the performance is excellent under limited simulation budget. Later
on, Chen and Yiicesan [15] solved a similar simulation budget allocation
problem by changing the objective function to minimize the total number of
simulation budget in order to achieve a desired probability of correct selection
for one best design. They still used the asymptotic limit to find the optimized
solution and did several numerical testings on this method which outperformed
in the testings considered in their paper. In 2008, Chen, He, Fu and Lee [16]
extended OCBA to the selection of the m best designs. To simplify the problem,
they approximated the objective function P(CS) (probability of correct selection
of m designs) by independence properties which was also used in my thesis.
Their paper provided a new way to select m best designs with efficient computing
budget allocation among all the designs. Most recently, Pujowidian, Lee, Chen
and Yap [17] developed OCBA further for the problem of selecting one single
best design under multiple constraints of secondary performance measures. In a

word, the OCBA method introduced by Chen et al. is noticeable in the area of



selecting either one or m best designs in recent years just as what Branke et al.
[18] had discussed and compared in his paper with several other R&S procedures
which showed that OCBA is in fact very effective since it allocates the most
simulation budget to the critical designs which are sensitive in the correct
selection process and smartly allocates less simulation budget to the uncritical
designs which do not affect the selection results. More detailed algorithms for
OCBA are given in Section 2.2.

There is also research focusing on optimizing the primary performance
measure subject to the feasibility of a secondary performance measure.
Andradéttir, Goldsman, Schmeiser, Schruben and Yiicesan [19] proposed a
two-phase approach which identifies all the feasible systems at the first stage,
and then selects the best from them at the second stage. Recently, Batur and Kim
[20] further modified the two-phase approach by finding a feasible set or
near-feasible set during the first stage. On the other hand, Glynn and Juneja [21]
used the large deviation theory to find the best way to allocate the simulation
budget. By the way, they also considered the case of non-normal distribution and
its effect. Later in 2008, Szechtman and Yiicesan [22] used large deviation
theory to deal with feasibility determination in a stochastic problem by the
performance estimation through Monte Carlo simulation.

The problem of considering both complexity and performance evaluation has
only been studied recently. The motivation for considering the complexity is
from the real world, where the simple designs with low complexity are always
preferred if their performance is good enough. The most relevant one is to solve
the problem of selecting one simplest sufficiently good design by Jia [23], who
proposed an Adaptive Sampling Algorithm (ASA) to minimize the Type II error
of the chosen simplest good enough design (refer to Section 2.3). ASA
determines which design to simulate in the next iteration with the goal of
minimizing the type Il error. In his paper, he compared ASA with Equal
Allocation and Levin Search methods, and he also applied ASA to node
activation policy problem in the wireless sensor networks where ASA performed
well in selecting one simplest good enough design. However, ASA is not suitable
for extension to select multiple designs, because it screens the designs
sequentially one by one until the goal is achieved. Therefore, the problem still
remains open on how to select multiple designs that are simplest and good
enough. This problem will be addressed in Chapter 3.

The rest of the thesis is organized as follows. In Chapter 2, we introduce some
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major methods for solving the best design selection problem, including the
two-stage procedure, optimal computing budget allocation and adaptive sample
algorithm, which are closely related to my research in Chapter 3. In Chapter 3,
we propose our new methods for solving the problem of selecting multiple
simplest good enough designs. We present the motivation for considering this
simplest good enough problem, and briefly introduce our new methods in
Section 3.1. In Section 3.3, we describe the problem formulation for selecting m
simplest good enough designs and introduce the OCBA-mSG algorithm,
abbreviated for optimal computing budget allocation for m simplest good enough
designs, which aimed to minimize the probability of correct selection. Based on
OCBA-mSG, we develop another slightly different algorithm called OCBA-bSG
for selecting the best m simplest good enough designs in Section 3.4.
OCBA-bSG selects the designs with the best performance from all the simplest
good enough designs, with a slightly increase of simulation budget than
OCBA-mSG. Under some specific situations when the simulation budget
increasing are little, we may prefer OCBA-bSG to OCBA-mSG to get a more
accurate selection results for the best m simplest good enough designs. In the
next Section 3.6, we introduce the formula to calculate the upper bound of the
simulation budget allocation for every design, and study the effect of this upper
bound to our algorithms by comparing it with the other fixed upper bounds. The
results imply that our dynamic upper bound performs well in general, although it
is not always the best, the overall performance is satisfied. The numerical results
for new algorithms are given in Section 3.7 in which we conduct four
experiments on the new methods and compare their performance with the other
two methods. Numerical results indicate that both OCBA-mSG and OCBA-bSG
allocate the simulation budget efficiently to achieve a high probability of correct

selection. In the end, I conclude the thesis in Chapter 4.



CHAPTER 2

BACKGROUND

In this chapter, we present several major methods for the best design selection
problems which are closely related to our new algorithms in Chapter 3, and
discuss their advantages and drawbacks as well. All the methods here
concentrated on how to allocate simulation budget efficiently in order to control
the probability that the selected designs really are the best ones or to control its
type II error. The two-stage procedure in Section 2.1 is an important statistical
method, which was proposed in 1975, to select one best design from K designs.
The basic two-stage procedure only considered the sample variance of the
designs in the simulation budget allocation process which helped us to find more
accurate estimation for the performance of every design. Unfortunately, it
ignored the effect of sample mean which could reduce the unnecessary
simulation budget allocation to less important designs. Later on, Chen and
Kelton [24] modified the two-stage procedure by using the information of both
sample mean and sample variance which enhanced the efficiency of the
two-stage procedure. In Section 2.2, we introduce the optimal computing budget
allocation (OCBA) procedures for selecting single best design and multiple best
designs with the goal to maximize the probability of correct selection. Our new
methods in Chapter 3 are based on OCBA procedure to solve a more complicated
problem. In Section 2.3, we introduce the adaptive sampling algorithm (ASA)
[23] to solve the selection problem for the one simplest good enough design.
Since ASA is not suitable for selecting multiple simplest good enough designs,
we develop new algorithms in Chapter 3 based on OCBA introduced in
Section 2.2 to solve this multiple selection problem.

Before we started, we would like to introduce some important notations:
0;: the notation for the design i.
0®: the set of all the K designs including 0y, 6,,..., 6.
J(6;) or J;: the performance measure for design 6;. For simplicity of the notation,

we write J(6;) as J; in the following.



Gl-zi variance of design 6;. Since the true variance is unknown, we use the sample
variance to estimate it.

N;: simulation budget for design 6;.

Xl.k : the k" simulation replication for design 6;, k = 1,...,N;. We assume that

Xik ’s are independent inside the design (i.e., with respect to k) and across the

designs (i.e., with respect to 7).
_ _ N
Ji: sample mean of design 6;, J; = (1/N;) ¥ Xl.k.
k=1
P(CS): the probability of the selected best designs based on the current samples

are the true best designs.

2.1 Two-Stage Procedure

2.1.1 Basic Two-Stage Procedure

Consider selecting one best design from a set of K designs. Suppose the design
with smaller performance measure J; is regarded as having better performance.
We order the designs according to their sample performance measure J; as
JV<J? <. < JX, and the best design we want to select is the one with the
smallest sample performance measure J!. The indifference zone d*(d* > 0) is
given by the user to detect the smallest actual difference that they are interested
in. Difference less than d* is considered as not important, which means if the
difference between J' and J? is less than d*, J? can also be regarded as the
correct selection. Since the smallest difference between the best design and all
the other designs are J2—J' we impose the constraint that J?2—J' > d*. In order
to select the true best design, we want to find a procedure that the probability of
correct selection satisfies P(CS) > P* and J?> — J' > d*, where P* is the required
probability of correct selection.

One important statistical procedure to solve this problem was introduced by
[7]. This is a Two-Stage Procedure. The first stage is to do ng initialization

sampling for all the K designs and calculate their sample means and variances



based on the current samples as

Fino) = (1/n0) Y X
k=1
Y [Ji(no) — X}
§?(no) = =l

Y

I’l()—l

fori=1,2,...,K. At the second stage, allocate the simulation budget N; to every
design by

]V,-:max{no%—l,[h’;‘(z"z—*(;oh}, (2.1)
where [x| is the smallest interger that is greater than or equal to the real number
x, and h; is a given constant that depends on &, P*, and ng. Then compute the
sample mean for design i based on all the N; samples and select the design with
the smallest sample mean. In equation (2.1), the higher the sample variance
S2(ng) for design i, the more simulation budget N; will be allocated to that
design, which means they could ensure an accurate estimation for the
performance of all the designs. However, this two-stage procedure only
considered the sample variance but not consider the sample mean in the
simulation budget allocation procedure. As a result, it is not suitable for a large
number of designs, since the simulation budget are allocated to every design to
ensure that they all get an accurate enough estimation for performance which is
not necessary. Therefore, this method can be further enhanced by taking the
sample mean into consideration.

The two-stage procedure introduced here is an important statistical method for
selecting the single best design aimed to control the probability of correct
selection. Research has been done to modify this two-stage procedure as
described in Chapter 1. We introduce the two-stage procedure here, because they
considered the sample variance in the simulation budget allocation process,
which we also considered in our new algorithms in Chapter 3. Based on the
two-stage procedure, I started looking for other related literatures, such as
OCBA, and finally proposed the new algorithms for solving the simplest good
enough designs selection problems using the information of both sample mean

and sample variance.



2.1.2 Enhanced Two-Stage Selection (ETSS) Procedure

An enhanced two-stage selection procedure called ETSS for selecting one best
design was proposed by Chen and Kelton [24] who modified the previous
two-stage procedure (equation 2.1) by considering the sample mean in the
second stage. During the first stage they still do the initial simulation ng for every
design. But at the second stage, they introduce the indifference zone d; instead of

using the user provided d* directly.
d; = max(d”, Ji(no) — Jp(no)), 2.2)

where design b is the selected best design based on the current samples. Then, N;

is calculated by using the new d;,
h2s2
N; = max {no +1,[ 5+ (no)w } , (2.3)

fori=1,2,...,K. With the introducing of d; in Equation (2.2), the designs far
from the selected best design will be allocated less simulation budget, and more
simulation budget will be allocated to designs close to the selected best design
based on the current samples. This indicates that not every design is treated
equally based on their sample variance to get simulation budget N;, but they also
consider the effect of sample mean to determine which design is more important
in the selection process. This result is consistent with OCBA procedure in
Section 2.2.1. Actually, Equation (2.3) is the same as Equation (2.4) in OCBA
procedure [14] when N; > ng + 1 and J;(ng) — Jp(no) > d*.

2.2 Optimal Computing Budget Allocation (OCBA)

We introduce OCBA algorithm here, because we use a similar problem
formulation in Chapter 3 to solve the simplest good enough design selection
problem, including the idea of Probability of Correct Selection, Approximate
Probability of Correct Selection and the assumption on the prior distribution of

the performance for the design.



2.2.1 OCBA for Selecting One Best Design

Chen et al. [14] introduced the OCBA approach to smartly allocate the
simulation budget to find the one best design by considering both the sample
variance and the sample mean during the simulation process. Here, we use b to
denote the best design we selected, although design b may not be the true best
design. The problem becomes to find the best simulation budget allocation N; for
all the K designs in order to maximize the probability for design b to be the true
best design (P(CS)) with a given total simulation budget 7. The problem was
solved by introducing an Approximate Probability of Correct Selection (APCS)
as a lower bound for the probability of correct selection P(CS). And then by
using the asymptotic limit to maximize APCS, we obtain the following

simulation budget allocation rule:

N Gi/&in .. o
]vj - (Gj/ah,j) 7laJE{1727"'7K}aandl7é.]7éba 2.4
Ny = (2.5)

where 8, = J, — J;, J, < minJ;, and o2 is estimated by the sample variance.
From the numerical expelriments given in [14], the method is proved to be
highly efficient for selecting the best design out of K designs. And this OCBA
procedure can smartly allocate the simulation budget to the critical designs (i.e.
the designs which are important in determining the best design) by considering
both the current sample mean and sample variance. Later, Chen et.al [15] solved
the one best selection problem in an alternative way by considering the problem

of allocating the least total simulation budget to achieve a desired P(CS).

2.2.2 OCBA,, for Selecting m Best Designs

The problem of selecting m best designs has been studied by Chen et al. [16]
recently. Define the optimal subset S,, as the subset containing the m designs
with the smallest sample means based on the current simulation results. The

event that the designs in S, are the true best m designs is called the correct
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selection (CS). Then the probability of correct selection can be given by
P(CS)=P{J;<J;Ni€SpandVj ¢ Sy} (2.6)

The problem is to find the best way to allocate simulation budget among N; with
limited total simulation budget 7' to maximize the probability of correct

selection:

maXN17N27“~7NK P(CS)
St N +Ny+...+Ng =T. 2.7)

To solve the above optimization problem, they introduced the following
Approximated Probability of Correct Selection (APCS,,) as a lower bound for
P(CS) by using the posterior distribution J (Section 3.2) and the independent

property among designs.

P(CS) > APCS,, = [ P{Ji <} [ P{Ji = ¢},
iESm i¢SAm

where c is a constant. By maximizing APCS,,, asymptotically as T — oo, they get

the allocation rule for N; as

& . <Gl'/6l'
Nj cj/6;

)2, i je{1,2,....K}, 2.8)

where §; = J; —c,i=1,2,...,K. This approach OCBA,, for selecting a subset of
optimal designs instead of only one best designs is useful in global optimization,
where it needs to select a subset of good candidate designs in each iteration of
the algorithm. In the following chapter, we proposed two new methods for
solving a more complicated problem based on the OCBA introduced here and

extended it to the selection of the m simplest good enough designs.

2.3 Adaptive Sampling Algorithm (ASA)

The problem considered here related closely to our works in Chapter 3. This
simplest good enough selection problem has only been considered very recently.

The motivation for considering this problem is that the simple designs are

11



perferred to the complex designs when both of them have similar good
performance in real world. Adaptive sampling algorithm (ASA) was proposed by
Jia [23], who defined the problem as minimizing the complexity of the design
(i.e. find the simplest design) in the good enough set (designs with good enough

performance):

31612C (9), (2.9)
where G = {0]J(0) < Jo,0 € B} is the good enough set, C(0) is the complexity
of design 0, and Jj is the good enough threshold given by user. He analyzed in
his paper that type II error only occurs under the following three situations: never
simulates any simplest good enough designs; all the simplest good enough
designs that are simulated are infeasible (classified as not good enough designs);
and the selected simplest good enough designs are not truely good enough. Jia
estimated the type II error with an upper bound which is composed of the three
possibilities stated above. The upper bound for type II error is given as follows:
If ZiC:(?O)fl |®;| > Zicz(?())*l |Ni|, then the upper bound is

y gy -1
max{®(—— ) Zr 1 £ )}:
(60)/+/n(60) " y&@-tg, o(6%)//n(6%)""

EO P N

If Zl.c;(?‘))_l 9] = ZiC:(?O)_l |Nj|, then the upper bound is

&

90/\/ 90 0*)/ (9*))}

peLs S 0)/\/n . In ASA, Jia simulated the design

that can obtain the smallest upper bound in every iteration. In the end, he found

max{P(

where 0" = argmax (o)1
out the simplest good enough design with the minimun type II error. However,
ASA is not suitable for selecting multiple simplest good enough designs, because
it screens the designs sequentially one by one until the goal is achieved.
Therefore, the problem still remains open on how to select multiple designs that
are simplest and good enough. This problem will be solved by our new methods

introduced in the next chapter.
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CHAPTER 3

NEW ALGORITHMS FOR SELECTING
SIMPLEST GOOD ENOUGH DESIGNS

3.1 Introduction and Motivation

This chapter proposes our new methods OCBA-mSG and OCBA-bSG for
solving the problem of selecting the m simplest good enough designs from a total
of K designs aimed to maximize the probability of correct selection. The
motivation for considering the selection of simplest good enough designs comes
from the real world, where simple designs (designs with low descriptive
complexity) are preferred to the complex ones (designs with high descriptive
complexity) if the simple designs are good enough to satisfy our requirements.
We prefer simple designs because they have advantages such as requiring less
computing and memory resources, easier to interpret and to implement, and less
expensive to implement. As a result, in real world, users usually prefer simple
designs when they are good enough or with acceptable performance.

The motivation for considering the selection problem of the simplest good
enough designs are from its applications in industry and daily life. A typical
example is to find an ordering policy in inventory control. We may consider the
problem of ordering a certain amount of products at each period to meet a
stochastic demand which follows a probability distribution. In order to minimize
the expected cost (including holding cost for excess inventory and shortage cost
for unfilled demand), we want to determine the optimal ordering policy in each
period. The optimal policy can be found analytically for some models to have the
structure of a base-stock policy or an (s, S) policy [25, 26, 27, 28]. The
base-stock policy or (s,S) policy is a threshold function that maps the current
stock into the ordering amount. Motivated by this simple structure of the optimal
policy for some models, we can select the best policies from all the available
threshold policies for other more complex inventory models. In general, we can

approximate the optimal ordering policy better with more number of thresholds
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given the right values of these thresholds. Then the problem becomes to decide
how many thresholds should we choose and what their values are. It is clear that
with more thresholds in the function we have a more complex ordering policy,
which is harder to determine the optimal values of these thresholds and to
implement in practice. Conversely, with a small number of thresholds, such as
one (base-stock policy) or two ((s,S) policy), we have a simple ordering policy,
which is easier to compute and to implement. If the simple ordering policy can
achieve a required cost criterion which is regarded as the good enough
performance constraint in the following chapter, it will be more preferable than a
complex ordering policy, even though the complex ordering policy may yield a

lower cost.

Figure 3.1: Inventory Control Problem [2].

Another example is the design of node activation rules in the wireless sensor
networks (WSNs), as described in [29, 23]. It is a problem about optimization of
the node activation rule in WSNs. Let us consider a solar power WSNs that
monitors an interested place. Each node needs to collaborate with its neighbors
in order to have enough power to monitor an area of interest. There are three
stages for every node: activation, readiness and sleep. When the node is out of
power, it is at the sleep stage and cannot be activated. When the node has power,
then it is ready and can be activated. Also during each time interval, every node
has chance to be recharged no matter what stage it is at now, and if and only if
the node is activated then it has the chance to loss power. And only the node that
are being activated can be used to monitor the interested area and detect the
event. The problem is to decide which node to active and when to activate such
that we can get the highest probability of correct detection for random event. It is
clear that a larger communication radius (e.g. more nodes are under

communication) gives us a more complex node activation rule and consumes
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more power. Conversely, a smaller communication radius gives us a simpler
node activation rule and consumes less power. Similarly, given that the required
probability of correct detection can be achieved, we prefer small communication
radius of each node (i.e., simple activation rule) to large radius (i.e., complex
activation rule). In other words, the simple designs are preferred to complex

designs when they are both adequately good.

Figure 3.2: Wireless Sensor Network Problem [3].

In this chapter, the descriptive complexity of a design is represented by an
nonnegative integer number, where simpler design has a smaller integer number.
Since sometimes we may need to select more than one design in practice for
robustness, we consider the general problem of selecting m (m > 1) designs that
are simplest (with smallest complexity) and good enough (satisfying a constraint
on the performance measure). The complexity of a design is a deterministic
value, and we know the value once we simulate that design and the value of the
complexity will remain the same afterwards. However, the performance of a
design is subject to system noise, and hence, it can only be estimated from
simulation, and the simulation is computationally expensive. For example, it
takes a significant amount of computational effort to simulate the inventory
system in order to evaluate the cost of a particular ordering policy due to the
system noise. Here, the performance is measured by the sample mean, and the
smaller the sample mean, the better the performance is. Hence, our goal is to find
a way to allocate a given simulation budget efficiently to the designs so as to

maximize the probability of correctly selecting the m simplest good enough
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designs out of a total of K designs.

By using simulation to estimate the performance of a design, the simulation
budget T cannot reach infinity in reality. Although we can use super computer to
increase the computing ability and the simulation budget, it cannot be guarantted
that the estimated performance for every design is accurate enough since the
number of designs K under consideration can also be increased heavily and the
simulation budget for every design which is 7 /K can even decrease under equal
allocation method. In order to get a high propability of correct selection for the m
simplest good enough designs, we need to find an effecient simulation budget
allocation procedure for designs instead of equally allocating the budget to every
design. To be more precise, we consider allocating the larger part of the limited
amount of simulation budget to the designs which are critical or sensative in the
process of the selection of the m simplest good enough designs, and allocating
little simulation budget to all the other non-critical designs in the selection
process. Folllowing this clear idea, we ensure that the limited simulation budget
can be allocated efficiently to all the K designs, especially when the value of K is
extremely large.

The chapter is organized as follows. In Section 3.2, we introduce the
assumption we made for the prior distribution and the result we got for the
posterior distribution which are used in the remaining chapter. In Section 3.3, we
use the above allocation idea to discuss how to efficiently allocate the limited
simulation budget to select the m simplest good enough designs by introducing a
new algorithm OCBA-mSG. In Section 3.4, we concentrate on a slightly
differencet problem of selecting best m simplest good enough designs and
introduce the algorithm OCBA-bSG. The allocation procedures for both
OCBA-mSG and OCBA-bSG are given in Section 3.5. After that in Section 3.6,
we test the dynamic upper bound introduced in Section 3.5 with fixed upper
bounds, and the results imply that the performance of our dynamic upper bound
is acceptable in most experiments. Finally, we demonstrate our methods
OCBA-mSG and OCBA-bSG, and compare them with other two methods Equal
Allocation and Levin Search in Section 3.7. The experimental results show that
our methods perform well especially under the large scale problem and when the

uncertainty of the system is serious.
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3.2 Preliminary

Here, we introduce the assumption we made for the prior distribution and the
result we got for the posterior distribution for the performance of the design
which will be used in the following chapter. Consider the performance of a
general simulation problem for a complex discrete event design 6, (6, € ® and
|®|= K) defined as

Je = E[L(6k, C)],

where { is a random vector for the uncertainty in the system, and Jy is the
performance of the design which is the expectation of L(6, ). Since it is a
complex system, L(6y, {) is hard to calculate through small simulations.
Therefore we estimate E[L(6y, {)| by the sample mean of the performance as

follows:
Nk

Je=(1/Ne) Y [L(6k, Gl

i=1
where Ny is the number of samples for design 6. To construct the posterior
distribution of J, we assume that there is no information before simulation for J;
and J; has a prior distribution N(0, v?) with v? extremely large. We also assume
that the sample J; for design k is normally distributed as N (J;, 0'1.2), then the

posterior distribution is still a normal distribution [12]:

~ 1 Nk A ., sz
Je~ NGy LIl o)
i=1

where ﬁk Z?L fk(z) = J;. Here J;, is the sample mean for design k and the

variance oy is approximated by the sample variance in simulation.

3.3 Selecting m Simplest Good Enough Designs

3.3.1 Problem Formulation

In this section, we formulate the problem of selecting m simplest good enough
designs from the total of K designs and introduce the simulation budget
allocation algorithm called OCBA-mSG. We find an efficient simulation budget

allocation procedures to maximize the probability of correct selection for the m
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designs with limited simulation budget T based on the OCBA introduced in
Section 2.2. In other words, we want to find m simplest designs whose
performance are good enough or acceptable with the maximized probability that
the selected m designs are really the simplest good enough designs.

The good enough design satisfies J; < Jy, where Jy is a given constraint on the

performance. Hence, the good enough set (or the feasible set) is defined as
F = {k|Jy < Jo,k=1,2,...,K}.

We use the descriptive complexity C(6y), which is considered to be a discrete
value in the set {0,1,...,n},n < K, to describe the complexity of the design 6.
Assume that we know the value of C(6) once we simulate that design, and

C(6y) remains the same afterwards. And also we define the complexity set C; as
Ci={k|C(6) =i,k=1,2,....K},

which contains all the designs with complexity i.

Then we can define the set of m simplest and good enough designs as
Sm={mi,my,....my | C(6p,) < C(6r),Yk € F\Sn},

where F \ S, = {k € F|k € S;,}. There may be several different S,,, however any
Sm that satisfies the above definition will be considered as the set of m simplest
good enough designs although they may not be the best as we will discuss for
OCBA-bSG in Section 3.4.

Fig. 3.3 gives a pictorial view of the general case. We first ordered all the K
designs according to their complexity C(6y) and their performance J. Suppose
that all the designs in the complexity sets Co, Cy, ..., C—1 (1 <t < n) are
infeasible (or good enough) and the first feasible design appears in the set C;. If
the set C; has m feasible designs, then we get m simplest good enough designs in
C;. If there are less than m feasible designs in C;, then we continue searching the
sets Cy+1, G40, - .., until we find m feasible designs. After searching the set C,, if
there are still less than m feasible designs, then we consider all the feasible
designs as the optimal designs. In general there are three types of subsets we
need to consider as shown in Fig. 3.3: infeasible simplest subsets S,
i=0,1,...,t—1; simplest good enough subsets Sy,, i = 0,1,..., p; and infeasible

non-simplest subsets S,., i = 0,1,..., p. And the simplest good enough subsets
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Ss0s 8515155, satisfy

p—1 4
Z |Ss;| <m, Z’Ssi‘ = m,
i=0 i=0

where | - | denotes the cardinality of the set. As a result, S, should include all the
designs in the subsets Sy, Sy, - --,Ss,_, and any (m— ):f:ol |S;;|) designs in the

subset S,, which implies that S,, may have several possibilities.

Co: Jo=Jos =Joz = = Jojeq
Infeasible simplest subset 5,

Cf—i: .JIu 5](:—131 51(:—132 o i.|i[(r—:L}||::r_1|

v
Infeasible simplest subset 5; |

Coo Ju=J=- E}f|5;n| <Ja 5]r(|s,u|+1} = = Jey

\—‘\(’_/\ﬂ'_)

Simplest good enough subset 5, Infeasible non-simplest subset 5,

Corp-1t Jorp-191 =Jgrp-12 = - Eftrw—illssw-ul <Jo 5f(¢+p—i}(l$s-,-ul+13 = = i p-1)lEes gl
A
Simplest good enough subset 5, Infeasible non-simplest subset S,
Corp'  Jrerpye = Slierpiis,) <Jo = Jtermtse ey = = SJerplicesgl
(OCBA-MSG)

Simplest goud enough subset 5:,, Infeasible non-simplest subsat SEp

Corpt Jiermz = EJiermiised = Jiereigsai+n) = < Jo = Jeapigsad sy = = eepilcesl
(OCBA-bSG)

: N
Optimal subset §,;  Feasible non-optimal set 5, Infeasible non-simplest subset 5.

Figure 3.3: Relationship between subsets. J;; denotes the performance of a
design whose complexity is i and whose performance is the j smallest in its
complexity set C;.

In simulation, we estimate the performance J; with its sample mean J; at every
iteration, and then order the designs as Fig. 3.3 to find the subsets
{$5,i=0,1,....p}, {84,i=0,1,....f — 1} and {S,,,i = 0,1,..., p} as estimates
for Sy,, S4, and S, respectively based on our current samples.

Then the correct selection CS,, of the designs selected in S, are the true

simplest good enough designs can be defined as, i.e.,
ﬁ A Hh A 2 A
CSp=1{Ji < Jo & J; = Jp,Vie | S, Vje {uf’zose,} U {ug;gsd,}}.
i=0

19



In order to get a higher probability of correct selection P(CS,,) for m simplest
good enough designs, we want the estimates of the sets Ss,-, Sdi and Se,» be as
precise as possible. As we know, the more simulation budget we allocate to a
particular design, the closer the sample mean to the true mean is. However, the
simulation budget 7 is limited, we do not have enough simulation budget for
every design, especially when the total number of design is large. As a result, in
order to get a precise selection of the simplest good enough set S,,, we need to
get a better estimation for the performance of critical designs which will provide
us a precise estimation of the sets Ssi, Sdi and .SA'el.. Therefore, the problem of
OCBA-mSG is to determine the simulation budget allocation Ny, N, ..., Nk for
every design to maximize the probability of correct selection with a given total
simulation budget 7. Assuming noninformative normal prior distribution for
every design and using the result from Section 3.2, the OCBA-mSG problem can

be formulated as:

maxy, n,,.. Ny P(CSwm) = P{J; <Jo & J; > Jo}
s.t. Ni+Ny+...+Ng=T, (3.1)

where Vi € Ufio S 5, V] € {U?:OSAQ} U {Uf;éﬁdi } Here, we follow a similar way
to formulate the problem as OCBA in Section 2.2 due to its clear problem
definition and explanation. By using APCS in [1], we maximize P(CS,,)
asymptotically as 7 — oo in Theorem 1.

3.3.2 Methodology

Theorem 1. Given a total number of T simulation runs, we allocate the
simulation budget N; to each design i, i = 1,2,...,K by maximizing P(CS,)
asymptotically (as T — o). Here, Jy is the good enough constraint. Giz and J; are
sample variance and sample mean for designs 0;. Then N; is computed by the

following allocation rule:

N; B N;
o?/(Ji—Jo)* o7 /(Jj—J)*

(3.2)

forallie U?:o Ss,. and j € {U?:()S'ei} U {Uf;(l)ﬁdi}. Ny = 0 for all other
ke{l,2,...,K}.
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From the relations in Theorem 1, we know that the simulation budget for every
design changes according to its corresponding sample variance. If a design has a
larger sample variance, then more simulation budget will be allocated to that
particular design in order to find a more accurate sample mean to estimate its true
performance. We also notice that at the critical point of the good enough
performance constraint Jy, the designs nearer to Jy will be assigned more
simulation budget, since they are more sensitive to the feasibility test of Jy. This
result is consistent with what we get in Section 2.1 and 2.2 for enhanced
two-stage procedure and OCBA algorithm. We all consider both sample mean
and sample variance which have similar proportional relationship to simulation
budget N; as well.

3.4 Selecting the Best m Simplest Good Enough
Designs

3.4.1 Problem Formulation

If we modify the previous problem slightly, we can get the best m simplest good
enough designs not only m simplest good enough designs. The optimal set is
defined as

Sp = {bl,...,bm eF | C((—)bi) < C(Ok) ORJbi < Ji ifC(Qbi) :C(Ok),Vke F\Sb}7

where F\ S, ={k € Flk & Sp}.

The definition for S;, means that we select the best m simplest good enough
designs from the good enough designs in the small descriptive complexity set
first until we reach a descriptive complexity set that there are more good enough
designs than we need, and then we select the good enough deigns with small
performance in this descriptive complexity to complete our mission. In other
words, the only difference between S, and S}, is that Sj, selects the best
(m— 5):—01 |Ss;|) designs in the subset S, instead of any (m — f:ol |S;.|) number
of designs in the subset S;,,.

Fig. 3.3 gives a pictorial for the general case where there are five subsets to be
considered in this problem: infeasible simplest subsets S;, i =0,1,...,1 —1;

simplest good enough subsets Sy, i =0, 1,..., p— 1; infeasible non-simplest
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subsets S,,, i = 0,1,..., p; optimal subset S;;; and feasible non-optimal subset S,.
Similar to the previous problem, we can use the estimates of the subsets to
define the correct selection CSy, as
p—1

CSy={Ji<Jo & J; < I <Jo & Js = Jo,Vie | Ss,
i=0

vj € S,k € S0, ¥s € {Ul oS bU{Uiza8u -

Using the posterior distribution J to approximate the true performance J, we
formulate the OCBA-bSG problem to efficiently allocate the simulation budget
Ni,N,, ..., Nk to every design with fixed total budget T to maximize the
probability of correct selection for best m simplest good enough designs as

follows:

maxy, vy, Ny P(CSp) = P{J; <Jo & J; < Jp < Jo & Js = Jo}
.. Ni+Ny+...+Ng =T, (3.3)

where Vi € P! S,V € Sy, Wk € 8, ¥s € {ufzoﬁei} U {ui;és}li }

3.4.2 Methodology

The simulation budget allocation rules are stated in Thm 2, and the detail

explanation is given in [1].

Theorem 2. Given a total number of T simulation runs, we allocate the
simulation budget N; to each design i, i =1,2,...,K by maximizing the lower
bound of P(CS},) asymptotically (as T — ).

Case 1: If there are more than m feasible designs, then allocate the simulation

budget according to

OF/(i—J0)? o} /(Jj—p)? 62/ (Js—Jo)?
Nx Ny

TG oo G4

forallie )0 S, jeSu, se {Ufzoﬁei}u{uﬁ;})ﬁdi}, xe{keS, |0 <
”;JO}, ye{keS, 0> %JO} N =0 for all other k € {1,2,...,K}. Here L is
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determined by

u = St et Ot i Sui+1) e g, — Tkl
Sle-+p)Isul + Ole-+p)(Isul-+1) ’ N

Case 2: If there are no more than m feasible designs, then allocate the

simulation budget according to

Ni N

62/(Ji—Jo)?  0%](Ji—Jo)? (3.6)

forallie Ufi_ol Ss,. USy and s € {U?:oge,} U {U?;(I)SAdi}. Ny = 0 for all other
ke{1,2,...,K}.

As we seen from above theorem, there are two critical points p and Jy, where
U is the critical point for the optimality and Jj is the critical point for the
feasibility. The designs closer to these two points will be assigned more
simulation budget among all the designs in Cy, ..., 1, we actually considered.
For the optimality critical points, we need to consider the subset Sy, since the
designs in this subset are close to p. For the feasibility critical points, we need to
consider the subsets U‘?:_o] S s; and {U?ZOSA‘,Z} U {Uf;(l)ﬁdi}, since the designs in
these subsets are near Jy. The most particular subset is S, in which the designs
are both close to p and Jy. Therefore, we divide this subset S, by the middle
point %JO and compare them seperately as shown in Fig. 3.4.

compare with p compare with [,
utjs
Cﬂ_ § I( 18 \I 2 f' _JTD \I
(OCBA-bSG) | i | > ]
A A (W v L r
W ~ v

Optimal subset S, Feasible non-optimal set §;  Infeasible non-simplest subset =

Figure 3.4: Simulation allocation in the set Cy 5.

3.5 Allocation Procedure

We describe the allocation procedures for both OCBA-mSG and OCBA-bSG in
the following. The discussion about the upper bound NU is given in Sec 3.6.
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OCBA-mSG and OCBA-bSG
Input:

e the total number of the designs K;

the number of designs needed m;

the total simulation budget T';

the simulation budget increase at each iteration A;

the initial simulation budget for every design no;

the good enough performance constraint Jy;
e the upper bound of the total simulation budget for one design NU.
Initialize: [ = 0.

e Perform n( simulation replications for all designs to generate samples
XK k=1,2,...,n9, i=1,2,...,K. Set N = Kny,.

e Group the designs according to their complexities to obtain the complexity
sets Co,C1,...,C,.

Loop: while N!' < T,do

1. Update:

- !
e For each design i, compute the sample mean J; = I%f Z;{V’Zl Xl." ;
e For each design i, compute the sample standard deviation
N! -
01 =\ oL, (X~ /(N - 1)

e Sort the designs in each complexity set according to their sample

means in the increasing order.

e Increase the computing budget N'*! = min{N' + A, T}.

2. Allocate:
OCBA-mSG

e For each design 6;, compute the simulation budget Nilel according to
(3.2).
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OCBA-bSG

e If the total number of feasible designs is greater than m, compute u
according to (3.5), and compute the simulation budget Nil *1 for each

design 6; according to (3.4).

e Otherwise, compute the simulation budget NI-IJrl for each design 6;

according to (3.6).
3. Simulate:

° IfNilel > NU or Nl.l+1 < Nil, we set Nil+1 = Nil, and do not simulate

design 6; at this iteration.

e Otherwise, perform (NilJrl —Nil ) simulations for design 6; to generate
more samples Xl.k, k= Nil + 1,Nl.l +2.... ,N,-ZH-

4. Update: [ — [+ 1.

End of loop

3.6 Upper Bound Analysis

In the last section, we impose an upper bound on the simulation budget in the
allocation procedure for both the algorithms of OCBA-mSG and OCBA-bSG.
The reason that we introduce this upper bound is that because we use the
asymptotic limit 7 — oo to get the simulation budget allocation rules in Thm 1
and Thm 2. By using the asymptotic limit 77 — oo, we assume that the total
simulation budget is infinity, however in the real situations the total simulation
budget T is always finite. Therefore, we are unable to allocate a very large
amount of simulation budget to one design in real situations. As a result, we
decide to use an upper bound to control the simulation budget for every design in
order to ensure that there are enough simulation budget to be allocated to the
other critical designs. In this section, we first introduce how the upper bound is
calculated and then we compare it with the other fixed upper bound to see its

performance.
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3.6.1 Dynamic Upper Bound

For both OCBA-mSG and OCBA-bSG, we impose an dynamic upper bound NU
on the simulation budget for every single design: if N; > NU, we stop allocating
new simulation budget to that design. Since the designs near the critical points
need more simulation budget, we need to ensure each of such critical designs
will be simulated at least once. Hence, we approximate the upper bound by
counting the number of subsets related to the critical points after initialization,
where those subsets are Ss,-’ Sd[, Sei in OCBA-mSG or Ssi, Spis Sas Sd[, Se,- in
OCBA-bSG (c.f. Fig. 3.3).

(T — Knyg)

= . 3.7
total number of sets +0 G-7)

Here, we compare this dynamic upper bound with other fixed upper bounds in
the test problems. The test results show that our dynamic upper bound may not
be the best upper bound under every situation, but in general it obtains acceptable
performance for all the tests in this section. However, the performance of the
fixed upper bound is highly dependent on the parameter setting of each test, and
does not guarantee an overall good performance for all the tests.

Our experiments are conducted using Matlab. We use the probability of
correct selection P(CS) as the efficiency measurement. Since we cannot directly
calculate P(CS) analytically, we choose Monte Carlo simulation to estimate
P(CS) in the experiments. Thus P(CS) will be computed as the ratio of the
number of simulation runs with correct selections to the total number of
simulation runs. As our target is to maximize the probability of correct selection
in the objective function with given total simulation budget 7', the faster the
P(CS) converges, the better the corresponding method is. In addition, for
convenience, we assume that design 6; has complexity |log, ], so the complexity
is non-decreasing in i. And we compare the dynamic upper bound NU with the
other four fixed upper bounds which equal to 600, 1000, 2000 and 3000
respectively in OCBA-mSG and OCBA-bSG.

3.6.2 Upper Bound Comparison for Example 1

OCBA-mSG We want to find 5 simplest good enough designs with good

enough constraint Jy = 6.3 from a total of 20 designs with the i design having
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L(6;,{) distributed according to the normal distribution N (0.5i,i%). Notice that
the mean increases as the complexity increases, and the variance increases as the

mean increases. The initial simulation budget ng = 20, simulation budget

Current | P(CS) for P(CS) for P(CS) for P(CS) for P(CS) for
Budget Dynamic Upper | Upper Upper Upper Upper
Bound = Bound = Bound = Bound = Bound =
NU 600 1000 2000 3000
600 0.73 0.7 0.66 0.71 0.72
800 0.95 0.89 0.95 0.94 0.93
1000 0.98 0.94 0.99 0.98 0.98
1200 1 0.97 0.99 0.98 0.99
1400 1 0.95 0.99 0.98 1
1600 1 0.97 0.99 0.98 1
1800 1 0.96 1 1 1
2000 1 0.97 1 1 1
2200 1 0.98 1 1 1
2400 1 0.98 1 1 1
2600 1 0.99 1 1 1
2800 1 1 1 1 1
3000 1 0.99 1 1 1
3200 1 0.99 1 1 1
3400 1 0.99 1 1 1
3600 1 0.98 1 1 1
3800 1 0.99 1 1 1
4000 1 0.99 1 1 1
4200 1 1 1 1 1
4400 1 1 1 1 1
4600 1 1 1 1 1
4800 1 0.99 1 1 1
5000 1 0.99 1 1 1

Figure 3.5: Upper bound comparison for OCBA-mSG in Example 1 of selecting
5 simplest good enough designs from 20 designs with distribution N(0.5i,?) and
Jo=06.3.

increment A = 200, total simulation budget 7 = 10000, and total number of
simulation runs = 200. The complexity sets are Co = {6}, C; = {6,653},

Cy ={04,65,06,0;},C3 ={6s,...,0;5} and Cqy = { Oy, . .., 620 }. We record their
probability of correct selection P(CS) at each simulation budget level (every

iteration). Since most part of P(CS) in the record after budget exceeding 5000
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equal to 1, we eliminate those and concentrate on the P(CS) before simulation
budget reaches 5000.

From the observation of the simulation results for OCBA-mSG, the
total number of sets related to the critical points are mainly between 3 to 5.
Thus, in this example where T = 10000, K = 20 and ng = 20, we get the most
frequent values for upper bound NU equal to 3200, 2420, 1940 as calculated

below,

(10000 —20%20)
~ total number of sets

+ 20, where total number of sets = 3,4, 5.

If we look at the performance for the five different upper bounds shown in
Figure 3.5, it is clear that when upper bound equals to 600, P(CS) converges
slower compared to P(CS) under the other four upper bounds. The performance
of the dynamic upper bound NU 1is similar to that of the upper bound = 3000.
Although when simulation budget equals to 1400 and 1600, P(CS) for upper
bound = 1000 and 2000 are not equal to 1, it is very close to 1. Thus, we are
almost sure that the dynamic upper bound NU, upper bound = 1000, upper
bound = 2000, and upper bound = 3000 have similar good performance. This
conclusion is consistent with the frequent values we have calculated for upper
bound NU above, since NU, with values 1940, 2420 and 3200 most of the time,
are almost between the fixed upper bounds 2000 and 3000. Although when upper
bound = 1000 we still get a good enough performance, our dynamic upper bound

NU has the same good performance as well.

OCBA-bSG The parameter of this experiment is the same as the previous
example except that the total simulation budget is 8000.

From the observation of the simulation results for OCBA-bSG, the
total number of sets related to the critical points takes values mostly between 3
to 6. Using the same formula (3.7) for NU by setting 7 = 8000, K = 20 and
no = 20, we get the most frequent values for NU which are 2553, 1920, 1540 and
1286.

The comparison result is given in Figure 3.6. P(CS) for NU, upper bound =
1000 and upper bound = 2000 have higher value compared to that with upper
bound = 600 and upper bound = 3000, which means that the OCBA-bSG under
NU and upper bound = 1000 and 2000 have better performance. As calculated
above, because the most frequent values for NU are 2553, 1920, 1540 and 1286
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which are close to upper bound = 1000 and 2000, so the performance of dynamic
upper bound NU is consistent with the performance of upper bound = 1000 and
2000. The performance for upper bound = 600 is relatively worse, because it
does not allocate enough simulation budget to the critical designs since the
largest simulation budget it allows to allocate to a particular design is only 600.
On the other hand, the performance for upper bound = 3000 is also not good

enough, because it allows up to 3000 simulation budget to be allocated to one

Current | P(CS) for P(CS) for P(CS) for P(CS) for P(CS) for
Budget Dynamic Upper | Upper Upper Upper Upper
Bound = Bound = Bound = Bound = Bound =
NU 600 1000 2000 3000
600 0.43 0.3 0.39 0.46 0.4
800 0.67 0.63 0.57 0.6 0.58
1000 0.78 0.67 0.66 0.72 0.65
1200 0.76 0.73 0.74 0.79 0.71
1400 0.77 0.74 0.79 0.8 0.74
1600 0.8 0.77 0.8 0.81 0.76
1800 0.85 0.77 0.82 0.84 0.77
2000 0.85 0.77 0.84 0.86 0.79
2200 0.84 0.79 0.83 0.86 0.8
2400 0.87 0.81 0.84 0.88 0.82
2600 0.87 0.85 0.85 0.88 0.83
2800 0.87 0.87 0.85 0.9 0.84
3000 0.87 0.87 0.86 0.9 0.85
3200 0.88 0.87 0.86 0.9 0.84
3400 0.88 0.86 0.88 0.9 0.86
3600 0.88 0.87 0.89 0.9 0.86
3800 0.88 0.89 0.87 0.9 0.86
4000 0.87 0.88 0.87 0.9 0.86
4200 0.88 0.88 0.88 0.9 0.86
4400 0.88 0.88 0.89 0.91 0.86
4600 0.89 0.89 0.9 0.9 0.86
4800 0.89 0.89 0.9 0.9 0.86
5000 0.9 0.89 0.91 0.91 0.86
6000 0.92 0.9 0.93 0.93 0.86
7000 0.93 0.92 0.93 0.95 0.87
8000 0.93 0.92 0.93 0.95 0.89

Figure 3.6: Upper bound comparison for OCBA-bSG in Example 1 of selecting 5
simplest good enough designs from 20 designs with distribution N (0.5i,i%) and
Jo=6.3.
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design and this amount is a bit higher in this particular example. Although the
performance for upper bound = 2000 is a little better than the NU, the
performance for NU is the second best in this example which considered to be

acceptable.

3.6.3 Upper Bound Comparison for Example 2

Current | P(CS) for P(CS) for P(CS) for P(CS) for P(CS) for
Budget Dynamic Upper | Upper Upper Upper Upper
Bound = Bound = Bound = Bound = Bound =
NU 600 1000 2000 3000
600 0.42 0.36 0.34 0.46 0.41
800 0.62 0.56 0.49 0.6 0.54
1000 0.66 0.67 0.69 0.72 0.67
1200 0.78 0.79 0.83 0.79 0.75
1400 0.84 0.77 0.85 0.83 0.85
1600 0.84 0.8 0.87 0.85 0.86
1800 0.86 0.79 0.88 0.88 0.88
2000 0.87 0.81 0.88 0.92 0.91
2200 0.9 0.81 0.85 0.93 0.91
2400 0.9 0.82 0.88 0.93 0.93
2600 0.9 0.83 0.88 0.94 0.95
2800 0.91 0.82 0.89 0.97 0.95
3000 0.91 0.82 0.89 0.97 0.96
3200 0.91 0.83 0.88 0.96 0.96
3400 0.91 0.83 0.89 0.98 0.96
3600 0.92 0.83 0.89 0.98 0.96
3800 0.93 0.84 0.89 0.98 0.97
4000 0.94 0.84 0.9 0.98 0.97
4200 0.94 0.84 0.9 0.98 0.97
4400 0.94 0.84 0.9 0.98 0.97
4600 0.94 0.85 0.9 0.98 0.98
4800 0.95 0.85 0.9 0.99 0.98
5000 0.95 0.85 0.9 0.99 0.98
6000 0.95 0.85 0.91 0.99 0.98
7000 0.95 0.85 0.92 0.99 0.99
8000 0.95 0.85 0.92 0.99 1

Figure 3.7: Upper bound comparison for OCBA-mSG in Example 2 of selecting
5 simplest good enough designs from 20 designs with distribution
N(21—1i,(0.5i)%) and Jo = 7.3.
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OCBA-mSG We want to find 5 simplest good enough designs with good
enough constraint Jy = 7.3 from a total of 20 designs with the i/ design having
L(6;,¢) distributed according to the normal distribution N((21 — i), (0.5:)?). It is
clear that the mean decreases as the complexity increases, and the variance
increases as the mean decreases.The initial simulation budget ny = 20,
simulation budget increment A = 200, total simulation budget 7 = 8000, and
total number of simulation runs = 200. The complexity sets are Cy = {6 },
C1 = {92, 93}, C2 = {94, 95, 96; 97}, C3 = {98, ey 915} and C4 = {9167 ceey 92()}.
From the observation of the simulation result for OCBA-mSG, the
total number of sets related to the critical points falls between 5 to 7 in most
times. By applying the formula (3.7) for NU with T = 8000, K = 20 and
no = 20, we get the most frequently values for NU are 1540, 1286 and 1105.
The comparison result is shown in Figure 3.7. The performance for dynamic
upper bound NU is in the middle above the performance for the upper bounds =
600 and 1000, and below the performance for the upper bound = 2000 and 3000.
This is reasonable since the most frequent values for NU are 1540, 1286 and
1105, which are between the upper bounds 1000 and 2000. Because the different
pattens for mean and variance in this example, so the performance for upper
bounds = 2000 and 3000 are the best. As we know, these 20 designs follow the
normal distribution N(21 — i, (0.5i)?), where the mean decreases as the design
number increases and the variance increases as the design number increases. The
correct selection of the five simplest good enough designs include {04, 615} and
any three from {0y, 017, 013, 619, 620 }. Because design i follows distribution
N(21 —1i,(0.5)?) and the good enough constraint Jy = 7.3, so the designs with
small numbers are actually not as critical as we assumed when we build
formula (3.7) since their performance are far from good enough and their
variance are small. As a result, the total number of sets related to the critical
points counted in this example is a bit higher than the reasonable critical points
in the budget allocation procedure. Therefore, the performance of dynamic upper
bound NU is not as good as that of the upper bounds = 2000 and 3000, and it is

just in the middle of the performance.

OCBA-bSG From the observation of the simulation result for OCBA-bSG, the
total number of sets related to the critical points falls between 5 to 8 at most
times. By applying the Equation (3.7) for NU with T = 8000, K = 20 and

no = 20, we get the most frequently values for NU are 1540, 1286, 1105 and 970.
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Current | P(CS) for P(CS) for P(CS) for P(CS) for P(CS) for
Budget Dynamic Upper | Upper Upper Upper Upper
Bound = Bound = Bound = Bound = Bound =
NU 600 1000 2000 3000
600 0.15 0.09 0.08 0.1 0.11
800 0.26 0.21 0.23 0.22 0.19
1000 0.39 0.3 0.36 0.32 0.35
1200 0.48 0.41 0.47 0.4 0.42
1400 0.58 0.43 0.5 0.46 0.54
1600 0.61 0.54 0.52 0.56 0.55
1800 0.6 0.54 0.6 0.6 0.65
2000 0.62 0.56 0.63 0.64 0.66
2200 0.63 0.56 0.65 0.68 0.7
2400 0.63 0.58 0.65 0.68 0.75
2600 0.67 0.61 0.66 0.68 0.78
2800 0.67 0.62 0.65 0.68 0.75
3000 0.69 0.6 0.67 0.69 0.77
3200 0.68 0.62 0.65 0.7 0.77
3400 0.71 0.62 0.66 0.71 0.8
3600 0.7 0.62 0.65 0.72 0.8
3800 0.72 0.63 0.67 0.74 0.8
4000 0.73 0.63 0.68 0.75 0.8
4200 0.73 0.64 0.7 0.75 0.8
4400 0.76 0.66 0.7 0.74 0.81
4600 0.76 0.66 0.71 0.76 0.82
4800 0.76 0.67 0.73 0.76 0.82
5000 0.78 0.68 0.78 0.76 0.82
6000 0.8 0.7 0.78 0.78 0.83
7000 0.81 0.72 0.81 0.79 0.84
8000 0.82 0.75 0.83 0.8 0.85

Figure 3.8: Upper bound comparison for OCBA-bSG in Example 2 of selecting 5
simplest good enough designs from 20 designs with distribution
N(21—i,(0.5i)%) and Jy = 7.3.

The comparison result is displayed in Figure 3.8. When upper bound = 3000,
the P(CS) is higher than the other four cases. It is because that the correct
selection are the set {014, 015, 013, 619, 620} Wwhich have relatively large variance.
As we explained in OCBA-mSG of previous example, by allowing more
simulation budget to be allocated to these designs, we get more accurate

estimation for their performance. Therefore, in this example, upper bound =
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3000 has the best performance. Although the dynamic upper bound does not get
the best performance, it is in the second place together with upper bound = 1000
and 2000. In addition, since the difference of performance between dynamic
upper bound NU and upper bound = 3000 is not significant, we conclude that

NU is acceptable in this example.

3.6.4 Remark on Upper Bound

The examples above indicate that the dynamic upper bound NU has a satisfied
performance in comparison to the other fixed upper bounds. However, when
some critical designs are not actually so critical as what we see in Section 3.6.3,
the performance of NU will not be so excellent under this situation. This is
because of the formulation for NU in Equation (3.7), where all the subsets S 530
Sdi, Sei in OCBA-mSG or 5;0 sz, Sa, Sd,» Se,- in OCBA-bSG are counted as the
total number of sets related to the critical points. Therefore, when the designs in
some of these subsets are not critical at all, the total number of sets will be

counted more than their actual value is, which results in a lower value for NU.

3.7 Experimental Results

In this section, we compare OCBA-mSG and OCBA-bSG with two other
methods - Equal Allocation and Levin Search to test the efficiency of our
methods. The experiments will be demonstrated on four test cases using Matlab,
including one test case from inventory control problem mentioned in the
introduction. The two other methods in the experiments are briefly introduced
below.

Equal Allocation (EA) allocates the total simulation budget 7 equally among
all the designs and do not consider any characteristics of the designs such as the
mean, the variance or the complexity of the design. At iteration /, it allocates the

A simulation budget according to
NFY_NI=A/K, Yie{1,2,...,K}.

Levin Search (LS) method [30] allocates simulation budget to the designs

sequentially in the order of the complexity. It is useful when applied to find one
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simplest and good enough design [23]. LS first simulates the designs with
smallest complexity until obtaining a certain accuracy for the estimates of the
performance, based on which the good enough designs are selected. If only less
than m good enough designs are found, it then continues to simulate the designs
in the next complexity set until finding m simplest good enough designs
eventually. In our implementation, we simulate every design for ng times at
initialization, and order them according to their sample means and complexities.
Since it is hard to specify a given accuracy for the estimates in our examples, we
evenly allocate the total remaining budget (7 — Kng) /K to all the designs
beforehand, but simulate the designs sequentially, i.e., start simulating the first
simplest design for (T — Kngp) /K times and then move on to the next one to
repeat the same procedure. LS method will be the same as the EA in the end
when all the 7' simulation budget is used, but it performs differently during the
process. In general, LS method performs better if the performance deteriorates as

the complexity increases.

3.7.1 Example 1 (Mean increases as complexity increases)

The example is the same as in Section 3.6.2, except the total simulation budget is

8000 and the total number of simulation runs = 10%.

OCBA-mSG The correct selection of the five simplest good enough designs
should include {6y, 6,, 63} and any two from {6y, 6s,6¢}. Fig. 3.9 shows that
OCBA-mSG converges faster than EA and LS. EA performs well in this example
because of the small total number of designs K and the small variance 62. LS
searches from the simplest sets {0;}, {6,,65},..., and the critical designs are 6

and 67, so LS converges in about 7 interations.

OCBA-bSG The correct selection is {0}, 65, 03, 04,65 }. Fig. 3.10 shows the
simulation result. OCBA-bSG obtains a high P(CS),, faster than EA and LS,
which means OCBA-bSG can select the optimal designs more accurate.
Similarly, LS converges in about 7 iterations due to the mean is increasing as the

complexity increases.

Analysis for OCBA-mSG and OCBA-bSG in Example 1 Although both
OCBA-mSG and OCBA-bSG are choosing 5 simplest good enough designs,
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Figure 3.9: Example 1 - selecting 5 simplest good enough designs from 20
designs with distribution N(0.5i,i%) and Jy = 6.3.

OCBA-mSG has a larger correct set since any two designs chosen from

{64, 65,66} will be counted as correct selection. Thus, OCBA-mSG converges
faster compared to OCBA-bSG in Example 1. With the same simulation budget
T = 8000, OCBA-mSG has about 5% higher probability of correct selection
compared to that of OCBA-bSG. For similar reason, EA and LS in Fig. 3.9
converges faster than that of Fig. 3.10. Besides, because the variances are
increasing as the design number increasing, so the selected 5 simplest good
enough designs are all with small variances. Thus, when we are using equal
allocation, we can obtain a relatively correct estimation for the mean of these five

designs, and the performance of EA is acceptable in this example.

3.7.2 Example 2 (Mean decreases as complexity increases)

The example is the same as that in Section 3.6.3 except the total number of

simulation runs = 3000.

OCBA-mSG Correct selection of the five simplest good enough designs
should include {64, 05} and any three from {0;¢, 0,7, 013, 019,620 }. Fig. 3.11
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Figure 3.10: Example 1 - selecting the best 5 simplest good enough designs from
20 designs with distribution N(0.5i,i%) and Jy = 6.3.

shows the simulation result. All three methods converge slower than that in
Example 1, but OCBA-mSG still converges faster than EA and LS. LS still
searches from the simplest sets while the correct selection is in the higher

complexity sets, so LS method also converges slower than that of Example 1.

OCBA-bSG The correct selection is {014, 015, 013, 619, 620 }. Fig. 3.12 shows
the simulation result. Thus, LS converges near the critical design 64 and 603 as
shows in the figure below since it searches from the simplest set. It is clear that
OCBA-bSG outperforms.

Analysis for OCBA-mSG and OCBA-bSG in Example 2 For the similar
reason explained in Example 1, OCBA-mSG converges faster than OCBA-bSG
since OCBA-mSG has a higher probability to obtain the correct selection set.
With the same simulation budget for OCBA-mSG and OCBA-bSG, OCBA-mSG
gets 10% higher probability of correct selection compared to OCBA-bSG.
Because the 5 simplest good enough designs are with relatively large variances,
so it is hard to get an accurate estimation for their means. As a result, in Example

2 under Equal Allocation method, it converges slower and has a smaller correct
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Figure 3.11: Example 2 - selecting 5 simplest good enough designs from 20
designs with distribution N((21 — i), (0.5i)?) and Jo = 7.3.

selection probability in the last iteration compared to that of Example 1.

3.7.3 Example 3 (Large-scale problem)

We want to find 5 simplest good enough designs with good enough constraint

Jo = 6.3 from a total of 65 designs with the i design having L(6;, {) distributed
according to the normal distribution N((66 — i), (0.057)?). The initial simulation
budget ny = 20, simulation budget increment A = 200, and total simulation
budget T = 8000. The complexity sets are Co = {0, }, C; = {6,, 63},

G = {94,...,97}, Gy = {98,...,915}, Cy = {916,...,931}, Cs = {032,...,063}
and C6 = {9647 965}-

OCBA-mSG The correct selection of the five simplest good enough designs
should include {6, 61, B2, O3} and any one from {Bg4, Ogs }. For this
large-scale problem , OCBA-mSG performs much better than EA and LS as
shown in Fig. 3.13. Detailed explanation is similar to that for OCBA-bSG in the

following.
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Figure 3.12: Example 2 - selecting the best 5 simplest good enough designs from
20 designs with distribution N((21 — i), (0.5:)?) and Jy = 7.3.

OCBA-bSG The correct selection is {6g0, 661, O62, 63, O6s }- For this
large-scale problem, OCBA-bSG performs much better than EA and LS as
shown in Fig. 3.14. When the total design number KX is large, EA converges
slowly since each design is assigned with less simulation budget at every
iteration compared to examples 1 and 2. For LS, the first time LS converges is
the time that the total simulation budget reaches 4900, which is when it first
starts to simulate designs in the set {6, ..., 063} with means {34,...,3}. As we
assign the simulation budget according to the order of the designs in the same
complexity set, here we simulate designs in the order of 6g3, ¢, . ... Since
designs O¢3, B62, 01 and B¢ belong to the correct selection set, LS converges fast
at this point. The second fast convergence for LS happens in the end due to the

simulation budget allocation to the design 6gs.

Analysis for OCBA-mSG and OCBA-bSG in Example 3 In this large scale
problem, when the total number of designs K is large and the number of critical
designs are small (the most critical designs in Example 3 are 059, 640, 064, O¢5),

by the allocation Theorem 1 and Theorem 2, more simulation budget will be
allocated to these critical designs under OCBA-mSG and OCBA-bSG instead of
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Figure 3.13: Example 3 - selecting 5 simplest good enough designs from 65
designs with distribution N((66 — i), (0.05)%) and Jy = 6.3.

equal allocation to every design. Thus, OCBA-mSG and OCBA-bSG converges
much faster than EA and LS.

3.7.4 Example 4 (Inventory control problem)

There are 9 stores, every store has the same holding cost 4 = 0.05, purchase cost
¢ = 0.4, shortage cost s = 0.1 and initial inventory xo = 10. The demand at each
period is a random variable satisfies d = min(0,N(8,4%)). Every store uses
different thresholds functions to calculate the reorder amount at each period. Due
to the number of thresholds, we classify them into three complexity sets as
Co={61,6,,03}, C; ={64,65,05} and C; = {67,063, 69 }. To be simplicity, we
write the reorder threshold policy into one function but with different value for
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Figure 3.14: Example 3 - selecting the best 5 simplest good enough designs from
65 designs with distribution N((66 — i), (0.05i)?) and Jo = 6.3.

parameters.

( .
0, if xx = a3.
asz —xy, if ay < xp < as.
Uy = .
a) —xi, if a1 < xp < ap.

ay —xi, if xp <a.

The value of (a;,ay,as3) for 9 stores are (0,0, 15), (0,0,20), (0,0,25), (0,10, 15),
(0,10,20), (0,20,45), (5,10,15), (10, 15,20), (15,20,25) respectively. In this
example, we use the expected cost below as the performance measure.

n—1
E{Y (cug+ [xps1[smax(0, —xxp1) + g1 [rmax (0,x¢41)) },
k=1
where x; | =x;+ur—d, k=0,1,...,n— 1. Here u; is the reorder amount at &,

period. We simulate every store for 10000 periods to get the estimation for the
expected cost for 9 stores as 13.59, 9.56, 16.78, 25.64, 25.05, 71.65, 8.34, 2.78

and 4.63. And then we compare our results with these estimated expected costs
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to calculate the P(CS). The good enough constraint Jy = 4.6 for OCBA-mSG and
Jo = 8.2 for OCBA-bSG, initial simulation budget ny = 100, simulation budget
increment A = 1000, total simulation budget 7 = 10,000, and total number of

simulation runs = 100.
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Figure 3.15: Example 4 - selecting 1 simplest good enough designs from 9
designs in inventory control problem.

OCBA-mSG The correct selection of the one desirable designs should be any
one from {6g, 69 }. For this inventory control problem, all the three methods

perform well as shown in Fig. 3.15.

OCBA-bSG The correct selection of two desirable designs should be {6,609 }.
In Fig. 3.16, OCBA-bSG performs better than EA and LS. However, there is a
small decreasing in P(CS) of OCBA-bSG in the end. One possible reason is the
variability of the performance measure for this inventory control problem. By
performing test cases, the expected cost for the critical design 67 should be above

Jo in the long term, however, when the simulation amount is not that large, its
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Figure 3.16: Example 4 - selecting the best 2 simplest good enough designs from
9 designs in inventory control problem.

expected cost may drop below Jy as simulation budget increases which makes the
P(CS) decreases in OCBA-bSG. The similar situation may happen to design 6,
as well. Therefore, if the simulation budget is large enough, we should obtain a
stabilized P(CS) for OCBA-bSG in an ideal situation. The other possible reason
is that the total number of simulation runs is relatively small compare to the
previous examples due to the complexity of this inventory control problem. As a
result, several outliers may affect the result of Fig. 3.16 as well. On the other
hand, since design 6; is the critical design, with similar explanation in the

previous example, P(CS) for LS also increases at the last round in this figure.

3.7.5 Comparison between OCBA-mSG and OCBA-bSG

Comparing selecting S;, with S, the difference is in Gy, where the subset S, in
selecting S, is divided into two subsets S; and S, in selecting S;,. Theorem 2

implies that in addition to allocating more simulation budget to the designs near
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Jo in the sets Cy,Cy ...,Cryp, we also allocate simulation budget to designs near
u in the set Gy . As aresult, the extra simulation budget assigned to designs
near U in selecting S, is approximately 2/(¢ 4+ 2p + 2) of the total simulation
budget in selecting S,,. If # =0 and p = 0 (i.e., there are more than m feasible
designs in the lowest complexity set Cp), then selecting S;, needs approximately
double simulation budget of that in selecting S,, for the same accuracy of the
sample means of the design performance. On the other hand, if 7 4-2p is large,
selecting S, requires little extra simulation budget, and will be preferred since it

yields the best m designs among all simplest and good enough designs.

3.8 Conclusion for OCBA-mSG and OCBA-bSG

In this chapter, we introduce two new algorithms OCBA-mSG and OCBA-bSG
for solving the problem of selecting m simplest good enough designs and best m
simplest good enough designs respectively, which are also one kind of best
design selection problems as we discussed in Section 2.3 except we select
multiple simplest good enough designs. Our new algorithms are developed from
the idea of the original OCBA algorithm introduced in Section 2.2. We use a
similar problem formulation and approximation way as in OCBA, however we
solve a new problem which has wide applications in WSNs and inventory
control. The experimental results indicate that OCBA-mSG and OCBA-bSG can
efficiently allocate simulation budget to critical designs by using the statistical
information of both sample mean and sample variance of the design. Therefore,
our algorithms provide an alternative way to efficiently select multiple simplest
good enough designs from a total of K designs.
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CHAPTER 4

CONCLUSION

In this thesis, we reviewed several methods related to my research on the best
selection problem, such as two-stage procedure, optimal computing budget
allocation and adaptive sampling algorithm. Based on these methods we
developed new algorithms for the selection of m simplest good enough designs,
which is useful in the node activation rule in wireless sensor networks and
inventory control problems. The first algorithm we introduced is called
OCBA-mSG which can efficiently allocate the simulation budget to achieve the
high probability of correct selection. However, this algorithm only selects the m
simplest good enough designs instead of the best m simplest good enough
designs, which means that the selected designs do not guarantee to have the best
performance. Since sometimes we may need the best m simplest good enough
designs, we proposed another algorithm called OCBA-bSG to select the best
designs by modifying OCBA-mSG a little bit. The comparison between
OCBA-mSG and OCBA-bSG in Section 3.7.5 showed that under some situations,
the choice of OCBA-bSG only slightly increase the simulation budget but get
better results compared to OCBA-mSG. The upper bound analysis in Section 3.6
indicated that the upper bound derived in the two algorithms are in general
effective and obtained a satisfied performance in examples considered in this
thesis. The numerical results in Section 3.7 showed that both methods converge

fast on all the experiments, which implied the efficiency of our methods.
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