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ABSTRACT 

This report presents a methodology for the refined, reliable, integrated and 

versatile assessment of the impact of earthquakes on civil infrastructure systems by using 

free-field and structural instrumentation as well as hybrid simulation. The methodology is 

presented through a seamlessly-integrated, transparent, transferable and extensible 

software platform, referred to as NEES Integrated Seismic Risk Assessment Framework 

(NISRAF). The software tool combines all necessary components in order to obtain the 

most reliable earthquake impact assessment results possible. The components are (i) 

hybrid simulation, (ii) free-field and (iii) structural sensor measurements, (iv) hazard 

characterization, (v) system identification-based model updating, (vi) hybrid fragility 

analysis and (vii) impact assessment software. 

NISRAF has been built and demonstrated via applications to an actual test bed in 

the Los Angeles area. Based on an instrumented six-story steel moment resisting frame 

building and free-field station records, site response analysis was performed, and hazard 

characterization and surface ground motion records were generated for further use during 

the hybrid simulations and fragility analyses. Meanwhile, the finite element model was 

built, and the natural frequencies and mode shapes were identified using suitable 

algorithms. The numerical model was updated through a sensitivity-based model 

updating technique. Next, hybrid simulations—with the most critical component of the 

structural system tested in the laboratory and the remainders of the structure simulated 

analytically—were conducted within UI-SIMCOR and ZEUS-NL, both software 
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platforms of the University of Illinois. The simulated results closely matched their 

measured counterparts. Fragility curves were derived using hybrid simulation results 

along with dispersions from research on similar structures from the literature. Impact 

assessment results using the generated hazard map and fragility curves correlated very 

well with field observations following the Northridge earthquake of 17 January 1994. 

The novelty of the developed framework is primarily the improvement of every 

component of earthquake impact assessment and the integration of these components—

most of which have not been deployed in such an application before—into a single 

versatile and extensible platform. To achieve seamless integration and to arrive at an 

operational and verified system, several components were used innovatively, tailored to 

perform the role required by NISRAF. The integrated feature brings the most advanced 

tools of earthquake hazard and structural reliability analyses into the context of societal 

requirement for accurate evaluation of the impact of earthquakes on the built environment. 



iv 

ACKNOWLEDGMENTS 

The work was financially supported by the NEESR-SD project, Framework for 

Development of Hybrid Simulation in an Earthquake Impact Assessment Context, funded 

by the National Science Foundation (NSF) under award number 0724172. I must also 

acknowledge the financial and logistical contributions of the Mid-America Earthquake 

(MAE) Center, a NSF Engineering Research Center funded under grant EEC-9701785. 



v

TABLE OF CONTENTS 
LIST OF TABLES ..................................................................................................................................... X�

LIST OF FIGURES .................................................................................................................................. XI�

CHAPTER 1 ................................................................................................................................................ 1�

1.1 Background ......................................................................................................................................... 1�

1.2 Objective and Scope ........................................................................................................................... 5�

1.3 Organization of Dissertation ............................................................................................................... 7�

CHAPTER 2 ................................................................................................................................................ 9�

2.1 Introduction ......................................................................................................................................... 9�

2.2 Free-Field and Structural Instrumentation .......................................................................................... 9�

2.2.1 ANSS, Advanced National Seismic System .............................................................................. 10�

2.2.2 COSMOS, the Consortium of Organizations for Strong Motion Observation Systems ............ 11�

2.2.3 CESMD, Center for Engineering Strong Motion Data .............................................................. 11�

2.2.4 Pacific Earthquake Engineering Research Center (PEER) NGA Database ............................... 12�

2.2.5 CSMIP, California Strong Motion Instrumentation Program .................................................... 12�

2.3 Seismic Hazard Characterization ...................................................................................................... 13�

2.3.1 Attenuation Relationship............................................................................................................ 14�

2.3.2 Synthetic Ground Motions Generation ...................................................................................... 18�

2.3.3 Site Response Analysis .............................................................................................................. 19�

2.3.3.1 SHAKE91 ........................................................................................................................... 21�

2.3.3.2 DEEPSOIL .......................................................................................................................... 22�

2.4 Model Calibration ............................................................................................................................. 23�

2.4.1 System Identification ................................................................................................................. 23�

2.4.2 Model Updating ......................................................................................................................... 24�

2.5 Dynamic Response Simulation of Structures .................................................................................... 25�

2.5.1 Model Analytical Simulation ..................................................................................................... 25�

2.5.2 PSD, Pseudo-Dynamic Test ....................................................................................................... 26�

2.5.3 Hybrid Simulation ...................................................................................................................... 26�

2.6 Fragility Analysis .............................................................................................................................. 28�

2.7 Earthquake Impact Assessment Tools .............................................................................................. 29�

2.7.1 MAEviz ...................................................................................................................................... 31�

2.7.2 HAZUS-MH .............................................................................................................................. 32�



vi

2.8 Summary and Discussion .................................................................................................................. 33�

CHAPTER 3 .............................................................................................................................................. 35�

3.1 Introduction ....................................................................................................................................... 35�

3.2 Overview of the Advanced Hazard Characterization Analysis Method ........................................... 36�

3.3 Seismic Hazard Analysis .................................................................................................................. 37�

3.3.1 Seismic Hazard Analysis from Natural Records ........................................................................ 37�

3.3.2 Seismic Hazard Analysis for Scenario Earthquakes .................................................................. 40�

3.3.2.1 Significant duration prediction equation ............................................................................. 41�

3.3.2.2 Deaggregation results from Probabilistic Seismic Hazard Analysis ................................... 43�

3.4 Synthetic Ground Motion Generation ............................................................................................... 44�

3.4.1 Intensity Function ...................................................................................................................... 45�

3.4.2 Duration Parameters ................................................................................................................... 46�

3.5 Site Response Analysis ..................................................................................................................... 47�

3.6 Hazard Map Generation .................................................................................................................... 48�

3.7 Verification Studies .......................................................................................................................... 49�

3.7.1 Introduction ................................................................................................................................ 49�

3.7.2 Hazard Models Calibrated with Measured Records ................................................................... 52�

3.7.3 Application Examples ................................................................................................................ 58�

3.7.3.1 Application 1—synthetic ground motions through the Northridge earthquake mechanism
 ........................................................................................................................................................ 59�

3.7.3.2 Application 2—synthetic ground motions with various hazard levels................................ 64�

3.7.3.3 Application 3— a site specific hazard map under the Northridge earthquake in LA area .. 68�

3.8 Summary and Discussion .................................................................................................................. 74�

CHAPTER 4 .............................................................................................................................................. 75�

4.1 Introduction ....................................................................................................................................... 75�

4.2 Overview of the Advanced Hybrid Fragility Analysis Method ........................................................ 76�

4.3 Verification Studies .......................................................................................................................... 77�

4.3.1 Structural Model and Seismic Input ........................................................................................... 78�

4.3.1.1 Building Description and Structural Model ........................................................................ 78�

4.3.1.2 Performance Limit State ..................................................................................................... 79�

4.3.1.3 Seismic Input ...................................................................................................................... 79�



vii 

4.3.2 Hybrid Simulation ...................................................................................................................... 79�

4.3.2.1 Testing Facility ................................................................................................................... 80�

4.3.2.2 Specimen Design................................................................................................................. 82�

4.3.2.3 Software Environment ........................................................................................................ 84�

4.3.2.4 Experimental Setup ............................................................................................................. 86�

4.3.2.5 Hybrid Simulation Results .................................................................................................. 88�

4.3.3 Hybrid Fragility Analysis........................................................................................................... 90�

4.3.3.1 Mean PGA Values from Hybrid Simulation ....................................................................... 90�

4.3.3.2 Dispersions from Literature ................................................................................................ 95�

4.3.3.3 Hybrid Fragility Curves ...................................................................................................... 97�

4.4 Fragility Relationships for Other Building Types ............................................................................. 99�

4.4.1 Parameterized Fragility Method ................................................................................................. 99�

4.4.2 Fragility Relationships for Los Angeles area ........................................................................... 100�

4.5 Summary and Discussion ................................................................................................................ 103�

CHAPTER 5 ............................................................................................................................................ 104�

5.1 Introduction ..................................................................................................................................... 104�

5.2 Architecture of NISRAF ................................................................................................................. 104�

5.2.1 File Menu ................................................................................................................................. 108�

5.2.2 Strong Motion Menu ................................................................................................................ 108�

5.2.3 Hazard Characterization Menu ................................................................................................ 110�

5.2.3.1 Seismic Hazard Analysis .................................................................................................. 111�

5.2.3.2 Synthetic Time Histories ................................................................................................... 113�

5.2.3.3 Hazard Map Generation .................................................................................................... 116�

5.2.4 Structural Model Menu ............................................................................................................ 118�

5.2.5 Model Calibration Menu .......................................................................................................... 120�

5.2.6 Hybrid Simulation Menu ......................................................................................................... 122�

5.2.7 Fragility Analysis Menu........................................................................................................... 124�

5.2.8 Impact Assessment Menu ........................................................................................................ 128�

5.2.9 Help Menu ............................................................................................................................... 129�

5.3 Communication Protocols and Analysis Platforms ......................................................................... 129�



viii 

5.4 Features of NISRAF ....................................................................................................................... 130�

5.5 Potentials, Limitations and Challenges ........................................................................................... 132�

CHAPTER 6 ............................................................................................................................................ 133�

6.1 Introduction ..................................................................................................................................... 133�

6.2 Application 1: A 6-Story Steel Building in Burbank, California .................................................... 133�

6.2.1 Introduction .............................................................................................................................. 134�

6.2.1.1 Building Information ......................................................................................................... 134�

6.2.1.2 Site Condition ................................................................................................................... 136�

6.2.2 Strong Motion .......................................................................................................................... 136�

6.2.3 Hazard Characterization ........................................................................................................... 137�

6.2.4 Structural Model ...................................................................................................................... 138�

6.2.5 Model Calibration .................................................................................................................... 139�

6.2.5.1 System Identification ........................................................................................................ 139�

6.2.5.2 Model Updating ................................................................................................................ 142�

6.2.6 Hybrid Simulation & Fragility Analysis .................................................................................. 144�

6.2.7 Impact Assessment ................................................................................................................... 144�

6.3 Application 2: the Los Angeles area earthquake impact assessment .............................................. 147�

6.3.1 Introduction .............................................................................................................................. 147�

6.3.2 Assessment Results and Comparison ....................................................................................... 147�

6.4 Uncertainty Analysis in NISRAF ................................................................................................... 149�

6.4.1 Introduction .............................................................................................................................. 149�

6.4.2 Methodology of uncertainty analysis in MAEviz .................................................................... 151�

6.4.2.1 Uncertainty in hazard ........................................................................................................ 152�

6.4.2.2 Uncertainty in structural damage ratio .............................................................................. 153�

6.4.2.3 Uncertainty in nonstructural and content damage ratio .................................................... 155�

6.4.2.4 Loss estimation ................................................................................................................. 155�

6.4.2.5 Uncertainty representation ................................................................................................ 156�

6.4.3 Uncertainty analysis in NISRAF .............................................................................................. 156�

6.4.4 Discussion of Uncertainty Analysis ......................................................................................... 157�

6.5 Summary and Conclusion ............................................................................................................... 158�

CHAPTER 7 ............................................................................................................................................ 160�



ix 

7.1 Summary of Findings ...................................................................................................................... 160�

7.2 Ideas for Future Research ............................................................................................................... 162�

7.3 Closure ............................................................................................................................................ 164�

REFERENCES ........................................................................................................................................ 166�

APPENDIX A .......................................................................................................................................... 174�

APPENDIX B .......................................................................................................................................... 186�

APPENDIX C .......................................................................................................................................... 204�

C.1 Structural Parameters for PFM ....................................................................................................... 204�

C.2 Earthquake Demand ....................................................................................................................... 204�

C.3 Fragility Relationships ................................................................................................................... 204�

APPENDIX D .......................................................................................................................................... 207�

D.1 System Identification ..................................................................................................................... 207�

D.2 Model Updating ............................................................................................................................. 210�



x

LIST OF TABLES 
Table 3-1 Soil properties of Burbank site (Fumal et al., 1979) .................................................................. 50�
Table 3-2 Seismic parameters of the 1994 Northridge earthquake (USGS, 1996) .................................... 53�
Table 3-3 Parameters from SMIP report required for the CB-NGA model ............................................... 54�
Table 3-4 ����, ���� and ���� values of stations close to the borehole site .............................................. 56�
Table 3-5 ����, ���� and ���� values after modification .......................................................................... 56�
Table 3-6 Comparison between the measured and predicted seismic parameters ..................................... 60�
Table 3-7 Deaggregation results at Burbank site ....................................................................................... 65�
Table 3-8 Contributed fault information based on deaggregation results .................................................. 65�
Table 3-9 Comparisons of PGA value between the measured and the calculated ..................................... 74�
Table 4-1 Force and displacement capacities of portable LBCB (Holub, 2010) ....................................... 81�
Table 4-2 Scale factor for design small scale specimen ............................................................................. 83�
Table 4-3 Dimension and material properties of real column and small-scale specimen .......................... 83�
Table 4-4 Interstory drift angle (target ISDA) and PGA from hybrid simulation tests .............................. 92�
Table 4-5 Logarithmic uncertainties for mid-rise building (FEMA, 2000a) .............................................. 96�
Table 4-6 Mean PGA value and dispersions for mid-rise steel building fragility curves .......................... 97�
Table 6-1 Frequency and � of identified with ERA method .................................................................... 140�
Table 6-2 Selected parameters for model updating and updated results .................................................. 142�
Table 6-3 Comparison of frequency and mode shape between the original and updated ........................ 143�
Table 6-4 Comparison between impact assessment results ...................................................................... 145�
Table 6-5 ATC-38 post-earthquake report for the Northridge earthquake of 1994 ................................. 145�
Table 6-6 Comparison between NISRAF and MAEviz default ............................................................... 146�
Table 6-7 Direct economic building loss ................................................................................................. 148�
Table 6-8 Probability model for structural damage ratio (Bai et al., 2009) ............................................. 154�



xi

LIST OF FIGURES 
Figure 1-1 Devastating earthquakes in recent decades ................................................................................ 2�
Figure 1-2 Schematic of the proposed integrated framework ...................................................................... 5�
Figure 2-1 Source-to-site distances ............................................................................................................ 18�
Figure 2-2 Average normalized response spectra (5% damping) for different local site condition ........... 21�
Figure 3-1 Methodology and procedures of hazard characterization analysis ........................................... 36�
Figure 3-2 Measured structures with instruments on the ground ............................................................... 38�
Figure 3-3 Free-field records on an outcrop............................................................................................... 39�
Figure 3-4 Free-field station record on soil surface ................................................................................... 39�
Figure 3-5 Variation of bracketed duration (0.05g threshold) with magnitude and epicentral distance .... 42�
Figure 3-6 Intensity functions implemented in SIMQKE (Gasparini and Vanmarcke, 1976) ................... 46�
Figure 3-7 Definition of Tb and Ttotal .......................................................................................................... 46�
Figure 3-8 Borehole log of the Burbank site (adapted from Fumal et al., 1979) ....................................... 51�
Figure 3-9 Free-field and structural instruments around the Burbank site (CESMD) ............................... 52�
Figure 3-10 Portrayed buried fault plane of the Northridge earthquake (USGS, 1996) ............................ 53�
Figure 3-11 Comparison of the difference  using different 	
�� and ���� .............................................. 55�
Figure 3-12 Difference when assuming ���� � �
� for all the borehole sites ........................................ 57�
Figure 3-13 Difference when using ���� value from PEER NGA Database ............................................. 57�
Figure 3-14 Sensitivity of shear-wave velocity to the PGA predicted by CB-NGA ................................. 58�
Figure 3-15 Response spectra generated through CB-NGA model ........................................................... 60�
Figure 3-16 Synthetic ground motion with different duration and PGA ................................................... 61�
Figure 3-17 Comparison between the natural and synthetic record ........................................................... 62�
Figure 3-18 Comparison of response spectra ............................................................................................. 62�
Figure 3-19 Comparison of response spectra with site response analysis (SR) ......................................... 64�
Figure 3-20 Synthetic ground motions for different hazard level and duration ......................................... 66�
Figure 3-21 Response spectra for different hazard level ............................................................................ 67�
Figure 3-22 Locations of boreholes (black cross) in the SMIP geotechnical report .................................. 69�
Figure 3-23 Subdivided areas and the selected boreholes in the Los Angeles area ................................... 69�
Figure 3-24 Map of PGA for the 1994 Northridge earthquake in the Los Angeles area ........................... 70�
Figure 3-25 ShakeMap for the 1994 Northridge earthquake (USGS)........................................................ 71�
Figure 3-26 Hazard and difference of PGA between NISRAF and measured one .................................... 73�
Figure 3-27 Hazard and difference of PGA between MAEviz and measured one .................................... 73�
Figure 4-1 Flow chart for the advanced hybrid fragility analysis .............................................................. 77�
Figure 4-2 Analytical model configuration for Burbank building ............................................................. 78�
Figure 4-3 Hybrid simulation with two sub-structures (column and frame) .............................................. 80�
Figure 4-4 Portable LBCB at MUST-SIM 1/5th-scale model laboratory ................................................... 81�
Figure 4-5 Aluminum column specimen elevation, unit: in. ...................................................................... 83�
Figure 4-6 Completed small-scale specimen ............................................................................................. 84�
Figure 4-7 Small-scale experimental setup ................................................................................................ 87�
Figure 4-8 Ground motion record of the 1994 Northridge earthquake (CSMIP # 24370) ......................... 89�
Figure 4-9 Comparison of the roof drift between the measured and the hybrid simulation ...................... 89�
Figure 4-10 Methodology and procedures for the advanced hybrid fragility analysis .............................. 91�
Figure 4-11 Number of hybrid simulation tests to derive fragility curves ................................................. 92�



xii

Figure 4-12 Synthetic Ground motion (2% PE/50yrs with scale factor = 3.54) ........................................ 93�
Figure 4-13 Comparison of column response between hybrid and multiplatform simulation ................... 93�
Figure 4-14 Comparison of displacement between hybrid and multiplatform simulation ......................... 94�
Figure 4-15 Comparison of displacement between hybrid and multiplatform simulation ......................... 94�
Figure 4-16 Hybrid fragility curves for mid-rise steel moment resisting frame building in LA area ........ 97�
Figure 4-17 Fragility relationship comparison between NISRAF and MAEviz ........................................ 98�
Figure 4-18 Comparison of S1M (High-Code) fragility relationships ..................................................... 101�
Figure 4-19 W1 (High-Code) fragility relationships comparison between PFM and MAEviz ............... 102�
Figure 4-20 URMM (Pre-Code) fragility relationships comparison between PFM and MAEviz ........... 102�
Figure 5-1 Architecture of NISRAF ........................................................................................................ 105�
Figure 5-2 Welcome window and main window of NISRAF .................................................................. 107�
Figure 5-3 File submenus in NISRAF ..................................................................................................... 108�
Figure 5-4 Schematic of Strong Motion menu in NISRAF ...................................................................... 109�
Figure 5-5 Strong Motion menu in NISRAF ........................................................................................... 109�
Figure 5-6 Strong motion data GUI in Strong Motion menu ................................................................... 110�
Figure 5-7 Hazard Characterization submenu in NISRAF ...................................................................... 111�
Figure 5-8 Seismic hazard analysis GUI in Hazard Characterization menu ............................................ 112�
Figure 5-9 Time history and response spectrum checking GUI ............................................................... 112�
Figure 5-10 Define soil profiles and material properties GUI in NISRAF .............................................. 113�
Figure 5-11 GUI to define seismic parameters ........................................................................................ 114�
Figure 5-12 GUI to customize synthetic time history .............................................................................. 114�
Figure 5-13 GUI to show analysis progress and response spectrum ........................................................ 115�
Figure 5-14 Suites of generated synthetic time histories ......................................................................... 115�
Figure 5-15 GUI to specify information for hazard map generation ....................................................... 116�
Figure 5-16 Hazard map generation in NISRAF ..................................................................................... 117�
Figure 5-17 Hazard map generated by NISRAF ...................................................................................... 117�
Figure 5-18 Structural Model submenus in NISRAF ............................................................................... 118�
Figure 5-19 Imported ZEUS-NL model in NISRAF ............................................................................... 119�
Figure 5-20 NISRAF allows user to create FM model ............................................................................ 119�
Figure 5-21 Model Calibration submenus in NISRAF ............................................................................ 121�
Figure 5-22 GUIs for system identification in NISRAF .......................................................................... 121�
Figure 5-23 GUIs for model updating in NISRAF .................................................................................. 122�
Figure 5-24 Hybrid Simulation submenus in NISRAF ............................................................................ 123�
Figure 5-25 GUIs to define sub-structures in NISRAF ............................................................................ 123�
Figure 5-26 GUIs to run hybrid simulation in NISRAF .......................................................................... 124�
Figure 5-27 Fragility Analysis submenus in NISRAF ............................................................................. 125�
Figure 5-28 GUIs to define limit states, select time history and specify ISDA ....................................... 126�
Figure 5-29 Hybrid simulation for fragility analysis (turn off UI-SIMCOR GUIs) ................................ 126�
Figure 5-30 GUI to calculate ISDA, scale factor and ask for testing ....................................................... 127�
Figure 5-31 Hybrid fragility curves in NISRAF ...................................................................................... 127�
Figure 5-32 Impact Assessment submenus in NISRAF ........................................................................... 128�
Figure 5-33 Impact assessment (MAEviz) in NISRAF ........................................................................... 128�
Figure 5-34 Help submenus in NISRAF .................................................................................................. 129�
Figure 5-35 Components with GUI in NISRAF ...................................................................................... 130�



xiii

Figure 6-1 Photo of 6-story steel moment frame building in Burbank, California .................................. 134�
Figure 6-2 Elevation and plan view of Burbank building ........................................................................ 135�
Figure 6-3 Sensor location of Burbank building (CESMD) .................................................................... 135�
Figure 6-4 GUI to manage project and downloaded records ................................................................... 137�
Figure 6-5 Synthetic ground motions and hazard map in NISRAF ......................................................... 138�
Figure 6-6 2-D FE model of Burbank building in NISRAF .................................................................... 139�
Figure 6-7 Stabilization diagrams and identified mode shapes for the Northridge earthquake ............... 141�
Figure 6-8 Sensitivities of each parameter to the first two identified natural frequencies ....................... 143�
Figure 6-9 Hybrid simulation model of Burbank building and the generated fragility curves ................ 144�
Figure 6-10 Impact assessment for Burbank building in MAEviz ........................................................... 145�
Figure 6-11 Earthquake impact assessment in Los Angeles area ............................................................ 149�
Figure 6-12 Definition and calculation of damage state probability ........................................................ 153�
Figure 6-13 GUI in NISRAF with user-friendly interface for uncertainty quantification ....................... 157�
Figure A-1 Deaggregation results (2% PE/50yrs) at Burbank site .......................................................... 175�
Figure A-2 Response spectrum and synthetic ground motion for 2% PE/50 yrs hazard level ................ 177�
Figure A-3 Synthetic ground motions (2% PE/50yrs) ............................................................................. 178�
Figure A-4 Response spectrum and synthetic ground motion for 5% PE/50 yrs hazard level ................ 180�
Figure A-5 Synthetic ground motions (5% PE/50yrs) ............................................................................. 181�
Figure A-6 Response spectrum and synthetic ground motion for 10% PE/50 yrs hazard level .............. 183�
Figure A-7 Synthetic ground motions (10% PE/50yrs) ........................................................................... 184�
Figure C-1 Structural parameters for PFM to generate fragility relationships ........................................ 205�
Figure C-2 Fragility relationships database (PFM along with hybrid fragility approach) ....................... 206�



1

CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

“Northridge, United States, 1994—60 died; 7,000 injured; $25 billion economic loss” 

“Kobe, Japan, 1995—5,502 died; 36,896 injured; $132 billion economic loss” 

“Sichuan, China, 2008—69,195 died; 374,177 injured; $146.5 billion economic loss” 

“Haiti, 2010—222,570 died; 300,000 injured; $13.9 billion economic loss” 

The above devastating earthquake losses during the past few decades, based on 

the United States Geological Survey (USGS) Historical Earthquakes, clearly demonstrate 

the impact of earthquakes on modern, urbanized regions (Figure 1-1). In order to reduce 

the loss of life and property during earthquakes, practitioners and researchers—through 

field investigations after damaging earthquakes, along with theoretical and experimental 

studies—have substantially improved their understanding of the effects of earthquakes in 

the recent decades. Individual sub-disciplines have been focused on specific problems 

within the broad field of earthquake engineering. Examples of disciplinary developments 

are strong-motion measurements, system identification, model updating, structural 

performance evaluation through experimental and analytical simulations, fragility 

derivation and the development of earthquake impact assessment software. 
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The above component-specific studies allow researchers to focus on a particular 

problem at a fundamental level. For example, high-quality free-field surface and down-

hole records are more available than ever. Methods of system identification and model 

updating have been established and validated with high estimation accuracy. Hybrid 

simulation, although at its younger age, has showcased its potentials in structural 

simulation research. Fragility analysis and impact assessment have also reached their own 

mature stages in their respective fields. More developments in each sub-discipline are 

detailed in Chapter 2: Literature Review.

Even though these specific studies have progressed considerably and produced 

sophisticated research results, not full utilization of instrumentation data comes into focus 

and uncertainties remain. For example, in recent years, the utilization of ground motion 

records for seismic design and site characteristics evaluation is gradually increasing. 

However, the utilization of data is still a long lag behind the quality and quantity of 

instruments and captured data. Furthermore, uncertainties remain in the outcomes of sub-

disciplines not only because of their inherent characteristics, but also because of the 

interactions between them. For example, the derivation of fragility curves requires that a 

large amount of simulations be performed. It is therefore essential to have an accurate 

structural model which closely represents the response of the real structure. In most 

fragility simulations, however, either a very simplified structural model is used, or a 

complicated numerical model is used without being calibrated to the measured response. 

Such methods introduce significant and by-and-large unquantifiable uncertainties in the 

derived fragility curves. Moreover, the fragility curves heavily depend on input ground 
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motions, particularly when the fragility curves are defined in terms of peak ground 

acceleration (Kwon and Elnashai, 2006). The ground motion is in turn influenced by 

source, path and site characterization, each of which is a formidable challenge in its own 

right. The realism of both model and input is therefore a cornerstone in the accuracy and 

applicability of the ensuing fragility relationships. 

Inventory, hazard and fragility (or vulnerability) are the three major components 

of earthquake impact assessment which aid in emergency planning, mitigation, response 

and recovery. Inventory includes all the information (such as types, numbers and costs) 

about the assets in a specific region. Hazard, which can be defined deterministically or 

probabilistically, represents the ground shaking intensity. The seismic hazard will then 

result in damage on structures as well as human society directly or indirectly. Finally, the 

fragility or vulnerability functions relate the probability of structures damaged to specific 

damage states (light, moderate, extensive and collapse, for example) under a certain 

seismic hazard. It is evident that the quality of the assessment outcomes is reliant on the 

accuracy of the components. Among these, the inventory data can be improved with the 

development and application of survey methods and technologies. This renders the 

accuracy of the assessment dependent on the reliability of the fragility curves and hazard 

characterization. Unquantifiable uncertainty and inaccuracies in the two components of 

hazard and fragility lead to earthquake impact assessments that are unreliable and do not 

form a viable basis for societal readiness. 
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1.2 Objective and Scope 

To enhance the utilization of instrumentation data and to reduce the above-

mentioned uncertainties and unreliability in earthquake impact assessment, an integrated 

framework is proposed, developed and verified via applications to an actual test bed. 

Figure 1-2 illustrates the proposed framework and outlines how these components are 

combined to achieve the main goal of this study. As shown, the proposed framework, 

referred to as NEES Integrated Seismic Risk Assessment Framework (NISRAF), 

integrates hybrid simulation with free-field and structure sensor measurements, hazard 

characterization analysis, system identification-based model updating technology, hybrid 

fragility analysis and earthquake impact assessment tools. The procedure is specifically 

proposed and programmed for ease of use. 

Figure 1-2 Schematic of the proposed integrated framework 
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The integration feature provides an opportunity to bring together all the sub-

disciplines, capitalizing on the respective advances of each sub-discipline. This method 

of integration is not only intended to provide a tool but also to stimulate the sub-

communities of researchers to investigate the problems at the interactions between them. 

As part of this study, the following tasks were completed: 

� Task 1: Literature review of past research and development in earthquake 

engineering. Focus is given on the sub-disciplines which are needed for the 

proposed framework. 

� Task 2: An advanced hazard characterization method, consistent with the above 

framework, which uses free-field measured data and a 1-D site response analysis 

program to perform site characterization is proposed, verified and implemented in 

NISRAF. 

� Task 3: An advanced hybrid method for fragility derivation, suitable for 

framework integration, which uses structural responses from hybrid simulation 

results along with findings from the literature is proposed, verified and 

implemented in NISRAF. 

� Task 4: A framework—NISRAF, which combines free-field and structure sensor 

measurements, system identification-based model updating techniques, hybrid 

simulation, hybrid fragility analysis and earthquake impact assessment tool, is 

developed and programmed for ease of use in order to obtain the most reliable 

earthquake impact assessment results possible. 
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� Task 5: A pilot implementation of this framework and its components using an 

instrumented structure from which high-quality measurements have been obtained 

is demonstrated. 

� Task 6: A pilot implementation of this framework and its components on a 

modern, urbanized region is demonstrated. 

 

1.3 Organization of Dissertation 

This dissertation is conceptually composed of three main parts: namely, (i) 

introduction and background information, (ii) methodology of the integrated framework 

and its components, and (iii) case studies. For presentation purposes, the dissertation is 

comprised of seven chapters: 

� Chapter 1. Introduction: Introduces the background and objectives, and defines 

the scope of this study. 

� Chapter 2. Literature Review: Reviews previous research on all the components 

implemented in the proposed framework. Discusses the existing methods. 

Identifies drawbacks and deficiencies in current approaches. 

� Chapter 3. An Advanced Hazard Characterization Analysis Method: Presents and 

demonstrates the proposed advanced method for hazard analysis. 

� Chapter 4. Fragility Analysis by Hybrid Simulation: Presents and demonstrates 

the proposed advanced method for fragility analysis. 
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� Chapter 5. Development of NEES Integrated Seismic Risk Assessment Framework:

Presents the development of the integrated framework—NEES Integrated Seismic 

Risk Assessment Framework (NISRAF). Discusses its features, potentials, 

limitations and challenges. 

� Chapter 6. Case Studies: Presents verifications of NISRAF via an actual test bed 

in the Los Angeles area, including earthquake impact assessment, both on single 

building and on an urbanized region. 

� Chapter 7. Conclusions and Recommendations: Summarizes the major findings 

from the development of this framework. Limitations are identified and 

recommendations are made for additional research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

The components of the proposed framework are defined in Chapter 1. They 

comprise free-field and structural instrumentation, seismic hazard characterization, model 

calibration (including system identification and model updating), hybrid simulation, 

fragility analysis and impact assessment software. Below, the main components that are 

implemented in the integrated framework are reviewed. 

2.2 Free-Field and Structural Instrumentation 

A growing realization of the importance of the physical measurements of the 

ground motions and response of structures during earthquakes, the number and coverage 

of free-field and structural response instruments have increased significantly in recent 

decades. Tens of thousands of free-field strong motions as well as structural instrumented 

records are archived in many database centers, such as the Advanced National Seismic 

System (ANSS), the Consortium of Organization for Strong Motion Observation Systems 

(COSMOS), the Center for Engineering Strong Motion Data (CESMD), the PEER NGA 

Database, and the California Strong Motion Instrumentation Program (CSMIP) of the 
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California Geological Survey (CGS). In the following sections, more introductions about 

the developments for the above instrumentation programs and datacenters are provided. 

2.2.1 ANSS, Advanced National Seismic System 

Advanced National Seismic System (ANSS) is a national network under U.S. 

Geological Survey established with the mission to provide real-time records and 

information products for seismic events through modern monitoring methods and 

technologies. Four basic goals are made for ANSS: (i) Establish and maintain an 

advanced infrastructure for seismic monitoring throughout the United States. (ii) 

Continuously monitor earthquakes and other seismic disturbances, for instance, the 

tsunami and volcanic eruption, throughout the United States. (iii) Thoroughly measure 

strong earthquake shaking at ground sites and in buildings and critical structures. (iv) 

Automatically broadcast information when a significant earthquake occurs. To achieve 

these goals, over 7000 sensor systems will be established in a nationwide network. The 

sensors will be both on the ground and in structures (USGS, 1999). 

For its monitoring activities feature, as well as making instrumentation data more 

accessible, several applications based on the measured records have been proposed and 

released. ShakeMap (http://earthquake.usgs.gov/earthquakes/shakemap/), with real-time 

seismic intensity information shown in contour map, is generated automatically within 

minutes after earthquake occurs. PAGER, Prompt Assessment of Global Earthquakes for 

Response (http://earthquake.usgs.gov/earthquakes/pager/), is a program which uses 
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ANSS instrumented data along with empirical equations to provide early fatality and 

economic loss following significant earthquake worldwide. 

2.2.2 COSMOS, the Consortium of Organizations for Strong Motion Observation 

Systems 

The Consortium of Organization for Strong Motion Observation System 

(COSMOS) is an international alliance aiming to maintain, communicate and archive all 

the earthquake records worldwide. With the contributing members around the world, 

COSMOS archives a great amount of real-time earthquake records. 

Recently, Geotechnical Virtual Data Center has been established and is available 

to the public for the purpose of increasing the values and use of the archived data by 

incorporating the data with geotechnical information in an interactive map format. 

Meanwhile, annual meeting and periodical workshops are held to discuss current 

developments and applications of the instrumented data. 

2.2.3 CESMD, Center for Engineering Strong Motion Data 

The Center for Engineering Strong Motion Data (CESMD) is a datacenter 

established by U.S. Geological Survey (USGS) and California Geological Survey (CGS). 

The mission of CESMD is to integrate strong-motion data from the CGS California 

Strong Motion Instrumentation Program, the USGS National Strong Motion Projects and 

the ANSS. Both raw and processed strong-motion data are stored in the datacenter for 

earthquake engineering applications. 
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2.2.4 Pacific Earthquake Engineering Research Center (PEER) NGA Database 

The PEER NGA Database is an update and extension to the PEER Strong Motion 

Database, which was published in 1999. Larger sets of records are stored in the database, 

but only acceleration time history files are available currently. 

For its larger set of records and more extensive data, five sets of ground-motion 

attenuation models—Next Generation of Ground-Motion Attenuation Models for the 

western United States (NGA West)—were developed and are available to the public 

(Power et al., 2008). 

2.2.5 CSMIP, California Strong Motion Instrumentation Program 

The California Strong Motion Instrumentation Program (CSMIP) was established 

in 1972 by California Legislation to obtain vital earthquake data for the engineering and 

scientific communities through a statewide network of strong motion instruments (Naeim, 

2005). More than 900 stations, including 650 ground-response stations, 170 buildings, 20 

dams and 60 bridges are installed statewide. With the earthquake monitoring devices, 

accelerographs, real-time records are recorded when earthquakes occur. 

With heavily instrumented structures, CSMIP provides case study opportunities 

for researchers to evaluate structural design procedures as well as to review the design 

provisions. Performance-based seismic evaluation (Kunnath et al., 2004) and evaluation 

of building period (Kwon and Kim, 2010) are two examples. 
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Indeed, with the increase of the real-time records, both quantitatively and 

qualitatively, researchers and experts in many fields have benefited. For example, the 

significant earthquakes provide critical information for emergency planning; the 

structural engineers improve their understanding about the structural responses during 

earthquakes; while the geotechnical engineers learn more about the site effect based on 

specific records, and the seismologists, with the high-quality and various records, are 

capable of investigating the propagation of seismic waves. However, when comparing 

with the quality and quantity of instruments and captured data, the above benefits are 

disproportional. That is the reason that focus is given to the applications of these valuable 

data in recent years. 

2.3 Seismic Hazard Characterization 

Due to its stochastic nature, it is difficult to predict accurately the occurrence 

(including the date and location) and the intensity of a future earthquake event. Similarly, 

for its complicated and nonlinear behavior, it is also formidable to simulate realistically 

the soil and topographic effects. Researchers have been devoted to the study of seismic 

hazard characterization analysis to improve their understanding on seismic hazard. 

Considerable understanding and significant development have been made in the past few 

decades. In general, earthquake attenuation relationship, synthetic (artificial) ground 

motion generation, and site response analysis contribute to current developments in 

seismic hazard analysis. Below, the development of attenuation relationship is reviewed 
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with a focus given to research specifically addressing from recent comprehensive 

database. Next, a review of methodology and program of synthetic ground motion 

generation and site response analysis is provided. 

2.3.1 Attenuation Relationship 

Attenuation relationship or ground motion prediction equation (GMPE), an 

empirical equation regressed from a great amount of historical earthquake records, is 

used to predict the seismic intensity (in peak ground parameters or spectral ordinates). 

During the past decades, several studies have been conducted which contribute the 

proposal of various equations to estimate the attenuation of ground motions (Ambraseys 

and Bommer, 1991; Rinaldis et al., 1998; Tong and Katayama, 1998; Takahashi et al., 

2000; Boore et al., 1997; Campbell, 1997; Youngs et al., 1997; Campbell and Bozorgnia, 

2003; Ambraseys and Douglas, 2003). Recently, a set of more comprehensive attenuation 

equations specifically for western United States is presented in a research project, the 

Next Generation of Ground-Motion Attenuation (NGA) project (Power et al., 2008). This 

project was coordinated by the Lifelines Program of PEER, in partnership with the U.S. 

Geological Survey and the SCEC (South California Earthquake Center). The proposed 

equations are regressed from the numerous records in the PEER NGA Database, as 

described in the previous section. The objective of this project is to provide new ground 

motion prediction equations through a comprehensive and highly interactive research 

program. Five NGA models are presented in this project, namely, Abrahamson and Silva, 

2008 (AS08); Boore and Atkinson, 2008 (BA08); Campbell and Bozorgnia, 2008 (CB08); 

Chiou and Youngs, 2008 (CY08); and Idriss, 2008 (I08). A comprehensive description of 
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the Campbell and Bozorgnia NGA model (2008) is given below to explain how to 

perform seismic hazard analysis using NGA models. 

The attenuation relationship proposed by Campbell and Bozorgnia (2008) is given 

by Equation (2.1). �� is the median estimate of the geometric mean horizontal component 

of PGA (g), PGV (cm/s), PGD (cm) or PSA (g). The following section presents the 

equations for Campbell and Bozorgnia NGA model. More details (regression 

methodology and procedure, for example) about this model can be found in a related 

document (Campbell and Bozorgnia, 2008). 

���� � ���� � ���� � ���� � ���� � ���� � �� �  (2.1)

where ����, ����, ����, ����, !���� and �� � denote the magnitude term, distance term, fault 

mechanism term, hanging-wall term, shallow site response term and basin response term, 

respectively. 

the magnitude term is given by the expression 

���� � "#$ � #%&' !!!!!!!!!! & ( ���#$ � #%& � #)*& + ���,' ��� - & ( .��#$ � #%& � #)*& + ���, � #/*& + .��,' & 0 .�� (2.2)

the distance term is given by the expression 

���� � *#1 � #2&,34*56789) � #:), (2.3)
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the fault mechanism term is given by the expressions 

���� � #;<7=����>? � #@<AB (2.4)

���� � C�DE7' �DE7 - ��' �DE7 0 � (2.5)

the hanging-wall term is given by the expressions 

!���� � #F����>7����>B����>?����>G (2.6)

����>7 �
HIJ
IK �'!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!6LM � �
NOPQ R6789> 56LM) � �S + 6LMT OPQ R6789> 56LM) � �S ' 6LM 0 �> �DE7 - �U6789 + 6LM6789 '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!6LM 0 �> �DE7 V �

(2.7)

����>B � W�' & ( .���*& + .��,' .�� - & - .���' & V .�� (2.8)

����>? � C �' �DE7 V ��*�� + �DE7,X��' � ( �DE7 - ��  (2.9)

����>G � C �' � V Y�*Z� + �,X��' � ( � - Y�  (2.10)
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the shallow site response term is given by the expression 

���� �
HII
J
IIK #%$ 34 R	[/$
% S � 
) \�� ]^%%$$ � # R	[/$
% S�_ + ��`^%%$$ � #ab ' 	[/$ - 
%
*#%$ � 
)�, 34 R	[/$
% S '!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
% ( 	[/$ - ����
*#%$ � 
)�, 34 R����
% S ' !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !	[/$ V ����

(2.11)

the basin response term is given by the expression 

�� � � "#%%*�)�2 + �,' �)�2 - ��' !!!!!!!!!!!!!!!!! � ( �)�2 ( �#%)
/cd$�;2e� + cd$�)2*?f�gd/,h' !!!!!!!!!!!!�)�2 0 � (2.12)

In the above equations, the empirical coefficients #� and the theoretical 

coefficients c, n and k are derived based on regression technique. M is moment magnitude; 

6789 is the closest distance to the coseismic rupture plane (km); 6LM  is the closest 

distance to the surface projection of the coseismic rupture plane (km) (Figure 2-1); <7=
and <AB represent the fault mechanism, <7= � � for ��i - j - ���i, <7= � � otherwise, 

<AB � � for +���i - j - +��i, <AB � � otherwise; j is rake of the fault; �DE9  is the 

depth to the top of the coseismic rupture plane (km); � is the dip angle of the rupture 

plane; 	[/$ is the shear-wave velocity in the top 30 m of the site profile (m/s); ^%%$$ is 

the median estimate of PGA on the reference rock outcrop (	[/$ � �����Xk); and �)�2
is the depth (km) to the 2.5 km/s shear-wave velocity. 
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Figure 2-1 Source-to-site distances 

The aleatory uncertainty of Campbell and Bozorgnia NGA (2008) model is 

defined by the following equation. 

����l � �����l � m� � n�l (2.13)

where m� is the inter-event residual for event o;!���l ,!��l and n�l are the predicted value, the 

observed value and the intra-event residual for the recording of event, respectively. 

2.3.2 Synthetic Ground Motions Generation 

SIMQKE, a program for artificial motion generation in FORTRAN language, was 

proposed in the literature (Gasparini and Vanmarcke, 1976). Three major steps are 

implemented in SIMQKE to produce the synthetic ground motions: 

(a) First, the spectral density function G(w) is generated through the duration and  

      response spectrum which are specified by users. 
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 (b) Next, the peak ground acceleration (PGA) of the event and a deterministic  

       envelope function I(t) are defined to reflect the transient characterization of a  

       real earthquake. 

(c) Finally, an iterative procedure is implemented in order to smoothen the  

      calculated spectrum and to improve the matching. 

As described above, the PGA, response spectrum and duration are the only pre-

required information for SIMQKE to produce the synthetic ground motions. Owing to its 

ease of use and efficiency of computation, it has been a widely used tool for ground 

motion generation since its release in 1976. 

2.3.3 Site Response Analysis 

The significance of local site effect on ground shaking and structural response has 

been known for many years. The surface ground motions may be amplified in some kinds 

of soil deposits, while attenuated in others. Several clear examples can be found in recent 

significant earthquakes, such as Mexico City, 1985 (Stone et al., 1987), San Francisco 

Bay Area, 1989 (Seed et al., 1990) and others. 

Generally, the amplitude, frequency and duration of ground shaking are critically 

affected by the local site condition. The influence of site condition depends on the soil 

profiles at the site as well as the topography around. In addition, the input motions are 

believed to have substantial influence upon the results. Two methods are usually used to 

account for site effects, namely, site-specific development and code-based development 

(Kramer, 1996). The site-specific approach is based on empirical observation (Figure 2-2) 
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or analytical simulation (for example, site response analysis). Contrarily, for the code-

based development, site specific parameters are provided in the codes on account of the 

different soil types, such as Fa and Fv in NEHRP recommended seismic provisions 

(FEMA, 2009). The code-based approach is believed to be relatively conservative due to 

the application to a broad region with the same soil parameters. In contrast, the analytical 

approach has the ability to present the complicated and nonlinear behaviors in the soil. 

Several analytical methods have been proposed in the past decades, varying from three-

dimensional (3-D), two-dimensional (2-D), to one-dimensional (1-D) approaches. 

Generally, the 3-D and 2-D methods can provide the most realistic results. However, their 

computational costs are relatively higher and the treatment of the finite element models is 

also questionable. Therefore, the 1-D ground analysis method is currently the most 

commonly used approach in the geotechnical earthquake engineering. SHAKE91 (Idriss 

and Sun, 1992) and DEEPSOIL (Hashash et al., 2009) are the two leading site response 

analysis programs which use the 1-D approach to perform local site effect analyses. In 1-

D approach, soil profiles are idealized as many layers of homogeneous soil. Then the 

response of soil is calculated based on the vertical wave propagation. The continuous 

solution to the wave equation can be calculated in frequency domain (SHAKE91 and 

DEEPSOIL) or time domain (DEEPSOIL). Below, a review on the features of these two 

programs is given. 
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Figure 2-2 Average normalized response spectra (5% damping) for different local site condition 

(Kramer, 1996) 

2.3.3.1 SHAKE91 

SHAKE91 (Idriss and Sun, 1992), modified based on SHAKE (Schnabel et al., 

1972), is a computer program for seismic response analysis of horizontally layered soil 

deposits. When performing SHAKE91, users need to define the soil properties for each 

sub-layer (shear-wave velocity, shear modulus, damping and total weight, for example) 

and select the input motions. In addition, the modulus reduction versus shear strain 

relationship and damping ratio versus shear strain relationship must be specified to 

represent the soil material properties. An equivalent linear analysis procedure is 

implemented in SHAKE91 to account for nonlinear response of soil. The outputs of the 

program are the time histories requested by users. In addition, many associated types of 
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data can be outputted, upon users’ request, such as the maximum shear stress and strain, 

maximum acceleration, response spectrum, Fourier spectrum and amplification spectrum. 

2.3.3.2 DEEPSOIL 

DEEPSOIL (Hashash et al., 2009) is a 1-D site response analysis program with an 

intuitive graphical user interface. Both equivalent linear and nonlinear analysis 

approaches can be performed in this program. Similar to SHAKE91, the pre-requisite for 

a site response analysis is the development of a soil column that is fully representative of 

the study site condition. The major features in DEEPSOIL are (i) both 1-D equivalent 

frequency domain and nonlinear time domain analysis approaches available, (ii) MRDF 

pressure-dependent hyperbolic model, (iii) new procedures for nonlinear parameters 

selection and fitting, (iv) new small-strain damping formulation, (v) the intuitive 

graphical user interface, and (vi) the batch mode analysis. 

Hazard stands for the demand in earthquake impact assessment. The fidelity of 

hazard characterization, hence, masters the realism and reliability of the assessment 

results, which underpins the emergency response and recovery planning of stakeholders. 

Owing to its highly complicated and nonlinear behaviors, many obstacles and 

uncertainties still need to resolve, even though substantial understanding and various 

simulation methods have been made. However, the hazard characterization can be more 

realistic than ever—based on the strength of the mature developments (attenuation 
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relationship, synthetic ground motion generation and site response analysis), alongside 

the high-quality and various instrumentation arrays. 

2.4 Model Calibration 

Finite element (FE) model simulation provides a powerful way to understand the 

response of buildings and other structures. However, even well constructed models may 

produce significant differences in some dynamic response predictions, in particular when 

the structure behaves nonlinearly. The difference results from the uncertainties of the 

material properties, boundary conditions and the contributions from the non-structural 

elements in the real structures. In order to resolve this drawback, system identification 

based on the experimental or real instrumented response, along with model updating 

techniques, is undertaken to derive the most accurate FE model. A brief review of these 

two techniques is presented in the next few paragraphs. 

2.4.1 System Identification 

The basic concept of system identification is using the recorded sensor histories 

on the structure to identify the mode shapes and frequency of the real structure. Among 

the state-space based system identification methods, Eigensystem Realization Algorithm, 

ERA (Juang and Pappa, 1985) is widely adopted for its good performance in multi-input 

multi-output (MIMO) problems. The basic idea of ERA is to find a minimum realization 

of system (state-space representation with minimum dimension) using Singular Value 

Decomposition (SVD) on the Hankel matrix built by Markov parameters (impulse 
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response functions), so that the modal properties can be extracted from the realized 

minimum state-space representation. 

2.4.2 Model Updating 

Model updating aims to minimize the discrepancy between the numerical and the 

actual model by manipulating the stiffness and mass matrices. An objective function is 

constructed with modal parameter (such as natural frequencies and mode shapes) 

residuals which represent this discrepancy. Approaches used for model updating can 

generally be sub-divided into two groups, namely, the direct method and the iterative 

method. In the direct method, stiffness and mass matrices are changed directly (Minas 

and Inman, 1990; Friswel and Mottershead, 1995). While for the iterative method, the 

physical parameters are updated directly (Wu and Li, 2004). 

To keep the sparse feature and physical meaning of the stiffness and mass 

matrices, structural parameters, instead of the matrices themselves, are modified in an 

iterative manner automatically through the specified optimization algorithms. 

Theoretically, all parameters that are potentially inaccurate in the model and, hence, will 

affect the model properties should be included in the candidates. However, a large 

number of parameters may issue a huge challenge to the optimization algorithms and also 

the computation capacity. Therefore, parameters for model updating should be selected 

carefully based on engineering judgment and sensitivity analysis. 
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2.5 Dynamic Response Simulation of Structures 

Being aware of the vital role of structural response to assessment and mitigation 

of earthquake loss, advanced simulation techniques have been developed in order to 

duplicate the real structural behaviors. With the improved knowledge and development in 

both structural engineering and computation, an evolution has been presented from 

analytical finite element model simulation to laboratory testing, such as Pseudo-Dynamic 

Test (PSD) and shaking table testing. Recently, an advanced simulation technique—

hybrid simulation—has been proposed and showcased potentials via its coordination and 

geographically distributed features. Below, a review of the simulation techniques in the 

order of evolution is given. 

2.5.1 Model Analytical Simulation 

Analytical model, which is developed based on the principles of mechanics and/or 

calibrated with the experimental data, provides an alternative way to predict the response 

of structures efficiently. Several finite element (FE) model simulation programs have 

been developed and released in the past decades, such as ZEUS-NL (Elnashai et al., 

2004), OpenSees (McKenna and Fenves, 2001), ABAQUS (Hibbit et al., 2001), Vector2 

(Vecchio and Wong, 2003), PISA3D (Lin et al., 2006) and others. ZEUS-NL, a product 

of Mid-America Earthquake Center has plate, shell and solid elements. OpenSees, 

developed by the Pacific Earthquake Engineering Research Center, focuses on the 

geotechnical constitutive models. ABAQUS, a commercial program, has extensive 

element libraries, but limited capabilities in conducting reinforced concrete analysis. 
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In addition to analytical simulation, laboratory (or experimental) simulation 

provides an alternative to understand structural behaviors. Static, dynamic and shake 

table testing are the most commonly used simulation techniques for experimental 

simulations. Among them, shake table testing with a full scale structure can provide the 

most realistic response. However, most of the tables are small, and their capacities are 

limited. Moreover, the cost of testing is relatively high. Many alternative methods have 

been developed and evolved during the past decades with different research purposes as 

well as the development of computation techniques. 

2.5.2 PSD, Pseudo-Dynamic Test 

Pseudo-Dynamic Test (PSD) was developed to alternate the real-time shake table 

testing. In PSD, the inertial and damping force are calculated in the analytical models, 

and, after that, the corresponding displacements are applied to the structures. The concept 

of PSD was first proposed by Takanashi in Japan (Takanashi et al., 1975). Since that, 

several PSD tests have been performed around the world (Mahin and Shing, 1985; 

Nakashima et al., 1987; Elnashai et al., 1990; Jeong and Elnashai, 2004; Chen et al., 

2003). 

2.5.3 Hybrid Simulation 

Pseudo-Dynamic Test is applicable to large-scale tests in the laboratory. However, 

PSD may suffer problems due to the limitation of the facility capacity in the laboratory. 

Meanwhile, as described previously, each FE program has its own strengths and 

weaknesses. In order to capitalize the strengths of each module (FE program or 



27 

laboratory facility), UI-SIMCOR—a hybrid simulation software platform—was proposed 

and developed (Kwon et al., 2007). Although UI-SIMCOR uses the same integration 

scheme as that in PSD, its geographically distributed feature allows unlimited modules 

(analytical or experimental, domestic or international) to be combined within the 

simulation. Currently, the modules can be experimental specimen or analytical models in 

OpenSees (McKenna and Fenves, 2001), ZEUS-NL (Elnashai et al., 2004), ABAQUS 

(Hibbit et al., 2001), FedeasLab (Filippou and Constantinides, 2004) and Vector2 

(Vecchio and Wong, 2003). Hybrid simulation—defined as the combination of physical 

(or experimental) testing and analytical models—is used here to be distinguished from 

multiplatform simulation, in which all the sub-structures are simulated analytically. 

Several multiplatform and hybrid simulation tests (including small and large scale) have 

been conducted and approved its coordination and communication features (Spencer et al., 

2006; Spencer et al., 2007). 

Analytical and experimental simulation provides a way to understand seismic 

behavior of structures. Hybrid simulation, indeed, promotes the ability to evaluate 

structural behaviors never before available. However, at its younger age, more 

verification about its components as well as the interaction between other sub-disciplines 

is essential for its integrity and robustness. 
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2.6 Fragility Analysis 

Fragility, or vulnerability is defined as the conditional probability that a structure 

or a structural component would reach or exceed a certain damage level for a given 

ground motion intensity. Through the application of fragility curves, loss from 

earthquake hazard can be easily estimated. Mathematically, a fragility relationship can be 

defined as: 

p� � p N
�
q V �T (2.14)

where p� is the failure probability for a specific damage state; 
� is the structural demand, 

and 
q  is the structural capacity. In Equation (2.14), structural demand 
�  depends on 

earthquake ground motion intensity. 

Significant contribution has been made in the field of fragility analysis in the past 

few decades. A comprehensive review on the development of fragility assessment, 

specifically addressing methodologies over the past 30 years was presented in the 

literature (Calvi et al., 2006). Generally, fragility curves can be sub-divided into four 

categories based on data sources, namely, empirical fragility curves, judgmental fragility 

curves, hybrid fragility curves and analytical fragility curves (Rossetto and Elnashai, 

2003). 

Empirical fragility curves are developed through field investigations after 

earthquakes—are the most realistic. However, this observation data is scarce and 

clustered in the low damaged range. Judgmental fragility curves are based on expert 

opinion, and are therefore subjective. Unlike the empirical and judgmental fragility 

curves, analytical fragility curves are more general. Curves can be generated for different 
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limit states and different structural types, although at a higher computation cost. 

Meanwhile, the selection of the models and the simulation methods will significantly 

affect the accuracy of the curves. Due to the above limitations, most analytical fragility 

curves are generated either by simple models or by complicated models without 

calibration to measured response, which can result in uncertainties in these curves. 

Hybrid fragility curves are proposed to compensate the scarcity, subjectivity and 

modeling deficiency in experimental, judgmental and analytical fragility curves, 

respectively. Two approaches are generally used to derive hybrid fragility curves, namely, 

fragility relationships calibrated with other source and fragility relationships combined 

with others. In the first one, empirical data is generally used to calibrate the judgmental 

or analytical fragility curves. While in the other one, two different types of fragility 

curves are combined to derive fragility relationships, such as analytical curves along with 

empirical curves from historical earthquakes. Presumably, hybrid fragility curves 

capitalize advantages from different types of fragility curves. Limitations and challenges, 

however, still remain for the reasons that each type of fragility has its own uncertainties, 

and the analytical fragility relationships cannot be really improved by only a small 

portion and maybe clustered of empirical data. 

2.7 Earthquake Impact Assessment Tools 

Earthquake impact assessment tools have been already extensively adopted by the 

stakeholders in the community for risk management. The realism of the outcomes, such 

as the effect on the infrastructure systems, economy and societal activities are the 
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essential ingredients of the emergency response and recovery planning—which will then 

adequately protect our vulnerable communities. 

In recent years, significant progress has been made in earthquake impact 

assessment, including consequence estimation methodology as well as developing 

software that provides decision-makers with a tool to assess the impact. Currently, many 

software tools using different methodology able to estimate seismic losses have been 

developed and released. Among the leading software tools are HAZUS-MH (FEMA, 

http://www.fema.gov/plan/prevent /hazus/), MAEviz (Mid-America Earthquake Center, 

http://mae.ce.uiuc.edu/software_and_tools/maeviz. html), RMS (Risk Management 

Solutions, http://www.rms.com/catastrophe/software/), AIR (AIR Worldwide 

Corporation, http://www.air-worldwide.com/_public/html/modeltech.asp), KOERILOSS 

(Bogazici University, http://fatin.koeri.boun.edu.tr/depremmuh/EXEC_ENG.pdf), and 

others. In the following review, a focus is placed on HAZUS-MH (FEMA, 2006) and 

MAEviz (MAE Center, 2007). The reason underlining this selection is that HAZUS-MH 

is a public package supported by FEMA, the federal agency responsible for disaster 

response planning, and MAEviz is the open-source platform of the MAE Center, where 

new models and linkages can be easily implemented. Moreover, as discussed in Chapter 

1, the reliability of assessment results is very much dependent on the hazard 

characterization and fragility curves. Therefore, focus is given to methodology of hazard 

and fragility components. 
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2.7.1 MAEviz 

MAEviz, an earthquake consequences assessment package, which follows the 

Consequence-based Risk Management (CRM) paradigm, has been developed by the 

MAE Center and the National Center for Supercomputing Applications (NCSA) at the 

University of Illinois (MAE Center, 2007). CRM is a new paradigm for seismic risk 

reduction across regions or systems that incorporates identification of uncertainty in all 

components of seismic risk modeling and quantifies the risk to societal systems and 

subsystems. 

MAEviz provides more than 40 types of analysis models from building, bridge, 

utility and transportation networks, socioeconomic, to decision support analysis. With 

these various analyses and its interactive-visual feature, MAEviz provides the 

stakeholders with assessment information for developing plans and mitigation for future 

seismic events. 

Deterministic hazard approach is implemented in MAEviz. Therefore, users are 

prompted to define seismic parameters and select attenuation equations to generate the 

seismic hazard. Moreover, the code-based method, i.e. Fa and Fv site specific coefficients 

in NEHRP provisions (FEMA, 2009) is adopted to account for local site effects. Due to 

the probabilistic nature and approximate method, uncertainties remain in the procedure 

and outcome. For the fragility component, numerous fragility models developed by 

researchers for different types of structures are archived in MAEviz database. A mapping 

file is therefore required to match the fragility curves with different types of structures. 
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Among these archived fragility relationships, however, most of them are from simple 

models (Single Degree of Freedom, SDOF) or complicated models without calibration to 

the real response of a physical structure. Such methods, therefore, introduces significant 

and by-and-large uncertainties in the derived fragility curves. 

2.7.2 HAZUS-MH 

HAZUS-MH, a risk assessment package, is developed by Federal Emergency 

Management Agency to estimate the potential losses from floods, hurricane winds and 

earthquakes (FEMA, 2006). The HAZUS-MH earthquake model can provide the 

estimation of damage and loss to buildings or lifelines under the scenario earthquakes, for 

example, the damage to the buildings, the direct or indirect cost during events, and 

displacement of households or the requirement of shelters. 

Both deterministic and probabilistic hazard approaches are implemented in 

HAZUS-MH. For the deterministic method, similar to the procedures in MAEviz, user 

needs to define the seismic parameters and select attenuation equations. While in the 

probabilistic method, the hazard maps generated by USGS are implemented in HAZUS-

MH, which allows users to select a map specific to different hazard levels for analysis. 

The code-based method—multiplying by Fa and Fv parameters, same as MAEviz—is 

adopted in both deterministic and probabilistic approaches. 

Unlike the straightforward methodology in MAEviz, capacity spectrum method 

(CSM) is implemented in HAZUS-MH to calculate the degree of damage of structures as 

well as the related societal activities. Briefly, the structural capacity and fragility 
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relationships in HAZUS-MH are defined based on expert opinions and judgments. The 

assumed bilinear capacity curve and the hazard demand curve, along with CSM, are used 

to derive the structural response. Structural nonlinear behavior is reflected only by simply 

scaling the demand curve. Although its efficiency, this simplified approach does not 

explicitly consider the influence of structural parameters, such as damping, period and 

yield strength level. 

2.8 Summary and Discussion 

The components required for this proposed framework are in a sufficiently mature 

state. The increase in network density and applications reinforces the role of strong-

motion instruments in the seismic community. Ground motion prediction equations, 

synthetic ground motions and site response analysis are all in their mature states, which 

allow to present hazard characterization probabilistically. The potential of hybrid 

simulation has been shown previously. Fragility analysis and model calibration 

techniques both have their substantial development. Impact assessment also has reached 

its mature state and has been extensively used worldwide. 

Nevertheless, uncertainties, simplification and engineering judgment still remain 

in the procedures and outcomes, as discussed previously. An integrated, transparent and 

systematic framework, therefore, provides an opportunity to reduce and manage the 

uncertainties and assumptions. Through the proposed integrated framework—NEES 

Integrated Seismic Risk Assessment Framework, NISRAF—uncertainties from each sub-
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discipline can be managed more effectively and the utilization of the instrumentation will 

increase. For example, the reliability of probabilistic seismic hazard can be significantly 

improved through the use of free-field strong-motion measurements. Analytical and 

hybrid (analytical-experimental) simulations can be realistic due to calibration with 

system identification results from sensor measurement. The uncertainties from deriving 

fragility relationships can be greatly reduced through the use of more reliable 

representation of hazard and more accurate structural models. Confidently, with seismic 

hazard from field measurements and fragility curves derived from accurate models, 

NISRAF can significantly improve upon earthquake impact assessment results. 

To achieve a seamless integration and to arrive at an operational and verified 

system, the above components are used innovatively, tailored to perform the role required 

by NISRAF. The integrated system brings the most advanced tools of earthquake hazard 

and structural reliability analyses into the context of societal requirement for accurate 

evaluation of the impact of earthquakes on the built environment.  

In the following sections of this dissertation, an advanced hazard characterization 

method and an advanced hybrid fragility analysis method are proposed and demonstrated 

first. Development of the proposed framework, which integrates components from sensor 

data to seismic loss assessment, is then presented, followed by verifications and case 

studies.  



35 

CHAPTER 3 

AN ADVANCED HAZARD CHARACTERIZATION  

ANALYSIS METHOD 

 

3.1 Introduction 

Several countries around the world have to face threatening earthquakes and 

related hazards, such as tsunami. Historical earthquakes have revealed their power to 

devastate structures, to cause fatalities and to disrupt human society (Figure 1-1). Owing 

to the uncertainties from seismo-tectonic, earthquake energy attenuation and site 

conditions, it is difficult to estimate accurately the ground motion parameters. Many 

methods for seismic hazard analysis have been developed over the past decades. Among 

them, Deterministic Seismic Hazard Analysis, DSHA (Reiter, 1990) and Probabilistic 

Seismic Hazard Analysis, PSHA (Cornell, 1968) are the most commonly used methods, 

and both are generally implemented within the earthquake impact assessment packages, 

such as MAEviz (MAE Center, 2007) and HAZUS-MH(FEMA, 2006). Due to the 

probabilistic nature and the simplified assumption for the local site effect, such as the use 

of the site coefficients Fa and Fv, uncertainties remain in the procedure and outcome. To 

reduce these uncertainties, an advanced hazard characterization analysis method is 

proposed—which uses free-field measured data and 1-D site response analysis program 

to perform site characterization. 
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3.2 Overview of the Advanced Hazard Characterization Analysis Method 

The advanced hazard approach is mainly composed of four parts: (a) seismic 

hazard analysis, (b) synthetic ground motion generation, (c) site response analysis and (d) 

hazard map generation. First of all, the natural records are investigated directly to 

evaluate the hazard characterization. Synthetic records—with site specific characteristics 

and different hazard levels—are then generated to present the hazard as well as to provide 

various ground motions for further use in hybrid simulation and fragility curve derivation. 

Figure 3-1 shows the methodology and procedures of the advanced hazard 

characterization analysis approach. The following sections detail the methodology and 

procedures. Rather, verifications are given via an actual test bed application in the Los 

Angeles area. 

Figure 3-1 Methodology and procedures of hazard characterization analysis 
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3.3 Seismic Hazard Analysis 

Seismic Hazard Analysis is the first step in hazard characterization analysis. In 

this step, the natural records around the site of interest are investigated comprehensively. 

Peak ground acceleration (PGA) and response spectra are generated and compared. 

Furthermore, several tools—such as attenuation model, duration prediction and 

deaggregation, which are commonly used to evaluate seismic characterization 

probabilistically —are also included in this step. Seismic information is indispensable for 

synthetic ground motion generation, particularly in a region where earthquake records are 

absent or in lower quality. Consequently, seismic hazard characteristics—based on the 

measured free-field records or deriving from probabilistic tools—are the ingredients in 

the further synthetic ground motion generation, site response analysis and hazard map 

generation. 

3.3.1 Seismic Hazard Analysis from Natural Records 

Generally, strong motion records are subdivided into three different types, namely, 

(i) Measured structures with instruments on the ground, (ii) Free-field station records on 

the outcrop, and (iii) Free-field station records on the surface of soil. Different analysis 

procedures are conducted for different type of records. 

(I) Measured structures with instruments on the ground  

If the structure instrumented and has sensors installed on the ground (Figure 3-2), the 

records on the ground level are utilized directly. Seismic parameters (peak ground 

acceleration (PGA) and response spectra, for example) are calculated and generated 
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to present the seismic characterization at this site. Meanwhile, the natural records are 

ready to be used in hybrid simulation and fragility analysis later. 

Figure 3-2 Measured structures with instruments on the ground 

(II) Free-field station records on an outcrop 

Site response analysis is performed on outcrop free-field strong motion records 

(Figure 3-3), in order to capture the local site effect. DEEPSOIL (Hashash et al., 

2009), a 1-D site response analysis program, is used to conduct the site response 

analysis. As mentioned previously, a representative soil column is the prerequisite for 

site response analysis. Therefore, user is prompted to define the soil profiles 

(thickness, shear-wave velocity and unit weight, for example) and the material 

properties (such as shear modulus reduction versus strain and damping versus strain 

curves) for different soils. Surface motions with specific site characteristics are then 

generated and ready for further use later. 
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Figure 3-3 Free-field records on an outcrop 

(III) Free-field station records on soil surface 

When records are on soil deposits surface (point A in Figure 3-4) or within soil 

deposits, it is more complicated to evaluate site characterization. For record on the 

surface or within soil deposits, it is first deconvolved through the soil profiles to 

determine the motion on the bedrock (point B in Figure 3-4). Bedrock motion is then 

propagated to the bedrock beneath the interested site (point C in Figure 3-4). Finally, 

the record on the bedrock is convoluted through soil profiles to the surface (point D in 

Figure 3-4). 

Figure 3-4 Free-field station record on soil surface 
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Although the deconvolution concept is rational, the technology to deconvolve 

ground motion through soil is still a challenge and studies are still going. Therefore, the 

deconvolution procedure is not implemented in the current proposed advanced hazard 

method, but will be when this technology is ready. 

3.3.2 Seismic Hazard Analysis for Scenario Earthquakes 

Due to the limited number and narrow intensity distribution of the natural ground 

motion records, several tools have been developed and are available to derive seismic 

hazard characteristics for a scenario earthquake. In this study, the latest and the most 

mature research findings are integrated in a novel manner in order to provide the realistic 

hazard characteristics as well as reasonable and various synthetic ground motions. NGA 

attenuation models (Power et al., 2008) and duration prediction equation (Kempton and 

Stewart, 2006)—both empirical equations regressed from the PEER NGA Database—are 

used to derive PGA, response spectrum and duration, which are the critical ingredients in 

seismic hazard analysis. With the above seismic information, SIMQKE (Gasparini and 

Vanmarcke, 1976)—a widely used synthetic ground motion generation program—is 

conducted to generate numerous artificial motions. Furthermore, ground motions varying 

with different hazard levels are essential to capture structural responses in different 

performance limit states, which in their own right are needed for fragility derivation. For 

this variation requirement, deaggregation results—which provide earthquake shaking 

information for different hazard levels—are therefore included in this advanced hazard 

method. 
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The NGA attenuation has already been discussed in section 2.3: Seismic Hazard 

Characterization. In the below section, duration proposed by Kempton and Stewart (2006) 

is detailed, followed by discussion on the deaggregation technology. Rather, SIMQKE is 

discussed in section 3.4 Synthetic Ground Motion Generation.

3.3.2.1 Significant duration prediction equation 

Duration, the time for energy release during the ground shaking, varies with the 

magnitude, distance and also the site condition. Several definitions of ground motion 

duration have been proposed, such as bracketed duration (Kawashima and Aizawa, 1989), 

uniform duration (Vanmarcke and Lai, 1980) and significant duration (Trifunac and 

Brady, 1975). A more comprehensive review on duration of earthquake ground motions 

can be referred to Bommer and Martinez-Pereira (1999). 

To predict the duration, Chang and Krinitszky (1977) first proposed an empirical 

relationship for duration estimation (bracketed duration with 0.05g threshold 

acceleration). In the proposed prediction relationship, the duration varies with magnitude 

under different site condition; i.e. rock and soil site (Figure 3-5). Recently, an equation 

for significant-duration prediction has been proposed by Kempton and Stewart (2006). 

This new prediction equation is derived based on the PEER NGA Database through a 

random-effects regression procedure. This proposed significant-duration prediction 

equation is given by: 
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where 
r is the significant duration; &| is the reference magnitude taken as 6; � is the 

shear-wave velocity at the source (taken as 3.2 km/s); &� is the magnitude of event o; ��l
is the distance for recording � in event!o; m� is the event term for earthquake event!o; n�l is 

the residual for recording � in event o; and �� and #� are regression coefficients. 

Figure 3-5 Variation of bracketed duration (0.05g threshold) with magnitude and epicentral 

distance: (a) rock sites; (b) soil sites. (Kramer, 1996) 

This significant-duration prediction equation proposed by Kempton and Stewart 

(2006) is incorporated into the proposed advanced hazard method, not only for its 
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inherent nature (regressed from a modern database), but also for its ease for 

implementation (a mathematical equation rather than a plot relationship). Moreover, to 

account for the uncertainties in duration, in addition to the uncertainty term in Kempton 

and Stewart’s equation, various lengths of duration—the original predicted duration and -

5%, +5%, +10%, +20% of the predicted duration—are implemented in the proposed 

procedure. 

3.3.2.2 Deaggregation results from Probabilistic Seismic Hazard Analysis 

The probabilistic seismic hazard analysis method provides the annual rate of 

exceedance at a particular site, which is from the aggregation of the potential earthquakes 

of different magnitudes and different source-site distances (Kramer, 1996). However, the 

information about the likely earthquake magnitude and the most likely source-site 

distance is sometimes more useful for structural designers and decision makers. 

Deaggregation, a resolution of the above concern, is capable of identifying scenario 

events. Generally, a set of deaggregation results is composed of three components, 

namely, (i) magnitude, (ii) distance and (iii) epsilon. 

Magnitude (&)

The magnitude term in deaggregation result is referred to the moment magnitude. 

Distance (6)

The distance term in deaggregation result means the source to site distance. 
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Epsilon (n)

The definition of epsilon is the number of standard deviations by which a given 

��
� value differs from the mean ��
� value, based on the given magnitude and distance. 

Epsilon can be presented as: 

n � ��
� + ���[�*&> 6,���[�  (3.2)

where ���[�*&> 6,  and ���[�  are the predicted mean and standard deviation of !��
� ,

respectively. ��
� is the natural logarithm of the spectral acceleration of interest. The 

first two parameters can be calculated through attenuation equations. 

In addition to magnitude, distance and epsilon, information about the contributed 

fault mechanism is also provided in the deaggregation results. The fault information is 

also important when performing attenuation models. 

3.4 Synthetic Ground Motion Generation 

As a feature to provide site specific synthetic ground motions, SIMQKE 

(Gasparini and Vanmarcke, 1976)—a widely used program for artificial ground motion 

generation—is incorporated in the proposed hazard method. Step-by-step procedure to 

generate synthetic ground motion is given below: 

Step 1: At the beginning of the analysis, the user is prompted to define the seismic 

            parameters (magnitude, distance, fault mechanism and site condition). 
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Step 2: Spectra, specified by the user or based on ground motion prediction  

            equations, such as the Next Generation Attenuation (NGA) models, and  

            predicted duration are produced. 

Step 3: Finally, synthetic ground motions are generated automatically and  

            efficiently through SIMQKE based on the information defined previously.

Subsequently, both the natural and synthetic records are ready to be modified to 

reflect the local site condition. DEEPSOIL (Hashash et al., 2009)—a 1-D site response 

analysis program—is implemented to perform the site response analysis. Site response 

analysis will be fully illustrated in section 3.5 Site Response Analysis.

As illustrated in section: 2.3 Seismic Hazard Characterization, in addition to the 

PGA, response spectrum and duration, an intensity function is needed to define in 

SIMQKE (Gasparini and Vanmarcke, 1976). Moreover, two additional duration 

parameters (Tb and Ttotal) are prompted to be defined in the proposed method. Through 

the definition of intensity function as well as duration parameters, a more realistic and 

reasonable ground motion is produced. Below, introduction on intensity function and the 

proposed duration parameters are shown. 

3.4.1 Intensity Function 

To reflect the transient character of real earthquake records, a deterministic 

envelope function (intensity function) I(t) needs to be defined. Two different intensity 

functions are implemented—the trapezoidal and exponential functions (Figure 3-6). The 

user is prompted to select one of them and define the related coefficients. 
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                       (a) Trapezoidal           (b) Exponential 

Figure 3-6 Intensity functions implemented in SIMQKE (Gasparini and Vanmarcke, 1976) 

3.4.2 Duration Parameters 

In SIMQKE (Gasparini and Vanmarcke, 1976), the defined duration is the period of 

the major vibration of the records (as the ‘Duration’ range shown in Figure 3-7). In order 

to simulate the quiet zone or small vibrations in the beginning and end of an earthquake 

record, Tb and Ttotal are introduced in the proposed method, as shown in Figure 3-7. 

Figure 3-7 Definition of Tb and Ttotal 
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3.5 Site Response Analysis 

The influence of soil conditions on ground shaking and structural damage has 

been understood for several years. Many evidences have also demonstrated the critical 

role of the local site effect. For example, the 1985 Mexico City earthquake and the 1989 

Loma Prieta earthquake in San Francisco Bay Area, both of them illustrated the 

importance of local site effects. 

As discussed in section 2.3: Seismic Hazard Characterization, two approaches, 

the site-specific and code-based methods, are used to simulate the influence of site 

conditions on a ground motion. Moreover, the code-based method (using Fa and Fv

parameters) is implemented in MAEviz (MAE Center, 2007) and HAZUS-MH (FEMA, 

2006). This simplified and approximated utilization, different Fa and Fv coefficients for 

different type of soil, is believed to be more conservative and unable to reflect the real 

site conditions. For the purpose to reduce the uncertainties and to derive more realistic 

results, DEEPSOIL, the 1-D site response analysis (site-specific method) is implemented 

in the advanced hazard analysis method. DEEPSOIL (Hashash et al., 2009), the 

University of Illinois site response analysis software platform, is featured for its versatile 

analysis (equivalent linear and nonlinear), sophisticated model (MRDF pressure-

dependent hyperbolic model, nonlinear parameters selection and fitting, small-strain 

damping formulation, and others), and intuitive graphical user interface. 

As reviewed in section 2.3: Seismic Hazard Characterization, the pre-requisite 

for a site response analysis is to develop the representative soil column. Soil properties 
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are defined either from field reports (such as borehole logs) or based on field or 

laboratory tests (Standard Penetration Test (SPT), for example). 

3.6 Hazard Map Generation 

Hazard Map—which contains earthquake intensity either with peak ground 

parameters (PGA, PGV or PGD) or spectral ordinates (Sa, Sv or Sd)—is used to present 

the hazard at a specific site. Hazard map is essential and widely used in many sub-

disciplines. For example, structural engineers use it for seismic design; insurance 

companies use it to evaluate risk and develop policy. Moreover, it is an essential 

component of earthquake impact assessment. 

Through the tools discussed in previous sections, a hazard map is generated with 

accuracy in an efficient way. Step-by-step procedure to generate hazard map is given 

below: 

Step 1: At the beginning of the analysis, the user is prompted to define the seismic 

            parameters (epicenter location, magnitude, distance, fault mechanism and  

            site condition, for example) for a scenario event. In addition, map  

            information, such as the cell size of raster data, the location (the latitude  

           and the longitude) of area of interest, are also needed to be specified.  

           Raster data here is a file contained hazard values with location information,  

          which is a commonly used format in Geographic Information System (GIS). 
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Step 2: PGA, response spectrum and duration are derived by the models specified  

            by the user. Next, these information for each cell are fed into SIMQKE  

            along with site response analysis to derive surface ground motions. 

Step 3: Hazard Map is finally generated by collecting seismic parameters at each  

            cell with organization. A visual map and a raster data format file are  

            generated simultaneously. Raster data format file here is compatible with  

            MAEviz to perform earthquake impact assessment. 

3.7 Verification Studies 

As illustrated in previous sections of current chapter, the latest and widely used 

approaches are utilized in the proposed advanced hazard characterization method. To 

achieve seamlessness, to conduct the analysis efficiently and to make ease of use, the 

above tools or methods are integrated in a novel manner and are tailored for user’s ease. 

For example, users are only needed to define the seismic parameters in the beginning step. 

Synthetic ground motions and hazard map are then generated with site response analysis 

automatically. More discussion and features of this advanced hazard method is addressed 

in Chapter 6 Development of NEES Integrated Seismic Risk Assessment Framework. In 

the following parts of this section, several verifications are presented in order to evaluate 

the achievements of this proposed advanced hazard method.

3.7.1 Introduction 

The Burbank Fire Station site at Burbank, California (latitude = 34.181°, 

longitude = -118.304°)—where the borehole log, and records from free-field stations and 
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instrumented buildings around are available—was selected to demonstrate the procedures 

and evaluate the outcomes under the proposed hazard characterization approach. 

Based on the SMIP geotechnical report No. 131 (Fumal et al., 1979), the soil 

deposits at the Burbank site is Pleistocene alluvium. The borehole log (Figure 3-8) shows 

the soil profile for the top 30 meters at this site. Fine Sandy Loam, Gravelly Sand and 

Sandy Loam/Loamy Sand are the three soils in the top 30 meters. SPT results range from 

10 blows/ft in fine sandy loam to 40 blows/6 inches in Gravelly Sand. The average 

measured shear-wave velocity is 405 m/s in Fine Sandy Loam, and is 452 m/s in Gravelly 

Sand and Sandy Loam/Loamy Sand (Table 3-1). The water table is assumed 20 feet 

below the ground surface, based on the geologic criteria for Burbank with soil deposits of 

similar Pleistocene age (Department of Conservation, Division of Mines and Geology, 

1998). 

Table 3-1 Soil properties of Burbank site (Fumal et al., 1979) 

Depth 
Soil Type 

SPT Density Shear-wave Velocity 

(m) (Blow/ft) (gm/cc) (m/s) (avg.) 

-12.5 Fine Sandy Loam 10 2.16 405 

-18 Gravelly Sand 40/6” 2.16 452 

-30 Sandy Loam/Loamy Sand --- 2.16 452 
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Figure 3-8 Borehole log of the Burbank site (adapted from Fumal et al., 1979) 
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3.7.2 Hazard Models Calibrated with Measured Records 

As shown in Figure 3-9, numerous free-field stations (circle) and instrumented 

buildings (square) are around the study site (Burbank, California). Meanwhile, a great 

number of records are available for past earthquakes, including the Northridge earthquake 

on January 17th, 1994. The hazard model may therefore be more realistic by calibration 

with the measured free-field records. In the following sub-sections, comparisons are 

undertaken between seismic parameters from the measured records during the Northridge 

earthquake and those derived from Campbell and Bozorgnia NGA model (Campbell and 

Bozorgnia, 2008)—using the Northridge earthquake mechanism along with site 

information from the SMIP geotechnical report. 

Figure 3-9 Free-field and structural instruments around the Burbank site (CESMD) 
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Nineteen borehole logs are available in the SMIP report. Eight of them were 

selected to calibrate the Campbell and Bozorgnia NGA model, CB-NGA (2008) for the 

reason that there is at least one instrument station (CSMIP station) which is close to the 

borehole site (less than 5 kilometers). Records during the 1994 Northridge earthquake in 

the instrument stations were used for this calibration. Consequently, site conditions from 

the borehole logs and seismic mechanism of the Northridge earthquake (Table 3-2, 

Figure 3-10) were used to tune the CB-NGA model. �)�2 � �
�> *�� � � �,  was 

assumed for the absence of this information in SMIP report.  Table 3-3 lists the 

parameters of the borehole sites required for the CB-NGA model. 

Table 3-2 Seismic parameters of the 1994 Northridge earthquake (USGS, 1996) 

Magnitude (Mw) Dip (degree) Rake (degree) �DE9(km) Fault Mechanism 

6.7 40 104 5 Reverse 

Figure 3-10 Portrayed buried fault plane of the Northridge earthquake (USGS, 1996) 
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Table 3-3 Parameters from SMIP report required for the CB-NGA model 

Borehole ID 6LM(km) 6789(km) 	[/$(m/s) �)�2(km)* 

#31 18.7 22.0 430.1 2 

#32 84.9 87.0 324.8 2 

#34 53.3 56.6 407.3 2 

#36 48.8 52.3 221.1 2 

#38 63.1 65.9 275.1 2 

#41 6.0 7.8 790.6 2 

#42 5.1 7.2 453.3 2 

#44 5.1 7.2 531.0 2 

                      * No information about �)�2 from SMIP report, �)�2 � �
�> *�� � � �, was assumed. 

To calibrate the NGA model, two approaches are considered, namely, calibrating 

the regression coefficient #�  or checking the sensitivity of seismic parameters (for 

example, 	[/$ , �)�2  and others). Due to the limited stations and records, the second 

approach was conducted in this study. Sensitivity analyses of 	[/$  and �)�2  were 

performed, for the absence of �)�2 and the use of average 	[/$ values. Figure 3-11 shows 

a comparison using different 	[/$ and �)�2. The difference was defined as the square root 

of sum of squares (SRSS) of the discrepancy between the measured value and the 

predicted median value (CB-NGA, Campbell and Bozorgnia, 2008) at each station. 

Clearly, the result was significantly affected by the �)�2 value rather than 	[/$. To reduce 

the uncertainties, more investigation was conducted. Table 3-4 lists �%�$, �%�2  and �)�2
information of the 8 selected stations. This information is from stations in the PEER 

NGA Database, which are close to the 8 selected CSMIP stations (within 5 kilometers). 

For sites where only �%�2 is available (for example, #42 and #44), the Equation (3.3) was 
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used to predict �)�2 (Campbell and Bozorgnia, 2007). If �%�$, �%�2 and �)�2 are unavailable, 

�)�2 � �
�> *�� � � �, was assumed. Table 3-5 lists the final values of �)�2.

�)�2 � ��.�. � ����Z�%�2 (3.3)

Figure 3-11 Comparison of the difference (SRSS of the difference between the measured value 

and the predicted value (CB-NGA)) using different ���� and ����
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Table 3-4 ����, ���� and ���� values of stations close to the borehole site  

Borehole ID �%�$ (km) �%�2 (km) �)�2 (km) 

#31 --- --- --- 

#32 ~ 0.32 ~ 0.54 ~ 2.74 

#34 ~ 1.28 ~ 3.05 ~ 5.48 

#36 ~ 0.90 ~ 1.90 ~ 2.41 

#38 ~ 0.80 ~ 1.67 ~ 3.43 

#41 ~ 0.13 ~ 0.23 ~ 1.30 

#42 --- ~ 3.04 --- 

#44 --- ~ 3.04 --- 

                           *�%�$, �%�2 and �)�2 are values of stations in PEER NGA Database  

                              which are close to the selected borehole (within 5 kilometers) 

Table 3-5 ����, ���� and ���� values after modification 

Borehole ID �%�$ (km) �%�2 (km) �)�2 (km) 

#31 --- --- 2 

#32 ~ 0.32 ~ 0.54 ~ 2.74 

#34 ~ 1.28 ~ 3.05 ~ 5.48 

#36 ~ 0.90 ~ 1.90 ~ 2.41 

#38 ~ 0.80 ~ 1.67 ~ 3.43 

#41 ~ 0.13 ~ 0.23 ~ 1.30 

#42 --- ~ 3.04 ~ 5.34 

#44 --- ~ 3.04 ~ 5.34 

 

Figure 3-12 and Figure 3-13 show the difference between assuming �)�2 �
�
�> *�� � � �, and using �)�2 from the PEER Database. The difference reduced from 

0.377 to 0.269. Figure 3-14 shows the sensitivity of average shear-wave velocity. Various 
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	[/$  values were investigated to account for the uncertainty from measurement. The 

comparison shows that a value of �Y��	[/$ leads to best results. 

Figure 3-12 Difference when assuming �)�2 � �
� for all the borehole sites 

Figure 3-13 Difference when using ���� value from PEER NGA Database 
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Figure 3-14 Sensitivity of shear-wave velocity to the PGA predicted by CB-NGA 
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Application 1: Synthetic ground motions are generated based on earthquake  

                         mechanism of the 1994 Northridge earthquake, followed by the  

                         comparisons between the natural and synthetic records. 

            Application 2: Synthetic ground motions with various hazard levels are generated,  

                                    using deaggregation results and local site conditions. 

Application 3: A site specific hazard map under the Northridge earthquake in Los  

                        Angeles area is generated. Comparison is made with the ShakeMap  

                        released by USGS. 

3.7.3.1 Application 1—synthetic ground motions through the Northridge earthquake 

mechanism 

The procedure to generate the synthetic ground motions at a specific site (the 

Burbank site) was verified through a historical event (the Northridge earthquake of 

January 17th, 1994). In the beginning of this application, seismic information from the 

Northridge earthquake (Figure 3-10) and the site condition of the SMIP #31 borehole log 

(Figure 3-8) were fed into this approach. PGA and response spectra from the CB-NGA 

(Campbell and Bozorgnia, 2008) model and the predicted significant duration were then 

generated, as shown in Table 3-6 and Figure 3-15. Finally, SIMQKE (Gasparini and 

Vanmarcke, 1976) with the above prerequisite parameters was conducted to generate 

synthetic ground motions automatically. Figure 3-16 lists 3 of the 30 synthetic ground 

motions generated by SIMQKE varying with different durations, PGA and spectral 
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acceleration intensities (i.e. median minus one std., median and median plus one std.). 

Moreover, Figure 3-17 presents the comparison between one of synthetic ground motions 

and the natural record, which illustrates that the PGA value and the transient 

characteristic are acceptable. Figure 3-18 shows the comparison of response spectra 

between the natural record and all the synthetic records. 

Table 3-6 Comparison between the measured and predicted seismic parameters 

 Measured Predicted* 

Peak Ground Acceleration (g) 0.30 0.11/0.19/0.32 

Significant Duration (s) 10.4 9.73/15/23.5 

* median-std./ median/ median+std. 

Figure 3-15 Response spectra generated through CB-NGA model 
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Figure 3-16 Synthetic ground motion with different duration and PGA 
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Figure 3-17 Comparison between the natural and synthetic record 

Figure 3-18 Comparison of response spectra 
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As shown in Figure 3-18, there is a significant difference of the spectral 

acceleration value between the natural and the synthetic records. At least two reasons are 

given to explain this difference. First of all, the NGA model is an equation which 

provides the median estimate of the spectral acceleration. Response spectra generated 

through SIMQKE based on the NGA model, therefore, cannot always be corrected well 

with one specific record. Secondly, the difference is more significant for periods range 

from 0.15 to 0.8 seconds, apparently, due to an amplification of the time history in this 

range. In this application, the average shear-wave velocity is used to account for the local 

site effect when applying the NGA equation. The soil condition therefore may not be 

reflected appropriately with the use of the average shear-wave velocity only. To 

investigate the local site effect, a soil column representative of the Burbank site was 

developed. The period of this soil column was around 0.3 seconds, which was calculated 

based on Equation (3.4): 

�� � � � ��	[>� (3.4)

where ��, �� and 	[>� are period, height and shear-wave velocity of the o�� soil layer, 

respectively.

Clearly, the time history is to be amplified around the period equal to 0.3 seconds. 

This provides exactly one of the reasons to explain the large difference between the 

natural record and the synthetic records at the Burbank site in the period range from 0.15 

to 0.8 seconds. To quantify further the local site effect, site response analysis was 
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performed using the 1-D site response analysis program, DEEPSOIL. Figure 3-19 shows 

the comparison of the response spectra between the natural record and the synthetic 

records after site response analysis. It is evident that the generated ground motions, 

including site response analysis, can represent the actual hazard characterization. Another 

time, the importance of the local site effect is emphasized based on the above 

investigation. 

Figure 3-19 Comparison of response spectra with site response analysis (SR) 
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shown in Table 3-7 and Table 3-8, at the Burbank site were fed into this advanced hazard 

method. Next, sets of synthetic ground motions, including site response analysis and 

varying with duration and hazard levels were generated automatically. These motions 

with compatible format were further used in the hybrid simulation and fragility analysis. 

Figure 3-20 lists 3 of the 27 generated synthetic ground motions. Rather, Figure 3-21 

shows the response spectra in different hazard levels. For completeness, a summary of 

the procedure and all the generated ground motions are given in Appendix A. 

Table 3-7 Deaggregation results at Burbank site 

 Return Period (yrs) M R (km) Epsilon 

2%/ 50yrs 2475 6.73 6.9 1.18 

5%/ 50yrs 975 6.71 8.5 0.91 

10%/ 50yrs 475 6.71 10.6 0.63 

Table 3-8 Contributed fault information based on deaggregation results 

Name Type <7= <AB ����>G �� �
Verdugo Char Reverse 1 0 1 0 

Elysian Park Char Blind trust (reverse) 1 0 1 0 

*assume � = 90°, �)�2 � �
�
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Figure 3-20 Synthetic ground motions for different hazard level and duration 
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Figure 3-21 Response spectra for different hazard level 
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3.7.3.3 Application 3— a site specific hazard map under the Northridge earthquake in 

LA area 

Hazard map, the exposure when calculating earthquake loss, is one of the 

indispensable components of regional impact assessment. The map of PGA for the 1994 

Northridge earthquake in the Los Angeles area in standard gravity (g) was generated in 

this application. This map is not only served to demonstrate the proposed method, but 

also used for regional impact assessment in Los Angeles area, which is presented in 

Chapter 6: Case Studies.

SMIP geotechnical report (Fumal et al., 1979) was used again to illustrate local 

site characteristics. As mentioned previously, 19 borehole logs are available in SMIP 

report. Figure 3-22 shows the locations of these 19 boreholes (black cross) and the 

epicenter of the 1994 Northridge earthquake (red star). In order to provide more realistic 

site conditions, the Los Angeles area was subdivided into 6 smaller regions, as shown in 

Figure 3-23. One of the boreholes in each region was selected to represent the site 

condition in that area. Therefore, 6 different site conditions along with earthquake 

mechanism of the Northridge earthquake contributed the map of PGA for the 1994 

Northridge earthquake in Los Angeles area. 

Step-by-step procedures to generate the hazard map (described previoulsy in 

section 3.6 Hazard Map Generation) were then performed. The Northridge earthquake 

mechanism (Figure 3-10), the site conditions (soil profiles and material properties) and 

map information (such as interested region scope and cell size) were defined in the first 
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step. Next, the CB-NGA (Campbell and Bozorgnia, 2008) and duration prediction 

equation along with SIMQKE (Gasparini and Vanmarcke, 1976) and DEEPSOIL 

(Hashash et al., 2009), were performed for each cell. Finally, PGA values were collected 

and hazard map of the Los Angeles area was presented, as shown in Figure 3-24. 

Figure 3-22 Locations of boreholes (black cross) in the SMIP geotechnical report 

Figure 3-23 Subdivided areas and the selected boreholes in the Los Angeles area 
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Figure 3-24 Map of PGA for the 1994 Northridge earthquake in the Los Angeles area in standard 

gravity (g) 

To evaluate the improvements of proposed hazard analysis method, comparisons 

were made between hazard maps generated by different approaches, such as ShakeMap, 

deterministic hazard map in MAEviz, and the generated map. Figure 3-25 is the 

ShakeMap published by USGS for the 1994 Northridge earthquake 

(http://earthquake.usgs.gov/earthquakes/shakemap/sc/shake/Northridge/). It was made by 

using the instrumented records along with interpolation and extrapolation techniques. 
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Therefore, the ShakeMap is relatively realistic. When comparing with ShakeMap, the 

generated map is qualititatively reasonable and acceptable. 

Figure 3-25 ShakeMap for the 1994 Northridge earthquake (USGS)  

(Pink county border is added by the writer) 
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Moreover, a quatitative comaprison was made among ShakeMap, map generated 

by MAEviz and map generated by the proposed method (represented by NISRAF in the 

following). Figure 3-26 and Figure 3-27 show the generated map as well as differences 

between the calculated and the measured PGA values during the 1994 Northridge 

earthquake by NISRAF and MAEviz, respectively. Due to the limited site informaiton, 

only 6 sites, which were used previously to represent 6 different site conditions, were 

discussed here. Generally, the map generated by NISRAF is more reasonable and realistic 

than the one from MAEviz. Site response analysis is one reason for this difference—

MAEviz uses a simple approach, the Fa and Fv site coefficients, while NISRAF uses 1-D 

site response analysis to account for soil nonlinear behavior. 

Between these 6 sites, Tarzana and Sylmar show large differences for both 

NISRAF and MAEviz map, even though they have higher estimated PGA values (Table 

3-9). Several studies have been devoted to investigate the high PGA values in these two 

sites (Hartzell et al., 1996; Vahdani and Wikstrom, 2002). Generally, it is believed that 

the local geology and topography, the near-fault, basin and the directivity effect of the 

earthquake contribute to the higher response. Among them, topography, near-fault and 

directivity effects are not included in current attenuation models and 1-D site response 

analysis program. 
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Figure 3-26 Hazard and difference of PGA between NISRAF and measured one 

Figure 3-27 Hazard and difference of PGA between MAEviz and measured one 
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Table 3-9 Comparisons of PGA value between the measured and the calculated 

PGA (g) Tarzana* Sylmar** 

Measured 1.93 0.89 

NISRAF 0.29 0.3 

MAEviz 0.24 0.2 

                      *Tarzana-Cedar Hill Nursery A (CSMIP #24436) 

                      **Sylmar-6-story County Hospital (CSMIP #24763) 

3.8 Summary and Discussion 

In conclusion, the above three applications demonstrate the methodologies and 

procedures of the proposed advanced hazard analysis method, including seismic hazard 

analysis, synthetic ground motions, site response analysis and hazard map generation. 

The use of instrumentation data provides an opportunity to calibrate the hazard models, 

which, therefore, improve the reliability of the hazard characterization used in the further 

analyses, such as synthetic ground motion and hazard map generation. Meanwhile, the 

incorporation of site response analysis improves the accuracy in synthetic ground 

motions as well as in hazard maps. Moreover, the proposed method simplifies tedious 

and complicated procedures in each hazard model, solves the compatibility between them, 

and provides an interactive interface for ease of use. This advanced method has already 

been implemented in NISRAF successfully, which cooperates with other sub-disciplines 

toward the purpose to provide more reliable earthquake impact assessment results. 

.
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CHAPTER 4 

 FRAGILITY ANALYSIS BY HYBRID SIMULATION 

 

4.1 Introduction 

Fragility, or vulnerability, presents the probability of reaching or exceeding a 

specific performance level under a specific seismic hazard. Fragility curves relate the 

effects of seismic hazard to the damage of the structures. Therefore, fragility curves 

(sensitivity) along with hazard (exposure) are used to assess earthquake impact on the 

built environment. 

As discussed in section 2.6: Fragility Analysis, four categories are generally used 

to classify fragility curves—empirical fragility curves, judgmental fragility curves, 

analytical fragility curves and hybrid fragility curves. Through development in the past 

few decades, the fragility analysis has reached its mature state and also has been widely 

accepted by the community. Nevertheless, uncertainties and limitations remain for their 

own inherent nature (such as scarcity in empirical fragility curves and subjectivity in 

judgmental fragility curves) or modeling deficiencies (analytical fragility curves, for 

example). Even the hybrid fragility curves have flaws since different uncertainties 

sources exist between different types of fragility relationships. 
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4.2 Overview of the Advanced Hybrid Fragility Analysis Method 

In order to reduce the uncertainties and to improve reliability, an advanced hybrid 

fragility analysis method is proposed. In this approach, fragility is represented by a 

lognormal distribution as shown in Equation (4.1) (Wen et al., 2004). 

p� � p N
�
q V �T � � + ��34*�, + j� � � �Rj�S (4.1)

where j and � denote the mean and standard deviation of 34!*
� 
q� ,. If 
� and 
q follow 

lognormal distributions, then ��
� and ��
q follow normal distributions and the function 

34!*
� 
q� ,  also follows a normal distribution. This is, therefore, consistent with the 

lognormal distribution assumption for 
�  and 
q , which is commonly assumed for 

fragility analysis. The parameter j is expressed as a function of the earthquake intensity 

parameter, such as PGA, which is derived through testing in the laboratory. The standard 

deviation � represents uncertainties in both demand and capacity in the analysis, which is 

from the literature. 

As shown in Figure 4-1, through scaling seismic inputs (ground motions), several 

tests (hybrid or conventional simulation) are conducted in the laboratory in order to reach 

the target structural response. The seismic intensity (PGA, for example) of the scaled 

ground motion is then assigned to the mean seismic intensity for current limit state. The 

target structural response is defined for different limit states, such as interstory drift angle 

(ISDA) of 0.7% for the immediate occupancy limit state for steel moment frame building. 
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Therefore, with j  derived from laboratory testing and �  from literature, the fragility 

relationships is derived through this advanced hybrid manner. 

Figure 4-1 Flow chart for the advanced hybrid fragility analysis 

4.3 Verification Studies 

Fragility curves of three performance limit states (namely, immediate occupancy, 

life safety and collapse prevention) for a mid-rise steel moment resisting frame building 

in Los Angeles area were generated through hybrid simulation (with calibrated finite 
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element model along with experimental simulation and site specific ground motions) and 

dispersions from similar structures found in the literature. 

4.3.1 Structural Model and Seismic Input 

4.3.1.1 Building Description and Structural Model 

A six-story instrumented building in Burbank, California was selected for this 

verification. This is a steel moment resisting frame structure, in which the perimeter 

frames are the primary lateral load resisting system and the internal frames are only 

resisting gravity load. This building was instrumented by California Strong Motion 

Instrumentation Program (CSMIP) in 1980 with 13 sensors. A 2-D finite element model 

was built in ZEUS-NL (Elnashai et al., 2004) and tuned using the measured structural 

responses (Figure 4-2). More descriptions and discussions of this building, as well as 

finite element model construction and model updating results, are detailed in Chapter 6: 

Case Studies.

Figure 4-2 Analytical model configuration for Burbank building 
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4.3.1.2 Performance Limit State 

Three performance limit states are specified in this study, namely, the immediate 

occupancy (IO), the life safety (LS) and the collapse prevention (CP). Interstory drift 

angles (ISDAs) 0.7%, 2.5% and 5% are assigned to IO, LS and CP performance level, 

respectively (FEMA, 2000b).

4.3.1.3 Seismic Input 

Ground motions representative of the local hazard characterization are essential in 

order to capture the realistic structural response. In addition, various ground motions 

should be considered to avoid excessive scaling on them. Excessive scaling is unrealistic 

and unreasonable particularly when motion has higher earthquake intensity. Based on the 

above considerations, the 27 site specific synthetic ground motions with various hazard 

levels, generated for the Burbank sits (Appendix A), were selected as the earthquake 

demand in this verification. To avoid excessive scaling, records related to 10%, 5% and 

2% probability of exceedance in 50 years hazard level are used to derive fragility curves 

for immediate occupancy, life safety and collapse prevention performance limit state, 

respectively.

4.3.2 Hybrid Simulation 

The calibrated Burbank building model and ground motions from hazard 

characterization analysis were used to verify the extension of the hybrid simulation to 

fragility analysis as well as the integration of hybrid simulation in earthquake impact 

assessment. The calibrated 2-D structure model was divided into two sub-structures, 
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namely, the column (the lower part of the left exterior column at the first floor) and the 

frame (the remaining structure). The frame module was simulated using ZEUS-NL 

(Elnashai et al., 2004), while the column module—replaced by a small scale aluminum 

specimen (Figure 4-3)—was tested in the laboratory. 

Figure 4-3 Hybrid simulation with two sub-structures (column and frame) 

4.3.2.1 Testing Facility 

George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES) 

equipment site in the University of Illinois at Urbana-Champaign, the Multi-Axial Full-

Scale Sub-Structured Testing and Simulation (MUST-SIM) facility is selected as the 

experimental facility. The MUST-SIM facility consists of an L-shaped strong wall, three 

large loading and boundary condition boxes (LBCBs) and advanced non-contact 

measurement systems (Krypton, for example). In addition to the large-scale facility, a 

1/5th–scale model laboratory (including wall-floor system, three boxes, and a portable and 

self-reacting LBCB) is available for training, for verifying control algorithms and for 
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investigating structural behaviors in small scale. In this study, the portable LBCB 

(pLBCB), as shown in Table 4-1 and Figure 4-4, is employed since the tests are a proof-

of-concept study—to demonstrate the extension and integration of hybrid simulation in 

fragility analysis and impact assessment, respectively. Therefore, meeting similitude 

requirement is not necessary. 

Table 4-1 Force and displacement capacities of portable LBCB (Holub, 2010) 

Type Axis Capacity Type Axis Capacity 

Displacement* 
(inch) 

X �� Rotation* 
(degree) 

X ����Y
Y �� Y �Z�Y
Z �� Z ����.

Force* 
(kip) 

X �. Moment* 
(kip-inch) 

X ����Z
Y �� Y �����
Z �Z Z ����Z

*Note the values provides here do not reflect interaction amongst the platen DOF. X actuators have a force 
capacity of �� kips and a displacement capacity of �� inch. Y and Z actuators have a force capacity of ��
kips and displacement capacity of �� inch. 

Figure 4-4 Portable LBCB at MUST-SIM 1/5th-scale model laboratory 
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4.3.2.2 Specimen Design 

A small scale aluminum column was selected to represent the real steel column in 

the building. Similitude relationships (Harris and Sabnis, 1999) shown below were used 

to design the small specimens. 

&M � 
�
�/&� (4.2)

<M � 
�
�)<� (4.3)


� � �M�[ (4.4)


� �  M [ (4.5)

In the above equations, &M and &[ are the large and small-scale moments; <M and <[ are 

the large and small-scale forces; �M and �[  are the large and small-scale moduli of 

elasticity; and  M and  [ are the large and small-scale lengths, respectively. 

Through the above relationships, 1/6.25th scale models of the original column 

were designed and constructed within the limitation of the pLBCB capacity. The scale 

factors and the dimensions of the original column and small-scale specimen are listed in 

Table 4-2 and Table 4-3, respectively.Figure 4-5 is the elevation view of the small-scale 

aluminum specimen. As shown in the drawing, rigid end plates are included to facilitate 

connection of specimen to the LBCB platen and reaction frame. 
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Table 4-2 Scale factor for design small scale specimen 


� 
�
2.9 6.25 

Table 4-3 Dimension and material properties of real column and small-scale specimen 

d
(in) 

bf
(in) 

tw
(in) 

tf
(in) 

Elastic modulus 
E (ksi) 

Yield strength  
fy (ksi) 

Real column 
(W14x184) 15.38 15.66 0.84 1.378 29000 40 

Small-scale specimen 
(Alloy 6061-T6) 3 2.509 0.349 0.26 10000 36 

Figure 4-5 Aluminum column specimen elevation, unit: in. 
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(a) Front side view (b) Right side view 

Figure 4-6 Completed small-scale specimen 

4.3.2.3 Software Environment 

4.3.2.3.1 UI-SIMCOR 

UI-SIMCOR (Kwon et al., 2007), the University of Illinois software platform for 

hybrid simulation, is adopted to coordinate all the sub-structures (modules) during the 

testing, such as the communication and interaction between the experimental (column) 

and analytical (frame) modules (Figure 4-3). The ¡-Operator Splitting (¡-OS) method is 

implemented in UI-SIMCOR to conduct time integration. Generally, three stages, namely, 

stiffness evaluation, static loading and dynamic loading are undertaken step by step to 

finish a hybrid testing. 
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4.3.2.3.2 ZEUS-NL 

The frame sub-structure model was simulated in ZEUS-NL platform (Elnashai et 

al., 2004), a nonlinear FE analysis program, developed by the MAE Center. In this 

analytical model, section and material properties were based on design documents, 

lumped mass was used and applied at each beam-column connection, and concrete slabs 

were modeled and connected to steel girders using rigid elements, to account for their 

contribution of stiffness. More details about construction of this analytical model are 

illustrated in Chapter 6: Case Studies. 

4.3.2.3.3 LBCB Operation Manager 

The LBCB Operation Manager is a program developed to control the Load and 

Boundary Conditions Boxes (LBCB) of MUST-SIM facility. Three control algorithms 

are implemented in this program, namely, displacement, force and mixed mode control. 

In this study, the displacement control algorithm in Operation Manger is used to control 

the portable LBCB during the testing. 

4.3.2.3.4 LBCB-Plugin 

The LBCB-Plugin was original developed as the intermediary between UI-

SIMCOR and the LBCB Operation Manger. Recently, a new developed LBCB Plugin is 

released, which serves as the master program for all the software used during the testing. 

Therefore, except the communication between UI-SIMCOR and Operation Manger, this 

program synchronizes data collected and pictures taken and stored from data acquisition 

program and Camera-Plugin program, respectively. 
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4.3.2.3.5 Data Acquisition 

Instrumented data was collected continuously through a custom LabViw program. 

In addition to the traditional data (displacement, force and strain), photos were taken 

automatically at each time step through Camera-Plugin program developed at MUST-

SIM facility. 

4.3.2.4 Experimental Setup 

4.3.2.4.1 Testing Configuration 

All the small-scale aluminum columns were tested on the portable LBCB. Figure 

4-7 presents the experimental setup. As shown in Figure 4-7 (b), the top-end plate of 

specimen is attached to the steel frame (fixed end); while the bottom-end plate is attached 

to the LBCB platen (flexible (control) end). The control algorithm for this study is based 

on the external feedback of linear potentiometers installed on the specimen. Four linear 

displacement LVDTs (Liner Variable Differential Transformer) were installed, as shown 

in Figure 4-7 (b) (another vertical one is behind the specimen), which provided feedback 

on DOF X (in-plane horizontal), Z (vertical) and Ry (out-of-plan rotation). These 3 DOFs 

were assigned as the control DOFs in hybrid simulation tests. 
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(a) Overall view 

(b) Close view 

Figure 4-7 Small-scale experimental setup 
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4.3.2.4.2 Instrumentation 

Six actuator displacements, 6 actuator forces, 6 Cartesian displacements and 6 

Cartesian forces from portable LBCB were recorded. Instrumentation from external 

measurements was also collected, such as displacements from 4 LVDTs and strain values 

from 6 strain gauges. High resolution photos from three angles (namely, front, right and 

left side) of the specimen were taken and stored at each time step. 

4.3.2.5 Hybrid Simulation Results 

Hybrid simulation coordinated by UI-SIMCOR using the Northridge earthquake 

record (Figure 4-8) as the ground acceleration was first conducted as a proof test of the 

hybrid model prior to the generation of the hybrid fragility curves. As shown in Figure 

4-9, good agreement was found between the measured response (CSMIP Station No. 

24370 record of the 1994 Northridge earthquake) and the response from the hybrid 

simulation testing. With this confidence in the hybrid model and experimental setting, 7 

additional hybrid simulation tests with various ground motions were performed in order 

to generate the hybrid fragility curves. Details and results of these hybrid simulation tests 

are presented in the following section. 
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Figure 4-8 Ground motion record of the 1994 Northridge earthquake (CSMIP # 24370) 

Figure 4-9 Comparison of the roof drift between the measured and the hybrid simulation 
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4.3.3 Hybrid Fragility Analysis 

Based on the lognormal distribution assumption, mean value of seismic intensity 

from testing along with dispersions from literature are used to derive the hybrid fragility 

curves. In this study, mean value of PGA from hybrid simulation tests and dispersions 

from literature (FEMA, 2000a; Cornell et al., 2002; Yun and Foutch, 2000) were used to 

derive the fragility curves for this 6-story steel building in Los Angeles area. In the 

following section, mean PGA values from hybrid simulation tests are presented first, 

followed by discussions on the dispersions found in literature. Moreover, a 

comprehensive uncertainty review was also included. 

4.3.3.1 Mean PGA Values from Hybrid Simulation 

Hybrid simulation results under different synthetic ground motions (10%, 5% and 

2% probability of exceedance in 50 years for immediate occupancy, life safety and 

collapse prevention performance levels, respectively) were used to derive the mean PGA 

value for each performance level. Step-by-step procedure to derive mean PGA value is 

given below, also shown in Figure 4-10: 

Step 1: 10% probability of exceedance in 50 years ground motion is selected as  

            seismic input for hybrid simulation to derive mean PGA value for  

            immediate occupancy limit state. 

Step 2: Interstory drift angle (ISDA) is calculated based on testing results.  

            Comparison of ISDA between the calculated one and the target one (0.7%  

            ISDA for immediate occupancy performance limit state, for example) is  

            then made. 
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Step 3: Hybrid simulation is resumed (replaced with new specimen if nonlinear  

           behavior occurs in previous test) with seismic input multiplied by a scale  

           factor (calculated based the difference in Step 2), if the difference exceeds  

           criterion (�5% difference, for example). 

Step 4: Iterations from Step1 to Step 3 continues till the criterion is met. 

Step 5: Once the calculated ISDA matches the defined ISDA, PGA value of  

            current (scaled) record is assigned as the mean PGA value for immediate  

            occupancy performance limit state. 

The above procedure is an example of how to drive the fragility curve for IO limit 

state, while similar procedures were applied to derive curves for LS and CP limit states 

using 5% and 2% probability of exceedance in 50 years ground motions, respectively. 

Figure 4-10 Methodology and procedures for the advanced hybrid fragility analysis 
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Figure 4-11 shows the number of hybrid simulation tests used to derive the mean 

PGA values. Table 4-4 lists the target ISDA (ISDA, interstory drift angle, are defined in 

previous section for this study) as well as the mean PGA values from hybrid simulation 

tests. 

Figure 4-11 Number of hybrid simulation tests to derive fragility curves 

Table 4-4 Interstory drift angle (target ISDA) and PGA from hybrid simulation tests 

Performance Level 
Immediate 

Occupancy

Life 

Safety 

Collapse 

Prevention 

Interstory drift angle (%)  0.7 2.5 5.0 

Mean PGA (g) 0.545 1.627 2.777 

Figure 4-13, Figure 4-14 and Figure 4-15 show one simulation result (the red star 

highlight with yellow circle area in Figure 4-11, 2% probability of exceedance in 50 
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years multiplied by scale factor equal to 3.54, as shown in Figure 4-12). The other 

simulation results can be found in Appendix B. 

Figure 4-12 Synthetic Ground motion (2% PE/50yrs with scale factor = 3.54)  

Figure 4-13 Comparison of column response between hybrid and multiplatform simulation 
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Figure 4-14 Comparison of displacement between hybrid and multiplatform simulation 

Figure 4-15 Comparison of displacement between hybrid and multiplatform simulation 
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4.3.3.2 Dispersions from Literature 

Dispersion, a statistics vocabulary, represents the uncertainty term in fragility 

relationships. Due to the limited number of tests in the hybrid fragility analysis, it is 

unreasonable and also unrealistic to regress dispersion based on few testing results. 

Therefore, dispersions of the proposed hybrid fragility analysis are found from the 

literature. 

Generally, uncertainties are divided into two categories, namely, aleatoric and 

epistemic uncertainties. Aleatoric uncertainties are inherent, such as occurrence of 

earthquakes and material properties (Young’s modulus, yielding strength in steel and 

compression strength in concrete, for example). By contrast, epistemic uncertainties are 

from the absence of knowledge, such as analytical model selection and construction, 

ground motion selection and others) (Wen et al., 2004). Consequently, a comprehensive 

review is needed to derive reasonable and representative dispersions. 

FEMA 350 (FEMA, 2000a), the recommended seismic design criteria, is specially 

developed for new steel moment frame buildings. In FEMA 350, as well as in the 

literature (Cornell et al., 2002; Yun and Foutch, 2002), a method used to evaluate seismic 

behavior of steel moment frame buildings is proposed. Within this method, uncertainties 

for different building height, beam-connection type, analysis procedure (linear or 

nonlinear, static or dynamic), and local and global failures under different performance 

levels (IO and CP) are tabulated (Table A-3 in FEMA 350) or illustrated in the content. 

The uncertainty is therefore calculated using the following equation (Equation (A-4) in 

FEMA 350). 
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�8D � ¢£ �¤�)� (4.6)

where �¤� are the standard deviations of the natural logarithms of variation from various 

uncertainty sources. Three sources of uncertainties are included, namely, various analysis 

methods, beam-column connection behavior and global building stability capacity 

prediction. Table 4-5 summaries logarithmic uncertainties for mid-rise steel buildings 

obtained from FEMA 350. 

Table 4-5 Logarithmic uncertainties for mid-rise building (FEMA, 2000a) 

Uncertainty Source Immediate Occupancy Collapse Prevention 

Analysis Method* 0.13 0.20 

Beam-Column Connection 0.2 0.2 

Global Stability Capacity 0.2 0.2 

       *Nonlinear Dynamic Analysis Method 

It is evident that, uncertainties from seismic hazard and material properties are 

missing. Although they somehow may be included in the analysis method uncertainty 

term, it is unclear here. Meanwhile, uncertainties are available only in two performance 

levels; uncertainty for LS is missing. 

However, for the proposed advanced hybrid fragility analysis, the above two 

missed uncertainties have already been included in the procedures. Uncertainty in seismic 

input is captured by using sets of site-specific ground motions and avoiding likely 

excessive scale effects. Uncertainty in material properties is covered by calibrating the 

FE model in the beginning. Therefore, uncertainties for hybrid fragility curves were 
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calculated by using uncertainties listed in Table 4-5 and Equation (4.6). The uncertainty 

for Life Safety performance level was then interpolated. Table 4-6 lists the mean PGA 

values and dispersions derived from the proposed hybrid fragility analysis method. 

Table 4-6 Mean PGA value and dispersions for mid-rise steel building fragility curves 

Performance Level 
Immediate 

Occupancy

Life

Safety 

Collapse 

Prevention 

Mean PGA (g) 0.545 1.627 2.777 

Dispersion 0.311 0.328 0.346 

4.3.3.3 Hybrid Fragility Curves 

Finally, based on Table 4-6 and lognormal distribution assumption, fragility 

curves were generated and are shown in Figure 4-16. 

Figure 4-16 Hybrid fragility curves for mid-rise steel moment resisting frame building in Los 

Angeles area 
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A Comparison of fragility relationship between the generated (NISRAF) and the 

default fragility curves in MAEviz (the S1M High-Code category, S1M: mid-rise (4-6 

stories) steel moment frame) was made and shown in Figure 4-17. As shown, MAEviz 

fragility curves are more vulnerable with higher uncertainties. The difference between 

them is from different fragility analysis approaches and different seismic inputs. The 

MAEviz default fragility relationships are derived analytically (SDOF (single degree of 

freedom) dynamic time history analysis). Meanwhile, the ground motions used in 

MAEviz are synthetic motions special for Central and Eastern United States (CEUS). 

Figure 4-17 Fragility relationship comparison between NISRAF and MAEviz 
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4.4 Fragility Relationships for Other Building Types 

A database contained fragility relationships for all building types is an essential 

ingredient of regional impact assessment. The proposed advanced hybrid fragility 

analysis provides an alternative method to derive more reliable fragility relationships. 

Definitely, this hybrid approach can be applied to any other building types. However, 

considerable time and effort are required. For the mid-rise steel moment resisting frame 

building in Los Angeles area, its fragility relationships have been generated in order to 

demonstrate fully the hybrid fragility analysis provided in this study. Extension of the 

database for fragility relationships to other building types is underway although it is out 

of the scope of this study. Currently, an alternative method to derive fragility 

relationships for other building types is the Parameterized Fragility Method, PFM (Jeong 

and Elnashai, 2006). In the following section, PFM is reviewed first, followed by the 

derivation of fragility relationships for other building types using PFM. 

4.4.1 Parameterized Fragility Method 

Parameterized Fragility Method (Jeong and Elnashai, 2006), an analytical fragility 

analysis approach, derives fragility curves through dynamic time history analysis on a 

SDOF FE model. It is, therefore, parameters corresponded with structure types and 

ground motions representative of site hazard characterization are essential for this 

methodology’s use in regional impact assessment. 

In HAZUS-MH, 36 building types (from W1: wood, light frame to MH: mobile 

homes) are defined (FEMA, 2006). Meanwhile, structural parameters (period, yield and 
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ultimate strength) for 36 building types under 4 code levels (pre-code, low-code, 

moderate-code and high-code) are tabulated. However, the majority of these parameters 

are based on engineers’ opinions and experts’ judgment. To be more realistic and 

reasonable, the latest research findings on structural capacity are incorporated. For 

example, parameters for wood frame and unreinforced masonry buildings are replaced 

according to the more comprehensive investigations (Gencturk and Elnashai, 2008; 

Frankie, 2010). 

In addition, sets of site specific ground motions (Appendix A) are used as 

earthquake demand when performing dynamic time history analysis in PFM. 

4.4.2 Fragility Relationships for Los Angeles area 

Consequently, fragility relationships for 36 building types under 4 code levels 

particularly for the Los Angeles area were generated based on structural parameters and 

ground motions discussed in previous section. Procedure and results of using PFM to 

derive fragility relationships for other building types are detailed in Appendix C. Figure 

C-2 tabulates structural fragility parameters for all building types. Comparisons for S1M, 

W-series (wood frame) and URM-series (unreinforced masonry building) between 

different approaches were made and discussed below. 

Figure 4-18 shows comparison of S1M (High-Code) fragility relationships. It is 

evident that fragility relationships from PFM are more vulnerable than that from NISRAF, 

but less vulnerable than that from MAEviz. SDOF dynamic time history analysis is used 

to derive fragility relationships in both PFM and MAEviz, the only difference between 
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them is the seismic inputs. Synthetic motions for the Los Angeles area are used in PFM, 

while synthetic motions for CEUS are used in MAEviz. Therefore, the difference 

between curves results from seismic inputs. The importance of seismic inputs is therefore 

emphasized again. 

Figure 4-18 Comparison of S1M (High-Code) fragility relationships 

Figure 4-19 and Figure 4-20 show comparison of W1 (wood, light frame), High-

Code and URMM (mid-rise, unreinforced masonry building), Pre-Code between PFM 

and MAEviz. Clearly, fragility relationships in PFM are more vulnerable in both W1 and 

URMM. In addition to the different seismic input, structural parameters in PFM are 

updated by the latest research instead of using parameters listed in HAZUS-MH, which is 

in MAEviz. The observation of more vulnerable behavior in both wood frame and 
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unreinforced masonry building responses matches well to same findings in recent studies 

(Gencturk, 2007; Frankie, 2010). 

Figure 4-19 W1 (High-Code) fragility relationships comparison between PFM and MAEviz 

Figure 4-20 URMM (Pre-Code) fragility relationships comparison between PFM and MAEviz 
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4.5 Summary and Discussion 

In conclusion, fragility relationships for a steel moment resisting frame building 

in the Los Angeles area are developed, which demonstrates the methodologies and 

procedures of the proposed advanced hybrid fragility analysis method, including the 

incorporation of hybrid simulation into fragility analysis and uncertainty consideration. 

The incorporation of hybrid simulation test provides a chance to capture real structural 

responses, which therefore improves the reliability of the fragility relationship. 

Meanwhile, the comprehensive consideration of uncertainties increases the confidence 

when using the generated fragility relationships. Moreover, fragility relationships for 36 

building types under 4 code levels in the Los Angeles area are provided by combining the 

generated hybrid fragility relationships (S1M, High-Code) with others through PFM 

method. In the future, when more and more experimental data are available, fragility 

relationships can continue being updated and improved through Bayesian method or 

other statistic approaches. 

Finally, this advanced hybrid method to derive fragility relationships has already 

been implemented in NISRAF successfully, which cooperates with other sub-disciplines 

toward the purpose to provide more reliable earthquake impact assessment results. 

.
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CHAPTER 5 

DEVELOPMENT OF NEES INTEGRATED SEISMIC RISK 

ASSESSMENT FRAMEWORK 

5.1 Introduction 

NEES Integrated Seismic Risk Assessment Framework (NISRAF), a completed 

MATLAB (The MathsWork, Inc.) GUI-driven software platform, has been developed for 

the purpose of making impact assessment more efficient and more reliable. Several 

components—instrumentation, advanced hazard characterization, system identification, 

model updating, hybrid simulation, advanced hybrid fragility analysis and impact 

assessment tool—have been implemented and tailored with novel methods to build the 

seamless, transparent and extensible framework. Below, the architecture, methodologies, 

communication protocols and analysis platforms of NISRAF are discussed first. Next, the 

discussions are focused on features, potentials, limitations and challenges of NISRAF. 

5.2 Architecture of NISRAF 

As shown in Figure 1-2 and Figure 5-1, free-field measurements (I1) along with 

nonlinear site response analysis (SR) are used to generate the advanced hazard map and 

ground motion records (AH). The measured and synthetic records are then used in hybrid 

simulation and fragility analysis. Meanwhile, the structural model is calibrated with the 

measured structural response (I2). Next, hybrid simulations (HS) are performed with the 
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most critical component of the structural system tested in the laboratory and the 

remainder of the structure simulated analytically. These simulations are conducted to 

derive the mean seismic intensity value (PGA, for example) of the corresponding 

performance limit state. The fragility curves (FA) of the structure are then generated 

using the hybrid simulation data and the dispersions from the literature. Finally, the 

hybrid fragility curves and the calibrated hazard map are fed into the impact assessment 

tool, such as MAEviz or HAZUS-MH (IA).

Figure 5-1 Architecture of NISRAF 
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Clearly, NISRAF is composed of five main parts: namely, (i) instrumentation (I1,

I2), (ii) seismic hazard analysis (AH), (iii) model calibration and hybrid simulation (HS),

(iv) fragility analysis (FA) and (v) earthquake impact assessment (IA). For ease of use, 

nine main menus with submenus are designed and arranged, following the analysis 

sequences (Figure 5-2): 

� File: Contains general menus (such as Open, Save, Save As, Page Setup, 

Print Review, Print and Exit). 

� Strong Motion: Provides an interface to download measured data from 

instrumentation databases (ANSS, COSMOS, CESMD and PEER). 

� Hazard Characterization: Contains three menus (Seismic Hazard Analysis,

Synthetic Time Histories and Hazard Map Generation) to perform hazard 

analysis. 

� Structure Model: Contains five menus (Import from ZEUS File, New

Model from Template, New Model, View and Structure Model) to import, 

develop and view the FE model. 

� Model Calibration: Contains three menus (Modal Analysis, System

Identification and Model Updating) to improve the FE model. 

� Hybrid Simulation: Contains five menus (Dynamic Load, Static Load,

Hybrid Model, Simulation and Results) to develop the hybrid model, run 

simulation and check results. 
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� Fragility Analysis: Contains three menus (Define Limit States, Run

Hybrid Simulation and Hybrid Fragility Curves) to derive hybrid fragility 

relationships through hybrid simulation testing. 

� Impact Assessment: Contains two menus (MAEviz and HAZUS) to 

perform the earthquake impact assessment. 

� Help: Contains three menus (NISRAF Manual, UI-SIMCOR Manual, 

SimBuild Manual and About NISRAF) to assist users in performing the 

analysis. Copyright and version information are also included here. 

Figure 5-2 Welcome window and main window of NISRAF 

In NISRAF, each main menu is modularized. Moreover, each method and 

algorithm implemented in sub-menu is also developed in module unit. This module 

feature makes it easy to understand analysis algorithms as well as to maintain this 
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versatile and integrated program. Most importantly, it enables the latest research finding 

and computation techniques to be easily implemented. Below, development of each main 

menu is presented with a focus on the novel manners used to tailor and integrate 

components to build the seamless framework. 

5.2.1 File Menu 

File menu contains the general menus, such as Open, Save, Save As, Page Setup,

Print Review, Print and Exit, as shown in Figure 5-3. These submenus provide the basic 

functionalities to manage files, such as opening an existing file, saving and printing the 

current working file, and exiting and closing NISRAF. 

Figure 5-3 File submenus in NISRAF 

5.2.2 Strong Motion Menu 

In Strong Motion menu, as shown in Figure 5-4 and Figure 5-5, the user is 

prompted to connect to a web-based instrumentation database. Through this linkage, the 

user can easily download records. Meanwhile, NISRAF allows the user to create a new 

folder to deposit the downloaded records as well as other basic project information, 

which facilitates maintenance. Two different types of records are required to perform 

analysis in NISRAF (Figure 5-6). Ground motion (free-field) records are used to calibrate 
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hazard models, while structural measurements are used to calibrate structural models. 

The incorporation of the instrumented data into NISRAF is not only to increase its usage, 

but also to improve hazard and structural model. 

Figure 5-4 Schematic of Strong Motion menu in NISRAF 

Figure 5-5 Strong Motion menu in NISRAF 
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Figure 5-6 Strong motion data GUI in Strong Motion menu 

5.2.3 Hazard Characterization Menu 

Hazard characterization menu is composed of three main parts: namely, Seismic 

Hazard Analysis, Synthetic Time Histories and Hazard Map Generation, as shown in 

Figure 5-7. Methodologies and analysis procedures of hazard characterization analysis 

have already been illustrated and verified in Chapter 3: An Advanced Hazard 

Characterization Analysis Method. One of the features of the proposed advanced hazard 

analysis approach is its ease of use. By tailoring the hazard models as well as ensuring 

connection and compatibility between them, it simplifies the complicated and tedious 

procedures in the conventional analysis. Consequently, with an interactive interface to 

define inputs, hazard analysis becomes efficient and straightforward. Below, analysis 

procedures in the three submenus are presented with GUIs and illustrations. 
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Figure 5-7 Hazard Characterization submenu in NISRAF 

5.2.3.1 Seismic Hazard Analysis 

Two hazard analysis approaches for natural records are available, namely, surface 

motions and bedrock motions, as shown in Figure 5-8. GUI for time history and response 

spectrum checking is available each time when the analysis is finished (Figure 5-9). Site 

response analysis is required for bedrock motions analysis. As mentioned previously, 

DEEPSOIL is implemented as the site response analysis platform. To maintain 

consistency and ease of use, a GUI interface for creating a representative soil column 

(soil profiles and material properties, for example) is developed (Figure 5-10). With the 

input file generated by NISRAF, DEEPSOIL is therefore executed in console mode 

without its user interface. 
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Figure 5-8 Seismic hazard analysis GUI in Hazard Characterization menu 

Figure 5-9 Time history and response spectrum checking GUI 
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Figure 5-10 Define soil profiles and material properties GUI in NISRAF 

5.2.3.2 Synthetic Time Histories 

Synthetic time history is essential for seismic engineering, particularly in regions 

where natural records are absent or insufficient. SIMQKE is the platform implemented in 

NISRAF to generate artificial motions. Again, for ease of use, parameters needed for 

SIMQKE are generated using the latest attenuation and duration equations (detailed in 

Chapter 3) through an interactive interface (Figure 5-11). Meanwhile, a GUI for 

customizing the time history is also developed (Figure 5-12). After that, NISRAF 

generates the input file (based on user inputs or results from hazard models) and executes 

SIMQKE in the console mode (Figure 5-13). Eventually, sets of synthetic ground 

motions are generated and are ready for check or use (Figure 5-14).
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Figure 5-11 GUI to define seismic parameters  

Figure 5-12 GUI to customize synthetic time history 
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Figure 5-13 GUI to show analysis progress and response spectrum  

Figure 5-14 Suites of generated synthetic time histories 
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5.2.3.3 Hazard Map Generation 

Similar to the case of procedures for synthetic time histories generation, the user 

is prompted to specify seismic information in the beginning. Additional information (the 

interested area and the cell size used in map) particular to hazard map generation is then 

needed to be specified (Figure 5-15). After that, NISRAF calculates seismic intensity 

(PGA, for example) at the center of each cell (Figure 5-16). Eventually, a hazard map is 

generated by collecting results at each cell along with location information (Figure 5-17). 

Figure 5-15 GUI to specify information for hazard map generation 
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Figure 5-16 Hazard map generation in NISRAF 

Figure 5-17 Hazard map generated by NISRAF 
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5.2.4 Structural Model Menu 

The finite element model is a prerequisite for model calibration. To create an FE 

model, the user is allowed to import an existing ZEUS-NL model (Figure 5-19) or create 

a new model (Figure 5-20) in NISRAF. Submenus for creating an FE model (such as New 

Model from Template, New Model, View and Structural Model) are based on SimBuild 

(Park et al., 2007), a pre- and post-processor for UI-SIMCOR. Below, only GUIs for 

importing a ZEUS-NL model and creating a new model are shown. Details and 

procedures to create a model are referred to SimBuild manual. 

Figure 5-18 Structural Model submenus in NISRAF 
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Figure 5-19 Imported ZEUS-NL model in NISRAF 

Figure 5-20 NISRAF allows user to create FM model 
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5.2.5 Model Calibration Menu 

An automatic approach for system identification and model updating is developed 

and incorporated into NISRAF. Methodology, procedures and GUIs of this method are 

developed by Jian Li at the University of Illinois (Li et al., 2009). Below, brief 

introduction of this method is given. A more comprehensive illustration is available in 

Appendix D. 

As shown in Figure 5-21, Eigensystem Realization Algorithm (ERA) is 

implemented in NISRAF due to its wide application and good performance in multi-input 

multi-output (MIMO) problems (Figure 5-22). Additionally, the modal updating tool 

implemented in NISRAF is featured by its integration with the finite element modeling 

capability of NISRAF. Therefore, NISRAF can collect all structural parameters 

automatically for the user to select as candidate parameters. Moreover, the objective 

function can be customized by defining different numbers of modes and different 

weighting factors for frequency and mode shape (Figure 5-23). 
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Figure 5-21 Model Calibration submenus in NISRAF 

Figure 5-22 GUIs for system identification in NISRAF 
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Figure 5-23 GUIs for model updating in NISRAF 

5.2.6 Hybrid Simulation Menu 

UI-SIMCOR is implemented in NISRAF to coordinate hybrid simulation tests. 

The selected ground motions from Hazard Characterization and the calibrated structural 

model from Model Calibration are fed into UI-SIMCOR to perform the hybrid simulation. 

The GUIs of Hybrid Simulation are based on SimBuild. Through the use of GUIs, the 

user can easily develop the sub-structures for the analytical platform or laboratory (Figure 

5-25), run hybrid simulation (Figure 5-26) and check results. 
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Figure 5-24 Hybrid Simulation submenus in NISRAF 

Figure 5-25 GUIs to define sub-structures in NISRAF 
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Figure 5-26 GUIs to run hybrid simulation in NISRAF 

5.2.7 Fragility Analysis Menu 

Fragility Analysis menu is composed of three main parts: namely, Define Limit 

States, Run Hybrid Simulation and Hybrid Fragility Curves, as shown in Figure 5-27. 

Methodologies and analysis procedures of fragility analysis have already been illustrated 

and verified in Chapter 4: Fragility Analysis by Hybrid Simulation. One of the features of 

the proposed advanced fragility analysis approach is its ease of use. With structural 

information available from Structural Model, the user defines interested Interstory drift 

angle (ISDA) through the interactive structural model (Figure 5-28). Meanwhile, when 

performing hybrid simulation in order to derive mean seismic intensity, NISRAF 

calculates ISDAs, compares with target ISDA, calculates scale factor, and asks to 
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continue the next simulation (Figure 5-30). The above designs avoid the heavy and 

tedious calculations. The “hold on” feature allows the user to have time to replace the 

experimental specimen in the laboratory, which is really a useful and practical design 

(Figure 5-30). Eventually, fragility relationships compatible with MAEviz are generated 

(Figure 5-31). 

Figure 5-27 Fragility Analysis submenus in NISRAF 
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Figure 5-28 GUIs to define limit states, select time history and specify ISDA 

Figure 5-29 Hybrid simulation for fragility analysis (turn off UI-SIMCOR GUIs) 
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Figure 5-30 GUI to calculate ISDA, scale factor and ask for testing 

Figure 5-31 Hybrid fragility curves in NISRAF 
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5.2.8 Impact Assessment Menu 

Finally, fragility curves from Fragility Analysis and the hazard map from Hazard 

Characterization are fed into earthquake impact assessment packages (MAEviz, for 

example) to evaluate the seismic loss (Figure 5-33). 

Figure 5-32 Impact Assessment submenus in NISRAF 

Figure 5-33 Impact assessment (MAEviz) in NISRAF 
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5.2.9 Help Menu 

Manuals of NISRAF, UI-SIMCOR and SimBuild are available. In addition, help 

information is also available in each GUI with a button embedded. Moreover, About 

NISRAF states the copyright as well as version information. 

Figure 5-34 Help submenus in NISRAF 

5.3 Communication Protocols and Analysis Platforms 

NISRAF, a complete GUI-driven system, has been successfully developed in the 

MATLAB environment. The integration from measured data to impact assessment 

package is the most important feature of NISRAF. Several different analysis platforms, 

such as UI-SIMCOR, ZEUS-NL, DEEPSOIL, SIMQKE and MAEviz are coordinated by 

NISRAF to work seamlessly in a single MATLAB platform. No special challenges and 

limitations for the communication are observed between components. Moreover, a stand-

alone version NISRAF will be released later. Users do not even need to have MATLAB 

installed in their computers to run NISRAF. 
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5.4 Features of NISRAF 

NISRAF, an earthquake impact assessment platform with graphical user interface 

has been developed for the purpose to make assessment more efficient and more reliable. 

Several components, including instrumentation, hazard characterization, system 

identification, model updating, hybrid simulation, hybrid fragility analysis and impact 

assessment tool, have been implemented and tailored with novel methods to build the 

seamless, transparent and extensible framework. Figure 5-35 shows some GUI 

components developed and implemented in NISRAF. 

Figure 5-35 Components with GUI in NISRAF 
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There are several advanced features contained in this integrated framework. 

Among those features are: 

� Open source software with friendly graphic user interface:

In NISRAF, each component is developed separately (modularized) before being 

incorporated into the framework. Consequently, it is easy to understand and maintain. 

This software, as well as the source code, will be open to the public. The open source 

feature will allow NISRAF to be utilized efficiently, as well as improve its integrity and 

robustness. 

� Extensible and accessible:

As mentioned previously, each component is developed and verified separately. 

Hence, it is extensible and accessible to any latest research findings and program 

techniques. 

� Efficient and reliable impact assessment:

This is the first time that all the components for impact assessment are integrated 

and work seamlessly in just one software platform. Concurrently, the integrated feature 

brings the most advanced tools of earthquake hazard and structural reliability analyses 

into the context for accurate evaluation of impact assessment. Surely, with these 

seamlessly integrated advanced techniques, which provide a more accurate hazard and 

structural model and hence generate superb fragility curves, the assessment of earthquake 

impact will be more efficient and more reliable. 
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5.5 Potentials, Limitations and Challenges 

As mentioned previously, this is the first time to integrate all components of 

earthquake impact assessment in one analysis platform. Through NISRAF, uncertainties 

from hazard and fragility can be reduced or managed efficiently; therefore the results 

from impact assessment can be more realistic and reliable. Meanwhile, NISRAF provides 

a chance for seismologists, geotechnical and structural earthquake engineers, structural 

control and impact assessment experts to ameliorate algorithms in order to bring out more 

confident assessment results. Through its extensible and accessible feature, the new or 

improved algorithm can be easily incorporated into NISRAF. 

Despite the above merits, limitations and challenges remain for the current 

version NISRAF. First of all, a representative FE structural model is prerequisite and 

essential for model calibration. Currently, it is allowed to build the model in NISRAF 

(with limited elements, sections and material); and only ZEUS-NL file is compatible 

when importing an existing model. However, the model is sometimes too complicated to 

be built in NISRAF, or it has already been built in other programs, such as OpenSees and 

SAP2000. Furthermore, several analysis platforms have already been implemented in 

NISRAF; and it should be expanded in the future. Some of them are operated only by 

their own GUIs (such as Java, C++ and others). It is therefore an obstacle when 

incorporating into NISRAF. A current alternative method is to prepare the required files 

and execute programs in the console modes. To be more robust, and more user-friendly, 

the above limitations and challenge should be resolved in the future. 
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CHAPTER 6 

CASE STUDIES 

6.1 Introduction 

NISRAF has been successfully developed, as discussed in Chapter 5. Several 

components (modules) in NISRAF have also been verified already, as illustrated in 

Chapter 3 and Chapter 4. In this chapter, a verification study of NISRAF is conducted 

through an actual test bed in the Los Angeles area. Two applications are presented in this 

chapter. In application 1, a heavily instrumented building along with high-quality strong-

motion records was used to demonstrate the methodology and analysis procedure of 

NISRAF from instrumentation, testing, to loss assessment. Comparison was made 

between the seismic loss through NISRAF and the field reports of the 1994 Northridge 

earthquake. Moreover, in application 2, seismic assessment for the Los Angeles area 

during the Northridge earthquake was performed using a hazard map and fragility curves 

generated by NISRAF; comparison was also presented. 

6.2 Application 1: A 6-Story Steel Building in Burbank, California 

An instrumented building was selected to verify NISRAF in this application. In 

the following sections, background information about this building and site conditions are 

presented first. Thereafter, step by step analysis in NISRAF is performed. Comparison is 

made and presented in the end. 
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6.2.1 Introduction 

6.2.1.1 Building Information 

A six-story commercial building in Burbank, California (latitude = 34.185°, 

longitude = -118.308°), was selected for this study (Figure 6-1). This is a steel moment 

resisting frame building, in which the perimeter frames are the primary lateral load 

resisting system, and the internal frames are only resisting gravity load, as shown in 

Figure 6-2. Reference is made to Anderson and Bertero (1991) for detailed information 

about this building. This building is instrumented by the California Strong Motion 

Instrumentation Program (CGS - CSMIP Station No. 24370) in 1980 with 13 sensor 

channels as shown in Figure 6-3. Several significant earthquakes were captured, such as 

Whittier (1987), Sierra Madre (1991) and Northridge (1994). Data are available in the 

Center for Engineering Strong Motion Data (CESMD, www.strongmotioncenter.org). 

Figure 6-1 Photo of 6-story steel moment frame building in Burbank, California 
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Figure 6-2 Elevation and plan view of Burbank building 

Figure 6-3 Sensor location of Burbank building (CESMD) 
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6.2.1.2 Site Condition 

Site condition of the Burbank Fire Station (latitude = 34.185°, longitude = -

118.308°), the same site utilized in Chapter 3, was selected to represent the site condition 

at the Burbank building site due to the absence of geotechnical report at this building site. 

This substitution is acceptable since the distance between these two sites is only 0.6 

kilometers. Site condition of Burbank Fire Station site has been discussed and detained in 

Chapter 3.

6.2.2 Strong Motion 

Either Strong Motion or Structural Model must be the first step in NISRAF. 

Strong Motion was selected as the first step in this application. Through the linkage to 

web-database, free-field station records around the Burbank building site and structural 

sensor histories during the past earthquakes were downloaded and deposited in NISRAF. 

After that, an interactive window with already-downloaded information allows user to 

add some information (background, description and image), as shown in Figure 6-4. 
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Figure 6-4 GUI to manage project and downloaded records 

6.2.3 Hazard Characterization 

With instrumented strong-motion records from Strong Motion, the hazard 

characterization analysis was undertaken. Synthetic ground motions with various hazard 

levels were generated for further use in Hybrid Simulation and Fragility Analysis. The 

hazard map for the Northridge earthquake in the Los Angeles area was generated for 

further use in Impact Assessment. Both of them have already been presented in Chapter 3 

and Chapter 4. Figure 6-5 shows the generated synthetic ground motions and hazard map 

in NISRAF. 
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(a) Synthetic ground motions (b) Hazard map 

Figure 6-5 Synthetic ground motions and hazard map in NISRAF 

6.2.4 Structural Model 

A finite element model was created in NISRAF, as shown in Figure 6-6. Due to 

the fact that only the perimeter frames are used for the lateral load resisting system, a 2-D 

model of the exterior frame was modeled to represent the whole structure. Section 

dimensions and material properties for each beam and column were based on design 

documents. Lumped mass was used and applied at every beam-column connection. 

Concrete slabs were modeled and connected to steel girders using rigid elements, to 

account for their contribution of stiffness. The width of slab was calculated based on the 

effective width defined in ANSI/AISC 360-05 specification (AISC, 2005) and distances 

to steel girders were based on design drawings. 
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Figure 6-6 2-D FE model of Burbank building in NISRAF 

6.2.5 Model Calibration 

With FE model created in Structural Model, Model Calibration is performed to 

tune the FE model. Two procedures, namely, system identification and model updating, 

were executed in this step. 

6.2.5.1 System Identification 

Input channels and output channels were defined first in order to form impulse 

response functions which were assembled for the Hankel matrix. Based on the design 

drawings, exterior and interior columns are firstly supported on steel girders and 

reinforced concrete girders, respectively, and both of them are in turn supported on a pair 

of 32 feet long and 30 inches diameter reinforced concrete piles. Therefore, it is 
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reasonable to consider that all columns are fixed. Hence, the records from the ground 

floor were treated as the input motions, while other records were considered as the 

responses of the structure. Consequently, channel 8 and 9 were defined as input, while 

channels 2 to 7 were output channels, and, hence, the dimension of impulse function 

matrices was 2 by 6. Note that channels 4 and 5 were not working properly during the 

Northridge earthquake of 1994. Therefore, data from these two channels were not 

available and only four output channels were available. The dimension of impulse 

response function matrices was 2 by 4 for the Northridge earthquake. 

The ERA method was then performed for the Northridge earthquake record. The 

stabilization diagrams and the identified mode shapes were shown in Figure 6-7. The first 

and second bending modes were then identified as 0.72 Hz and 2.14 Hz, respectively. 

The associated damping ratios were 3.37% and 6.71% (Table 6-1). 

Table 6-1 Frequency and ¥ of identified with ERA method 

Mode f (Hz) �(%) 

1 0.719 3.373 

2 2.144 6.715 
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(a) System identification results of Burbank building in NISRAF 

(b) Stabilization diagrams (b) Identified mode shapes 

 

Figure 6-7 Stabilization diagrams and identified mode shapes for the Northridge earthquake 

0 1 2 3 4 5
0

20

40

60

80

100

S
in

gu
la

r v
al

ue
 re

ta
in

ed

Damped Natural Frequency (Hz)

Northridge 1994

0 1 2 3 4 5
0

20

40

60

80

100

Tr
an

sf
er

 F
un

ct
io

n

Confirmed mode Transfer functionIdentified mode

0 0.5 1
0

1

2

3

4

5

6

 f1=0.71859Hz

S
to

ry

Northridge 1994

-1 0 1
0

1

2

3

4

5

6

 f2=2.1436Hz

Frame L-LFrame A-A



142 

6.2.5.2 Model Updating 

With the identified natural frequencies and mode shapes, dynamic FE model 

updating was then performed to improve the FE model of the Burbank building. Selection 

of candidate parameters to be updated was the first step in model updating. The selected 

parameters for the Burbank building were shown in Table 6-2. The sensitivities of each 

parameter to the first two natural frequencies were shown in Figure 6-8. To keep the 

physical meaning of each parameter, lower and upper bounds were applied based on the 

degree of uncertainties. For example, the effective widths were calculated based on AISC 

specification, which was likely to be very conservative. In addition, the deflection of the 

slab defined the contribution of the slab to the composite beam, thus affecting the 

effective width. Therefore, the effective width of slab had large uncertainty, thus a 

relatively larger range of variation (±50%) was applied. 

Table 6-2 Selected parameters for model updating and updated results 

Selected

Parameters 
Description 

Initial 

Value 

Bound 

(%) 

Updated 

Value 

Change

(%) 

Es (N/mm2) Young’s modulus of steel 2.10E+05 ±5 2.21 E+05 5.00 

Mass1 (1000kg) Lumped mass at 2nd floor 45.65 ±5 43.37 -4.99 

Mass2 (1000kg) Lumped mass at 3rd-5th floor 36.53 ±5 38.36 5.01 

Mass3 (1000kg) Lumped mass at top floor 54.84 ±5 52.1 -5.00 

WS1 (mm) 
Effective width of concrete slab 

at 2nd-5th floor 
762 ±50 1143 50.00 

WS2 (mm) 
Effective width of concrete slab 

at top floor 
914.4 ±50 1371 49.93 
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Figure 6-8 Sensitivities of each parameter to the first two identified natural frequencies 

The optimization problem defined previously was solved by the Nelder-Mead 

method. The results listed in Table 6-3 show that the errors between the identified and 

updated model reduced to 1% and 5.78% for the first and second natural frequency, 

respectively. Meanwhile, the second mode shape was improved, which gave a value of 

0.981 for the MAC. With this refined finite element model, hybrid simulation was 

conducted to yield a seismic response prediction with higher accuracy. 

Table 6-3 Comparison of frequency and mode shape between the original and updated 

Mode 

Original FE model Updated FE model 

frequency (Hz) 
MAC

frequency (Hz) 
MAC

value error (%) value  error (%) 

1 0.688 -4.312 0.999 0.712 -1.001 0.999 

2 1.956 -8.769 0.975 2.020 -5.784 0.981 
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6.2.6 Hybrid Simulation & Fragility Analysis 

The calibrated Burbank building model after Model Calibration and ground 

motions from Hazard Characterization were used to perform the hybrid simulation and 

to derive fragility curves in NISRAF. Both hybrid simulation and hybrid fragility analysis 

have already been presented in Chapter 4.

(a) Hybrid simulation model (b) Hybrid fragility curves

Figure 6-9 Hybrid simulation model of Burbank building and the generated fragility curves 

6.2.7 Impact Assessment 

Finally, with the generated compatible hazard map and fragility curves, MAEviz 

under NISRAF was conducted to perform earthquake impact assessment (Figure 6-10). 

Table 6-4 lists the probabilities of exceeding limit states. Only 15% probability for 

damage occurred in the immediate occupancy limit state. The results met with the post-

earthquake report made by Applied Technology Council (ATC, 2001), which reported 

slight damage observed to this building from the Northridge earthquake of (Table 6-5). 
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Figure 6-10 Impact assessment for Burbank building in MAEviz 

Table 6-4 Comparison between impact assessment results 

 Probability of exceeding limit state 

 Immediate Occupancy Life Safety Collapse Prevention 

NISRAF  0.15 0.00 0.00 

MAEviz default 0.37 0.04 0.00 

 

Table 6-5 ATC-38 post-earthquake report for the Northridge earthquake of 1994 

Building 

ID

Number 

Model 

Building 

Type 

Number 

of 

Stories 

Design

Date 

General

Damage 

State 

Structural 

Damage 

State 

Nonstructural 

Damage 

State 

… ... … … … … … 

CDMG370-MF-09 S1 6 1975 I 1 2 

… … … … … … … 

*I=Insignificant, M=Moderate 

*1=None(0% damage), 2=Slight(0-1%damage), 3=Light (1-10% damage) 

*ATC-38, Table A-6 Building Damage Summary for Station CDMG 24370 
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Another comparison of the assessment results was made between NISRAF and 

MAEviz default. In MAEviz default, the deterministic hazard and default fragility curves 

in MAEviz were used to evaluate seismic loss. Table 6-6 lists the comparison between 

these two cases. A comparison of fragility curves between NISRAF and MAEviz default 

has also been detailed in Chapter 4, which shows more vulnerability in MAEviz default 

fragility relationships (Figure 4-17). 

As shown in Table 6-4, assessment results through NISRAF portray less damage 

than the results from MAEviz default. Unlike for NISRAF, in which only slight damage 

occurs in the immediate occupancy limit state, damage occurs both in immediate 

occupancy and life safety limit states for MAEviz default. When comparing with the 

ATC-38 report, it is concluded that the assessment result through NISRAF is more 

realistic, while the MAEviz default is more conservative. 

Table 6-6 Comparison between NISRAF and MAEviz default 

 NISRAF MAEviz default 

Hazard 

Deterministic hazard 

� Northridge earthquake mechanism 

� Campbell and Bozorgnia NGA 

� 1-D site response analysis 

Deterministic hazard 

� Northridge earthquake mechanism 

� Campbell and Bozorgnia NGA 

� Fa and Fv site coefficients 

Fragility 

Hybrid fragility relationship 

� Calibrated FE model 

� Hybrid simulation 

� Synthetic motions for LA 

Analytical fragility relationship 

� SDOF time history analysis 

� Synthetic motions for CEUS 
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6.3 Application 2: the Los Angeles area earthquake impact assessment 

Earthquake impact assessment on single building provides the possible damage 

and loss under scenario or historical earthquake events for this specific building. It indeed 

provides valuable information to reduce and mitigate loss in particular for the essential 

buildings (hospitals and schools, for example). However, regional impact assessment—

seismic loss for a region, especially urban area—is more valuable for stakeholders to 

develop emergency response and recovery planning. In this application, impact 

assessment in the Los Angeles area was carried out; comparison was also presented. 

6.3.1 Introduction 

The Los Angeles area—a high seismic urban region—was selected to demonstrate 

the regional impact assessment. Near one million inventory data exported from HAZUS-

MH was used as inventory input. The hazard map of PGA for the Northridge earthquake 

in the Los Angeles area and fragility relationships for all building types and code levels 

were fed into MAEviz to perform earthquake impact assessment. Both of them have been 

generated and fully illustrated in section 3.7.3 Application Examples and section 4.5 

Fragility Relationships for Other Building Types, respectively. Therefore, impact 

assessment for Los Angeles area under the Northridge earthquake of 1994 was executed; 

assessment results were presented with illustrations in the next section. 

6.3.2 Assessment Results and Comparison 

The MAEviz interface depicted in Figure 6-11 presents the direct economic 

building loss for the Los Angeles area in the 1994 Northridge earthquake, using hazard 
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map and fragility curves generated by NISRAF. The mean total loss was 20.7 billion 

dollars. In addition, impact assessment using MAEviz deterministic hazard and default 

fragility relationships was also carried out. Table 6-7 provides a summary comparison of 

the direct economic building loss of the study area between these two approaches. 

Meanwhile, an observed loss was also listed in this table for comparison. In this table, 

Lower_B. and Upper_B. stand for Lower Bound and Upper Bound, respectively. In 

general, results of Lower_B. and Mean NISRAF loss provide bounding values of the 

observed loss. While results of Mean and Upper_B. MAEviz default loss provide 

bounding values of the observed loss. Predicted loss by NISRAF is closer to the observed 

loss, although both of them are acceptable. The difference between these two approaches 

results from different hazard input and fragility relationships. Higher hazard input and 

more vulnerable fragility relationships in NISRAF approach result in the higher structural 

damage, and then higher economic loss. It is therefore concluded that NISRAF provides 

more reasonable accurate and modestly conservative assessment results for the Los 

Angeles area in the 1994 Northridge earthquake. 

Table 6-7 Direct economic building loss  

(Los Angeles county under the 1994 Northridge earthquake) 

 Observed* 
NISRAF MAEviz (Default) 

Lower_B. Mean Upper_B. Lower_B. Mean Upper_B. 

Dollar in 
Millions 18,500 17,938 20,706 23,474 12,055 15,359 18,664 

Difference 
(%) 0.00 -3.13 10.65 26.89 -34.84 -16.98 0.88 

*Comerio et al., 1996 
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Figure 6-11 Earthquake impact assessment in Los Angeles area 

6.4 Uncertainty Analysis in NISRAF 

6.4.1 Introduction 

Earthquake impact assessment is essential for disaster planning as well as 

developing risk reduction policies and emergency responses. As mentioned previously, 

an impact assessment package is composed of seismic hazard, fragility function, 

inventory data, and integration and visualization capacities. Mathematically, the loss 

estimation can be described by the following equation (Ellingwood and Wen, 2005): 

p` ¦kka � £££p` ¦kk§r � ¨a � p`r � ¨§ 
a��[� � p` 
§©& � ka � p`©& � ka (6.1)
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where p`ªa is the probability of loss (direct or indirect loss from the earthquake events), 

IM is the intensity measure of the seismic hazard (PGA or Sa), and s is the realization of 

the intensity measure. p` 
§©& � ka  is the conditional probability of reaching or 

exceeding structural limit states, and p`r � ¨§ 
a  is the conditional probability of 

reaching damage. Here the term p` 
§©& � ka  refers to fragility or vulnerability 

discussed in previous section. 

Due to the random nature and limited knowledge in earthquake engineering, 

numerous assumptions are made and many approximated methods are applied when 

performing impact assessment. Therefore, various types (aleatory and epistemic) of 

uncertainties exist in earthquake impact assessment, for example, the prediction of 

seismic intensity, the generation of fragility functions, the assumption of distribution of 

damage ratio, the inventory uncertainties and others. 

With additional investigation and knowledge, it is definitely possible to reduce the 

epistemic uncertainties, such as by providing more realistic seismic hazard 

characterization, more reliable fragility relationships, and more accurate inventory data. 

Nevertheless, uncertainties are unavoidable, particularly in the case of aleatory 

uncertainties (randomness). Many approaches (Grossi, 2000; Chang and Song, 2006; 

Baker and Cornell, 2008; Elnashai et al., 2009; Choun and Elnashai, 2010) are proposed 

to quantify the uncertainties in regional impact assessment, in order to provide 

emergency managers and decision makers more confidence when reviewing the 

assessment results. Among these proposed approaches, some of them are probabilistic 
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estimations (Baker and Cornell, 2008); while others are approximated approaches (Chang 

and Song, 2006; Elnashai et al., 2009; Choun and Elnashai, 2010). In general, the 

probabilistic method may need more time and effort for its large computation 

requirements. Therefore, the approximated method is relatively more powerful and more 

practical for its simple and cost-effective features, in particular for regional impact 

assessment.  

One advanced feature of MAEviz that distinguishes it from HAZUS-MH is its 

uncertainty quantification analysis, which not only provides users with the mean value of 

the predicted losses, but also supplies the uncertainty information (the standard deviation 

value). With this contribution of uncertainty analysis in MAEviz, NISRAF—to be 

consistent with its user-friendly feature—presents the uncertainties through an intuitive 

and friendly interface. In the following sections, the methodology of uncertainty 

quantification analysis implemented in MAEviz is reviewed briefly, followed by the 

demonstration using Los Angeles area earthquake impact assessment results presented 

through the developed intuitive interface. 

6.4.2 Methodology of uncertainty analysis in MAEviz 

The methodology of uncertainty analysis utilized in this study is first proposed by 

Chang and Song (2006), which has already been implemented in MAEviz. However, 

only mean and standard deviation values are available. Therefore, a program with user-

friendly, intuitive interface is developed and implemented in NISRAF, which allows 

users to quantify uncertainties by selecting different confidence intervals. In the 
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following sections, this uncertainty analysis methodology is briefly introduced, followed 

by an application to impact assessment results for Los Angeles area under the 1994 

Northridge earthquake. More details about this method are referring to the related 

reference (Chang and Song, 2006). 

6.4.2.1 Uncertainty�in�hazard

Due to many uncertainties, including those related to the site conditions, 

earthquake magnitude, and distance to the seismic source, it is difficult to predict the 

seismic hazard characterization accurately. To this end, tools for seismic hazard analysis 

have been developed in the past decades. Deterministic Seismic Hazard Analysis (DSHA 

- Reiter, 1990) and Probabilistic Seismic Hazard Analysis (PSHA - Cornell, 1968) are the 

most commonly used methods. For the probabilistic properties and uncertainties from 

source, path, and site, uncertainties propagate in the procedure and outcome. To account 

for the uncertainties in seismic characterization, an uncertainty term �[� is introduced and 

incorporated into the calculation of the fragility curves as shown below: 

p� � �� j«�) � �[�) � (6.2)

where j  and �  are mean and dispersion terms, respectively, when defining 

fragility relationships. �[� can be computed using the uncertainty term in NGA model 

(Campbell and Bozorgnia, 2008, for example), based on users’ judgment, or from 

previous studies (Hays, 1980; Cramer, 2001). Therefore, the generated fragility functions 

will be modified before they are ingested into MAEviz to conduct the impact assessment. 
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6.4.2.2 Uncertainty�in�structural�damage�ratio

In MAEviz, three limit states (i.e. immediate occupancy, life safety and collapse 

prevention) are utilized, therefore, four structural damage states can be defined 

(insignificant (I), moderate (M), heavy (H), and complete (C)). Figure 6-12 shows the 

relationship between the limit states and damage ratio; Equation (6.3) lists the probability 

calculation for each damage state. 

!!!!!!!!! p*©, � � + p* 
¬E,!!!!!!!!!!!!!!!!!!!!!p*&, � p* 
¬E, + p* 
�[,!!!!!!!!!!!!!!!!!!!!!p*­, � p* 
�[, + p* 
®9,p*¯, � p* 
®9,
(6.3)

Figure 6-12 Definition and calculation of damage state probability 
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With the probability of each damage state, the total damage of structures after 

seismic events is calculated using the probabilities multiplied by the ratio for each 

damage state. In MAEviz, the damage ratio proposed by Bai et al. (2009) is utilized to 

calculate damage of structures. Table 6-8 lists the mean and standard deviation of the 

damage ratio for each damage state.  

Table 6-8 Probability model for structural damage ratio (Bai et al., 2009) 

Damage states 
iDS

Range of Beta 
distribution (%) 

Mean of damage ratio 

iD DS� (%) 
Std. of damage ratio 

iD DS� (%) 

Insignificant             [0, 1]    0.5 0.333 
Moderate            [1, 30]   15.5 9.67 

Heavy           [30, 80]     55 16.7 
Complete          [80, 100]     90 6.67 

With the above information, the mean and variance of damage ratio (D) are 

computed using Equation (6.4). 

!!!!!!!!!!!!!!!!�° � £`p*r
�, � �°§°[{a1
�±%!�°) � �`r)a + �°)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!� £ep*r
�, � ²�°§°[{) � �°§°[{) ³h + �°)1
�±%

(6.4)

where p*r
�,, i=1,…,4, denotes the combined probabilities of the i-th damage state. 
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6.4.2.3 Uncertainty�in�nonstructural�and�content�damage�ratio

Similar procedures and related probabilistic assumptions are applied to 

nonstructural and content damage. Finally, both mean and variance of nonstructural and 

content damage ratios can be computed. For more details refer to Chang and Song (2006). 

6.4.2.4 Loss�estimation

With the damage ratio for structural, nonstructural and contents, the damage loss 

can be computed by Equation (6.5). Equation (6.5) is the loss for one single inventory 

only; therefore, the regional seismic loss is calculated by summing up all the inventory 

losses in the interested region. Moreover, this approach allows users to include inventory 

uncertainty when performing uncertainty analysis, which is detained in Chang and Song 

(2006). 

 ¦kk � & � *¡[° � ŕ[° � ¡A[ � ŕA[ � ¡®� � ŕ®�, (6.5)

where !& is the total cost of the structure; ¡[°!P4µ!¡A[ are the fractions of the total cost 

of the structure; ¡®�  is the ratio of the contents value to the structural value. ŕ[°> !ŕA[> P4µ!!ŕ®�  are the damage ratio of structural, nonstructural components, and 

contents, respectively. Based on Equation (6.5), mean and variance of seismic loss are 

estimated by: 

!!!!!!!!!!!!!!!!��¶�� � £& � *¡[° � �°́·¸ � ¡A[ � �°́¹· � ¡®� � �°́º»,
!!!!!!!!!!!!!!!!!!!!!!��¶��) � £&)e*¡[°,)�°́·¸) � *¡A[,)�°́¹·) � *¡®�,)�°́º») h (6.6)
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6.4.2.5 Uncertainty�representation

To be more intuitive, the loss uncertainty is quantified using confidence interval 

presentation, as shown in Equation (6.7), with (� + ¡,� confidence interval. Log-normal 

distribution assumption is made for the seismic loss. 

!¯© � ! ec*¼z½¾ f� �¿,> c*¼d½¾ f� �¿,hÀ�c�c j � ��� + ����)
� � «��`� � *� �� ,)a (6.7)

where j!P4µ!�  are the logarithmic mean �  and standard deviation �  of the loss, 

respectively. 
Á )�  is calculated by 
Á )� � �d%²� + Â �Ã ³.

6.4.3 Uncertainty analysis in NISRAF 

Since the uncertainty analysis method mentioned above has been implemented in 

MAEviz, the impact assessment results of MAEviz (only mean and standard deviation 

values of structural, nonstructural and contents damage) will be used to quantify the 

uncertainty effects by showing different confidence intervals of the assessment results. A 

program with an intuitive and user-friendly interface is developed and implemented in 

NISRAF to represent the uncertainty quantification analysis. Through this interface, a 

pie-chart of different losses (i.e. structural, nonstructural and contents) is presented. 

Losses with upper-bound and lower-bound vary with the selection of the confidence level 

by the user (Figure 6-13).
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Figure 6-13 GUI in NISRAF with user-friendly interface for uncertainty quantification 

6.4.4 Discussion of Uncertainty Analysis 

Due to the random nature of seismic hazard and the limited knowledge and data, 

various types of uncertainties are inherent in earthquake loss estimation, from hazard 

model, inventory collection, and fragility derivation, to economic loss calculation. These 

unquantified uncertainties will result in significant under- or over-estimation of the 

assessment results. With the implemented approximate uncertainty quantification 

analysis presented through an intuitive way, decision-makers are able to judge the losses 
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easily and quickly, which will help to make more suitable and more confident recovery 

plans and emergency responses. 

Even though the development and implementation of the proposed uncertainty 

quantification analysis method were successful, there are some limitations. Many 

investigations are still needed to improve the uncertainty results. For example, the 

uncertainty quantification approach is mainly based on many probabilistic assumptions, 

for example, the Beta distribution for the damage ratio. More studies are required to 

verify this distribution assumption. Also, more research is required to improve our 

understanding in earthquake source model, wave propagation, site effect, structural 

response, and also more accurate and comprehensive inventory data. With this additional 

information, which reduces the uncertainty effects in loss estimation, decision-makers 

will surely be more confident with their decisions. 

6.5 Summary and Conclusion 

The actual test bed in California, the 6-story steel building was carried out to 

demonstrate the integrated framework as well as its components. This building example 

demonstrated not only the seamlessly-integrated, extensible and transparent framework, 

but also that all the elements required for impact assessment can be performed under just 

one software platform. Consequently, the impact assessment result, which correlated with 

the post-earthquake reports, confirmed one of the advanced features of NISRAF—more 

efficient and more reliable impact assessment. Meanwhile, it also proved that the 
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proposed advanced methods—the hazard characterization analysis, the model calibration 

and the hybrid fragility analysis—were reliable. As a result of the demonstration of this 

impact assessment on one individual building, the same procedures can be extended to 

other different building types, seismic code levels and construction materials, to perform 

regional impact assessment. In regional impact assessment example, seismic loss through 

NISRAF for the Los Angeles area in the Northridge earthquake showed reasonable 

accurate, although conservative. Also, the implemented approximate uncertainty 

quantification analysis helps decision-makers to judge the losses easily and quickly, 

which will help to make more suitable and more confident recovery plans and emergency 

responses.
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary of Findings 

In this study, a reliable and integrated methodology for earthquake impact 

assessment using sensor data, site response analysis, model updating and hybrid 

simulation-based fragility analysis is proposed. The methodology is presented through a 

software framework, referred to as NISRAF, which supports integrated earthquake 

impact assessment for mitigation, emergency response and recovery planning. The 

software package is developed and verified in the dissertation. The methodology of 

NISRAF is described and its applicability and significance are demonstrated in part 

through an application example. In this integrated approach, the hazard characterization 

is generated from the measured data, and the structural fragility curves are developed 

from the hybrid simulation (with the calibrated numerical model, subjected to the derived 

strong-motion records), along with dispersions from the literature. The integration feature 

makes use of existing tools in a new approach towards a more efficient and reliable 

earthquake impact assessment. 

Provided herein is a summary of the major findings stemming from not only the 

integrated framework, but also from the component verification studies carried out as part 

of the investigation. Also included is the discussion of the contributions and impacts 

which NISRAF has made upon the NEES and earthquake engineering communities. 
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The first component verification study, the advanced hazard characterization 

analysis module, demonstrates the procedure through which ground motion records are 

generated using SIMQKE along with NGA models and the predicted duration. By 

utilizing the measured instrumentation along with NGA models and the predicted 

duration, and by suitably adjusting SIMQKE, the proposed approach provides engineers 

with improved seismic hazard characterization for regional impact assessment. For 

example, with the utilization of the measured free-field records to calibrate the hazard 

characterization, and attenuation models along with site response analysis to generate 

synthetic ground motions, the proposed method surely provides more realistic hazard 

characterization than one that is based on mathematical formulations without calibration 

with the natural records. Meanwhile, with few seismic parameters being specified, the 

proposed approach calculates all required information automatically and produces the 

synthetic motions and hazard map efficiently and as accurately as possible. 

The second component verification study validates the proposed advanced hybrid 

method for fragility curves generation. Hybrid simulation results under different synthetic 

ground motions (10%, 5% and 2% probability of exceedance in 50 years for immediate 

occupancy, life safety and collapse prevention performance levels, respectively) are used 

to derive the mean PGA value for each performance level. Using these mean values, 

along with dispersions from previous studies with similar structures, fragility curves are 

generated based on the lognormal distribution assumption. This hybrid fragility approach 

provides a straightforward and efficient way to derive fragility curves. Hence, this 
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approach is recommended to derive more reliable fragility relationships for other building 

types, although it requires time and effort. 

Finally, the actual test bed in the Los Angeles area, the 6-story steel building and 

the Los Angeles area impact assessment were carried out to verify the integrated 

framework as well as its components. The reasonable, although conservative, impact 

assessment results not only demonstrated one of the advanced features of NISRAF, that is 

making impact assessment more efficient and more reliable, but also highlighted the high 

degree of reliability for the new hazard characterization and hybrid fragility methods. 

7.2 Ideas for Future Research 

The study presented in this dissertation validated the proposed integrated 

framework as well as the advanced analysis methods in hazard and fragility. In addition, 

the study demonstrated that all the elements required for an accurate impact assessment 

can be performed through one software platform. As previously mentioned, the proposed 

advanced methods—the hazard characterization analysis, the model calibration and the 

hybrid fragility analysis—has proven to be reliable. Nevertheless, due to its inherently 

complicated but extensible features, several studies are required to further improve the 

accuracy and robustness of NISRAF. Provided below are some suggestions for future 

studies: 

� To corroborate the concept of the integration of hybrid simulation in NISRAF, 

small-scale specimens were used in this study. Additional large-scale hybrid 
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simulation testing is warranted to capture some inherent limitations in small-scale 

testing (localized behavior, for example).

� To account for the probabilistic characteristics and uncertainties in hazard 

analysis, ‘Logical Tree’ computation scheme is recommended after implementing 

additional attenuation models in NISRAF.

� Linear model updating algorithm based on the instrumented data is used to 

improve the numerical model in this study. Additional research on nonlinear 

model updating algorithms and techniques (such as model updating based on 

hybrid simulation results) is essential to improve the structural model and hence 

improve fragility curves. 

� NISRAF, a versatile and integrated software tool, provides a platform for 

earthquake impact assessment and has been developed successfully. Many 

analysis algorithms and simulation techniques have also been implemented and 

are currently working seamlessly. To increase flexibility and robustness, research 

findings and techniques need to be continuously integrated with NISRAF as they 

appear in the literature. For example, OpenFresco, the University of California at 

Berkeley hybrid simulation software, can be another coordinator for hybrid 

simulation; SHAKE91 can be a choice for site response analysis; and HAZUS-

MH can also be used to perform the impact assessment under NISRAF.

� Good agreement was achieved between the estimated and field-observed loss for 

the test bed in the Los Angeles area. However, test bed verifications in different 

areas for different structural types (highway bridge in Japan and high-technology 
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industry building in Taiwan, for example) are needed. These future verifications 

can further validate the methodologies of NISRAF as well as introduce this tool to 

research communities worldwide.

� The development of a Web-NISRAF, a Web-based NEES Integrated Seismic 

Risk Assessment Framework, is recommended for its potential impact on 

collaborative research in earthquake impact assessment. The Web-based feature 

could enable users to access NISRAF and perform analysis anytime and at any 

place around the world; therefore, it has no limitations in computational capacity. 

Moreover, within a unified database, where all simulation data is deposited, users 

can access previous data and share their own results efficiently. 

7.3 Closure 

NISRAF serves as a user-friendly software platform through which impact 

assessment can be efficiently and reliably performed by combining hazard (exposure) and 

fragility (sensitivity), to provide assessment of impact on the built environment at the 

regional scale. Concurrently, it extends the state-of-the-art hybrid simulation approach to 

fragility analysis, and proposes novel methods for hazard characterization. The successful 

completion of the development of the framework and verification of each component as 

well as communication between them, not only demonstrate that these objectives are 

achieved, but they also showcase the power and advantages offered by the George E. 

Brown, Jr. Network for Earthquake Engineering Simulation (NEES). For example, hybrid 

simulation enables NISRAF to integrate testing capabilities at multiple NEES sites. The 
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assessment thereby employs the strength of existing computation models and the 

expertise of individual research groups to explore previously unapproachable problems. 

Finally, the application of NISRAF will be a stimulus not only to geotechnical and 

structural earthquake engineers and impact assessment experts, but also for seismologists 

and structural control researchers improving their algorithms in order to pursue the 

ultimate goal of NEES under NEHRP: the assessment and mitigation of earthquake losses. 
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APPENDIX A 

SYNTHETIC GROUND MOTIONS AT BURBANK SITE 

In this section, synthetic ground motions with various hazard levels at Burbank, 

California were generated through the proposed advanced hazard characterization 

analysis method. First of all, the USGS 2008 Interactive Deaggregations online analysis 

tool (http://eqint.cr.usgs.gov/deaggint/2008/index.php) was performed to derive seismic 

parameters for different hazard levels (i.e. 10%, 5% and 2% probability of exceedance in 

50 years). Figure A-1, Table 3-7 and Table 3-8 show the deaggregation results at the 

Burbank site. 

Moreover, geotechnical report at Burbank Fire Station site (Table 3-1 and Figure 

3-8) was used to create soil column in order to perform site response analysis. With the 

above information and following the steps illustrated in section 3.4: Synthetic Ground 

Motion Generation, 27 synthetic ground motions varying with duration and hazard levels 

were generated automatically. Figure A-2 to Figure A-7 lists the 27 generated synthetic 

ground motions. Rather, Figure A-2, Figure A-4 and Figure A-6 also show the response 

spectra in different hazard levels. These motions were then used as seismic inputs to 

evaluate structural response in hybrid simulation testing (Appendix B) as well as to 

derive fragility curves (Appendix C). 
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Figure A-1(a) Deaggregation results (2% PE/50yrs) at Burbank site 

Figure A-1(b) Deaggregation results (5% PE/50yrs) at Burbank site 



176 

Figure A-1(c) Deaggregation results (10% PE/50 yrs) at Burbank site 
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(a) Response spectrum 

(b) Synthetic ground motion 

Figure A-2 Response spectrum and synthetic ground motion for 2% PE/50 yrs hazard level 
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Figure A-3 Synthetic ground motions (2% PE/50yrs) 
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Figure A-3 Synthetic ground motions (2% PE/50yrs) 
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(a) Response spectrum 

(b) Synthetic ground motion 

Figure A-4 Response spectrum and synthetic ground motion for 5% PE/50 yrs hazard level 
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Figure A-5 Synthetic ground motions (5% PE/50yrs) 
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Figure A-5 Synthetic ground motions (5% PE/50yrs) 
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(a) Response spectrum 

(b) Synthetic ground motion 

Figure A-6 Response spectrum and synthetic ground motion for 10% PE/50 yrs hazard level 
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Figure A-7 Synthetic ground motions (10% PE/50yrs) 
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Figure A-7 Synthetic ground motions (10% PE/50yrs) 
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APPENDIX B 

HYBRID SIMULATION TESTING DATA 

In this section, instrumented data collected during the hybrid simulation testing 

were included in the following pages. Tests were grouped in the following categories: 

� Proof test  

(Ground motion: the 1994 Northridge earthquake record) 

� Mean PGA value for immediate occupancy limit state 

(Ground motion: 10% probability of exceedance in 50 years) 

� Mean PGA value for life safety limit state 

(Ground motion: 5% probability of exceedance in 50 years) 

� Mean PGA value for collapse prevention limit state 

(Ground motion: 2% probability of exceedance in 50 years) 

Meanwhile, multiplatform simulation testing was also conducted. Comparison 

between hybrid and multiplatform simulation were made. Included for each testing are 

the following: 

� Testing description 

� Applied ground motion 

� Comparison of interstory drift angle (ISDA) between the target and the 

one calculated based on hybrid simulation result. 
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� Relationship between lateral force and displacement on top of specimen 

column. 

� Displacement (lateral displacement, axial displacement and rotation) 

history on the top of specimen column. 

� Force (lateral force, axial force and moment) history on the top of 

specimen column. 
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Test No. 1

Description: This was a proof test to evaluate the hybrid model and experimental setting. The  

                       1994 Northridge earthquake record was used as seismic input, roof drift history  

                       was compared with the measured response. 
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Test No. 1
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Test No. 2

Description: This was the first test conducted to derive the mean PGA value for the immediate  

                       occupancy limit state. 10% PE/50 yrs ground motion was selected as seismic input.

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

Time (sec)

A
cc

el
er

tio
n 

(g
)

Maximum Acc. is 0.614 g at time 7.9 sec

0 1 2 3 4 5

0.007

0.025

0.05

ISDA = 0.008
Scale factor for next testing = 0.89

ISDA(IO)

ISDA(LS)

ISDA(CP)

Number of Hybrid Simulation

In
te

rs
to

ry
 D

ri
ft

 A
ng

le
 (I

SD
A

)

Immediate Occupancy
Life Safety
Collapse Prevention

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-400

-300

-200

-100

0

100

200

300

400
Lateral Force v.s. Lateral Displacement

Displacement (in)

Fo
rc

e 
(lb

)

Hybrid Simulation
Multiplatform Simulation



191 

Test No. 2
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Test No. 3

Description: This was the second test conducted to derive the mean PGA value for the  

                       immediate occupancy limit state. 10% PE/50 yrs ground motion with scale factor  

                       equal to 0.89 was selected as seismic input.
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Test No. 3
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Test No. 4

Description: This was the first test conducted to derive the mean PGA value for the life safety  

                       limit state. 5% PE/50 yrs ground motion was selected as seismic input. 
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Test No. 4
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Test No. 5

Description: This was the second test conducted to derive the mean PGA value for the life safety 

                       limit state. 5% PE/50 yrs ground motion with scale factor equal to 2.57 was  

                       selected as seismic input. 
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Test No. 5
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Test No. 6

Description: This was the first test conducted to derive the mean PGA value for the collapse  

                       prevention limit state. 2% PE/50 yrs ground motion was selected as seismic input. 
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Test No. 6
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Test No. 7

Description: This was the second test conducted to derive the mean PGA value for the collapse  

                       prevention limit state. 2% PE/50 yrs ground motion with scale factor equal to 3.2  

                       was selected as seismic input. 
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Test No. 7
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Test No. 8

Description: This was the third test conducted to derive the mean PGA value for the collapse  

                       prevention limit state. 2% PE/50 yrs ground motion with scale factor equal to 3.54 

                       was selected as seismic input.
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Test No. 8
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APPENDIX C 

FRAGILITY RELATIONSHIPS FOR OTHER BUILDING TYPES 

In this section, procedures and results using Parameterized Fragility Method 

(PFM, Jeong and Elnashai, 2006) to derive fragility relationships for 36 building types 

under 4 code levels were presented. 

C.1 Structural Parameters for PFM 

Figure C-1 tabulates the structural parameters which were fed into PFM to derive 

fragility relationships for 36 building types under 4 code levels. This table is based on the 

HAZUS-MH Technical Manual but updated with the latest research findings in wood 

frame (Gencturk and Elnashai, 2008) and unreinforced masonry building (Frankie, 2010). 

C.2 Earthquake Demand 

Synthetic ground motions generated for the Burbank site (Appendix A) were used 

as earthquake demand in PFM.

C.3 Fragility Relationships 

With the above structural parameters and earthquake demand, PFM was 

performed. Eventually, fragility relationships for 36 building types under 4 code levels 

were generated. Figure C-2 tabulated the fragility relationships results. 
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APPENDIX D 

AN EFFICIENT MODEL CALIBRATION METHOD 

An automatic system identification-based model updating technique was 

developed and incorporated into NISRAF. Provided below, the methodology, procedures 

and GUIs of this method are developed by Jian Li at University of Illinois (Li et al., 

2009). 

D.1 System Identification 

Among the state-space based system identification methods, Eigensystem 

Realization Algorithm (ERA) (Juang and Pappa, 1985) is selected to identify the modal 

parameters of structures, due to its wide application and good performance in multi-input 

multi-output (MIMO) problems. The basic idea of ERA is to find a minimum realization 

of system (state-space representation with minimum dimension) using Singular Value 

Decomposition (SVD) on the Hankel matrix built by Markov parameters (impulse 

response functions). The modal properties can be extracted from the realized minimum 

state-space representation. Therefore, to start with ERA, ‘generalized Hankel matrices’ 

are constructed, assuming that there are p inputs and q outputs: 

ÄÅ�*
, � Æ Ç*
, È Ç*
 � k + �,É Ê ÉÇ*
 � � + �, È Ç*
 � � � k + �,Ë (D.1)
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where k = 0, 1; Ç*
, is the impulse response function at time k, consisting of p rows and 

q columns; r and s are the number of block rows and block columns. Singular value 

decomposition is then performed for ÄÅ�*
, which yields: 

ÄÅ�*�, � Ì Í ÎÏ (D.2)

where Ì and Î are unitary matrices, Í is an r×p by s×q diagonal matrix with singular 

values on the diagonal. The number of non-zero singular values gives the dimension of 

the minimum realization of the system if Ç*
, is noise free. In reality this is not the case, 

therefore Í is usually of full rank. The singular values corresponding to noise are usually 

much smaller compared with those corresponding to real modes. By preserving the first 

N ordered significant singular values, by which noise modes are eliminated, the minimum 

realization can be calculated as follows: 

Ð � Íd% )� ÌDÄÅ�*�,ÎÍd% )�Ñ � Í% )� ÎÒÓÔ � ÒÕDÌÍ% )�  (D.3)

In the above equations, Ì and Î contain the first N corresponding columns of Ì and Î,

respectively. ÒÕD � `ÖÕ �Õ!!!!!× �Õa  and ÒÓD � `ÖÓ �Ó!!!!!× �Óa . The realization is 

then transformed to modal coordinates by using the eigenvalues Z and eigenvector matrix 

of A, which yields: 
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ÐØ � Ùd�ÐÙ � ÚÑ � Ùd�ÑÔ � ÔÙ  (D.4)

Modal participation factors and mode shapes are the corresponding rows of ÑØ and 

columns of ÔØ, respectively. The modal damping ratio ÛÜ and damped natural frequencies 

Ý�� can be calculated from the eigenvalues of A after transforming back to continuous 

domain: 

k� � +Þ�ß�� � oß�� � 34*à�, Xáâ (D.5)

where  ß�� � ß��X5� + Þ�)  are undamped natural frequencies, and ãâ is the sampling 

interval. 

A two-step strategy is applied to filter out computational and noise modes. Since 

more singular values are retained, more potential genuine modes can be identified. In this 

study, the dimension of realized system N is increased in a range until adequate modes 

are included finally. First, for each particular order of system, three commonly used mode 

accuracy indicators, namely Modal Amplitude Coherence (MAC) (Juang and Pappa, 

1985), Extended Modal Amplitude Coherence (EMAC) and Modal Phase Colinearity 

(MPC) (Pappa and Elliott, 1993) are used to filter out the computational or noise modes. 

The retained modes are then deemed trustable and a stabilization diagram is plotted for 

further confirmation. The stabilization diagram gathers all modes identified from the 

realized systems with different system order, based on the idea that a genuine mode 

should always be identified with a different order of realized system, as long as the 
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system order is adequate for that mode. Among the same order of modes identified and 

plotted in the stabilization diagram, the one with highest EMAC value is then selected as 

the final confirmed mode. 

D.2 Model Updating 

For model updating, to keep the physical meaning, the iterative or parametric 

method is implemented in NISRAF. Currently, only linear model updating is available. In 

the linear approach, the objective function represented the modal parameter (natural 

frequencies and mode shapes) residuals are formed as linear combination of natural 

frequency residuals and model shape residuals with different weighting factors. 

<*ä, � À� £R��½ + � ½� ½ S)Aå

½±% � À� £æçèd%²«&^¯½³*é �� ,
Aê
½±%

(D.6)

where ��½ and � ½ denote analytical and experimental natural frequencies; À� and À� are 

weighting factor applied to frequency residuals and mode shape residuals, respectively. 

0.8 and 0.2 are used here considering the factor that natural frequencies usually have 

higher accuracy than mode shapes in practical system identification. MAC (Modal 

Assurance Criteria) is a measurement of mode shape discrepancy and is defined as 

Equation (D.7) (Allemang and Brown, 1982). 

&^ �̄ � *ë��D ë �,)*ë��D ë��,*ë �D ë �, (D.7)
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where ë�� and ë � are analytical and experimental mode shapes. MAC = 1 means ë�� and 

ë � are perfectly matched and MAC = 0 means they are orthogonal. It is known that MAC

is rather insensitive to the change of mode shape. Also it is noticed that MAC is actually 

the square of the inner product between the two mode shape vectors. Therefore, the 

objective function for mode shape residual is formed as the normalized angle between the 

two mode shape vectors, which is much more sensitive to the change of mode shape. 

Nelder-Mead method (Nelder and Mead, 1965) is applied to solve the 

optimization problem defined above. This method is computationally quite simple and 

relatively robust. It requires no computation of derivative information; iteration is driven 

by the evaluation of the value of objective function only. The algorithm starts by 

generating a set of 1n	  vertices that defines a simplex, where n is the number of 

parameters to be updated. Then a set of tie-breaking rules, including reflection, expansion, 

contraction and shrinkage, are carried out to update the simplex for the next iteration until 

convergence rules are satisfied. 


