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ABSTRACT

The performance gain of allowing half-duplex source cooperation is studied

for Gaussian interference channels. The source cooperation is in-band, mean-

ing that each source can listen to the other source’s transmission, but there

is no independent channel between the sources; half-duplex assumes that,

at each time instant, the sources can either transmit or listen but cannot

do both. This assumption differs from some previous works on source co-

operation. When the cooperation is bidirectional and the channel gains are

symmetric, the sum capacity is characterized within a constant. When the

cooperation is unidirectional, from the primary to the secondary, it is essen-

tially a cognitive channel. By requiring the primary to achieve a rate at most

a constant from its link capacity, the best possible rate for the secondary is

characterized within a constant. A general coding scheme is proposed for this

type of channel. In the first step, only one source transmits and the other

source listens. The active source can send data to its destination, share in-

formation with the other nodes, or relay data from the other source to the

other destination. In the second step, both sources transmit. The shared

information from the previous step and the interference channel together can

be viewed as a virtual channel. On this virtual channel, the sources can

do beamforming for the shared messages, and the destinations can partially

cancel the interference, achieving better rates compared with the original

interference channel.
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CHAPTER 1

INTRODUCTION

A basic characteristic of the wireless medium is its broadcast nature. This

manifests itself as interference when multiple users try to share the medium.

An active area of research which investigates efficient schemes for managing

interference has focused on interference channels [3, 8, 9, 10]. However, the

broadcast feature is also a blessing in disguise in that the same transmission

could be heard by multiple receivers, opening up the possibility of coopera-

tion. Traditionally, the cooperation aspect has been investigated separately

using relay channels in which only one source-destination pair is present [7].

Recently, the role of cooperation in managing interference has come under

scrutiny. [4, 5, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] is an incomplete

list of references.

In this thesis we investigate the two-user interference channel, where the

two sources may not only transmit but also receive (Figure 1.1). This ability

to receive will allow the sources to cooperate. However, to be realistic about

the gains that can be derived from this cooperation, we impose two key

restrictions:

• In-band cooperation. No extra orthogonal band is available for the

source nodes to transmit to each other over; all transmission and re-

ception must happen over the same band. Thus, the sources cooperate

by transmitting and receiving over the same band that is originally

available for the interference channel.

• Half-duplex operation. Each source node may either transmit or receive

at a time but cannot do both. This respects the limitations of current

hardware technology.

The in-band cooperation assumption here is a key difference from [13],

which considered cooperation over conferencing links orthogonal to the orig-
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Figure 1.1: Interference channel with half-duplex source cooperation. The
sources can work in three modes: (A) both sources transmit, (B) source 1
transmits while source 2 receives, and (C) source 2 transmits and source 1
receives.

inal channel. Our model is identical to the one in [16] except that the full-

duplex mode of operation was studied there.

We focus on two scenarios. In the first case, the cooperation is bidi-

rectional and the channel gains are symmetric. The sum capacity of this

channel is characterized within a constant. In the second case, the coopera-

tion is unidirectional; i.e., source 2 can listen to source 1’s transmission but

not the other way around, which is essentially a cognitive channel. We call

source 1 and destination 3 the primary user and source 2 and destination 4

the secondary user. One interesting question we want to ask about this cog-

nitive channel is, what rate can the secondary achieve without affecting the

primary user’s performance much? We call the best such rate the cognitive

capacity of the channel and characterize it up to a constant. This definition

will be made precise in later sections.

The coding scheme is quite general and can be applied to all interference

channels with half-duplex source cooperation. The key idea is to turn the

half-duplex cooperation problem to a virtual channel problem. A virtual

channel is an interference channel with rate-limited bit-pipes between the two

sources and from each source to the destination where it causes interference.

This virtual channel is similar to the channel considered in [22] except that

there they do not have bit-pipes from sources to destinations.
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The coding scheme for the virtual channel is an extension of the super-

position coding scheme for the interference channels [10]. In addition to

public and private messages, we further introduce cooperative private and

pre-shared public messages. Cooperative private messages are shared over

the bit-pipes between the two sources so they can be sent using source beam-

forming. Pre-shared public messages are shared over the bit-pipes from the

sources to the destinations so the signals corresponding to such messages can

be canceled at the other destination and do not cause interference.

To reduce the original channel to a virtual channel, we schedule the trans-

mission in two steps. In the first step, only one source transmits and the other

source listens. The active source can send data to its destination, share in-

formation with the other nodes, or relay data from the other source to the

other destination. In the second step, both sources transmit. The shared

information from the previous step and the interference channel together is

indeed a virtual channel, and the scheme mentioned above is applied to this

channel. In the end, we optimize over the scheduling parameters to get the

best achievable rate.

The rest of the paper is organized as follows. In chapter 2, we formally

state the two problems, and in chapter 3 the main results about the sum

capacity and the cognitive capacity are given. The general coding scheme

is described in chapter 4. Chapter 5 deals with the symmetric case, and

chapter 6 is for the cognitive case. In both cases, we start by examining the

corresponding linear deterministic model and use the intuition there to solve

the Gaussian model.
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CHAPTER 2

PROBLEM STATEMENT

2.1 The Symmetric Case

The Gaussian interference channel with bidirectional source cooperation is

depicted in Figure 1.1.

The source nodes 1 and 2 want to communicate with destination nodes

3 and 4, respectively. Without loss of generality, we assume the channel is

normalized; i.e., the additive noise processes (Zit), i = 1, 2, 3, 4 are indepen-

dent CN (0, 1), i.i.d. over time, and the codeword (Xit) at source i satisfies

the power constraint

1

N

N∑
t=1

E
[
|Xit|2

]
≤ 1, i = 1, 2.

Further, we assume the channel is symmetric, i.e., |h13|2 = |h24|2 = SNR, |h14|2 =

|h23|2 = INR, |h12|2 = |h21|2 = CNR.

As the cooperation is half-duplex, the sources can work in one of the

following three modes. In mode A, both sources transmit. The nodes receive

Y1t = 0,

Y2t = 0,

Y3t = h13X1t + h23X2t + Z3t,

Y4t = h14X1t + h24X2t + Z4t.

In mode B, source 1 transmits and source 2 listens. Then

Y1t = 0,

Y2t = h12X1t + Z2t,

Y3t = h13X1t + Z3t,

4



Y4t = h14X1t + Z4t.

In mode C, source 2 transmits, source 1 listens, and

Y1t = h21X2t + Z1t,

Y2t = 0,

Y3t = h23X2t + Z3t,

Y4t = h24X2t + Z4t.

A block length-L codebook of rate (R1, R2) for the channel consists of a

schedule function ϕ(t) ∈ {A, B, C} and a sequence of encoding functions fit

and decoding functions gi+2, i = 1, 2, t = 1, 2, . . . , L. The source messages

Wi ∈ {1, 2, . . . , 2LRi}, i = 1, 2 are independent and uniformly distributed.

The sources transmit Xit = fit(Wi, Y
t−1
i ), where Y t−1

i = (Yi1, . . . , Yi(t−1)).

Note that the encoding functions are causal. Further, the encoding functions

also satisfy the schedule set out by ϕ(t); i.e., we have X2t = f2t(W2, Y
t−1
2 ) = 0

when ϕ(t) = B and X1t = f1t(W1, Y
t−1
1 ) = 0 when ϕ(t) = C. Denote the pro-

portion of time spent on mode A as ϕ(A) and define the scheduling parameter

δ = 2ϕ(A)
1−ϕ(A)

or ϕ(A) = δ
2+δ

, which is proportional to ϕ(A) and specifies roughly

how the resource is allocated among the three modes. Destination-(i + 2) es-

timates the message intended for it as Ŵi = gi+2(Y
L
i+2), i = 1, 2. We say

that a rate pair (R1, R2) is achievable if there is sequence of rate (R1, R2)

codebooks such that as L →∞,

P (Ŵi 6= Wi) → 0, i = 1, 2.

The capacity region C is the collection of all achievable (R1, R2). The sum-

capacity Csum of the channel is defined as the largest R1 + R2 such that

(R1, R2) ∈ C . In Section 3 we will provide a characterization of the sum-

capacity within a constant.

2.2 The Cognitive Case

The Gaussian interference channel with unidirectional source cooperation is

depicted in Figure 2.1. This channel has no cooperation link from source 2

5
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Figure 2.1: Interference channel with unidirectional half-duplex source coop-
eration.

to source 1.

The source nodes 1 and 2 want to communicate with destination nodes

3 and 4, respectively. Without loss of generality, we assume the channel is

normalized; i.e., the additive noise processes (Zit), i = 2, 3, 4 are independent

CN (0, 1), i.i.d. over time, and the codeword (Xit) at source i satisfies the

power constraint

1

N

N∑
t=1

E
[
|Xit|2

]
≤ 1, i = 1, 2.

Here, we assume that the channel gains are asymmetric in general. We can

view source 1 as the primary user and source 2 as the secondary user, and

the secondary can listen to the primary’s transmission and adapt its behavior

accordingly. Hence, this case corresponds to the cognitive scenario.

As there is only one-side half-duplex cooperation, the sources can work

in one of the following two modes. In mode A, both sources transmit. The

nodes receive

Y1t = 0,

Y2t = 0,

Y3t = h13X1t + h23X2t + Z3t,

Y4t = h14X1t + h24X2t + Z4t.

In mode B, source 1 transmits and source 2 listens. Then

Y1t = 0,
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Y2t = h12X1t + Z2t,

Y3t = h13X1t + Z3t,

Y4t = h14X1t + Z4t.

Let SNR1 = |h13|2, SNR2 = |h24|2, INR1 = |h23|2, INR2 = |h14|2, CNR = |h12|2.
The codebook definition is similar to that in the symmetric case except

that now ϕ(t) ∈ A, B and the encoding function f1t is only a function of W1,

as Y1t is always 0. Define the scheduling parameter δ = ϕ(B)
1−ϕ(B)

or ϕ(B) = δ
1+δ

.

This definition of δ is a little bit different from the one for the symmetric case,

as it is now proportional to ϕ(B), which is more convenient for presenting

the result. In this case, rather than the sum capacity, we are more interested

in another question from the cognitive perspective: what can the secondary

achieve if we do not sacrifice the primary’s performance? This motivates us

to give the following definition.

Definition 2.2.1 Let C0 = log(1 + SNR1) be the capacity achieved by source

1 when X2t = 0,∀t. Then R0-capacity for the secondary user is defined as

CR0 = max
(R1,R2)∈C
R1≥C0−R0

R2.

This definition specifies the best secondary performance, given the primary

backs off less than R0 from its link capacity. In Section 3, the R0-capacity is

characterized when R0 is larger than some constant.

To see why we introduce a back-off in the primary rate, consider the Z-

channel where CNR = INR2 = 0, SNR1 = SNR2 � INR1 ≈ 0. If no back-off is

allowed, i.e., if we insist that R1 = C0, then destination 3 must first decode

the interference, or the secondary’s message, and then its own message. So we

achieve only R2 = log(1+ INR1

1+SNR1
) ≈ 0 bits. But if the primary can back off its

rate by some constant, the secondary can send its message as long as it does

not cause significant interference at destination 3. As INR1 ≈ 0 and INR2 = 0,

the secondary can essentially achieve nontrivial rate R2 ≈ log(1 + SNR2).

Notice that the gap between the two is unbounded when SNR2 scales to ∞.

Since we are more interested in the high-SNR region and would want to

characterize capacity only up to a constant, the definition above with back-

off better serves our purpose.

We further remark that this definition is not a constant gap character-
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ization of the upper-right corner point of the capacity region C . In some

channel parameter settings, with the help of the secondary, the primary can

do strictly better than C0.
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CHAPTER 3

RESULTS

The main result of this thesis is the approximate characterization of the

sum capacity of the symmetric case and the R0-capacity of the cognitive

case for R0 larger than some constant. We will state them in the following

two theorems in this section and also show the gains we can get from half-

duplex cooperation. In Section 5.1 and 6.1, we will study the corresponding

linear deterministic model to motivate the schemes we use, and in Section

5.2 and 6.2 we sketch proofs of the two theorems with details taken up in the

appendices.

3.1 The Symmetric Case

Theorem 3.1 Define Csum = maxδ Csum(δ) = maxδ min(u1, u2, u3, u4), where

u1 =
2

2 + δ

[
δ log(1 + x) + log(1 + x + z)

]
u2 =

1

2 + δ

[
δ log(1 + 2x + 2y) + log(1 + x) + log(1 + x + y + z)

+ δ log(1 +
x

1 + y
)
]

u3 =
2

2 + δ

[
δ max{log(1 + y +

2x + y

1 + y
), log(1 + 2y)}+ log(1 + x + y + z)]

u4 =
1

2 + δ

[
δ log(1 + 4x + 4y + x2 + y2 − 2xy cos θ) + 2 log(1 + x + y)

]
.

Then the sum capacity Csum of the symmetric channel defined in section 2.1

satisfies Csum − 17 ≤ Csum ≤ Csum + 3.

To demonstrate the gains from cooperation, we now plot the general-

ized degree of freedom [9] of the sum capacity. Here, we use the natural

9
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Figure 3.1: Sum capacity of the interference channel with half-duplex source
cooperation.

generalization of the original definition given by [22]. Let

lim
SNR→∞

log INR

log SNR
= α, lim

SNR→∞

log CNR

log SNR
= β.

Then the generalized degree of freedom for fixed α, β is

dsum(α, β) = lim
fix(α,β)
SNR→∞

Csum

log SNR
.

dsum is well-defined for α 6= 1. When α = 1, dsum can take two different

values, and we need to treat them separately.

1. h13h24 = h14h23. Consider the cut-set bound with sources on one side

and destinations on the other. The upper bound on the sum capacity

of the interference channel reduces to the capacity of a degenerated

10



multiple input multiple output (MIMO) point-to-point channel. As

the latter channel is of degree of freedom 1, Hence, we can get only

dsum = 1.

2. h13h24 6= h14h23. For this setting, the channel is well-conditioned and

dsum is a continuous function with respect to α at the α = 1.

In Figure 3.1, we show some plots of dsum against α for different β′s

under the assumption h13h24 6= h14h23, which is usually the case, and we

also compare it with the result for full-duplex source cooperation [16]. In

[16], the sources are allowed both to listen and transmit at the same time

instant. For full-duplex cooperation, only one mode is used: both sources

transmit and listen. So the resulted dsum is a piecewise linear function of

α. For half-duplex cooperation, however, we need to schedule over the three

modes properly; and the optimization involved makes each piece a smoothed

curve rather than a linear segment. From the plots, we can see that half-

duplex cooperation is helpful only when β > 1, while full-duplex cooperation

is helpful for all β > 0. Moreover, when β is large enough (as in β = 3.2), by

having half-duplex cooperation the sum capacity can be strictly better than

that of the usual interference channel. When β = ∞, the sources can get to

know both messages in a negligible amount of time with either half-duplex

or full-duplex cooperation. So the channel essentially become a two-source-

antenna broadcast channel, and both would have the same sum capacity.

3.2 The Cognitive Case

Theorem 3.2 Define CR0 = maxδ CR0(δ) = maxδ min(u1, u2, u3, u4), where

u1 =
1

1 + δ
log(1 + x2) + 1

u2 =
1

1 + δ

[
log(1 + 2x2 + 2y2)− log(1 + x1) + δ log(1 +

y2 + z

1 + x1

)

+ log(1 +
x1

1 + y2

)
]

+ 2 + R0

u3 =
1

1 + δ

[
log(1 + 2x1 + 2y1)− log(1 + x1) + log(1 +

x2

1 + y1

)

]
+ 2 + R0

u4 =
1

1 + δ

[
log(1 + 2x1 + 2y1)− log(1 + x1) + log(1 +

x1

1 + y2

)− log(1 + x1)

11



+ max(log(1 + y2 +
2x2 + y2

1 + y1

), log(1 + 2y2)) + δ log(1 +
y2 + z

1 + x1

)
]

+ 3 + 2R0.

Then when R0 ≥ 7, the R0-capacity CR0 of the cognitive channel defined in

section 2.2 satisfies CR0 − 23− 2R0 ≤ CR0 ≤ CR0.

To demonstrate the gains from cooperation, we now plot the generalized

degree of freedom [9] of the R0-capacity. Similar to above, let

lim
SNR1→∞

log SNR2

log SNR1

= n′2, lim
SNR1→∞

log INR1

log SNR1

= α′1,

lim
SNR1→∞

log INR2

log SNR1

= α′2, lim
SNR1→∞

log CNR

log SNR1

= β′.

Then the generalized degree of freedom for fixed n′1, α
′
1, α

′
2, β

′ is

dcog(n
′
2, α

′
1, α

′
2, β

′) = lim
SNR1→∞

CR0

log SNR1

.

Unlike the symmetric case, this limit always exists; hence, dcog is well-

defined. In fact, when |h13||h24| = |h23||h14|, we have dcog the same as that of

an interference channel without cooperation. This is essentially saying that

cooperation is not quite helpful when the absolute value of the channel gains

are aligned. Phases do not matter here. Figure 3.2 shows two typical plots

of dcog against α′1 for various β′ while n′2, α
′
2 are held fixed.

In our model, when β′ = 0, it corresponds to an interference channel

without cooperation. The above plot shows that when β′ ≤ α′2 ∨ 1, the

generalized degree of freedom is the same as that of β′ = 0. Hence, coop-

eration is not very helpful unless it is above the threshold. This behavior

is the same as what happens for the symmetric channel case. On the other

hand, when β′ = ∞, the cooperation link is so strong that the secondary can

decode the primary’s message in a negligible amount of time. This case is

equivalent to the cognitive radio channel model in [12], where the secondary

is assumed to know both messages. One interesting thing to notice is that

when n2 ≤ α1 ≤ n1, the dcog is always 0, even with infinite cooperation. In

fact, in this region, what destination 4 gets from source 2 is only a noisy

version of what destination 3 gets from source 2. So destination 3 can also

decode W2. On the other hand, as we require the primary to achieve a

12
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Figure 3.2: Cognitive capacity of the interference channel with half-duplex
source cooperation.

rate near its link capacity and the interference at destination 3 is weak, the

allowable rate for W2 is negligible in the high-SNR region.
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CHAPTER 4

ACHIEVABILITY

Our coding scheme turns the original channel into a virtual two-user inter-

ference channel (Figure 4.1) with rate-limited (noiseless) bit-pipes between

the two sources and from each source to the destination node where it causes

interference. The bit-pipes are realized by operating in modes B and C

(Figure1.1b and 1.1c) where only one of the source nodes transmits while

the other receives. In these modes, the transmitting source sends data to

its own destination and, in addition, sends messages to the other nodes in

order to realize the noiseless links, as will become clear in the sequel. We

will first describe a coding scheme and characterize an achievable rate region

for the virtual channel. Then we will use this characterization to obtain an

achievable rate region for the two-user interference channel with half-duplex

source cooperation.

∆n′

Src 1 Dst 3

Src 2 Dst 4

nI

n
I

nD

nD

∆
n

∆
n

∆n′

Figure 4.1: Interference channel with bit-pipes. The rate-limited bit pipes
(shown in bold) run between the two sources and from each source to the
destination node where it causes interference.
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4.1 Interference Channel with Bit-Pipes

We denote the virtual channel in Figure 4.1 by

IFcoop(pY3,Y4|X1,X2 , C12, C21, C14, C23),

where Cij are the rates of the bit-pipes between node i ∈ {1, 2} and node

j ∈ {1, 2, 3, 4}. For this new channel, we limit ourselves to block-coding

schemes of the following type:

1. First, the sources send at most LCij bits over the bit-pipes, where L is

the block length. These bits are functions of only the message of the

source sending the bits.

2. Then, the sources transmit over the interference channel with each of

their channel inputs (of block length L) being functions of their message

and the bits exchanged in the first step. For the Gaussian channel, these

transmissions are required to satisfy average power constraints of unity.

In the rest of the section, we first discuss an achievable region for the vir-

tual channel1 Rvirtual(C12, C21, C14, C23). Then using this result, an achievable

region for the half-duplex channel will be presented.

Our coding scheme for this virtual channel is a generalization of the su-

perposition coding scheme of Han-Kobayashi for interference channels. The

scheme of Han and Kobayashi in this context may be interpreted as follows.

Each source node transmits its information in two parts:

• public message is decoded by both destinations (even though it is meant

for only one of the destinations),

• private message is decoded by only one of the destinations, the one to

which it is intended.

Our scheme also uses superposition coding and involves two additional parts,

each of which takes advantage of one of the two types of bit-pipes available.

1. cooperative private message. These messages are shared in advance

between the sources over the bit-pipes between them. The messages are

1We drop the channel pY3,Y4|X1,X2 from the notation since the channel will be clear
from the context.
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then sent out cooperatively by the two sources. But they are decoded

by only the intended destination. Below, we will use superposition

coding and beamforming for transmitting these messages.

2. pre-shared public message. Each source shares this type of message

with the unintended destination in advance over the bit-pipes to that

destination. This ensures that, when it appears as interference in the

transmission over the interference channel, the destination can treat it

as known interference while decoding.

In slightly greater detail, our coding scheme is as follows:

Encoding: Source i ∈ {1, 2} divides its message into four parts

mi = (mWi
, mUi

, mVi
, mV ′

i
),

where W stands for (noncooperative) public, U for (noncooperative) private,

V for cooperative private, and V ′ for pre-shared public. First, mVi
is shared

with the other source and mV ′
i

is shared with the other destination over the

bit-pipes. Superposition codewords are then transmitted over the interfer-

ence channel. A random codebook construction for these codewords is as

follows:

1. At source i ∈ {1, 2}, generate the pre-shared public codeword XL
V ′

i
(mV ′

i
)

independently according to distribution p(xL
V ′

i
) =

∏L
t=1 p(xV ′

i ,t), where

mV ′
i
∈ {1, 2, . . . , 2L(RV ′

i
−ε)}.

2. At source i, for each mV ′
i
, generate the public codeword XL

Wi
(mVi

, mWi
)

independently according to distribution

p(xL
Wi
|xL

V ′
i
(mV ′

i
)) =

L∏
t=1

p(xWi,t|xVi,t(mV ′
i
)),

where mWi
∈ {1, 2, . . . , 2L(RWi

−ε)}.

3. At source i, for each pair of (mWi
, mV ′

i
), generate the private codeword

XL
Ui

(mUi
, mWi

, mV ′
i
) according to distribution

p(xL
Ui
|xL

Wi
(mWi

, mV ′
i
), xL

V ′
i
(mV ′

i
)) =

L∏
t=1

p(xUi,t|xWi,t(mWi
, mV ′

i
), xV ′

i ,t(mV ′
i
)),
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where mUi
∈ {1, 2, . . . , 2L(RUi

−ε)}.

4. Generate, for i ∈ {1, 2}, the auxiliary cooperative private codewords

V L
i (mVi

), according to distribution pvL
i

=
∏L

t=1 p(vi,t), where mVi
∈

{1, 2, . . . , 2L(RVi
−ε)}. For every pair (mV1 , mV2), define the coopera-

tive private codewords (XL
V1

, XL
V2

)(mV1 , mV2) according to distribution

p(xL
V1

, xL
V2
|vL

1 (mV1), v
L
2 (mV2)) =

∏L
t=1 p(xV1,t, xV2,t|v1,t(mV1), v2,t(mV2)).

5. Superimpose the codewords to form the transmit codewords

XL
1 (mW1 , mU1 , mV ′

1
, mV1 , mV2) = XL

U1
(mU1 , mW1 , mV ′

1
) + XL

V1
(mV1 , mV2),

XL
2 (mW2 , mU2 , mV ′

2
, mV2 , mV1) = XL

U2
(mU2 , mW2 , mV ′

2
) + XL

V2
(mV1 , mV2).

Decoding: Destination 3 looks for a unique (mW1 , mU1 , mV1 , mV ′
1
) such that

(Y L
3 , XL

V ′
1
(mV ′

1
), XL

W1
(mW1 , mV ′

1
), XL

U1
(mU1 , mW1 , mV ′

1
), V L

1 (mV1), X
L
W2

(m̂W2),

XL
V ′
2
(mV ′

2
)) is jointly typical, for some m̂W2 . Note that mV ′

2
is available to

destination 3 via the bit-pipe from source 2. Destination 4 uses the same

decoding rule with index 1 and 2 exchanged.

Theorem 4.1 The rate pair (RW1 +RU1 +RV1 +RV ′
1
, RW2 +RU2 +RV2 +RV ′

2
)

is achievable if RW1 , RW2 , RU1 , RU2 , RV1 , RV2 , RV ′
1
, RV ′

2
are nonnegative reals

which satisfy the following constraints.

Constraints at destination 3:

RU1 ≤ I(XU1 ; Y3|XW1 , V1, XV ′
1
, XW2 , XV ′

2
)

RW1 + RU1 ≤ I(XW1 , XU1 ; Y3|V1, XV ′
1
, XW2 , XV ′

2
)

RV ′
1
+ RW1 + RU1 ≤ I(XW1 , XU1 , XV ′

1
; Y3|V1, XW2 , XV ′

2
)

RV1 ≤ I(V1; Y3|XW1 , XU1 , XV ′
1
, XW2 , XV ′

2
)

RV1 + RU1 ≤ I(XU1 , V1; Y3|XW1 , XV ′
1
, XW2 , XV ′

2
)

RV1 + RW1 + RU1 ≤ I(XW1 , XU1 , V1; Y3|XV ′
1
, XW2 , XV ′

2
)

RV1 + RV ′
1
+ RW1 + RU1 ≤ I(XW1 , XU1 , V1, XV ′

1
; Y3|XW2 , XV ′

2
)

RW2 + RU1 ≤ I(XW2 , XU1 ; Y3|XW1 , V1, XV ′
1
, XV ′

2
)

RW2 + RW1 + RU1 ≤ I(XW2 , XW1 , XU1 ; Y3|V1, XV ′
1
, XV ′

2
)

RW2 + RV ′
1
+ RW1 + RU1 ≤ I(XW2 , XW1 , XU1 , XV ′

1
; Y3|V1, XV ′

2
)

RW2 + RV1 ≤ I(XW2 , V1; Y3|XW1 , XU1 , XV ′
1
, XV ′

2
)
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RW2 + RV1 + RU1 ≤ I(XW2 , XU1 , V1; Y3|XW1 , XV ′
1
, XV ′

2
)

RW2 + RV1 + RW1 + RU1 ≤ I(XW2 , XW1 , XU1 , V1; Y3|XV ′
1
, XV ′

2
)

RW2 + RV1 + RV ′
1
+ RW1 + RU1 ≤ I(XW1 , XU1 , XV ′

1
, V1, XW2 ; Y3|XV ′

2
)

Constraints at destination 4: Above, with index 1 and 2 exchanged.

Constraints at sources:

RV ′
1
≤C14, RV ′

2
≤ C23, RV1 ≤ C12, RV2 ≤ C21

for some

p(xW1 , xU1 , xV1 , xV ′
1
, xW2 , xU2 , xV2 , xV ′

2
, v1, v2)

=p(xV ′
1
, xW1 , xU1)p(xV ′

2
, xW2 , xU2)p(v1)p(v2)p(xV1 , xV2|v1, v2).

For the Guassian channel, the joint distribution must satisfy

Var (XUi
) + Var (XVi

) ≤ 1, i ∈ {1, 2}.

We denote this rate region by Rvirtual(C12, C21, C14, C23).

Proof. The proof is omitted since it follows from standard arguments

for superposition coding. �

4.2 Achievability for Half-Duplex Channel

Now we give a scheme for the original channel. The rate region will be given

in terms of Rvirtual in Theorem 4.1. Our coding scheme consists of a sequence

of blocks. Each block is dδALe + dδBLe + dδCLe long (δA, δB, δC ≥ 0). Let

us denote, LA = dδALe, LB = dδBLe, and LC = dδCLe. In each block, the

first 1, 2, . . . , LB and LB + 1, LB + 2, . . . , LB + LC, respectively, are operated

in modes B and C, respectively. The rest LA long duration is in mode A.

During the mode B and C phases of each block, we will realize the bit-pipes

of the virtual channel, which allow us to implement our coding scheme for

the virtual channel during the mode A phase. In addition to realizing the bit-

pipes of the virtual channel, during the mode B amd C phases, the sources
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(i) send data to their own destinations, (ii) send data to the other source

to be relayed to the intended destination in a future phase/block, and (iii)

relay data received from the other source during a previous phase/block to

its intended destination.

In the mode B phase, source node 1 uses superposition coding to send

messages to each of the other nodes. In particular, it sends at a rate of R1B

to destination 3, at a rate δA
δB

C12 + ∆R123 to the other source (node 2), and

at a rate of δA
δB

C14 + δC
δB

∆R214 to destination node 4. The transmissions at

rates δA
δB

C12 and δA
δB

C14 are used to realize the bit-pipes originating from source

node 1 to nodes 2 and 4, respectively, in the virtual channel. Similarly, the

following mode C phase realizes the bit-pipes originating from source node 2.

With these bit-pipes in place, the following mode A phase is effectively trans-

formed into a virtual channel. The transmission at rate ∆R123 is meant to

be relayed by source node 2 to destination node 3 in the following mode

C phase, and the transmission at rate δC
δB

∆R214 is of the data that node 1

received from source node 2 in the mode C phase of the previous block in-

tended to be relayed to destination node 4. Similarly, in the mode C phase,

source node 2 sends using superposition coding at rates R2C, δA
δC

C21 + ∆R214,

and δA
δC

C23 + δB
δC

∆R123 to nodes 4, 1, and 3, respectively. Note that for the

first block, in the mode B phase, there is no relay data available for node 1

to relay to node 4. But, by increasing the number of blocks, the resulting

deficit in rate can be made as small as desired.

For the Gaussian channel, we will use the natural ordering of users for

superposition coding. To denote all possiblities together, we adopt the fol-

lowing notation. Let

R̃B
3 = R1B, R̃C

4 = R2C,

R̃B
2 =

δA

δB

C12 + ∆R123, R̃C
1 =

δA

δC

C21 + ∆R214,

R̃B
4 =

δA

δB

C14 +
δC

δB

∆R214, and R̃C
3 =

δA

δC

C23 +
δB

δC

∆R123.

Then, by superposition coding, the above rates are achievable if there are

permutations φB of {2, 3, 4} and φC of {1, 3, 4}, and a joint distribution

p(ũB
1 )p(ũB

2 )p(ũB
3 )p(x1|ũB

1 , ũB
2 , ũB

3 )p(ũC
1 )p(ũC

2 )p(ũC
3 )p(x2|ũC

1 , ũC
2 , ũC

3 ), (which sat-
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isfies the condition Var (X1), Var (X2) ≤ 1 for the Gaussian case) such that

i∑
j=1

R̃B
φB(j) ≤ I(ŨB

1 , . . . , ŨB
i ; YφB(i)), i ∈ {1, 2, 3}, (4.1)

i∑
j=1

R̃C
φC(j) ≤ I(ŨC

1 , . . . , ŨC
i ; YφC(i)), i ∈ {1, 2, 3}. (4.2)

Thus, we have proved the following theorem:

Theorem 4.2 The rate pair (R1, R2) is achievable for the half-duplex chan-

nel, where

R1 =
δAR1A + δBR1B + δB∆R123

δA + δB + δC

,

R2 =
δAR2A + δCR2C + δC∆R214

δA + δB + δC

,

for parameters as defined in the above discussion such that (4.1) and (4.2)

hold and

(R1A, R2A) ∈ Rvirtual(C12, C21, C14, C23).
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CHAPTER 5

SYMMETRIC CASE

5.1 Symmetric Case: LDM

In this section, we will study the linear deterministic model (LDM) of the

symmetric half duplex source cooperation problem.

5.1.1 Channel Model and Sum Capacity

The corresponding linear deterministic channel [1] is parameterized by non-

negative integers

nD = blog SNRc+, nI = blog INRc+, nC = blog CNRc+.

The channel is depicted in Figure 5.1. Let n = max{nD, nI , nC} and S ∈
Fn×n

2 be the shift matrix

Y4

Src 1 Dst 3

Src 2 Dst 4

nI

n
I

n
C

n
C

nD

nD

X2

X1

Y1

Y2

Y3

Figure 5.1: Linear deterministic interference channel with half-duplex source
cooperation.
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S =



0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0


n×n

where F2 is the finite field with two elements. The channel inputs X1t, X2t

are n-length vectors over F2. As above, the sources can work in one of the

three modes. In mode A, both sources transmit. The nodes receive:

Y1t = 0,

Y2t = 0,

Y3t = Sn−nDX1t ⊕ Sn−nIX2t,

Y4t = Sn−nDX2t ⊕ Sn−nIX1t.

In mode B, source 2 listens. Then,

Y1t = 0,

Y2t = Sn−nCX1t,

Y3t = Sn−nDX1t,

Y4t = Sn−nIX1t.

In mode C, source 1 listens and

Y1t = Sn−nCX2t,

Y2t = 0,

Y3t = Sn−nIX2t,

Y4t = Sn−nDX2t.

Theorem 5.1 The sum capacity of the interference channel in Figure 5.1 is

Csum = max
δ≥0

min{l1(δ), l2(δ), l3(δ), l4(δ)},
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where

l1(δ) =


2(1+δ)
2+δ

max{nD, nI}, nD 6= nI

nD, nD = nI

l2(δ) =
2

2 + δ
(δnD + max{nD, nC}) ,

l3(δ) =
1

2 + δ
(δ max{2nD − nI , nI}+ nD

+ max{nD, nI , nC}),

l4(δ) =
2

2 + δ
(δ max{nI , nD − nI}+ max{nD, nC}) .

The parameter δ is just a scheduling parameter. Its meaning will become

clearer when we describe the coding scheme and the the converse. Note

that when nI = nD or nC ≤ nD, the sum capacity reduces to that of the

interference channel without cooperation. Hence, it can be achieved with the

optimal interference channel scheme. In the following discussions, we assume

nI 6= nD and nC > nD.

5.1.2 Coding Scheme

To characterize the sum capacity, we will need to consider only symmetric

schemes. The induced virtual channel is also symmetric. The symmetric

virtual channel has an interference channel determined by (nD, nI), and its

bit-pipes have rates C12 = C21 = Css, say, and C14 = C23 = Csd, say. We

denote this type of virtual channel by IFcoop((nD, nI), Css, Csd).

To choose the auxiliary random variables in Theorem 4.1 for this sym-

metric virtual channel, let n = nD∨nI (by which we mean max(nD, nI)). For

source i ∈ {1, 2}, we define the public, pre-shared, and private auxiliary ran-

dom variables Wi, V
′
i , Ui, respectively, to be independent and with identical

alphabets Fn
2 . While the public and pre-shared auxiliary random variables

are uniformly distributed over their alphabets, the upper n− (nD−nI)
+ ele-

ments of the private auxiliary random variables are fixed to be 0 and the lower

(nD − nI)
+ elements uniformly distributed over F(nD−nI)+

2 . In Theorem 4.1,

we set

XV ′
i

= V ′
i ,
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XWi
= V ′

i + Wi,

XUi
= V ′

i + Wi + Ui.

Note that the private auxiliary random variable Ui occupies the lower (nD −
nI)

+ levels, so that it does not appear at the other destination. This choice

is similar to the choice made in [9] for the (noncooperative) intereference

channel.

For the cooperative private codebook, we choose the auxiliary random

variables Vi, i = 1, 2 independently (of each other and all the other auxiliary

random variables) distributed uniformly over Fn
2 . We choose (XV1 , XV2) as

deterministic functions of (V1, V2) such that the beamforming is a zero-forcing

beamforming. In other words, our choice will be such that the interfering sig-

nals (e.g., V1 at destination 2) are canceled out by beamforming. Specifically,

we require  V1

V2

 =

 Sn−nD Sn−nI

Sn−nI Sn−nD

 XV1

XV2

 .

As the channel matrix is invertible, we may always find such XVi
for arbi-

trary Vi. Source i sends XL
Ui

+ XL
Vi

, i = 1, 2. The induced channel (after

removing the unintended pre-shared public signals which the receivers know

in advance) pY3,Y4|V ′
1 ,V ′

2 ,W1,W2,U1,U2,V1,V2
is

Y3 = Sn−nD(W1 + U1 + V ′
1) + Sn−nIW2 + V1

Y4 = Sn−nD(W2 + U2 + V ′
2) + Sn−nIW1 + V2.

We will choose symmetric rates for the four types of messages: i.e., RV ′
1

=

RV ′
2

= RV ′ , and so on. When nI < nD, we will naturally set Csd = 0 in

the superposition coding in modes B and C. Hence, we have RV ′ = 0. By

Theorem 4.1, the rate pair (RW + RU + RV , RW + RU + RV ) is achievable if

2RW + RV + RU ≤ nD

RU + RW ≤ max{nI , nD − nI}

RU ≤ nD − nI

with RW ≥ 0, RU ≥ 0, 0 ≤ RV ≤ Css. When nI > nD, we set RU = 0, and by
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Theorem 4.1, the rate pair (RW + RV + R′
V , RW + RV + R′

V ) is achievable if

2RW + RV + RV ′ ≤ nI

RW + RV ′ ≤ nD

with RW ≥ 0, 0 ≤ RV ≤ Css, 0 ≤ R′
V ≤ Csd. By the Fourier-Motzkin

elimination, we arrive at

Theorem 5.2 The following is an achievable sum rate Rvirtual
sum for the chan-

nel IFcoop((nD, nI), Css, Csd).

1. When nI < nD, Csd = 0,

Rvirtual
sum = 2 min


nD,

nD − 1
2
nI + 1

2
Css,

max{nI , nD − nI}+ Css

 .

2. When nI > nD,

Rvirtual
sum = 2 min


nD + Css,
nI+Css+Csd

2
,

nI

 .

Now we can show the achievability of the sum capacity Csum using a

symmetric version of the scheme in Section 4.2. We set δB = δC = 1, δA = δ.

For superposition coding in modes B and C, the sources set the data rates

R1B = R1C = nD and choose the shared rates C12 = C21 = Css, C14 = C23 =

Csd and relay rates ∆R123 = ∆R214 = ∆R. The constraints (4.1) and (4.2)

translate to

δCss + ∆R ≤ (nC − nD)+,

δCsd + ∆R ≤ (nI − nD)+,

δCss + δCsd + 2∆R ≤ (max{nI , nC} − nD)+.
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By Theorem 4.2, the sum rate achieved by this scheme is

Rsum = max
δ≥0

1

2 + δ
(2nD + 2∆R + δRvirtual

sum (nD, nI , Css, Csd)).

It is not hard to verify that with the following choice of Css, Csd, ∆R, the

above constraints are satisfied and Rsum = Csum.

1. nI < nD < nC . Css = (nC − nD)/δ, Csd = 0, and ∆R = 0.

2. nD < nI ≤ nC . Csd = 0.

(a) nC − nD ≤ δnI . Css = (nC − nD)/δ and ∆R = 0.

(b) nC − nD > δnI . Css = nI and

∆R = min

(
nC − nD − δnI

2
, nI − nD

)
.

3. nD < nC < nI .

(a) nI−nD ≤ δnI or nC−nD ≤ δ(nI−nD). Css = (nC−nD)/δ, Csd =

(nI − nC)/δ and ∆R = 0.

(b) nI−nD > δnI and nC−nD > δ(nI−nD). Css = nI−nD, Css+Csd =

nI and

∆R = min

(
nC − nD − δ(nI − nD),

nI − nD − δnI

2

)
.

Remark: Primarily, cooperation enables better rates of transmission over the

interference channel. When both nC and nI are large relative to nD, relaying

also comes into play. In the Gaussian model, we will also consider the regions

separately as above and the power for each signal will be set according to

the intuition provided by the linear deterministic channel.

5.2 The Symmetric Case: Gaussian Model

We follow the intuition from the linear deterministic channel and use a sym-

metric version of the coding scheme in section 4 here as well. The auxiliary

random variables in Theorem 4.1 for the induced symmetric virtual chan-

nel are chosen as follows: for source i = 1, 2, we define the auxiliary random
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variables Wi, Ui, V
′
i to be independent, zero-mean Gaussian random variables

with variances σ2
W , σ2

U , σ2
V ′ , respectively. In Theorem 4.1, we set

XV ′
i

= V ′
i ,

XWi
= V ′

i + Wi,

XUi
= V ′

i + Wi + Ui.

The choice of σ2
U will be such that it appears at lower than the noise power

at the destination where it causes interference. Following the intuition from

the linear deterministic case, we will employ zero-forcing beamforming for

the cooperative private messages. We choose V1, V2 to be independent (of

each other and all previously defined auxiliary random variables), identically

distributed, zero-mean Gaussian random variables with variance σ2
V . When

the channel matrix is invertible, XVi
, i = 1, 2 are chosen such that

 V1

V2

 =

 h13 h23

h14 h24

 XV1

XV2

 .

where XVi
, i = 1, 2 are correlated Gaussians with variance

Var (XVi
) =

SNR + INR

SNR2 + INR2 − 2SNR INR cos θ
σ2

V .

When the channel matrix is not invertible, we will set σ2
V = 0, and XV1 =

XV2 = 0 (i.e., there will be no cooperative private message). The variance

parameters must satisfy the power constraint

σ2
W + σ2

U + σ2
V ′ + Var (XVi

) ≤ 1, i = 1, 2.

The destinations receive (with the unintended, pre-shared public signals can-

celed)

Y3 = h13(W1 + U1 + V ′
1) + h23W2 + V1 + h23U2 + Z3,

Y4 = h24(W2 + U2 + V ′
2) + h24W1 + V2 + h14U1 + Z4.

We set the rates for the four types of messages to be symmetric, i.e., RW1 =

RW2 = RW , say, and so on. Also, in Theorem 4.2, we set C12 = C21 = Css,

say, C14 = C23 = Csd, say, and ∆R123 = ∆R214 = ∆R, say.
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In appendix A, we show that with the choice of auxiliary random variables

above, there are power and rate allocations such that a sum-rate of Csum

(defined in Theorem 3.1) is achievable within a constant. Specifically,

Theorem 5.3 Csum ≥ Csum − 17.

We are also able to show an upperbound to the sum-rate. In appendix B,

we prove the following theorem.

Theorem 5.4 Let

Cut(δ) =
1

2 + δ

[
δ log(1 + xP1A) + δ log(1 + xP2A)

log(1 + (x + z)P1B) + log(1 + (x + z)P2C)
]

Z(δ) =
1

2 + δ

[
δ log(1 + 2xP1A + 2yP2A) + log(1 + xP1B)

+ log(1 + (x + y + z)P2C) + δ log(1 +
xP2A

1 + yP2A

)
]

V (δ) =
1

2 + δ

[
δ log

(
1 + yP2A +

2xP1A + yP2A

1 + yP1A

)
+ log(1 + (x + y + z)P1B)

+ δ log

(
1 + yP1A +

2xP2A + yP1A

1 + yP2A

)
+ log(1 + (x + y + z)P2C)

]
Cut′(δ) =

1

2 + δ

[
δ log(1 + 2(x + y)(P1A + P2A) + P1AP2A(x2 + y2 − 2xy cos θ))

+ log(1 + (x + y)P1B) + log(1 + (x + y)P2C)
]
.

Define CHD
sum = max

δ,P1A,P1B

min(Cut(δ), Z(δ), V (δ), Cut′(δ)), where the maxi-

mization is over all nonnegative δ, P1A, P1B, P2A, P2C which satisfy the power

constraints

δP1A + P1B

2 + δ
≤ 1 and

δP2A + P2C

2 + δ
≤ 1.

Then

Csum ≤ CHD
sum ≤ Csum + 3.

The above two theorems together imply Theorem 3.1.
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CHAPTER 6

THE COGNITIVE CASE

6.1 The Cognitive Case: LDM

6.1.1 Channel Model and Cognitive Capacity

The corresponding linear deterministic model is parameterized by the non-

negative integers

n1 = blog SNR1c+, n2 = blog SNR2c+, α1 = blog INR1c+,

α1 = blog INR2c+, β = blog CNRc+

The channel is depicted in Figure 6.1. Let n = max{n1, n2, α1, α2, β} and S

be the shift matrix defined as in Section 5.1. The channel inputs X1t, X2t

are n-length vectors over F2. As the cooperation is only unidirectional, the

sources can work in mode A and B. In mode A, both sources transmit. The

nodes receive:

Y1t = 0,

Y2t = 0,

Y3t = Sn−n1X1t ⊕ Sn−α1X2t,

Y4t = Sn−n2X2t ⊕ Sn−α2X1t.

In mode B, source 2 listens. Then,

Y1t = 0,

Y2t = Sn−βX1t,

Y3t = Sn−n1X1t,

Y4t = Sn−α2X1t.
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Figure 6.1: Linear deterministic interference channel with unidirectional half-
duplex source cooperation.

For this channel, source 1 is the primary and source 2 is the secondary,

and as mentioned in Section 2, we would like to know the best rate the

secondary can get when the primary is communicating at its link capacity,

which is R1 = n1. So here, we will define the cognitive capacity for this linear

deterministic model, which is similar to the R0-capacity.

Definition 6.1.1 Assume the capacity region of the channel in Figure 6.1

is C . The cognitive capacity is defined as

Ccog = max
(R1,R2)∈C

R1=n1

R2.

Note that in this definition, the primary does not need to back off as in

the R0-capacity. This difference is because the linear deterministic model

is a coarser description of the true channel. In fact, it characterizes the

channel capacity only up to degree of freedom; hence, a constant difference

is negligible in this model. But the idea is essentially the same.

Theorem 6.1 The cognitive capacity Ccog of channel in Figure 6.1 is given

by

Ccog = max
δ≥0

min(u1, u2, u3, u4),

where

u1 =
1

1 + δ
n2

u2 =
1

1 + δ
[n2 ∨ α2 − α2 ∧ n1 + δ(β ∨ α2 ∨ n1 − n1)]
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u3 =
1

1 + δ
[(α1 − n1)

+ + (n2 − α1)
+]

u4 =
1

1 + δ
[(α1 − n1)

+ − α2 ∧ n1 + (n2 − α1) ∨ α2 + δ(β ∨ α2 ∨ n1 − n1)].

The parameter δ is again the scheduling parameter as defined for the

cognitive case in Section 2.

For comparison, we also summarize here the result for cognitive capacity

of the interference channel without cooperation.

Proposition 6.1.1 The cognitive capacity of linear deterministic interfer-

ence channel parameterized by n1, n2, α1, α2 is

C IFC
cog = min(v1, v2, v3, v4),

where

v1 = n2

v2 = n2 ∨ α2 − α2 ∧ n1

v3 = (α1 − n1)
+ + (n2 − α1)

+

v4 = (α1 − n1)
+ − α2 ∧ n1 + (n2 − α1) ∨ α2.

Proof. The capacity region of the linear deterministic interference chan-

nel [2] is given by the set of (R1, R2) satisfying

R1 ≤n1

R2 ≤n2

R1 + R2 ≤(n1 − α2)
+ + n2 ∨ α2

R1 + R2 ≤(n2 − α1)
+ + n1 ∨ α1

R1 + R2 ≤α1 ∨ (n1 − α2) + α2 ∨ (n2 − α1)

2R1 + R2 ≤n1 ∨ α1 + (n1 − α2)
+ + α2 ∨ (n2 − α1)

R1 + 2R2 ≤n2 ∨ α2 + (n2 − α1)
+ + α1 ∨ (n1 − α2).

Evaluating the inequalities at R1 = n1, the maximum R2 gives the cognitive

capacity above. �

Using the notation in the proposition, we can rewrite the cognitive ca-
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pacity of the cognitive channel as

Ccog = max
δ

1

1 + δ
min(v1, v2 + δ(β ∨ α2 ∨ n1 − n1), v3, v4 + δ(β ∨ α2 ∨ n1 − n1)).

When β = 0, clearly the cognitive channel reduces to the original interference

channel and Ccog(β = 0) = CIFC
cog . When β ≤ α2 ∨ n1, we can see that

Ccog(β) = Ccog(β = 0) = CIFC
cog . Moreover, when the channel is aligned, i.e.,

n1 + n2 = α1 + α2, we have

Ccog ≤ max
δ

u3 = v3 = max(n1, n2, α1, α2)− n1 = CIFC
cog .

In both cases, the cooperation link is useless in this region and the opti-

mal interference channel scheme is enough. In the following discussions, we

assume β > α2 ∨ n1, n1 + n2 6= α1 + α2, and

Ccog = max
δ

1

1 + δ
min(v1, v2 + δ(β − n1), v3, v4 + δ(β − n1)).

6.1.2 Coding Scheme

We consider general asymmetric schemes for this channel. Compared with

the symmetric case, we have several differences: (a) the interference channel is

asymmetric and is determined by (n1, α1, n2, α2); (b) for the virtual channel,

as n21 = 0, we have C21 = 0.

In our coding scheme, we will not use the pre-shared message. So we set

C14 = C23 = 0. Hence, we can denote the channel as IFcoop(n1, α1, n2, α2, C12).

Moreover, relay is also not used in this case, and we set the relay rates

∆R123 = ∆R214 = 0. To meet R1 = n1 in the cognitive capacity definition,

our scheme chooses R1B = R1A = n1.

To choose the auxiliary random variables in Theorem 4.1 for this sym-

metric virtual channel, let n = n1 ∨ α1 ∨ n2 ∨ α2. For source i ∈ {1, 2}, we

define the public and private auxiliary random variables Wi, Ui, respectively,

to be independent and with identical alphabets Fn
2 . While the public aux-

iliary random variables are uniformly distributed over their alphabets, the

upper n− (ni − αi)
+ elements of the private auxiliary random variables are

fixed to be 0 and the lower (ni−αi)
+ elements are uniformly distributed over
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F(ni−αi)
+

2 . In Theorem 4.1, we set V ′
i = 0 and

XWi
= Wi,

XUi
= Wi + Ui.

Note that Ui occupies the lower (ni − ni)
+ levels, so that it does not appear

at the other destination.

For the cooperative private codebook, we set the auxiliary random vari-

able V2 = 0 and choose V1 independent of the auxiliary random variables

and distributed over Fn
2 with the upper n−k elements being 0 and the lower

k elements uniformly distributed over Fk
2. The choice of k will be specified

later. We choose (XV1 , XV2) as deterministic functions of V1 such that the

beamforming is a zero-forcing beamforming. In other words, our choice will

be such that the signals cancel each other at destination 2. Specifically, we

require  V1

0

 =

 Sn−n1 Sn−α1

Sn−α2 Sn−n2

 XV1

XV2

 . (6.1)

For this scheme to be feasible, k is chosen such that for arbitrary V1 in Fn
2

with the upper n− k elements being 0, there exists (XV1 , XV2) satisfying the

above equation. We call such k realizable and we have the following lemma.

Lemma 6.1 For a channel with parameters (n1, n2, α1, α2), the biggest real-

izable k is [n1 − (α2 − n2)
+] ∨ [α1 − (n2 − α2)

+].

Proof. Clearly we have k ≤ n1 ∨ α1. Assume α2 ≥ n2. As V2 = 0 and the

upper α2−n2 bits of V2 and XV1 are the same, those bits of XV1 must be zero.

After removing the corresponding first α2 − n2 columns, the channel matrix

is equivalent to a channel with parameters (n1− (α2−n2), n2, α1, n2). Hence,

we have k ≤ (n1 − (α2 − n2)) ∨ α1. Ignoring the all-zero rows of this new

channel matrix, it is not hard to see that it is of full row rank and for any

V1 ∈ Fk
2 with its upper n−k elements being 0, where k = (n1−(α2−n2))∨α1,

there exists XV1 , XV2 satisfying (6.1). Hence, the maximum realizable k is

(n1 − (α2 − n2)) ∨ α1. A similar argument can be made for α2 < n2; and

combining the two, we have the lemma. �

So in our scheme, we set k = [n1 − (α2 − n2)
+] ∨ [α1 − (n2 − α2)

+].
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Source 1 sends XL
U1

+ XL
V1

and source 2 sends XL
U2

. The induced channel

pY3,Y4|W1,W2,U1,U2,V1 is

Y3 = Sn−n1(W1 + U1) + Sn−α1W2 + V1

Y4 = Sn−n2(W2 + U2) + Sn−α2W1.

By Theorem 4.1, the rate pair (RW1+RU1+RV1 , RW2+RU2) is achievable if the

rates RW1 , RU1 , RV1 , RW2 , RU2 are nonnegative and they satisfy the following

conditions:

RW1 + RU1 + RW2 + RV1 ≤ max(α1, n1)

RU1 + RW2 + RV1 ≤ max(α1, k)

RW1 + RU1 + RV1 ≤ max(n1, k)

RW1 + RU1 ≤ n1

RU1 + RW2 ≤ max(n1 − α2, α1)

RU1 + RV1 ≤ k

RU1 ≤ (n1 − α2)
+

RV1 ≤ C12

RW1 + RW2 + RU2 ≤ max(α2, n2)

RW1 + RU2 ≤ max(n2 − α1, α2)

RW2 + RU2 ≤ n2

RU2 ≤ (n2 − α1)
+.

Set R1 = RW1 + RU1 + RV1 = n1 and R2 = RW2 + RU2 . Applying Fourier-

Motzkin elimination to the above inequalities, we get

Theorem 6.2 The following is an achievable cognitive rate for the channel

IFcoop(n1, α1, n2, α2, C12),

Rvirtual
cog = min(v1, v2 + C12, v3, v4 + C12)

in which vi, i = 1, 2, 3, 4 are defined in Proposition 6.1.1.

With this theorem in hand, showing the achievability of the cognitive

capacity for the original half-duplex channel Ccog is quite straightforward. We

set δB = δ, δC = 0, δA = 1. For the superposition coding in mode B, source
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1 sets rate R1B = n1 and the shared rate C12

δ
= β − n1 or C12 = δ(β − n1).

As R1B = R1A = n1, the total rate for the primary is R1 = n1. So by

Theorem 4.2, the cognitive rate achieved by the secondary is

Rcog = max
δ≥0

1

1 + δ
Rvirtual

cog = max
δ≥0

min(u1, u2, u3, u4),

where u1, u2, u3, u4 were defined in Theorem 6.1.

6.1.3 An Interpretation of the Scheme

For the interesting region β > α2 ∨ n1 and n1 + n2 6= α1 + α2, we can obtain

a simple interpretation of the scheme by optimizing over δ. Let

Ccog(δ) =
1

1 + δ
min(v1, v2 + δ(β − n1), v3, v4 + δ(β − n1))

=
1

1 + δ
min(v1 ∧ v3, v2 ∧ v4 + δ(β − n1)).

Define δ0 = v1∧v3−v1∧v2∧v3∧v4

β−n1
≥ 0. When δ ≥ δ0,

Ccog(δ) =
1

1 + δ
[v1 ∧ v3] ≤

1

1 + δ0

[v1 ∧ v3].

When 0 ≤ δ < δ0, we must have δ0 > 0, which means v1∧v3 > v1∧v2∧v3∧v4;

hence, v2 ∧ v4 = v1 ∧ v2 ∧ v3 ∧ v4.

Ccog(δ) =
1

1 + δ
[v2 ∧ v4 + δ(β − 1)]

≤ max
(
v2 ∧ v4,

1

1 + δ0

[v2 ∧ v4 + δ0(β − 1)]
)

= max
(
v1 ∧ v2 ∧ v3 ∧ v4,

1

1 + δ0

[v1 ∧ v3]
)

.

The second inequality is due to the fact that Ccog(δ) is a monotone function

in this region and its maximum is achieved at the end points. Noting v2∧v4 =

v1 ∧ v2 ∧ v3 ∧ v4, we get the last equality.

In summary,

Ccog(δ) ≤ max
(
v1 ∧ v2 ∧ v3 ∧ v4,

1

1 + δ0

[v1 ∧ v3]
)
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Ccog = max
δ

Ccog(δ) = max
(
v1 ∧ v2 ∧ v3 ∧ v4,

1

1 + δ0

[v1 ∧ v3]
)

.

The equality is achieved by taking either δ = 0 or δ = δ0. As defined in

Section 6.1.1, CIFC
cog = v1 ∧ v2 ∧ v3 ∧ v4. Now if we let α2 = 0, the interfer-

ence channel reduces to the corresponding Z-channel and we can define its

cognitive capacity as

CZ
cog = CIFC

cog (α2 = 0) = v1 ∧ v2 ∧ v3 ∧ v4|α2=0 = v1 ∧ v3,

then the equation above can be rewritten as

Ccog = max
(
CIFC

cog ,
1

1 + δ0

CZ
cog

)
.

Using this expression, we can now get a new interpretation of our scheme

. It contains two optional schemes. One is the optimal scheme for the inter-

ference channel that achieves its cognitive capacity. In the second scheme,

the secondary first listens in mode B long enough to collect information of

the interference from source 1 during mode A. In each time instant, it gets

β − n1 bits. Then in mode A, it uses this information to perform dirty

paper coding to fully “cancel” the interference. So the original channel is

now equivalent to a Z-channel and CZ
cog is achieved for the secondary. The

amount of information needed to cancel interference is CZ
cog − CIFC

cog ; hence,

the time to listen is δ0 =
CZ

cog−CIFC
cog

β−n1
, as defined above. It is easy to see that

this scheme achieves rate 1
1+δ0

CZ
cog, and our scheme picks the better of the

two and achieves Ccog.

6.1.4 Converse

To prove the converse, we need the following theorem.

Theorem 6.3 The capacity region C is contained within
⋃

δ C (δ), where

C (δ) is the set of rate pairs (R1, R2) satisfying

R2 ≤
1

1 + δ
n2

R1 + R2 ≤
1

1 + δ
[max(n2, α2) + δ max(β, α2, n1) + (n1 − α2)

+]
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R1 + R2 ≤
1

1 + δ
[max(α1, n1) + δn1 + (n2 − α1)

+]

2R1 + R2 ≤
1

1 + δ
[max(α1, n1) + δ + (n1 − α2)

+ + max(n2 − α1, α2)

+ δ max(β, α2, n1)].

For schemes with scheduling parameter δ, C (δ) can be shown as an outer

bound on the achievable rate region. The first upper bound is proved by

assuming no interference. The second and third upper bounds are proved

along the lines of the Z-channel bound in [9], and the last bound has simi-

larities to the 2R1 + R2 upper bound in the same reference. The full details

are provided for the Gaussian model.

By evaluating the upper bounds with R1 = n1 and optimizing over δ,

we get an upper bound on R2 that matches the cognitive capacity given in

Theorem 6.1.

6.2 The Cognitive Case: Gaussian Model

We follow the intuition in the previous section to approximately characterize

the R0-capacity of the Gaussian cognitive channel. The auxiliary random

variables for the virtual channel in Theorem 4.1 are chosen as follows: For

source i = 1, 2, we define respectively the public and the private auxiliary

random variables Wi and Ui to be independent, zero-mean Gaussian random

variables with variances σ2
Wi

, σ2
Ui

, respectively. In Theorem 4.1, we define

XWi
= Wi,

XUi
= Wi + Ui.

The choice of σ2
Ui

will be such that it appears at lower than the noise power

at the destination where it may cause interference. Following the intuition

from the linear deterministic case, we will employ zero-forcing beamforming

for the cooperative private messages. We choose V2 = 0 and V1 to be inde-

pendent (of each other and all previously defined auxiliary random variables),

identically distributed, zero-mean Gaussian random variables with variance

σ2
V1

. When the channel matrix is invertible, we will impose the following

zero-forcing condition, which will ensure that the cooperative signal cancels

37



out at destination 4.  V1

0

 =

 h13 h23

h14 h24

 XV1

XV2

 .

In this case, XVi
, i = 1, 2 are correlated Gaussian random variables with

variances

Var (XV1) =
|h24|2

|h13h24 − h14h23|2
σ2

V1

=
SNR2

SNR1SNR2 + INR1INR2 − 2
√
SNR1SNR2INR1INR2 cos θ

σ2
V1

, (6.2)

Var (XV2) =
|h14|2

|h13h24 − h14h23|2
σ2

V1

=
INR2

SNR1SNR2 + INR1INR2 − 2
√
SNR1SNR2INR1INR2 cos θ

σ2
V1

. (6.3)

When the channel matrix is singular, we set1 σ2
V1

= 0; i.e., there is no co-

operative provate message. The variance parameters must satisfy the power

constraint

Var (XUi
) + Var (XVi

) ≤ 1, i = 1, 2.

The destinations receive

Y3 =h13(W1 + U1) + h23W2 + V1 + h23U2 + Z3

Y4 =h24(W2 + U2) + h24W1 + h14U1 + Z4.

In Theorem 4.2, as mentioned earlier, we set C21 = C14 = C23 = ∆R123 =

∆R214 = 0; i.e., only C12 is nonzero, in general.

In appendix D, we show that with the above choice of auxiliary random

variables, there are power and rate allocations under which we achieve an

R1 which is within R0 of the point-to-point capacity C0 = log(1 + SNR1) of

the primary link and an R2 which is within a constant of CR0 as defined in

Theorem 3.2. Specifically, we prove that

1In fact, in a region where the channel matrix is ill-conditioned, we do not employ
cooperative private messages.
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Theorem 6.4 If R0 > 7,

CR0 ≥ CR0 − 23− 2R0.

To prove the converse part of Theorem 3.2, we need a theorem that is similar

to Theorem 6.3. We prove the following in appendix E.

Theorem 6.5 The capacity region C is contained within
⋃

δ C (δ), where

C (δ) is the set of rate pairs (R1, R2) satisfying

R2 ≤
1

1 + δ
log(1 + x2P2A)

R1 + R2 ≤
1

1 + δ

[
log(1 + 2x2P2A + 2y2P1A) + δ log(1 + (x1 + y2 + z)P1B)

+ log(1 +
x1P1A

1 + y2P1A

)
]

R1 + R2 ≤
1

1 + δ

[
log(1 + 2x1P1A + 2y1P2A) + δ log(1 + x1P1B)

+ log(1 +
x2P2A

1 + y1P2A

)
]

2R1 + R2 ≤
1

1 + δ

[
log(1 + 2x1P1A + 2y1P2A) + δ log(1 + x1P1B)

+ log(1 +
x1P1A

1 + y2P1A

) + log(1 + y2P1A +
2x2P2A + y2P1A

1 + y1P2A

)

+ δ log(1 + (x1 + y2 + z)P1B)
]

with power constraint

P1A + δP1B

1 + δ
≤ 1,

P2A

1 + δ
≤ 1, P2B = 0.

By setting the power terms to be their maximum possible value, i.e., PiA =

1 + δ, P1B = 1+δ
δ

, i = 1, 2, we get a new outer bound on the capacity region.

The following lemma is shown in appendix C.

Lemma 6.2 The capacity region C is contained within
⋃

δ C (δ), where C (δ)

is the set of rate pairs (R1, R2) satisfying

R2 ≤
1

1 + δ
log(1 + x2) + 1

R1 + R2 ≤
1

1 + δ

[
log(1 + 2x2 + 2y2) + δ log(1 + (x1 + y2 + z))
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+ log(1 +
x1

1 + y2

)
]

+ 2

R1 + R2 ≤
1

1 + δ

[
log(1 + 2x1 + 2y1) + δ log(1 + x1) + log(1 +

x2

1 + y1

)

]
+ 2

2R1 + R2 ≤
1

1 + δ

[
log(1 + 2x1 + 2y1) + δ log(1 + x1) + log(1 +

x1

1 + y2

)

+ max(log(1 + y2 +
2x2 + y2

1 + y1

), log(1 + 2y2))

+ δ log(1 + (x1 + y2 + z))
]

+ 3

Setting R1 = log(1 + x1)−R0 in this lemma, we get CR0 ≤ CR0 .
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APPENDIX A

PROOF OF THEOREM 5.3

We prove this sum-rate achievability result in two steps. Instead of directly

comparing Csum with the rate achievable by the coding scheme in section 4,

we will first show that the Csum is within a constant of CLDM
sum , a quantity we

define below, inspired by the result for the linear deterministic model. We

will then prove that the coding scheme in section 4 can be used to achieve

a sum-rate which is within a constant of CLDM
sum . Specifically, we prove the

following two lemmas, which together imply Theorem 5.3.

Lemma A.1 Let nD = blog SNRc+, nI = blog INRc+, nC = blog CNRc+. De-

fine

CLDM
sum = max

δ
CLDM

sum (δ) = max
δ

min(u′1 − 6, u′2 − 4, u′3, u
′
4 − 4, u4 − 10)

where

u′1 =
2

2 + δ
(δnD + max{nD, nC})

u′2 =
1

2 + δ
(δ max{2nD − nI , nI}+ nD + max{nD, nI , nC})

u′3 =
2

2 + δ
(δ max{nI , nD − nI}+ max{nD, nC})

u′4 =
2(1 + δ)

2 + δ
max{nD, nI}

and u4 is as defined in Theorem 3.1. Then Csum ≤ CLDM
sum + 10.

Lemma A.2 Csum ≥ CLDM
sum − 7.

Note that in the definition of CLDM
sum we have preserved the term u4 rather

than have all the terms as functions of nD, nI , and nC . The reason for this is

that the linear deterministic model is too coarse to model the channel phase

information. When the channel matrix becomes ill-conditioned, the term u4

may dominate Csum and also have a large gap with respect to u′4.
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A.1 Proof of Lemma A.1

We let blog xc+ = nD, blog yc+ = nI , blog zc+ = nC . Observe that

1. blog xc+ ≤ (log x)+ ≤ blog xc+ + 1.

2. blog xc+ ≤ log(1 + x) ≤ 1 + (log x)+ ≤ 2 + blog xc+.

We can show that

log(1 + 2x + 2y) ≤ log 5 + (log(x ∨ y))+ ≤ log 5 + (log x)+ ∨ (log z)+

≤ log 5 + 1 + nD ∨ nI

log(1 + y +
2x + y

1 + y
) ≤ log(1 + 3y + y2 + 2x)− log(1 + y)

≤ log 7 + (log y)+ ∨ (log y2)+ ∨ (log x)+ − nI

≤ log 7 + (2nI + 2) ∨ (nD + 1)− nI

≤ log 7 + nI ∨ (nD − nI) + 2.

Using these, it is easy to verify that

u1 ≤ u′1 +
2

2 + δ
(2δ + log 3 + 1) ≤ u′1 + 4 ≤ u′1 − 6 + 10

u2 ≤ u′2 +
1

2 + δ
((log 5 + 1)δ + 2 + 3 + (log 3 + 1)δ) ≤ u′2 + log 15 + 2

≤ u′2 − 4 + 10

u3 ≤ u′3 +
2

2 + δ
((log 7 + 2)δ + 3) ≤ u′3 + 2(log 7 + 2) ≤ u′3 + 10

u4 ≤ u′4 +
1

2 + δ
((log 13 + 2)δ + 2(log 3 + 1)) ≤ u′4 + log 13 + 2

≤ u′4 − 4 + 10.

Thus, we have

Csum = max
δ

min(u1, u2, u3, u4)

≤ max
δ

min(u′1 − 6, u′2 − 4, u′3, u
′
4 − 4, u4 − 10) + 10 = CLDM

sum + 10.
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A.2 Proof of Lemma A.2

To simplify notation, let

β1 =
x2 + y2 − 2xy cos θ

x(x + y)

β2 =
x2 + y2 − 2xy cos θ

y(x + y)

Then, for the auxiliary random variables in section 5.2, we have σ2
V =

β1xVar (XV ). Let us also note some useful facts about β1 and β2.

1. β1x = β2y.

2. 1
2
≤ x

y
≤ 2 → βi ≤ 3, i = 1, 2

3. x
y
≥ 2 → β1 ≥ 1

6
, y

x
≥ 2 → β2 ≥ 1

6
.

To prove the lemma, we will consider five different regions which together

cover all possibilities.

Region 1: z ≤ x or z ≤ 1 or y ≤ 1.

In this region, we do not use any cooperation (δB = δC = 0 in The-

orem 4.2). The scheme reduces to Han and Kobayashi’s scheme for the

interference channel. Using this scheme, we have the following achievable

sum-rate for the interference channel.

Lemma A.3 RIFC
sum − 6 is achievable for the interference channel, where

RIFC
sum = min


(2nD − nI) ∨ nI

2(nI ∨ (nD − nI))

2nD

 .

Proof. We know from [9] that the sum capacity of the interference channel

is upper bounded by C IFC
sum defined below.

When SNR ≥ INR,

C IFC
sum = min

 log(1 + SNR) + log(1 + SNR
1+INR

)

2 log(1 + INR + SNR
1+INR

 .
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When SNR < INR,

C IFC
sum = min

 log(1 + SNR + INR)

2 log(1 + SNR)

 .

In either case, it is not hard to verify that C IFC
sum > RIFC

sum − 4. As C IFC
sum can

be achieved within 2 bits when SNR ≥ INR [9] and achieved exactly when

SNR < INR [6], we can conclude that RIFC
sum−6 is achievable for the interference

channel. �

When z ≤ x or z ≤ 1 or y ≤ 1, we can verify that CLDM
sum = maxδ min(u′1−

6, u′2− 4, u′3, u
′
4− 4) ≤ maxδ min(u′1, u

′
2, u

′
3, u

′
4) ≤ RIFC

sum. By the above lemma,

CLDM
sum can be achieved within 6 bits in this region.

Region 2: 1
2
≤ x

y
≤ 2, z > x, z > 1, and y > 1.

If x < 1, we have y ≤ 2x < 2, and we get nD = nI = 0. Hence CLDM
sum = 0,

which can be achieved trivially. Hence, let us take x ≥ 1.

In this region, we have nI − 2 ≤ nD ≤ nI + 2 and β1 ≤ 3. We set

Csd = 0, ∆R = 0. In modes B and C, each source uses power 1 − 1
x

to send

data to its own destination and uses power 1
x

to share bits with the other

source. Under the natural order for superposition coding, the following rates

are achievable.

RB = RC = log

(
1 +

(1− 1
x
)x

2

)
= log(1 + x)− 1 ≥ (nD − 1)+

δCss = log
(
1 +

z

x

)
≥ log

(
z

x

)
≥ (nC − nD − 1)+.

We set RB = RC = (nD − 1)+ and δCss = (nC − nD − 1)+.

For the virtual channel, we set rates RU = RV ′ = 0 and powers σ2
W =

1
2
, Var (XV ) = 1

2
. Then, destination 3 gets W1, W2, V1 with powers x

2
, y

2
, β1x

2
,

respectively, and destination 4 gets W2, W1, V2 with powers x
2
, y

2
, β1x

2
, respec-

tively. From Theorem 4.1, nonnegative rates which satisfy the following

44



conditions are achievable1

RW ≤ log
(
1 +

x

2

)
RV ≤ log

(
1 +

β1x

2

)
RV + RW ≤ log

(
1 +

x + β1x

2

)
2RW ≤ log

(
1 +

x + y

2

)
RW + RV ≤

(
1 +

y + β1x

2

)
2RW + RV ≤ log

(
1 +

x + y + β1x

2

)
RV ≤ Css.

The above conditions are met if the following reduced set of constraints are

satisfied.

2RW + RV ≤ log
(
1 +

y

2

)
RW + RV ≤ log

(
1 +

x

2

)
RV ≤ log

(
1 +

β1x

2

)
∧ Css.

and RW , RV ≥ 0. This implies that nonnegative rates satisfying the condi-

tions below are also achievable.

2RW + RV ≤ (nI − 1)+

RW + RV ≤ (nD − 1)+

RV ≤ log
(
1 +

β1x

2

)
∧ Css

1Redundant conditions are not listed here. Also, conditions corresponding to error
events which involve an unwanted message along with zero-rate messages are also not
listed. For example, the rate constraint on RW2 + RU1 is avoided since it corresponds to
the error event of destination 3 making an error on the unwanted message mW2 and the
message mU1 , which is absent in this case.
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Let RA = 2(RW + RV ), the sum-rate achieved by the virtual channel. We

have

RA = min


(2nD − 2)+

(nI + Css − 1)+

(nI + log(1 + β1x
2

)− 1)+

 .

We achieve a sum-rate of Rsum = 1
2+δ

(δRA + RB + RC). Observing that

1. nD ∧ nI ≥ max(nD, nI)− 2,

2. max(2nD − nI , nI) ≤ max(nD, nI) + 2

nC = max(nD, nC) ≥ max(nD, nI , nC)− 2,

3. log(1 + β1x
2

) = log(1 + x2+y2−2xy cos θ
2(x+y)

)

≥ log(1 + x + y + x2 + y2 − 2xy cos θ)− log(2(x + y))

≥ log(1 + 4x + 4y + x2 + y2 − 2xy cos θ)− 2− (max(nD, nI) + 3), and

4. 2 log(1 + x + y) ≤ 2(log 3 + 1 + max(nD, nI)),

we get

Rsum ≥ min


u′4 − 6δ+6

2+δ

u′2 − 4δ+5
2+δ

u4 − 6δ+8+2 log 3
2+δ

 ≥ CLDM
sum (δ)− 2.

Hence, CLDM
sum can be achieved within 2 bits in this region.

Region 3: 2y < x < z and y > 1.

In this region, β1 ≥ 1
6

is a finite constant bounded away from 0. We set

Csd = 0, ∆R = 0. As in the previous region, in modes B and C, each source

uses power 1 − 1
x

to send data to its own destination and uses power 1
x

to

share bits with the other source. Under the natural order for superposition

coding, the following rates are achievable.

RB = RC = log

(
1 +

(1− 1
x
)x

2

)
= log(1 + x)− 1 ≥ (nD − 1)+

δCss = log
(
1 +

z

x

)
≥ log

(
z

x

)
≥ (nC − nD − 1)+.

We set RB = RC = (nD − 1)+ and δCss = (nC − nD − 1)+.
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For the virtual channel, we take RV ′ = 0 and set powers σ2
W = 1

3
, σ2

U =
1
3y

, Var (XV ) = 1
3
. So destination 3 receives W1, U1, W2, V1, U2 with powers

x
3
, x

3y
, y

3
, β1x

3
, 1

3
, respectively, and destination 4 gets W2, U2, W1, V2, U1 with

powers x
3
, x

3y
, y

3
, β1x

3
, 1

3
, respectively. It is easy to verify that the following

constraints on nonnegative rates imply all the relevant rate constraints in

Theorem 4.1.

2RW + RU + RV ≤ log
(
1 +

β1x

4

)
RU + RW ≤ log

(
1 +

x
y

+ y

4

)
RU ≤ log

(
1 +

x

4y

)
RV ≤ Css.

Hence, the following nonnegative rates are achievable.

2RW + RU + RV ≤ (nD − 2− log 6)+

RU + RW ≤ (max(nD − nI , nI)− 3)+

RU ≤ (nD − nI − 3)+

RV ≤ Css.

Setting RA = 2(RW + RU + RV ), we can achieve

RA = min


(2nD − 4− 2 log 6)+

(2 max(nD − nI , nI) + 2Css − 6)+

(2nD − nI + Css − 5− log 6)+

 .

We get

Rsum =
1

2 + δ
(δRA + RB + RC)

≥ min


u′4 −

(4+2 log 6)δ+2
2+δ

u′3 − 6δ+4
2+δ

u′2 −
(5+log 6)δ+3

2+δ

 ≥ CLDM
sum (δ)− 6.

Hence, CLDM
sum can be achieved within 6 bits in this region.
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Region 4: 2x < y ≤ z and y > 1.

In this region, β2 ≥ 1
6

and we set Csd = 0. We further divide this region

into two subregions depending on whether x ≥ 1 or x < 1. Moreover, when

nC is small, we will use only the cooperative private signal to improve the

virtual channel sum-rate. But when nC is big enough to achieve the cut-

set bound of the virtual channel, we need to use relaying in modes B and

C (∆R > 0) to further increase the achievable rate. In each subregion, we

consider two cases – one involving relaying in modes B and C (∆R > 0) and

the other not (∆R = 0).

Subregion 1: x < 1 < y ≤ z. As nD = 0, no (significant) direct transmission

of data from source to destination is possible; all data must pass through the

other source. It can happen in one of two ways: relaying in modes B and C,

and cooperative private message for the virtual channel. We consider these

two cases.

Case 1: yδ ≥ z. In this case, we do not relay in modes B and C (i.e.,

∆R = 0). In modes B and C, the sources use all their power to send data to

the other source. Then

δCss = log(1 + z) ≥ nC .

For the virtual channel, each source relays the shared data to the other

destination and the direct link signals are treated as interference. It is easy

to see that we can achieve

RA = 2 min(log(1 +
y

1 + x
), Css)

≥ 2 min((nI − 1), Css) ≥ 2(
nC

δ
− 2),

where the last inequalty follows from the fact that the condition yδ ≥ z

implies that δnI + δ ≥ nC . The sum-rate achieved is

Rsum =
1

2 + δ
δRA ≥ u′1 −

4δ

2 + δ
≥ CLDM

sum (δ).

Hence, CLDM
sum can be achieved in this case.
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Case 2: yδ ≤ z. In mode B and C, each source uses powers 1
2

√
yδ

z
and 1

2
,

respectively, to share bits with the other source and the other destination,

respectively. With the natural order for superposition coding, the following

rates are achievable.

∆R = log
(
1 +

y
2

1 + 1
2

√
yδ+2

z

)

≥ log
(
1 +

y

2

)
− log

(
1 +

1

2

√
yδ+2

z

)

≥ nI − 1−
(

log

√
yδ+2

z
− 1

)+

− 1

≥ nI − 2−
(

δ + 2

2
nI −

1

2
nC +

δ

2

)+

≥ nI − 2−
(

δ + 2

2
nI −

1

2
nC

)+

− δ

2

≥ min(nI ,
1

2
(nC − δnI))−

δ

2
− 2

∆R + δCss = log(1 +
1

2

√
yδz)

≥ (log
√

yδz − 1)+

≥ log
√

yδz − 1

≥ 1

2
(nC + δnI)− 1.

We set

δCss =
(
δnI −

3

2

)+

∆R =
(

min(nI ,
1

2
(nC − δnI))−

δ

2
− 2

)+

,

which is easily seen to be a valid choice. For the virtual channel, we use the

same scheme as in case 1 and we achieve

RA = 2 min((nI − 1), Css) = 2
(
nI − 1− 3

2δ

)
.

Then, the achieved sum-rate is

Rsum =
1

2 + δ
(δRA + 2∆R)
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≥ 1

2 + δ
(2δnI − 2δ − 3 + 2∆R)

≥ min

 u′4

u′2

− 3δ + 7

2 + δ
≥ CLDM

sum (δ).

Hence, CLDM
sum can be achieved in this case.

Subregion 2: 1 ≤ x < y ≤ z. We consider two cases.

Case 1: yδx ≥ z. This is the case when nC is small. We set ∆R = 0. As

in regions 2 and 3, in modes B and C, each source uses power 1− 1
x

to send

data to its own destination and uses power 1
x

to share bits with the other

source. Under the natural order for superposition coding, the following rates

are achievable.

RB = RC = log

(
1 +

(1− 1
x
)x

2

)
= log(1 + x)− 1 ≥ (nD − 1)+

δCss = log
(
1 +

z

x

)
≥ log

(
z

x

)
≥ (nC − nD − 1)+.

We set RB = RC = (nD − 1)+ and δCss = (nC − nD − 1)+.

For the virtual channel, we choose RU = RV ′ = 0 and set powers σ2
W =

1
2
, Var (XV ) = 1

2
. Note that β1x = β2y. So destination 3 receives W1, W2, V1

with powers x
2
, y

2
, β2y

2
, respectively, and destination 4 gets W2, W1, V2 with

powers x
2
, y

2
, β2y

2
, respectively. It is easy to verify that the following constraints

on nonnegative rates imply all the rate constraints in Theorem 4.1.

2RW + RV ≤ log
(
1 +

β2y

2

)
RW ≤ log

(
1 +

x

2

)
RV ≤ Css.

Hence, the following nonnegative rates are achievable.

2RW + RV ≤ (nI − log 6− 2)+

RW ≤ (nD − 1)+

RV ≤ Css.
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Setting RA = 2(RW + RV ), we can achieve

RA = min


(2nI − 2 log 6− 4)+

(nI + Css − log 6− 2)+

(2nD + 2Css − 2)+


≥ min

 (nI + nC−nD−1
δ

− 2 log 6− 5)+

(2nD + 2nC−nD−1
δ

− 2)+

 .

The second inequality is due to the fact the condition yδx ≥ z implies that

nC − nD − 1 ≤ δ(nI + 1). Thus, the following is an achievable sum-rate

Rsum =
1

2 + δ
(δRA + RB + RC)

≥ min

 u′2 −
(5+2 log 6)δ+3

2+δ

u′1 − 2δ+4
2+δ


≥ CLDM

sum − 7.

Hence, CLDM
sum can be achieved within 7 bits in this case.

Case 2: yδx ≤ z. In this case, nC is large enough to require relaying in

modes B and C. Unlike case 1, for modes B and C, sources use power of 1
3

to send data to its own destination, and 1
3

√
yδ

xz
and 1

3x
, respectively, to send

to the other source and the other destination, respectively. With the natural

order for superposition coding, the following are achievable.

RB = RC = log

1 +
x
3

1 + 1
3

+ 1
3

√
xyδ

z

 ≥ log(1 +
x

5
) ≥ (nD − log 5)+

∆R = log

1 +
y
3x

1 + 1
3

√
yδ+2

xz


≥
(

log
y

x
− log 3

)+

−
(

log

√
yδ+2

xz
− log 3

)+

− 1

≥nI − nD − 1− log 3

− (
1

2
((δ + 2)nI − nD − nC + δ) + 1− log 3)+ − 1

≥nI − nD − 2− log 3− 1

2
((δ + 2)nI − nD − nC)+ − 1

2
δ

≥min(nI − nD,
1

2
(nC − nD − δnI))− 2− log 3− 1

2
δ
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∆R + δCss = log

1 +
1

3

√
zyδ

x


≥(

1

2
log(

zyδ

x
)− log 3)+

≥1

2
log(

zyδ

x
)− log 3

≥1

2
(nC + δnI − nD − 1)− log 3.

We set

RB = RC = (nD − log 5)+

δCss = (δnI − 1− log 3)+

∆R = (min(nI − nD,
1

2
(nC − nD − δnI))− 2− log 3− 1

2
δ)+.

Since the condition yδx ≤ z implies that δnI − 1 ≤ nC − nD, it is easy to see

that the above choice is valid.

For the virtual channel, the scheme is the same as in case 1, which gives

RA = min


(2nI − 2 log 6− 4)+

(nI + Css − log 6− 2)+

(2nD + 2Css − 2)+


≥ 2nI − 2 log 6− 4− 2 + 2 log 3

δ
.

Thus, the following is an achievable sum-rate.

Rsum =
1

2 + δ
(δRA + RB + RC + 2∆R)

=
2

2 + δ
(δnI − (2 + log 6)δ + nD − 1− log 3− log 5∆R)

=
2

2 + δ
(δnI + nD + min(nI − nD,

1

2
(nC − nD − δnI))

− (
5

2
+ log 6)δ − 3− 2 log 3− log 5)

≥ min

 u′4

u′2

− (5 + 2 log 6)δ + 6 + 4 log 3 + 2 log 5

2 + δ

≥ CLDM
sum (δ)− (1 + 2 log 6)

≥ CLDM
sum (δ)− 7.
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Hence, CLDM
sum can be achieved within 7 bits in this case.

Region 5: x < z < y, 2x < y, and z > 1.

In this region, β2 ≥ 1
6
. We again subdivide this region into two subregions

depending on whether or not x ≥ 1. Moreover, when nC and nI are small, we

will use only the cooperative private signal and the pre-shared public signal

to improve the virtual channel sum-rate. But when nC , nI are big enough

to achieve the cut-set bound of the virtual channel, we need to use relaying

in modes B and C (i.e., ∆R > 0) to further improve the achievable rate. In

each subregion, we will consider both cases.

Subregion 1: x < 1 < z < y. As in subregion 1 of region 4, since nD = 0, no

(significant) direct transmission of data from source to destination is possible;

and all data must pass through the other source. It can happen in one of

two ways: relaying in modes B and C, and cooperative private message for

the virtual channel. Again, we consider two cases.

Case 1: yδ ≥ z. The same scheme that we used in region 4, subregion 1,

case 1 (i.e., 2x < y, x < 1 < y ≤ z and yδ ≥ z), applies here.

Case 2: yδ < z. In modes B and C, each source uses powers 1
2

and
1

2
√

y1+δ
to share bits with the other source and the other destination, respec-

tively. Under the natural order of superposition coding, the following rates

are achievable.

δCss + ∆R = log
(
1 +

z
2

1 + z

2
√

y1+δ

)

≥ log
(
1 +

z

2

)
− log

(
1 +

z

2
√

y1+δ

)

≥ nC − 1−
(

log
z√
y1+δ

− 1
)+

− 1

≥ nC − 2−
(
nC −

1 + δ

2
nI

)+

= min
(
nC ,

1 + δ

2
nI

)
− 2

∆R = log
(
1 +

1

2

√
y1−δ

)
≥ 1− δ

2
nI − 1.
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We set

δCss = δnI − 3

∆R = min
(
nC − δnI ,

1− δ

2
nI

)
− 1.

It is easy to see that the above choice is valid. For the virtual channel, let

us use the same scheme as in case 1, and we have

RA = 2 min((nI − 1), Css) ≥ 2
(
nI − 1− 3

δ

)
.

The sum-rate achieved is

Rsum =
1

2 + δ

(
δRA + 2∆R

)
≥ 2

2 + δ

(
δnI − δ − 3 + ∆R

)

≥ min

 u′1

u′2

− 2(δ + 4)

2 + δ
≥ CLDM

sum (δ).

Hence, CLDM
sum can be achieved in this case.

Subregion 2: 1 ≤ x < z < y.

Case 1: y ≤ xyδ or nC − nD + 1 ≤ δ(nI − nD). The condition y ≤ xyδ

leads to nI ≤ nD + δnI + δ +1. In mode B, C, each source uses power 1−1/x

to send data to its own destination and 1/x− 1/z and 1/z to share bits with

the other source and the other destination, respectively. Under the natural

order of superposition coding, the following rates are achievable.

RB = RC = log(1 + x)− 1 ≥ (nD − 1)+

δCss = log(1 +
z

x
)− 1 ≥ (nC − nD − 2)+

δCsd = log(1 +
y

z
) ≥ (nI − nC − 1)+.

We set the rates to the right-hand sides above.

For the virtual channel, we take RU = 0 and set powers σ2
W = 1

3
, σ2

V ′ =
1
3
, Var (XV ) = 1

3
. Note that β1x = β2y. Hence, destination 3 gets W1, W2, V1, V

′
1

with powers x
3
, y

3
, β2y

3
, x

3
, respectively, and destination 4 gets W2, W1, V2, V

′
2

with power x
3
, y

3
, β2y

3
, x

3
, respectively. It is easy to verify (using the fact that
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β2 ≤ (x+ y)/y) that the following constraints on nonnegative rates imply all

the rate constraints in Theorem 4.1.

2RW + RV + RV ′ ≤ log
(
1 +

β2y

3

)
RW + RV ′ ≤ log

(
1 +

x

3

)
RV ′ ≤ Csd

RV ≤ Css.

Hence, the following nonnegative rates are achievable.

2RW + RV + RV ′ ≤ (nI − log 3− log 6)+

RW + RV ′ ≤ (nD − log 3)+

RV ′ ≤ Csd

RV ≤ Css.

Setting RA = 2(RW + RV + RV ′), we can achieve

RA = min


(2nD + 2Css − 2 log 3)+

(nI + Css + Csd − log 3− log 6)+

(2nI − 2 log 3− 2 log 6)+

 .

Since y ≤ xyδ or nC − nD + 1 ≤ δ(nI − nD) holds, we have either

Css =
(nC − nD − 2)+

δ
≤ (δ(nI − nD)− 3)+

δ
≤ nI − nD, or

Css + Csd ≤
(nI − nD − 3)+

δ
≤ (δnI + δ − 2)+

δ
≤ nI + 1.

Therefore,

RA = min

 2nD + 2Css − 2 log 3− 2 log 6

nI + Css + Csd − 2 log 3− 2 log 6− 1

 .

Thus, we have an achievable sum-rate of

Rsum =
1

2 + δ
(δRA + RB + RC)
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≥ min

 u′1 −
(2 log 3+2 log 6)δ+6

2+δ

u′2 −
(2 log 3+2 log 6+1)δ+5

2+δ

 ≥ CLDM
sum (δ)− 7.

Hence, CLDM
sum can be achieved within 7 bits in this case.

Case 2: y ≥ xyδ and nC − nD + 1 ≥ δ(nI − nD). In modes B and C,

each source uses a power of 1
3

to send data to its own destination and 1
3x

and
1

3
√

y1+δx1−2δ
to share bits with the other source and the other destination,

respectively. Note that this is a valid power allocation since we may prove

that for this case, y1+δx1−2δ ≥ 1. Under the natural order for superposition

coding, the following rates are achievable

RB =RC = log
(
1 +

2
3

1 + 1
3

+ x

3
√

y1+δx1−2δ

)

≥ log
(
1 +

x

5

)
≥ (nD − log 5)+

δCss + ∆R = log
(
1 +

z
3x

1 + z

3
√

y1+δx1−2δ

)

≥ log
(
1 +

z

3x

)
− log

(
1 +

z

3
√

y1+δx1−2δ

)

≥nC − nD − 1− log 3−
(

log
z√

y1+δx1−2δ
− log 3

)+

− 1

≥nC − nD − 2− log 3

−
(
nC + 1− 1 + δ

2
nI −

1− 2δ

2
nD +

δ

2
− log 3

)+

≥nC − nD − 2− log 3−
(
nC −

1 + δ

2
nI −

1− 2δ

2
nD

)+

− δ

2

= min
(
nC − nD,

1 + δ

2
nI −

1 + 2δ

2
nD

)
− 2− log 3− δ

2

δCsd + ∆R = log

1 +
1

3

√
y1−δ

x1−2δ


≥
(

1

2
log

y1−δxδ

x1−δ
− log 3

)+

≥1

2
log

y1−δxδ

x1−δ
− log 3

≥1− δ

2
nI −

1− 2δ

2
nD −

1− δ

2
− log 3.
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We set

δCss = δ(nI − nD)− 3− log 3− δ

2

δCsd = δnD −
3

2
+

δ

2
− log 3

∆R = min
(
nC − nD − δ(nI − nD),

1− δ

2
nI −

1

2
nD

)
+ 1.

It is easy to verify that the above choice is valid using the fact that the

condition y ≥ xyδ implies that nI + 1 ≥ nD + δnI and 1− δ ≥ 0.

For the virtual channel, we use the same scheme as in case 1 and achieve

RA = min


2nD + 2Css − 2 log 3

nI + Css + Csd − log 3− log 6

2nI − 2 log 3− 2 log 6


≥ 2nI − 2 log 3− 2 log 6−

9
2

+ 2 log 3

δ

≥ 2nI − 2 log 3− 2 log 6− 6 + 2 log 3

δ
.

Hence, the total achievable sum rate is

Rsum =
1

2 + δ
(δRA + RB + RC + 2∆R)

≥ 2

2 + δ
(δnI + nD − (log 3 + log 6)δ − 3− log 3− log 5 + ∆R)

≥ min

 u′1

u′2

− 2

2 + δ
((log 3 + log 6)δ + 2 + log 3 + log 5)

≥ CLDM
sum (δ)− 6.

Hence, CLDM
sum can be achieved within 6 bits in this case.
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APPENDIX B

PROOF OF THEOREM 5.4

We will show that for fixed δ ≥ 0, Cut(δ), Z(δ), V (δ), Cut′(δ) are upper-

bounds to the sum rate. Let Pi,t = |Xi,t|2, i = 1, 2, and t = 1, 2, . . . , N . We

define the average power in the different modes as follows:

PiA =
2 + δ

δN

∑
t∈A

P1,t, PiB =
2 + δ

N

∑
t∈B

P1,t, PiC =
2 + δ

N

∑
t∈B

P1,t, i = 1, 2.

By power constraint, we have δPiA+PiB+PiC

2+δ
≤ 1, i = 1, 2. We further define

V L
1A =h13X

L
1A + ZL

1A, UL
1A =h14X

L
1A + ZL

2A,

V L
2A =h24X

L
2A + ZL

2A, UL
2A =h23X

L
2A + ZL

1A.

1. Cut(δ)

L(R1 −
ε

2
)

≤I(W1; Y
L
3A, Y L

3B, Y L
3C, Y L

2B)

≤I(W1; Y
L
3A, Y L

3B, Y L
3C, Y L

2B, Y L
1C, W2)

1
=I(W1; Y

L
3A, Y L

3B, Y L
3C, XL

2 , Y L
2B, Y L

1C, W2)

=I(W1; Y
L
3A, Y L

3B, ZL
3C, XL

2 , Y L
2B, Y L

1C, W2)

=I(W1; V
L
1A, Y L

3B, XL
2 , Y L

2B, Y L
1C|W2)

=H(V L
1A, Y L

3B, XL
2 , Y L

2B, Y L
1C|W2)−H(V L

1A, Y L
3B, XL

1 , XL
2 , Y L

2B, Y L
1C|W1, W2)

=H(V L
1A, Y L

3B, XL
2 , Y L

2B, ZL
1C|W2)−H(ZL

3A, ZL
3B, XL

1 , XL
2 , ZL

2B, ZL
1C|W1, W2)

≤H(V L
1A, Y L

3B, XL
2 , Y L

2B|W2) + H(ZL
1C)−H(ZL

3A, ZL
3B)

−H(ZL
2B, ZL

1C|W1, W2)−H(XL
1 , XL

2 |ZL
2B, ZL

1C, W1, W2)

=H(V L
1A, Y L

3B, Y L
2B|W2)−H(ZL

3A, ZL
3B, ZL

2B)

≤H(V L
1A, Y L

3B, Y L
2B)−H(ZL

3A, ZL
3B, ZL

2B)

≤H(V L
1A) + H(Y L

3B, Y L
2B)−H(ZL

3A, ZL
3B, ZL

2B).
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Hence,

R1 + R2 − ε

≤ 1

2 + δ

[
δ log(1 + xP1A) + δ log(1 + xP2A)

+ log(1 + (x + z)P1B) + log(1 + (x + z)P2C)
]
.

2. Z(δ)

I(W1; Y
L
3A, Y L

3B, Y L
3C)

≤I(W1; , Y
L
3A, Y L

3B, Y L
3C, Y L

4C, Y L
1C)

=H(Y L
3A, Y L

3B, Y L
3C, Y L

4C, Y L
1C)−H(Y L

3A, Y L
3B, Y L

3C, Y L
4C, Y L

1C|W1)

=H(Y L
3A, Y L

3B, Y L
3C, Y L

4C, Y L
1C)−H(UL

2A, Y L
3C, Y L

4C, Y L
1C|W1)−H(ZL

3B)

I(W2; , Y
L
4A, Y L

4B, Y L
4C)

≤I(W2; , Y
L
4A, Y L

4B, Y L
4C, Y L

3C, Y L
2B, Y L

1C|W1)

=I(W2; , Y
L
4A, Y L

4B, Y L
4C, Y L

3C, XL
1 , Y L

2B, Y L
1C|W1)

=I(W2; , V
L
2A, ZL

4B, Y L
4C, Y L

3C, XL
1 , Y L

2B, Y L
1C|W1)

=I(W2; , V
L
2A, Y L

4C, Y L
3C, XL

1 , Y L
2B, Y L

1C|W1)

≤H(V L
2A, Y L

4C, Y L
3C, XL

1 , Y L
2B, Y L

1C|W1)

−H(V L
2A, Y L

4C, Y L
3C, XL

1 , XL
2 , Y L

2B, Y L
1C|W1, W2)

≤H(V L
2A, Y L

4C, Y L
3C, ZL

2B, Y L
1C|W1)

−H(ZL
4A, ZL

4C, ZL
3C, XL

1 , XL
2 , ZL

2B, ZL
1C|W1, W2)

≤H(V L
2A, Y L

4C, Y L
3C, Y L

1C|W1) + H(ZL
2B)−H(ZL

4A, ZL
4C, ZL

3C, ZL
2B, ZL

1C)

−H(XL
1 , XL

2 |ZL
2B, ZL

1C, W1, W2)

=H(V L
2A, UL

2A, Y L
4C, Y L

3C, Y L
1C|W1)−H(UL

2A|V L
2A, Y L

4C, Y L
3C, Y L

1C, W1)

−H(ZL
4A, ZL

4C, ZL
3C, ZL

1C)

≤H(V L
2A, UL

2A, Y L
4C, Y L

3C, Y L
1C|W1)−H(UL

2A|XL
2 , V L

2A, Y L
4C, Y L

3C, Y L
1C, W1)

−H(ZL
4A, ZL

4C, ZL
3C, ZL

1C)

≤H(V L
2A, UL

2A, Y L
4C, Y L

3C, Y L
1C|W1)−H(ZL

3A)−H(ZL
4A, ZL

4C, ZL
3C, ZL

1C)

≤H(V L
2A|UL

2A) + H(UL
2A, Y L

3C, Y L
4C, Y L

1C|W1)−H(ZL
3A, ZL

4A, ZL
4C, ZL

3C, ZL
1C)
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L(R1 + R2 − ε)

≤H(Y L
3A, Y L

3B, Y L
3C, Y L

4C, Y L
1C) + H(V L

2A|UL
2A)

−H(ZL
3A, ZL

3B, ZL
4A, ZL

4C, ZL
3C, ZL

1C)

≤H(Y L
3A) + H(Y L

3B) + H(Y L
3C, Y L

4C, Y L
1C) + H(V L

2A|UL
2A)

−H(ZL
3A, ZL

3B, ZL
4A, ZL

4C, ZL
3C, ZL

1C).

Notice that

H(Y L
3A)−H(ZL

3A)

≤
∑
A

H(Y3i)−H(Z3i)

≤
∑
A

log(1 + (
√

xP1,i +
√

yP2,i)
2)

≤
∑
A

log(1 + 2xP1i + 2yP2i)

≤ δL

2 + δ
log(1 + 2xP1A + 2yP2A)

H(V L
2A|UL

2A)−H(ZL
4A)

≤H(V L
2A − cUL

2A)−H(ZL
4A) (c =

h24h
∗
23P2A

1 + yP2A

)

≤
∑
A

H(V2i − cU2i)−H(Z4i)

≤
∑
A

H(
h24

1 + yP2A

X2i + Z4i − cZ3i)−H(Z4i)

≤
∑
A

log(1 + c2 +
xP2i

1 + yP2A

)

≤ δL

2 + δ
log(1 + c2 +

xP2A

(1 + yP2A)2
)

=
δL

2 + δ
log(1 +

(xP2A)2

(1 + yP2A)2
+

xP2A

(1 + yP2A)2
)

=
δL

2 + δ
log(1 +

xP2A

1 + yP2A

).

Hence,

R1 + R2 − ε

≤ 1

2 + δ

[
δ log(1 + 2xP1A + 2yP2A) + log(1 + xP1B)
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+ log(1 + (x + y + z)P2C) + δ log(1 +
xP2A

1 + yP2A

)
]

3. V (δ)

I(W1; Y
L
3A, Y L

3B, Y L
3C)

≤I(W1; Y
L
3A, Y L

3B, Y L
3C, Y L

4B, UL
1A, Y L

2B, Y L
1C)

=H(Y L
3A, Y L

3B, Y L
3C|Y L

4B, UL
1A, Y L

2B, Y L
1C) + H(UL

1A, Y L
4B, Y L

2B, Y L
1C)

−H(Y L
3A, Y L

3B, Y L
3C, Y L

4B, UL
1A, Y L

2B, Y L
1C|W1)

The last term can be bounded as follows

H(Y L
3A, Y L

3B, Y L
3C, Y L

4B, UL
1A, Y L

2B, Y L
1C|W1)

=H(UL
2A, Y L

3C, Y L
2B, Y L

1C|W1) + H(ZL
4A) + H(ZL

3B) + H(ZL
4B)

=
L∑

t=1

H(U2At, Y3Ct, Y2Bt, Y1Ct|U t−1
2A , Y t−1

3C , Y t−1
2B , Y t−1

1C , W1)

+ H(ZL
4A, ZL

3B, ZL
4B)

=
L∑

t=1

H(U2At, Y3Ct, Y1Ct|U t−1
2A , Y t−1

3C , Y t−1
2B , Y t−1

1C ) + H(Z2Bt)

+ H(ZL
4A, ZL

3B, ZL
4B)

≥
L∑

t=1

H(U2At, Y3Ct, Y2Bt, Y1Ct|U t−1
2A , Y t−1

3C , Y t−1
2B , Y t−1

1C )−H(Y2Bt|Y t−1
2B )

+ H(ZL
2B, ZL

4A, ZL
3B, ZL

4B)

=H(UL
2A, Y L

3C, Y L
2B, Y L

1C)−H(Y L
2B) + H(ZL

2B, ZL
4A, ZL

3B, ZL
4B).

Similarly, we have

I(W2; Y
L
4A, Y L

4B, Y L
4C)

≤I(W2; Y
L
4A, Y L

4B, Y L
4C, Y L

3C, UL
2A, Y L

2B, Y L
1C)

=H(Y L
4A, Y L

4B, Y L
4C|Y L

3C, UL
2A, Y L

2B, Y L
1C) + H(UL

2A, Y L
3C, Y L

2B, Y L
1C)

−H(Y L
4A, Y L

4B, Y L
4C, Y L

3C, UL
2A, Y L

2B, Y L
1C|W2)

and

H(Y L
4A, Y L

4B, Y L
4C, Y L

3C, UL
2A, Y L

2B, Y L
1C|W2)
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≥H(UL
1A, Y L

4B, Y L
2B, Y L

1C)−H(Y L
1C) + H(ZL

1C, ZL
3A, ZL

4C, ZL
3C).

Hence,

L(R1 + R2 − ε)

≤H(Y L
3A|UL

1A) + H(Y L
3B|Y L

4B, Y L
2B) + H(Y L

3C|Y L
1C) + H(Y L

2B)

+ H(Y L
4A|UL

2A) + H(Y L
4B|Y L

2B) + H(Y L
4C|Y L

3C, Y L
1C) + H(Y L

1C)

−H(ZL
2B, ZL

3B, ZL
4B, ZL

4A, ZL
1C, ZL

3C, ZL
4C, ZL

3A)

=H(Y L
3A|UL

1A) + H(Y L
3B, Y L

2B, Y L
4B) + H(Y L

4A|UL
2A) + H(Y L

4C, Y L
1C, Y L

3C)

−H(ZL
2B, ZL

3B, ZL
4B, ZL

4A, ZL
1C, ZL

3C, ZL
4C, ZL

3A).

Notice that

H(Y L
3A|UL

1A)−H(ZL
3A)

≤H(Y L
3A − cUL

1A)−H(ZL
3A) (c =

h13h
∗
14P1A

1 + yP1A

)

≤
∑
A

H(Y3i − cU1i)−H(Z3i)

=
∑
A

H(
h13

1 + yP1A

X1i + h23X2i + Z3i − cZ4i)

≤
∑
A

log

(
1 + c2 +

x

(1 + yP1A)2
P1i + yP2i +

2
√

xyP1iP2i

1 + yP1A

)

≤
∑
A

log

(
1 + c2 +

x

(1 + yP1A)2
P1i + yP2i +

xP1i + yP2i

1 + yP1A

)

≤ δL

2 + δ
log

(
1 + c2 +

x

(1 + yP1A)2
P1A + yP2A +

xP1A + yP2A

1 + yP1A

)

=
δL

2 + δ
log

(
1 + yP2A +

2xP1A + yP2A

1 + yP1A

)
.

Hence,

R1 + R2 − ε

≤ 1

2 + δ

[
δ log

(
1 + yP2A +

2xP1A + yP2A

1 + yP1A

)
+ log(1 + (x + y + z)P1B)

+ δ log

(
1 + yP1A +

2xP2A + yP1A

1 + yP2A

)
+ log(1 + (x + y + z)P2C)

]
.
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4. Cut′(δ)

L(R1 + R2 − ε)

≤I(W1, W2; Y
L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C)

=H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C)

−H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C|W1, W2)

≤H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C)

−H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C|Y L
2B, Y L

1C, W1, W2)

=H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C)

−H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C, XL
1 , XL

2 |Y L
2B, Y L

1C, W1, W2)

=H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C)−H(ZL
3A, ZL

3B, ZL
3C, ZL

4A, ZL
4B, ZL

4C)

−H(XL
1 , XL

2 |Y L
2B, Y L

1C, W1, W2)

=H(Y L
3A, Y L

3B, Y L
3C, Y L

4A, Y L
4B, Y L

4C)−H(ZL
3A, ZL

3B, ZL
3C, ZL

4A, ZL
4B, ZL

4C)

≤H(Y L
3A, Y L

4A) + H(Y L
3B, Y L

4B) + H(Y L
3C, , Y L

4C)

−H(ZL
3A, ZL

3B, ZL
3C, ZL

4A, ZL
4B, ZL

4C)

The covariance matrix of [Y3i, Y4i]
T is K =

 K11 K12

K21 K22

, where

K11 = 1 + xP1i + yP2i + 2Re(h13h
∗
23ρ)

√
P1iP2i

K12 = h13h
∗
14P1i + h23h

∗
24P2i + h13h

∗
24ρ
√

P1iP2i + h23h
∗
14ρ

∗
√

P1iP2i

K21 = h∗13h14P1i + h∗23h24P2i + h∗13h24ρ
∗
√

P1iP2i + h∗23h14ρ
√

P1iP2i

K22 = 1 + xP2i + yP1i + 2Re(h14h
∗
24ρ)

√
P1iP2i.

Then

H(Y3i, Y4i)−H(Z3i, Z4i) = log(det K)

=1 + (x2 + y2)(1− |ρ|2)P1iP2i + (x + y)(P1i + P2i)

+ 2Re(h13h
∗
23ρ)

√
P1iP2i + 2Re(h14h

∗
24ρ)

√
P1iP2i

− 2Re(h13h
∗
23h

∗
14h24)(1− |ρ|2)P1iP2i

≤1 + (x + y)(P1i + P1i) + 4
√

xy|ρ|
√

P1iP1i cos
θ

2

+ (x2 + y2 − 2xy cos θ)(1− |ρ|2)P1iP2i
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≤ log(1 + 2(x + y)(P1i + P2i) + P1iP2i(x
2 + y2 − 2xy cos θ))

H(Y L
3A, Y L

4A)−H(ZL
3A, ZL

4A)

≤
∑
A

H(Y3i, Y4i)−H(Z3i, Z4i)

≤
∑
A

log(1 + 2(x + y)(P1i + P2i) + P1iP2i(x
2 + y2 − 2xy cos θ))

≤ δL

2 + δ
log(1 + 2(x + y)(P1A + P2A) + P1AP2A(x2 + y2 − 2xy cos θ)).

Hence,

R1 + R2 − ε

≤ 1

2 + δ

[
δ log(1 + 2(x + y)(P1A + P2A) + P1AP2A(x2 + y2 − 2xy cos θ))

+ log(1 + (x + y)P1B) + log(1 + (x + y)P2C)
]
.

It remains to show that CHD
sum ≤ Csum + 3. By power constraint, we have

P1A ≤ 2+δ
δ

, P2A ≤ 2+δ
δ

, P1B ≤ 2+δ, P2C ≤ 2+δ. In Cut(δ), Z(δ), and Cut′(δ),

each term is a monotone increasing function of PiA, PiB, PiC , i = 1, 2, so

Cut(δ) ≤ 1

2 + δ

[
δ log(1 + x

2 + δ

δ
) + δ log(1 + x

2 + δ

δ
)

log(1 + (x + z)(2 + δ)) + log(1 + (x + z)(2 + δ))
]

Z(δ) ≤ 1

2 + δ

[
δ log(1 + 2x

2 + δ

δ
+ 2y

2 + δ

δ
) + log(1 + x(2 + δ))

+ log(1 + (x + y + z)(2 + δ)) + δ log(1 +
x2+δ

δ

1 + y 2+δ
δ

)
]

Cut′(δ) ≤ 1

2 + δ

[
δ log(1 + 2(x + y)(

2 + δ

δ
+

2 + δ

δ
)

+ (
2 + δ

δ
)2(x2 + y2 − 2xy cos θ)) + log(1 + (x + y)(2 + δ))

+ log(1 + (x + y)(2 + δ))
]
.
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In V (δ), observe that

1 + yP2A +
2xP1A + yP2A

1 + yP1A

≤ 1 + y
2 + δ

δ
+

2xP1A + y 2+δ
δ

1 + yP1A

≤ max

 1 + y 2+δ
δ

+
(2x+y) 2+δ

δ

1+y 2+δ
δ

1 + 2y 2+δ
δ

 .

So we have

V (δ) ≤ 1

2 + δ

[
δ log

max

 1 + y 2+δ
δ

+
(2x+y) 2+δ

δ

1+y 2+δ
δ

1 + 2y 2+δ
δ




+ log(1 + (x + y + z)(2 + δ))

+ δ log

max

 1 + y 2+δ
δ

+
(2x+y) 2+δ

δ

1+y 2+δ
δ

1 + 2y 2+δ
δ




+ log(1 + (x + y + z)(2 + δ))
]
.

Comparing them term by term with ui, i = 1, 2, 3, 4, we get

Cut(δ)− u1 ≤
1

2 + δ

[
δ log

2 + δ

δ
+ δ log

2 + δ

δ
+ log(2 + δ) + log(2 + δ)

]
Z(δ)− u2 ≤

1

2 + δ

[
δ log

2 + δ

δ
+ log(2 + δ) + log(2 + δ) + δ log

2 + δ

δ

]
V (δ)− u3 ≤

1

2 + δ

[
δ log

2 + δ

δ
+ log(2 + δ) + δ log

2 + δ

δ
+ log(2 + δ)

]

Cut′(δ)− u4 ≤
1

2 + δ

[
δ log

(
2 + δ

δ

)2

+ log(2 + δ) + log(2 + δ)
]
.

For δ ≥ 0,

δ

2 + δ
log(

2 + δ

δ
) ≤ 1

e ln 2
,

1

2 + δ
log(2 + δ) ≤ 1

e ln 2
.

So we can conclude that

CHD
sum = max

δ
min(Cut(δ), Z(δ), V (δ), Cut′(δ))

≤ max
δ

min(u1, u2, u3, u4) +
4

e ln 2
≤ Csum + 3.
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APPENDIX C

PROOF OF LEMMA 6.2

The power constraint implies that we have P1A ≤ 1+δ, P2A ≤ 1+δ, P1B ≤ 1+δ
δ

.

In the upper bound of R2 and R1 + R2, each term is a monotone increasing

function of P1A, P2A, P1B. So

R2 ≤
1

1 + δ
log(1 + x2(1 + δ)) ≤ 1

1 + δ
log(1 + x2) +

1

1 + δ
log(1 + δ)

R1 + R2 ≤
1

1 + δ

[
log(1 + 2x2(1 + δ) + 2y2(1 + δ))

+ δ log(1 + (x1 + y2 + z)
1 + δ

δ
) + log(1 +

x1(1 + δ)

1 + y2(1 + δ)
)
]

≤ 1

1 + δ

[
log(1 + 2x2 + 2y2) + δ log(1 + (x1 + y2 + z))

+ log(1 +
x1

1 + y2

)
]

+
δ

1 + δ
log(

1 + δ

δ
) +

2

1 + δ
log(1 + δ)

R1 + R2 ≤
1

1 + δ

[
log(1 + 2x1(1 + δ) + 2y1(1 + δ)) + δ log(1 + x1

1 + δ

δ
)

+ log(1 +
x2(1 + δ)

1 + y1(1 + δ)
)
]

≤ 1

1 + δ

[
log(1 + 2x1 + 2y1) + δ log(1 + x1) + log(1 +

x2

1 + y1

)

]

+
δ

1 + δ
log(

1 + δ

δ
) +

2

1 + δ
log(1 + δ).

In the upper bound for 2R1 + R2, observe that

1 + y2P1A +
2x2P2A + y2P1A

1 + y1P2A

≤ 1 + y2(1 + δ) +
2x2P2A + y2(1 + δ)

1 + y1P2A

≤ max

 1 + y2(1 + δ) + (2x2+y2)(1+δ)
1+y1(1+δ)

1 + 2y2(1 + δ)


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≤ (1 + δ) max

 1 + y2 + 2x2+y2

1+y1

1 + 2y2

 .

So we have

2R1 + R2 ≤
1

1 + δ

[
log(1 + 2x1(1 + δ) + 2y1(1 + δ)) + δ log(1 + x1

1 + δ

δ
)

+ log(1 +
x1(1 + δ)

1 + y2(1 + δ)
)

+ log

max

 1 + y2(1 + δ) + (2x2+y2)(1+δ)
1+y1(1+δ)

1 + 2y2(1 + δ)




+ δ log(1 + (x1 + y2 + z)
1 + δ

δ
)
]

≤ 1

1 + δ

[
log(1 + 2x1 + 2y1) + δ log(1 + x1) + log(1 +

x1

1 + y2

)

+ max(log(1 + y2 +
2x2 + y2

1 + y1

), log(1 + 2y2))

+ δ log(1 + (x1 + y2 + z))
]

+
2δ

1 + δ
log(

1 + δ

δ
)

+
3

1 + δ
log(1 + δ).

We finish the proof by noticing that for δ ≥ 0,

δ

1 + δ
log(

1 + δ

δ
) ≤ 1

e ln 2
and

1

1 + δ
log(1 + δ) ≤ 1

e ln 2
.

67



APPENDIX D

PROOF OF THEOREM 6.4

As in the sum-rate case, we will prove this achievability result in two steps.

Instead of directly comparing CR0 with the rate achievable by the coding

scheme in section 4, we will first show that the CR0 is within a constant

of CLDM
R0

, a quantity we define below inspired by the result for the linear

deterministic model. We will then prove that the coding scheme in section 4

can be used to achieve an R1 which is within R0 of the point-to-point capacity

C0 = log(1 + SNR1) of the primary link and an R2 which is within a constant

of CLDM
R0

. Specifically, we prove the following two lemmas, which together

imply Theorem 6.4

Lemma D.1 Let n1 = blog SNR1c+, n2 = blog SNR2c+, α1 = blog INR1c+, α2 =

blog INR2c+, β = blog CNRc+. Define

CLDM
R0

= max
δ

CLDM
R0

(δ) = max
δ>0

min(u′1 − 10− 2R0, u
′
2 − 5−R0, u

′
3 − 5−R0, u

′
4),

where

u′1 =
1

1 + δ
n2

u′2 =
1

1 + δ
[n2 ∨ α2 − α2 ∧ n1 + δ(β ∨ α2 ∨ n1 − n1)]

u′3 =
1

1 + δ
[(α1 − n1)

+ + (n2 − α1)
+]

u′4 =
1

1 + δ
[(α1 − n1)

+ − α2 ∧ n1 + (n2 − α1) ∨ α2 + δ(β ∨ α2 ∨ n1 − n1)].

Then CR0 < CLDM
R0

+ 13 + 2R0.

Lemma D.2 For R0 > 7, (R1, R2) = (C0 −R0, CLDM
R0

− 10) is achievable.
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D.1 Proof of Lemma D.1

As in the proof of Lemma A.1, we can show that

u1 ≤u′1 +
2

1 + δ
+ 1 ≤ u′1 + 3

u2 ≤u′2 +
1

1 + δ
[(log 5 + 1) + δ(log 4 + 1) + (log 3 + 1)] + 2 + R0

≤u′2 + 8 + R0

u3 ≤u′3 +
1

1 + δ
[(log 5 + 1) + (log 3 + 1)] + 2 + R0 ≤ u′3 + 8 + R0

u4 ≤u′4 +
1

1 + δ
[(log 5 + 1) + (log 3 + 1) + (log 7 + 1) + δ(log 4 + 1)] + 3 + 2R0

≤u′4 + 13 + 2R0.

So we get

CR0 = max
δ

min(u1, u2, u3, u4)

≤ max
δ

min(u′1 − 10− 2R0, u
′
2 − 5−R0, u

′
3 − 5−R0, u

′
4) + 13 + 2R0

≤ CLDM
R0

+ 13 + 2R0.

D.2 Proof of Lemma D.2

First we will first prove the following result for the interference channel.

Lemma D.3 For R0 ≥ 7, CIFC−LDM
cog ≤ CIFC

R0
+ 1, where

CIFC−LDM
cog = min


n2

n2 ∨ α2 − α2 ∧ n1

(α1 − n1)
+ + (n2 − α1)

+

(α1 − n1)
+ − α2 ∧ n1 + (n2 − α1) ∨ α2


and CIFC

R0
is the R0-capacity for the interference channel.

Proof. Let CIFC be the outer bound to the interference channel capacity

region derived in [9]. From the achievability result there, we know that given
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R1 = log(1 + SNR1)−R0, R2 is achievable, if

(log(1 + SNR1)−R0 + 1, R2 + 1) ∈ CIFC .

By taking the maximum of such R2, we get CIFC
R0

. Now we will show the result

by considering the weak, mixed, and strong interference regions separately.

1. SNR1 ≥ INR2, SNR2 ≥ INR1. In this region,

CIFC−LDM
cog = min

 (n2 − α2)
+

(α1 − n1)
+ + (n2 − α1 − α2)

+


and the outer bound CIFC is the set of (R1, R2) satisfying

R1 ≤ log(1 + x1)

R2 ≤ log(1 + x2)

R1 + R2 ≤ log(1 + x1) + log(1 +
x2

1 + y2

)

R1 + R2 ≤ log(1 + x2) + log(1 +
x1

1 + y1

)

R1 + R2 ≤ log(1 + y1 +
x1

1 + y2

) + log(1 + y2 +
x2

1 + y1

)

2R1 + R2 ≤ log(1 + x1 + y1) + log(1 + y2 +
x2

1 + y1

) + log(
1 + x1

1 + y2

)

R1 + 2R2 ≤ log(1 + x2 + y2) + log(1 + y1 +
x1

1 + y2

) + log(
1 + x2

1 + y1

).

So when R1 = log(1 + SNR1)−R0, R2 is achievable if

R2 + 1 ≤ log(1 + x2)

R2 + 1 ≤ log(1 +
x2

1 + y2

) + R0 − 1

R2 + 1 ≤ log(1 + x2) + log(1 +
x1

1 + y1

)− log(1 + x1) + R0 − 1

R2 + 1 ≤ log(1 + y1 +
x1

1 + y2

) + log(1 + y2 +
x2

1 + y1

)

− log(1 + x1) + R0 − 1

R2 + 1 ≤ log(1 + x1 + y1) + log(1 + y2 +
x2

1 + y1

)− log(1 + y2)

− log(1 + x1) + 2R0 − 2
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2R2 + 2 ≤ log(1 + x2 + y2) + log(1 + y1 +
x1

1 + y2

) + log(
1 + x2

1 + y1

)

− log(1 + x1) + R0 − 1.

The following rate is achievable

R2 ≤ n2 − 1

R2 ≤ n2 ∨ α2 − α2 − 2 + R0 − 2

R2 ≤ n2 + n1 ∨ α1 − α1 − 2− n1 − 2 + R0 − 2

R2 ≤ n1 ∨ (α1 + α2)− α2 − 2 + n2 ∨ (α1 + α2)− α1 − 2− n1 − 2 + R0 − 2

R2 ≤ n1 ∨ α1 + n2 ∨ (α1 + α2)− α1 − 2− α2 − 2− n1 − 2 + 2R0 − 3

2R2 ≤ n2 ∨ α2 + n1 ∨ (α1 + α2)− α2 − 2 + n2 − α1 − 2− n1 − 2 + R0 − 2.

The following rate is achievable

R2 ≤ (n2 − α2)
+ − 1

R2 ≤ (α1 − n1)
+ + (n2 − α1 − α2)

+ − 8 + R0.

Hence, CIFC−LDM
cog ≤ CIFC

R0
+ 1.

2. SNR1 ≥ INR2, SNR2 ≤ INR1. In this region,

CIFC−LDM
cog = min

 (n2 − α2)
+

(α1 − n1)
+


and the outer bound CIFC is the set of (R1, R2) satisfying

R1 ≤ log(1 + x1)

R2 ≤ log(1 + x2)

R1 + R2 ≤ log(1 + x1) + log(1 +
x2

1 + y2

)

R1 + R2 ≤ log(1 + x1 + y1)

R1 + 2R2 ≤ log(1 + x2 + y2) + log(1 + y1 +
x1

1 + y2

) + log(1 +
x2

1 + y1

).

So when R1 = log(1 + SNR1)−R0, R2 is achievable if

R2 + 1 ≤ log(1 + x2)
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R2 + 1 ≤ log(1 +
x2

1 + y2

) + R0 − 1

R2 + 1 ≤ log(1 + x1 + y1)− log(1 + x1) + R0 − 1

2R2 + 2 ≤ log(1 + x2 + y2) + log(1 + y1 +
x1

1 + y2

) + log(1 +
x2

1 + y1

)

− log(1 + x1) + R0 − 1.

The following rate is achievable

R2 ≤n2 − 1

R2 ≤n2 ∨ α2 − α2 − 2 + R0 − 2

R2 ≤n1 ∨ α1 − n1 − 2 + R0 − 2

2R2 ≤n2 ∨ α2 + n1 ∨ (α1 + α2)− α2 − 2 + n2 ∨ α1 − α1 − 2− n1

− 2 + R0 − 3.

The following rate is achievable

R2 ≤ (n2 − α2)
+ − 1

R2 ≤ (α1 − n1)
+ − 8 + R0.

Hence, CIFC−LDM
cog ≤ CIFC

R0
+ 1.

3. SNR1 ≤ INR2, SNR2 ≥ INR1. In this region,

CIFC−LDM
cog = min


n2

n2 ∨ α2 − n1

(α1 − n1)
+ + n2 − α1

(α1 − n1)
+ − n1 + (n2 − α1) ∨ α2


and the outer bound CIFC is the set of (R1, R2) satisfying

R1 ≤ log(1 + x1)

R2 ≤ log(1 + x2)

R1 + R2 ≤ log(1 + x2) + log(1 +
x1

1 + y1

)

R1 + R2 ≤ log(1 + x2 + y2)

2R1 + R2 ≤ log(1 + x1 + y1) + log(1 + y2 +
x2

1 + y1

) + log(1 +
x1

1 + y2

).
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So when R1 = log(1 + SNR1)−R0, R2 is achievable if

R2 + 1 ≤ log(1 + x2)

R2 + 1 ≤ log(1 + x2) + log(1 +
x1

1 + y1

)− log(1 + x1) + R0 − 1

R2 + 1 ≤ log(1 + x2 + y2)− log(1 + x1) + R0 − 1

R2 + 1 ≤ log(1 + x1 + y1) + log(1 + y2 +
x2

1 + y1

) + log(1 +
x1

1 + y2

)

− 2 log(1 + x1) + 2R0 − 2.

The following rate is achievable

R2 ≤n2 − 1

R2 ≤n2 + n1 ∨ α1 − α1 − 2− n1 − 2 + R0 − 2

R2 ≤n2 ∨ α2 − n1 − 2 + R0 − 2

R2 ≤n1 ∨ α1 + n2 ∨ (α1 + α2)− α1 − 2 + n1 ∨ α2 − α2 − 2− 2n1

− 4 + 2R0 − 3.

The following rate is achievable

R2 ≤ n2 − 1

R2 ≤ (α1 − n1)
+ + n2 − α1 − 6 + R0

R2 ≤ n2 ∨ α2 − n1 − 4 + R0

R2 ≤ (α1 − n1)
+ − n1 + (n2 − α1) ∨ α2 − 11 + 2R0.

Hence, CIFC−LDM
cog ≤ CIFC

R0
+ 1.

4. SNR1 ≤ INR2, SNR2 ≤ INR1. In this region,

CIFC−LDM
cog = min


n2

n2 ∨ α2 − n1

(α1 − n1)
+


and the outer bound CIFC (which in this case is achievable without

any gap) is the set of (R1, R2) satisfying

R1 ≤ log(1 + x1)
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R2 ≤ log(1 + x2)

R1 + R2 ≤ log(1 + x1 + y1)

R1 + R2 ≤ log(1 + x2 + y2).

So when R1 = log(1 + SNR1)−R0, R2 is achievable if

R2 + 1 ≤ log(1 + x2)

R2 + 1 ≤ log(1 + x1 + y1)− log(1 + x1) + R0 − 1

R2 + 1 ≤ log(1 + x2 + y2)− log(1 + x1) + R0 − 1.

The following rate is achievable

R2 ≤ n2 − 1

R2 ≤ n1 ∨ α1 − n1 − 2 + R0 − 2

R2 ≤ n2 ∨ α2 − n1 − 2 + R0 − 2.

The following rate is achievable

R2 ≤ n2 − 1

R2 ≤ (α1 − n1)
+ − 4 + R0

R2 ≤ n2 ∨ α2 − n1 − 4 + R0.

Hence, CIFC−LDM
cog ≤ CIFC

R0
+ 1.

�

Now we are ready to show that CLDM
R0

can be achieved within a constant

for R0 ≥ 7. We consider four separate regions.

Region 1: z ≤ x1 ∨ y2 or y2 ≤ 1.

In this region, β ≤ α2 ∨ n1 or α2 = 0. In both cases, we have u′2 ≥
u′1, u

′
4 ≥ u′3. Hence,

CLDM
R0

(δ) ≤ min(u′1 − 101− 2R0, u
′
3 − 5−R0)
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≤ CIFC−LDM
cog − 5−R0

≤ CIFC
R0

.

Hence, CR0 can be achieved in this region.

For the following regions, we will assume z > x1 ∨ y2 and y2 > 1.

Region 2: x1 ≤ 1 or x2 ≤ 1.

When x1 ≤ 1, the primary link capacity log(1+x1) is of a constant smaller

than 7 and will be 0 after backing off R0. Hence, the secondary achieves

log(1 + x2), which is the best possible; and R0-capacity is achieved without

gap. When x2 ≤ 1, the secondary can at most achieve log(1+x2) ≤ 2, which

is only a constant. Hence, by letting R2 = 0, the R0-capacity is achieved

within 2 bits in this region. For the following regions, we also assume x1 > 1

and x2 > 1.

Region 3: y1 ≤ 1, which implies that α1 = 0. We consider two subregions.

(1) 1
4
≤ x1x2

y1y2
≤ 4.

In this region, the channel gains are aligned, the cooperation is not very

helpful, and the interference channel scheme suffices to achieve the upper

bound within a constant.

By condition x1x2

y1y2
≤ 4, we have n1 + n2 ≤ α2 + 4. Then it can be shown

that

1. n2 ∨ α2 − α2 ∧ n1 ≥ α2 − n1 ≥ n2 − 4.

2. (α1 − n1)
+ + (n2 − α1)

+ = n2.

3. (α1 − n1)
+ − α2 ∧ n1 + (n2 − α1) ∨ α2 ≥ −n1 + α2 ≥ n2 − 4.

which gives CLDM
R0

= maxδ u′1 − 10− 2R0 = n2 − 10− 2R0 and CIFC−LDM
cog ≥

n2 − 4. So we get

CLDM
R0

≤ CIFC−LDM
cog − 6− 2R0 ≤ CIFC

R0
.

Hence, CLDM
R0

can be achieved in this region.
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(2) x1x2

y1y2
≥ 4 or x1x2

y1y2
≤ 1

4
.

For this region, in the scheme from section 4, we set δA = 1, δB = δ, and

δC = 0; i.e., the secondary receiver will listen for part of the time and then

transmit for the rest of time, when it cooperates with the primary by using

some of the information it gathered during the time it listened. The mode of

cooperation is through cooperative private messages. For simplicity, we will

require that R1B, R1A ≥ log(1 + x1)−R0.

In mode B, source 1 uses power 1
x1

to share bits with source 2 and power

1− 1
x1

to send data to destination 3. So, under the natural order for super-

position coding, the following rates are achievable

R1B ≥ log(1 +
(1− 1

x1
)x1

2
) = log(1 + x1)− 1

C12

δ
≥ log(1 +

z

x1

) ≥ (log(
z

x1

))+ ≥ (β − n1 − 1)+ ≥ β − n1 − 1

Hence, we need at least R0 ≥ 1.

For the virtual channel, source 1 uses three messages W1, U1, V1 and source

2 uses only message U2. Let

β1 =
x1x2 + y1y2 − 2

√
x1x2y1y2 cos θ

x1x2

β2 =
x1x2 + y1y2 − 2

√
x1x2y1y2 cos θ

y1y2

By (6.2) and (6.3), we have σ2
V1

= Var (XV1) β1x1 = Var (XV2) β2y1 and

Var (XV2) x2 = Var (XV1) y2. It is not hard to see that

x1x2

y1y2

≥ 4 implies that β1 ≥
1

4
, and

x1x2

y1y2

≤ 1

4
implies that β2 ≥

1

4
.

At source 1 we allocate powers σ2
W1

= 1
3
, σ2

U1
= 1

3y2
, Var (XV1) = 1

3
(1 ∧ x2

y2
)

and at source 2 σ2
U2

= 1
3
, Var (XV2) = y2

x2
Var (XV1) = 1

3
(1 ∧ y2

x2
). Destination

1 gets W1, U1, V1 with power x1

3
, x1

3y2
, β1x1

3
(1 ∧ x2

y2
), respectively, and U2 with

power y1

3
≤ 1

3
, which is treated as noise. Destination 2 gets U2, W1, U1 with

powers x2

3
, y2

3
, 1

3
, respectively, and U1 is treated as noise.

76



To simplify the constraints at the destinations, we first prove the following

lemma.

Lemma D.4 When x1x2

y1y2
≥ 4 or x1x2

y1y2
≤ 1

4
, we have β1x1(1 ∧ x2

y2
) ≥ 1

4
[x1(1 ∧

x2

y2
)] ∨ [y1(1 ∧ y2

x2
)]

def
= k̃

4
.

Proof. If x1x2

y1y2
≥ 4, we have β1 ≥ 1

4
and x1 ≥ 4y1y2

x2
. Hence

β1x1(1 ∧
x2

y2

) ≥ 1

4
x1(1 ∧

x2

y2

)

β1x1(1 ∧
x2

y2

) ≥ β1
4y1y2

x2

(1 ∧ x2

y2

) ≥ y1(1 ∧
y2

x2

) ≥ 1

4
y1(1 ∧

y2

x2

)

If x1x2

y1y2
≤ 1

4
, we can rewrite the LHS as

β1x1(1 ∧
x2

y2

) = β2
y1y2

x2

(1 ∧ x2

y2

) = β2y1(1 ∧
y2

x2

).

Now, using the fact that β2 ≥ 1
4

and y1 ≥ 4x1x2

y2
when x1x2

y1y2
≤ 1

4
, we can show

similarly that

β2y1(1 ∧
y2

x2

) ≥ 1

4
[x1(1 ∧

x2

y2

)] ∨ [y1(1 ∧
y2

x2

)].

�

Using this lemma it is easy to verify that the following constraints on

nonnegative rates imply all the relevant constraints in Theorem 4.1.

RW1 + RU1 + RV1 ≤ log(1 +
x1

4
)

RU1 + RV1 ≤ log(1 +
x1(1 ∧ x2

y2
)

16
)

RU1 ≤ log(1 +
x1

4y2

)

RV1 ≤ C12

RW1 + RU2 ≤ log(1 +
x2 + y2

4
)

RU2 ≤ log(1 +
x2

4
).

First, we will get the condition on R0 such that R1A = log(1 + x1) − R0 is

supported by the above constraints. Set R2 = 0. In the worst case, we have
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C12 = 0 when RV1 = 0. So at least we can achieve R1A = RW1 + RU1 , where

nonnegative RW1 and RU1 satisfy the constraints

RW1 + RU1 ≤ log(1 +
x1

4
)

RU1 ≤ log(1 +
x1

16y2

)

RW1 ≤ log(1 +
x2 + y2

4
).

Hence, a rate R1A which is the minimum of log(1 + x1

4
) and log(1 + x1

16y2
) +

log(1 + x2+y2

4
) is acheivable. Thus, we may conclude that R1A = (log(1 +

x1)−R0)
+ is achievable when R0 ≥ 7.

Now, in the original constraints, eliminating V1, U2 with R1A = RW1 +

RU1 + RV1 and R2A = RU2 and setting R1A = (log(1 + x1)−R0)
+, we get

(log(1 + x1)−R0)
+ ≤ log(1 +

x1

4
)

−RW1 ≤ log(1 +
x1(1 ∧ x2

y2
)

16
)− (log(1 + x1)−R0)

+

0 ≤ RU1 ≤ log(1 +
x1

4y2

)

RW1 + RU1 ≤ (log(1 + x1)−R0)
+

RW1 + RU1 ≥ (log(1 + x1)−R0)
+ − C12

RW1 + R2A ≤ log(1 +
x2 + y2

4
)

0 ≤ RW1

0 ≤ R2A ≤ log(1 +
x2

4
).

By the choice of R0, we already have

(log(1 + x1)−R0)
+ ≤ log(1 +

x1

4
).

Using the inequalities

ni ≤ log xi < ni + 1

log(1 + xi) < ni + 2

log(1 +
xi

a
) ≥ ni − log a,
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we can rewrite the constraints as follows:

−RW1 ≤ ([n1 − (α2 − n2)
+]+ − 5)+ − (n1 + 2−R0)

+

0 ≤ RU1 ≤ (n1 − α2)
+ − 3)+

RW1 + RU1 ≤ (n1 −R0)
+

RW1 + RU1 ≥ min((n1 + 2−R0)
+ − C12, (n1 −R0)

+)

RW1 + R2A ≤ (n2 ∨ α2 − 2)+.

0 ≤ RW1

0 ≤ R2A ≤ (n2 − 2)+.

By Fourier-Motzkin, the following rate is achievable

0 ≤ R2A ≤ n2 − 2

R2A ≤ n2 ∨ α2 − n1 ∧ α2 + C12 − 7 + R0

R2A ≤ n2 ∨ α2 − (α2 − n2)
+ − 9 + R0.

With R0 ≥ 7, the above conditions can be simplified as

0 ≤ R2A ≤ n2 − 2

R2A ≤ n2 ∨ α2 − n1 ∧ α2 + C12 − 7 + R0.

Hence, we can achieve R2 = max
δ

R2(δ), where

R2(δ) =
1

1 + δ
R2A ≥ min(u′1 − 2, u′2 − 7 + R0 − 1) ≥ CLDM

R0
(δ).

Hence, CLDM
R0

can be achieved in this region.

Region 4: xi > 1, yi > 1, z > 1, i = 1, 2. We again consider two subregions.

(1) 1
4
≤ x1x2

y1y2
≤ 4.

In this region, the channel gains are aligned, the cooperation is not very help-

ful, and the interference channel scheme suffices to achieve the upper bound

within a constant. The condition 1
4
≤ x1x2

y1y2
≤ 4 implies that α1 + α2 − 4 ≤
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n1 + n2 ≤ α1 + α2 + 4. Observing

(α1 − n1)
+ + (n2 − α1)

+ = max(α1 − n1, n2 − α1, n2 − n1, 0),

it can be shown that

1. n2 ∨ α2 − α2 ∧ n1 ≥ (α1 − n1)
+ + (n2 − α1)

+ − 4.

2. (α1 − n1)
+ − α2 ∧ n1 + (n2 − α1) ∨ α2 ≥ (α1 − n1)

+ + (n2 − α1)
+ − 4,

which gives

CLDM
R0

(δ) ≤ min(u′1 − 10− 2R0, u
′
3 − 5−R0)

≤ min(n2 − 10− 2R0, (α1 − n1)
+ + (n2 − α2)

+),

CIFC−LDM
cog ≥ min(n2, (α1 − n1)

+ + (n2 − α1)
+ − 4).

So we get

CLDM
R0

(δ) ≤ CIFC−LDM
cog − 1−R0

≤ CIFC
R0

.

Hence, CLDM
R0

can be achieved in this region.

(2) x1x2

y1y2
≥ 4 or x1x2

y1y2
≤ 1

4
.

As in region 3, in the scheme from section 4, we set δA = 1, δB = δ,

and δC = 0. Here also, cooperation is achieved through cooperative private

messages. For simplicity, we will require that R1B, R1A ≥ log(1 + x1)−R0.

In mode B, source 1 uses power 1
x1

to share bits with source 2 and power

1− 1
x1

to send data to destination 3. Under the natural order of superposition

coding, the following rates are suppported.

R1B = log(1 +
(1− 1

x1
)x1

2
) = log(1 + x1)− 1

C12

δ
= log(1 +

z

x1

) ≥ (log(
z

x1

))+ ≥ (β − n1 − 1)+ ≥ β − n1 − 1.

For the virtual channel, source 1 uses three messages W1, U1, V1 and source 2

uses two messages W2, U2. For source 1, we allocate powers σ2
W1

= 1
3
, σ2

U1
=
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1
3y2

, Var (XV1) = 1
3
(1 ∧ x2

y2
), and for source 2, σ2

W2
= 1

3
, σ2

U2
= 1

3y1
, Var (XV2) =

y2

x2
Var (XV1) = 1

3
(1 ∧ y2

x2
). Destination 1 gets W1, U1, V1, W2, U2 with powers

x1

3
, x1

3y2
, β1x1

3
(1∧ x2

y2
), y1

3
, 1

3
, respectively, and U2 is treated as noise. Destination

2 gets W2, U2, W1, U1 with powers x2

3
, x2

3y1
, y2

3
, 1

3
, respectively, and U1 is treated

as noise.

Using lemma D.4, it is easy to verify that the following constraints on

nonnegative rates imply all the relevant constraints in Theorem 4.1.

RW1 + RU1 + RW2 + RV1 ≤ log(1 +
x1 + y1

4
)

RU1 + RW2 + RV1 ≤ log(1 +
y1 + k̃/4

4
)

RW1 + RU1 + RV1 ≤ log(1 +
x1 + k̃/4

4
)

RW1 + RU1 ≤ log(1 +
x1

4
)

RU1 + RW2 ≤ log(1 +
x1

y2
+ y1

4
)

RU1 + RV1 ≤ log(1 +
k̃/4

4
)

RU1 ≤ log(1 +
x1

4y2

)

RV1 ≤ C12

RW1 + RW2 + RU2 ≤ log(1 +
x2 + y2

4
)

RW1 + RU2 ≤ log(1 +
x2

y1
+ y2

4
)

RW2 + RU2 ≤ log(1 +
x2

4
)

RU2 ≤ log(1 +
x2

4y1

).

As in region 3, it is not hard to see that R1A = (log(1 + x1)−R0)
+, R1B = 0

satisfies these constraints when R0 ≥ 7.

Now, in the original constraints, eliminating V1, U2 with R1A = RW1 +

RU1 + RV1 and R2A = RW2 + RU2 and setting R1A = (log(1 + x1)−R0)
+, we

get

RW2 ≤ log(1 +
x1 + y1

4
)− (log(1 + x1)−R0)

+

−RW1 + RW2 ≤ log(1 +
y1 + k̃/4

4
)− (log(1 + x1)−R0)

+
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(log(1 + x1)−R0)
+ ≤ log(1 +

x1 + k̃/4

4
)

RW1 + RU1 ≤ log(1 +
x1

4
)

RU1 + RW2 ≤ log(1 +
x1

y2
+ y1

4
)

−RW1 ≤ log(1 +
k̃/4

4
)− (log(1 + x1)−R0)

+

0 ≤ RU1 ≤ log(1 +
x1

4y2

)

0 ≤ RW2 ≤ log(1 +
y1

4
)

RU1 + RW1 ≥ (log(1 + x1)−R0)
+ − C12

RU1 + RW1 ≤ (log(1 + x1)−R0)
+

RW1 + R2A ≤ log(1 +
x2 + y2

4
)

RW1 + R2A −RW2 ≤ log(1 +
x2

y1
+ y2

4
)

R2A ≤ log(1 +
x2

4
)

0 ≤ RW1 ≤ log(1 +
y2

4
)

0 ≤ R2A −RW2 ≤ log(1 +
x2

4y1

).

By the choice of R0, we already have

(log(1 + x1)−R0)
+ ≤ log(1 +

x1 + β̃1x1

4
).

Again, we may simplify the constraints with linear deterministic notation to

obtain the following set of constraints

RW2 ≤ ([max(α1, n1)− 2]+ − [n1 + 2−R0]
+)+

RW2 −RW1 ≤ (max(α1, k)− 5)+ − (n1 + 2−R0)
+

RW1 + RU1 ≤ (n1 − 2)+

RU1 + RW2 ≤ (max(α1, n1 − α2)− 3)+

RW1 ≥ (n1 + 2−R0)
+ − (k − 5)+

0 ≤ RU1 ≤ ((n1 − α2)
+ − 3)+

0 ≤ RW2 ≤ (α1 − 2)+

RU1 + RW1 ≥ min((n1 + 2−R0)
+ − C12, (n1 −R0)

+)
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RU1 + RW1 ≤ n1 −R0

RW1 + R2A ≤ (max(α2, n2)− 2)+

RW1 + R2A −RW2 ≤ (max(n2 − α1, α2)− 3)+

R2A ≤ (n2 − 2)+

0 ≤ RW1 ≤ (α2 − 2)+

0 ≤ R2A −RW2 ≤ ((n2 − α1)
+ − 3)+.

By Fourier-Motzkin elimination, we can show that R2A = min(v1 − 9, v2 +

C12 − 7 + R0, v3 − 19, v4 + C12 − 16 + R0) is achievable, where vi, i = 1, 2, 3, 4

are defined in Proposition 6.1.1. Since we have C12 ≥ δ(β − n1 − 1), we can

conclude that when R0 ≥ 7, we may achieve R2 = max
δ≥0

R2(δ), where

R2(δ) =
1

1 + δ
R2A ≥ min(u′1 − 9, u′2 − 7 + R0 − 1, u′3 − 19, u′4 − 16 + R0 − 1).

With R0 ≥ 7, we can see that R2(δ) ≥ CLDM
R0

− 10. Hence, CLDM
R0

can be

achieved within 10 bits in this region.
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APPENDIX E

PROOF OF THEOREM 6.5

For a given scheme, let δ ≥ 0 be the proportion of the time spent in mode B

to the time spent in mode A. Note that there is no mode C in the cognitive

setting. It is enough to show that for any scheme with scheduling parameter

δ ≥ 0, C (δ) is an outer bound of the achievable rate region.

Let Pi,t = |Xi,t|2, i = 1, 2, and t = 1, 2, . . . , N . We define the average

power in the different modes as follows:

P1A =
1 + δ

N

∑
t∈A

P1,t, P1B =
1 + δ

δN

∑
t∈B

P1,t, and

P2A =
1 + δ

N

∑
t∈A

P2,t. P2B =
1 + δ

δN

∑
t∈B

P2,t = 0.

By power constraint, we have PiA+δPiB

1+δ
≤ 1, i = 1, 2. We further define

V L
1A =h13X

L
1A + ZL

1A, UL
1A =h14X

L
1A + ZL

2A,

V L
2A =h24X

L
2A + ZL

2A, UL
2A =h23X

L
2A + ZL

1A.

1. R2

L(R2 − ε) ≤ I(W2; Y
L
4A)

≤ I(W2; Y4A|W1)

≤ I(W2; Y
L
4A|W1)

≤ H(Y L
4A|W1)−H(Y L

4A|W1, W2, Y
L
2B)

= H(V L
2A|W1)−H(ZL

4A)

≤ H(V L
2A)−H(ZL

4A)
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R2 − ε ≤ 1

1 + δ
log(1 + x2P2A).

2. R1 + R2

L(R1 + R2 − ε) ≤ I(W1; Y
L
3A, Y L

3B) + I(W2; , Y
L
4A, Y L

4B).

We have

I(W1; Y
L
3A, Y L

3B)

≤I(W1; Y
L
3A, Y L

3B, Y L
2B, Y L

4B|W2)

=H(Y L
3A, Y L

3B, Y L
2B, Y L

4B|W2)−H(Y L
3A, Y L

3B, Y L
4B|W1, W2, Y

L
2B)

−H(Y L
2B|W1, W2)

=H(Y L
2B|W2) + H(Y L

3A, Y L
3B, Y L

4B|W2, Y
L
2B)

−H(Y L
3A, Y L

3B, Y L
4B|W1, W2, Y

L
2B)−H(Y L

2B|W1, W2)

=H(Y L
2B|W2) + H(Y L

3A, Y L
3B, Y L

4B|W2, Y
L
2B, XL

2A)

−H(Y L
3A, Y L

3B, Y L
4B|W1, W2, Y

L
2B)−H(Y L

2B|W1, W2)

≤H(Y L
2B|W2) + H(V L

1A, Y L
3B, Y L

4B|W2, Y
L
2B)

−H(Y L
3A, Y L

3B, Y L
4B|W1, W2, Y

L
2B)−H(Y L

2B|W1, W2)

=H(V L
1A, Y L

2B, Y L
3B, Y L

4B|W2)−H(ZL
3A, ZL

3B, ZL
4B)−H(ZL

2B)

≤H(V L
1A, Y L

2B, Y L
3B, Y L

4B|W2)−H(ZL
3A, ZL

3B, ZL
4B)−H(ZL

2B)

+ I(UL
1A; XL

1A|V L
1A, Y L

2B, Y L
3B, Y L

4B, W2)

=H(V L
1A, UL

1A, Y L
2B, Y L

3B, Y L
4B|W2)−H(UL

1A|XL
1A, V L

1A, Y L
2B, Y L

3B, Y L
4B, W2)

−H(ZL
3A, ZL

3B, ZL
4B, ZL

2B)

≤H(V L
1A|UL

1A) + H(UL
1A, Y L

2B, Y L
3B, Y L

4B|W2)−H(ZL
4A)

−H(ZL
3A, ZL

3B, ZL
4B, ZL

2B)

I(W2; Y
L
4A, Y L

4B)

≤I(W2; Y
L
4A, Y L

4B, Y L
2B, Y L

3B)

=H(Y L
4A, Y L

4B, Y L
2B, Y L

3B)−H(Y L
4A, Y L

4B, Y L
2B, Y L

3B|W2)

≤H(Y L
4A) + H(Y L

4B, Y L
2B, Y L

3B)−H(UL
1A, Y L

2B, Y L
3B, Y L

4B|W2).
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Hence, we get

L(R1 + R2 − ε) ≤H(Y L
4A) + H(Y L

2B, Y L
3B, Y L

4B) + H(V L
1A|UL

1A)

−H(ZL
4A, ZL

3A, ZL
3B, ZL

4B, ZL
2B).

Notice that

H(Y L
4A)−H(ZL

4A)

≤
∑
t∈A

H(Y4t)−H(Z4t)

≤
∑
A

log(1 + (
√

x2P2t +
√

y2P1t)
2)

≤
∑
A

log(1 + 2x2P2t + 2y2P1t)

≤ L

1 + δ
log(1 + 2x2P2A + 2y2P1A)

H(V L
1A|UL

1A)−H(ZL
3A)

≤H(V L
1A − cUL

1A)−H(ZL
3A) (c =

h13h
∗
14P1A

1 + y2P1A

)

≤
∑
A

H(V1t − cU1t)−H(Z3t)

≤
∑
A

H(
h13

1 + y2P1A

X1t + Z3t − cZ4t)−H(Z3t)

≤
∑
A

log(1 + |c|2 +
x1P1t

1 + y2P1A

)

≤ L

1 + δ
log(1 + |c|2 +

x1P1A

(1 + y2P1A)2
)

=
L

1 + δ
log(1 +

y2x1P
2
1A

(1 + y2P1A)2
+

x1P1A

(1 + y2P1A)2
)

=
L

1 + δ
log(1 +

x1P1A

1 + y2P1A

).

Hence,

R1 + R2 − ε ≤ 1

1 + δ

[
log(1 + 2x2P2A + 2y2P1A)

+ δ log(1 + (x1 + y2 + z)P1B) + log(1 +
x1P1A

1 + y2P1A

)
]
.
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3. R1 + R2

L(R1 + R2 − ε) ≤ I(W1; Y
L
3A, Y L

3B) + I(W2; , Y
L
4A, Y L

4B).

Notice that

I(W1; Y
L
3A, Y L

3B)

=H(Y L
3A, Y L

3B)−H(Y L
3A, Y L

3B|W1)

=H(Y L
3A) + H(Y L

3B)−H(UL
2A|W1)−H(ZL

3B)

I(W2; Y
L
4A, Y L

4B)

≤I(W2; Y
L
4A, Y L

4B|W1)

≤H(Y L
4A, Y L

4B|W1)−H(Y L
4A, Y L

4B|W1, W2, Y
L
2B)

=H(V L
2A|W1) + H(ZL

4B)−H(ZL
4A, ZL

4B)

≤H(V L
2A, UL

2A|W1)−H(UL
2A|V L

2A, W1, X
L
2 )−H(ZL

4A)

≤H(V L
2A|UL

2A) + H(UL
2A|W1)−H(ZL

3A)−H(ZL
4A).

We get

L(R1 + R2 − ε) ≤ H(Y L
3A) + H(Y L

3B) + H(V L
2A|UL

2A)−H(ZL
3A, ZL

4A, ZL
3B).

Hence,

R1 + R2 − ε ≤ 1

1 + δ

[
log(1 + 2x1P1A + 2y1P2A) + δ log(1 + x1P1B)

+ log(1 +
x2P2A

1 + y1P2A

)
]
.

4. 2R1 + R2

L(2R1 + R2) ≤ 2I(W1; Y
L
3A, Y L

3B) + I(W2; , Y
L
4A, Y L

4B).

We have

I(W1; Y
L
3A, Y L

3B)

=H(Y L
3A, Y L

3B)−H(Y L
3A, Y L

3B|W1)

87



≤H(Y L
3A, Y L

3B)−H(Y L
3A, Y L

3B|W1, Y
L
2B, XL

1 )

=H(Y L
3A, Y L

3B)−H(UL
2A|W1, Y

L
2B, XL

1 )−H(ZL
3B)

≤H(Y L
3A) + H(Y L

3B)−H(UL
2A|Y L

2B)−H(ZL
3B),

where the last inequality follows from the fact that I(UL
2A; W2, X

L
1 |Y L

2B) =

0 since UL
2A −XL

2A − Y L
2B − (W1, X

L
1 ) is a Markov chain. Proceeding as

in case 2 (the bound for R1 + R2),

I(W1; Y
L
3A, Y L

3B)

≤I(W1; Y
L
3A, Y L

3B, Y L
2B, Y L

4B|W2)

=H(Y L
3A, Y L

3B, Y L
2B, Y L

4B|W2)−H(Y L
3A, Y L

3B, Y L
4B|W1, W2, Y

L
2B)

−H(Y L
2B|W1, W2)

=H(V L
1A, Y L

2B, Y L
3B, Y L

4B|W2)−H(ZL
3A, ZL

3B, ZL
4B)−H(ZL

2B)

≤H(V L
1A, UL

1A, Y L
2B, Y L

3B, Y L
4B)−H(UL

1A|XL
1 , V L

1A, Y L
2B, Y L

3B, Y L
4B, W2)

−H(ZL
3A, ZL

3B, ZL
4B, ZL

2B)

≤H(V L
1A|UL

1A) + H(UL
1A|Y L

2B, Y L
3B, Y L

4B) + H(Y L
2B, Y L

3B, Y L
4B)

−H(ZL
4A)−H(ZL

3A, ZL
3B, ZL

4B, ZL
2B)

I(W2; Y
L
4A, Y L

4B)

≤I(W2; , Y
L
4A, Y L

4BY L
2B, Y L

3B, UL
2A)

=I(W2; , Y
L
4A, UL

2A|Y L
2B, Y L

3B, Y L
4B)

=H(Y L
4A, UL

2A|Y L
2B, Y L

3B, Y L
4B)−H(Y L

4A, UL
2A|Y L

2B, Y L
3B, Y L

4B, W2)

=H(Y L
4A, UL

2A|Y L
2B, Y L

3B, Y L
4B)−H(UL

1A|Y L
2B, Y L

3B, Y L
4B, W2)−H(ZL

3A)

≤H(Y L
4A|UL

2A) + H(UL
2A|Y L

2B)−H(UL
1A|Y L

2B, Y L
3B, Y L

4B)−H(ZL
3A).

Combining all the inequalities, we get

L(2R1 + R2 − ε)

≤H(Y L
3A) + H(Y L

3B) + H(V L
1A|UL

1A) + H(Y L
4A|UL

2A) + H(Y L
2B, Y L

3B, Y L
4B)

−H(ZL
3A, ZL

3B, ZL
4A)−H(ZL

3A, ZL
3B, ZL

4B, ZL
2B).
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Notice that

H(Y L
4A|UL

2A)−H(ZL
4A)

≤H(Y L
4A − cUL

2A)−H(ZL
4A) (c =

h24h
∗
23P2A

1 + y1P2A

)

≤
∑
A

H(Y4i − cU2i)−H(Z4i)

=
∑
A

H(
h24

1 + y1P2A

X2i + h14X1i + Z4i − cZ3i)

≤
∑
A

log

(
1 + c2 +

x2

(1 + y1P2A)2
P2i + y2P1i +

2
√

x2y2P1iP2i

1 + y1P2A

)

≤
∑
A

log

(
1 + c2 +

x2

(1 + y1P2A)2
P2i + y2P1i +

x2P2i + y2P1i

1 + y1P2A

)

≤ L

1 + δ
log

(
1 + c2 +

x2

(1 + y1P2A)2
P2A + y2P1A +

x2P2A + y2P1A

1 + y1P2A

)

=
L

1 + δ
log

(
1 + y2P1A +

2x2P2A + y2P1A

1 + y1P2A

)
.

Hence,

2R1 + R−ε

≤ 1

1 + δ

[
log(1 + 2x1P1A + 2y1P2A) + δ log(1 + x1P1B) + log(1 +

x1P1A

1 + y2P1A

)

+ log(1 + y2P1A +
2x2P2A + y2P1A

1 + y1P2A

) + δ log(1 + (x1 + y2 + z)P1B)
]
.

89



REFERENCES

[1] S. Avestimehr, S. N. Diggavi, and D. Tse. “Approximate capacity of
Gaussian relay networks,” in Proceedings of IEEE International Sympo-
sium on Information Theory, 2008, pp. 474–478.

[2] G. Bresler and D. Tse. (Jul. 2008). “The two-user Gaussian
interference channel: a deterministic view.” [Online]. Available:
http://arxiv.org/abs/0807.3222

[3] V. R. Cadambe and S. A. Jafar, “Interference Alignment and the De-
grees of Freedom for the K User Interference Channel,” IEEE Transac-
tions on Information Theory, vol. 54, no. 8, pp. 3425–3441, Aug 2008.

[4] Y. Cao and B. Chen. “An Achievable Region for Interference Channel
with Conferencing,” in Proceedings of IEEE International Symposium
on Information Theory, 2007, pp. 1251–1255.

[5] Y. Cao and B. Chen. (Oct. 2009). “Capacity Bounds for Two-Hop Inter-
ference Networks.” [Online]. Available: http://arxiv.org/abs/0910.1532

[6] A. B. Carleial, “A case where interference does not reduce capacity,”
IEEE Transactions on Information Theory, vol. IT-21, no. 5, pp. 569–
570, Sep. 1975.

[7] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,”
IEEE Transactions on Information Theory, vol. 25, no. 5, pp. 572–584,
Sep. 1979.

[8] A. A. El Gamal and M. H. M. Costa, “The capacity region of a class of
deterministic interference channels,” IEEE Transactions on Information
Theory, vol. IT-28, no. 2, pp. 343–346, Mar. 1982.

[9] R. Etkin, D. Tse, and H. Wang, “Gaussian Interference Channel Capac-
ity to Within One Bit,” IEEE Transactions on Information Theory, vol.
54, no. 12, pp. 5534–5562, Dec. 2008.

[10] T. S. Han and K. Kobayashi, “A New Achievable Rate Region for the
Interference Channel,” IEEE Transactions on Information Theory, vol.
27, no. 1, pp. 49–60, Jan. 1981.

90



[11] A. Høst-Madsen, “Capacity Bounds for Cooperative Diversity,” IEEE
Transactions on Information Theory, vol. 52, no. 4, pp. 1522–1544, Apr.
2006.

[12] A. Jovicic and P. Viswanath, “Cognitive Radio: An Information-
Theoretic Perspective,” IEEE Transactions on Information Theory, vol.
55, no. 9, pp. 3945–3958, Sep. 2009.

[13] I. Maric, R.D. Yates, and G. Kramer, “Capacity of interference channels
with partial transmitter cooperation,” IEEE Transactions on Informa-
tion Theory, vol. 53, no. 10, pp. 3536-3548, Oct. 2007.

[14] S. Mohajer, S. N. Diggavi, C. Fragouli, and D. Tse, “Transmission Tech-
niques for Relay-Interference Networks,” in Proceedings of Forty-Sixth
Annual Allerton Conference on Communication, Control, and Comput-
ing, 2008, pp. 467–474.

[15] A. Ozgur, O. Leveque, and D. Tse, “Hierarchical cooperation achieves
optimal capacity scaling in ad hoc networks,” IEEE Transactions on
Information Theory, vol. 53, no. 10, pp. 3549–3572, Oct. 2007.

[16] V. Prabhakaran and P. Viswanath, “Interference Channels with Source
Cooperation,” IEEE Transactions on Information Theory, vol. 57, no.
1, pp. 156–186, Jan. 2011.

[17] V. Prabhakaran and P. Viswanath, “Interference Channels with Desti-
nation Cooperation,” IEEE Transactions on Information Theory, vol.
57, no. 1, pp. 187–209, Jan. 2011.

[18] P. Rost, G. Fettweis, and J. N. Laneman, “Opportunities, Constraints,
and Benefits of Relaying in the Presence of Interference,” in Proceedings
of the 2009 IEEE international conference on Communications, 2009,
pp. 1–5.

[19] O. Simeone, O. Somekh, Y. Bar-Ness, H. V. Poor, and S. Shamai, “Ca-
pacity of linear two-hop mesh networks with rate splitting, decodeand-
forward relaying and cooperation,” in Proceedings of Forty-Fifth An-
nual Allerton Conference on Commmunication, Control, and Comput-
ing, 2007, pp. 1127–1134.

[20] C. Thejaswi, A. Bennatan, J. Zhang, R. Calderbank, D. Cochran. “Rate-
Achievability Strategies for Two-Hop Interference Flows,” presented at
Forty-Sixth Annual Allerton Conference on Communication, Control,
and Computing, Monticello, IL, 2008.

[21] D. Tuninetti, “On Interference Channels with Generalized Feedback,” in
Proceedings of IEEE International Symposium on Information Theory,
2007, pp. 2861–2865.

91



[22] I-H. Wang and D. Tse. (Nov. 2009). “Interference Mitigation
Through Limited Receiver Cooperation.” [Online]. Available:
http://arxiv.org/abs/0911.2053

[23] S. Yang and D. Tuninetti, “A New Achievable Region for Interference
Channel with Generalized Feedback,” in Proceedings of Annual Confer-
ence on Information Sciences and Systems, 2008, pp. 803–808.

[24] W. Yu and L. Zhou, “Gaussian z-interference channel with a relay link:
Achievability region and asymptotic sum capacity,” submitted to IEEE
Transactions on Information Theory, June 2010.

92


