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Abstract

Magnetic resonance imaging (MRI) is a powerful tool for stindgythe anatomy, physiology, and
metabolism of biological systems. Despite the fact that MB$wtroduced decades ago and has
already revolutionized medical imaging, current applaad are still far from utilizing the full
potential of the MR signal. Traditional MRI data acquisitiand image reconstruction methods
are based on simple Fourier inversion, leading to unddsitedde-offs between image resolution,
signal-to-noise ratio (SNR), and data acquisition time. €itad approaches to addressing these
trade-offs have relied on improved imaging hardware ancenefficient pulse sequences. In con-
trast, our work addresses the limitations of MR using reddyi less-explored signal processing
approaches, which have recently become practical becdusereasing computational capabil-
ities. This dissertation concerns the use of constrainejing models to guide the design of
both data acquisition and image reconstruction, leadingipyoved imaging performance in the
context of both noise-limited and resolution-limited saeaos.

To address noise limitations for high-resolution imaghwvg,introduce a quasi-Bayesian edge-
preserving smoothness prior for modeling correlated insaggpiences. The prior models the cor-
related edge structures that are observed in the image rssgjuend is used within a penalized
maximum likelihood framework to reduce image noise whilesarving high-resolution anatomi-
cal structure. In contrast to many constrained imaging odghwe demonstrate that the proposed
method is relatively simple to analyze and is robust to mawtcuracy when reconstruction pa-
rameters are chosen appropriately. Resolution and SNRsasalyows that the proposed formula-
tions lead to substantial improvements in SNR with only a emate decrease in spatial resolution.

An examination of resolution and SNR trade-offs is presntehich serves as a guide for the



optimal design of data acquisition and image reconstragifocedures in this context.

To address limited spatial resolution in high-SNR scersamee design specialized data acqui-
sition and image reconstruction procedures to enable imegmstruction from sparsely-sampled
data. Specifically, we leverage prior information that thhage has sparse or low-rank structure
to significantly reduce sampling requirements in two défgrcontexts. In the first context, we
assume that the image is sparse in a known transform donradnjevelop a novel non-Fourier
data acquisition scheme to enable high-quality reconstruérom undersampled data. The sec-
ond context is specific to spatiotemporal imaging, and issuaed that the temporal evolution of
the spatiotemporal image is highly correlated at diffesgatial positions. This correlation leads
to the formulation of a novel low-rank matrix recovery prefl, which we demonstrate can be
solved efficiently and effectively using special algorithm

Applications of the proposed techniques are illustrateith wimulated and experimental data

from a variety of different MR imaging scenarios.
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Chapter 1

Introduction

1.1 Problem Statement

Data acquisition in conventional MRI is typically modeledsasnpling in the spatial Fourier do-

main (also called-space):
d,, = /p(x) e 2mkmXdx 4, m=1,2,..., M. (1.1

In this expression) denotes the number of measutedpace samplegk,,}_, is the set of

k-space sampling Iocation$dm}ﬂ]‘f:1 is the set of measured daja(x) is the image function of

M
m=1

interest, and{7,,, } is the set of additive measurement noise perturbations.rdatipe, the

choice of M represents a balance between several factors:

e Experiment duration. MRI data acquisition is a time-consuming process, with thal to
experiment duration typically proportional to the amouhtoquired data samples. As a

result, the use of small/ can improve the speed of imaging experiments.

¢ Image resolution. MR image resolution is a function of the Fourier-domain skngp
pattern, and traditional high-resolution reconstrudigenerally require extenddaspace

sampling and larg@/ .

e Image signal-to-noise ratio. The standard method of reducing the impact of additive noise

in reconstructed MR images is to perform data averagingghvliso increases!.



This research addresses the problem of reconstrugtirg from {dm}ﬁf:l when the number
of acquired data sample¥ is too small to yield acceptable reconstructions using entignal
Fourier reconstruction algorithms. The use of smidlcan dramatically reduce experiment dura-
tion, and can lead to improved temporal resolution in dymamaging applications. In contrast to
standard methods, we use prior information about the ingagkperiment to develop new imag-
ing models that are capable of dealing with limited and/asydata. The characteristics of these
new models influence the choice of MR data acquisition andj@waconstruction strategies. The

methods described in this work focus on two specific smalimaging contexts:

1. We consider constrained denoising approaches to redise limitations in high-resolution
imaging. In this case, we propose and investigate the useafipformation derived from
coregistered anatomical reference images to improve insggel-to-noise ratio (SNR),

while simultaneously preserving high-resolution imagsees.

2. We consider approaches for reconstructing MR images Bpansely-sampled data with
high SNR. In particular, we propose and investigate new aggtres that leverage the prior
information that MR images are often highly structured.(istatic MR images are gener-
ally sparse in appropriately-chosen transform domaing,spatiotemporal MR images of-
ten satisfy special linear-dependence relationshipgyaioa temporal dimension) to enable

high-quality reconstructions from significantly undergdead data.

1.2 Motivation

The theory and methods underlying MR studies have been aj@ngl for decades. Important
early landmarks leading up to the development of MRI includeetbpment in the 1930s of the
first magnetic resonance method for measuring the magr@i@acteristics of nuclei by Isador I.
Rabi (who received the 1944 Nobel Prize in Physics), the fiestisurements of MR signal from

bulk matter in the 1940s by Felix Bloch and Edward M. Purceh@wghared the 1952 Nobel Prize



in Physics), and the development of pulsed Fourier transfand multidimensional MR spec-
troscopy methods by Richard R. Ernst (who received the 199kN®gittize in Chemistry). MRI
was first demonstrated in the early 1970s by Paul C. LauteB&d,[who shared the 2003 Nobel
Prize in Physiology or Medicine with Sir Peter Mansfield. &ithat time, MRI has evolved into a
powerful non-invasive imaging tool that can probe the stme; biochemistry, and function of liv-
ing biological tissues. MRI has a number of advantages vel&bi other existing medical imaging
modalities [L73 406 442,646. For example, unlike modalities such as X-ray computedamra-
phy, positron emission tomography, and single photon eanisoomputed tomography, MRI does
not require the use of ionizing radiation. In addition, kalultrasound and many optical tech-
niques, MRI is less constrained by penetration depth linomat at the magnetic field strengths
that are commonly used in current clinical practice. Furtiere, the MR signal is sensitive to a
wide range of different physical phenomena, allowing MRexkpents to study biological tissues
from a wide range of different perspectives through thefohranipulation of various intrinsic
and extrinsic contrast mechanisms. As a result, MRI can ertabl early detection of pathology
before the onset of chronic disease, can facilitate newoaghies to personalized medical treat-
ment based on imaging-guided interventions and/or quntt assays of the unique biological
parameters of each patient, and can be used to explore femdainguestions about the nature of
biological systems. However, despite this amazing pakatid decades of revolutionary progress,
modern MR techniques are still quite far from reaching tha&ts of what can be extracted from
the MR signal.

The main limitations of MRI are its relatively low sensityiand slow data acquisition speed.
In practice, these limitations often mean that it is neagssa choose between low-resolution
data, noisy reconstructed images, prolonged experimiénited MR contrast encoding, or some
combination thereof. Long experiment duration is probleci@r several reasons: (1) extended
experiments are uncomfortable for live imaging subjedigesit is often important to remain still
during data acquisition to reduce motion artifacts in treonstructed images; (2) long data acqui-

sition times can limit the spatiotemporal resolution inds#s of dynamic processes; (3) imaging



time on MR scanners is expensive, and long experiments $object throughput; (4) in clini-
cal situations, fast availability of imaging findings can déical to the treatment planning and
prognosis of emergency room patients. Thus, while the MRadigan be manipulated to encode
a wealth of multidimensional biophysical and biochemicdbrmation, practical considerations
have prevented modern MR experiments from realizing thdlipbtential. As a result, the ability
to reconstruct high-quality images from noisy and/or spigrsampled data would significantly

enhance current and future MRI applications.

1.3 Main Results

e We have proposed and evaluated a new constrained approsstotsstructing MR images
when correlated reference images are available. In cantr@asnventional constrained ap-
proaches, which typically use anatomical prior informatio achieve super-resolution re-
construction from low-resolution data, the proposed metisanost effective at improving
image SNR while preserving anatomical structure withinrspdiigh-resolution data. We
show that the proposed method is easy to characterize, aaadysis of the resolution and
noise characteristics of the proposed method demonsthatesubstantial improvements in
SNR can be achieved with only a moderate decrease in spasialution. Formulations
are presented for the reconstruction of single images iptesence of high-quality, high-
resolution reference information, and for the joint re¢amsion of a coregistered sequence
of noisy correlated images. The power of the technique isothestnated using simulated and
experimental data. Related publications include R&#4,.45,232,267,269,270,274,276-
280,283-286,378 593.

e We have proposed a new sparsely-sampled data acquisitiemscfor reconstructing im-
ages that are sparse in a known transform domain. In conmtrasinventional MRI, which
makes use of Fourier encoding, we make use of a specialize#toarier encoding scheme

that is better aligned with existing theoretical literawn signal reconstruction using spar-

4



sity constraints (i.e.compressed sensirj@17,180). Simulation and experimental results
demonstrate that the method can significantly reduce datplsa) requirements relative to
standard Fourier-based compressed sensing reconstrtetioniques in high-SNR scenar-

ios. Related publications include Ref@7[3 275.

e We have proposed a new matrix-recovery approach to recmtisiy spatiotemporal im-
ages from sparsely-sampled data. In particular, we usedh@lpseparability (PS) model
to model the strong temporal correlations found in manyisgahporal imaging applica-
tions [399. The use of the PS model allows us to reformulate image sdoaction as the
reconstruction of a low-rank matrix. We describe some thecal characteristics of this
new problem, propose efficient new algorithms, and dematestwith simulated and ex-
perimental data that the combined PS/matrix-recoveryagmbr provides a new, powerful
way to reconstruct spatiotemporal images from limited d&ealated publications include

Refs. 68,281,282,

1.4 Organization of the Dissertation

This dissertation is organized as follows:

Chapter2 presents background material that will be helpful for ustierding the subsequent
chapters of the report. It contains a high-level overviewiét physics, incorporating descriptions
of basic signal generation and detection, spatial encadicigniques, and noise. The chapter also
includes a brief review of basic image reconstruction tepines for data sampled in the Fourier
domain, and a brief review of matrix rank.

Chapter3 describes a new quasi-Bayesian image model for modelingarsaguences with
correlated edge structures. The formulation is described, a convergent algorithm to solve
the resulting optimization problem is presented. In additithe resolution and SNR properties
of the resulting reconstruction scheme are characteremedl the optimal trade-off between data

acquisition resolution and SNR in is discussed. Finallyymber of simulation and experimental

5



reconstruction results are presented to demonstrate fhetieéness of the proposed scheme at
improving SNR while preserving high-resolution image tzas.

Chaptert presents a new compressed sensing scheme for recongrintsiges from sparsely-
sampled high-SNR data, using the prior knowledge that image sparse in a known transform
domain. The chapter describes the rationale for and degignspecialized non-Fourier encod-
ing scheme for this context. Simulation and experimentsdilte are shown to demonstrate that
this data acquisition scheme, when coupled with an apptgsparsity-promoting reconstruc-
tion scheme, can significantly reduce data-sampling reqents in certain contexts relative to
Fourier-based schemes.

Chapter5 presents a new reconstruction scheme for sparsely-saspégidtemporal imaging
data. The chapter introduces a novel and flexible formulaifahe spatiotemporal imaging inverse
problem in terms of the recovery of a low-rank matrix fromrsedy-sampled data, and an efficient
algorithm is described to solve the resulting optimizapooblem. Results are shown that illustrate
the effectiveness of rank constraints for achieving higgotution reconstructions from highly-
undersampled data.

Finally, Chaptel6 provides conclusions.



Chapter 2

Background

This chapter provides fundamental concepts needed fardhtpters. A brief discussion of the
physics of the MRI experiment is presented in Set, while Sec2.2 provides a short overview of

basic Fourier MRI reconstruction approaches. Se@i@mpresents a brief review of matrix rank.

2.1 The Magnetic Resonance Imaging Experiment

Due to the complexity of MR physics, this section will presan abbreviated high-level view of
MRI signal generation and detection. In particular, thoudgRIMas its foundation in quantum me-
chanics, we will adopt a semi-classical treatment in thidawwhich is generally quite accurate for
describing the ensemble behavior of the large collectibmsiclei that are present in macroscopic
objects P9(. Deeper perspectives on MR physics can be found in R&f46[263 394,406 577
and similar texts, though it should be noted that an endatbegiantum mechanical description of
MRI does not yet exist09.

This section will review MRI signal generation and deteciioSection2.1.1, spatial encoding

techniques in Sectiod.1.2 and MR noise characteristics in Sectibi.3

2.1.1 Signal Generation and Detection

MRI is possible because of the nuclear magnetic resonanc&r(Ni¥ienomenon, which involves
the interaction of atomic nuclei with magnetic fields. The RMhenomenon is itself dependent
on the quantum mechanical property knowrsps, an intrinsic form of angular momentum pos-

sessed by elementary particles. Many biologically-imgareitomic nuclei possess non-zero spin

v



(e.g.,'H, 3P, %2Na, etc.), which helps to explain why MRI has become such a falw®ol for
biological research and medical practice.

Atomic nuclei with non-zero spin quantum numbers generatzascopic magnetic fields
about themselves, each of which can characterized by a ri@agnement vectou = uﬁ +
1,j + p-k, wherei, j, andk are the unit vectors for the standard Cartesian coordinateersy
The total magnetic field generated by a collection of nucsgams is described through tieilk

magnetization vectavl = M,i+ Myj + Mk, with

M = Z M, (2.1)

where theith nucleus has magnetic moment

Signal detection in practical NMR and MRI experiments rebesa non-zero bulk magneti-
zation. However, at thermal equilibrium and in the abserfcag strong external magnetic field,
the {u,} are randomly and incoherently oriented due to random thigperéurbations, such that
M = 0. On the other hand, in the presence of a strong uniform magnete fieldB,, the dif-
ferent orientations of théu,} with respect tdB, are associated with different energy levels. As
a result, individual magnetic moments will have preferregmtations, leading to a nonzero bulk
magnetization along the direction of the applied field. Trausagnet that can provide a strong
homogeneous magnetic field is an important component of MBstxperiments. In keeping with
the standard NMR/MRI literature, we will assume thi&f is oriented along the direction, i.e.,
thatB, = Bok, and will denote the thermal-equilibrium value of the bulgnetization vector as
M, = M°k.

An important aspect of the bulk magnetization is that thegndifferences between the dif-
ferent orientations of théu,} are generally very small, meaning that the orientationfief 1, }

are still largely incoherent at thermal equilibrium andtth) < 3, [lu,|[,,." In particular, the

'We use the notatiof}-||,, to denote the, norm, which measures the Euclidean length of a vector. Afigkp
mathematical definition of this norm is presented later ia thhapter.



value of _; [|u,[|,, for a nucleus with spin quantum numbeis

> gl = vENA/I(T + 1), (2.2)

while the value of\/? is
1o VBN + 1)
‘o 3kpT, ’

(2.3)

where~ is a constant known as tlggromagnetic ratidhat is unique to each species of nucleus,
h is Planck’s constants(6 x 10~3* J-s) divided by2w, N, is the total number of spins in the
systemj g is Boltzmann's constantl (38 x 10723 J/K), andT7, is the absolute temperature (K) of
the system. FotH imaging ( = 1/2 and~ /2 = 42.58 MHz/T) at room temperature/{ = 300
K) and the relatively large magnetic field strengthi®f = 9.4 T, the ratio ofM? to >, |lu; |, is
approximately2 x 10~°. While the energy differences between the different orisona increase
with increasingB, and decreasing temperature, modern MRI is still widely régdras having
relatively low sensitivity.

In the presence of an external magnetic field, the bulk mamatetn vector is known to behave
according to théloch equationswhich can be written as

aM (Med+043) (s, - 2k

—YM x B — _ 2.4
o = M X B 7 , (2.4)

whereB is the total magnetic field arifi, and7; are relaxation constants. In the presence of the
static fieldB = B, the magnetization will remain at its thermal equilibriuadwe. However, by
applying a carefully tailored time-varying additional nmegic field B, (¢) (typically oriented in

the transverse — y plane) such that

B(t) =B+ By (1), (2.5)

the movement of the bulk magnetization vector can be cdattao thatM is forced to tip into



the plane transverse to the main magnetic field. This proakegscing M into the transverse
plane is known agxcitation TheB; field is often referred to as thadiofrequencyRF) pulse
since it typically takes the form of a radiofrequency modtkedesignal. If the significant transverse
components oB are removed after excitation, th&i will precess clockwise about the positive
axis as described through EG.4). In particular, a magnetization vecthdi(¢) starting atVI(0) =

M,(0)i + M,(0)j + M.(0)k at timet = 0 will evolve in the presence @ = B.k according to

M,y (t) = M, (0)e " B:te=t/T2
! ! (2.6)

M, (t) = M(0)e /™ + M? (1 — e ¥/"1),

where we have introduced the complex phasor notalif(t) = M, (t) + iM,(t), and it is
assumed thaB, = By + AB, with AB < B, such that the thermal equilibrium magnetization
M? is not significantly perturbed.

As a result of Faraday’s law of inductigrthe changes in the magnetic flux caused by the pre-
cessing magnetization vectM will generate an electromotive force (emf) through a caalgeld

in proximity to the sample. In particular, the egft) induced in the coil is given by

g(t) = — d B’ (x) - M(x, t)dx

@.7)
_ 4 / {real [ BT (x) My, (x. )] + BI(x)M.(x,1)} dx,

whereM(x, t) is the local bulk magnetization per unit volume at positios 21+ yj + zk and
timet, B"(x) = B’ (x)i + B, (x)j + B (x)k is the spatially-varying receive field of the detection

coil,’ By, (x) = B.(x) + iB,(x) is a complex phasor, and whetés used to denote complex

2In this description, we are largely following the somewtiatglified description by Hoult312), which relies on
Faraday'’s law of induction and requires a loop receiver. ¢diwever, it is possible to use Lorenz reciprocity to derive
expressions that work for arbitrary coil geometries — sag, Ref. p64] for more detalil.

3The receive field is related through the principle of recgitsoto the magnetic field that would be generated by a
unit of current at the Larmour frequency passing througkctiie

10



conjugation. Substituting Eg2(6) into this expression yields

E(t) = / {—real KmBZ + T%) B;Z(X)sz(x,t)]

M MY
+—2(X, O)Bg(x)e’t/T1 -z (x) B (x)e T} dx.
T1 Tl

(2.8)

Sincey B, is generally orders of magnitude larger thiaiT; and1/7;, many terms appearing
in the integral in Eqg.%.8) can be neglected, and the signél) measured by a receiver coil from

magnetization evolving according to EG-€) will be approximately given by

s(t) ~ C/’szimag [Bor (%) My, (x, )] dx

vB (2.9)

My, (x, 0)e 7547/ = B7 ()M, (x, 0)€B-e /]

where(C' is a constant of proportionality depending on the measunésystem. In practice, the
signals(t) is generally demodulated by multiplication with a compléusoid at frequency By,

leading to
2is(t)e" P! =

C / ’}/Bz [B;Z(X)sz (X, O)efi'YABteft/Tb _ B;y(X)M;y<X7 O)eiV(QBO‘FAB)te*t/TQ} dX,

(2.10)

wherew is the demodulation frequency. This demodulated signativam be low-pass filtered to
eliminate the component oscillating at frequencies neg@B, + AB), resulting in a signak(t)

given by

5(t) = C/VBZB;Z(X)MW(X’ ())e—ivABte—t/TQdX
(2.11)
<280 [ By 0)e ot

Finally, the signak(t) is sampled for further digital processing on a computer.
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2.1.2 Spatial Encoding Techniques

There are several mechanisms available for spatial engadiMRI (see Ref. 356 for a detailed
review in the context of spectroscopy), though the most comforms of this involve designing
AB in Eqg. (2.1 to have spatial and temporal variations. Examples of titkide the gradient-
encoding techniques first described by LauterB8€] in which the spatial position is encoded into
the resonance frequengA B through the use of a spatially-varyidg3, and sensitive point/field
focusing methodsj7, 154,249 306,565 in which the magnetic fields are generated in such a way
that only a single spatial position contributes signifibatd the measured signal.

Spatial encoding through the use of linear gradient fieldsidudata acquisition, as in Lauter-
bur’s original experimentd8q], has become the most widely-used spatial encoding mestmani
MRI, and has a very convenient Fourier-domain interpretadyY6 614]. In this approach, the

magnetic fieldA B is constructed such that

AB(x) = Gz + Gy + G, 2. (2.12)
In this case, defining(t) as
Gt
k() == | Gyt (2.13)
27 v '
Gt
Eq. 2.11) can be rewritten as
5(t) = VBOC'/B;;(X)MW(X, 0)e 2k =t/T2 x| (2.14)

Under the assumption that the effects of relaxation areigibtg during data acquisition, this

expression can also be written as
* —i2wk(t)-x
/ B (x)p(x)e 20> gx, (2.15)
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wherep(x) is a scaled, relaxation-weighted versiaf the original M, (x,0), which itself is a
function of the nuclear spin distribution. If we assume tthat receive field is spatially homoge-
neous such thaB;(x) = 1, then Eq. .19 matches the Fourier-transform relationship between
the observed signal and the imagex) given in Eq. (.1). This type of Fourier relationship also
holds in the more general case whétg G, andG., (the linear gradients) have temporal varia-

tions. In this case, Eq2(15 is still valid, with k(¢) now defined as

fg G (T)dr
k(t) = % [5Gy (r)dr |- (2.16)
fot G.(T)dr

In practice the maximum gradient strength and slew rateiariéed, due to both hardware and
regulatory constraints. In addition, it is often desiraloten the perspective of SNR to use small
gradients, since large gradients increase the frequenugwbdth of the desired signal, and in-
creasing the bandwidth of the detection system leads teasedd measurement noise as described
in Sec.2.1.3 Thus, while pulse sequences exist that try to acquire dafast as possible (in-
cluding echo-planar imaging (EPB33, spiral imaging ], fast low-angle shot (FLASH) imag-
ing [269, burst imaging B0Q, and several othersif]), k-space trajectories are still traversed
relatively slowly. As a result, the need to have the data sdgun window be short relative to
relaxation and other physical effects often means thatiphliterations of the excitation and
encoding procedure are necessary to acquire sufficienidfalata for high-resolution reconstruc-
tion. The relatively time-consuming nature of this proaedis one of the primary limitations of
MRI. Due to the widespread use of Fourier acquisition in MRIstrmaf this dissertation will fo-
cus on image reconstruction from Fourier-encoded data. edery the methods we will discuss
can easily be extended to model non-Fourier aspects of dgtasition, such as undesired spatial

inhomogeneity of thds, field [212 595 and spatial inhomogeneity of the receive field of the de-

4The relaxation parametefs andT, tend to vary spatially in real experiments, and this prosidee of the many
useful sources of MR image contrast.
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tection coil b19. The remainder of this subsection will briefly discuss sarfithe other spatial
encoding methods that have been proposed for MR.

The Fourier encoding scheme described above created tusedicnagnetic field inhomogene-
ity AB (x) in which the magnetic field strength varied linearly as a fiomcof spatial position.
Technigues have also been proposed that make use of norgnaelfent fields for spatial encoding
during data acquisition. Examples include the use of nealigradients for phase-scrambling ap-
plications 45641], Fresnel and)-space MRI using quadratic gradient fiel@8],332590,665,
and PatLoc imaging using general curvilinear fiel@d287,301,561].

Another approach to spatial encoding is to introduce spatigations in the magnetic field
during the RF pulse used for excitation, such that the regpohd/1(x,t) to the RF pulse has
spatial dependence. The most common form of this kind of Reding is slice selection, in
which only a thin two-dimensional (2D) slice of a three-dims®nal (3D) object is excited by the
RF pulse B10 387,434, while the remaining 2D localization is still achieved bgnventional
gradient-based Fourier encoding. However, a wide variébtlrer spatially-selective excitation
or saturation based methods have been proposed and prandfecant flexibility to the design of
MR experiments27, 65,68, 69, 83,151,221, 234,245 297,311, 342,351, 443 444, 455, 486,496,
507,547,640, 678. Classes of spatial encoding techniques also exist in whath is acquired
simultaneously or interleaved with RF irradiation. Thesehteques include continuous wave
MRI[199, frequency-swept MRI329 644, and stochastic NMR imagin@p—64,338473543.

A fundamentally different approach to obtaining spatidtigalized information from an ob-
jectis to use receiver coils with spatially-localized d#iten sensitivitiedB" (x) (i.e.,local coilsor
surface coil} [5,363. Parallel imaging methods represent an evolution of tpga@ach, simulta-
neously acquiring data from multiple coils in parallel. histcase, spatial information is encoded
into the measured data by the spatially-varying sengitpibfiles of each coil, and if thB"(x)
parameters for each coil can be calibrated accurately anddifs are sufficiently linearly inde-
pendent, then images can be obtained through the apphoattisuitable signal processing algo-

rithms [124,125256,257,298326,327,337,358379380408411,517,519520,525542 580,669.
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In practice, applications that use localized/parallelsctn encode spatial information frequently
combine sensitivity-based spatial encoding with the okfigrspatial encoding schemes described

above.

2.1.3 Noise

As a result of the limited sensitivity of MR (cf. Seg.1.1), noise is a major limitation in prac-
tical MRI experiments. Noise in MRI comes from multiple sowcancluding thermal fluctu-
ations, physiological effects, and signal perturbatioms th system instability (see discussion in
Refs. P8,311,313407,425465). The main type of noise that we will consider for this didagon

is thermal (Johnson-Nyquist) noisg43 480. The thermal noise in MRI predominantly comes
from the random thermal motion of charge carriers in theivecelectronics (e.g., electrons) and
within the sensitive region of the receiver coil (e.g., d&tions like sodium and dipolar molecules
like water in the samplep[L§. For most biological studies, the charged ions in the sarap the
dominant source of noise fluctuations.

Moving charged particles interact electromagneticallyhwvithe signal detector, resulting in
fluctuations of the measured signal voltage. Due to the eatlithis thermal noise, the statistics
of the noise samples (i.e{n,ym}f‘f:1 from Eq. (L.1)) are expected to be modeled well by an additive
white complex Gaussian distribution (with independent mieditically distributed real and imag-
inary components). It has been shown experimentally thatdistribution accurately describes
the distribution of experimental data, as long as the tealgditers used in the demodulation step
(cf. Egs. .10 and @.11)) and in the analog-to-digital conversion process mamngauniform
frequency response over the frequency range of inted4é4i.[ Several factors influence the stan-
dard deviation of the measurement noise, including the watid of the temporal filters (which
is usually adjusted based on the spatial extent of the saampléhe maximum magnitude of the
gradient fields,, G,,, andG, used during data acquisition), the temperature of the saamd
electronics, and the number of moving charged particlelarsensitive region of the receive coil.

To avoid confusion, we should mention that many descrigtiohnoise in the MRI litera-
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ture [9, 10, 16,122 171, 260, 299, 365, 366,441, 447,453 574 describe the effects of noise us-
ing the non-central Chi and Rician distributioris3f], rather than the Gaussian distribution. We
emphasize that MR data kspace is Gaussian, meaning that any linear image recaotistru
will also have Gaussian-distributed voxels. The Ricianriistion arises from taking the mag-
nitude of Gaussian-distributed images, while the nonre¢r@hi distribution arises in parallel
imaging when magnitude images of the same subject fromrdiftereceiver coils are combined
using a sum-of-squares procedure. In both cases, thesatiopsrresult in a loss of informa-
tion. While the magnitude of MR images is often taken for digpburposes, this specific pro-
cessing step is not a necessary part of image reconstrumtiamecessary step for the display
of images (see, e.g., competing phase-correction methati8(, 81, 241, 412,450,475 515).

As a result, while many approaches exist for denoising MRgesawith non-Gaussian distribu-
tions [9, 10, 29, 36,66, 216,295, 374,415,431, 441,476,510, 575 605, the discussion presented
in this dissertation will be limited to the Gaussian caseicWis much easier to analyze and for
which more significant gains can be obtainédd.

In addition to thermal noise, a noise source that appealeindntext of biological imaging is
physiological noise98]. Physiological noise includes effects resulting fromjeabmotion such
as bulk subject movement, cardiac motion and pulsationyresmration. These effects can be sig-
nificant and important in certain applications (e.g., MBIt are difficult to analyze because we
still do not have a good quantitative understanding of piggical noise §8]. In this dissertation,
we will either neglect the effects of physiological noiseassume that it also leads to additive
white Gaussian measurement noise.

Finally, other sources of noise include quantization in d@n@log-to-digital converters used
for sampling the MR signal39], spin noise in the bulk magnetization vectef [393, external

sources of RF signal (e.g., radio stations), and instadslith the main magnetic field 5.
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2.2 Fourier Image Reconstruction

The previous section derived the physical basis of the Eouriaging equation given in EdL (),

which we repeat below:
d, = /,0 (x) e 2 kmXdx 4 m,, m=1,2,..., M. (2.17)

In this section, we review some of the standard techniquatsate available for reconstructing
p (x) from Fourier data. While there are many constrained recocisbn approaches that leverage
strong prior information about the images being reconstdi¢e.g., #00,454,475), this section
will focus primarily on general methods for Fourier invensi Finitely-sampled Fourier inversion
is well-known to be atll-posedinverse problem, where an inverse problem is said to be peeded
(in the sense of Hadamard) if it has the following three ctiarastics (see Refs48,289,601,625

for a precise mathematical definition):
1. Atleast one solution exists.
2. The solution is unique.
3. The solution is stable with respect to small perturbatiorthe data.

As we will see, the inverse problem corresponding to BdlL9) generally fails to have a unique
solution, and additional constraints are necessary to riekproblem well-posed.

To begin, we will make some mathematical assumptions tolgyrtpe discussion. We will
assume that (x) is a complex function irD-dimensional space, i.e., that R” — C, whereD is
typically 2 or 3, corresponding to 2D and 3D imaging probleraspectively. We will additionally
assume thap (x) is supported on a sét C RP? (i.e.,p(x) = 0 for x ¢ Q) of positive measure,
and thatp (x) has finite£; and£, norms, where th&, norms for functions o2 are defined for
p>1as

o, = ( [ |p<x>|pdx)1/p. (2.18)
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Under these conditions, it can be shovab3 385 that the Fourier transform (k) of p (x) is

well-defined, with

s (k) :/Qp(x) e~ kX x| (2.19)

and that an inverse Fourier transform exists that mé&fs back top (x), with

p(x) = /R s (k) ™ *gk. (2.20)

While the relationship in Eq.2(20 provides one way of recovering an image from Fourier

data, direct use of this relationship is impractical beedtieequires knowledge of (k) for every

k € RP, an uncountably infinite set of points. However, samplingsily requirements can be
considerably reduced if it is additionally assumed thatsilngport sef? is closed and bounded. In
this case, it can be shown thatx) can be recovered from a countably infinite set of poifh#44,
56,123 189,353 382385437). Theoretical sampling density requirements for exaabnstruction
have been established through the Whittaker-Nyquist-Kokelv-Shannon sampling theorem in
the context of periodic lattice samplin@d, 44,56,189,353 385437, and by the Beurling-Landau

theory for general non-uniform samplingg, 44,45,123 382. An example result is that if

R; Zsug (2|z;]), fori=1,2,...,D, (2.21)
XE
then
1 -1 i2rR~1n-x
p(x) = TRJ L) ;ZDS (R™'n)e , (2.22)

whereZ? is the space ab-dimensional integer vectors.co; is the indicator function fof, and

R is a diagonal matrix witlith diagonal entry equal t&;. If €2 is a hyper-rectangle centered at the
origin with sides aligned with the coordinate axes (a commassumption in MRI experiments),
then choosing the smallest possilite values in Eq. 2.21) leads toNyquist ratesampling in

Eg. (2.29.° Cartesiark-space trajectories with points spaced at the Nyquist ratgery common

5The Nyquist rate has a more general definition for an arlyisapport sef). See, e.g., Ref4B37].
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in practical MRI experiments.

Equation R.22 brings us one step closer to addressing BEqL4), but still requires knowl-
edge ofs (k) at infinitely many points. In general, the need for infinitengding to achieve per-
fect reconstruction is unavoidable without making addidlbassumptions. There are three com-
mon classes of methods that are used for reconstructing, rimigely-sampled Fourier data as in

Eq. 2.17) [207], which we describe in the following three subsections.

2.2.1 Conjugate Phase Reconstruction

The first class of methods ignores the fact that data is fyns@ipled, and directly makes approxi-
mations of analytic reconstruction formulas such as Ef&J or (2.22. In this case, the standard

approach is to estimate the image usirgpajugate phasg424 reconstruction

M
p (%) = Lixeay Y W™, (2.23)

m=1

where{w,, } are weighting coefficients. Equatioh.23 can be viewed as a Riemann-sum approx-
imation of Eqg. .20, with the {w,,} adjusted based on the local density of Fourier samples in
the vicinity of each measurement. The reconstruction csmla¢ viewed as a weighted, truncated
version of the infinite summation in EqR.€2 if the original Fourier samples lie on a Cartesian
lattice. Reconstruction using E®.23 is generally very computationally efficient, since thetfas
Fourier transform (FFT) 485 can be used for Cartesian-sampled data, and various appaexi
tions for Eq. .23 exist that leverage the FFT for non-Cartesian da@]91, 214,252 333 334,
377,488 509 532 560 567.

2.2.2 Hilbert Space Reconstruction for Square-Integrable Functions of

The second reconstruction approach is obtained by choassddution with finiteL, norm and
with support on{2 (we will use £,(2) to denote the Hilbert spac&17 of images satisfying

these constraints) that matches the data as closely adlgosBor example, we could choose a
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reconstructed image from the dé&tthe set of all maximally data consistent solutions withpees

to the Euclidean distance metric, i.e.,

i 2

m=1

r= {p<x> € L:(0):

dm _ / p (X) e—iQka-de
Q

is minimal}
(2.24)

={p(x) € Lo(Q) : F*"Fp = F*d},

whereF* : CM — L£,(Q) is the adjoint ofF,° d is the lengthA/ vector withmth entry equal to
d,,, and the second equality is a standard result from optimizah Hilbert spaces417. The
images in" are allleast-squaresolutions to the inverse problem, since they all have mihgum-
of-squares error with respect to the measured data. Howawvelpractical difficulty is that the set
I" generally contains an infinite number of images, and we woaktl to specify some additional
constraints to choose a unique reconstruction. The re&son is infinitely large is because we
have only sampled a finite amount of data, which means thed ttre generally an infinite number
of images in thenull spaceN (F) of our sampled Fourier transform operaf®r: £,(2) — CM.

This null spaceV (F) is defined as
N(F) = {p(x) € L) : /Qp(x) e~ 2mkm X gy = 0 for all m € {1,2,. .., M}} . (2.25)
It can be shown thdt is the linear variety
I'={p(x) € L2(Q) : po (x) + 2 (x) , with z(x) € N(F)}, (2.26)

where py (x) is any least-squares solutioAl]/]. A standard heuristic approach to choosing a
unique reconstruction from this linear variety is to usegbleudo-inverse solution, which selects

the unique image froh with minimum £,-norm [48,49,207,289,417,618 625. This minimum-

5Note that we usé with different meanings in different contexts. For funcoand scalars, we useto denote
complex conjugation, while for operators, we ust denote adjoint. See Re#]7] for a formal definition of the
adjoint operator.
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norm least-squares (MNLS) solution is given by

p(x)=F (FF)'d
v (2.27)
— 1{XEQ} Z Cm€1,27rkm-x’

m=1

where' denotes the matrix pseudo-inver@d§ 417,531, c,, is themth element of the vectat,

¢ = (FF*)"d, and where the elements of thé x M matrix F.F* are given by
FF = | ko) (2.28)
Q

Note that the reconstruction obtained with E.2()) is very similar to that obtained with the
approximation of analytic Fourier inversion given by Ef.23); indeed, in the case wheRF*
is diagonal (i.e., when the Fourier sampling functi({msmkm}f:1 are orthogonal ovef), the

pseudo-inverse reconstruction is a special case of ZE2R3)(

2.2.3 Reconstructions Using Finite-Dimensional Linear Image Models

The final class of methods represents the image in terms otefimensional linear model, i.e.,

N
p(X) = putn (%), (2.29)

whereN is the dimension of the linear model, afid, (x)} are functions inC,(2). While some
approaches use specialized anatomically-adapted basisdus (e.g.,32,76,119,121,319 400,
403 405,592 611]), basis functions modulated by prior image-phase infdrong[101, 262, 307,
400,673, or basis functions defined ikspace 223 459,544,567, a more common approach
in the imaging literature is to use translations of a singlexél function” ¢ (x) to represent the
image, i.e.,

On (X) = ¢ (x —xp,), (2.30)
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where{x, } specify the voxel locations (e.g127,168 207,289 364,512 597). Standard choices
of ¢ (x) include the Dirac delta function or an appropriate polyrarspline function§16. Under

this parameterization,

N
/ P (X) €7i27rkm-xdx _ an/ (b (X . Xn) efiQﬂ'km-de
Q n=1 Q

N
= (km) Z pne—i27rkm-xn7 (231)
n=1
= Fp,
where® (k) is the Fourier transform af (x), F is the M x N matrix with elements
[F),,, = ® (k) e 2mm>n, (2.32)

and p is the length& vector of p,, coefficients. With a finite-dimensional parametric model, i
becomes possible to use statistically-motivated recoatms such amaximum-likelihoodML)
estimation that make use of the probability distributiontled measurements to help determine
the unknown model paramete35(, 458 514]. Given the assumption of complex white Gaussian

noise measurements and assunprig known, the probability distribution at is given by

1 1 2
o) — ~ L |[Fp—d||
p (da p) = ﬂ_JWO_QMe o? 2, (233)
whereo is the standard deviation of the complex noise samples, lag, norm of a lengthA/

vector is defined fop > 1 as

M 1/p
Ial,, = (Z |dm\”> . (2.34)

m=1
In statisticsp (d; p) is frequently called thékelihood function
The ML estimate ofp is obtained by maximizing Eq2(33 with respect top. Maximizing

the likelihood is equivalent to minimizing the negative ditgelihood, so that the ML solution is
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obtained by solving the simple least-squares problem
p = arg mpin |Fp — d||?2 ) (2.35)

The ML solution is only unique wheR“F has full rank (a necessary condition for this is that

M > N), in which case
(2.36)

When the ML solution is unique, it satisfies a number of desirgboperties. In particulag is
a linear function of the measured data, is an unbiased dstiofi@, and has the smallest possible
variance among all possible unbiased estimat85g, 458 514.” The ML solution is also quite
similar in form to the MNLS reconstruction of EQR.27) and the conjugate phase reconstruction
of Eqg. 2.23.

In practice, FF may not have full rank or may be poorly conditioned (i.e.,sb&ution is not
very stable with respect to small perturbations in the datajhese cases, a penalized maximum-
likelihood (PML) estimate is often computedld4, 207,625. PML estimates are solutions to a

regularized ML problem of the form
p = argmin [Fp —d|;, + R (p). (2.37)

whereR (p) is a penalty (regularization) function that is used to easbat the reconstruction is
both unique and stable with respect to noise perturbatibims.choice of (p) often reflects prior

information about the image being reconstructed, and thectie of regularization is generally

"These facts follow from the Gauss-Markov theored4], which states that the least-squares solution (when it
exists and is unique) is the best (i.e., minimum covariatinepr unbiased estimator for any problem where the data
measurements are linear in the unknown parameters and e samples (not necessarily Gaussian or identically
distributed) are zero-mean, uncorrelated, and homostiedasore general versions of the Gauss-Markov theorem
can be found in Refs5p1,531].
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to make reconstructions “more regular” with respect to tlassof images under consideration.
Most existing approaches for MRI usg(p) that reflect the prior information that medical images
are often spatially smooth (with occasional discontimsiti50,131,163 237,546 or are sparse or
compressible in appropriately-chosen transform domdihg [L37,180,291,420 484].

In some cases, the PML reconstruction can have a Bayesiaprigtiion. Bayesian estimation
methods assume that the unknown paramgiease random variables with some known prior
probability distributionp(p), and use this prior to extract the posterior distributiortref image

conditioned on the observed datg; d) using Bayes'’ rule354,514:
(2.38)

wherep(d) is the probability of observing the measured data. Due tartbleision of the prior

distribution, this posterior distribution contains monéormation than the likelihood alone, which
can lead to improved parameter estimates relative to ML. Comapproaches to Bayesian im-
age estimation using this posterior distribution are to gota theminimum mean-squared error

(MMSE) estimate

p=min £ [|0 — p|*;d]

_ rnein/ 10 — p>p(p;d)dp (2.39)

Ep;d],

or themaximum a posterioi(MAP) estimate

(2.40)
— min —~Inp(d; p) ~ Inp(p)

= min |Fp—d|;, — o®Inp(p).
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As can be seen, the MAP estimate in Eg40) has the same general form as the PML estimate
in Eq. 2.37). Generally, PML estimates can have a Bayesian interpoet#tthere exists a nor-
malization constant (often called thepartition function following the nomenclature of statistical

mechanics) such that

p(p) = e (2.41)

is a valid probability distribution.

2.2.4 Resolution and Noise Characteristics of Conventional

Reconstructions

The conjugate phase, MNLS, and ML solutions are all lineaomstructions, and can be unified

under the following linear reconstruction formula:

M
— Z G (X) (2.42)

where{g,, (x)} is a set of spatially-varying reconstruction coefficients.is easy to show by

substitution of Eq.4.17) into Eq. .42 that

5 (x) = / p(9) b () dy + (2.43)
with
M .
hae (y) = D g (x) €727, (2.44)

whereh, (y) is called thespatial response functidi®RF) , andj, is a zero-mean Gaussian random

process with covariance

Cy (x,X) = E i) = o ng G (X)) (2.45)
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For a fixed image locatior, the variance of the reconstructed image value is thus diyen

Cr(x,x) = E [|[ic*] =0 lgm (x)|*. (2.46)

The relationship in EqZA 43 shows that the estimated value of the image at a given $|zatgdion

is actually a weighted average of the true image, plus additinoise. To achieve high resolution,
the SRFh, (y) should be highly concentrated about the spatial locatioHowever, the extent to
which this is possible is governed by both thepace sampling trajectory and the particular choice
of reconstruction coefficients.

To illustrate the effects of the number of measukespace samples on the resolution and
SNR of the reconstruction, we will consider a simple oneatisional (1D) example in which
Q =[~1/2,1/2], M is an even number, arfk,, } ', = {-M/2,-M/2+1,...,M/2—1}isa
truncated version of a periodic lattice satisfying Ef2() with the property that the corresponding
Fourier sampling kernels 2™%»* are orthogonal ovef. In this case, the MNLS reconstruction

has the form of a conjugate phase reconstruction given by

M
p (%) = Lixeay Y _ dme™™ ™. (2.47)
m=1
The corresponding SRF has the form of a spatially-windowetthBlet kernel

sin(mM(x —y))
sin (7(x — )

hx (Y) = l{er} eiiW(X7y)‘ (248)

An important characteristic of this SRF is that it becomesaramncentrated around(i.e., the
resolution improves) as the number of Fourier samplescreases, as illustrated in Fig.L
The covariance functio@’; (x, x’) for this case has a similar form to that of the SRF

sin (7 M (x — x'))
sin (7(x — %))

Cy (%, %) = L{xxeny i), (2.49)
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Figure 2.1: The magnitude of SRFs computed using Ed4.d with x = 0 for different numbers
of k-space sampled/. As the number of samples increases, so does the spatihltreso

and the noise variance at a particular spatial locatiamthe reconstruction is given by

o2 =Cy(x,x) = Mo*. (2.50)

This simple example has two important characteristicsahagenerally true in more compli-

cated linear reconstruction scenarios:

1. The spatial resolution of a reconstructed image is lichlig thek-space coverage of the
experiment, and can only improve by increasiigand collecting additionak-space data

with non-redundant information.

2. The noise variance in the reconstruction increases asamdd non-redundarik-space sam-

ples are incorporated into the reconstruction.

As a result of these characteristics, for a fixe] the design of th&k-space sampling pattern

typically represents a trade-off between spatial resmiudind SNR, as shown in Figd.2and2.3.

2.3 Matrix Rank

This section presents a brief review of matrix rank, whicH fae particularly helpful for under-
standing the material in Ch. More complete descriptions of matrix rank can be foundamdard

texts covering matrices and linear algel2d4§ 308 458. Formally, the rank of arlV x M matrix
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(b) 32 x 32 k-space coverage, averaged 16 times

(c) 64 x 64 k-space coverage, averaged 4 times  (d) 128 x 128 k-space coverage, no averaging

Figure 2.2: lllustration of the trade-off between spatedalution and SNR with fixed/ for con-
ventional linear reconstructions. (a) Gold standard in@&gefixed mouse brain. (b-d) Simulated
noisy MNLS/conjugate phase reconstructions with difféteapace trajectories. The support set
2 was assumed to be rectangular, and the Fourier samplesranged on a rectangular grid at
the Nyquist rate. In particular, the reconstructions in (b), and (d) used the centra® x 32,

64 x 64, and128 x 128 samples from the Nyquist grid. Asspace coverage increases, the spatial
resolution improves while the SNR decreases.

A is defined as the largest number of linearly independennaaguof A, which is also equal to

the largest number of linearly independent row\ofThe rank satisfies the following properties:
1. rank (A) < min (N, M). A is said to be full-rank itank (A) = min (N, M).
2. rank (A) = rank (A).
3. For two matricesA andB of the same sizeank (A + B) < rank (A) + rank (B).
4. For a matrixC with N columnsrank (CA) < min (rank (C) , rank (A)).

5. For afull-rankN x N matrix C and a full-rankM x M matrixD, rank (CAD) = rank (A).
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(c) 64 x 64 k-space coverage, averaged 4 times (d) 128 x 128 k-space coverage, averaged 8 times

Figure 2.3: lllustration of the trade-off between spati$alution and SNR with fixed/ for
conventional linear reconstructions in the context of angjtetive parameter estimation exper-
iment. (a) Gold standard quantitative diffusion tensorapaeter map (color-coded fractional
anisotropy) #6( estimated from a sequence of diffusion-weighted MR imagbsd) Simulated
noisy reconstructions with different acquisition stragsg The reconstruction procedures and sam-
pling trajectories match those of Figj.2. (b) The high-resolution parameter map is too noisy to be
useful without additional averaging. (c) SNR can be imptbleg acquiring data at lower resolu-
tion, though this comes at the expense of a significant lossatfomical detail. (d) Alternatively,
the high-resolution data can be averaged to improve SNRewhdintaining resolution, though
this comes at the expense of a significant increase in datassoon time.

An important fact about matrices is that they can be reptesgemsing the singular value de-

composition (SVD). In particular, iA is an N x M matrix, then there exists a setin (M, N)

N
n=17

different N x 1 orthonormal vector$p,, } a set ofmin (M, N) different M x 1 orthonormal

M
m=1"

vectors{q,, } and a uniquely-defined setwifin (A/, N') non-negative real numbesg (known

as “singular values”) satisfying, > o; when: < j, such that

min(M,N)

A= ) o =PEQ". (2.51)
k=1
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In this expression, théV x min (M, N) matrix P has itskth column equal tap,, the M x
min (M, N) matrix Q has itskth column equal tay,, and themin (M, N) x min (M, N) ma-
trix X is diagonal withkth diagonal entry equal te..

The SVD provides useful insight into matrix rank. In partaaya matrix with rankl will have

exactly L non-zero singular values, such that

min(M,N) rank(A)
k=1 k=1

In addition, the SVD provides a convenient structure for pating optimal low rank approxima-

tions. Consider the optimization problem

Ap = arg min[[Ag = Allp, (2.53)

n o
E(CNXL
rank(AR)<R

where R is assumed to be less than or equahtm (M, N), and|-|| is the standard matrix

Frobenius norm defined as

N M rank(A)
Al = 4| DD AL =4 D of (2.54)
n=1 m=1 k=1
The solution to this problem, known as the Eckart-Young apipnation [L92), is given by
. R
Ap =) owpraf. (2.55)
k=1

and the optimal approximation error is given by

(2.56)
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From this, it can be seen that any matrix with a large humbemadll singular values has the

potential to be accurately approximated with a low-rankrirat
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Chapter 3

Reconstructing Correlated Images with a
Shared Edge Prior

Contrast in MR images is dependent on both the physical pliepesf the imaging subject and
on the experimental parameters used to acquire data. In examgs, coregistered images of the
same anatomy are acquired with different contrast, progidifferent perspectives on the under-
lying characteristics of the imaging subject. However, asctibed in the previous chapter, the
acquisition of many different high-resolution images cartime-consuming, due to the relatively
slow data acquisition process and the trade-off betweem atjuisition time, image resolution,
and SNR. A simple way to improve SNR with fixed spatial resoluis to perform signal averag-
ing, though this comes at the expense of longer data adquisine. A more common alternative
is to simply reducé-space coverage, which will simultaneously reduce dataiaitipn time and
improve the resulting image SNR, though this comes at theafasgynificant partial volume arti-
facts in the reconstructed images.

In practice, it can also be possible to use side informattomfrelated reference images to
alleviate resolution and noise concerns. The main assampfithis kind of constrained image
reconstruction approach is that coregistered images teraame subject will frequently be highly
correlated. This large amount of correlation can be obskvisially in example image sequences
shown in Fig.3.1 The correlation observed in these images is not coincidieannd is the result
of the fact that the observed MR signal intensity is a functdthe microstructural and chemical
characteristics of the tissue. If one type of tissue hasifgigntly different characteristics from
another, this can easily lead to consistent observed MRrdifices between the tissues under a
variety of different MR contrast mechanisms. Thus, while ithtensities of different features are

quite distinct, the images demonstrate, for example, kightrelated edge structures and wavelet

32



(b) Diffusion Weighted Data

(c) Variable Flip-Angle FLASH Data

Figure 3.1: Coregistered image sequences with differeritastrparameters. (a) Multi-echo spiral
data (courtesy of Dr. B. Sutton); data acquisition paramseteg described irbP3. (b) Diffusion-
weighted image data (courtesy of Dr. X. Zhou); data acqaisjpparameters are described @7[].
(c) Variable flip-angle FLASH data (courtesy of Dr. N. Schuffhough the contrast of each image
is different, there is significant visual similarity betwetle different images of the same subject.
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coefficients, and this can mean that there is an opportumigverage information from one image
to help improve reconstruction of another. An example ifasng the high degree of edge and
wavelet correlation is shown in Fig3.2and3.3.

There are two general classes of signal processing methatlsave been proposed to use this

kind of prior information in the context of Nyquist-samplddta?

1. Super-Resolution Methods. This class of methods is based on the idea that high resolutio
MR images with certain types of contrast are naturally fagieacquire than others. As a
result, high-resolution prior information from these ineagan be fused with low-resolution
high-SNR data from slower MR experiments to yield high-teBon reconstructions. The
constraints used by these approaches are derived fromisteregl high-resolution anatom-
ical datasets, and include information about the locataifferent tissues within the field
of view (FOV) , edge locations, image phase, and image supp®r01,119121,146 166,
197,233 262 271,307,319, 325 335 370-372 400,403 405 464,475,512 592,611,673.
Similar super-resolution approaches have been proposeth@r imaging modalities, in-
cluding emission tomographyt 3, 20,30,42,70,72,76,93,128 136,139 145 210,242, 243
304,316,344,375 389,410 416,478 479,481,489,530 551,579 581,582 597,629 674,
transmission tomography71], susceptibility/impedance imagind.§2 244, and optical
tomography 83, 71,91, 158 186, 261, 330, 395,409 477. For this class of methods, the
quality of the reconstruction depends heavily on the qualitthe constraints that are im-
posed. If the prior information leads to an accurate signadieh with a small number of
unknown parameters compared to the number of measuredatafdes, very high quality
reconstructions can be achieved. However, if the conssraire not strong enough, then
reconstruction performance improvement may be limitecaddition, if the constraints are
inaccurate, then the modeling inaccuracies could resuthages with significant artifacts

and limited practical utility.

1\We note that there are other types of constrained methotisaiia been proposed when sampling is not performed
at the Nyquist rate, though we will leave discussion of thessibsequent chapters.
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(c) T> Weighted Image

Figure 3.2: Three different MR brain images of the same angtim the same subject, but with
acquisition parameters adjusted to yield different imag@mast. The first column shows the origi-
nal images, while the second and third columns show the sporeding edge structures (computed
using finite differences) and Daubechies-4 wavelet coefiisi, respectively. There is a significant
degree of correlation between the image edge structurewavelet coefficients.
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Figure 3.3: Joint histograms of the finite-difference edgagnitudes for the images shown in
Fig. 3.2 The correlation coefficient (Pearson}sbetween the edge magnitudes of each image pair
is given below each subfigurg41], indicating the strong level of statistical correlation.

2. Denoising Methods. Denoising methods have the general goal of removing noiseno
ination from high-resolution images. While many approaaddst that can independently
denoise each image in the image sequef¢ced 14, 29, 36,94, 95,149 152 176,200, 246,
295318 374,415422,430431,440,461,476499,504,510,546,550,575639 650,651,653
660,670, it is generally more powerful to use approaches that eyercorrelated image
structure in the image sequence. Approaches for the jomdidmg of a sequence of images

can again be divided into two groups:

(a) Parametric Contrast Models. Techniques in the first group begin by using a con-
strained image model in which the signal intensity variadibetween different images
in the sequence are modeled for each voxel in terms of a smalbar (relative to
the number of images in the sequence) of contrast parame&arsn this model, de-
noising is achieved by directly enforcing that the recargtd images obey the con-
trast model, and/or by imposing prior information (e.g.atsd smoothness) directly
on the spatial maps of the contrast parameters. The body if evoparameter-space
denoising is large; some representative examples from fRditerature include regu-
larized field inhomogeneity mapping15 303, regularized MR spectroscopic imag-

ing [372 552, regularized pharmacokinetic parameter estimatbg], regularized
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relaxation parameter estimatioh€l], regularized apparent diffusion coefficient esti-
mation 628, regularized probability and orientation distributiaimttion reconstruc-
tion [22,361,448 527], and various algorithms for tensor smoothing with apgiaa

to diffusion tensor MRI (DTI) B1,36,134,142,148 167,204,216,287,637,643 650.
However, techniques that regularize in a parametric spseally use relatively simple
contrast models to ensure the tractability of the estimapimcedure, and thus often
lack the ability to cope with model mismatch or fully represtine complex inter-image

signal characteristics seen in real biological tissues.

(b) General Image Models. The second group of denoising techniques aims to reduce
noise in the reconstructed image sequence without imp@sstgct contrast model on
the image sequence, and is thus more broadly applicableseTieehniques are also
more amenable to fitting multiple potential contrast modelsases of model ambigu-
ity. These image-domain techniques typically rely on galeations of methods devel-
oped for the reconstruction and restoration of single irmagxample methodologies
include the joint filtering of vector-valued images usinggetric partial differential
equations (PDESs) and related concepts (6&8)ffor review of the image processing lit-
erature andl35,172 239 266 449 for MR application examples), filtering using vec-
tor order statistics (see review id19), statistical thresholding/filtering in an appro-
priate transform domain (e.qg., se&¥][23,43,75,100 324,418 438 534,555 599,648
and references), joint reconstruction using Bayesianlagged statistical optimality
criteria to impose spatial smoothness (e.g., €79, 88, 159, 226, 296, 441, 457,

556 562 605 617, 645 666 and references), and methods based on non-local statis-
tics [66,225 432 650.

This chapter proposes a new sequence-based constraingidgnsaheme that can be applied

in both super-resolution and denoising contexts, thouglwilleademonstrate that the scheme is
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more effective when used for denoisifiglhe specific form of the reconstruction formulation is

based on the following considerations:

1. Images from typical MRI experiments usually consist of t&ti” regions separated by
edges. Smoothness constraints can be used to reduce ttis effemoise, although edges

need to be preserved to avoid amplifying partial volumecte

2. The edge structures seen in different frames of an imagedteong correlation. For exam-
ple, object support boundaries will exist in every imageareless of the image contrast.

Edge structures should be imposed in a joint fashion.
3. The reconstruction should not be overly sensitive torrest prior information.

4. The proposed method should be easily characterizablermstof the trade-off between

resolution and SNR.

Traditional joint-reconstruction formulations for sugesolution and denoising only incorporate
the first two items of this list. In contrast to such schemes, @roposed method is not very
sensitive to incorrect prior information, and is easily@tderized in terms of the trade-off between
resolution and SNR. An analysis of reconstruction propgitidicates that collecting extendkd
space information (at the expense of lower SNR) and perfaymé@noising is more advantageous
with this approach than attempting to achieve super-résolu

We formulate the joint reconstruction in the context of istatal estimation using a Markov
random field (MRF) smoothness pridi(, 51, 237 that models shared edge structures to achieve
image reconstruction with joint feature-preserving regahtion, similar to several existing meth-
ods [13,30,93,128 136,145,158 162,166,186,210,226,242,243 296,304,361,370,372, 375,389,
410,457,479,489 527,562 617,637,645 666 674. Galatsano®t al.[22§ previously proposed

2Some of the text and figures in this chapter have been prdyipublished in 80,283, and are copyright of the
IEEE. Personal use of this material is permitted. Howevemnission to reprint/republish this material for adveénts
or promotional purposes or for creating new collective vgdide resale or redistribution to servers or lists, or to e2us
any copyrighted component of this work in other works mustbtained from the IEEE.
In addition, some of the figures in this chapter have beeniqusly published in274], and are copyright of the
ISMRM.
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reconstructing correlated image sequences using a wedightéidimensional Laplacian regular-
ization operator to impose both spatial and inter-imagenisity correlation between the different
images from the sequence. However, this form of smoothimgceaise signal leakage between
different image frames. Schultz and Stevens®®Z] proposed a spatial edge-preserving MRF
model that couples the reconstruction of different imagenis by using prior knowledge about
the specific size of the spatial discontinuities that shduddbbserved in each frame. While this
procedure works well when the prior edge information is aat®) this type of smoothing can lead
to biased results in practice when the discontinuity sizeseatimated poorly. A more widely-
used class of methods simply applies smoothness constthattare spatially-adapted to reduce
smoothing at the locations of suspected edd&sJ0, 93,128 136,145 158 162, 166, 186, 210,
242,243 296,304,361,370,372 375,389,410, 457,479,489 527,617,637,645 666 674. Some

of these methods assume that edge information has beerstprexed using edge-detection or
tissue-classification methodsd, 30,93,128 145 158 162 186,210,304,370,372 375410,479,
while others jointly estimate image voxel values and edgations from the collection of im-
ages 136,166 242,243 296,361,389 457,489 527,617,637,645 666 674.

When jointly estimating the image values and the correlategige edge structure, most of
the existing methods use a multi-image extension of thepitoeess prior proposed by Geman
and Geman437] to model edges and the coupling between edge locationsffereht image
frames. However, due to the complexity of this kind of prtbe proposed optimization procedures
have frequently used either a computationally intensireutated annealing procedure or a greedy
algorithm that provides only local convergence. Recentgyvex optimization methods have also
been proposed for joint estimation of images and coupled &mmations 296, 361,617,645 664.
While this leads to fast, globally-optimal computationsg thsolution and SNR characteristics of
these methods have not been characterized in depth.

Similar to the methods described in the preceding parag@aptproposed approach performs
joint estimation of the images and their edge structuresguailine process prior. Our proposed

prior and the resulting optimization algorithm are extahffem the Geman and Reynold335
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formulation of multiplicative half-quadratic regularizan (see p4] for review of the early litera-
ture, and 15,131,163 328 471,472 and references for examples of more recent developments).
Like the previous convex formulations described in Re296 361,617,645 666, our proposed
reconstruction problem is also convex, and optimizatiom lsa performed using globally con-
vergent iterative reconstruction algorithms. In addititime proposed prior has a form that is
somewhat similar to certain cost functionals that appeditarature on joint sparse approxima-
tion [147,606], Bayesian multivariate modeling of wavelet coefficiertgd(, 570,596 626, and
multivariate median filteringg47.. Connections can also be made to the literature on joint PDE
filtering of vector-valued images; this is not surprising/eq the similarities between geometric
PDE filtering and half-quadratic regularizatiob5] 598. Our proposed half-quadratic formula-
tion with a shared line process prior can provide new insigfiai these existing methods, and our
proposed scheme offers several distinct advantages fomhdiging applications.

Before introducing our proposed method to leverage thisetated information, we first de-

scribe a line process approach to modeling edges.

3.1 Line Processes for Modeling Image Edge Structures

In a seminal paper237,, Geman and Geman introduced a powerful framework for theeBiay
restoration of images, utilizing simply-structured MRFsrteoke complicated image priors. One
such MRF image model uses the prior information that natanabies are mostly smooth; that is,
voxels which are spatially adjacent to each other typidadlye similar values, and spatial smooth-
ing/averaging can improve SNR without significantly degngdmage features. However, images
also contain significant edge structures which should nagmared; when neighboring voxels are
very dissimilar, it is likely that an edge structure existgvieeen them, and smoothness constraints
should not be strongly enforced. Because of this, Geman anth@suggested using an image
model in which adjacent voxels are related to each otheugirmew auxiliary variables called

line processeswhich are used to model the edge structure of the image (ge&.Efor illustra-
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n,m

Figure 3.4: An image model with line processes, where voaedsshown as circles and line
processes are shown as horizontal and vertical lines. Fdr pair of adjacent voxels, there is
a corresponding line process variable defined between thdmch is used to model the edge
structure of the image. In this example, the voxel coeffien and p,, will be encouraged to
be similar, unless the corresponding line process varigbleindicates that an edge is present
between them.

tion). The resulting MAP estimation problem for this imagedgl thus requires joint estimation
of the image and its edge structure, with the explicit edgdethng allowing for the preservation
of important edge features.

In the context of MR imaging with a finite-dimensional digerenodel as in Eq.A.30) (with
voxels spaced on a uniform Cartesian grid), the MAP estimgti@mblem with explicit line pro-

cesses can be posed as

{p, E} = arg I{r;%p(p, ¢;d)
= argmax p(d; p, £)p(p, £)
{p.}
= arg max p(d; p)p(p, £) (3.1)
{p,€}
= argmax p(d; p)p(p; £)p(£)
{p.t}

= arg ?1% —Inp(d; p) — Inp(p; £) — Inp(£),
P,
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where£ is the vector of all the line process variableg$p, ¢; d) is the posterior distribution of
the image and the line process variables given the obseatadpdd; p, £) is the probability of
the data given the image and the line process variaplels,p) is the conditional probability of
the data given the image model as introduced in Chahte(p, £) is the prior distribution of
the image and line process variablg&; £) is the conditional distribution of the image variables
given the line process variables, and) is the marginal distribution of the line process variables.
In writing these equations, we have assumed that when ¢onedi on the image, the data is
independent of the line process variables, which is quésorable given that line processes are
simply components of our mathematical model rather tharsiphl/objects.

In this work, we choosg(p; £) to be a smoothness prior of the form

N N
—Inp(pi) =D > lumlpa—pul+2D_ lpal® (3.2)
n=1 meA, n=1
m>n

whereA,, is the set of all voxels belonging to theighborhoodf thenth voxef [237 and/,, ,,, is
the line process variable between tite andmth voxels. Conditioned o4, the negative log-prior
of p is a quadratic function, and thus has the form of a multitar@aussian distribution. Note
that the covariance of this multivariate distribution &eif a random variable, due to the stochastic
model being used fof, which implies thap(p, £) has the form of &aussian scale-mixtufd.g].
The first term in Eq. §.2) encourages smooth variation between adjacent voxels, tvé
strength of the smoothness constraint dependent on the wadlthe line process variables. In
locations where the line process variables are large, $dmess is imposed quite heavily, while
smoothness is not imposed heavily in locations where tleegnocess variables have small val-
ues. As a result, line processes with small values can bedsed as corresponding to locations
where edge structures are quite probable and where disodigs will be preserved. The sec-

ond term in this expression is unrelated to edge structimatsis used to ensure thatp; £) is

3In this work, we focus on the first-order or nearest-neigtdystem p37], for which A,, is the set of four pixels
that are vertically or horizontally adjacent to pixel
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a valid probability distribution; i = 0, thenp does not have a mean-value gr(g; £) is not
integrable. In practice, having a strictly proper prior & essential, and we will generally use

¢ = 0, since imposing a mean-value prcan bias the reconstruction toward zero. As a result, the
approach we will present later is only quasi-Bayesian, amddse appropriately considered as a
PML approach. This choice to deviate from a Bayesian recoctstn is reasonable for several
reasons: 1) true Bayesian priors for the joint distributibM& images with different contrast are
frequently unavailable; 2) even when an accurate prior &lave, it has been shown theoreti-
cally that Bayesian MAP reconstructions often deviate sutigtlly from both the data acquisition
model and the prior mode#i[(; 3) the resolution and noise characteristics of the recoosed
image can be described easily using the PML interpretatidfowing ¢ = 0, Eq. 3.1) can be

rewritten (after combination with Eq2(33 and Eq. 8.2)) as

N
. 1
{p,f} = argmin - [|Fp — d;, + SN b lpn — pul” = Inp(e). (3.3)
’ n=1 mEAn
m>n

The prior specified in Eq.3(3) provides a reasonable way of statistically modeling ared pr
serving the edge structure of real images, and is quite |enrevan the image reconstruction and
enhancement literature. However, the statistical edgeeimisdhot complete without specifica-
tion of the line process prigi(£). In Geman and Geman'’s original conception, the line process
variables were binary (i.e., either an edge exists or it catsand interacting (i.ep(£) imposed
statistical dependence relationships on line processasanby spatial locationspB7. While
priors with interacting line processes are very powerful #@xible, optimization of Eq.3.1) with
interacting line processes can be more computationalgnsive than with non-interacting line
processes, and it can be hard in general to design integdoim process priors that perform sig-
nificantly better than non-interacting line process pri@4, 328. As a result, following initial
work by Blake and Zisserma®T], many recent edge-preserving regularization methodsiase

interacting line process models4 131,235. With a non-interacting line process modg(f) the
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¢, . values are assumed to be independent such that

N

Inp(€) = Z Z Inp(lrm). (3.4)

n=1 mGAn
m>n

In this case, and under suitable conditionswon(/,, ,,,), Eq. 3.3 can be simplified as

N
. 1
p:a’rgmln_Q”Fp_ngz—i_Z Z \an(’pn—pm‘), (35)
e o n=1 meA,
m>n
where
U, (t) = inf (ﬁnmt? — lnp(ﬁn,m)) ) (3.6)

fn,m
Conditions onn p(¢,,,,,) under which Eq..5) is valid are discussed in Refd.31,235 328 471],
and we will elaborate on one specific set of conditions in dwusl.

Note that Eq. 8.5 has the same form as the PML reconstruction in E@4), despite the fact
that line processes were not involved in the constructidagpf(2.37). This illustrates the fact that
many PML image reconstruction approaches have a line ppanésrpretation, even if the line
process variables are not represented explicify 131,163 235,472. An example of this is that
the /; norm (Laplace) regularization functional37, 420, 546 (cf. Chapter4) can be obtained
using the line process model when using the following (inperoand unnormalizable) prior for
eacht,, ., [54]:

p(&mm) x e Hnm 1{0<Zn,m}- (37)

In practice, it is common for recent regularized recongiomcmethods to start directly from
Eq. (3.5 using an appropriate choice of,,,(-), rather than starting directly from the formula-
tion involving line processes.

To encourage smooth reconstructions, an important feafubg,,(-) is that it should be non-
decreasing, so that larger image discontinuities are rfavered over smaller image discontinu-

ities unless there is significant evidence for the discarittrfrom the data. An additional desirable
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feature of¥,,,,(-) is that it has the ability to preserve edges to some extemefpeserving regu-
larization has been considered by a number of autfgtd 1, 163 469, and one of the defining
features of edge-preserving priors is that they do not Bggmitly penalize large edges from form-
ing, i.e., that¥(¢) does not grow too rapidly as— oo. Generally, this is often assumed to mean
that U (¢) grows slower than a quadratic function for large values. ofhe quadratic function is
well known to over-smooth edges, as a result of the fact thatrapid growth of the quadratic

penalty function makes it difficult for reconstructions tntain significant edge structures.

3.2 Joint Reconstruction of Images with a Shared Line
Process Prior

The previous section introduced the line process modeldsciibing edge structures in natural
images. In this section, we introduce a new scheme for yj@iobnstruction of coregistered images
using a shared line process edge model. Before introducingroposed reconstruction formu-
lation, we will first establish some notation. We consider tlase where a length-sequence of
coregistered images is acquired with different contrasts fa static object. We let the lengfi;
vectord? represent the acquirddspace data for theth image frame, let the length, vector

n? represent the noise (assumed to be independent and idgrdis&ributed Gaussian noise with
varianceag) in the data for theth image, let thel/, x N matrix F, represent the Fourier acqui-
sition operator, and let the lengtki-vector p? represent the corresponding image. Note that the
k-space trajectory is allowed to be different for each image.

Our proposed reconstruction involves solving the follagvaptimization problem:

Q N Q
{@1,@27...,@Q}={e}rg2mm PO I U SR A IN DAV i
PP =1 q=1

ELRERRER) pQ} q= n=1 meA,
m>n

(3.8)

whereV : [0,00) — [0,00) is an appropriate regularization function that is used tooerage
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smooth reconstructions, alaﬁctq}g?:1 and{ﬁq}fz1 are user-selected real-valued positive weighting
coefficients. We will assume for simplicity thét(¢) is continuously differentiable. In addition, to
have edge-preserving regularization (as discussed inréweopis subsection), we will assume that
U’'(t)/(2t) is non-increasing and théin, .., (¢)/(t*) = 0 (i.e., ¥(¢) never grows faster than a
guadratic function, and grows significantly slower than adratic function ag — o0).

In order to have a line process interpretation, we will addally impose thatl(1/#) is con-
cave on(0,c0) [235 492, and will assume that the limit§ = lim, ., V'(¢)/(2t) and L =
lim, o+ W'(t)/(2t) are well defined. In this case, it can be provef]fthat there exists a convex
and decreasing functiof(-) such that

U(t) = inf (06°+J(0)). (3.9)

T<t<L

In addition, for fixedt, the value off that optimizes Eq.3.9) is ¢ = W'(¢)/(2t) [26].

As a result of this relationship, EGQ3.Q) has the line process interpretation
{6'.6%.....6%} = argmin imfC(p',p% ... 0% 0), (3.10)

where

Q Q N
Clp', 0% ., p% ) =) ol [Fep? =I5+ D> D> > Bilum ol — P4l
q=1

q=1 n=1meA,

m>n
N (3.11)

30D Tlam).

n=1 meAn
m>n

Note that the line process variables in this expressiontaaeed among ali) images. Thus, this
formulation has the ability to capture the correlated reatoir the edge structures in the image
sequence. If, ,,, is small (indicating an edge could be present), then thenstoaction will avoid
smoothing any of the images significantly across that ptessitige. On the other hand,/f ,,, is

large, then smoothness will be imposed at that locationeryeimage in the sequence.
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Due to the line process interpretation, optimization of £98) can be performed efficiently
using the following optimization procedure (this proceslis frequently called a multiplicative
half-quadratic optimization algorithnil}, 131, 163 235 477, though it also has a gradient lin-
earization interpretation, a quasi-Newton interpretatafixed-point method interpretation, and a

majorize-minimize interpretatior2p7,471,625):

1. Set iteration numbei = 0, and set the estimated image sequence equal to an initissgue
{f)%j), LTI ()8)} (e.g., set all voxel coefficient values based on an initigy&ourier

reconstruction).

2. At thejth iteration, define line process variables for each voxelgms

i.e., set
N LG
(), = Llinm) (3.13)
’ 2ty m

wheretﬁiln IS given by

2

Q
t0 = a| D B2 1% ) = PR | (3.14)
q=1

and pfn’(j) denotes thenth element of()‘(lj). Note that this step is an explicit line process

calculation, and that the value of the line process depends weighted average of the
edge strengths in af) images, where the weighting is defined through the usectselg,

parameters.

3. Update the image sequence according to

{()%J“rl)? A?m)’---,ﬁgﬂ)} = argmin C(@I@Q;---7§Q>e(j))- (3.15)
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This optimization problem is separable, such that the swidor each()?jﬂ) is given by

N 2
01y = argmin |[Fyp” — dlf, + > > 60, o, — pil’
n=1 n;nE>Ann q

2 al /82 i 2
— argmin [Fpf - @'l + Y0 Y0 210 (on, — ot
e n=1meA, ¢
m>n

diag(1/ ¢},)Dp*

By i )
= <Fqu + 5D diag((,)D ) Fyd,

q

(3.16)

2

5

a?

= argn‘l)gn |F,p? — d"7||§2 +
q

lo

whereD is the matrix that computes finite differences between rimghg voxels, the di-
agonal matricediag <£,($2n> anddiag(\/M) have diagonal elements equal to the different
components off{?n and éﬁﬂn (arranged in the same order as the finite-differencd3)in
respectively, and we have assumed that the matrix beingt@t/@as full rank (which nec-
essarily implies that the nullspace Df has trivial intersection with the nullspace Bf for
eachgq). This full rank condition will generally be satisfied %65{% is always a positive
number at every spatial location in every image, and if theereofk-space is always sam-
pled. Alternatively, the condition thaé%ﬁﬁ{?n IS positive is not necessary whét, has a

trivial nullspace.

On a practical note, the matricés, and D are often very large, and working with them
directly would require large amounts of memory and procgssime. However, iterative
optimization algorithms which only require computationnofiltiplications with these ma-
trices can be done efficienthF' is often related to the discrete Fourier transform due to
the form of Eg. .32, andD is sparse. Thus@‘(]jH) can be determined efficiently using
iterative algorithms like the conjugate gradient (CG) mdtf®05 or LSQR [491]. Explic-

itly, each iteration will require multiplication of vectemwith Fqu and DHdiag(€§ZZn)D.

When the acquired data lies on a Cartesian grid matched tozbefihe field of view, then
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multiplications byF, ande can be performed efficiently using the FFT. Even when the
acquired data is not Cartesian, multiplicationBy F', can be performed efficiently using a
simple convolution212,627] that can be implemented efficiently using the FFT algorithm

Multiplications withD andD* are also computationally simple due to sparsity.

The @ different optimization problems in Eq3(1L6) are completely independent from each
other, and thus can be solved in parallel if appropriate llghreomputation hardware is
available. However, if the matrices being inverted happehet the same for al} (which
will occur if F, andi—% are the same for at]), then use of an iterative algorithm that takes
advantage of this shared structure (e.g., the algorithroribesl in Ref. L29) might be
more computationally efficient. In addition, we have prexly shown that the computation
of each individual matrix inversion in Eq3(L6 can also be significantly accelerated by

using parallel processing on graphics processing ub#8 p61].
4. Incremenyj. Repeat steps 2 and 3 until convergence is achieved.

By construction, the value of the cost function in E8.10) is bounded below by zero and is non-
increasing as the iterations proceed. As a result, the \&#ltiee cost function is guaranteed to
converge. In addition, stronger assumptionslign can ensure global convergence of the iterates
to a global minimum. For example, Delaney and Bresl&t3 have proven that the following
additional conditions will ensure global convergence @ talf-quadratic algorithm to a unique

optimal solution:
1. W(t) is strictly convex.
2. The nullspace oif—‘;D has trivial intersection with the nullspace B for eachg.

3. 0(t) = U(+/1) is a twice continuously differentiable strictly concavedtion, withd(0) = 0,

¢'(0) =1,and0 < #'(t) < 1forall ¢t € [0,00).

Other conditions that can ensure good convergence prepddi this algorithm can be found in

Refs. [L5,131,477.
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3.2.1 Modes of Operation

Different modes of operation can be achieved through thécehof the {a,} | and {5,}% |
parameters. The value ¢f, determines the influence of tligh image on the estimated shared
line-process variables. Large valuesdfimply that the spatial finite-differences computed from
the gth image should have a significant role in the estimation efsthared line-process variables,
while small values of, imply the opposite. In addition, the valuefng will determine the trade-off
between spatial resolution and image SNR in the reconstiuntages, and, should be selected
to optimize this trade-off for the particular applicatioontext. Large values af, can be used to
impose that thgth reconstructed image should be highly data consistent kigh resolution with
limited SNR improvement), while smaller valuescaaf permit more significant data inconsistency
for improved denoising. In general, the selection[ag}ff:l and {ﬁq}le will be different based
on whether the proposed method is being used for supemtesobr for denoising.

For the super-resolution context, we note that it is gehevary difficult to accurately infer
high-resolution edge structure from low-resolution datkess very strong additional assumptions
are madé. As a result, when the acquisition includes images with véffernt resolution char-
acteristics, it is better to rely on the high-resolution gesa to estimate the edge structures, and
B, can be set very small for the low resolution images. In theesu@solution context, it is often
the case that the high-resolution “reference” images ads@ helatively high SNR. In this case,
a, can be set very high for the high resolution images, to empéatta fidelity for these high-
quality images. In the limiting case wheé% approaches zero for the high-resolution images,
andg, approaches zero for the low-resolution images (with appatgly scaledy, such that% is
non-zero), then the iterative algorithm described in tlejmus section will converge after a single
iteration if theF, matrices for the high-resolution images have trivial mdises. For this scenario,

reconstruction of the low-resolution images is perfedtigar with respect to the corresponding

“Note that in many cases, attempting to infer high-resafuéidge structure from low-resolution data can lead
to image reconstructions possessing sharp edge featurtesjth significantly distorted image geometry compared
to the true high-resolution image. This issue is discussadlypin Ref. [274], in the context of a special type of
reference-based super-resolution reconstruction, wiregrocesses are estimated both from the reference images
and from low-resolution noisy data.
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low-resolution data.

For the denoising context, we will assume that ¢hdifferent datasets all have similar resolu-
tion. In this case, it is useful to use every image to inferdhared edge structure, meaning that
B4 should be greater than zero for allSettingg, to be exactly the same for all images would be
one simple approach. However, this simple approach coufutdddematic in some contexts, since
it will give unequal weight to images which are scaled defaty from one another. We gener-
ally chooseg, inversely proportional to the average magnitude of theadigrithin the region of
interest of the;th image, though it could also be adjusted manually if oth@rpnformation is
available on which images should play more or less significalas in determining the joint edge
structure. The choice af, in the denoising context can depend on the experimentatings.
From a PML point of view, it would be optimal to saf, = 1/0,, since the data fidelity criterion
in this case would exactly equal the negative log-likelithobthe measured data (neglecting irrel-
evant additive constants). In this case, the amount of dmmapapplied to each image will depend
on the amount of noise present in each image. However, Wheaa the same for all images, it
can also be useful to choosg such thati—‘jzl is the same for all images. In this case, the recon-
struction matrix from Eq.3.16) will be identical for all images, leading to uniform rectmstion

characteristics between the different images from theesscpi

3.3 Characteristics

The proposed method can reduce image noise and Gibbs riagifagts though the use of spatial

smoothing, and is applicable to both super-resolution ambi$ing contexts. However, as a result
of spatial smoothing, it is intuitive that there could alstturally be some loss in spatial resolu-
tion relative to traditional Fourier reconstruction. Innt@st to most constrained reconstruction
methods, the loss of spatial resolution and the correspgngiain in SNR are easy to analyze
with the proposed method. These issues, as well as othertampcharacteristics of the proposed

algorithm, are discussed in the next subsections.
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3.3.1 Resolution and Noise Characteristics of the Proposed Method

As illustrated by Eq..16), for a given estimated edge map, the estimated inpdgan be viewed
as a linear transform of the measured ddta even though the reconstruction procedure itself
is nonlinear. This linear perspective provides an analyi@y to analyze the resolution of the
reconstructed image using the SRF as in B#d. Analysis using the SRF is generally more
powerful than linearized local perturbation-based resmtuanalyses that have been developed for
non-linear reconstruction in emission tomograp8y2[l3 524,588 631], since the SRF precisely
describes how a reconstructed voxel relates to the originalimage. In addition, due to the
use of a shared edge-map, for all images with the sByrend the same value (5% the SRFs for
each reconstructed voxel will be identical over the diff¢iienages. This latter point is particularly
important for quantitative studies, since the validity ny@arametric voxel-by-voxel model-fitting
procedure would be compromised if the same voxel in diffeireages does not correspond to the
same spatial spin population.

Linear noise analysis, as described previously in E¢.q), is also possible if it is assumed that
the estimated line processésire not a function of the noise, and can be treated as defstimin
variables rather than random variables. The ability to ditallly characterize both resolution
and noise is very powerful, and provides ways to understhagéerformance characteristics of
the reconstruction algorithm that typically are not ava#afor general non-linear denoising and
super-resolution approaches. In addition, it becomesilgles® choosef% based on the desired
trade-off between resolution and SNR in each image.

To understand the characteristics of reconstructiongusgq @3.9), we first start by analyzing
the performance characteristics of weighted smoothnessis¢ructions as in Eq3(16), assuming
that/ is deterministic. As a first step, consider the SRFs showngn3%, which are formed from
regularized reconstruction of 1D Cartesian Fourier datapgzauniformly at the Nyquist rate.
The dashed vertical lines correspond to edge locationshatw,, ,, has been set equal o At

all other spatial locationg,, ,,, has been set equal to The different subfigures correspond to
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Figure 3.5: SRFs calculated at several different spatialtions in the image, using a weighted
smoothness-regularized reconstruction with binary edgights. The dashed lines indicate spatial
locations wher€,, ,, = 0. The different subfigures correspond to different amouhtsgulariza-
tion, with increasing regularization corresponding ta@asingy. They = 1 case corresponds to
standard conjugate phase reconstruction.

53



Improvement in Noise Variance

0
Spatial Position

Figure 3.6: Improvement in SNR as a function of spatial lmcatorresponding to the same
binary-edge regularized reconstructions considered gn &b. The six different curves corre-
spond, from bottom to top, tp = 1, 2, 4, 8, 16, and 32.

different values 01%;, which have been adjusted to achieve different levels of $hitovement

in the image. We use the symbyplo denote thequivalent number of averageshich we define
as the number of averages that would have been necessarguoeat achieve a similar level
of SNR improvement in smooth image regions. Notably, wittieliregularization, the SRFs are
not significantly modified. However, as regularization isrgased, the SRFs become broader (i.e.,
resolution is degraded), and the SRFs are largely shiftimnvaunless they are sufficiently close to
edge structures. However, the shapes of the SRFs begin tbasidqey encounter edge locations,
and this adaptation leads to small leakage of signal achesstposed edge locations. In the limit
as the regularization grows very large, the reconstructedye will become a piecewise constant
image, with the value of each piece of the image approximaqual to the average value of
the image within each image compartment, and with the @iffecompartments separated by the
boundary locations.

The corresponding noise plot is shown in Fge. As can be seen, noise improvement is fairly
uniform, except near edge locations where the reductionigenvariance is not as significant as it
was in regions that were far from estimated edge locatiohi rEsult is not surprising, since less
smoothing (i.e., less spatial averaging) is applied ind¢hegions to avoid signal leakage across

the known edge. Another notable feature is that the achiewaiprovement in SNR is limited by
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the size of the image feature. This observation is congistéh theoretical characterizations of
highly-constrained compartmental image mod8&[&1[ 404, for which the SNR is also known to
be highly dependent on the size of the compartment. Lookibgth Figs.3.5and3.6, we observe
that increasing regularization has the effect of improv&MNR at the expense of spatial resolution,
as expected. However, the use of edge weights can help toecths partial volume artifacts are
minimal.

It is also insightful to look at the reconstructions that al¢ained wher?,, ,, = 0.1 instead
of 0 at edge locations, since the reconstruction behavior d@sognsiderably for non-zero edge
weights. The resolution and noise characteristics in tageare shown in Fig8.7 and3.8, re-
spectively. Unlike in the previous case, a small amountaiadge is allowed across edge locations
if the regularization is strong enough. However, use of rere/,, ,, allows the improvement in
noise variance to be more spatially uniform.

In the previous examples, we demonstrated the behavior igihtesl-smoothness regulariza-
tion when edge weights were spatially separated from edwr.oDifferent behavior is observed
when contiguous regions of the image have sall values. This is illustrated in Figs.9 and
3.10for the case when edge locations receive a weightt,of = 0. While the SRFs and noise
variances behave similarly to those in Fi§s and3.6 outside of the spatially-contiguous “edge
region,” the resolution and noise properties are extrempedy inside this region. Figuréslland
3.12show the behavior when edge locations receive a weight gf= 0.1, and the situation is
much better in this case. In particular, we still observess lof resolution and improvement in
SNR in the “edge region,” though the changes are not as signifias those observed in the rest
of the reconstruction.

In the scenarios we have considered so far, the Fourier datdution was higher than that
of the smallest separation between edge locations in tlmmséwicted image. In order to address
the issue of super-resolution reconstruction, it is alsmtd#rest to examine the case where the
features of interest are small with respect to the resoiutiche data. One such case is shown in

Fig. 3.13 As can be seen, when the data resolution is lower than thheaddge information, the
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Figure 3.7: SRFs calculated at several different spatiations in the image, using a weighted
smoothness-regularized reconstruction with non-bindgeewneights. The dashed lines indicate
spatial locations wheré, ,, = 0.1. The different subfigures correspond to different amoufts o
regularization, with increasing regularization corresgiog to increasingy. The~ = 1 case
corresponds to standard conjugate phase reconstruction.

56



Improvement in Noise Variance
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Figure 3.8: Improvement in SNR as a function of spatial lmratorresponding to the same reg-
ularized reconstructions with non-binary edge weightsoesiclered in Fig3.7. The six different
curves correspond, from bottom to topte= 1, 2, 4, 8, 16, and 32.

edge constraints have limited ability to suppress sigratdge. In addition, the small compart-
ments actually have noise amplification rather than noideaton. The implication of this is that
unless the prior edge constraints are very accurate andecangmsed in a very strong way, use
of the proposed technique for the reconstruction of subluéien features is not recommended.
Additionally, this result also implies that smoothnessdzthSNR improvement should only be at-
tempted when the spatial image regions of interest are laitherespect to the resolution of the
data.

Finally, while the results we have shown so far are all 1D eplas) the results extend natu-
rally to 2D. This is illustrated with a simple example in Figsl4and3.15 These figures show
that, as expected based on the previous 1D results, the SRizexils far from edge locations
demonstrate the standard trade-off between resolutiorsaiitl while SRFs for voxels near edge
locations adapt to avoid signal leakage across edge losatibotably, the SRFs from regularized
reconstruction o082 x 32 Fourier data can have both smaller noise variance and srhaltevidth
at half-maximum (FWHM) than the SRFs from the MNLS reconstang from 16 x 16 data,
even if thel6 x 16 data is averaged four times. The issue of resolution and $&e-offs in data
acquisition is significant, and will be discussed in moreadét the next subsection.

To summarize the results of this subsection:
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Figure 3.9: SRFs calculated at several different spatialtions in the image, using a weighted
smoothness-regularized reconstruction with binary edgeghts, and a spatially-contiguous
“edge” region. The dashed lines indicate spatial locatwinere/,, ,,, = 0. The different subfigures
correspond to different amounts of regularization, wittr@asing regularization corresponding to
increasingy. They = 1 case corresponds to standard conjugate phase recorwsiructi
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Improvement in Noise Variance
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Spatial Position

Figure 3.10: Improvement in SNR as a function of spatial iececorresponding to the same
binary-edge regularized reconstructions (with a spagti@intiguous “edge” region) considered in
Fig. 3.9. The six different curves correspond, from bottom to topy te 1, 2, 4, 8, 16, and 32.

e Weighted smoothness priors provide a mechanism for impgownage SNR through spatial

smoothing, while preventing signal leakage and partiain@ artifacts across known edges.

e Use of weighted smoothness priors is most effective whereth@ution of the data is higher
than that of the smallest image feature to be preserved. Mpoped regularization scheme
has limited capabilities for avoiding signal leakage wiémywlow resolution data, unless the
smoothness model can be imposed very stri@y9[321,404]. Even when the model can
be imposed strictly, there is generally an amplification oise rather than a reduction of

noise.

e Due to conditioning problems, it is generally not useful &wé large contiguous regions of

the image wittv,, ,,, = 0.

e Spatial smoothing of high-resolution data can lead to rstantions with both higher reso-
lution and higher SNR than standard reconstruction of lesslution data (averaged several

times for equivalent acquisition time).
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Figure 3.11: SRFs calculated at several different spateations in the image, using a weighted
smoothness-regularized reconstruction with non-bindgeeneights, and a spatially-contiguous
“edge” region. The dashed lines indicate spatial locatiwhere/,, ,, = 0.1. The different subfig-
ures correspond to different amounts of regularizatioft) wicreasing regularization correspond-
ing to increasingy. They = 1 case corresponds to standard conjugate phase recorgiructi
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Figure 3.12: Improvement in SNR as a function of spatialiocecorresponding to the same reg-
ularized reconstructions with non-binary edge weightsl @spatially-contiguous “edge” region)
as considered in Fi.11 The six different curves correspond, from bottom to topy te 1, 2, 4,

8, 16, and 32.
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Figure 3.13: (a)-(c) SRFs calculated at several differeatiagplocations in the image, using a
weighted smoothness-regularized reconstruction witlarfgiredge weights, with low-resolution
Fourier data. Note that signal leakage is unavoidable ®w#ry high-resolution signal compart-
ments. (d) The noise variance only improves with reguléionsfor image compartments that are
larger than the native resolution of the data.
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Figure 3.14: Regularized reconstruction SRFs for differehties of\ = ﬂ—‘z, using binary edge

«

weights located along the white square. (atfl)x 16 Cartesian samplinqg at the Nyquist rate.
(e-h) 32 x 32 Cartesian sampling at the Nyquist rate. SRFs for voxels fan fedge locations
demonstrate the standard trade-off between resolutioisairi
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Figure 3.15: Regularized reconstruction SRFs for differehties of\ = i—‘z, using binary edge

weights located along the white square. (a€lx 16 Cartesian sampling at the Nyquist rate. (e-h)
32 x 32 Cartesian sampling at the Nyquist rate. SRFs for voxels negr ledations adapt to avoid
signal leakage across edge locations.
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3.3.2 The Trade-off Between Resolution and SNR

In the previous subsection, we demonstrated that the pedp@gularized reconstruction method
gives us the flexibility to choose the trade-off between Ikggm and SNR of the reconstructed
images. As a result, an important question is: how should batacquired to optimize this trade-
off? The optimal design of MRI sampling strategies has beesidered for a long time, and there

are two main strategies that have been advocated in thext@htdyquist-sampled Fourier data:

S1. Sampl&k-space over a region corresponding to the desired nomisalutton, and recon-

struct images using basic inverse Fourier-transform nustht/se additional time for aver-

aging.

S2. Samplé&-space using the same total number of measurements as int®byver a larger re-
gion ofk-space (i.e., encode higher-resolution information) atekpense of reduced signal
averaging. Reconstruct images using methods that reduse levels, necessarily reducing

image resolution in the process.

These strategies have been compared in previous A&k 94, 497], and the general consensus
has been that S1 is more efficient than S2. Edelstea. [194] and Parker and Gullbergip7]
demonstrate that, for fixed data acquisition time, simplgraging adjacent voxels within a high-
resolution reconstructed image yields lower SNR than i aes directly collected at lower resolu-
tion. One limitation of these analyses is that they do nos@®T the effect of this voxel-averaging
procedure on the SRF, which can provide both quantitativegaatitative measures of resolution.
Buxton’s analysis of the SNR/resolution trade-&®] makes use of thequivalent widt{EW) of
the SRF to quantify image resolution (s&4§ for additional discussion of this resolution metric),
and shows that the trade-off between SNR and the EW is oamhen spatial smoothing is not
applied. However, as will be described later in this subsacthere are many alternative measures
of resolution based on the SRF, and the EW metric does not serdgscorrespond as well with

gualitative perceptual assessment compared to many e tiksr resolution metrics.
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Despite these existing pessimistic characterizationsndbumly-sampled data with higher-
than-nominal resolution, there are still indications ie fiierature that there can be benefits to
strategy S2. For example, leveraging imaging physicsgtlal. [39 demonstrate that in MR
spectroscopic imaging studies, higher-resolution adiumsfollowed by spatial smoothing can
mitigate the loss in SNR associated with line-broadenirgtduntravoxelB, field inhomogeneity.
Similarly, Triantafyllouet al. [604 demonstrate that this strategy can also reduce the effécts
physiological noise in fMRI studies. Finally, as we have di®d in the previous subsection,
there can be a theoretical advantage in SNR/resolutionesffigifor oversampling and filtering of
uniformly-sampled Fourier data with respect to the FWHM hatson metric in the context of our
regularized reconstruction method.

To examine the trade-offs between resolution and SNR, wdedlls on a simple abstraction
of our proposed reconstruction scheme. In particular, Wefegus on the special 1D case where
F, corresponds to th&/ low-frequency rows from afrV x N 1D unitary discrete Fourier transform
(DFT) matrix (V and M both even numbers), and whefg,, = 1 at every spatial location. In
addition, we will assume periodic (toroidal) boundary citiods for the smoothness prior. In
this case, it can be shown that the solution to Eq1®) has the form of the conjugate phase

reconstruction in Eq.A.23, with

1

= 5 . (3.17)
1+ 4% sin? (Wkwm)

W

This result indicates that shift-invariant quadratic sthoess regularization can be equivalent to
traditional windowed Fourier reconstructiénFor simplicity, and because the proposed recon-
struction behaves like windowing in spatial regions thatfar from edge locations, we will pro-
vide an analysis of the resolution and noise trade-offs teamgard windowed Fourier reconstruc-

tion.

SInterested readers should note that R28J derives similar expressions that are applicable in theeodrof
slightly more general regularization and data acquisisicmemes.
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Resolution Metrics

We described resolution properties of linear reconstonestin Ch.2, though we did not specify
any quantitative resolution metrics because there is neewsally accepted way of quantifying
resolution [L65. However, many heuristic approaches for measuring résolbased on the SRF

have been proposed in the literature. In one-dimensiorylpophoices include:

e Rayleigh Criterion (RC). The RC B33 measures resolution by the distance from the
maximum of the SRF to its first minimum. This definition was orgjed in the context of
optical imaging systems; for MRI, we will use the distancenfrthe maximum of the SRF

to its first zero-crossing to define the RC, such that

ho (RC) = 0. (3.18)

e Sparrow Criterion (SC). The SC p84] measures resolution by identifying the distance
between two identical point sources at which the “valleydttforms between them is no

longer visible. Mathematically, the SC is the smallestatise such that

0? SC SC

¢ Full-Width at Half-Maximum (FWHM). . The FWHM [314] is one of the most common

~ 0. (3.19)

=0

measures of resolution in imaging, and is defined as twicdaiyest distance from the
center of the SRF to a spatial location where the magnitudeeoSRF is at least half of
its maximum value. For the smooth SRFs that can be obtainedfirote Fourier data, the
FWHM is defined as the largest distance within the FOV such that

FWHM 1
m( 5 N:E. (3.20)
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e Full-Width at Tenth-Maximum (FWTM). Similar to the FWHM, the FWTM is defined
as twice the largest distance from the center of the SRF to @abkpacation where the
magnitude of the SRF is at least one-tenth of its maximum vaNi¢h finite Fourier data,
the FWTM is defined as the largest distance within the FOV shiah t

po (EWIMAL 1 (3.21)
0 9 T 10 '

e Standard Deviation Criterion (SD). The SD p3( measures resolution using the second
moment of the SRF. The original definition was developed foctt positive SRFs. For
this dissertation, the SD will be defined (assuming the SREmered atr = 0 such that

the first moment is zero) as

SD — ¢/FOV 22 |ho ()] da. (3.22)

e Equivalent Width (EW). The EW P9,344 is equal to the width of a rectangle that has the

same integral and same maximum value as the SRF. In particular

(3.23)

For a fixed 1Dk-space trajectory (with 256 Nyquist-rate samples that sgtrioally cover the
low-frequency region of-space), the trade-off between spatial resolution andémagse variance
is illustrated in Fig.3.16 for strategy S2 with the apodization window described in Eq17)
with N = 256, as well as five other common window functions common in digmacessing
applications 292: the Gaussian window, the Kaiser-Bessel window, the Tukieylow, the Hann
window, and the Dolph-Chebyshev window. In addition to thig figure also shows the trade-
off between spatial resolution and image noise variandevibald be obtained with strategy S1,

wherek-space coverage is reduced to provide additional time fta @é@eraging. Notably, except
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Figure 3.16: Resolution r versus the equivalent number obaesy for several different apodiza-
tion functions. The black line (Low-Frequency Samplingggmot correspond to apodization, but
rather the standard Fourier reconstruction scheme wheadut®n can be traded for additional

data acquisition time.
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for the EW metric, most of the window functions have some afeg points where they have
higher resolution (with respect to the appropriate resmtumetric) and lower noise variance than
the standard low-frequency Fourier sampling scheme. ffgavement in SNR efficiency can be
observed more clearly in Fi§.17, where we have taken the curves from Fdl.6and normalized
them by the curve obtained by standard low-frequency Fosampling. For fixedy, this provides

a measure of the resolution-efficiency of strategy S2 radab strategy S1, where a resolution
efficiency larger than 1 indicates that the S2 reconstrodti@s better resolution than S1 for the
same SNR. These plots indicate that it is possible to achigeeh spatial resolution (except
under the EW metric) for the same SNR using S2. However, tiNsratage is not maintained
for arbitrary amounts of SNR improvement; for example, naslonger resolution efficient under
the RC to improve SNR more than about= 2 or 3 with any of the apodization windows that
were considered. These results extend to higher dimensiaeearly geometric fashion, with
between 4 and 9 being reasonably efficient for 2D imagingates, However, it is also important
to realize that the performance curves shown in this suloseaill vary as the image model and
the data acquisition scheme are varied.

Example comparisons between S1 and S2 with simulated ahdateaare shown in Figs.18
and 3.19 respectively. In these 2D cases, the S2 reconstructioralmaaghly 1.4« advantage
in resolution (FWHM) compared to the S1 reconstruction, degmving identical SNR and data
acquisition time.

Given the results presented in this subsection, a natuestiqun is whether or not it is pos-
sible to improve on the resolution/SNR efficiency of smoe#sibased regularization by careful
optimization of apodizing window functions under apprapely-chosen resolution metrics. Our
preliminary experience using stochastic optimizatiorgasgs a positive answer — for a fixed SNR,
it is possible to achieve a better FWHM (for example) than diained using smoothness reg-
ularization. On the negative side, additional constraamesnecessary to avoid undesirable SRF
characteristics. For example, direct minimization of tiFFWHM leads to an SRF with very

poor side-lobe and tail characteristics. As a result, rrihvestigation is necessary before op-
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Figure 3.17: The resolution efficiency E for fixed SNR of wingkml reconstruction versus standard

low-frequency Fourier reconstruction.
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Figure 3.18: Comparison of S1 versus S2 acquisition and steartion strategies, with equal data
acquisition time assumed for both strategies. (a) Golddsteh (b) S1 image. (c) S2 image with
2x higher-than-nominak-space sampling. The S1 and S2 reconstructions have the SHRge

though the S2 reconstruction has significantly better téwol (FWHM) than the S1 reconstruc-

tion.

timized window functions could pose significant competitio schemes based on smoothness

regularization.
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Figure 3.19: Comparison of S1 versus S2 acquisition and sdeariion strategies using experi-
mental MR images of a section of kiwi fruit. The top row shovighhSNR images reconstructed
from real data, while simulated Gaussian noise has beerddddbek-space data for the bottom
row of images to reduce the SNR. (a,d) Standard Fourier rémmti®n from high-resolution data.
(b,e) S2 image using shift-invariant quadratic reguldia(y = 4). (c,f) S1 image with image
resolution reduced by a factor of 2 along each dimensiotivelto (a). As before, the S1 and S2
reconstructions have the same SNR, though the S2 recomstriets better resolution (FWHM)
than the S1 reconstruction. The difference in resolutiomast apparent when comparing the
visibility and reconstructed width of the small line feasirunning through the images.
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3.3.3 Choosing¥(-)

The previous subsections showed that considerable imprents in SNR were achievable at a
relatively moderate loss of resolution, and that reguéatireconstruction of high-resolution data
can be significantly more efficient than simple averagingaffesolution Fourier data. However,
the key assumption for this resolution analysis to be applewas that is largely deterministic,
such that the linear noise analysis can be applied to ourirmeanl reconstruction. One way to
achieve such a# is to havel’(t)/2t to be approximately constant for a|land a perfect choice
for this is

U(t) =12 (3.24)

Unfortunately, this choice is not edge preserving, andddad,, ,, = 1 at all spatial locations.
However, due to the sparsity of edges in natural images, weob#in a mostly-constant line

process map by using a Huber functi@2f] that transitions from quadratic to linear:

2, t<¢
U(t) =
2t — &2, t>¢ (3.25)
3 f €t2 52 2
S\ )

where¢ is the parameter of the Huber function that controls wheeettansition takes place.
The Huber function is convex (though not strictly convexjd@ common in the edge-preserving
regularization literature (e.g., se€&4 468 472 and references for discussion). The corresponding
expression used in EQB.(L3J) is

W' (t) L, t<¢

_ . (3.26)
Et>¢

Note that the Huber function has the ability to reduce thea@egf spatial smoothing across the
edges for which > &, since the corresponding line process variables will getllemand smaller

as the argument of the Huber function grows large. Some cdlge-preserving characteristics of
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Figure 3.20: lllustration of some of the characteristicsoaf proposed regularization function
based on the Huber function. The figure shows plo®@f/|z[2 + [y[2) — ¥(/]y|?) as a function
of z for different values of the Huber function parametend the variablg. In the context of our
proposed reconstruction schemendy would correspond to finite differences from different im-
ages, but from the same spatial location. As a reswdtydy will share a line-process variable. For
illustrative purposes, we assume that the valug isffixed, and thus subtract out its contribution
to the cost function for different values of When¢é = oo, the Huber function is equivalent to the
guadratic penalty in Eq3(24). In this case, the line-process variable always takesvahe, and
the cost function increases rapidly as the magnitudeiatreases, heavily penalizing large edge
values. As a result, the optimal reconstruction will geftgraot include significant edge features
due to their large cost. In contrast, we are able to obtaie @dgserving behavior whenis finite,
which manifests as smaller cost function values for lardeesofz. In addition, when the value
of y is large (i.e., when a correlated image also has a large ealge &t the same spatial location),
the cost function for: will decrease to enableto more easily take on a large value.

the Huber function are illustrated in Fig.20

When the finite differences for a given spatial location lead value of that is smaller thag,
then the Huber function does not identify that location asdge. Thus, if is chosen to be larger
than the expected noise contribution to the finite-diffeeznomputation of Eq.3(14) and if the
image is predominantly smooth, then the line process Vi@sahill be largely independent of the
noise, and the previously described linear noise analyflibewalid. An empirical illustration of
the proposed method’s ability to achieve approximatelg&dndependent line process estimates
with appropriately-chosefiis shown in Fig.3.21, and Fig.3.22illustrates that after choosirgin

this manner, we can accurately predict the SNR improvengnguhe previously-described linear
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(a) Gold standard (b) Noisy image
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Figure 3.21: Empirical simulations were performed to tifate that the proposed method with
appropriately-designed Huber function regularizationdie to predictable noise characteristics.
For the simulation, noisy datasets were simulated for aenfvee image comprised of a homo-
geneous disc object on an empty background. The noiseffragd is illustrated in (a), while a
representative noisy Fourier reconstruction is shown jn(e) Estimated line process variables
when reconstructing a single image (i@.= 1) with the proposed method for different values of
¢. Dark values imply that the algorithm has identified a sigaifit edge at the given spatial loca-
tion. (f-h) Estimated line process variables when recasitig ten different noisy realizations of
the same image (i.eQ) = 10, with o, and 5, the same for all;) with the proposed method for
different values of. When¢ is small, virtually all spatial locations are identified alges. On the
other hand, choosinglarger than the noise level allows the proposed method terditferentiate
between real edge structures and noise, and the abilityegirtiposed method to robustly identify
edge structures improves with increasigg
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Figure 3.22: Illustration that appropriately-chosen eslof¢ allow us to predict the noise variance
in reconstructed images using the “deterministic” reaatston matrix in Eq. 8.16) and the linear
noise analysis from Eq2(46). The simulations described in Fig.21 were repeated 500 times,
with different noise realizations in each trial, and the @mal variance of each reconstructed
pixel was computed. This was compared with the predicteidnee for each pixel computed with
Eq. 2.46), after assuming the reconstruction matrix in E8.1¢ was independent of the data
noise. The figures show scatterplots comparing the empirazéance to the predicted variance.
These scatterplots illustrate that wherns large enough that the line-process variables are not
heavily influenced by the noise, the empirical pixel varentatches very well with the predicted
pixel variances. However, {fis chosen too small, then the influence of noise on the reain
matrix in Eq. 3.16 makes it difficult to use Eq2(46) to predict the SNR improvement using the
proposed method.
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noise analysis. In addition to achieving approximatelyseandependent with appropriately
chosert, the use of the Huber function also gives roughly uniformtighamoothness weights in
the smooth regions of the image, giving a fairly uniform ilmygment in SNR and uniform loss of
resolution within these regions.

While choosing large values gfimproves our ability to reject noise in the estimated line-pr
cess variables, it also can lead to rejection of real edgetsitres. As a resulg, should generally be
set large enough that the edge map is approximately detistiojiout no larger. The consequences
of different choices of are illustrated with a real MR brain image in Fi§j)23

We note that allowing to approach 0 is equivalent to using one form of the multiciean
TV prior [79,666. However, as we have illustrated, our proposed Huber fangirior can yield

significantly better reconstruction characteristics fdR WMhaging problems.

Convergence and Uniqueness Characteristics for the Huberdhction

A nice feature of the Huber function is that it is convex, magrhat the cost function in Eq3(8)

is also convexT4]. Convexity implies that any local minimum of EcB.) is also a global min-
imum, and that globally optimal solutions can be obtainedgistandard convex optimization
methods T4]. However, it should be noted that the Huber function doessatisfy the strict
convexity and differentiability constraints required tbe global convergence guarantees of De-
laney and Breslerl63 for the multiplicative half-quadratic algorithm. Even,dte algorithm
is still guaranteed (by construction) to monotonically @&se the cost function in EG3.6), and

it can be proven that the sequence of iterates of the muaiife half-quadratic algorithm will
converge when using a Huber regularization pena®2]. A formal proof that the multiplicative
half-quadratic algorithm will always converge to a globahimum with Huber regularization has
remained elusive, partly due to the lack of strict conveégiypcavity and the fact that the Huber
function is not twice continuously-differentiable @f15, 131, 163 328 472. However, it is still
possible to test for global convergence to a global minimimparticular, the first-order neces-

sary and sufficient optimality condition for an optimal dubn to the differentiable convex cost
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Figure 3.23: lllustration of the effects of different chegcof¢. In this simulation, we have recon-
structed a noisy version of tHE -weighted image from Fig3.2, assuming that the line-process
variables have been estimated independently from the isbeegd proton-density arigd-weighted
images from that figure. (a) Gold standard image. (b) Golddsted image with additional simu-
lated noise. (c-e) Different line-process maps estimataah the proton-density arith-weighted
images with different values @f. As expected, smaller values fre able to better capture fine
structural image features, though they also lead to ineckasise sensitivity. (f-g) Reconstructed
images using the proposed method. Wkes too large, denoising is still achieved, though many
image details are not preserved by the line processes. Oathiee hand, wheg is too small,
many noise features are identified as actual image stryctndeare falsely preserved. As a result,
¢ should be chosen to balance these two issues, and to enatitbelreconstructed image has
predictable noise properties.
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function in EqQ. 8.8) is that the gradient of Eq3(8) is equal to 074, i.e., that
2 (FIF, + 52D" diag ((,,n) D) p, — 20.Fd* =0 (3.27)

forqg = 1,...,Q, wherediag (¢, ,,) is the diagonal matrix with diagonal elements equal to the
optimal line-process values for tHg, }, as computed using Eqs3.(3 and @.14). This equa-
tion provides a convenient means for testing for the glolpgihaality of a numerical solution to
Eqg. 3.8). Despite the lack of proven global convergence guararfteethe multiplicative half-
guadratic algorithm, global convergence has always besareed in practice. It should also be
noted that the multiplicative half-quadratic algorithrist the only algorithm that can be used to
minimize Eq. 8.8), and some of the alternative algorithms have global cyamse guarantees;
these issues will be discussed in S&¢. Regardless of the lack of theoretical global convergence
guarantees, the multiplicative half-quadratic procedsicé significant interest because it provides
the linear reconstruction interpretation in Eg.16), which was the foundation of our resolution
and noise analysis.

An important question from the perspective of optimizat®mwhether Eq. §.8) has a unique
solution. It can be difficult to prove uniqueness of a solutior arbitrary{F,}, {D}, {«,}, and
{5,}; however, we will demonstrate that a unique solution existee context of two commonly-

appearing special cases:

1. Eqg. 8.9) has a unique solution when, for eagl¥, has a trivial nullspace and, > 0. This
case is commonly obtained in the denoising context destii&ec.3.2.1. In this case,
the data fidelity terms in Eq3(8) will be strictly convex, such that the overall cost functio
is also strictly convex. Strict convexity implies that thexxists a unique globally-optimal

solution [74].

2. Eq. .8 has a unique solution for the super-resolution mode of atfmer described in
Sec.3.2.1 In particular, we assume that for eaglcorresponding to a high-resolution

datasetF, has a trivial nullspace3, > 0, andi—% is set arbitrarily close to zero. In this
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case, the high-resolution images are reconstructed ugigse
~ -1
p,= (FI'F,) Fla (3.28)

Assuming also that, is set arbitrarily close to zero for the remaining imagesntthe line-
process variables depend only on the high-resolution stoaeted images from Eq3(29),
and are uniquely determined through Eg§.1Q). Finally, the remaining images are recon-
structed using Eq3(16), and have unique solutions as long as the nullspacEg aﬁdg—‘;D

have trivial intersection.

Nonconvex Alternatives to the Huber Function

One of the motivating factors for choosing(-) to be the Huber function was convexity, since
convexity implies that global optimization can be achieued straightforward way. However, it
should also be noted that nonconvex regularization funatgocan be beneficial, because they can
be even more edge-preserving (i.e., they can impose a srpah@lty on large edge values) than
the Huber function163. In general, it is often difficult to guarantee global opization of a non-
convex cost functional without resorting to time-consugngtochastic algorithms like simulated
annealing 237]. However, for the super-resolution mode of operation for proposed method,
the ease of obtaining a unique globally-optimal reconsivads independent of the convexity of
U(-). As aresult, the use of the following nonconw&k ) can be beneficial for the super-resolution
problem?®

2, t<¢&

vy =4 2 , (3.29)
QEV”tV_%_i_éQ, t>f

This nonconvex¥ (-) could also be useful for the denoising problem; howeverpitild be much more difficult to
ensure global optimality in this case, which leads us toguritfe Huber function for the denoising problem.
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Figure 3.24: lllustration of some of the characteristicdhefnonconveX (-) function in Eq. 8.29
with v = 0.5. The figure shows plots o (\/|z[2 + [y[?) — ¥(/]y|?) as a function ofr for
different values of the Huber function parametend the variablg. Comparing this cost function
with the traditional Huber function shown in Fig.2Q it is clear that the nonconvex cost function
penalizes large edge values much less than the Huber faretiald.

wherev € (0, 1) is a small positive constant. This penalty function appheache Huber function
asv — 1, and satisfies

v(t) 1, t<¢ (3.30

2t (é)ny’ t>€ )

t

Comparing¥’(t)/(2t) for this function with Eq. 8.26) for the Huber function, it is apparent that
the estimated line-process variables are much smalleh&nonconvex penalty wheris large,
particularly asv approaches 0. As a result, the nonconvex cost function rsfgigntly more
tolerant to large edge-values than the Huber function, aod tan be even better at avoiding
partial volume effects when imposing spatial smoothnessh@ance image SNR. The cost function
is illustrated in Fig.3.24, while the potential for improved performance using thet ¢osction is

illustrated in Fig.3.25
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(a) Huber function (b) Nonconvex function
(c) Huber function (d) Nonconvex function

Figure 3.25: lllustration of the difference between red¢angion using the Huber function and
the nonconvex penalty from EqQ3.@9. This simulation was exactly the same as the simulation
described in Fig3.23 Reconstructions were performed using (a) the Huber funeid (b) the
nonconvex penalty with a vanishingly-small valuegfboth with¢ = 1072, Examining the
contour separating the extracranial tissues from the paranchyma in the ROI shown in (c,d),
it is clear that the reconstruction using the nonconvex ipgd@monstrates somewhat less edge-
blurring and reduced partial volume artifacts, as expected
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3.4 Application Examples

The previous section illustrated that the proposed appragaeasy to characterize, and that it is
efficient to regularize high-resolution noisy data. We hea@nstructed many different datasets
with this technique, and examples include MR spectrosdamaging 269,270,274,276,277,286,
sodium and oxygen imaging@4, 25|, and diffusion imaging232,267,278-280,284,285379. For

simplicity, we show just a few examples in this thesis.

3.4.1 Phantom Experiments

Phantom data was acquired on a Varian INOVA 14.1T MR systeiitusirate the benefit of the
proposed reconstruction for standard imaging experiméntthese experiments, a phantom was
imaged using two phase-encoded spin-echo sequences, tnd &= 23 ms and TR = 1000
ms, and the other with TE = 40 ms and TR = 200 ms. The short TRriemest suffers from
SNR problems at high resolution, though the data was addjiire times faster than the long TR
experiment. Figur8.26shows the results of using the long TR image to constraimsaaction of
the short TR image. In this case, the algorithm was used iersigsolution mode, whefey, } and
{5,} were adjusted so that the line-process values dependedorthe reference image, and so
that the reference image was perfectly data consistentpidp®sed method successfully mitigates
the effects of noise while mostly preserving the resolutbsmall image features. Importantly,
this experiment confirms our previous observation that tep@sed method is more effective for

denoising high-resolution data than it is for achievingesusolution reconstruction.

3.4.2 Mouse Brain Diffusion Experiment

Diffusion-weighted (DW) MRI experiments can be used to chiar@me the random microscopic
thermal Brownian motion of water molecule?8fg. The diffusion process in biological tissues is
highly sensitive to tissue microstructure, making DW MRI avpdul clinical tool for the detec-

tion and characterization of various pathologies. DW MRI Ibasn found particularly relevant in
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Figure 3.26: Experimental phantom reconstruction resuitshort TR spin-echo sequence was
used to acquire noisk-space data, while data from a long TR spin-echo sequenceisegkas

a reference image to generate anatomical constraints. didestandard image was acquired by
averaging the short TR experiment 8 times. The proposedstietion from the high-resolution
noisy data has both high SNR and high resolution. This is mtrest to the reconstructions us-
ing low-resolution data, which have high SNR but reveal tediinformation regarding the small

features of the image.
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studies of the central nervous system, and has proven tolb&bla in the assessment of trauma,
ischemia, cancer and neurodegenerative dise@8&s [However, quantitative DW MRI experi-
ments are often very time consuming, due to low SNR and the ttekave multiple DW images
for quantitative assessment of diffusion characteristics

DW MRI experiments were performed on a euthanized juvenilasedo illustrate the perfor-
mance of our proposed method in this context. Experimerdd asl4.1 T scanner, and sagittal
images were acquired with a standard spin-echo DW MRI pulgessee (TE =32 ms, TR = 1000
ms,d = 8 ms,A = 20 ms). Twelve different diffusion weightings were apglievith diffusion-
weighting factors#-values) ranging fron to 10, 000 s/mn?. All diffusion gradients were applied
along the dorso-ventral direction. Each DW image was entodeng al28 x 256 k-space sam-
pling grid, with samples spaced evenly at the Nyquist rateesponding to 4.9 cm x 3.8 cm
field of view, and the slice thickness was 0.25 mm. The expanirased a transmit/receive volume
RF coil. Four averages were acquired, but were saved selyaf@ezonstruction was performed
using the denoising mode of operation. Results are showngirBEi7, and demonstrate signifi-
cantly improved SNR. In particular, the SNR has improved ejant to averaging four times in
the smooth regions of the image, while the average voxel(&i@éHM) has only degraded from
0.15 x 0.15 x 0.25 mm? t0 0.17 x 0.17 x 0.25 mm?. Figure3.28illustrates the effect of varying
the Huber function parametéron the estimated line process variables and the resultisj ¢
SNR improvement, showing results consistent with the amsin Sec3.3.3

Figure 3.29 provides a comparison of our proposed method with two otbernson denois-
ing schemes. The implementations and properties of thé®e gconstructions are summarized

below:

e BayesShrink thresholding in a decorrelated transform doman. We applied the method
described in Ref.Z3]. This method first applies transforms to the image sequenobtain
a set of decorrelated image coefficients. Decorrelatiorcisesed between the different
image frames by applying the empirical Karhunen-Loevesti@m, while decorrelation is

achieved in the spatial dimension by applying the wavebleidform. After decorrelation,
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Figure 3.27: One image frame from a 12-frame diffusion-\Wwed mouse-brain sequence. The
proposed method improves image SNR, while preserving impostructural features.

Figure 3.28: The effects of changing the paraméter the Huber function. The image columns
from left to right show increasing values 6f The top row shows the estimatég,, variables,
while the bottom row shows the equivalent number of averége=ach voxel. Rather than directly
evaluating the reconstruction noise using Eg4€), reconstruction noise was estimated empircally
using Monte Carlo methods (i.e., reconstruction of multimlaulated complex Gaussian noise
vectors) to accelerate computations. Aiacreasest becomes less sensitive to noise and the SNR
improvement becomes more homogeneous over the FOV. Ontike lodnd, image features are
no longer as clearly evident in the estimated edge map.

87



denoising is performed using the BayesShrink adaptive lotdsg algorithm L30. This

method has the capability of preserving high-resolutiatuiees. However, the resolution
and noise characteristics of this method are not easilyackenized. We observe that this
method has successfully reduced the visually-apparem@maise, though structural image

features and image contrast have also been adverselyeaffect

Coherence-enhancing PDE filter We implemented the PDE filtering approach described
in Ref. [172. The evolution of the PDE was halted when the variance fram-signal re-
gions of the image was similar to that of the proposed methiduk differences between
the PDE filtered images and the proposed reconstructionscanewhat subtle; however,
close examination shows that high-resolution featuresremes accurately preserved using
the proposed method. In addition, the noise and resolutiopgsties of the proposed re-
construction are easily and precisely characterized mgef the SRF, while no convenient
mechanisms exist for constructing SRFs in the PDE recongirnuc While point-spread
functions of the PDE reconstruction can easily be computrdtd the linearity of the PDE
evolution at each discretized time step, this is not as lisefthe SRF for characterizing

resolution and noise.

3.4.3 T; Estimation Simulations

This experiment considered reconstruction of nine imagas & variable flip-angld; measure-

ment experiment. The original images had high SNR, so adaitisimulated noise was added.

The proposed approach was applied {@provement in noise variance) in the denoising mode of

operation, and a denoising scheme based on principal canpbard-thresholdindlp( was also

implemented for comparison. The results are shown inFigQ While the principal component

denoising approach gives very visually impressive dengisesults for the image, the parameter

estimate quality is actually worse than it was for the omdjinoisy data. This illustrates the im-

portance of having characterizable reconstructions; naEmpising algorithms might be able to
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Figure 3.29: Comparison of the proposed method with othemeomdenoising methods. (a)
Proposed method. (b) BayesShrink thresholding. (c) Coherenbancing PDE filtering.
produce visually-attractive images, but characterizatsoimportant for proper understanding of

guantitative parameter estimates that are obtained usénddnoised data.

3.4.4 Human Brain Diffusion Tensor Experiment

This subsection demonstrates the performance of the pedposthod in the context af vivo hu-
man brain diffusion tensor imaging$d. Diffusion tensor imaging is the most widely-used form
of quantitative DW MRI. In this experiment, a total of 155 difent DW images were acquired at
2 mm x 2 mm x 2 mm resolution on a 3T scanner, withvalues ranging from 0 s/miro 5,000
s/mn?. Acquisition used 5/8ths partial Fourier sampliri@], 262, 307, 400, 475,673, and an
array of 32 different receiver coils. The proposed recarcsion method was used in the denoising
mode of operation, but with additional modifications to tleifer sampling operator to impose
the phase constraints necessary for partial Fourier réwmtion [284]. The images corresponding

to different receiver coils were reconstructed separataty combined in post-processing, though
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(e) Gold Standard Image (f) Noisy Image (g) Proposed Denoising(h) Principle Component
Denoising

Figure 3.30: Results from th&, denoising simulation. The top row shows one image from the
nine-image sequence, while the bottom row sh@wgarameter estimates. The noisy parameter
map has 12.0% error in signal regions and the parameter nbaptlaé proposed denoising has
8.9% error, while the parameter map after principal compbdenoising has 14.0% error.
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Figure 3.31: Results from tha vivo human brain diffusion tensor imaging experiment. (a) Stan-
dard reconstructions. (b) Proposed reconstructions. (tjri€oded fractional anisotropy map
estimated from the standard reconstructiot®&]. (d) Color-coded fractional anisotropy map es-
timated from the proposed reconstructions.

reconstruction assumed that the different coil imagesgssesl a shared edge structure. Results

of this experiment are shown in Fig.31, and demonstrate significantly improved image SNR and

improved estimation of the diffusion tensor charactesssti
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3.5 Performance in the Presence of Inaccurate and
Incomplete Edge Information

A natural concern for the proposed method is how it behavekdrpresence of inaccurate and
incomplete edge information. The analysis of SRFs would teatie conclusion that inaccurate
edge information should be somewhat benign. While the methibaiot be able to avoid partial
volume artifacts across unknown edge structures, the-odeetween resolution and SNR will
still be efficient. In addition, the method is also fairly itesnt to false edge structures. In this
case, smoothing will not be performed across the false degding to a slight reduction in SNR
improvement, though false edges will generally not maniéssfalse image structures unIeﬁ%Zs

is so large that there is a significant loss in spatial regoiutNote that asi—% becomes larger and
larger, the reconstructed images are encouraged to becareand more piecewise constant,
with discontinuities at the image boundaries. As a resutipirect boundary information could be
very detrimental in this extreme scenario. lllustratiohthe resilience of the proposed method to

inaccurate edge information are shown in Fi§82-3.35

3.6 Optimal Averaging Designs

We showed in Sec3.3.2that our proposed reconstruction was efficient with respethe res-
olution/SNR trade-off when used with a high-resolutionadatquisition strategy with uniform-
densityk-space coverage. However, it has also been shown previtagligtata filtering of uniformly-
sampled data is not as SNR efficient as if the acquisitioriegiyais modified to match the char-
acteristics of the filter function, and significant SNR/resiain efficiency advantages for filtered
reconstruction can be achieved with variable-density $siagyaveraging 90, 253 323 436 498
513 586,589.

In this section, we derive an optimal data-averaging sisafer general fixed linear image

reconstruction problems. This strategy can be used todughhance the SNR of our proposed
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Figure 3.32: Reconstruction of the noiseless Shepp-Logantpm with (a) accurate edge in-
formation, (b) completely inaccurate edge informationd &) misregistered edge information.
The left-most column of these subfigures shows the linege®eariables used for reconstruction,
which were assumed to be given and were not estimated joiithythe images. The remaining

images show reconstructions using the proposed methdujmeiteasing values cﬁ‘i as we move
from left to right.
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Figure 3.33: Reconstruction of the noisy Shepp-Logan pmantith (a) accurate edge informa-
tion, (b) completely inaccurate edge information, and (syegistered edge information. The left-
most column of these subfigures shows the line-processblesiased for reconstruction, which
were assumed to be given and were not estimated jointly Wéhnhages. The remaining images

show reconstructions using the proposed method, with asong values ofg— as we move from
left to right.
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Figure 3.34: Reconstruction of the noisel€ameramanmage with (a) accurate edge informa-
tion, (b) completely inaccurate edge information, and (syegistered edge information. The left-
most column of these subfigures shows the line-processblesiased for reconstruction, which
were assumed to be given and were not estimated jointly Wéhnhages. The remaining images

show reconstructions using the proposed method, with @&song values ofj— as we move from
left to right.
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Figure 3.35: Reconstruction of the noi€ameramanmage with (a) accurate edge information,
(b) completely inaccurate edge information, and (c) misteged edge information. The left-most
column of these subfigures shows the line-process variaisied for reconstruction, which were
assumed to be given and were not estimated jointly with treges. The remaining images show

reconstructions using the proposed method, with incrgastues ofi—qz as we move from left to
q
right.
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method when there is time for averaging during data acduisit In our previous discussion,
we assumed that each measurement sampd imas acquired exactly once, and that the noise
variance was equal for all elementsdsf. This assumption will be relaxed in this subsection, so
that themth element ofd? is assumed to be averageq, times, and thus has an-dependent
variance ofo? /w,,,. Our goal in this section will be to optimizgu,,, } to minimize the covariance
matrix of the reconstructeg, .

The problem of designing an experiment to optimize the damae of a reconstruction is well
studied in the field of statistic2p5 521,576. The existing literature generally considers the
case where an ML reconstruction is obtained. However, smadhse, the ML solution is generally
an explicit function of the averaging stratedy,, }, which makes optimization difficult. In the
absence of special problem structure, optimal designsdeaverally been found numerically with
iterative convex optimization techniques.

In this section, we observe that certain optimal averagegjghs have simple closed-form
solutions when the reconstruction matrix is linear and pahelent of the noise covariance. As a
result, assume that a particular reconstructed image @&raat from measured data according to
the linear reconstruction

p, = Gd, (3.31)

whereG is an/N x M reconstruction matrix. In the context of our proposed metitas reasonable
to takeG as the reconstruction matrix from E&.{6), though the treatment in this section will be
written for the general case whe€ is allowed to be arbitrary. For most ML or PML methods,
the G reconstruction matrix would be chosen to be a functiofugf }. However, in the context of
MRI reconstruction, allowingx to be dependent ofw,, } would also mean that the reconstruction
SRFs would change as a function {b,,}. This would be problematic, since modification of
the averaging strategy could lead to undesirable unpestlicihanges in the SRF characteristics.
As a result, we will assume that we have already designedamsétiction with desirable SRF

characteristics for a given set of line-process varialdes (the matrix equation in EB.(L6), and
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will modify the averaging scheme to improve the SNR chargttes under this reconstruction.
Note that the optimal averaging scheme is dependent on tinga¢sd line-process variables. This
is not a problem in the super-resolution mode of our proposetthod, since the data for the high-
resolution reference images providing edge informatiam lma acquired prior to the data for the
low-resolution images. This issue is more problematic far denoising mode. In this case, it
is reasonable to optimize the acquisition scheme for fuexperiments based on the empirical
distribution of line processes that have been estimateckeiviqus experiments.

We begin by assuming that the measurements id? are partitioned inta? subsets,, of
size|©,|. In addition, we assume that each subset of measurergmtsist be acquired simulta-
neously, so that each element@f must be allocated the same number of averages. This allows
us to accommodate the conventional case in MRI, where meiktispbace samples are measured
together after each RF excitation. Rather than dealing witdger-valued averaging schemes and
the {w,,} variables, we instead optimize the fractional amount ofayig efforty, € (0,1) that
is assigned to the subg@t, under the constraint thit:zf:l Xp = 1. Once they, are obtainedy,,
is obtained by setting,,, ~ xp(m)/|Opm)| SM_ Wi, Wherep(m) returns the index of the subset
©, containing themth data sample. Optimization of the real-valued averagifgyteis known
asapproximate desigrand avoids the need to solve the difficult integer-programgynproblems
associated with exact designs. Efficient algorithms forpfaetical discretization of approximate
designs are presented, e.g., in Ch. 12 of R&t1]. Greedy algorithms also exist for exact designs
(see, e.g., Refs2pP5537,576), but are beyond the scope of this work.

We will assume thadl? can be written as

df
ds o (3.32)

dp

where eachl? represents the lengtl®,| vector of data samples belonging to the sulégetWith
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this representation, the covariance matrix ofdes given by

o2

%6y ... O
E[dq(dq)H]oc o, , (3.33)

o2

-2
XPI|®P|

wherel g, denotes theo, | x |©,| identity matrix for eaclp. In addition, the covariance matrix

of p, is given by

E [@q@ﬂ —E [qu (dn)? GH}
— GE [dq (dq)H} GH
i—(?n@l‘ e 0 (3'34)

x G : : GH.

2
g
g
0 pr|9P|

Assuming that is also partitioned according to the subsefsas
Gz[cr1 Gpl, (3.35)
then the reconstructed image covariance can be simplified as
Elpp)| oy Lg,an (3.36)

Our choice of{x,} is based on our desire to minimize the covariancg ofHowever, there
are generally many different ways of defining an orderingafaciance matricessp1]. For this
work, we will say that one covariance matrix is smaller thaather if it has a smaller trace, where
the trace of a matrix is equal to the sum of its diagonal elémeifihe trace of the covariance

matrix is equal to the sum of the variances of each recortstlumxel, and is a standard criterion
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in optimal experiment desigr2p5,521,576.” The trace criterion is often also called tekem-
of-squared errorsthe average varianceor the A-optimalitycriterion. In the present context, the

trace criterion can be expanded as

Trace (E [f)q()ﬂ) x Trace <Z —G GH>

Xp

= Z X—pTrace (G,GI (3.37)

= Z —Trace (GHG )

1 Xp
Note thatTrace (G G,) can be expressed as
O]
Trace (GG, Z g7, . (3.38)

whereg,,, denotes théth column of the matrixG,,. As a result of this expressiofirace (GF'G,)

can be computed in a straightforward manner.

3.6.1 Optimal Allocation of Averages

The optimal averaging design problem has a closed formisaluthenG is independent of x,, }.

This is made explicit in the following theorem.

Theorem 3.1. For the optimal averaging problem described in the previsubsection, a closed

form solution for the optima{y,} is given by

Trace (GHG )
X = PV SR (3.39)

Z v/ Trace (GEG,)
s=1

’Introducing a weighting function into the this criterionncalso be useful if noise perturbation would more prob-
lematic in certain spatial regions of the image than in ath@is extension is straightforward, and is omitted from
our discussion for simplicity.
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forp=1,2,..., P.

Proof. The optimal solution is derived using Lagrange multipljesisnilar to the approach taken

in [436,498. In particular, define the Lagrangian for the constrainptimization problem as

P P
1
L (X1, X2+ s XPyA) = Z —Trace (Gpr) + A (Z Xp — 1) , (3.40)

p=1 Xp p=1

where) is a Lagrange multiplier that is adjusted to enforce the tairg that{ y,,} should sum to
one. Differentiating the Lagrangian with respect to egglior p = 1,2, ..., P and equating with

0, we find that

Trace (GEG,)
= V e (3.41)
for eachp. Choosing\ such that the constraint is satisfied results in B439). n

Optimal averaging designs have been considered previoutslg context of windowed Fourier
reconstruction where eadtispace sampling location was allowed to be sampled indegeiyd
(i.e., whenM = P) [436498. Our results coincide with these existing results for tbase,
though they can also be applied in much more general lineanstruction scenarios.

We note that our expression for the optimal averaging desigid also be derived using the
methods described by Pukelsheim and TorsB&y|| who derived closed-form optimal averaging
designs for a special class of optimal linear statistictiregtion problems. Applying their results
to our problem requires the construction of a specializeoirg estimation problem, under which
it can be proven that thé& reconstruction matrix is independentof,}. We do not present the
details of this construction here, though the construataombe derived by manipulating the results
of Zyskind’s paper $80, which describes contexts where optimal statisticaldmestimation is
independent of the averaging scheme. Though the derigadiohukelsheim and Torsney are quite
interesting, their derivations are significantly more ctingted than those we presented here, and

rely heavily on results from the subdifferential calculdigonvex analysis.
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3.6.2 Application Example

We illustrate the benefits of the proposed averaging desigtige context of our proposed linear
image reconstruction method with noisy Fourier data. Satmorh is performed using the Shepp-
Logan phantom shown in Fig.36a). Data collection was performed by sampling the Fourier
transform of this image at the Nyquist rate on a $228 Cartesian grid. Simulated white Gaus-
sian noise was added to the data, and several differentgagrgrachemes were applied. With
uniform averaging (two averages at e&e$pace location) and conventional unregularized Fourier
reconstruction, we obtain the noisy image shown in Bi§gb). Reconstruction was also per-
formed using the proposed method, where we assume the egméurtion mode of operation
where the line-site variables are derived completely frefanence images instead of being jointly
estimated with the image from the noisy data. In this simogatwe assume that the prior infor-
mation about the image edge structure is known perfectly,cnoose the line-process variables
in a binary way such that smoothness is never imposed actigesstructures, and is imposed in
a uniform way at locations that do not demonstrate edges.xpsated, the use of regularization
significantly improves SNR, even with uniform averaging (Fg6c)). Two different averaging
protocols that can be available for typical MRI experimeng&evalso optimized for this regular-
ized reconstruction. In 1D averaging, each of the samplitipetso, corresponds to one of the
128 different rows of the sampling grid — this correspond¢h® standard phase-encoded MRI
experiment, in which each line &t space is acquired simultaneously. In 2D averaging, each of
the 128 sampling locations can be averaged independently. Fi§{(d-e) shows regularized re-
constructions, using the optimized averaging patterns ff@. 3.36f-g) (shown on the 128128
sampling grid). Optimized 1D averaging and 2D averagingroue the average variance of the
regularized reconstruction by a factor of 1.76 and 2.7 peetvely, as compared to uniform av-
eraging, and significantly improve experimental efficienkty addition, the optimized averaging

schemes significantly reduce spatial correlations in thenstructed noise fields.
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(a) True image (b) Unregularized

(c) Uniform averaging (d) Optimized 1D averaging (e) Optimized 2D averaging

(f) 1D averaging design (g) 2D averaging design

Figure 3.36: Example of the benefits for using an optimizestaying scheme. (a) Noiseless im-
age. (b) Noisy image with unregularized Fourier reconsitbac (c-e) Regularized reconstructions
with different averaging schemes. (f-g) Optimized Fouageraging patterns. The colorscale
indicates the number of averages acquired at each Founglisay location.
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3.7 Alternative Algorithms

The algorithm we described in Se&2 for minimizing Eq. ¢.8) was based on the multiplicative
form of half-quadratic regularization. In practice, howguthere are multiple other algorithms that
could be applied for minimizing Eq3(8), particularly when thel(-) regularization functional is
chosen as the Huber function as discussed in $€c3 In this section, we will describe and
compare several alternative algorithms that could be usethinimizing Eq. 8.8) with Huber-
function regularization. In particular, we will describgetimplementation of an additive half-
guadratic algorithm in Se&.7.], the implementation of Nesterov’s algorithm in S8¢..2 and the
implementation of a method for accelerating the traditiomaltiplicative half-quadratic algorithm

in Sec.3.7.3 Comparisons of all the algorithms are given in S¢.4

3.7.1 Additive Half-Quadratic Algorithm

The multiplicative half-quadratic algorithm describedSec.3.2 was based on the line-process
representation of the potential functidr(-) as in Eqg. 8.6). In contrast, additive half-quadratic
algorithms are based on an alternative representatign-0f 15,236,328 472. In particular, it is

assumed tha¥(-) can be expanded as
U(t) = inf {t=0)>+U)}, (3.42)

whereU () is an appropriate functional. Unfortunately, the traditibadditive half-quadratic algo-
rithm does not extend naturally to our proposed prior withrshd line processed72. However,
Wang et al. [634] have recently described a new additive half-quadratiordlgm that can be
adapted for solving Eq3(8). In addition, Wanget al. have proven that this approach is globally

convergent, and have computed explicit convergence rates.

To explain the approach, we first observe that the expres\}/l‘@f:1 B2 | pi — p;{|2 appearing
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in EQ. (3.8) can be equivalently written as

Q
> B2 (b = pi* = I Dn ol » (3.43)

q=1

whereD,,,,, is a@) x NQ weighted finite-differencing operator, and

Piot = : . (3.44)

pq

Next, assuming tha¥(-) is the Huber function from Eq3(25, we are inspired by Ref6B4] to

rewrite ¥ (|| Dy Pyor ll,) @S

U(IDnprcille,) = | inf | {IDunPior = Duunl, + 26 1Byl } - (3.45)
It is straightforward to derive that the optimizing valuelgf,, in this expression is given by

(IIDmnpiotlle, =€)
b, — mDmnptom ||Dmnpt0t||€2 > ¢ (3.46)

0, else.

Using this relationship, it is clear that the optimal redomsted images in Eq3(8) can also be

obtained by solving

{b17b2>"'7ﬁQ} = argmin inf g(plaPQa"'aan{bmn}) (347)

{p1,02,...,pQ} {Pmn}
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where

Q
G(p'. 0% ... 0% {bma} = > a2 |[Fyp? — d’|;

q=1

N
+ Z Z (HDmnptot - bmnHi + 2 HbmHHZQ) :

n=1 mEAn
m>n

(3.48)

The iterative half-quadratic algorithm, whdr{-) is the Huber function from Eq3(25, pro-

ceeds as follows:

1. Set iteration numbei = 0, and set the estimated image sequence equal to an initissgue
{()}j), SIS ﬁg)} (e.g., set all voxel coefficient values based on an initigy&ourier

reconstruction).

2. At thejth iteration, compute the auxiliary vector for each voxel pa

(| Dol [2*£)D b :
; ) mnptot> H mnptot >
b, =4 [P, & (3.49)
0, else.
3. Update the image sequence according to
{%+1)>‘5?j+1)>' ﬁg-ﬁ-l)} = argmin G(p'p%,...,p% {b{)}). (3.50)
{p',p?,...,p9}

This optimization problem is separable, such that the swidor eachp (1) is given by

A~ . A 2
00y = argmain {7} [Fyp" — ', +[|5,Dp" b}
. ; (3.51)
<FHF + qDHD) (Ffjdu—gDHbgj’),
q %

whereD was previously defined in Se8.2, bgj) is the vector comprised of thgh entries

. 2
of the{bﬁ,%} vectors, and it is assumed that the nullspacds,aind %D have trivial inter-
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section. As in Sec3.2, the matrix inversion in this expression can be computediefftly

using iterative algorithms like CG or LSQR. However, it shoalslo be noted that the ma-
trix <Ff F,+ i—%DH D) frequently has special structure that enables even fastersion.

In particular,Fqu is often a circulant matrix when using Carteskagpace sampling, and
DD is also circulant when the finite-differencing scheme assiperiodic boundary con-
ditions. Circulant structure implies théFqu + g—‘j;DHD> is diagonalized by the unitary
DFT matrix, meaning that the matrix inversion in E§.X1) can be computed noniteratively

using a small number of FFT operatiorz0[, 625.
4. Incremeny. Repeat steps 2 and 3 until convergence is achieved.

Similar to multiplicative half-quadratic optimizatiorhis additive half-quadratic algorithm mono-
tonically reduces the cost function in E§.§). Moreover, this half-quadratic algorithm has guar-
anteed global convergence to a global minimum of BaB)(

In general, it is known that additive half-quadratic al¢joms tend to converge more slowly per
iteration than multiplicative half-quadratic algorithi#72. However, when the matrix inversion
can exploit circulant structure, the computational efforteach iteration of additive half-quadratic
algorithms is significantly smaller than that for multigito/e half-quadratic algorithms. As a
result, additive half-quadratic algorithms can lead togigantly reduced total computation times

in these cases.

3.7.2 Nesterov’'s Algorithm

Our description of Nesterov’s algorithm follows the deption given in Ref. Bg. Nesterov’s
algorithm is a first-order optimization method with an omlrnonvergence rate, that can be used
to minimize arbitrary smooth convex functions. In partamybssume that we wish to find a solution
to

min f (x), (3.52)

XE Qp
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with x € RY, wheref is a smooth convex function and the primal feasible @gtis convex.
The functionf is assumed to be differentiable. In addition, the gradiélitx) is assumed to be

Lipschitz such that

IVFx) =V, < Llx =yl (3.53)

where L is some upper bound on the Lipschitz constant. Given twaassgquencess,} and
{7}, Nesterov’s algorithm takes the following form:

Initialize x,. Fork > 0,
1. ComputeV f (xx).

2. Computeyy:

. L
Yi = arg min o Ix = xxll7, + (Vf (%), X — x4, (3.54)
where< -, - > denotes the standafg inner-product foiR ™.

3. Computezy:

k
L
Z = arg ){IEHQTL F_ppp (x) + ; ki (VI (xi),x — %) . (3.55)
4. Updatex;:
X1 = ThZk + (1 — %) i (3.56)

5. Incremenk.

Stopwhen a given termination criterion is valid.
The functionp, (x) is a strongly convex function oved,, with convexity parameter,. Fol-

lowing Ref. [38], we will use

1 -
Py (%) = 5 Ix =%z, (3.57)

wherex € Q, is an initial guess of the solution. Note tHgt = 1 in this case.
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At each iterationy is the current guess of the optimal solution. xlf = (k+1) /2 and

v = 2/ (k + 3), theny, has been proven to converge to

- .
X' = arg min f (%)

with the convergence rate

. 4Lp, (x*
F v — f(x) < U{fﬁ
However, it should be noted that Nesterov’s algorithm dastsnecessarily converge monotoni-
cally.

While Nesterov’s algorithm is designed for real-valued peats, it is straightforward to write
Eq. (3.9) as a real-valued optimization problem with twice as mangnogation variables (i.e.,
one real-valued variable for each of the real and imaginar{sf the complex random variable).
Simplifying the algorithm derived using the real-valuealdem formulation, it is possible to
equivalently derive a complex-valued algorithm that makes of the same update equations in
Egs. 8.54-(3.56, and we will focus on this description for the remainder luktsubsection.
Note thatQ, = C? for the problem in Eq.3.8), and the complex vectors that we compute in
Nesterov’s algorithm will all have lengty V.

Finalizing the description of Nesterov’s algorithm for E§.8) is a simple matter of specifying

the gradient of EQ.3.8), specifying L, and describing the update equations in EGs54) and
(3.59:

e For eachq, the gradient of Eq.3.8) with respect top, is given by the left-hand side of
Eq. 3.27). The full gradient of the cost function can be obtained lagking these individual

length-V gradient vectors into a single lengfh’ vector.

e Applying the triangle inequality to the gradient expressimEq. (3.27), it can be shown that
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an upper bound on the Lipschitz constant for Eg8)is given by
L:mqax{mg ||Fq|\§}+ml?x{52}2||DH§, (3.58)

where||-||, denotes the spectral norm. While the spectral norm is easgripete analyt-
ically for certain matrices with special structure, thelsoaexist fast iterative methods for

computing the spectral norm of arbitrary matric24g.

e The update equation fgr, in Eq. (3.59) is

\Y
Yo = xi — d ) éx’“). (3.59)
e The update equation fay, in EQ. 3.59 is
k
g — xq — 20 VS (%K) (3.60)

L

3.7.3 Accelerated Multiplicative Half-Quadratic Algorithm

Ramani and Fessler have proposed an accelerated algorithsnling the matrix inversion in
Eqg. 3.16 that appears in the multiplicative half-quadratic algon [52§. Their method is based

on the observation that if we iterate
B2 o
Z(er1) = (L + a—‘;DHdiag(eggzn)D> (Fd"+ (L - FIF,) zq) (3.61)
q

over k, thenz, converges to the optimeﬁ‘(]jﬂ) in Eg. 3.16. The matrixL appearing in this
equation is anyV x N Hermitian invertible matrix for whicIL—Fqu is positive definite. Ramani

and Fessler use the matrix inversion lemma (MIL) to expamdntfatrix inversion appearing in
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Eg. 3.6)) as

2 _1
(L + B—‘;DHdiag(fgzn)D) =L - L7'D” (diag(¢$9),) ™" + DL‘IDH)_1 DL™'. (3.62)
Qo ’ ’

q

As a result, the solution to Eg3(16) can be obtained by iterating the following procedure duer

1. Compute
b = L (Fi'd? — F'Fz0) + 20 (3.63)

2. Use an iterative algorithm like CG or LSQR to solve
(diag(¢$?) )™ + DL™'D") aj) = Db, (3.64)

for the vectora,y.

3. Set
Z(k+1) = b(k) — L_IDHa(,.C). (3.65)

Though this procedure is more complicated than directlylyapgp CG or LSQR to Eq. §.16),
Ramani and Fessler argue that this method will hopefully eaye after fewer iterations due to
similarities with a preconditioning strategy; see RéR§ for further details.

A key component of this algorithm is th&t should be chosen such that it is easily inverted.
Ramani and Fessler choose the matrix to take the form F)'F, + cD”D, wherec is a small
positive constant (we use = 0.001), and it is assumed that the nullspacesgfand D have
trivial intersection. Note that this matrix has the samefais the matrix appearing in the additive
half-quadratic algorithm, and thus is similarly easy toenwsing FFTs when data is sampled
on a CartesiaR-space grid and when the finite-differencing operation m&superiodic boundary

conditions.
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Figure 3.37: Computational performance of the differentimimation algorithms with the DW
mouse dataset. (a) Convergence as a function of iteratiomeur(b) Convergence as a function
of time.

3.7.4 Algorithm Comparisons

The three different algorithms described in the precedurgseactions were all implemented in
Matlab (Mathworks, Natick, MA), and compared to the multiptive half-quadratic algorithm
described in Se@.2 Algorithm performance was systematically tested on twWiedgnt datasets,
using a Linux-based workstation with two dual-core Xeor033z processors and 8 GB of RAM.
The first dataset was the DW mouse brain dataset describeidysty in Sec.3.4.2 For this
dataset, circulant matrix structure can be exploited feratditive half-quadratic algorithm and
the multiplicative half-quadratic algorithm with MIL-bad acceleration. In our performance eval-
uation, the additive half-quadratic algorithm was evadatvith both standard matrix inversion
and fast matrix inversion. The results of the performanaduation with this dataset are shown
in Fig. 3.37. It is observed that the standard and the MIL-acceleratdtpticative half-quadratic
minimization algorithms demonstrate the fastest pegiten convergence, while Nesterov’s algo-
rithm demonstrates the slowest per-iteration convergeadoerever, due to the low computational
effort for each iteration, both Nesterov’s algorithm and #udditive half-quadratic minimization
algorithm using the fast matrix inverse significantly oufpem the other algorithms in terms of

raw speed. As expected, the MIL-based acceleration of thépieative half-quadratic algo-
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Figure 3.38: Computational performance of the differentimimation algorithms with the simu-
lated phantom dataset. (a) Convergence as a function ofictenaumber. (b) Convergence as a
function of time.

rithm leads to reduced computation time. In addition, thétiplicative half-quadratic algorithm
is significantly faster than the additive half-quadratigaaithm when the additive half-quadratic
algorithm does not take advantage of circulant matrix stmec

The second dataset used was simulated fégma= 10 different 96 x 96 phantom images.
Data was simulated based on a real EPI trajectory, whicluded ramp sampling. Ramp sam-
pling means that circulant matrix structure cannot be usethie MIL-accelerated multiplicative
half-quadratic algorithm or the additive half-quadratigaaithm. As a result, these accelerated
algorithms were not included in the performance evaluatibhe results of this experiment are
shown in Fig.3.38 As before, the multiplicative half-quadratic algorithmndonstrated the fastest
per-iteration convergence. In addition, Nesterov’s athar maintained a clear advantage in terms
of raw speed.

This performance evaluation indicates that alternatiger@hms can be preferable to the stan-
dard multiplicative half-quadratic algorithm for mininnig Eq. 3.8). Nesterov’s algorithm is
particularly attractive, since it can be applied for adniyrk-space sampling patterns and is consis-
tently fast. When circulant structure can be exploited duthre iterative procedure, the additive

half-quadratic algorithm also presents attractive fesguilt should be noted, however, that these
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algorithms could perform differently when optimizationperformed on different computational
platforms or when using different datasets, and that thecehof algorithm should ideally be
made on a case-by-case basis. We also remark that fasttlgsrior regularized MR imaging
methods continue to be developed, and new emerging algwitould possibly outperform the
algorithms we have evaluated here. A particularly prongigitass of new algorithms is based on

the augmented Lagrangian formulati@2f].

3.8 Conclusion and Summary

In this chapter, we have described and analyzed a new apptoa®constructing a series of
correlated images. We formulated an edge preserving pasedyon shared non-interacting line
processes, and showed that the solution to the resulting éjimization problem could be found
efficiently using fast algorithms. In addition, we demoatd that the method is easily character-
ized when reconstruction parameters are chosen appmpyiand this enables the user to directly
control the trade-off between resolution and SNR. We peréarain analysis of this trade-off and
found that regularized reconstruction of high-resolutiata was more efficient than simple recon-
struction of averaged low-resolution data. Finally, we destrated the potential of the proposed

approach with a series of simulation and experimental ekasnp
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Chapter 4

Compressed-Sensing MRI with Random
Encoding

In this chapter, we address the problem of reconstructingif&es from highly-undersampled
high-SNR datd. In particular, we make use of a relatively new approach tomstructing signals
from limited data known as compressed sensing/compresaivpling (CS) 108 109 115116
177,206,627. CS has generated significant interest in the signal proggesmmunity because of
its potential to leverage signal sparsity to enable roligsesd reconstruction from much fewer data
samples than would be suggested by conventional samplaugyth In the context of MR, this
type of undersampling could have the potential to signitiyaaccelerate imaging experiments.
As described in Se.2, the necessary sampling density requirements for coroseadty-
reconstructed Fourier-encoded MRI are dependent on theakspapport of the imaging subject.
In particular, images with small support can be reconstaietith fewer Fourier samples (for a
given spatial resolution) than images with larger suppamt] as a result, strong prior informa-
tion about the image support can be used to accelerate daigsiion [6,92, 233 320,426,464,
511,554,571,610Q. Intuitively, the necessary sampling rate in CS is simylagbverned by prior
information on the limited support of the image. Howevethea than using precise information

about the known support of the image in the spatial domain,$88raes only that the image will

1Some of the text and figures in this chapter have been prdyipublished in P73, and are copyright 2010 IEEE.
Personal use of this material is permitted. However, pesiaisto reprint/republish this material for advertising or
promotional purposes or for creating new collective worksrésale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works mustbtained from the IEEE.

2CS is a rapidly developing field with a rapidly developing poof literature. Due to this rapid devel-
opment, it is common for new CS results to be distributednenlprior to journal publication. A repository
of CS preprints and papers is currently maintained by thet@idgignal Processing group at Rice University
(http://dsp.rice.edu/cs , and is regularly updated with new CS-related manuscrigts. Nuit Blanche blog
(http://nuit-blanche.blogspot.com ) is another good resource, and provides daily updates orelag:d
preprints, papers, and ideas.
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(a) Original Image (b) Wavelet Transform (c) DCT Transform (d) Finite Differences

Figure 4.1: Typical medical images have sparse represemiatappropriately chosen transform
domains. For example, the (a) brain image has relativelydgnificant coefficients in the (b)
wavelet (the coefficients shown here were calculated usigubechies-4 wavelet transform) and
(c) discrete cosine transform (DCT) domains. (d) In addjtaure to the piecewise-smooth nature
of this image, it also has a small number of significant coeffits using a transform that computes
finite differences between adjacent pixels.

be sparse (i.e., the signal has few non-zero coefficientspmipressible (i.e., the signal has few
non-negligible coefficients) in a known transform domaimdAunlike support-limited reconstruc-
tion, traditional CS does not assume prior knowledge reggrttiie exact locations of the non-zero
transform-domain coefficientsinstead, the theoretical results indicate that robustristroctions
are possible even when the transform-domain support imatd jointly with the image from
sparsely-sampled data.

It is well known that natural images, such as those seen in MR, highly compressible
in appropriately-chosen transform domains (frequentlis ts the result of the images having
piecewise-smooth structur&q0,196,429484,658)). The transform compressibility of MR images
is illustrated with a typical brain image in Fig.1. As a result of image compressibility, MRI has
been viewed as a promising application for CS, and several M&instruction schemes inspired
by CS theory have been reported in the literature (see, e.ts, R&, 60,228 240 317,350, 362,
397,420,421, 557,568 608 668). In addition, sparsity-exploiting reconstruction meds for

limited-data scenarios existed in the MR literature for i@gldime, outside of the context of the

new CS theory (e.g., Refs34,78,82,264,401,439,500,505 508 553 578 662).

3Fast MRI acquisition for the case where transform-domagpett is knowra priori has been explored previously
[119-121,495 619 67F. In addition, some recent developments in CS have addigbgecase where the image
support is partially known, though this will not be a focughuk chapter; see, e.g., Ref83p,620,621].
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The theoretical CS literature typically assumes finite-digi@nal linear signal models (cf. the

discussion of such models in MRI from Séc2.3, with the data acquisition model given by
d=Ep+n, (4.1)

wherep is a length/V signal vector of interestd is a lengthd/ data vectorE is anM x N
encoding matrix with\/ < N, andn is a lengthA/ noise vector. Sincéd/ < N, the matrixE
has a non-trivial nullspace, and there are an infinite nurob@ossible reconstructions that are
all maximally consistent with the measured data (cf. Se®), as result, the inverse problem is
ill-posed, and additional constraints must be imposedHerd to be a unique reconstruction.

CS makes two key assumptions to ensure that the inverse prdigleomes well-posed: (1) the
signal vectolp is sparse or compressible in a given linear transform donaaid (2) the observa-
tion matrix E satisfies certain mathematical conditions with respedtiottansformation. Le¥

be a sparsifying transform matrix such that the vector
c=Wp (4.2)

is known to be sparse or compressible. The various existingeC&hstruction procedures often

find estimatep g of p by solving
minimize Ry (¥Pcg) subject to ||EPpag — dH?2 <e? (4.3)

whereR; (-) is a functional that promotes sparsity, and the paranzetentrols the allowed level
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of data discrepancy (usually chosen based on an estimate oise varian¢®. There are sev-
eral different choices foR; (-) that have been proposed in the literatu8@7. The most intuitive
choice is to use; (-) = ||-||,,, where thefo-“norm”® counts the number of non-zero components of
its argument. Use of thg-norm is desirable in that it results in a solution that hagimam spar-
sity among all possible solutions that are consistent visghdata. However, using tlig-norm has
one major limitation: the resulting optimization problesmion-convex and very difficult to solve
(i.e., it is NP-hard 46€]). While various greedy algorithms exist fég-norm minimization, an-
other common approach is to choose/ar-) that makes optimization of E¢} (3) more tractable.

In particular, a common choice is tlignorm (previously defined in Eq2(34)), resulting in
minimize ||¥pcgll,, subjectto |[Epqg — d||?2 < e (4.4)

The/; norm is the tightest convex relaxation of thenorm, and its convexity implies that global
optimization of Eq. 4.4) can be achieved through standard convex programming m&thim
addition, there are many situations in which the solutioth®?/,-norm minimization problem is
equivalent or nearly-equivalent to the solution of lgenorm minimization problem78 179.
The fact that/;-norm minimization frequently leads to sparse solutions lsa explained using
geometric argument291, 600, as illustrated with the example shown in Fg2

The accuracy of CS reconstruction using Eg4) can be guaranteedlf andW satisfy certain

“The constraint thatEpcg — d||7, is no larger than an upper bound of the total ndiBe — d|[;, = |n||7, is fre-
guently called theliscrepancy principl§48,207,289,625, and is a common method used for choosing regularization
parameters in ill-posed problems. When an upper bouanﬂi@2 is estimated well, using the discrepancy principle
can help ensure that the reconstructed solypigawill have similar level of data mismatch to the true unknovugnsl
that we are trying to reconstruct. In CS theory, use of therdjgancy principle is also motivated by the fact that re-
construction characterizations can be derived that caragtee the quality of reconstructed answers in certainscase
For white complex Gaussian noise with variance note that2 H11||§2 is chi-squared distributed with\/ degrees

of freedom [3]. As a result,||n HZ has a mean of/2, and a standard deviation @f/2). Due to the central limit

theorem, the chi-squared distribution is approximately$s&an whenV/ is large (e.g., whed/ > 50 [73]). Thus,

the distribution is also peaked about its mean whérs large, such thaﬁnnf2 ~ o> M with high probability.
SStrictly speaking, this functional is not a true norm, beszait does not satisfy the triangle inequality.
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Figure 4.2: lllustrative problem geometries for gnorm minimization and (b¥,-norm min-
imization. The blue lines correspond to the linear varietyoints satisfyingEp = d, with

E = [-1 2] andd = —2. The shaded light-blue regions correspond to the sets ofgpsatisfying
|IEp — d||§2 < g2, with €2 ~ 0.894. The red curves in (a) and (b) are isocontours offtheand
/5-norms, respectively. The optimal solution to thenorm minimization problem can be obtained
by finding the smallest valuesuch that the curve defined By||, = « intersects the set of points
satisfying||Ep — dH?2 < £2. The solution to thé;-norm minimization is sparse in this case, since
only one of the entries of the optimpalis nonzero. This sparsity is the result of the fact that the
isocontours of the;-norm are “pointy,” extending further along the coordinates than along
other directions. Notice that th&-norm isocontours are spherical rather than pointy. As a re-
sult, thels-norm does not prefer solutions along particular orieatetj and’,-norm minimization
generally does not yield sparse solutions.
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mathematical condition’s For example, consider the case whérés a square, invertible matrix,
and defineb = E® 1.7 In this case, the performance of CS reconstruction can bexgtesd if
® satisfies appropriate restricted isometry properties (R[R63 108 110 116,157,219, inco-
herence propertiegl], 104,107,181, 187, or nullspace properties (NSPs) 44,183 254]. While
NSPs provide necessary and sufficient conditions for ateW& in the absence of noise, this
chapter will focus on RIPs, which can provide some of the gfeshexisting performance guaran-
tees for stable and accurate reconstruction in the presdnuase [L03 116 219. To define the

RIP, first leta, and 3, denote the largest and smallest coefficients, respectisat that
2 2 2
a, [|Ix[z, < [[@xl, < B %I, (4.5)

is true for all vectors with at mosts non-zero entries. A simple generalization of the results in

Ref. [11Q yields that the best possiileestricted isometry constaof orders is given by

_65_053
S Bstas

(4.6)

s

The performance guarantees for CS reconstruction with44). improve asj, gets smaller. For
example, Cangls [L10 shows that ifds, < vV2 — 1 ~ 0.414 and in the absence of noise, the
solution to Eq. 4.4) with £ = 0 perfectly recovers any sparse vector with fewer thaon-zeros.
In the more general setting with noise and a compressiladrivial modification of the results in

Ref. [110] shows that i, < v/2—1 and if the noise obeyi& |7, < <, then the CS reconstruction

Sperformance guarantees for other CS reconstruction fatinnk also exist (see references in R807). These
guarantees are sometimes better than those that exiét-foimimization (e.g., 132 133 220,548 609, 622 657)),
though the methods that do better thiaanorm minimization typically require additional prior mfmation and/or
nonconvex optimization.

"Discussion of the case whelleis a more general matrix can be found in RéfL]].

8The restricted isometry constant as defined in Reff(] is the smallest numbe¥, such that Eq.4.5) holds with
as =1—6,andss = 1+ 4, for all vectorsx with at mosts non-zero entries. This definition éf is not invariant
with respect to rescaling ob, despite the fact that the solution to Ed.4) would remain exactly the same (other
than scaling) under this problem transformation. Equatibf) represents the minimal value &f over the set of all
possible rescalings a@b.
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Ces = P g Satisfies

lee —cll, < Cos™?le |, +Cie/VE, (4.7)
~ ~ ~— ——
Reconstruction Error Compression Error Noise Error

where c, is the optimals-term approximation ok [11(, £ = %(as + Bs), and Cy and 4
are dependent ofy,. Recent improvements on this result have been made thatdersuinilar
guarantees for stable and accurate reconstruction, bwaéideunder the weaker conditions that
8, < 0.307 [103 or 0, < 0.4734[219.°

For an arbitrary pair of matriceB and ¥, it is often computationally infeasible to calculate
practically-useful guarantees on the quality and robsstoéthe CS reconstruction with Ed..4).
As a result, joint optimization oE and ¥ for optimal performance in the context of specific re-
construction scenarios is an even more challenging prablEmerefore, a common practice has
been to construct CS matrices based on randomization, semtz@rcrandomized data acquisition
schemes have a high probability of possessing good CS prepf@8 116,184,545, and because
the known deterministic constructions of CS matrices hayeiitantly worse CS properties than
randomized matricesip9.1° Notably for Fourier-encoded MRI, ¥ is an identity matrix and
M and N are large, then CS reconstruction is guaranteed to be rohilshigh probability if E
is a randomly undersampled discrete Fourier transformatpefl16,545.* However, Fourier
encoding is not necessarily well-suited to CS reconstraatiih arbitrary®. For example, Lustig
et al.[42( have demonstrated that using slice-selective excitassn additional encoding mech-

anism can improve CS reconstruction in 3D imaging with corsgif®lity in a wavelet basis. As

9Most exisiting RIP-based results guaranteeing the pedooa of CS have assumed that all matrices and vectors
involved are purely real-valued. For MRI, however, the c@rase is of more practical interest. Foucart’s recent
work has explicitly demonstrated that the same kinds ofquarhnce guarantees are also valid for complex vectors
and matrices319.

ONote, however, that if performance requirements are relaxeh that sparse-recovery is guaranteedifost
sparse vectors instead alf sparse vectors, then certain high-quality deterministic constructions also known to
exist [105.

Yinterestingly, random and/or nonuniform undersampledrieo@encoding had been proposed much earlier for
certain MR imaging scenarios with sparse or otherwise sfieglimage models, unrelated to CS-based guarantees
[34,82,355 439500505508 553.
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a result, the use of other non-Fourier encoding schemes faviRBcould also potentially yield
benefits.

In this work, we investigate the use of random encoding forMF8- This choice is moti-
vated by the insight from the CS literature that if the entae& are chosen independently from
a Gaussian distribution andd and NV are large, then there is a high probability that the RIP will
be satisfied foeny unitary matrix® [10§. In addition, random Gaussidf matrices have been
shown to be nearly optimal with respect to other encodingisas for CS, and can be obtained
without significant computational effort. This leads Cas@nd Tao to describe Gaussian measure-
ments as a “universal encoding strategy09. Many useful transforms for compressing medical
images are unitary, including the identity transform, @as wavelet transforms, the discrete co-
sine transform (DCT), and the discrete Fourier transform eRe@sults also suggest that Gaussian
measurements can often lead to good CS reconstructions éwamdwvis not unitary L11]. An
objective of this chapter is to evaluate the utility of randencoding for practical MR imaging
problems.

The use of a random matri instead of a Fourier matrix can have a dramatic effect on the
structure of theb matrix. This is illustrated in Figl.3, which showsp matrices for several unitary
bases when the matrk is either a “fully-sampled” (i.e., square and invertibl@ufer matrix or a
“fully-sampled” random Gaussian matrix. Wh@ncorresponds to the identity transform, then the
use of Fourier encoding causes thematrix to have rows with significant energy in every entry.
Practically, this means that every measurement contagngisant information about every trans-
form coefficient. However, this is not the case with the wavahd block DCT transforms, where
the signal energy for each row is significantly more con@att. A concentration of signal energy
in the Fourier domain is expected for these transforms: lgawasis functions are well-known to
be highly localized in both the spatial domain and the Fow@nain 29, and the cosine func-
tions used to form the block DCT basis functions are also aijuocalized in the Fourier domain.
The consequence of this concentration is that low-frequé&iocirier measurements provide very

strong information about the transform coefficients cqroesling to the low-resolution image ba-
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Figure 4.3: The effects of different encoding strategieshe® matrix. The top row shows the
magnitudes of thé28 x 128 ¥~! matrices for (a) the identity transform, (b) the 1D Daubeskd
wavelet transform, and (c) the 1D block DCT. The second rowvshihe magnitudes df & —*
for these three transforms, whekFeis the 128 x 128 DFT matrix (the magnitude cF &' for
the identity transform is a matrix that has every entry edqodl, which is not very interesting to
look at; as a result, (d) shows the magnitude of the real gaft® '). The bottom row shows
the magnitudes o6& ¥~ for these three transforms, whe@is a 128 x 128 random complex
Gaussian matrix.
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sis functions, but relatively little information about tt@nsform coefficients corresponding to
the high-resolution basis functions. Similarly, highefuency Fourier measurements contain lim-
ited information about the transform coefficients corregpog to low-resolution basis functions.
This type of structure indicates that if CS-MRI with Fourierceding is used for a wavelet- or
DCT-compressible image, the accuracy at which high- andreselution image features can be
reconstructed will likely be limited by the number of acadrhigh- and low-frequenci-space
measurements, respectively. In contrast to the case withdfaneasurements, none of #ema-
trices corresponding to a GaussBmatrix have rows with concentrated energy. As a result, each
row of the® matrix for a random Gaussidiican simultaneously encode information about image
features at every resolution scale, which suggests that bwith random encoding could have
very different reconstruction characteristics compae€8-MRI with Fourier encoding. This
hypothesis is confirmed by our empirical results, which @&scdbed later in this chapter.

A preliminary account of this work was first presented in R27.q, and related work on CS-
MRI with random and other non-Fourier encoding has subsdtyubaen performed by other
authors B98 523 566, 632, 649, 656. While we focus here on MRI, the results we present
could also provide insight into the utility of similar rantiized encoding schemes with CS re-
construction in the context other imaging modalities, udlcthg coded-aperture computed tomog-
raphy |94, radio interferometry %23, and coded-aperture or moving random exposure optical

imaging [L88 435,577.

4.1 CS-MRI with Random Encoding

The proposed random encoding scheme is achieved usingetagpatially-selective RF excitation
pulses. Non-Fourier encoding schemes using selectiveatinti have been investigated previously
(see, e.g., Refs8P, 151, 342 455 496 and the discussion in Seg.1.2, though outside of the
context of CS-MRI. In contrast to these previous works, we esective excitation to implement

an encoding scheme similar to the “universal” encoding satgyl by the CS literaturé (9.
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MR data acquisition with slice-selective excitation (cfecS2.1.2 and uniform receive coil

sensitivity'? can be written generally as

dy = /wm (x) p (x) exp (—127K,, - X)dX + Ny,

m=1,..., M,

(4.8)

wherew,, (x) represents the effects of RF excitation for théh sample. In conventional Fourier
encoding, the RF excitation profile is designed in such a wayuth), (x) is a constant. In this
work, we alloww,, (x) to vary withm andx, as described in the next two subsections.

To connect with the CS formulation in Egt.(), we first approximate Eq4(8) using a discrete
voxel-based image model as in EG.30. Under this parameterization, EdL.§) can be written

as Eq. 4.1), with the M x N matrix E defined as

E],.. = /wm (x) ¢ (x — x,,) exp (—227k,, - X)dx. (4.9)

In the following two subsections, we describe two schemeddsigningE to achieve random

encoding.

4.1.1 Ideal Random Encoding

Ideally, we would like to have excitation profiles such theg matrix entries in Eq4(9) are drawn
independently from a Gaussian distribution. One way toeehthis would be to have,, (x)
be approximately constant within each voxel to minimizeanbxel signal dephasing, and choose

the value ofw,, (x) at the center of each voxel randomly from a complé€xaussian distribution.

2In principle, w,, (x) could also be used to absorb the effects of using a receiVevithispatially non-uniform
sensitivity, and this would be important to do when doingaflat imaging with an array of receiver coils (e.g., as in
Ref. [619). To simplify the notation and discussion, we assume fir ¢hapter that only a single receiver coil is used
for data acquisition and that any non-uniformity in the reed3; field is treated as a part of the image functiofx).

3We choose the complex Gaussian distribution because camgridom Gaussian matrices typically have better
conditioning than real random Gaussian matridexd].
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Mathematically, this excitation profile can be describadhie 2D imaging case, as

Q/2-1 P/2-1

W (2,9) = Y D Ygmll(z— )T (y—p), (4.10)

q=—Q/2p=—P/2

wherell (-) is a rectangular window function with unit width, and eagh,, is a realization of

a complex Gaussian random variable. In Eg1(), we have assumed without loss of generality
that the image voxel positionﬁcn}fj:1 lie on a@ x P Cartesian grid, normalized so that the
distance between adjacent voxels is 1. With excitation lgofienerated according to E4.10
and if ¢ (x) is chosen to be a Dirac delta function, the maliill have the desired Gaussian
distribution for anyk,,.

However, there are a couple of practical limitations to iempénting this scheme with a distinct
excitation profile for each measurement sample. First, ngakj, (x, y) distinct for eachn would
mean that only a single sample is obtained for each exaitatereby wasting the free precession
period that is used for data acquisition in conventionalrlesischemes. Second, high-resolution
multidimensional excitation profiles are difficult to achgeusing current excitation hardware, due
to practical constraints on pulse length. We next descrgyaetical alternative to this ideal random

encoding scheme.

4.1.2 Practical Implementation

To make random encoding more practical, we consider a matdit based on the conventional
spin-warp imaging sequence shown in Fgd(a). In spin-warp imaging, each excitation is fol-
lowed by phase encoding, and a full frequency-encoded Essipg through the center kfspace
is read out after the signal is refocused by a°1g0Ise. In this manner, Cartesian coverage of
k-space is obtained, with the total number of excitationsgivy the total number of phase encod-
ings.

Our proposed modification of conventional spin-warp imggiaplaces phase encoding by

random 1D spatially-selective excitation, and is shownigq £.4(b). In particular, assuming that
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Figure 4.4: (a) The conventional Fourier-encoded spimpvgaquence, and (b) the proposed 1D
random-encoding sequencéyrg, Grg, andGgs represent the gradients along the phase encod-
ing, frequency encoding, and slice select dimensionsesely. Also shown are (c) a typical
random-encoding RF pulse and (d) its corresponding exmitgirofile. The impact of random
encoding is depicted with real experimental data in (e-hle Te) magnitude and (f) phase of
a phantom acquired with standard excitation and full Fowigcoding, as compared to the (Q)
magnitude and (h) phase of the same phantom acquired wilomaencoding excitation and full
Fourier encoding. The frequency encoding (FE) and phasedamg (PE) directions for these
images are labeled in (e).
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x is the phase encoding dimension anid the frequency encoding dimension, we use

Q/2—1
Wi (2,9) = D Yl (z—q), (4.11)

=-Q/2
where~,,,, are Gaussian distributed as before, ang(x,y) is the same for all samples from the
same excitation.

The RF pulses used to achieve the 1D excitation profiles fronf4Etyl) are designed using the
small tip-angle approximatiorbp2, such that the excitation RF pulse waveform can be generated
by taking the Fourier transform of the desired 1D excitapoofile. An example RF pulse and the
corresponding excitation profile are shown in Fg}(c-d).

This form of random encoding requires the use of RF pulsesdtir §patial encoding and slice
selection. Given the limitations of current multidimensab excitation technology, this necessi-
tates the use of multiple pulses in practice. This limitati® common to other two-dimensional
non-Fourier encoding schemes that use spatially-seteetkeitation (e.g.,455, 49€]), though
it can be overcome if the RF encoding is applied only along huel tdimension of a three-
dimensional experiment (e.g191, 420). In addition, the use of varying excitation angles can
complicate steady-state behavi@5f]. This issue is also present for other similar non-Fourier
encoding techniques, and is generally overcome by using 8ipangles and relatively long rep-
etition times p06g. Use of random encoding outside of this regime can meardgiatacquisition
is nonlinear and no longer accurately modeled by Ed)( The use of nonlinear random encoding
does not fall within the scope of conventional CS or this caggtowever, preliminary empirical
investigations of nonlinear random encoding can be fourRkif [656], in which ¢; regularization

is used in the context of a parametric nonlinear signal model
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4.2 Evaluation

Experiments and simulations were performed to investithegg@roperties of random encoding for
CS-MRI. In all cases, we compared three different data adgqnsschemes with a fixed number

M of data samples:

e Random Encoding The proposed practical random encoding scheme with 1Dadlpat

selective RF excitations, as described in Set.2

e Fourier Encoding 1 (FE1) This scheme uses Fourier encoding with the standard spip-w
sequence from Figt.4(a). The phase encoding locations are evenly spaced at theidty

rate, and cover the low frequency portionke$pace.

e Fourier Encoding 2 (FE2) Similar to FE1, FE2 uses Fourier encoding with the standard
spin-warp sequence. However, the phase-encoding losati@chosen randomly from the
Nyquist grid according to a discretized Gaussian distidoutentered at low-frequendy
space. This type of variable-density random sampling sehgenforms empirically better
than samplindg-space uniformly at random, and is consistent with both tiee gnowledge
that the typical images seen in MRI have energy concentrdtemvafrequencies and the

existing CS-MRI literature420,500, 635 .

4.2.1 Experiments

The three different encoding schemes were implemented oflaTL magnet system (Oxford
Instruments, Abingdon, UK) interfaced with a Unity cons@arian, Palo Alto, CA, USA). The

flip angle for FE1 and FE2 encoding and the root mean squararfgfe for random encoding was
5°, with an RF pulse duration of 2.5 ms. The field of view was 3 x8 cm, the slice thickness
was 4 mm, and the sequence timing parameters were TE/TR 8@61S. Data was collected for

reconstruction on a 256256 voxel grid using two different test objects: a comparttaephantom
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(@) (b)

Figure 4.5: The fully Fourier-encoded image of the sectibkiwi fruit from a real experiment
is shown in (a). High-SNR images of the compartmental phrardad the brain image used for
simulations are shown in (b) and (c), respectively.

and a section of kiwi fruit. The estimated SNRor full 256x256 Fourier encoded data was
approximately 4 for the compartmental phantom image (shoviig. 4.4(e)), and approximately
6 for the kiwi fruit image (shown in Figd.5a)).

Due to non-ideal experimental conditions (el§y,andB; inhomogeneity), the experimentally
achieved excitation profiles used for random encoding didnmatch exactly with the designed
profiles. As such, the excitation profile of each pulse wabiEted using prescans. Specifically,
a fully-Fourier encoded image..,(z, y) was acquired for each of the spatially-selective excitatio
pulses (one such image is shown in Figi(g-h)). From these images, thg,, parameters for each
excitation profile (recall Eq4(11)) were derived by solving the least squares problem

P/2-1
fs/qm = arg min Z ‘P)/qmpref(Q7p) - pcal(Qap)Fv (412)

gt
" p=—P/2

where p.¢(z,y) IS an image acquired using traditional excitation pulsekis Talibration pro-
cedure is somewhat coarse, since we ignore any potentigh#sno inhomogeneity along the

frequency-encoding direction, though this choice leadsmoroved noise robustness compared

Noise variances were empirically estimated from backgdaegions of fully-sampled Fourier-encoded reference
images that were free of visible artifacts, while signaklewvere computed using the average value of the reference
images in signal-containing regions of interest. The ettt SNR was calculated as the ratio between the signal
level and the noise standard deviation.
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to voxel-by-voxel estimation. In addition, while acqugimlata for this calibration procedure is
time consuming, the procedure could be simplified througkctimapping of thd; transmit field
and more accurate modeling of the excitation physics.

CS reconstructions were performed by solving
minimize TV (peg) subject to ||Epcg — d||§2 <é? (4.13)

wherees was chosen according to an estimate of the expected datadeiedo noise (i.e5? =
Mo?, wheres? is the estimated noise variance avds the number of measurements), &id (p)

is the total variation (TV)$4€ cost functional that penalizes tlie norm of the magnitude of the
image gradient. Penalizing the image gradient is very comfoo CS reconstruction of MR
images (e.g.,§0,362420,608), since medical images are often approximately piecesnseoth,
though it should be noted that the magnitude of the imagagma a nonlinear transformation of
the image and cannot be represented by a mé@triReconstructions were obtained using a version
of Nesterov’s algorithm as described in Re88], with minor modifications to handle complex
images. In particular, Ref3p] approximates the nonsmooth norm as||-||,, =~ ¥(-)/(2§) +

&2, wherey(+) is the differentiable Huber function from Ed3.25. Subsequently, optimization
is performed using Nesterov’s algorithm as described ptsly in Sec.3.7.2 A continuation
approach is used, where the Huber function parangateinitially set large and gradually reduced
towards 0 during the optimization. Whéns large, the cost functional being minimized is nearly
quadratic, and Nesterov’s algorithm converges rapidly.£As 0, the convergence speed of the
algorithm decreases, though the Huber-function appraximaf the/; norm also becomes more
and more accurate.

Instead of directly solving Eq4(13, Ref. [38] solves the Lagrangian form of the problem:

minimize TV (pcg) + A (|Epcs — dHi2 — &%), (4.14)
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where )\ is a Lagrange multiplier that is adjusted to satisfy the ksariuhn-Tucker conditions
for Eq. @.13. The specific implementation of the algorithm describeRéi. [38] directly solves
Eq. @.13 for the special case wheh is a submatrix of a unitary transform. In this case, the
optimal Lagrange multiplier associated with the inegyatibnstraint in Eq.4.13 has a closed
form expression that can be adjusted automatically duiwegiterative procedure3g]. While
the encoding matrix is a submatrix of a unitary transform mi@artesian Fourier encoding is
used,E does not have this property for random encoding. As a resdtmanually adjust\
when reconstructing data acquired with random encodingidst practical cases of interest (i.e.,
when|d|,, > ¢), A should be chosen such thdEp g — dH?2 = £2, which will ensure that the
solution to Eq. 4.14) is equivalent to the solution of Eg4.(L3 [38]. Selection of) to satisfy this
condition is straightforward, since the data fidelity of Swution to Eq. 4.14) is monotonically
decreasing with increasingy Note that thel matrix associated with random encoding has very
similar structure to the encoding matrix used in SENSE parahaging reconstruction5[L9,
except that RF excitation profiles are used in place of recemésensitivity profiles. As a result,
multiplication with E and its conjugate transpose can be performed efficienthgusist Fourier
transforms$19, and these techniques were used to accelerate compgtatithe present context.
Reconstructions using experimental data from the low-SNRpaostmental phantom and the
higher-SNR kiwi fruit are shown in Figd.6and4.7, respectively. With FE1, the CS reconstruction
looks very similar to what would be obtained from convengilbrero-padded reconstruction of
low-frequency data, with accurate contrast informationléav-resolution features, but also with
significant blurring and distortion of the object geomejith FE2, contrast is less accurate than
with FE1, though the high-resolution image features arenstructed better with FE2 than with
FE1 with sufficient data. Results using random encoding atdithat it is possible to use this new
scheme for CS-MRI, and that random encoding yields recorginsowith different characteristics
than what are obtained with more traditional Fourier-basgltemes. The figures suggest that
random RF excitation can encode both high- and low-resaiuti@ge structures reasonably well,

leading to a more balanced trade-off between contrast asuduteon. Notably, some of the high-
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16 Excitations 32 Excitations 64 Excitations

FE1

Figure 4.6: CS-MRI reconstructions from real experimentaadeom the compartmental phan-

tom. Each row represents a different encoding scheme, whit column represents a different
amount of measured data. These reconstructions dementeatCS-MRI with random encod-

ing is feasible, and has different characteristics thameeiEE1 (which samples low-frequency
k-space) or FE2 (which uses randomiZespace phase-encoding locations).
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32 Excitations 64 Excitations

16 Excitations

Figure 4.7: CS-MRI reconstructions of real experimental @@t the section of kiwi fruit. Each
row represents a different encoding scheme, while eachhoohepresents a different amount of
measured data. As before, random encoding enables vigtiatiof both low- and high-resolution
image features with very limited data.
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resolution image geometry is visible using random encodlitg only 16 excitations (e.g., the
geometry of the circular compartments in Figé and some of the fine edge structures in BEig),
while these features are significantly distorted with tHesotwo schemes.

Similar to FE1 and FE2, reconstructions with random enapti@come more accurate with
increasing data. However, different from reconstructiaitl highly-undersampled FE1 and FE2
acquisitions (which can demonstrate significant geometd/a large-scale contrast errors), the
artifacts resulting from very limited random encoding data more similar to the artifacts that
might be observed from image compression (i.e., the lossmirast for smaller image features).
In addition, we should note that random encoding reconstingE also contain some artifacts that
are not found in FE1 or FE2 reconstructions, and which coaldttributed to noise, non-Gaussian

excitation profiles, and/or errors in the calibration of &xeitation profiles.

4.2.2 High-SNR Simulations
Compartmental Phantom

Simulations were also performed to illustrate performanben noise perturbations and calibra-
tion errors are minimal. The first set of simulations usedgh+8NR image of the compartmental
phantom as a gold standard, used nominal Gaussian excipabéles, and incorporated simulated
noise that was significantly weaker than that observed \wihekperimental data (the SNR was 80
with respect to the image from full 25256 Fourier encoded data, which is shown in Big(b)).
Figures4.8 and4.9 show representative results from these simulations. Tipeaved SNR and
nominal excitation profiles have led to improved recondtouncquality for all schemes, but with
random encoding demonstrating a distinct advantage veltdi the other schemes. The relative

errors are shown in Tabke 1, where relative error is defined as

le = Peslle,

Relative Error =
o ||z2

, (4.15)
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Table 4.1: Relative reconstruction errors for the high-SNRusations using the compartmental
phantom.

Relative Error
Encoding Scheme 16 Excitations 32 Excitations 64 Excitatio

FE1 0.249 0.149 0.086

FE2 0.713 0.394 0.265

Random 0.245 0.121 0.053
Random (real profiles) 0.252 0.133 0.065
Random (2D profiles) 0.127 0.079 0.048

and serves as a measure of similarity between the recotesfrimagep., and the gold-standard
imagep. For these simulations, random encoding outperformed®gihand FE2 in relative error
at all investigated undersampling levels. As with the eikpental results, it was observed that the
distribution of errors with random encoding CS-MRI reconstians was more evenly distributed
between low- and high-resolution features than with FE1ER.F

Figure 4.10 shows results from additional random encoding simulati@aktive errors for
these are also shown in Tablel), where the excitation profiles were chosen to either be the
empirically measured excitation profiles from the real expent (“real profiles”) or ideal two-
dimensional profiles (“2D profiles”) as in Eg4.(0. As in the previous simulations, the SNR
with respect to fully-encoded Fourier data was 80, and aeguiency encoding line was acquired
per excitation. The results with the real profiles are vemilsir to the results with the nominal
profiles, and illustrate that it is not necessary to havego#lsf white Gaussiany,,, excitation
profile parameters to have good reconstruction results.r@$dts using 2D profiles in Figt.10
demonstrate significantly improved performance relativel random encoding, and indicate that
even better results could be achieved if high-resolutioltirdimensional RF excitation techniques
become more practical.

The quality of reconstructed images using random encodingatso be affected by errors in
the encoding matriE due to miscalibration of the RF excitation profiles. Theaatianalysis
of Eq. 4.4) whenE contains errors has been presented recently by Herman estth&tr B0Z.

These results indicate that stable and accurate CS recoinstisl can still be guaranteed with
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32 Excitations 64 Excitations

16 Excitations

FE1

Figure 4.8: CS-MRI reconstructions from high-SNR simulagiaf the compartmental phantom.

Each row represents a different encoding scheme, whileadomn represents a different amount
of measured data. Relative to the experimental data, theowredrSNR leads to better reconstruc-
tions for all encoding schemes. Reasonably accurate reootish was obtained using random

encoding with only 32 excitations, while the Fourier encgdschemes required more data to
achieve the same accuracy.

137



64 Excitations

32 Excitations

16 Excitations

Figure 4.9: Error images (i.e., the difference between thld gtandard and the reconstruction)
corresponding to the high-SNR simulation results shownign 48 Each row represents a dif-
ferent encoding scheme, while each column representsaefitf amount of measured data. The

error images have been scaled up by a factor of 3 for improigedhiization.
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16 Excitations 32 Excitations 64 Excitations

Real
Profiles

2D
Profiles

Figure 4.10: CS-MRI reconstructions from high-SNR randonoeimgy simulations of the com-
partmental phantom. The top row shows results using thbreddid excitation profiles from a real
experiment, while the bottom row shows results using ranttemadimensional excitation profiles.
a noisyE, under the assumptions that the true measurement matistiesian appropriate RIP
condition and that the magnitude of the perturbation is ootlarge. In particular, the theoretical
analysis and numerical simulations in Re30] suggest that the stability gb., should scale
linearly with the amount of perturbation to the system mxat8imulation studies were performed
to examine the effects of RF profile miscalibration. High-S8iiga was simulated using standard
1D random encoding with nominal Gaussian RF profiles, and thprBfile parameters,,,, used
for reconstruction were perturbed by Gaussian noise. Restithese simulations are shown in
Fig. 4.11 These results suggest a linear relationship between s&cation error and calibration

error, as might be expected based on the theoretical agdb@s.
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Figure 4.11: Simulated random-encoding reconstructisaltg in the presence of miscalibration
of the RF excitation profiles. (a)-(c) Representative recantbns from 32 excitations in the pres-
ence of increasing levels of calibration error. (d) Theltogégonstruction error (shown averaged
over 5 realizations) is observed to grow linearly with retfie the calibration error.
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Brain Phantom

High-SNR simulations were also performed with the braingmmahown in Fig4.5c). The sim-
ulations in this case had the same noise level as the high<@X#partmental phantom simula-
tions. Representative reconstructions from 96 excitat@mmseither TV or a wavelet (Daubechies-
4) sparsifying transform are shown in Figsl2and4.13 The TV-based reconstructions used
Nesterov’s algorithm, as described previously. Howewer tie wavelet-based reconstructions,
we used the primal-based alternating directions mininomatADM) algorithm as described in
Ref. [667] for solving the constrained optimization problem in Egt.4j. This form of the ADM
algorithm was observed to have faster convergence andrimgingerical stability than Nesterov’s
algorithm for these problems. Representative relativerrgitaoction errors for a range of under-
sampling levels are listed in Tablie2.

The brain image has lower compressibility than the compamtal phantom, and is thus more
challenging for CS-MRI and required a larger amount of dataafmrurate reconstruction. In
addition, the performance advantage (in terms of relativereof random encoding relative to
FE1 and FE2 was less substantial than it was with the compatahphantom simulations. This
was particularly true using the wavelet-based constrainich was significantly less effective than
the TV constraint for all encoding schemes. However, theigpdistributions of error for both
TV and wavelet sparsity are still consistent with what wasested previously. In particular, the
errors for FE1 encoding are concentrated around the higltrgon features of the image, while
there are significant contrast errors for low-resolutiomgm features with FE2 encoding. The
distribution of errors with random encoding is intermediaetween the FE1 and FE2 cases, with
the errors somewhat more uniformly distributed between kmd high-resolution image features.
These characteristics have been observed consistentlytinsbmulations and experiments, and
are important to note when choosing an encoding scheme fartizydar imaging scenario, since

different features will have more or less importance dependn the application.
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Table 4.2: Relative reconstruction errors for the high-ShNRutations using the brain image.
Relative Error

Encoding Scheme
(Sparsifying Transform) 64 Excitations 96 Excitations BE&itations

FE1 (TV) 0.179 0.119 0.076
FE2 (TV) 0.184 0.113 0.074
Random (TV) 0.154 0.090 0.055
FE1 (wavelet) 0.228 0.154 0.117
FE2 (wavelet) 0.330 0.191 0.133
Random (wavelet) 0.251 0.158 0.099

Random

Figure 4.12: Simulated CS-MRI reconstructions of the congibés brain image from 96 exci-
tations, with a TV penalty. The top row shows the reconstonstthemselves, while the bottom
row shows the differences (scaled up by a factor of 6) betweemeconstructions and the gold

standard.
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Random

Figure 4.13: Simulated CS-MRI reconstructions of the congibéss brain image from 96 excita-
tions, with a Daubechies-4 wavelet penalty. The top row shthe reconstructions themselves,
while the bottom row shows the differences (scaled up bytafad 6) between the reconstructions

and the gold standard.
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4.2.3 Monte Carlo Simulations

Monte Carlo simulations were also performed to study thensiraction and noise properties of
random encoding relative to FE1 and FE2. In these simulsiticgtonstructions were performed
using an image with a sparse gradient (the Shepp-Logang@haaind an image with a compress-
ible gradient (the MR brain image shown in Fig5(c)). Simulations were performed 50 times
for each combination of six data undersampling levels (8,32 64, 128, and 256 excitations),
the three different encoding schemes (FE1, FE2, and randoodeng), and seven different noise
levels (SNRs ranging from 1 to 80 with respect to full 2586 Fourier encoding). The random
elements of the simulation (i.e., the sampling locatiom$-62 encoding, the excitation profiles for
random encoding, and the noise) were different for each frsaimprove the computational speed
for these 12,600 reconstructions, each reconstructiorermad of a simplified one-dimensional
TV penalty that only penalized thig norm of the difference between adjacent voxel values along
the phase-encoding dimension. Since the frequency ergaiimension was fully sampled, this
modified TV penalty means that the optimal two-dimensiort#>2256 CS reconstruction could
be performed using 256 independent smaller one-dimernisi@@aeconstructions, one for each
line of the image. This simplification allows reconstruaosao be performed much more rapidly
than if standard TV was used, and additionally means thaEth@atrix for each subproblem has
the ideal “universal” distribution. To solve these one-dimsional CS problems, we used the CVX
software package by Grant, Boyd, and Y&t f://www.stanford.edu/ ~boyd/cvx/ ).
Results from the Monte Carlo simulations using the brain imegkthe sparse Shepp-Logan
phantom are shown in Figd.14and4.15 respectively. Images are generally more compressible
using a two-dimensional transform rather than a one-dimaattransform, leading to slightly
lower performance for these simulations compared to thodlee previous subsection. However,
the relative performance characteristics of the diffemmtoding schemes with one-dimensional
sparsity constraints are consistent with the behaviorrebdewith two-dimensional constraints.

For both images in the Monte Carlo simulations, the relativeralecreases as the amount of ac-
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guired data increases, and FE1 encoding was generallyisufzeboth FE2 and random encoding
in cases with very limited data or with high levels of nois&2Fencoding consistently outperforms
FE1 encoding with high-SNR data when the number of measureneelarge. Random encoding
can outperform both FE1 and FE2 encoding, though this ontpiecwith high-SNR data, and
the advantage of random encoding over the Fourier-basesireshdisappears as the number of
measurement&d/ becomes comparable to the number of voxXélOne way of understanding this
phenomenon is to consider the case of fully-sampled dataXi. = N) with standard reconstruc-
tion, where the reconstructed image is obtainegpby E~'d. In this case, the discrete Fourier
transform (DFT) matrix is unitary, which means that the edis the data will not be amplified
by E~. In contrast, fully-sampled random encoding matrices getherally have worse condition
numbers than the DFT matri293, resulting in more significant noise amplification.

Similar Monte Carlo simulations imposing a one-dimensiobalibechies-4 wavelet-based
sparsity constraint are shown in Figsl6and4.17, and have similar characteristics to the one-
dimensional TV-based simulations. Notably, the regimesviaich random encoding outperforms
the Fourier-based schemes (in terms of relative error) iffiereht for the Shepp-Logan phantom
compared to the brain image, and are also different for r@iffesparsifying transforms (i.e., the
one-dimensional TV and wavelet transforms and the two-dsimal transforms considered in
the previous subsection). This further suggests that tbeetbetween the use of random encod-
ing versus a Fourier encoding scheme should be made cgrbaded on the constraints of each

application.

4.3 Discussion

4.3.1 Performance Guarantees

The use of random encoding in this work was motivated by tsérel¢o improve restricted isom-

etry constants and improve the theoretical characteoizaif CS-MRI reconstruction. As men-

145



8 Excitations 16 Excitations
10° 7 10° T
A A
g A
g & &
S S
fin} fin}
210 L0
= =
[0] [0}
o o
—a—FE1
—A—FE2
—8— Random
0 20 40 60 80 0 20 40 60 80
SNR SNR
64 Excitations 128 Excitations
10° 10°
S s
fin} A fin}
20" 2
= =
Q [0}
o o
0 20 60 80 0 20 60 80

40 40
SNR SNR

Relative Error

Relative Error

32 Excitations

20 60

40
SNR

256 Excitations

80

20 60

40
SNR

80

Figure 4.14: Plots showing the median relative error as ation of SNR from the Monte Carlo

simulations with the brain image and TV-based sparsity tamgs. In all cases, the relative error
decreases as the amount of acquired data increases. FElirgne@as generally superior in cases
with very limited data or with high levels of noise. Howevier, moderate noise and sufficient data
acquisition, random encoding performed better than therdatho schemes, and FE2 outperforms
FE1. For fully-encoded data, the SNR efficiency of the Fawsahemes allows them to dominate

the random encoding scheme.
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Figure 4.15: Plots showing the median relative error as atfom of SNR from the Monte Carlo
simulations with the Shepp-Logan phantom and TV-basedsgpaonstraints. The trends are
similar to those observed for the compressible brain imtdgrigh for the same number of mea-
surements, smaller relative error is generally achieved this sparse image. Notably, the regime
for which random encoding outperforms the Fourier-baséeémses is different than it was with

the brain image.
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Figure 4.16: Plots showing the median relative error as atfom of SNR from the Monte Carlo
simulations with the brain image and wavelet-based spyassitstraints.

148



8 Excitations 16 Excitations 32 Excitations

10° mte o 10°h =2 ‘ ; 10°E g ; ; J
£ 107 210" 2 10"
w w w
[0 o [0
2 2 2
kS| 8 k5|
[} (o] [}
I o I
107 107 107
—a—FE1
—A-FE2
—8—Random
0 20 40 60 8C 0 20 40 60 80 0 20 40 60 80
SNR SNR SNR
64 Excitations 128 Excitations 256 Excitations
: 10° g ; 10° g ; ;
S s S
i i i
[} (o] [}
2 2 2
® ® s
[ [0] [
o o o
10°
0 20 40 60 8C 0 20 40 60 80 0 20 40 60 80
SNR SNR SNR

Figure 4.17: Plots showing the median relative error as atfom of SNR from the Monte Carlo
simulations with the Shepp-Logan phantom and waveletébggarsity constraints.
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tioned in the introduction, it is generally computatiogaithfeasible to compute the restricted
isometry constantS. However, it is relatively straightforward to calculate therestricted isome-

try constant for a matrix using Eq. 4.6) with
o = miin H(szi and [ = max ||q)l-]|§2 , (4.16)

where the vectorep, are the columns ob.

Besides RIPs, there are also incoherence conditionB tivat can guarantee good CS perfor-
mance and are significantly easier to compdtk 104,107,181, 182. While these incoherence-
based guarantees are generally weaker than RIP-based tgestahey have been used previously
in the design of CS-MRI encoding schemé2()] and in other contextslP5. For example, Lustig
et al. [42(] suggested that the maximum of ttransform point spread functioffPSF) be used
to characterize the incoherence of a sampling scheme, wotle mcoherent sampling schemes

characterized as better for CS reconstruction. The TPSFbkderim

b; b,
pille, flbsl,,

TPSF {i;j} = (4.17)
and is somewhat representative of the level of ambiguitweenh theith and;th transform coeffi-
cients. Ideally, the TPSF should be small whiea j. The maximum of the TPSF is equal to the

mutual incoherencg:

p = max |[TPSF {i;j}| (4.18)
i#j

which can be used to generate another set of CS performancantess 104, 181, 182. For

example, if|lcl|, < = + 1) and if the columns ofP are normalized to unit length, then the
ple, if]| HEO i(l/u 1) and if th I P lized t t length, then th

5Currently, the only known way to compude coefficients is to enumerate and test the singular valueseo$ét
of all matrices formed by selectingcolumns of®. This procedure is not practical even for small problems, ttu
the combinatorial nature of the computation. Several pralcprocedures have been proposed to place bounds on
restricted isometry constants (and related computaligitgttactable performance guarantees for CS) using &bari
of different approacheslps 156 185 347, 390 494]. While such approaches are significantly easier than direct
computation of,, the resulting optimization problems can still be quitelkdrging to compute for problem sizes of
interest.
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Table 4.3: Representative restricted isometry constants and mutual incohergnealues for
different encoding schemes, different amounts of acquiled, and different image grid sizes.
Calculations were performed using a Daubechies-4 wave$es.ba

Grid Encoding 01 14

Size Scheme | 32 Excitations 64 Excitations 32 Excitations 64 Excitations

FE1 0.9996 0.9876 0.9005 0.7833

256x 256 FE2 0.7636 0.7093 0.7147 0.6665

Random 0.5070 0.3567 0.5594 0.4179

FE1 0.9874 0.7706 0.7840 0.7425

128x128 FE2 0.2655 0.0847 0.6201 0.3612

Random 0.4592 0.4129 0.5619 0.3635

solution to Eq. 4.4) is guaranteed to satisfy (see Thm. 3.1 in R&87)

A 2 462
[€cs — CHZQ < )
1= (4]lefl, — 1)

(4.19)

where||x||,, is defined as the number of non-zero entries.of

Table 4.3 shows representative values &fand . for the three encoding schemes we have
considered and using® matrix corresponding to a Daubechies-4 wavelet transfdfaues are
shown for reconstruction of both2a6 x 256 image and d28 x 128 image. For the56 x 256 case,
bothd, andy are smaller for random encoding than for FE1 and FE2. Howeévsialso important
to note thab, is never less thaf.307 for any encoding scheme, and only is only less thadf34
for random encoding with 64 frequency encoding lines. Sihiealways true thad, > §, when
t > s, this implies that the current RIP-based guarantees for Cidrp@nce cannot be applied
to the other measurement matrices, even for signals tha&t dialy one non-zero entry. Similar
to what was observed withy, . is also smallest for random encoding at this image resalutio
However, the characterization given by E4.19 can only be applied for non-zero vecterashen
u < 1/3, so the observegd values give no useful guarantees for any of the encodingnsebe
Despite this, CS empirically works much better than what be®tetical bounds might suggest,
and it is promising that random encoding yields the smafieandy values.

It is also important to note that the good theoretical progerfor “universal” encoding are
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somewhat dependent on the problem size, with a higher pildpadd good RIPs asM and N
grow large [L0§. We have observed that the superiority of thendd, values for random encoding
is also dependent on the problem size. For example, wittBax 128 image, we have observed
that FE2 has consistently bettgrvalues relative to random encoding, which is the oppositaef
behavior observed withh6 x 256 images. However, it is observed thatloes not follow the same
trend asy; for this 128 x 128 case, and that can still be smaller for random encoding than for

FE2 (cf. Table4.3).

4.3.2 Non-Cartesian Acquisitions and Multidimensional Undersamplig

For both Fourier and random encoding, we have focused on 2i2<iank-space sampling pat-
terns with undersampling along a single dimension to keepdibcussion as short and simple
as possible. In practice, however, several CS-MRI studies Baewn good results when using
non-Cartesian Fourier sampling patterns and/or multidsieeral undersampling schemes (e.g.,
Refs. [L1, 60,228 317,350 362 397,420,421,557,568 608 668). We note that non-Cartesian
and multidimensionally-undersampled forms of random dirgpare also possible, though there
are several ways of implementing such schemes. For examphaye approach to non-Cartesian
random encoding would be to maintain the same 1D spatiallyetive excitation scheme as in
Section4.1.2 but replace standard frequency encoding with a non-Cartegiadout. A more
complicated implementation could change the orientatfddFoencoding for each excitation pulse
in combination with a non-Cartesian readout. Preliminamysations using both of these schemes
with Fourier encoding along radial lines indicate furtherfprmance improvement&75, and an
illustrative example is shown in Fig.18 However, a detailed investigation of multidimensional

encoding schemes is left for future work.
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(a) Radial Fourier encoding. Relative error = 0.078. (b) Radial random encoding. Relative error = 0.074

Figure 4.18: TV-based reconstructions (left) and errorgesx(right) of the brain image using sim-
ulated non-Cartesian data acquisition strategies. (a) Rediaier encoding with 64 excitations.
(b) Radial random encoding (both the frequency encoding ane@mieding orientations were
rotated) with 64 excitations. Error images are shown scapely a factor of 10. High-quality re-
constructions can be obtained with significantly fewer &twns when non-Cartesian trajectories
are used for data acquisition.

4.3.3 Other Considerations

A number of extensions to this work are possible. Some of taetjgal limitations of the proposed
approach are specific to the use of selective RF excitatiochae@e non-Fourier encoding. In
particular, it can be difficult to achieve high-resolutionultiRdimensional RF encoding pulses,
some of the flexibility in the choice of sequence timings aigldhgles is limited by the need to
avoid disrupting steady-state behavior, and it is necgdsatalibrate the excitation pulses. One
approach to overcoming these limitations is to use otherFumier encoding mechanisms in
place of or in addition to RF-based encoding. Initial workrgjdhese lines includes the use of
a multi-channel array of receiver coils with randomizedssrity profiles [566 and the use of
nonlinear encoding gradientsg3 649.

Another limitation of current compressed sensing theotlyas the spatial resolution and noise
characteristics of the reconstruction are difficult to elcéerize theoretically, and having access
to such characterizations is important for interpretingprestructed images and for choosing data
acquisition/reconstruction parameters. While error bauiiee Eqg. @.7) and Eq. 4.19 can be
derived when the measurement operator satisfies certaimematical properties, good fidelity

with respect to the&,-norm does not necessarily imply good visual fideligd@. In addition,
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these bounds provide no information about how the errorssiduted spatially (e.g., we do not
have easy characterizations of resolution in terms of thmtyspread functions or spatial response
functions described for linear reconstruction in Chag@eor about the statistical distribution of
the reconstructed image with respect to the noise distoibut

Approximate resolution characterizations for generalinear image reconstruction problems
(outside of the context of CS reconstruction) have been etiuempirically and theoretically by
a number of authors3[213 524,587,588, usually by studying how the reconstruction changes
when a small localized image feature is added to a gold-atdrichage. These studies indicate that
the resolution characteristics in nonlinear reconstanctiroblems are generally spatially-variant
and highly data-dependent. Our preliminary experienceshasn that this is also the case for CS
reconstruction, both with and without random encoding. Esv, many of the fast approximate
resolution characterization methods describedj213 524, 587,588 are not applicable to CS
reconstruction, due to the fact that tRematrix in CS is underdetermined and thenorm is not
differentiable at the origin.

Noise characterizations for CS reconstruction can be oddaby brute-force Monte Carlo
simulation methods, where the same image is reconstrueteshtedly under different noise re-
alizations. However, due to the time consuming nature of @8ngruction, this kind of ap-
proach is generally not computationally practical for reatonstruction problems. Approxi-
mate fast noise characterizations for general nonlineeon®ructions have also been studied
[8,208 211,524,588. However, as with the previously described fast resotutibaracterization
methods, these methods cannot be applied to CS reconstruti®to the non-differentiability
of the cost functional and/or the underdetermined naturdn@E matrix. As a result, fast and
easy characterization of the resolution and noise charsiite of CS-MRI remain important open
problems.

A final open problem relates to the issue of choosing an apitepmage discretization for
CS-MRI reconstruction. While real MRI images are continuougfiens, this chapter made use

of the finite-dimensional voxel-based image model desdribeeq. .30 so that CS theory and
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algorithms for finite-dimensional discrete inverse praidecould be used in the MR context. How-
ever, this choice also introduces modeling errors. Whileeling errors can often be characterized
easily for linear reconstruction methods where point-ggifenctions or spatial-response functions
can be derived (cf. Chapt8), these modeling errors could be more pernicious for theimear
reconstruction schemes typical of CS-MRI. In this contextdheice of the number of voxel¥
that are used in the image discretization could be an impoitaue. Frequently in MR, the choice
of N is made based on thespace coverage of the data — for example, ifkfgpace samples all
fall within a region defined by a 6464 Nyquist-rate grid, the reconstruction is often perfadme
using a 6464 voxel grid. This choice generally leads to smaller probkzes and faster com-
putation. However, an alternative approach would be tonsitact with a largeV (i.e., a very
high-resolution voxel grid); this choice might seem inugty better than the previous choice,
since the discrete approximation of the continuous integgraation could be more accurate. How-
ever, some theoretical and empirical analysis has shovimitja-resolution discretizations might
not actually be able to correct modeling errot8§, and that asV grows large, the image prior
and/or the reconstructed image do not always converge tefalusnit [384]. Figure4.19shows

a simulation that illustrates some of the complex trads-wifselecting the voxel grid size in CS-
MRI. In practice, virtually all existing empirical evaluahs of CS-MRI algorithms are guilty of
what is known as an “inverse crime” — using a finite-dimenalomage as the gold standard for
comparison when solving a discretely-formulated invenssdblem, even though the true images
encountered in practical applications will be infinite dm®nal B52. While the results of these
“criminal” experiments are still insightful, the charagstics of CS-MRI reconstruction in the

presence of image modeling error are still not completetyeustood.

4.4 Conclusion and Summary

This chapter introduced a random encoding scheme for CS-MRlacing traditional phase en-

coding with RF encoding using randomized excitation profiledgs random scheme is conceptu-
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(a) Gold Standard Image (b) TV Reconstruction)V = 64 x 64

4

(c) TV ReconstructionN = 256 x 256  (d) TV Reconstruction)V.= 512 x 512

Figure 4.19: TV-based reconstructions of the Shepp-Lodramiom with differentV. Simulated
data was generated on ax322 Nyquist-rate grid ifk-space using the analytic form of the Fourier
transform for the Shepp-Logan phantoA®f. As IV increases, the image model becomes more
similar to that of a continuous image. However, while somagmfeatures are reconstructed more
realistically for largerV, ringing artifacts also become more and more apparent agrithesize
increases. The presence of ringing artifacts illustrdtasthe TV-based reconstruction is not able
to accurately extrapolate the high-frequetkegpace information from only low-resolution data.
As aresult, while largelN leads to better modeling of the real imaging process, it iesnanclear
how N should be chosen to yield good performance in practical raxeats.
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ally similar to the “universal” encoding schemes suggestethe CS literature, and simulations
and experiments reveal that it has the potential to outparfeourier-based schemes in certain
high-SNR scenarios. However, our study also indicatesttimtandom encoding scheme fails
to satisfy the theoretical sufficient conditions for stabtel accurate CS reconstruction in many
scenarios of interest. Therefore, there is still no gertbedretical performance guarantee for CS-
MRI, with or without random encoding. As a result, the praatigtility of CS methodology for

MRI should be evaluated carefully for each application.
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Chapter 5

Low-Rank Matrix Recovery for
Spatiotemporal Imaging

The reconstruction schemes considered in the previougeaisawere developed for contexts in
which the image itself did not change significantly during tourse of the experiment. In this
chapter, we consider the reconstruction of spatiotemporagesy (x, t) that change over time.
Such experiments have a wide variety of applications, olioly dynamic cardiac imagin@L7],
dynamic contrast-enhanced (DCE) imagirigt], 373, interventional imaging 48], and fMRI
[98].

In the context of Fourier imaging, spatiotemporal data &itjon can be modeled a§6$3

s (kp, t,) = /Qp (x,t,) exp (—i27k, - x) dx + 1, (5.1)

forp = 1,2,..., P, wheres (k,, t,) is the pth measurement sample that takes plack-space
locationk, and timet,, n, is the corresponding noise perturbation, @nds the total number of
sampled data points. In practice, a gideapace location might be sampled at multiple different
times, meaning that the set of poirv[tkp};;1 has repeated elements. As a result, we will intro-
duce a new set af) distinct points{l_<q}qQ:1 representing the set of unique eIements{b,f}f:l.
Similarly, we will introduce a new set a¥/ distinct points{z?m}ff:1 representing the set of unique
elements offt,}; .

For most medical imaging applications, it is commonly assdhatp (x, ¢) is a “conventional

support-limited signal,” i.e., that it is spatially suppdimited to a closed and bounded det

1Some of the text and figures in this chapter have been prdyipublished in P68 281,282, and are copyright
of the IEEE. Personal use of this material is permitted. H@mepermission to reprint/republish this material for
advertising or promotional purposes or for creating nevective works for resale or redistribution to servers aslis
or to reuse any copyrighted component of this work in othertkeonust be obtained from the IEEE.
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such thatp (x,t) ~ 0 for x ¢ Q (cf. Sec.2.2), and that it is temporally bandlimited such that

p(x,f)=~0for|f| > fmax, Where

5%, f) = / p (%, 1) exp (—27 ft) dt, (5.2)

and f..x IS a finite constant. Similar to the case for static imaginfy @ec.2.2), this spatial-
spectral support-limited model means that dynamic imagest) can be reconstructed from
Nyquist-rate samples acquired in the domain.

For many applications, it is desirable to reconstrp¢k, ¢) with high spatial and temporal
resolution. However, as discussed in S&d, MR spatial encoding is a relatively slow process
due to physical and physiological constraints. While fastiging sequences and parallel imaging
technology can enable high-resolution two-dimensionagenformation from data acquired in
less than one second, many interesting physiological psase(e.g., human cardiac moti@6§)
occur over significantly shorter time scales, and furtheebaration is necessary for these scenar-
ios. As a result, sampling-t space at the Nyquist rate can place practical limits on thesaable
spatiotemporal resolution.

There are many different signal processing approaches#vat been proposed to overcome
Nyquist limits in dynamic MRI applications (e.g., Ref&, 487,92, 143 187, 206, 228 250,
251, 281, 282, 341, 348-350, 357, 373 399 402 405 420,421, 426,428 454, 482,501, 503 516,
526,540 559 569 571,610,612 615 619,622 624,664,675 676 and their references). Due to
the relatively high SNR in many dynamic imaging scenariggrse-sampling approaches have
featured prominently in the literature. These approachespte both high- and low-frequency
k-space data below the Nyquist rate, and use prior informatoavoid reconstruction artifacts
due to undersampling. Sliding window/interpolation/visharing methods187, 373 540,619
make the assumption that certain regions:«fpace change relatively slowly over time, so that
missing data can be accurately interpolated from nearbg-points. Other techniques assume

that the motion of the image between subsequent time paantde accurately predicted, leading
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to a reduced set of parameters that need to be estim20&3(8 349 482 516. Several other
approaches leverage prior information to construct tadaspatial-spectral models of the image,
which similarly simplifies the inverse proble®,p2,357,402426501,526571,610,612. Finally,
there are techniques that make use of constraints on imag#uste derived directly from the data
itself [84, 87, 206, 228 250, 251, 281, 341, 348-350, 399, 405, 420, 421, 428, 454, 503 569, 615,
622 624,664, 675. Many of these techniques use the observation that dynamages often
demonstrate sparse structure in an appropriately-ch@aesform domain 406 228 348-350,
420,421,627 (cf. the discussion of compressed sensing in the previbapter) or demonstrate
“low-rank” structure B4-87,143250,251,281,282,341,399,428 503 559,569 624,664,675,676].”

In this chapter, we will focus on thpartial-separability (PS) model §4-87, 143, 281, 282,
341, 399 559,569,664, 675 676, which can be used to capture low-rank structure. Simuar t
the sparsity constraints considered in the previous chatbie use of rank constraints is based
on the idea that spatiotemporal images frequently haveiderably more structure than being
support-limited. In particular, low-rank structure refd¢o the fact that the temporal behavior of
p(x,t) at different spatial locations is often highly correlatéddeed, the correlation is often so
strong that we can observe approximate linear dependetat®nships inany set of functions
of the form{p(x,, t)}f:1 for relatively small values of. [399. Equivalently, low-rank structure
reflects the observation that the temporal variations(f¢) are often approximately limited to a
low-dimensional subspace.

It is interesting to note that this kind of low-dimension#&lusture is not specific to dynamic
MRI. For example, it has been shown that high-quality lowknaepresentations exist for many op-
erators and functions that appear in mathematics and ghysiblems $2,53,456. In addition,
low-rank or approximately low-rank structure is also fregtly found in any high-dimensional
dataset containing interrelated variables. In many cakes;orrelation in such high-dimensional

datasets can be described in terms of a much smaller seteoft l@driables, i.e., unobserved

2Also see Refs.J30,231] for an example of the use of rank constraints for dynamiagjimgoutside of the context
of MRI.
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variables that can still convey the essential features e@fddita B5]. This structure means that
high-dimensional datasets can often be approximated @ssmall number of low-dimensional
subspaces (with significantly fewer degrees of freedomhaut significant loss of information.
Similar to how sparsity has been used for compressing imégesthe previous chapter), the
approximation of high-dimensional data using a lower-disienal subspace has been widely
used for feature extraction and compression in a wide waaéfields [35, 238 345 367, 655.
As a result, the problem of reconstructing approximately-tank signals from limited data has
been considered by a large number of authors from many eifterommunities, including chem-
istry [19], computer vision 96, 160 573 603, systems theoryJ01], and collaborative filtering
(i.e., database-enabled recommendation systems whetagiséservices are recommended to a
user based on ratings from users with similar tasteg)J, 369,538 594, among others. This has
also motivated the recent development of theoretical te$oit low-rank reconstruction methods
(e.g., see Refs1[112-114,118 359,360, 391,392 452 535,53€]), many of which build upon the
earlier CS theory.

Low-rank structure can be captured by the PS-based spaforal image model, which is

given by

Mh
Mh

pe(x,t) = > ue(x)ve(t), (5.3)

/=1 /=1

p(X, t) =

where  is the model-order. In this expression, the (x,t)}._, are separable functions af
andt; i.e., they can be factored as (x,t) = wuy (x) v, (t), where{u, (x)}_, and {v; (t)},_,
are sets of signal dependent spatial and temporal fun¢trespectively. Given this model, the
temporal signal$ p(x, 1t)}f:1 will have linear dependence for any set of poi{1:t$}f:1 if B> L.
The PS model can be viewed as a generalization of the earlMEDnodel for representing
periodic dynamic image<p2), which has the same form as E§.J), but restricted the functions
{ve (-)}fz1 to be complex sinusoids. Allowing general functiohs (-)}le greatly expands the
model class, and the set of PS-representable functionsdemsdihown to be dense in the Hilbert

space of square-integrable spatiotemporal functi8ag |
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While strict partial separability (i.el, = 1) applies only to a “small” set of signals, higher-
order partial separability{ > 1) significantly enhances the representational power of tbeain
and has proven useful in a number of imaging applications. eikample, low-order partially-
separable representations have been used for image anah®or image reconstruction in the
context of dynamic cardiac MRB[7, 642, dynamic MRI and emission tomographic imaging of
contrast kinetics15, 84,198 399, relaxation experimentslpO, 175, diffusion experimentsil,
175,494, fMRI [ 17,350,599 648, and spectroscopic imagin§49, among others.Figures5.1
and5.2illustrate the low-rank characteristics of typical dynamR datasets.

In this chapter, we present a novel rank-constrained m@anmrework for imaging with the PS
model? The proposed method is quite flexible and relies only on tleeafisank constraints; this
is in contrast to previous PS work, which generally made dsggaificant additional constraints
on both data acquisition and image reconstruct®88]. This chapter is organized as follows. In
Sec.5.1, we establish some notation and pose spatiotemporal ine@gastruction in terms of the
recovery of an unknown matrix. In Se&2, we introduce the use of rank constraints, and describe
several different approaches to enhanced image recotstriby leveraging low-rank structure. In
Sec.5.3 we describe a novel algorithm that we have proposed forrbovk-matrix reconstruction:
Incremented Rank PowerFactorization (IRPF). Sediidipresents some application examples for
our proposed formulation, while additional discussionreaded in Sec5.5. Finally, we conclude

and summarize this chapter in Séc.

3Low-rank PS structure has also been exploited in the coofestatic (i.e., non-dynamic) imagind 19 120,427,
678, where the image was modeled as being approximately7pw$iaparable along different spatial dimensions
(e.g.,p(x) =~ ZZLZI e (x) ¢ (y) in the 2D case witkk = [z,y] ). However, typical images are frequently less
separable (i.e., require largerfor accurate representation) along two different spatrakasions than they are using
spatiotemporal separability as in E§.3). As a result, the gains from using rank constraints arenaftere significant
for dynamic imaging applications. Low-rank structure hiae #een used previously for interpolating misskagpace
data [L74. However, the modeling assumptions for this case did nailire PS, instead assuming thaspace was
linearly predictable.

4The review of matrix rank given previously in Sec3will be helpful for understanding the material presented in
this chapter.
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(a) Snapshotimages

(b) Cardiac region of interest from the snapshot images)in (a
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Figure 5.1: Low rank characteristics in cardiac cine imggifa) Three snapshot images from a
30-frame retrospectively-gated cardiac imaging expemineourtesy of Dr. Peter Kellman). (b)
Cardiac region of interest from the snapshot images in (apdatiotemporal image corresponding
to a vertical line passing through the heart. (d) Spatiotaapmage for the optimal rank-8 Eckart-
Young approximation of the spatiotemporal matrix représtgon of this dataset (see Segs3and

5.1 for details). The rank-8 approximation has less than 27%hefdegrees of freedom of the
full-rank model, but still captures the salient featurethaf cardiac motion. (e) The singular value
distribution for this dataset (cf. Se2z.3). The large number of small singular values indicates that
the spatiotemporal data matrix is approximately low-rank.
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(a) Snapshot Images
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(b) Spatiotemporal Profile (c) Rank-5 Approximation (d) Singular Value Distribution

Figure 5.2: Low rank characteristics in DCE breast imagirag.Tlhree snapshot images from an
18-frame imaging experiment. (b) Spatiotemporal imagessmponding to a vertical line passing
through the contrast-enhancing tumor. (c) Spatiotemporage for the optimal rank-5 Eckart-
Young approximation of the spatiotemporal matrix représton of this dataset (see Segs3and
5.1 for details). The rank-5 approximation has less than 28%hefdegrees of freedom of the
full-rank model, but still captures the important charastes of the contrast kinetics. (d) The
singular value distribution for this dataset (cf. S2®). The large number of small singular values
indicates that the spatiotemporal data matrix is approteéipdow-rank.
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5.1 Matrix Recovery

This section establishes additional notation and desstheeformulation of spatiotemporal image
reconstruction as a general matrix-recovery problem. mphkfy the discussion, we will focus on

a finite-dimensional image model (cf. S€c2.3 wherep (x, t) is represented through its samples
on a grid of N spatial locations and/ time points? In this case, the image can be represented by

the N x M Casorati matrix

p(xi,t) - p(x1,tu)
C= , (5.4)

p(XN7£l> P(XNfM)

where we have assumed without loss of generality that thefdehe-points selected for repre-
senting the image is the same as the set of unique samplieg{ﬁmn]‘f:l.

Given the representation of the spatiotemporal image mdaf the Casorati matrix, E¢b (1)
can be written as

s = Z(FC) + 1, (5.5)

wheres is the P x 1 vector of data samples(k,, ,), n is the P x 1 vector of noise sampleg,,
FisaQ x N matrix with entriesF] = exp (—27k, - x,), and= (-) : C¥*" — C" is a linear
sampling operator satisfying (S)], = [S], )., Whereq(p) = {g€[1,...,Q] : k, =k, },
andm (p) ={me[l,...,M]:t,, =t,}.

The matrix recovery problem is to estimate the unknown mattifrom the measurement

vectors.

SAn alternative discretization scheme is presented2Bil[399, in which the data domain (i.ek-t space) is
discretized instead of the image domain. Image-domainetization can facilitate the use of additional constsint
(e.g., spatial regularization), while data-domain diszedion can be more natural (due to the discrete natureeof th
sampling process) and lead to simpler reconstruction ifigns. Many other discretizations are also possible.
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5.1.1 Unconstrained Matrix-Based Reconstruction

Without imposing any additional constraints, the maximukelihood estimator ofC under a
white Gaussian noise model is given by the solution to thedsted linear least-squares problem:

Cy, =arg min |2 (FC) — ng2 : (5.6)

CeCNxM

The least-squares optimality condition for a global mireniis thatC,;, satisfies the normal
equations:

FH=: <E (FCML>> _FHS =, (5.7)

where=* () : C' — C?*M jsthe adjoint of (-) (akin to a zero-filling operation), arfil= =* (s).

Equation 6.7) is separable in the columns 6%, resulting in the expressions:
Fdiag (¢,,) Fe,, = Fs,, (5.8)

form = 1,..., M, where¢,, ands,, are themth columns ofCy, andsS, respectively{¢,,} M,

is the set of) x 1 vectors satisfying¢,,], = 1 when (kg, tm) € {(kp,tp)};;l, and[(,,], = 0
otherwise, andliag (¢,,) is a diagonal matrix with diagonal entries equal to the estof the
vector ¢,,. The necessary and sufficient condition for the uniquenéss smlution is that the
normal matrices in Eq.5(8) are invertible. Note that th&’ x N matrix Ffdiag (¢,,) F cannot
be invertible unlesg¢,,}Y_, has at leastV non-zero elements. As a result, each rowfet
should be sampled at leadt times, meaning that a total of at least\/ samples are needed to

have a well-posed reconstruction problem. As will be shawthe next section, the use of rank

constraints can significantly relax these sampling requens.
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5.2 Low-Rank Matrix Recovery

5.2.1 Rank-Constrained Matrix Recovery with the PS Model

A consequence of using thgh-order PS model, as introduced at the beginning of thiptena

M
m=1?

is that for any sets of spatial Iocatim{nxn}fz\[:1 and time points{¢,, } the Casorati matrix in
Eqg. (6.4) has at most rank [399. This can be easily understood by using the modepfo, ¢)

in Eq. 6.3) to decompos€ as the sum of. rank-1 matrices:

Uy (Xl)

C =

{W(t_ﬁ R AGTIRE (5.9)
(=

1 we (Xn)
This low-rank structure implies that use of tihéh-order PS model can considerably reduce
sampling requirements. In particular, & x M complex matrix of rankL. has N M entries
(specified by2N M real numbers), but as the SVD illustrates (cf. S&6), it has significantly
fewer degrees of freedom. In particular, there Areeal-valued degrees of freedom associated
with the singular values themselves, there are at ma&t — L? degrees of freedom for the
columns ofP associated with non-zero singular vallemnd there are at mogtV/L — L? — L
degrees of freedom for the columns@fassociated with non-zero singular valiess a result,
a rank<{. matrix only has up t@ (N + M — L) L real-valued degrees of freedom. Thus, as few

asL (M + N — L) complex-valued samples could suffice for reconstructidricivwould lead to

%Note that there ar&/ L degrees of freedom for each of the real and imaginary pai dhis number is reduced
because of constraints. In particular, there Areonstraints on the magnitudes of the fifsttolumns ofP, and

2
freedom.
"The computation of the number of degrees of freedo®aé similar to the computation fdP. However, unlike
the case foP?, we apply L additional constraints to control the phase of thalifferent columns ofQ (i.e., we
force the first non-zero entry of eaefa to be real and nonnegative). This is necessary becausey@eanf scalars

2 ( L ) orthogonality constraints. As a result, there are at B0&L. — L (L — 1) — L = 2N L — L? degrees of

L

{ag}ZL:1 with |as| = 1, the sets of vector%ipg} and{a}‘qg}éﬂ1 will be orthonormal if{pg},f:1 and{qg}fz1 are
=1 -

orthonormal, and;?pgagqf = p.ql!. Controlling the phase of the columns @feliminates this problem of having

non-unique representation pfq’’. Combining terms, there are atm@st/L — L (L — 1) —2L =2ML — L* — L

degrees of freedom.
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considerable savings over thé)M samples required without the PS constraint, particulatgmv

L is small relative taV and M. The constrained analog to E.®) is

Cps =arg min_[|Z(FC) —s|7,. (5.10)
rank(C)<L
While this optimization problem looks very similar to E&.), the nonlinearity of the rank con-
straint means that it is considerably more difficult to sdlvan a set of decoupled linear least-
squares problems.

The problem formulation given in Eg5 (L0 will be the main focus of the rest of this chapter.
However, before discussing this problem further, we wiitfreview some other existing problem
formulations for the recovery of low-rank matrices fromilied data. While the PS-based recon-
struction in Eg. $.10 makes use of explicit rank constraints whdrés assumed to be known,
there also exist matrix recovery formulations where lowkrenatrices are reconstructed from lim-
ited measurements using softer constraints. For the sakerddrality, we will describe these
alternative formulations with our previous MR-specific dat@asurement operator replaced by an
arbitrary linear data-measurement operaor CV*™ — CP. The data acquisition model from
Eg. 6.5 can be obtained as the special case whe(€) = = (FC).

One alternative to Eq5(10 is the affine rank-minimization probler2()1, 535:

C=arg min rank(C), (5.11)
CecNXAI
JA(C) s, <

wheree represents a noise tolerance. This formulation is verylaimm that of Eq. $.10), with
the main difference being that explicit constraints havétesthfrom the rank of the reconstructed
matrix to the data consistency of the low-rank solution. Assult of this similarity, algorithms
to solve one of these problems can also be used to solve tee oftor example, noting that
the optimal cost function value for Eds.(L0) is monotonically decreasing ih, the solution to

Eq. (6.11) can be achieved by solving Ec. (0 for increasing values at until [|A(C) —s|,, <
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e. Similarly, a solution to Eq.5.10 can be solved by adjustingin Eq. (.11 until the desired
rank constraint is achieved. It should be noted that affin&-rainimization is known to be NP-
hard B35.

Another alternative to Eq5(10) is based on regularizatioi,[202 203 250,427,535:

C=arg min [lA(C)—s[; +\R(C), (5.12)

CeCNxM

where R (-) is a regularization functional that favors matrices witlwIcank, and\ is a regu-
larization parameter. Choices &f(-) that have been used previously include the nuclear norm
(NN) (Rxn (C) = >, 04, Whereo; are the singular values dof) [535, the log-determinant
functional Riogaet (C) = >, In(0; +J), whered is a small constant)2D3, and the Schatten
p-norm (Rxx (C) = >, oF) with 0 < p < 1[250,427). Other reasonable choices could include
information-theoretic model selection criteria such as Atkaike Information Criterion (AIC) or
Bayesian Information Criterion (BIC)9[7,381,591], which have been previously proposed in the
context of sparsity-based reconstructi@s]|

The NN-based regularization scheme is of particular istefel 3 535 672. The NN is the
tightest convex relaxation of matrix rank, in just the sameywhat the/;-norm is the tightest
convex relaxation of thé)-norm in the context of sparse-vector recovery . Due to convexity,
problems involving the NN can be solved globally using edfitialgorithms 102,247,414, 423,
446,535607. And, similar to/;-minimization, the solution using NN minimization (NNM)che
proven to be equivalent to the solution to Eg (1) under appropriate constraints dnC, A, ands.
The Schattep-norm and the log-determinant functional are nonconveaxagions of matrix rank.
As a result, achieving global optimization with these fumaéls is nontrivial. However, similar
to the discussion of sparse-vector reconstruction fronpteeious chapter, the use of nonconvex
functionals can lead to meaningful improvements in sangpi@guirements and/or reconstruction

quality.
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(@) (b)

Figure 5.3: lllustrations of the special sampling schen@ssitlered in Secs.2.2 Red matrix
elements are sampled ¥/(-). (a) Full sampling. (b) Specialized undersampling with akm
number of fully-sampled “navigator”-rows. (c) General enshmpling.

5.2.2 Sampling Considerations and Performance Guarantees

An important practical question is whether the various hlank matrix recovery formulations lead
to significant improvements in spatiotemporal data actiarsend image reconstruction. As we
will see, the difficulty of numerical optimization and theestigth of reconstruction performance
guarantees are highly-related to the space sampling pattern. For general linear measurement
operatorsA, theoretical results have been derivdd2-114, 118 359 360, 391, 392, 392 452,
535,536 that provide sufficient conditions ad and C such that certain algorithms for solving
Egs. 6.10-(5.12 and their variations are guaranteed to be successfulehdicient conditions
often require thatl obeys aank-restricted isometry properyRIP), i.e., that| A (C)||,, =~ [|C|| »
for any sufficiently low-rankC.® While computing rRIPs is computationally intractable, it is
known that certain classes of randomized sampling oper&tre good rRIP properties, as long
asP is large enough452 535.

While the rRIP results with general indicate that rank constraints can lead to meaningful
reductions in sampling requirements, additional insigint be gained by analyzing the matrix
recovery problem in the context of common MR-specific dagugsition strategies. We illustrate

three common sampling patterns in Fig3, which we will discuss in detail below.

8The definition of the rRIP is very similar to the definition bt RIP from the previous chapter. In addition, the
performance guarantees for low-rank matrix recovery basetthe rRIP are very similar to the guarantees for sparse
vector recovery based on the RIP. This is not a coinciderineg gshere are many parallels between sparse vector
recovery and low-rank matrix recovery. See RB8% for more detail.
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Full Sampling and F* is a Tight Frame

Under full sampling conditions (i.e5* (= ()) is an identity operator) and assuming tiét is a
tight frame (i.e. FZF = oI, wherea > 0 andl is theQ x () identity matrix); the optimal solution
to Eq. 6.10) is given byCpg = fIL/a, whereH; is the rankZ Eckart-Young (EY) approximation

of H = FZS. In this case, it can be shown (using Lemma 1.14¢f that Cpg satisfies

|C — Cpsllr < |C—CLlr
—_————

Approximation Error

LN 2 ING el Gl 619
Jra” L||F+ﬁ INL|[||CLlF,

N

V
Noise Error

whereC, andN, are the ranki EY approximations ofC and F7=* (m), respectively. Thus,
when the low-rank approximation is good and the noise is ootidrge, we obtain good perfor-
mance guarantees and a tractable reconstruction algorithmortunately, the requirements on
=(-) andF for this case can only be satisfiedif > NM. Thus, this setting is not useful for
reconstruction from limited data, though it and its vanas have proven useful for denoising,
dimensionality-reduction, and analysis of spatiotemjionaging data (e.g.,41,75,100,222 549,
599 649).

Specialized Undersampling with Navigator Data andF' has a Trivial Null Space

Rather than fully sampling-¢ space as in the previous section, we could instead mangptiiat
data acquisition physics to ensure that matrix recoverybsaachieved with undersampled data
using simple algorithms3P9; this approach has been utilized heavily in the existinditeégature,
and will be referred to as the “basic PS” approach. We conglue case where the sampling
operator= (-) has been designed to fully measure at |dastws of the matrixp = FC. We will

denote this fully-sampled submatrix & as®,,, with the corresponding submatrix bfdenoted

9The assumption tha is a tight frame is reasonable for Cartesian-sampling-sibace, in which cask will
often be proportional to the unitary DFT matrix.
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asF, such that®, = F,,C. In the existing PS literature,, is often called navigator or training

data. We have the following result:

Theorem 5.1. Let C have rankL, assume) = 0, and letF,, and C be such thatb,, has rankL.

Then theL-dimensional row-space @& is equal to thel-dimensional row-space @,,.
This follows from the fundamental theorem of linear algebra

Corollary 5.1. Under the conditions of the previous theordth¢an be represented & = RQ"
for some matri® € CV*L, whereQ is the M x L matrix of right singular vectors from the SVD

of ®,,.

AssumingQ from the corollary is given, the nonlinear optimization ppkem in Eqg. .10 can

be recast in terms of the linear least-squares problem

R =arg min
ReCNxL

2 (FRQ™) — 5|, . (5.14)

The least-squares optimality condition for the solutiofetp (5.14) is given by the normal equa-

tions

FH=: (E (FRQH>> Q- F7="(s)Q = 0. (5.15)

While this problem may seem complicated, the optilRatan be computed efficiently using the
same techniques that will be described for the IRPF algorithBec.5.3. Note also that wheR
is square and full rank, the solution to E§.14) can be equivalently obtained by solving for the
matrix Z = FR, and settingR = F~'Z. After this simplification, Eq.%.14) becomes separable
in the rows ofZ, leading to further improvements in computational efficien

In addition to fast computations, use of this sampling sahbas the advantage that only a very
small number of-t samples are required for reconstruction. In particulaleast. M samples
are required to obtai®,,. In addition, at leasiVL — L? other samples o must be acquired to
ensure that the total number of samples is at least as lattpe asimber of degrees of freedom in

C. This minimum number of additional samples is achievabla. éxample, in the special case
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whereF is an identity matrix.° a unique reconstruction fdk can only be obtained if each row
of ® = C is sampled at least times. Though thed. M samples for®,, already covell. of the
rows of ®, there remainV — L rows of ® that must each be sampled at leagtmes, leading to
NL — L? additional required samples. As a result, the use of a dpmiasampling scheme can
potentially achieve the minimum (N + M — L) required samples.

However, one limitation of this approach is that the rowespaf C is estimated only from a
subset of the measured data. As a result, this procedureittyphssumes tha#,, has the same

dominant temporal subspace@sand neglects the effects of noise and modeling error.

General Undersampling andF is Square and Invertible

WhenF is square and invertible, th&pg obtained from solving Eq.5(10 can equivalently be
obtained by solving

A

_ : = _ qll?
®=arg min [2(2) sllz, » (5.16)
rank(®)<L

and settingCps = F~1®. The problem in Eq.5.16) has recently been termed the low-ranAtrix
completionproblem, and variations of this problem have recently bewtyaed theoretically by
a number of authorslfL3 114,118 359, 360,457. The problem in Eq.%.16) is non-convex, and
the affine rank-minimization variation of Ecp.(L6) is NP-hard $35. Nevertheless, there exist an
ever-increasing number of relaxations and greedy hecsigiiapproximately solve this and related
problems including the alternative formulations in Egs1() and £.12. For some completion
algorithms, there also exist theoretical performance ajuaes for these methodkl3 114,118
359 360 457. Interestingly, it has been shown that for most low-ranknmnas, if the operator
= (-) samples a uniformly random subset of the matrix entriesftheé humber of samples is large
enough, then Eq5(16) is guaranteed to have a unique global minimizer that carbbagreed using
existing fast algorithmsl13 360. In the presence of noise, this leads to performance gtegan

that are weaker but have a similar form to Eg.1Q). Importantly, high-quality guarantees can

10Note that wheneveF is square and invertible, the previously described chahger@blesZ = FR can be used
to formulate an equivalent optimization problem whErean be treated as an identity matrix.
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be obtained when the number of measureméhts as small a$) (LN In N) [360, where we
have assumed < M. This result indicates that PS images can be recovered thplitmm
undersampled-t space data without the use of specially-tailored sampleitems, as long as
appropriate algorithms are used for reconstruction.

Compared to the previous two special cases, the optimizatioblems in Eqs.K.10 and
(5.16 are flexible enough to accommodate very general samplimgnses. In addition, in contrast
to the basic PS procedure, the general matrix completicovexy approach makes use of all of
the measured data to estimate the structure of the low-ratk>aC. The price that is paid for
this increased flexibility is that sampling requirements ao longer as easy to analyze, and that
the optimization problem becomes significantly more coogtéd.

Algorithms for solving Eqgs.%.10 and £.16) have existed in the literature for a long time. One
of the earliest methods is based on alternating least-sgALS) . Early examples include the
use of ALS techniques for nonlinear iterative partial lestgiares matrix factorizations (NIPALS)
[654,655, and low-rank decomposition of tensor-valued data with@ANDECOMP/PARAFAC
model 89,126,293 367, where a tensor is a higher-dimensional generalizaticmrohtrix 367).
Also see Refs.401,224,258 268 294,467,623 for descriptions of related ALS-based low-rank
matrix recovery methods. Other approaches to solving Bgs0Q(and 6.16 include alternating
projection algorithmsZ55, gradient descent and expectation-maximization algor#t [L60, 467,
585, Newton methodsg6, 483, optimization over Grassmann manifolds5B 359, 360, and
projected gradient algorithmg$2. Additionally, as described previously, many algorithexsst
for solving the related problem formulations given in E¢s1() and 6.12). In this work, we will
make use of the IRPF algorithra§g to solve matrix completion/recovery problems. The IRPF

algorithm, which falls into the class of ALS techniques, ésdribed in detail in the next section.

174



5.3 The Incremented Rank PowerFactorization Algorithm

The incremented-rank PowerFactorization (IRPF) algorithas designed to solve problems of
the form

C=arg min_[A(C)-s|,, (5.17)
rank(C)<L

whereA : CM*N — CP is an arbitrary linear operator.
IRPF is an ALS approach that makes use of the factorizafioa UV, with U € CV*% and

V € CE*M to enforce rankk structure implicitly. Subsequently, we seek a local mirmmof

{fj,v}:arg min_[|A(UV) —s||, (5.18)

using an alternating minimization procedure oteandV.

IRPF is similar to and inherits its name from the PowerFaz#tion algorithm introduced by
Hartley and Schaffalitzkyd94,623. Without being aware of PowerFactorization and many of the
other ALS approaches for low-rank matrix recovery proble®iego Hernando and | proposed
and evaluated IRPF as part of a course project for a graduads ol the Fall 2008 semester at
the University of lllinois at Urbana-Champaign. Our oridimame for IRPF was FARM (Fast
Alternating-subsets descent algorithm for Rank-constihidatrix recovery). After viewing our
presentation on FARM, Professor Yi Ma informed us of the P&aetorization algorithm, which
inspired us to rename the algorithm. However, it should dedhthat most of the previous ALS
approaches (including PowerFactorization) assume thexwtaimpletion problem, whergl has
the form of a sub-sampled identity operator. Unlike thesthoets, our formulation of IRPF works
for arbitrary linear operators, and has the flexibility ttvedooth Eqgs.%.10 and £.16). Empirical
results indicate that IRPF is fast, works well for matrix reexy problems, and can give better
solutions than alternatives like NNM and PowerFactor@a{P6d for solving general low-rank

matrix recovery and completion problems.
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5.3.1 Algorithm Description

Let the action of the linear operatgr be expressed as

N M

=3ty (€]

n=1 m=1 (519)

= Z Z G ) (Ul [V,

n=1 m=1 /=1

~

for appropriate constants,,,,, and forp = 1,2, ..., P. In this case, we can define
A(UV) = Agvec (V) = Ayvec (U), (5.20)

wherevec (-) stacks the columns of its matrix argument into a single colwector. The matrices

Ay € CP*EN andAy € CP*ML gre defined as

{AU (p,l+L(m—1)) Zanmp (521)

and

[AV] (s nse—1)) Zanmp tm (5.22)

respectively, fop € {1,..., P}, €{1,...,L},me{l,...,M},andn € {1,...,N}.

PowerFactorization

The general PowerFactorization algorithm iterates byradittngly optimizingU and'V using a
linear least-squares procedure. The earlier NIPALS algori{654, 6559 can be considered as a
special case of PowerFactorization, with= 1. PowerFactorization (modified from Ref294,

623 to permit a general linear operatd runs as follows:

1. Initialize (U® € CNV*E, V(0 ¢ CL*M) ., Set iteration numbey = 0.
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2. Holding V@ fixed, find U+ by solving

Ut — arg mIiJn | Ay vec (U) — bl (5.23)

3. Now fixing U@t find V(1 by solving

VD — arg H{'}Il |Agaiyvee (V) = blf3. (5.24)

4. Incrementy. If ¢ exceeds a maximum number of iterations, if the iteratioagrstte, or
if the relative errof| A (U@V @) —b)|, /|b||, is smaller than a desired threshaldthen

terminate the iterative procedure. Otherwise, repeasstep

Various options exist for choosing the initializatiot/*) € CV*%, V(0 ¢ CL*M) and reasonable
choices include random initialization or an initializatibased on the EY approximation df (s).
Note that for large-scale problems, the EY approximationtmaobtained efficiently by using fast
algorithms for computing a partial SVD (see, e.g., R&07 and the associated source code for
an example of one such partial SVD implementation).

WhenA* A is an identity operator, the PowerFactorization procedueguivalent to the power
method for computing singular value decompositions, wicknown to converge quite rapidly
to the rankL EY approximation ofC [248 294]. Moreover, if the rank ofC is not larger than the
value of L used in the PowerFactorization procedure, then the algontill converge exactly to
C in a single iteration.

The convergence speed and global optimality charactesistiPowerFactorization in the pres-
ence of missing data and/or more gene4adperators have not been rigorously characterized the-
oretically. However, in these cases, the PowerFactoozatigorithm monotonically decreases the
cost function in Eq.%.18), and thus the value of the cost function is guaranteed tearge since it
is bounded below by 0. In general, the estimate& 6t andV (9 themselves are not guaranteed to

converge, particularly in the case when there is sustaer@d deficiency in the linear least-squares
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problems. In particular, it should be noted that the fagtronC = UV is not unique, sinc&€
could equivalently be factored & = (UT) (T'V) for any L x L invertible matrixT. As a
result, Eq. $.18 will never have a unique solution fdd andV, though there can be a unique
solution for the product matriC = UV. Despite this non-uniqueness for the factored problem,
our empirical results show that convergencd®f’ andV(? is not generally an issue when the

number of measurementsis large enough.

Incremented Rank PowerFactorization

For matrix recovery and completion problems, we have obthletter results and faster conver-
gence by using a variation of the general PowerFactorzgtiocedure that uses an incremented-
rank strategy. IRPF starts with= 1, and gradually increments until the desired rank constraint
is achieved. In this case, we initialize the new componeht§ @andV using a rank-1 Power-
Factorization fit to the current residual. Since the lovwarkrfits tend to have better conditioning
as a result of having fewer degrees of freedom, this incréedécontinuation approach helps to

prevent the algorithm from getting stuck in local optimaeTRPF algorithm is given below:
e SetC e CV*M =,
e For/=1,....L

1. Use PowerFactorization to find a rank-1 fit to the curresideal:

{u,v} =arg min (5.25)
ngglx]w

‘A(uv)+A<C) _s

lo

A

R R R . A\Y4
2. If ¢ =1, setU =t andV = v. Otherwise, sell = [ U u } andV =

v
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3. Use PowerFactorization to solve

{Uv} =arg min [LA(UV) s, . (5.26)

Vecéxlw

initializing the algorithm with théJ andV matrices from step 2.
4. SetC =UV.

Since IRPF uses the PowerFactorization procedure diréatiperits all of its theoretical conver-
gence properties.

The main computation in the IRPF procedure is solving thealineast-squares problems
in Egs. 6.23 and 6.249. However, these linear least-squares problems are glaissical (cf.
Eqg. 2.36), and a number of efficient algorithms exist to directly guite solutionsZ4§. How-
ever, we do note that in some cases, the matricgsand Ay will not have full column rank,
meaning that the least-squares solutions to Eq&3(and 6.24) can be non-unique; for example,
if V is initialized to be identically zero, theAy is also identically zero. In these situations, it is
beneficial to choose a least-squares solution that is digtimm the minimum-norm least-squares
solution; in our implementation, we randomly choose a vefitam the linear variety of least
squares solutions.

Significant computational gains can be achieved when weydBpIF to the MR-specific prob-
lemsin Egs.%.10 and 6.16. In the context of Eq.5.10), the least-squares optimality condition

for Vet in Eq. (5.24) of the PowerFactorization procedure is that
(U] Flzs (2 (FUEIVED)) - [UD] " FPE: (s) = 0. (5.27)

Note that this expression has similar form to Eg.7{. As a result, similar to the simplification
from Eq. 6.7) to Eq. 6.9), Eq. 6.27) is separable in the columns &+, This separability
implies that the system matriéig(q+1)AU<q+1> that appears in the normal equations for Eq24)

can be permuted into decoupled block diagonal form, Witk . blocks. This leads to efficient
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computation, either by direct inversion of eathx L block separately, or by using the iterative
conjugate gradient algorithm to solve the sparse system.it€hative conjugate gradient (CG) al-
gorithm for matrix inversion would find optimal solutionssG@ming infinite numerical precision)
after L iterations B05. Similar decoupling exists for Eq5(23 of the PowerFactorization proce-
dure when using the problem formulation in E§.16), or equivalently, the problem formulation
in Egq. (.10 whenF is an identity matrix. Even wheR in Eq. 6.10 is not an identity matrix,
matrix-vector multiplications wittF can often still be computed quickly (e.g., using the FFT for
Fourier-domain observations), meaning that solving B3 using iterative methods like CG

can still be very efficient.

Modified Incremented Rank PowerFactorization for Matrix Comp letion in the presence of

Navigator Information

The previously described IRPF algorithm works well for manytjlems of interest. However, we
have observed that a modified IRPF procedure can help to aax@atirhinima when solving matrix
completion problems with specialized sampling schemessitichude navigator information. As
described previously, the fully sampled navigator row@afan provide strong information about
the dominant temporal subspace for the fully-samdethatrix. However, it is often the case that
the acquired navigator data samples constitute only a gealentage of the tot& measured data
samples. Since standard IRPF seeks to find a low-rank magixdtas data-consistent as possi-
ble, it will frequently happen that the IRPF procedure negle@ata consistency for the navigator
samples in favor of improved data consistency with respethée full dataset. Given sufficient
measured data, this issue is not problematic, and IRPF stilbpns well; however, whe#® is
very small, the IRPF procedure can more easily become trapgedal critical points of the cost
function. Our proposed modification of IRPF leverages thengfrsubspace information that can
be extracted from the navigator data to help IRPF avoid ladttal points and obtain reconstruc-
tions that more closely match with the acquired data. Oup@sed modification of IRPF is given

below, formulated in the context of Ecp.(L6). It will be assumed that we have a total.bilifferent
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fully-sampled navigator rows.
e Setd € CN*M =,
e Fori{=1,...,L

1. Use PowerFactorization to find a rank-1 fit to the curresideal:

{u,v} =arg min
uE(CNXl
VEClX]M

(5.28)

E(uv)+E<<f>> -5

.

A

. . . . Vv
2. If ¢/ =1, setU =uandV = v. Otherwise, selU = { U } andV =

A%
3. Find the data-consistent full-rank matfxthat is as close as possible (in the Frobenius

norm) to the current estimate of the low-rank matrix:

~

B=arg min ||[B-UV
Be(cNXI\J F

=(B)=s (5.29)

— = (s) + UV - =* <E (UV)) .

4. Compute the rank-EY approximation of thé NV + .J) x M matrix , Where
ad,,

« is a positive scalar that is large enough to ensuredht,, ||, >> ||B||r. Let the
EY approximation be written in terms of its SVPXQ, whereP € CN+/)xL and
Q € CM*L have orthonormal columns and € RX*L is a positive-definite diagonal

matrix.

5. SetV = Q¥ and sefU = P, whereP, is the N x L submatrix ofP obtained by

extracting its firstV rows.

181



6. Use PowerFactorization to solve

{UV} —arg min [E(UV)—s|, . (5.30)
UE(CNXZ 2
VG(CZXI\J

initializing the algorithm with théJ andV matrices from step 5.
7. Setd = UV,

The main difference between this algorithm and the preWodsscribed IRPF algorithm is the
inclusion of steps 3-5. These steps are designed to ensatréhthrankL initialization for the
PowerFactorization algorithm in step 6 is relatively datasistent with the navigator rows #,,
while still leveraging estimation results from the presaterations. Data consistency with the
navigator rows will improve with increasing; however, it is important to note that settiag
extremely large could, in practice, lead to significant ntioa errors in the computation of the

SVD.

5.3.2 Comparison to Nuclear Norm Minimization

While IRPF has empirical speed advantages relative to NR®&#[ we will focus here on the dif-
ferences in empirical matrix recovery performance. Thaimetcovery capabilities of IRPF were
compared to those of NNM using two sets of experiments. Ifitbieset of recovery experiments,
the a,,,, coefficients defining linear operatos were generated at random from the Gaussian
distribution, and random low-rank0 x 30 matricesC were generated &8 = M M,, where

the entries oM, € C3**L andMy € CY*3° were also generated from the Gaussian distributed.
Test cases were generated for many different combinatibtiseonumber of measurement3
andrank (C) (assumed to be known), and 10 realizations were computeéafcii( P, L) pair.
Theoretical properties of NNM for Gaussian observationd aratrix completion are discussed
in[113114,118 391,452,535

The second set of recovery experiments was identical to theskt, except that the linear
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(a) Incremented-Rank PowerFactorization (b) Nuclear norm minimization

Figure 5.4: Matrix recovery results for (a) IRPF and (b) NNMiwaussian observations. The
color of each cell corresponds to the empirical recovery, natth white denoting perfect recovery
and black denoting failure in all 10 experiments. The vaitaxis isL(N + M — L)/P, which

is the ratio of the number of degrees of freedom forMarx M rank-L. matrix to the number of
measurements.

operators4 were chosen to correspond to the matrix completion problasgsuringP entries
(selected uniformly at random) frod.

Figure5.4shows the results of the experiment with Gaussian obsensatWhile NNM is able
to successfully recover a large fraction of the low-ranknmuas, IRPF is able to recover a signifi-
cant additional fraction that NNM is unable to recover. ANINM [117,535 536, there appears
to be phase-transition behavior for IRPF with Gaussian mreasents, though the boundary of
this phase transition appears in a different location.

Figure5.5shows the results of the matrix completion experiment. Agdiere is a significant
fraction of matrices that is successfully recovered by IRfaFthat is not recovered by NNM. The
superiority of IRPF over NNM for completion problems is catent with the results obtained
by Dai and Milenkovic 153, in which IRPF also demonstrated advantages over sevdral ot
recently-proposed matrix completion algorithms.

It should be noted for our completion experiment that we oleskta small number of cases
where NNM succeeded while IRPF failed, due to IRPF converging lbcal stationary point of

the cost function. These few cases are easily identifiedowitknowing the trueC, due to a large
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Figure 5.5: Matrix completion results for (a) IRPF and (b) NNWMhe color of each cell corre-
sponds to the empirical recovery rate, as in big.

residual data error. For moderate-size problems, this eagffitiently overcome by performing
IRPF several times with randomly selected initializatiombese results were obtained from rel-
atively small matrices. Preliminary experiments indicit&t an advantage of IRPF over NNM is
maintained for larger matrices, although the asymptoti@bmr is unknown.

While IRPF is more successful at matrix recovery and can cgeviaster than classical Pow-
erFactorization, PowerFactorization alone can also perfurprisingly well given sufficient mea-
surements and appropriately-chodenlo illustrate this, we again generated Gaussian observati
operatorsA for various P values, and randonrf0 x 40 matricesC of rank 8. We tested PF with
this dataset, allowing to range from 1 up to 20. The results of this experiment, ayextaver 10

realizations, are shown in Fi§.6.

5.4 Application Examples

The following subsections present practical examples plyapy the PS model and the IRPF

algorithm to different spatiotemporal imaging scenarios.
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Figure 5.6: Mean relative reconstruction error using P&aetorization for varioué, values. The
true rank is 8. Blue indicates untested cases (the numbegoées-of-freedom exceedét). The
success/failure regimes for NNM and IRPF are indicated waflow and pink lines, respectively.

5.4.1 Real-Time Cardiac Imaging Simulations

In this cardiac imaging example, simulations were perfatmsing a version of the cardiac cine
dataset shown in Fig. 1, which was spatiotemporally warped to emulate a 5 secoeddreathing
experiment in the presence of cardiac arrhythr@iég] with M = 256 different time points. Carte-
sian phase encoding was simulated, with full sampling atbegeadout dimension. Only 1/6th
of the k-t locations were sampled; we acquired 27 fully-sampled rewigrows of® at the center
of k-space as training data, while the remaining rows were ssahiformly at random. The
use of Cartesian sampling with a square, invertblmatrix allowed us to use the matrix comple-
tion formulation of Eq. $.16). For improved computational efficiency, Fourier inversigas first
performed along the readout dimension, and the modified IRg¥ithm for matrix completion
with navigator data was applied to reconstruct the undgpkathphase-encoding dimension in a
spatially-decoupled way. This led to a set2d6 different low-rank matrix reconstruction prob-
lems with N = 200 and M = 256. The reconstruction used = 18, leading to a signal model
with 10% of the degrees of freedom compared to a full-rankgienenodel. The results of this
simulation are shown in Fid.7, illustrating the potential of low-rank constraints forcaterating
this kind of imaging experiment. Other cardiac imaging hessusing the general matrix-recovery

framework can be found ir6[/g.
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(c) Low-Rank Result (d) Low-Resolution Result

Figure 5.7: Low-rank matrix completion results from 1/6fitlee entries of a simulated dynamic
cardiac® matrix. The horizontal axis for all images corresponds,twhile the vertical axis
corresponds to the phase encoding dimension(@a) Gold standard image. (b) Sampling pat-
tern in k-t space. (c) Low-rank reconstruction usifngl18. Low-rank modeling enables high-
guality reconstruction from limited data. (d) Fourier rastruction using a densely-sampled low-
resolution acquisition with the same numbkerof data samples, illustrating the limitations of a
more-conventional approach to data acquisition and réagt®n.
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5.4.2 Diffusion MRI Experiments

In this diffusion MRI example, fully-sampled real data wasg@iced from a fixedex vivohuman
spinal cord sample using a 4.7 T Varian scanner (data prdwgleY. Wang and S.-K. Song at the
Washington University in St. Louis). Data was acquired @6 a 96 Cartesian grid at the Nyquist
rate for a24 mm x 24 mm FOV. Acquisition used a standard spin-echo pulse seguitrat ac-
quires a single phase-encoding line per excitation, witea time of 35 ms and a repetition time
of 2 s. The data was diffusion weighted to enable fitting with Diffusion Basis Spectrum Imag-
ing model p33. In particular, a total of 99 different diffusion-weiglitémages were acquired,
with b-values ranging between 0 and 3,200 sAvand diffusion times o6 = 8 ms andA = 20
ms. Total data acquisition time was approximately 5.3 hours

Diffusion MRI experiments acquire a series of images, whahemage is exposed to dif-
ferent diffusion-encoding gradients. Diffusion imagirendoe treated as spatiotemporal imaging
if the diffusion-encoding dimension is treated as a temlpdiraension. The proposed low-rank
matrix formulation was applied to enable high quality restomction from undersamplédspace
data. In particular, we subsampled the dataset such thatd@nphase encoding lines were ac-
quired per diffusion-encoded image, representing apprately 49% of the fully-sampled data.
For a real experiment, this level of undersampling wouldupedthe total data acquisition time
down to only 2.6 hours, representing a significant improvanreimaging efficiency. Of these 47
phase encoding lines, 32 lines were consistently acquineddch image at the centerlospace,
while the remaining lines were randomly distributed to temaining phase encoding locations.
Results obtained by applying modified IRPF with= 7 to solve Eqg. .16 are shown in Fig5.8.
As can be seen, the proposed low-rank matrix recovery fraeenabled high quality recon-
struction from significantly undersampled data, and couldbée this type of experiment to be

performed significantly faster.
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(a) Full Data (b) 49% Data (c) Error

(d) Full Data (e) 49% Data (f) Error

Figure 5.8: Low-rank matrix completion results frot8% of the entries of a real diffusion-
weighted MRI dataset. (a) One diffusion-weighted image ftbenfully-sampled dataset. (b) The
same diffusion-weighted image after reconstruction uitfef. This particular image was chosen
for display because it was the image with the largest recactsbn error after reconstruction using
the proposed method. (c) Error image (scaled by a factor ébidinproved visualization) for the
reconstruction shown in (b). (d) Spatiotemporal profilete# fully-sampled diffusion-weighted
dataset. The horizontal axis corresponds to differenisiiin-encoding parameters, while the ver-
tical axis corresponds to the phase-encoding dimensigrnSgatiotemporal profile of the IRPF-
based reconstruction. (c) Error image (scaled by a facté6dbr improved visualization) for the
reconstruction shown in (e). These results indicate tretdahky PS model is able to accurately
represent the diffusion contrast of the signal within themeparenchyma, and that IRPF can be
used to significantly accelerate data acquisition.
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5.4.3 DCE Breast Imaging Simulations

In this DCE breast imaging example, an exogenous contrast ejajected into the bloodstream,
and the contrast kinetics are used to localize a tumor anddaanformation regarding its phys-
iological and morphological properties. Fourier data wiasutated from a series of magnitude
images corresponding to 18 different time-points from & BE2E experiment. These 18 frames
were subsequently interpolated onto a sebbf= 52 equally-spaced time points. The simulated
data acquisition assume®a6 x 256 Cartesiark-space sampling grid (i.ely = 256%). The mea-
surement operatat sampled 25% of the entries t uniformly at random. This was augmented
by an additional set of samples chosen to ensure that eacin@wach column of was sampled
at least 10 time$! resulting in a total ok~ 27% of the entries being sampled.

As in the previous examples, matrix recovery was perfornsdguEq. 6.16). Two temporal
frames from a standard IRPF reconstruction witk= 5 are shown in Fig5.9. These results illus-
trate that high-quality PS-based reconstruction is ptesgibm highly-undersampled data without
the use of specialized sampling.

For comparison, reconstruction of this same dataset waspaidormed using a more tradi-

tional compressed sensing approach exploiting the knoarsip of

p(x,f)= /p(x, t)exp (—i2m ft) dt (5.31)

in dynamic MR applications2§. Figure5.10shows reconstructions performed by minimizing
the ¢, norm [117 of 5 (x, f) subject to data-fidelity constraints, assuming a finiteetisional
spatiotemporal image model with Dirac delta voxel funcsi@paced uniformly on a Cartesian
grid in z- f space. While both the IRPF aridreconstructions accurately recover the structure of

the image, thé; reconstruction shows more significant spatially-localizerors.

1IA necessary condition for matrix completion to be well-pbsethis context is that each row and each column is
sampled at leadt times. Sampling more than this will improve the conditianof the problem.
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Gold Standard

Difference Image (x5)

Figure 5.9: Simulated PS-based spatiotemporal reconistinu@.=5) using IRPF with~ 27% of
the full data. The left and right sides of the figure show défeé temporal frames.

5.5 Discussion

5.5.1 Specialized Sampling Versus Random Sampling

The DCE breast imaging example illustrated the potentialsifigi IRPF for randomly-sampled
spatiotemporal images with PS structure, while the caramatdiffusion MRI examples used the
specialized sampling scheme where a number of fully-sainpe/s of the® matrix were ac-
quired. These results show that the proposed low-rank xraitovery framework is very flexible,
and can be used successfully with a range of different sagpatterns. However, it is also
of interest to compare the random-sampling strategy wighsiecial navigated sampling strat-

egy. Simulation-based comparisons between these twoealitfsampling strategies are shown in
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Difference Image (x5)

Figure 5.10: Compressed sensing reconstruction fro27% of the full data. In contrast to IRPF
reconstruction, the reconstruction errors have more gmpanatomically-correlated structure.
Figs.5.11and5.12 These results illustrate that it can be beneficial to aeggeweral fully-sampled
rows of ®. Fully sampling low-frequenck-space can be especially beneficial for realistic data,
due to high signal energy concentration in this area, thaughould also be noted that high-
frequencyk-space data can have higher temporal variabib§].[ However, acquiring too many
fully-sampled rows can degrade reconstruction performmahecause there are fewer samples to
distribute outside®,,. These figures also illustrate that the proposed IRPF methnde sig-
nificantly more flexible than the basic PS method, enabliigggjuality reconstructions across a

range of different acquisition strategies.

5.5.2 Selection of,

One practical issue for EqQ5(17) is the selection of.. If L is chosen too small, the PS model
is not capable of accurately representing the true strecitithe original spatiotemporal image,
leading to significant bias in the final reconstructed ima@e. the other hand, if. is large, the

PS model will have a large number of degrees of freedom. Asutrevhile large£ models can
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Figure 5.11: Relative reconstruction errors for the cardiataset described in Seg.4.1as a
function of the number of observatiod and the number of fully-sampled navigator rows. All
navigator rows were located in the low-frequency regiok-epace, while the remaining samples
were randomly distributed. Relative reconstruction ermeese measured in the Frobenius norm.
For each casd, was set to the value that yielded the smallest reconstruetimr. Black squares
correspond to infeasible acquisition parameter comlonatihat were not tested. (a) Results using
the modified IRPF algorithm. Due to its flexibility, IRPF is aldtegenerate high-quality recon-
structions across a range of different sampling stratedisvever, acquiring a small number of
fully-sampled navigator rows is observed to improve retmesion performance, though it can
be detrimental to acquire too many navigator rows. (b) Resuding the basic PS procedure. In
contrast to the IRPF method, the basic PS procedure is coablgdess flexible. In particular, it
is not possible to use the basic PS procedure when no navig&tanation is available, and the
maximum rankL that can be used for reconstruction is limited by the totahber of acquired
navigator rows.
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Figure 5.12: Relative reconstruction errors for random exipnately low-rank matrices as a func-
tion of the number of observatiorfdand the number of fully-sampled navigator rows. Except for
the choice of matrices, simulation parameters were the sentieose used to generate Figl L
Approximately low-rank matrices were generated using thewing procedure: first, a random
200 x 256 was generated from the Gaussian distribution. Next, SVDpea®rmed on this matrix,
and its singular values were replaced with an exponentg®lyaying set of values. In particular,
we seto;, = exp(—0.35k) for £ = 1,...,200. This exponentially-decaying singular-value spec-
trum ensures that each of the random matrices can be wealbdpmated as a low-rank matrix. (a)
Results using the modified IRPF algorithm. As with the cardatadhe IRPF algorithm is flexible
enough to accommodate a wide range of different sampliagesfies. In some regimes, acquiring
a number of fully-sampled navigators is beneficial. Howguatike the case shown in Fi§.1],
there are also cases where pure random sampling outpertberspecialized navigator-based
sampling. One explanation for this is that, unlike the casedal data, the energy-distribution
for randomly-generated low-rank matrices is not conceéatkaear the center éfspace. (b) Re-
sults using the basic PS procedure. As before, these rasditate that the basic PS procedure is
considerably less flexible than the IRPF-based low-rankirxagcovery approach.
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Figure 5.13: Mean-squared reconstruction error for difiérmodel orders. A4 increases, the
signal model has better capability to represent the trueasideading to fewer signal features
being apparent in the error map. However, this additionaildikty comes at the expense of con-
ditioning, which is reflected by the increasing “noise” campnt of the error maps with increasing
L.

always fit the measured data better than smdllenodels, the model-fitting problem with large
L can be sensitive to noise and be prone to overfitting (i.éerpneting noise perturbations as
actual signal structure). In general model selection noisl, this situation is frequently called the
“bias/variance dilemma.” This issue is illustrated in Figl3for the DCE breast imaging dataset.
A good choice ofL requires a careful balance between the expressive powbeaignal model
and the robustness of the fitting procedure, and our choi¢arothe previous examples was based
on a qualitative assessment of visual reconstruction tyuali

Estimation of the rank of a noisy fully-sampled matrix hagm@reviously investigated by a
number of authors (e.g., Refd.(6150,218288 315368463638 657 and their references), who
frequently made use of techniques from information-theoraodel selection97,259, 381, 383
462,591]. The choice ofL for PS model-fitting with limited data can also be considevétin this
information-theoretic framework. The literature on infation-theoretic model selection provides

a variety of different quantitative metrics for selecting @appropriate model to explain a given
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dataset. In general, these methods favor models that fitataeastcurately, while simultaneously
penalizing models with a large number of degrees of freeddeil-known model selection criteria
include the Akaike Information Criterion (AIC), the Bayesiarfdrmation Criterion (BIC), the
Final Prediction Error (FPE), and the Minimum Descriptiaenigth (MDL). The assumptions and
objectives leading to the derivation of these differertecia are outside the scope of this thesis, and
the interested reader is referred to Re®s, 59,381, 383 462, 591] for more detail. While these
criteria are all different, it is known that, as the numbenwasurement® grows to infinity, AIC
and FPE are asymptotically equivalea?fl] and that BIC and MDL are asymptotically equivalent
in many cases of interes2$9,462]. While various authors prefer different model selectiatetia,
it should be noted that the best-performing model selecatidgeria can vary from application to
application p91].

We performed simulations to evaluate the performance of BIC, and FPE for model se-
lection in matrix completion problems. Assuming obsexwasiaccording to Eq5(5) under white
complex Gaussian noise with unknown variance, the Atl8e AIC with a correction to handle

small sample size9[, 381]) for a rank4. image model is given by

_ - 2 2P

whereK = 2L(N + M — L) + 1, andC is the rankZ optimal solution to Eq.%.10). Under the

AIC. (L) = 2PIn (

same assumptions and variable definitions, the BIC is given by

BIC (L) = 2PIn ( = (Fc) s j ) + Kn(2P), (5.33)
and the FPE is given by
e 2 (14 K/(2P)
FPE(L) = ||= (Fc) -, (W) . (5.34)

In all cases, the optimal choice afwill minimize the respective model selection criterion.
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MDL was not evaluated in the simulations, because the coatipat of MDL requires the
selection of a scheme to measure the joint complexity of Hrampetric model and the measured
data. While there exist several different approaches toritb#sg the stochastic complexity of a
model 362, most of these would be very difficult to compute for the leank matrix recovery
problem!? The literature we have found on the selection of matrix rasikgi MDL [218 463
638 657] generally chooses a simple measure of complexity thasléadn equivalence between
MDL and BIC.

Our simulations were performed using randomly-generatiddnk 128<128 complex Gaus-
sian matrices, whose singular values were replaced witrdtistic singular value distributions.
In particular, the singular value distributions were chosech that, = k=" for k = 1,...,128.
Matrix completion experiments were performed for matridesigned withd = 1, 2, 3, and 4.
Note that higher values ¢f are associated with faster singular value decays, andftinensould
be associated with better approximation using a low-rankirmanodel. The set of observed
matrix entries was chosen uniformly at random, and the numbabservations” was varied be-
tween 20% and 80% of the total number of matrix entries. Siamhs were performed 10 times
(with different random matrices and sampling patterns)efach combination of parameters, and
cumulative results are shown in Figs145.17.

Since the matrices used in this experiment were only apprataly low rank, we would ideally
want the different model selection criteria to choose a rfankvhich the relative reconstruction
error for IRPF was minimized. In practice, this was never et by any of the different model
selection criteria. In addition, it was frequently obsetiteat there were large differences between
the ranks selected by the different criteria, and that tlsenstruction quality using the models
selected by the different criteria depended heavilyjomn particular, model selection using FPE

tended to result in more accurate matrix reconstructionnwheas large, though the FPE results

12For example, one common approach to describing the contyplekihe model requires the computation of the
Fisher information matrix354, 514 for the unknown parameter2%9 462. Computation of the standard Fisher
information matrix requires having an explicit paramesiignal model. However, as far as we are aware, there is no
model with exacth2L(N + M — L) explicit real parameters that can represent an arbitrany-facomplex matrix,
meaning that the computation of the Fisher information ma&rseemingly nontrivial.
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Figure 5.14: Comparison of information-theoretic modééson criteria for matrix completion
problems with different amounts of acquired data. The valug specifying the singular value
distribution was 4. The plots show the reconstruction eusing IRPF as a function of rank
for 10 different trials, in addition to the reconstructiomag as a function of rank for the EY
approximation of the fully-sampled original “gold-stamdamatrix. Also indicated are the ranks
selected by the AIG BIC, and FPE model-selection criteria.
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Figure 5.15: Comparison of information-theoretic modééson criteria for matrix completion
problems with different amounts of acquired data. The valug specifying the singular value
distribution was 3. The plots show the reconstruction eusing IRPF as a function of rank
for 10 different trials, in addition to the reconstructiomag as a function of rank for the EY
approximation of the fully-sampled original “gold-stamdamatrix. Also indicated are the ranks
selected by the AIG BIC, and FPE model-selection criteria.
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Figure 5.16: Comparison of information-theoretic modééson criteria for matrix completion
problems with different amounts of acquired data. The valug specifying the singular value
distribution was 2. The plots show the reconstruction eusing IRPF as a function of rank
for 10 different trials, in addition to the reconstructiomag as a function of rank for the EY
approximation of the fully-sampled original “gold-stamdamatrix. Also indicated are the ranks
selected by the AIG BIC, and FPE model-selection criteria.
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Figure 5.17: Comparison of information-theoretic modééson criteria for matrix completion
problems with different amounts of acquired data. The valug specifying the singular value
distribution was 1. The plots show the reconstruction eusing IRPF as a function of rank
for 10 different trials, in addition to the reconstructiomag as a function of rank for the EY
approximation of the fully-sampled original “gold-stamdamatrix. Also indicated are the ranks
selected by the AIG BIC, and FPE model-selection criteria.
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were very poor whers = 1. This illustrates that it is not necessarily a good idea tg om
these kinds of standard model-selection criteria with@grous empirical testing in the specific
problem context of interest.

Finally, it is also important to note that while the previaisulations judged performance
based on reconstruction accuracy (with error measure@iRribbenius norm), this standard metric
is not always very relevant for practical applicatio8€). For example, revisiting the DCE breast
imaging example in Figs.13 it turns out that the minimum reconstruction error is agbewith
L = 2, despite the fact that this choice fails to capture all ofdigmal dynamics of interest. We
prefer to usel. = 5, since this choice reconstructs local contrast kineticeenfi@ithfully, despite
higher total error. It is also interesting to note that Akhoosed. = 3, BIC choosed. = 1, and
FPE choosed = 10. We conclude that selection éfis complicated, and that the choices made
by statistical model selection criteria are not necessaonhsistent with each other or with our
qualitative preferences. As a result, practical choicé ohust be adapted based on the specific

features and objectives of each imaging scenario.

5.5.3 Other Considerations

One important consideration for image reconstructiongigie PS model is that the raikneeds
to be small enough relative to boffl and N that a constraint onank (C) significantly reduces
the number of degrees of freedom. In practice, this can mesmtore significant accelerations
are possible for large-scale reconstruction problems evtier number of reconstructed time points
M is large. For example, a complex rabknatrix of size256% x 18 has6.6 x 10° real degrees of
freedom and .2 x 10° complex entries, meaning that it would be necessary to saatpbast 25%
of the matrix to have any hope of successful reconstructimgontrast, a complex rankmnatrix
of size256% x 52 still has roughly6.6 x 10° degrees of freedom, but has significantly more (i.e.,
3.4 x 10%) entries, so that accurate reconstruction is conceivaltteomly 10% of the data.

A further consideration is that, in some cases, we know mbeaitaa signal than merely the

subspace in which it lives (e.g., in the case of parametraging experiments, where the observed
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temporal contrast variations are known to obey a parametadel with a small number of un-
knowns). Spatiotemporal reconstruction from limited datéhe presence of a parametric contrast
model has been previously investigated in Re7.4, and a procedure based on PS modeling alone
would generally be relatively inefficient for this scenario

It is also important to keep in mind that, similar to CS recandions, the spatial resolution
and noise characteristics of nonlinear reconstructiosedban matrix recovery have not yet been
characterized rigorously. Thus, while the reconstruateaiges might appear visually pleasing, the
reconstructions could potentially be missing importardg® features of interest. As a result, when
choosing the PS model for a specific application, it is imgiairto remember that use of the model
is based on the assumption that it is reasonable to apprtittma original spatiotemporal image
by discarding the signal characteristics associated waithllssingular values. This suggests that
the PS model might not be a good choice when the image feaifirg®rest would not contribute
significantly to the Frobenius norm (e.g., subtle tempooakt@st variations from highly-localized
spatial regions). However, it may also be possible to akevthis issue by performing a linear
transform on the matrix to increase the transform-domagnigcance of the spatiotemporal fea-
tures of interest.

A number of extensions to the proposed PS-based reconetristtheme are also possible.
For example, by invoking general linear sampling operatbrig becomes possible to incorporate
any prior information that might be available regarding kinewn spatial-spectral support of the
spatiotemporal imagerp, 77,87]. A preliminary investigation of this is presented 670, in
the context of cardiac MRI. In addition, a more general chaitgl makes it possible to model
non-Fourier acquisition physics, which could be usefuld@ariety of imaging contexts. It is also
relatively straightforward to include additional regudation in the formulation of the problem,
if additional prior information is available. Note that uskrank-constraints is completely com-
patible with the use of other types of constraints (e.g.rspasupport-limits, or anatomical prior
information), and a combination of constraints can furtingorove the quality of reconstruction

results over using a single constraint by itself (e.84, 112 143 230, 231, 250,251, 676,679).
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Another interesting extension is the generalization to-tank tensor recovery?2P9. Low-rank
tensor recovery can enable accelerated reconstructioartvélty separable functions with higher-
dimensional structure (e.g., see Eq. (4)399). Methods designed for low-rank tensor recovery
have already been successfully applied to address lindidga problems in computer visionl3,
multidimensional NMR spectroscop39, 340,487, and electroencephalographyj,[ with the

potential to also be useful in many other high-dimensiomaging applications.

5.6 Conclusion and Summary

This chapter has presented a matrix recovery approachitoatstg spatiotemporal images from
sparsely sampled data, based on the assumption that theyimgléunction is partially separable.
Spatiotemporal PS image modeling leads to the formulatianlow-rank matrix recovery prob-
lem, which can be solved to yield high-quality reconstrors from “arbitrarily’-sampled data.
To solve matrix recovery problems, we proposed and invasdjthe IRPF algorithm, which was
demonstrated to have good performance relative to existiggrithms. The proposed matrix-
recovery framework was evaluated using simulated and erpatal data. Results illustrated that
the matrix-recovery framework was significantly more flégikthan existing basic PS methods,
and that the matrix-recovery formulation has the capghititenable image reconstruction with

highly-undersampled spatiotemporal imaging data.
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Chapter 6

Conclusion

As MR technology has developed over the past several dedsifRishas increasingly been used
to study biological tissues and organs from a large numbaetiftédrent perspectives. Biologi-
cal tissues are extremely complex, and a single voxel ircafMRI studies frequently contains
signal contributions from multiple chemical species in aber of distinct environments (e.g., cy-
toplasm, extracellular fluid, and the surfaces and interafrvarious organelles). Under different
types of MR contrast encoding, each environment can infeiédme NMR signal in distinct ways.
As a result, MRI can offer the ability to untangle the conttibns from different environments,
allowing MR experiments to probe the detailed anatomy, ihygy, metabolism, and temporal
behavior of normal and pathological tissues. However, itesipis potential, MR technology has
not matured enough to take full advantage of its capalslitien particular, data acquisition for
MR studies is relatively slow, which limits throughput angyents many applications that would
require high-dimensional encoding. In addition, experita@re frequently also limited by the low
sensitivity of the NMR phenomenon.

This dissertation proposed novel approaches to addressl spwl sensitivity limitations in
MRI. We developed fast data acquisition and image recorngtrumethods that combine (1) the
modeling and manipulation of physical imaging process2stl{e use of a statistical modeling
framework for image reconstruction; and (3) the use of nogaktrained signal and image models.
The utility of these methods has been demonstrated in a nuohio@portant MRI contexts, with
significant potential for extension to other MR applicaicaand other imaging modalities. The

main contributions of this work include:
e The development and characterization of a novel methodrfbarcing the SNR of corre-
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lated image sequences. This method makes use of a novel MRé& feodorrelated im-
ages, which uses explicit shared line-process variablesottel correlated image structure
and facilitates fast computation. The method has the chiyatioi reduce noise contamina-
tion, while simultaneously preserving the high-resolatgtructure that is shared between
the different frames of a sequence of images. We have shaatrihié resolution and SNR
characteristics of the reconstruction scheme are easyataate, giving users the ability to
precisely control the trade-off between resolution and SMRaddition, our analysis sug-
gests new ways for designing MR experiments. In contrasttwentional wisdom, we have
demonstrated that resolution/SNR efficiency can improgricantly if k-space data is ac-
quired at frequencies beyond the nominal resolution of Xipeement. This observation has

many implications for the way that MR data acquisition skidug performed.

The development and characterization of a novel non-Fodata acquisition method to ac-
celerate encoding for images that are approximately spara&known transform domain.
We have demonstrated that Fourier-domain undersamplimgpeanefficient for many CS-
MRI applications, and that random encoding could overconelithitation of Fourier en-
coding in high-SNR scenarios. In addition, we have dematestrthat the strong perfor-
mance guarantees from CS theory are not applicable for mahyC®-MRI problems of
interest, underscoring the need for careful evaluation ofrGBired MRI approaches on an

application-by-application basis.

The development and characterization of a novel framewarkeconstructing spatiotem-
poral images based on the use of PS-based image modelingaw¥laced PS-based spa-
tiotemporal image reconstruction in the context of lowkramatrix recovery, and introduced
and evaluated a new efficient algorithm for solving the rsglloptimization problem. The
proposed framework is significantly more flexible than poergi PS-based reconstruction ap-
proaches, and was demonstrated to enable high-qualitps&aation from undersampled

data in a number of spatiotemporal MRI contexts.
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The use of novel imaging constraints will likely be essdrfoa enabling the practical im-
plementation of future generations of advanced MR experimeThis dissertation focused on
constraints derived from two sources of prior informati@h). coregistered reference images from
the same imaging subject, and (2) the fact that medical isiage frequently be compressed us-
ing sparsity and/or low-dimensionality constraints. Hearethere are many other sources of prior
information that could also be leveraged to improve MR imggimage databases, anatomical at-
lases, and historical medical images of the same patiemaicoa wealth of information that could
be used to constrain image acquisition and reconstructioaddition, it would also be possible
to use other forms of context-based prior information toagrde MR imaging of specific body
parts. For example, when reconstructing an MR brain imageuld be possible to leverage prior
statistical information about the sizes, shapes, andafzgometrical relationships between dif-
ferent anatomical brain structures. These kinds of comésrare quite commonly used in image
analysis applicationslP0, 583, but have largely not been used to influence the design afimga
experiments and image reconstruction methods.

Through centuries of careful observation and experimamahumanity has accumulated a
tremendous amount of knowledge about the characteristibsotogical systems. However, to
date, only a small fraction of this knowledge has been usedi@nce data acquisition and image
reconstruction in medical imaging applications. It will aéremendous step forward for medical
imaging when technology reaches the stage where data dimquyisnage reconstruction, image
interpretation, and image analysis are more tightly cotateto each other, within a single inte-

grated framework that can take advantage of all the pri@rmétion that is available.
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