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Abstract

Magnetic resonance imaging (MRI) is a powerful tool for studying the anatomy, physiology, and

metabolism of biological systems. Despite the fact that MRI was introduced decades ago and has

already revolutionized medical imaging, current applications are still far from utilizing the full

potential of the MR signal. Traditional MRI data acquisitionand image reconstruction methods

are based on simple Fourier inversion, leading to undesirable trade-offs between image resolution,

signal-to-noise ratio (SNR), and data acquisition time. Classical approaches to addressing these

trade-offs have relied on improved imaging hardware and more efficient pulse sequences. In con-

trast, our work addresses the limitations of MR using relatively less-explored signal processing

approaches, which have recently become practical because of increasing computational capabil-

ities. This dissertation concerns the use of constrained imaging models to guide the design of

both data acquisition and image reconstruction, leading toimproved imaging performance in the

context of both noise-limited and resolution-limited scenarios.

To address noise limitations for high-resolution imaging,we introduce a quasi-Bayesian edge-

preserving smoothness prior for modeling correlated imagesequences. The prior models the cor-

related edge structures that are observed in the image sequence, and is used within a penalized

maximum likelihood framework to reduce image noise while preserving high-resolution anatomi-

cal structure. In contrast to many constrained imaging methods, we demonstrate that the proposed

method is relatively simple to analyze and is robust to modelinaccuracy when reconstruction pa-

rameters are chosen appropriately. Resolution and SNR analysis shows that the proposed formula-

tions lead to substantial improvements in SNR with only a moderate decrease in spatial resolution.

An examination of resolution and SNR trade-offs is presented, which serves as a guide for the
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optimal design of data acquisition and image reconstruction procedures in this context.

To address limited spatial resolution in high-SNR scenarios, we design specialized data acqui-

sition and image reconstruction procedures to enable imagereconstruction from sparsely-sampled

data. Specifically, we leverage prior information that the image has sparse or low-rank structure

to significantly reduce sampling requirements in two different contexts. In the first context, we

assume that the image is sparse in a known transform domain, and develop a novel non-Fourier

data acquisition scheme to enable high-quality reconstruction from undersampled data. The sec-

ond context is specific to spatiotemporal imaging, and it is assumed that the temporal evolution of

the spatiotemporal image is highly correlated at differentspatial positions. This correlation leads

to the formulation of a novel low-rank matrix recovery problem, which we demonstrate can be

solved efficiently and effectively using special algorithms.

Applications of the proposed techniques are illustrated with simulated and experimental data

from a variety of different MR imaging scenarios.
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Chapter 1

Introduction

1.1 Problem Statement

Data acquisition in conventional MRI is typically modeled assampling in the spatial Fourier do-

main (also calledk-space):

dm =

∫

ρ (x) e−i2πkm·xdx+ ηm, m = 1, 2, . . . ,M. (1.1)

In this expression,M denotes the number of measuredk-space samples,{km}Mm=1 is the set of

k-space sampling locations,{dm}Mm=1 is the set of measured data,ρ (x) is the image function of

interest, and{ηm}Mm=1 is the set of additive measurement noise perturbations. In practice, the

choice ofM represents a balance between several factors:

• Experiment duration. MRI data acquisition is a time-consuming process, with the total

experiment duration typically proportional to the amount of acquired data samples. As a

result, the use of smallM can improve the speed of imaging experiments.

• Image resolution. MR image resolution is a function of the Fourier-domain sampling

pattern, and traditional high-resolution reconstructions generally require extendedk-space

sampling and largeM .

• Image signal-to-noise ratio. The standard method of reducing the impact of additive noise

in reconstructed MR images is to perform data averaging, which also increasesM .
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This research addresses the problem of reconstructingρ (x) from {dm}Mm=1 when the number

of acquired data samplesM is too small to yield acceptable reconstructions using conventional

Fourier reconstruction algorithms. The use of smallM can dramatically reduce experiment dura-

tion, and can lead to improved temporal resolution in dynamic imaging applications. In contrast to

standard methods, we use prior information about the imaging experiment to develop new imag-

ing models that are capable of dealing with limited and/or noisy data. The characteristics of these

new models influence the choice of MR data acquisition and image reconstruction strategies. The

methods described in this work focus on two specific small-M imaging contexts:

1. We consider constrained denoising approaches to reduce noise limitations in high-resolution

imaging. In this case, we propose and investigate the use of prior information derived from

coregistered anatomical reference images to improve imagesignal-to-noise ratio (SNR),

while simultaneously preserving high-resolution image features.

2. We consider approaches for reconstructing MR images fromsparsely-sampled data with

high SNR. In particular, we propose and investigate new approaches that leverage the prior

information that MR images are often highly structured (i.e., static MR images are gener-

ally sparse in appropriately-chosen transform domains, and spatiotemporal MR images of-

ten satisfy special linear-dependence relationships along the temporal dimension) to enable

high-quality reconstructions from significantly undersampled data.

1.2 Motivation

The theory and methods underlying MR studies have been developing for decades. Important

early landmarks leading up to the development of MRI include development in the 1930s of the

first magnetic resonance method for measuring the magnetic characteristics of nuclei by Isador I.

Rabi (who received the 1944 Nobel Prize in Physics), the first measurements of MR signal from

bulk matter in the 1940s by Felix Bloch and Edward M. Purcell (who shared the 1952 Nobel Prize
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in Physics), and the development of pulsed Fourier transform and multidimensional MR spec-

troscopy methods by Richard R. Ernst (who received the 1991 Nobel Prize in Chemistry). MRI

was first demonstrated in the early 1970s by Paul C. Lauterbur [386], who shared the 2003 Nobel

Prize in Physiology or Medicine with Sir Peter Mansfield. Since that time, MRI has evolved into a

powerful non-invasive imaging tool that can probe the structure, biochemistry, and function of liv-

ing biological tissues. MRI has a number of advantages relative to other existing medical imaging

modalities [173,406,442,646]. For example, unlike modalities such as X-ray computed tomogra-

phy, positron emission tomography, and single photon emission computed tomography, MRI does

not require the use of ionizing radiation. In addition, unlike ultrasound and many optical tech-

niques, MRI is less constrained by penetration depth limitations at the magnetic field strengths

that are commonly used in current clinical practice. Furthermore, the MR signal is sensitive to a

wide range of different physical phenomena, allowing MR experiments to study biological tissues

from a wide range of different perspectives through the careful manipulation of various intrinsic

and extrinsic contrast mechanisms. As a result, MRI can enable the early detection of pathology

before the onset of chronic disease, can facilitate new approaches to personalized medical treat-

ment based on imaging-guided interventions and/or quantitative assays of the unique biological

parameters of each patient, and can be used to explore fundamental questions about the nature of

biological systems. However, despite this amazing potential and decades of revolutionary progress,

modern MR techniques are still quite far from reaching the limits of what can be extracted from

the MR signal.

The main limitations of MRI are its relatively low sensitivity and slow data acquisition speed.

In practice, these limitations often mean that it is necessary to choose between low-resolution

data, noisy reconstructed images, prolonged experiments,limited MR contrast encoding, or some

combination thereof. Long experiment duration is problematic for several reasons: (1) extended

experiments are uncomfortable for live imaging subjects, since it is often important to remain still

during data acquisition to reduce motion artifacts in the reconstructed images; (2) long data acqui-

sition times can limit the spatiotemporal resolution in studies of dynamic processes; (3) imaging
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time on MR scanners is expensive, and long experiments limitsubject throughput; (4) in clini-

cal situations, fast availability of imaging findings can becritical to the treatment planning and

prognosis of emergency room patients. Thus, while the MR signal can be manipulated to encode

a wealth of multidimensional biophysical and biochemical information, practical considerations

have prevented modern MR experiments from realizing their full potential. As a result, the ability

to reconstruct high-quality images from noisy and/or sparsely-sampled data would significantly

enhance current and future MRI applications.

1.3 Main Results

• We have proposed and evaluated a new constrained approach toreconstructing MR images

when correlated reference images are available. In contrast to conventional constrained ap-

proaches, which typically use anatomical prior information to achieve super-resolution re-

construction from low-resolution data, the proposed method is most effective at improving

image SNR while preserving anatomical structure within noisy high-resolution data. We

show that the proposed method is easy to characterize, and ananalysis of the resolution and

noise characteristics of the proposed method demonstratesthat substantial improvements in

SNR can be achieved with only a moderate decrease in spatial resolution. Formulations

are presented for the reconstruction of single images in thepresence of high-quality, high-

resolution reference information, and for the joint reconstruction of a coregistered sequence

of noisy correlated images. The power of the technique is demonstrated using simulated and

experimental data. Related publications include Refs. [24,25,232,267,269,270,274,276–

280,283–286,378,593].

• We have proposed a new sparsely-sampled data acquisition scheme for reconstructing im-

ages that are sparse in a known transform domain. In contrastto conventional MRI, which

makes use of Fourier encoding, we make use of a specialized non-Fourier encoding scheme

that is better aligned with existing theoretical literature on signal reconstruction using spar-
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sity constraints (i.e.,compressed sensing[117, 180]). Simulation and experimental results

demonstrate that the method can significantly reduce data sampling requirements relative to

standard Fourier-based compressed sensing reconstruction techniques in high-SNR scenar-

ios. Related publications include Refs. [273,275].

• We have proposed a new matrix-recovery approach to reconstructing spatiotemporal im-

ages from sparsely-sampled data. In particular, we use the partial separability (PS) model

to model the strong temporal correlations found in many spatiotemporal imaging applica-

tions [399]. The use of the PS model allows us to reformulate image reconstruction as the

reconstruction of a low-rank matrix. We describe some theoretical characteristics of this

new problem, propose efficient new algorithms, and demonstrate with simulated and ex-

perimental data that the combined PS/matrix-recovery approach provides a new, powerful

way to reconstruct spatiotemporal images from limited data. Related publications include

Refs. [268,281,282].

1.4 Organization of the Dissertation

This dissertation is organized as follows:

Chapter2 presents background material that will be helpful for understanding the subsequent

chapters of the report. It contains a high-level overview ofMR physics, incorporating descriptions

of basic signal generation and detection, spatial encodingtechniques, and noise. The chapter also

includes a brief review of basic image reconstruction techniques for data sampled in the Fourier

domain, and a brief review of matrix rank.

Chapter3 describes a new quasi-Bayesian image model for modeling image sequences with

correlated edge structures. The formulation is described,and a convergent algorithm to solve

the resulting optimization problem is presented. In addition, the resolution and SNR properties

of the resulting reconstruction scheme are characterized,and the optimal trade-off between data

acquisition resolution and SNR in is discussed. Finally, a number of simulation and experimental
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reconstruction results are presented to demonstrate the effectiveness of the proposed scheme at

improving SNR while preserving high-resolution image features.

Chapter4 presents a new compressed sensing scheme for reconstructing images from sparsely-

sampled high-SNR data, using the prior knowledge that images are sparse in a known transform

domain. The chapter describes the rationale for and design of a specialized non-Fourier encod-

ing scheme for this context. Simulation and experimental results are shown to demonstrate that

this data acquisition scheme, when coupled with an appropriate sparsity-promoting reconstruc-

tion scheme, can significantly reduce data-sampling requirements in certain contexts relative to

Fourier-based schemes.

Chapter5 presents a new reconstruction scheme for sparsely-sampledspatiotemporal imaging

data. The chapter introduces a novel and flexible formulation of the spatiotemporal imaging inverse

problem in terms of the recovery of a low-rank matrix from sparsely-sampled data, and an efficient

algorithm is described to solve the resulting optimizationproblem. Results are shown that illustrate

the effectiveness of rank constraints for achieving high-resolution reconstructions from highly-

undersampled data.

Finally, Chapter6 provides conclusions.
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Chapter 2

Background

This chapter provides fundamental concepts needed for later chapters. A brief discussion of the

physics of the MRI experiment is presented in Sec.2.1, while Sec.2.2provides a short overview of

basic Fourier MRI reconstruction approaches. Section2.3presents a brief review of matrix rank.

2.1 The Magnetic Resonance Imaging Experiment

Due to the complexity of MR physics, this section will present an abbreviated high-level view of

MRI signal generation and detection. In particular, though MRI has its foundation in quantum me-

chanics, we will adopt a semi-classical treatment in this work, which is generally quite accurate for

describing the ensemble behavior of the large collections of nuclei that are present in macroscopic

objects [290]. Deeper perspectives on MR physics can be found in Refs. [2,46,263,394,406,577]

and similar texts, though it should be noted that an end-to-end quantum mechanical description of

MRI does not yet exist [309].

This section will review MRI signal generation and detectionin Section2.1.1, spatial encoding

techniques in Section2.1.2, and MR noise characteristics in Section2.1.3.

2.1.1 Signal Generation and Detection

MRI is possible because of the nuclear magnetic resonance (NMR) phenomenon, which involves

the interaction of atomic nuclei with magnetic fields. The NMR phenomenon is itself dependent

on the quantum mechanical property known asspin, an intrinsic form of angular momentum pos-

sessed by elementary particles. Many biologically-important atomic nuclei possess non-zero spin
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(e.g.,1H, 31P, 23Na, etc.), which helps to explain why MRI has become such a powerful tool for

biological research and medical practice.

Atomic nuclei with non-zero spin quantum numbers generate microscopic magnetic fields

about themselves, each of which can characterized by a magnetic moment vectorµ = µxî +

µy ĵ + µzk̂, whereî, ĵ, and k̂ are the unit vectors for the standard Cartesian coordinate system.

The total magnetic field generated by a collection of nuclearspins is described through thebulk

magnetization vectorM =Mxî+My ĵ+Mzk̂, with

M =
∑

i

µi, (2.1)

where theith nucleus has magnetic momentµi.

Signal detection in practical NMR and MRI experiments relieson a non-zero bulk magneti-

zation. However, at thermal equilibrium and in the absence of a strong external magnetic field,

the{µi} are randomly and incoherently oriented due to random thermal perturbations, such that

M = 0. On the other hand, in the presence of a strong uniform main magnetic fieldB0, the dif-

ferent orientations of the{µi} with respect toB0 are associated with different energy levels. As

a result, individual magnetic moments will have preferred orientations, leading to a nonzero bulk

magnetization along the direction of the applied field. Thus, a magnet that can provide a strong

homogeneous magnetic field is an important component of mostMR experiments. In keeping with

the standard NMR/MRI literature, we will assume thatB0 is oriented along thez direction, i.e.,

thatB0 = B0k̂, and will denote the thermal-equilibrium value of the bulk magnetization vector as

M0 =M0
z k̂.

An important aspect of the bulk magnetization is that the energy differences between the dif-

ferent orientations of the{µi} are generally very small, meaning that the orientations of the{µi}

are still largely incoherent at thermal equilibrium and that M0
z ≪ ∑

i ‖µi‖ℓ2 .1 In particular, the

1We use the notation‖·‖
ℓ2

to denote theℓ2 norm, which measures the Euclidean length of a vector. An explicit
mathematical definition of this norm is presented later in this chapter.
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value of
∑

i ‖µi‖ℓ2 for a nucleus with spin quantum numberI is

∑

i

‖µi‖ℓ2 = γ~Ns

√

I(I + 1), (2.2)

while the value ofM0
z is

M0
z =

γ2~2B0NsI(I + 1)

3kBTs
, (2.3)

whereγ is a constant known as thegyromagnetic ratiothat is unique to each species of nucleus,

~ is Planck’s constant (6.6 × 10−34 J-s) divided by2π, Ns is the total number of spins in the

system,kB is Boltzmann’s constant (1.38 × 10−23 J/K), andTs is the absolute temperature (K) of

the system. For1H imaging (I = 1/2 andγ/2π = 42.58 MHz/T) at room temperature (Ts = 300

K) and the relatively large magnetic field strength ofB0 = 9.4 T, the ratio ofM0
z to

∑

i ‖µi‖ℓ2 is

approximately2× 10−5. While the energy differences between the different orientations increase

with increasingB0 and decreasing temperature, modern MRI is still widely regarded as having

relatively low sensitivity.

In the presence of an external magnetic field, the bulk magnetization vector is known to behave

according to theBloch equations, which can be written as

dM

dt
= γM×B−

(

Mxî+My ĵ
)

T2
− (Mz −M0

z ) k̂

T1
, (2.4)

whereB is the total magnetic field andT1 andT2 are relaxation constants. In the presence of the

static fieldB = B0, the magnetization will remain at its thermal equilibrium value. However, by

applying a carefully tailored time-varying additional magnetic fieldB1 (t) (typically oriented in

the transversex− y plane) such that

B (t) = B0 +B1 (t) , (2.5)

the movement of the bulk magnetization vector can be controlled so thatM is forced to tip into
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the plane transverse to the main magnetic field. This processof forcing M into the transverse

plane is known asexcitation. TheB1 field is often referred to as theradiofrequency(RF) pulse,

since it typically takes the form of a radiofrequency modulated signal. If the significant transverse

components ofB are removed after excitation, thenM will precess clockwise about the positivez

axis as described through Eq. (2.4). In particular, a magnetization vectorM(t) starting atM(0) =

Mx(0)̂i+My(0)̂j+Mz(0)k̂ at timet = 0 will evolve in the presence ofB = Bzk̂ according to

Mxy(t) =Mxy(0)e
−iγBzte−t/T2

Mz(t) =Mz(0)e
−t/T1 +M0

z

(
1− e−t/T1

)
,

(2.6)

where we have introduced the complex phasor notationMxy(t) = Mx(t) + iMy(t), and it is

assumed thatBz = B0 + ∆B, with ∆B ≪ B0 such that the thermal equilibrium magnetization

M0
z is not significantly perturbed.

As a result of Faraday’s law of induction,2 the changes in the magnetic flux caused by the pre-

cessing magnetization vectorM will generate an electromotive force (emf) through a coil placed

in proximity to the sample. In particular, the emfE(t) induced in the coil is given by

E(t) = − d

dt

∫

Br(x) ·M(x, t)dx

= − d

dt

∫
{
real

[
Br∗

xy(x)Mxy(x, t)
]
+ Br

z(x)Mz(x, t)
}
dx,

(2.7)

whereM(x, t) is the local bulk magnetization per unit volume at positionx = x̂i + yĵ + zk̂ and

time t, Br(x) = Br
x(x)̂i+ Br

y(x)̂j+ Br
z(x)k̂ is the spatially-varying receive field of the detection

coil,3 Br
xy(x) = Bx(x) + iBy(x) is a complex phasor, and where∗ is used to denote complex

2In this description, we are largely following the somewhat simplified description by Hoult [312], which relies on
Faraday’s law of induction and requires a loop receiver coil. However, it is possible to use Lorenz reciprocity to derive
expressions that work for arbitrary coil geometries – see, e.g., Ref. [564] for more detail.

3The receive field is related through the principle of reciprocity to the magnetic field that would be generated by a
unit of current at the Larmour frequency passing through thecoil.
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conjugation. Substituting Eq. (2.6) into this expression yields

E(t) =
∫ {

−real

[(

iγBz +
1

T2

)

Br∗
xy(x)Mxy(x, t)

]

+
Mz(x, 0)

T1
Br

z(x)e
−t/T1 − M0

z (x)

T1
Br

z(x)e
−t/T1

}

dx.

(2.8)

SinceγBz is generally orders of magnitude larger than1/T2 and1/T1, many terms appearing

in the integral in Eq. (2.8) can be neglected, and the signals(t) measured by a receiver coil from

magnetization evolving according to Eq. (2.6) will be approximately given by

s(t) ≈ C

∫

γBzimag
[
Br∗

xy(x)Mxy(x, t)
]
dx

= C

∫
γBz

2i

[
Br∗

xy(x)Mxy(x, 0)e
−iγBzte−t/T2 −Br

xy(x)M
∗
xy(x, 0)e

iγBzte−t/T2
]
dx,

(2.9)

whereC is a constant of proportionality depending on the measurement system. In practice, the

signals(t) is generally demodulated by multiplication with a complex sinusoid at frequencyγB0,

leading to

2is(t)eiγB0t =

C

∫

γBz

[
Br∗

xy(x)Mxy(x, 0)e
−iγ∆Bte−t/T2 −Br

xy(x)M
∗
xy(x, 0)e

iγ(2B0+∆B)te−t/T2
]
dx,

(2.10)

whereω is the demodulation frequency. This demodulated signal canthen be low-pass filtered to

eliminate the component oscillating at frequencies nearγ (2B0 +∆B), resulting in a signal̄s(t)

given by

s̄(t) = C

∫

γBzB
r∗
xy(x)Mxy(x, 0)e

−iγ∆Bte−t/T2dx

≈ γB0C

∫

Br∗
xy(x)Mxy(x, 0)e

−iγ∆Bte−t/T2dx.

(2.11)

Finally, the signal̄s(t) is sampled for further digital processing on a computer.
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2.1.2 Spatial Encoding Techniques

There are several mechanisms available for spatial encoding in MRI (see Ref. [356] for a detailed

review in the context of spectroscopy), though the most common forms of this involve designing

∆B in Eq. (2.11) to have spatial and temporal variations. Examples of this include the gradient-

encoding techniques first described by Lauterbur [386] in which the spatial position is encoded into

the resonance frequencyγ∆B through the use of a spatially-varying∆B, and sensitive point/field

focusing methods [67,154,249,306,565] in which the magnetic fields are generated in such a way

that only a single spatial position contributes significantly to the measured signal.

Spatial encoding through the use of linear gradient fields during data acquisition, as in Lauter-

bur’s original experiment [386], has become the most widely-used spatial encoding mechanism in

MRI, and has a very convenient Fourier-domain interpretation [376, 614]. In this approach, the

magnetic field∆B is constructed such that

∆B(x) = Gxx+Gyy +Gzz. (2.12)

In this case, definingk(t) as

k(t) =
γ

2π









Gxt

Gyt

Gzt









, (2.13)

Eq. (2.11) can be rewritten as

s̄(t) = γB0C

∫

Br∗
xy(x)Mxy(x, 0)e

−i2πk(t)·xe−t/T2dx. (2.14)

Under the assumption that the effects of relaxation are negligible during data acquisition, this

expression can also be written as

∫

Br∗
xy(x)ρ(x)e

−i2πk(t)·xdx, (2.15)
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whereρ(x) is a scaled, relaxation-weighted version4 of the originalMxy(x, 0), which itself is a

function of the nuclear spin distribution. If we assume thatthe receive field is spatially homoge-

neous such thatBr∗
xy(x) = 1, then Eq. (2.15) matches the Fourier-transform relationship between

the observed signal and the imageρ(x) given in Eq. (1.1). This type of Fourier relationship also

holds in the more general case whereGx, Gy, andGz (the linear gradients) have temporal varia-

tions. In this case, Eq. (2.15) is still valid, withk(t) now defined as

k(t) =
γ

2π









∫ t

0
Gx(τ)dτ

∫ t

0
Gy(τ)dτ

∫ t

0
Gz(τ)dτ









. (2.16)

In practice the maximum gradient strength and slew rate are limited, due to both hardware and

regulatory constraints. In addition, it is often desirablefrom the perspective of SNR to use small

gradients, since large gradients increase the frequency bandwidth of the desired signal, and in-

creasing the bandwidth of the detection system leads to increased measurement noise as described

in Sec.2.1.3. Thus, while pulse sequences exist that try to acquire data as fast as possible (in-

cluding echo-planar imaging (EPI) [433], spiral imaging [7], fast low-angle shot (FLASH) imag-

ing [265], burst imaging [300], and several others [46]), k-space trajectories are still traversed

relatively slowly. As a result, the need to have the data acquisition window be short relative to

relaxation and other physical effects often means that multiple iterations of the excitation and

encoding procedure are necessary to acquire sufficient Fourier data for high-resolution reconstruc-

tion. The relatively time-consuming nature of this procedure is one of the primary limitations of

MRI. Due to the widespread use of Fourier acquisition in MRI, most of this dissertation will fo-

cus on image reconstruction from Fourier-encoded data. However, the methods we will discuss

can easily be extended to model non-Fourier aspects of data acquisition, such as undesired spatial

inhomogeneity of theB0 field [212,595] and spatial inhomogeneity of the receive field of the de-

4The relaxation parametersT1 andT2 tend to vary spatially in real experiments, and this provides one of the many
useful sources of MR image contrast.
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tection coil [519]. The remainder of this subsection will briefly discuss someof the other spatial

encoding methods that have been proposed for MR.

The Fourier encoding scheme described above created a structured magnetic field inhomogene-

ity ∆B (x) in which the magnetic field strength varied linearly as a function of spatial position.

Techniques have also been proposed that make use of nonlinear gradient fields for spatial encoding

during data acquisition. Examples include the use of nonlinear gradients for phase-scrambling ap-

plications [445,641], Fresnel andO-space MRI using quadratic gradient fields [331,332,590,665],

and PatLoc imaging using general curvilinear fields [227,301,561].

Another approach to spatial encoding is to introduce spatial variations in the magnetic field

during the RF pulse used for excitation, such that the response of M(x, t) to the RF pulse has

spatial dependence. The most common form of this kind of RF encoding is slice selection, in

which only a thin two-dimensional (2D) slice of a three-dimensional (3D) object is excited by the

RF pulse [310, 387, 434], while the remaining 2D localization is still achieved by conventional

gradient-based Fourier encoding. However, a wide variety of other spatially-selective excitation

or saturation based methods have been proposed and provide significant flexibility to the design of

MR experiments [27,65,68,69,83,151,221,234,245,297,311,342,351,443,444,455,486,496,

507, 547, 640, 678]. Classes of spatial encoding techniques also exist in whichdata is acquired

simultaneously or interleaved with RF irradiation. These techniques include continuous wave

MRI [199], frequency-swept MRI [329,644], and stochastic NMR imaging [62–64,338,473,543].

A fundamentally different approach to obtaining spatially-localized information from an ob-

ject is to use receiver coils with spatially-localized detection sensitivitiesBr(x) (i.e., local coilsor

surface coils) [5,363]. Parallel imaging methods represent an evolution of this approach, simulta-

neously acquiring data from multiple coils in parallel. In this case, spatial information is encoded

into the measured data by the spatially-varying sensitivity profiles of each coil, and if theBr(x)

parameters for each coil can be calibrated accurately and the coils are sufficiently linearly inde-

pendent, then images can be obtained through the application of suitable signal processing algo-

rithms [124,125,256,257,298,326,327,337,358,379,380,408,411,517,519,520,525,542,580,669].
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In practice, applications that use localized/parallel coils to encode spatial information frequently

combine sensitivity-based spatial encoding with the otherMR spatial encoding schemes described

above.

2.1.3 Noise

As a result of the limited sensitivity of MR (cf. Sec.2.1.1), noise is a major limitation in prac-

tical MRI experiments. Noise in MRI comes from multiple sources, including thermal fluctu-

ations, physiological effects, and signal perturbations due to system instability (see discussion in

Refs. [98,311,313,407,425,465]). The main type of noise that we will consider for this dissertation

is thermal (Johnson-Nyquist) noise [343, 480]. The thermal noise in MRI predominantly comes

from the random thermal motion of charge carriers in the receiver electronics (e.g., electrons) and

within the sensitive region of the receiver coil (e.g., charged ions like sodium and dipolar molecules

like water in the sample) [518]. For most biological studies, the charged ions in the sample are the

dominant source of noise fluctuations.

Moving charged particles interact electromagnetically with the signal detector, resulting in

fluctuations of the measured signal voltage. Due to the nature of this thermal noise, the statistics

of the noise samples (i.e.,{ηm}Mm=1 from Eq. (1.1)) are expected to be modeled well by an additive

white complex Gaussian distribution (with independent andidentically distributed real and imag-

inary components). It has been shown experimentally that this distribution accurately describes

the distribution of experimental data, as long as the temporal filters used in the demodulation step

(cf. Eqs. (2.10) and (2.11)) and in the analog-to-digital conversion process maintain a uniform

frequency response over the frequency range of interest [451]. Several factors influence the stan-

dard deviation of the measurement noise, including the bandwidth of the temporal filters (which

is usually adjusted based on the spatial extent of the sampleand the maximum magnitude of the

gradient fieldsGx, Gy, andGz used during data acquisition), the temperature of the sample and

electronics, and the number of moving charged particles in the sensitive region of the receive coil.

To avoid confusion, we should mention that many descriptions of noise in the MRI litera-
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ture [9, 10, 16, 122, 171, 260, 299, 365, 366, 441, 447, 453, 574] describe the effects of noise us-

ing the non-central Chi and Rician distributions [539], rather than the Gaussian distribution. We

emphasize that MR data ink-space is Gaussian, meaning that any linear image reconstruction

will also have Gaussian-distributed voxels. The Rician distribution arises from taking the mag-

nitude of Gaussian-distributed images, while the non-central Chi distribution arises in parallel

imaging when magnitude images of the same subject from different receiver coils are combined

using a sum-of-squares procedure. In both cases, these operations result in a loss of informa-

tion. While the magnitude of MR images is often taken for display purposes, this specific pro-

cessing step is not a necessary part of image reconstructionor a necessary step for the display

of images (see, e.g., competing phase-correction methods [47, 80, 81, 241, 412, 450, 475, 515]).

As a result, while many approaches exist for denoising MR images with non-Gaussian distribu-

tions [9, 10, 29, 36, 66, 216, 295, 374, 415, 431, 441, 476, 510, 575, 605], the discussion presented

in this dissertation will be limited to the Gaussian case, which is much easier to analyze and for

which more significant gains can be obtained [660].

In addition to thermal noise, a noise source that appears in the context of biological imaging is

physiological noise [98]. Physiological noise includes effects resulting from subject motion such

as bulk subject movement, cardiac motion and pulsation, andrespiration. These effects can be sig-

nificant and important in certain applications (e.g., fMRI),but are difficult to analyze because we

still do not have a good quantitative understanding of physiological noise [98]. In this dissertation,

we will either neglect the effects of physiological noise orassume that it also leads to additive

white Gaussian measurement noise.

Finally, other sources of noise include quantization in theanalog-to-digital converters used

for sampling the MR signal [39], spin noise in the bulk magnetization vectorM [393], external

sources of RF signal (e.g., radio stations), and instabilities in the main magnetic field [465].
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2.2 Fourier Image Reconstruction

The previous section derived the physical basis of the Fourier imaging equation given in Eq. (1.1),

which we repeat below:

dm =

∫

ρ (x) e−i2πkm·xdx+ ηm, m = 1, 2, . . . ,M. (2.17)

In this section, we review some of the standard techniques that are available for reconstructing

ρ (x) from Fourier data. While there are many constrained reconstruction approaches that leverage

strong prior information about the images being reconstructed (e.g., [400,454,475]), this section

will focus primarily on general methods for Fourier inversion. Finitely-sampled Fourier inversion

is well-known to be anill-posedinverse problem, where an inverse problem is said to be well-posed

(in the sense of Hadamard) if it has the following three characteristics (see Refs. [48,289,601,625]

for a precise mathematical definition):

1. At least one solution exists.

2. The solution is unique.

3. The solution is stable with respect to small perturbations in the data.

As we will see, the inverse problem corresponding to Eq. (2.17) generally fails to have a unique

solution, and additional constraints are necessary to makethe problem well-posed.

To begin, we will make some mathematical assumptions to simplify the discussion. We will

assume thatρ (x) is a complex function inD-dimensional space, i.e., thatρ : RD → C, whereD is

typically 2 or 3, corresponding to 2D and 3D imaging problems, respectively. We will additionally

assume thatρ (x) is supported on a setΩ ⊆ R
D (i.e., ρ (x) = 0 for x /∈ Ω) of positive measure,

and thatρ (x) has finiteL1 andL2 norms, where theLp norms for functions onΩ are defined for

p ≥ 1 as

‖ρ (x)‖Lp
=

(∫

Ω

|ρ (x)|p dx
)1/p

. (2.18)

17



Under these conditions, it can be shown [353, 385] that the Fourier transforms (k) of ρ (x) is

well-defined, with

s (k) =

∫

Ω

ρ (x) e−i2πk·xdx, (2.19)

and that an inverse Fourier transform exists that mapss (k) back toρ (x), with

ρ (x) =

∫

RD

s (k) ei2πk·xdk. (2.20)

While the relationship in Eq. (2.20) provides one way of recovering an image from Fourier

data, direct use of this relationship is impractical because it requires knowledge ofs (k) for every

k ∈ R
D, an uncountably infinite set of points. However, sampling density requirements can be

considerably reduced if it is additionally assumed that thesupport setΩ is closed and bounded. In

this case, it can be shown thatρ (x) can be recovered from a countably infinite set of points [12,44,

56,123,189,353,382,385,437]. Theoretical sampling density requirements for exact reconstruction

have been established through the Whittaker-Nyquist-Kotel’nikov-Shannon sampling theorem in

the context of periodic lattice sampling [12,44,56,189,353,385,437], and by the Beurling-Landau

theory for general non-uniform sampling [12,44,45,123,382]. An example result is that if

Ri ≥ sup
x∈Ω

(2 |xi|) , for i = 1, 2, . . . , D, (2.21)

then

ρ (x) =
1

|R|1{x∈Ω}
∑

n∈ZD

s
(
R−1n

)
ei2πR

−1n·x, (2.22)

whereZD is the space ofD-dimensional integer vectors,1{x∈Ω} is the indicator function forΩ, and

R is a diagonal matrix withith diagonal entry equal toRi. If Ω is a hyper-rectangle centered at the

origin with sides aligned with the coordinate axes (a commonassumption in MRI experiments),

then choosing the smallest possibleRi values in Eq. (2.21) leads toNyquist ratesampling in

Eq. (2.22).5 Cartesiank-space trajectories with points spaced at the Nyquist rate are very common

5The Nyquist rate has a more general definition for an arbitrary support setΩ. See, e.g., Ref. [437].
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in practical MRI experiments.

Equation (2.22) brings us one step closer to addressing Eq. (2.17), but still requires knowl-

edge ofs (k) at infinitely many points. In general, the need for infinite sampling to achieve per-

fect reconstruction is unavoidable without making additional assumptions. There are three com-

mon classes of methods that are used for reconstructing noisy, finitely-sampled Fourier data as in

Eq. (2.17) [207], which we describe in the following three subsections.

2.2.1 Conjugate Phase Reconstruction

The first class of methods ignores the fact that data is finitely sampled, and directly makes approxi-

mations of analytic reconstruction formulas such as Eqs. (2.20) or (2.22). In this case, the standard

approach is to estimate the image using aconjugate phase[424] reconstruction

ρ̂ (x) = 1{x∈Ω}

M∑

m=1

wmdme
i2πkm·x, (2.23)

where{wm} are weighting coefficients. Equation (2.23) can be viewed as a Riemann-sum approx-

imation of Eq. (2.20), with the{wm} adjusted based on the local density of Fourier samples in

the vicinity of each measurement. The reconstruction can also be viewed as a weighted, truncated

version of the infinite summation in Eq. (2.22) if the original Fourier samples lie on a Cartesian

lattice. Reconstruction using Eq. (2.23) is generally very computationally efficient, since the fast

Fourier transform (FFT) [485] can be used for Cartesian-sampled data, and various approxima-

tions for Eq. (2.23) exist that leverage the FFT for non-Cartesian data [37,191,214,252,333,334,

377,488,509,532,560,567].

2.2.2 Hilbert Space Reconstruction for Square-Integrable Functions onΩ

The second reconstruction approach is obtained by choosinga solution with finiteL2 norm and

with support onΩ (we will useL2(Ω) to denote the Hilbert space [417] of images satisfying

these constraints) that matches the data as closely as possible. For example, we could choose a

19



reconstructed image from the setΓ, the set of all maximally data consistent solutions with respect

to the Euclidean distance metric, i.e.,

Γ =

{

ρ (x) ∈ L2(Ω) :
M∑

m=1

∣
∣
∣
∣
dm −

∫

Ω

ρ (x) e−i2πkm·xdx

∣
∣
∣
∣

2

isminimal

}

= {ρ (x) ∈ L2(Ω) : F∗Fρ = F∗d} ,
(2.24)

whereF∗ : CM → L2(Ω) is the adjoint ofF ,6 d is the length-M vector withmth entry equal to

dm, and the second equality is a standard result from optimization in Hilbert spaces [417]. The

images inΓ are allleast-squaressolutions to the inverse problem, since they all have minimal sum-

of-squares error with respect to the measured data. However, one practical difficulty is that the set

Γ generally contains an infinite number of images, and we wouldneed to specify some additional

constraints to choose a unique reconstruction. The reason thatΓ is infinitely large is because we

have only sampled a finite amount of data, which means that there are generally an infinite number

of images in thenull spaceN (F) of our sampled Fourier transform operatorF : L2(Ω) → C
M .

This null spaceN (F) is defined as

N (F) =

{

ρ (x) ∈ L2(Ω) :

∫

Ω

ρ (x) e−i2πkm·xdx = 0 for all m ∈ {1, 2, . . . ,M}
}

. (2.25)

It can be shown thatΓ is the linear variety

Γ = {ρ (x) ∈ L2(Ω) : ρ0 (x) + z (x) , with z (x) ∈ N (F)} , (2.26)

whereρ0 (x) is any least-squares solution [417]. A standard heuristic approach to choosing a

unique reconstruction from this linear variety is to use thepseudo-inverse solution, which selects

the unique image fromΓ with minimumL2-norm [48,49,207,289,417,618,625]. This minimum-

6Note that we use∗ with different meanings in different contexts. For functions and scalars, we use∗ to denote
complex conjugation, while for operators, we use∗ to denote adjoint. See Ref. [417] for a formal definition of the
adjoint operator.
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norm least-squares (MNLS) solution is given by

ρ̂ (x) = F∗ (FF∗)† d

= 1{x∈Ω}

M∑

m=1

cme
i2πkm·x,

(2.27)

where† denotes the matrix pseudo-inverse [248,417,531], cm is themth element of the vectorc,

c = (FF∗)† d, and where the elements of theM ×M matrixFF∗ are given by

[FF∗]m1m2
=

∫

Ω

ei2π(km1−km2)·x. (2.28)

Note that the reconstruction obtained with Eq. (2.27) is very similar to that obtained with the

approximation of analytic Fourier inversion given by Eq. (2.23); indeed, in the case whenFF∗

is diagonal (i.e., when the Fourier sampling functions
{
e−i2πkm

}M

m=1
are orthogonal overΩ), the

pseudo-inverse reconstruction is a special case of Eq. (2.23).

2.2.3 Reconstructions Using Finite-Dimensional Linear Image Models

The final class of methods represents the image in terms of a finite-dimensional linear model, i.e.,

ρ (x) =
N∑

n=1

ρnφn (x) , (2.29)

whereN is the dimension of the linear model, and{φn (x)} are functions inL2(Ω). While some

approaches use specialized anatomically-adapted basis functions (e.g., [32,76,119,121,319,400,

403,405,592,611]), basis functions modulated by prior image-phase information [101,262,307,

400, 673], or basis functions defined ink-space [223, 459, 544, 567], a more common approach

in the imaging literature is to use translations of a single “voxel function”φ (x) to represent the

image, i.e.,

φn (x) = φ (x− xn) , (2.30)
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where{xn} specify the voxel locations (e.g., [127,168,207,289,364,512,592]). Standard choices

of φ (x) include the Dirac delta function or an appropriate polynomial spline function [616]. Under

this parameterization,

∫

Ω

ρ (x) e−i2πkm·xdx =
N∑

n=1

ρn

∫

Ω

φ (x− xn) e
−i2πkm·xdx

= Φ(km)
N∑

n=1

ρne
−i2πkm·xn ,

= Fρ,

(2.31)

whereΦ (k) is the Fourier transform ofφ (x), F is theM ×N matrix with elements

[F]mn = Φ(km) e
−i2πkm·xn , (2.32)

andρ is the length-N vector ofρn coefficients. With a finite-dimensional parametric model, it

becomes possible to use statistically-motivated reconstructions such asmaximum-likelihood(ML)

estimation that make use of the probability distribution ofthe measurements to help determine

the unknown model parameters [354,458,514]. Given the assumption of complex white Gaussian

noise measurements and assumingρ is known, the probability distribution ofd is given by

p (d;ρ) =
1

πMσ2M
e−

1
σ2 ‖Fρ−d‖2ℓ2 , (2.33)

whereσ is the standard deviation of the complex noise samples, and the ℓp norm of a length-M

vector is defined forp ≥ 1 as

‖d‖ℓp =
(

M∑

m=1

|dm|p
)1/p

. (2.34)

In statistics,p (d;ρ) is frequently called thelikelihood function.

The ML estimate ofρ is obtained by maximizing Eq. (2.33) with respect toρ. Maximizing

the likelihood is equivalent to minimizing the negative log-likelihood, so that the ML solution is
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obtained by solving the simple least-squares problem

ρ̂ = argmin
ρ

‖Fρ− d‖2ℓ2 . (2.35)

The ML solution is only unique whenFHF has full rank (a necessary condition for this is that

M ≥ N ), in which case

ρ̂ = FH
(
FFH

)†
d

=
(
FHF

)−1
FHd.

(2.36)

When the ML solution is unique, it satisfies a number of desirable properties. In particular,̂ρ is

a linear function of the measured data, is an unbiased estimate ofρ, and has the smallest possible

variance among all possible unbiased estimators [354, 458, 514].7 The ML solution is also quite

similar in form to the MNLS reconstruction of Eq. (2.27) and the conjugate phase reconstruction

of Eq. (2.23).

In practice,FHF may not have full rank or may be poorly conditioned (i.e., thesolution is not

very stable with respect to small perturbations in the data). In these cases, a penalized maximum-

likelihood (PML) estimate is often computed [164, 207, 625]. PML estimates are solutions to a

regularized ML problem of the form

ρ̂ = argmin
ρ

‖Fρ− d‖2ℓ2 +R (ρ) , (2.37)

whereR (ρ) is a penalty (regularization) function that is used to ensure that the reconstruction is

both unique and stable with respect to noise perturbations.The choice ofR (ρ) often reflects prior

information about the image being reconstructed, and the objective of regularization is generally

7These facts follow from the Gauss-Markov theorem [354], which states that the least-squares solution (when it
exists and is unique) is the best (i.e., minimum covariance)linear unbiased estimator for any problem where the data
measurements are linear in the unknown parameters and the noise samples (not necessarily Gaussian or identically
distributed) are zero-mean, uncorrelated, and homoscedastic. More general versions of the Gauss-Markov theorem
can be found in Refs. [521,531].
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to make reconstructions “more regular” with respect to the class of images under consideration.

Most existing approaches for MRI useR (ρ) that reflect the prior information that medical images

are often spatially smooth (with occasional discontinuities) [50,131,163,237,546] or are sparse or

compressible in appropriately-chosen transform domains [117,137,180,291,420,484].

In some cases, the PML reconstruction can have a Bayesian interpretation. Bayesian estimation

methods assume that the unknown parametersρ are random variables with some known prior

probability distributionp(ρ), and use this prior to extract the posterior distribution ofthe image

conditioned on the observed datap(ρ;d) using Bayes’ rule [354,514]:

p(ρ;d) =
p(d;ρ)p(ρ)

p(d)
, (2.38)

wherep(d) is the probability of observing the measured data. Due to theinclusion of the prior

distribution, this posterior distribution contains more information than the likelihood alone, which

can lead to improved parameter estimates relative to ML. Common approaches to Bayesian im-

age estimation using this posterior distribution are to compute theminimum mean-squared error

(MMSE) estimate

ρ̂ = min
θ
E
[
|θ− ρ|2 ;d

]

= min
θ

∫

|θ− ρ|2 p(ρ;d)dρ

= E [ρ;d] ,

(2.39)

or themaximum a posteriori(MAP) estimate

ρ̂ = max
ρ

p(ρ;d)

= max
ρ

p(d;ρ)p(ρ)

= min
ρ

− ln p(d;ρ)− ln p(ρ)

= min
ρ

‖Fρ− d‖2ℓ2 − σ2 ln p(ρ).

(2.40)
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As can be seen, the MAP estimate in Eq. (2.40) has the same general form as the PML estimate

in Eq. (2.37). Generally, PML estimates can have a Bayesian interpretation if there exists a nor-

malization constantZ (often called thepartition function, following the nomenclature of statistical

mechanics) such that

p(ρ) =
1

Z
e

−R(ρ)

σ2 (2.41)

is a valid probability distribution.

2.2.4 Resolution and Noise Characteristics of Conventional

Reconstructions

The conjugate phase, MNLS, and ML solutions are all linear reconstructions, and can be unified

under the following linear reconstruction formula:

ρ̂ (x) =
M∑

m=1

gm (x) dm, (2.42)

where{gm (x)} is a set of spatially-varying reconstruction coefficients.It is easy to show by

substitution of Eq. (2.17) into Eq. (2.42) that

ρ̂ (x) =

∫

ρ (y)hx (y) dy + η̄x, (2.43)

with

hx (y) =
M∑

m=1

gm (x) e−i2πkm·y, (2.44)

wherehx (y) is called thespatial response function(SRF) , and̄ηx is a zero-mean Gaussian random

process with covariance

Cη̄ (x,x
′) = E [η̄xη̄

∗
x′ ] = σ2

∑

m

gm (x) g∗m (x′) . (2.45)
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For a fixed image locationx, the variance of the reconstructed image value is thus givenby

Cη̄ (x,x) = E
[
|η̄x|2

]
= σ2

∑

m

|gm (x) |2. (2.46)

The relationship in Eq. (2.43) shows that the estimated value of the image at a given spatial location

is actually a weighted average of the true image, plus additional noise. To achieve high resolution,

the SRFhx (y) should be highly concentrated about the spatial locationx. However, the extent to

which this is possible is governed by both thek-space sampling trajectory and the particular choice

of reconstruction coefficients.

To illustrate the effects of the number of measuredk-space samples on the resolution and

SNR of the reconstruction, we will consider a simple one-dimensional (1D) example in which

Ω = [−1/2, 1/2],M is an even number, and{km}Mm=1 = {−M/2,−M/2 + 1, . . . ,M/2− 1} is a

truncated version of a periodic lattice satisfying Eq. (2.21) with the property that the corresponding

Fourier sampling kernelse−i2πkm·x are orthogonal overΩ. In this case, the MNLS reconstruction

has the form of a conjugate phase reconstruction given by

ρ̂ (x) = 1{x∈Ω}

M∑

m=1

dme
i2πkm·x. (2.47)

The corresponding SRF has the form of a spatially-windowed Dirichlet kernel

hx (y) = 1{x∈Ω}
sin (πM(x− y))

sin (π(x− y))
e−iπ(x−y). (2.48)

An important characteristic of this SRF is that it becomes more concentrated aroundx (i.e., the

resolution improves) as the number of Fourier samplesM increases, as illustrated in Fig.2.1.

The covariance functionCη̄ (x,x
′) for this case has a similar form to that of the SRF

Cη̄ (x,x
′) = 1{x,x′∈Ω}

sin (πM(x− x′))

sin (π(x− x′))
e−iπ(x−x′), (2.49)
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Figure 2.1: The magnitude of SRFs computed using Eq. (2.48) with x = 0 for different numbers
of k-space samplesM . As the number of samples increases, so does the spatial resolution.

and the noise variance at a particular spatial locationx in the reconstruction is given by

σ2
x = Cη̄ (x,x) =Mσ2. (2.50)

This simple example has two important characteristics thatare generally true in more compli-

cated linear reconstruction scenarios:

1. The spatial resolution of a reconstructed image is limited by thek-space coverage of the

experiment, and can only improve by increasingM and collecting additionalk-space data

with non-redundant information.

2. The noise variance in the reconstruction increases as additional non-redundantk-space sam-

ples are incorporated into the reconstruction.

As a result of these characteristics, for a fixedM , the design of thek-space sampling pattern

typically represents a trade-off between spatial resolution and SNR, as shown in Figs.2.2and2.3.

2.3 Matrix Rank

This section presents a brief review of matrix rank, which will be particularly helpful for under-

standing the material in Ch.5. More complete descriptions of matrix rank can be found in standard

texts covering matrices and linear algebra [248,308,458]. Formally, the rank of anN ×M matrix
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(a) Gold Standard (b) 32× 32 k-space coverage, averaged 16 times

(c) 64× 64 k-space coverage, averaged 4 times (d) 128× 128 k-space coverage, no averaging

Figure 2.2: Illustration of the trade-off between spatial resolution and SNR with fixedM for con-
ventional linear reconstructions. (a) Gold standard imageof a fixed mouse brain. (b-d) Simulated
noisy MNLS/conjugate phase reconstructions with different k-space trajectories. The support set
Ω was assumed to be rectangular, and the Fourier samples are arranged on a rectangular grid at
the Nyquist rate. In particular, the reconstructions in (b), (c), and (d) used the central32 × 32,
64× 64, and128× 128 samples from the Nyquist grid. Ask-space coverage increases, the spatial
resolution improves while the SNR decreases.

A is defined as the largest number of linearly independent columns ofA, which is also equal to

the largest number of linearly independent rows ofA. The rank satisfies the following properties:

1. rank (A) ≤ min (N,M). A is said to be full-rank ifrank (A) = min (N,M).

2. rank (A) = rank
(
AH
)
.

3. For two matricesA andB of the same size,rank (A+B) ≤ rank (A) + rank (B).

4. For a matrixC with N columns,rank (CA) ≤ min (rank (C) , rank (A)).

5. For a full-rankN×N matrixC and a full-rankM×M matrixD, rank (CAD) = rank (A).
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(a) Gold Standard (b) 128× 128 k-space coverage, no averaging

(c) 64× 64 k-space coverage, averaged 4 times (d) 128× 128 k-space coverage, averaged 8 times

Figure 2.3: Illustration of the trade-off between spatial resolution and SNR with fixedM for
conventional linear reconstructions in the context of a quantitative parameter estimation exper-
iment. (a) Gold standard quantitative diffusion tensor parameter map (color-coded fractional
anisotropy) [460] estimated from a sequence of diffusion-weighted MR images. (b-d) Simulated
noisy reconstructions with different acquisition strategies. The reconstruction procedures and sam-
pling trajectories match those of Fig.2.2. (b) The high-resolution parameter map is too noisy to be
useful without additional averaging. (c) SNR can be improved by acquiring data at lower resolu-
tion, though this comes at the expense of a significant loss ofanatomical detail. (d) Alternatively,
the high-resolution data can be averaged to improve SNR while maintaining resolution, though
this comes at the expense of a significant increase in data acquisition time.

An important fact about matrices is that they can be represented using the singular value de-

composition (SVD). In particular, ifA is anN ×M matrix, then there exists a set ofmin (M,N)

differentN × 1 orthonormal vectors{pn}Nn=1, a set ofmin (M,N) differentM × 1 orthonormal

vectors{qm}Mm=1, and a uniquely-defined set ofmin (M,N) non-negative real numbersσk (known

as “singular values”) satisfyingσi ≥ σj wheni < j, such that

A =

min(M,N)
∑

k=1

σkpkq
H
k = PΣQH . (2.51)
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In this expression, theN × min (M,N) matrix P has itskth column equal topk, theM ×

min (M,N) matrix Q has itskth column equal toqk, and themin (M,N) × min (M,N) ma-

trix Σ is diagonal withkth diagonal entry equal toσk.

The SVD provides useful insight into matrix rank. In particular, a matrix with rankL will have

exactlyL non-zero singular values, such that

A =

min(M,N)
∑

k=1

σkpkq
H
k =

rank(A)
∑

k=1

σkpkq
H
k . (2.52)

In addition, the SVD provides a convenient structure for computing optimal low rank approxima-

tions. Consider the optimization problem

ÂR = arg min
AR∈CN×L

rank(AR)≤R

‖AR −A‖F , (2.53)

whereR is assumed to be less than or equal tomin (M,N), and‖·‖F is the standard matrix

Frobenius norm defined as

‖A‖F =

√
√
√
√

N∑

n=1

M∑

m=1

|[A]nm|
2 =

√
√
√
√

rank(A)
∑

k=1

σ2
k. (2.54)

The solution to this problem, known as the Eckart-Young approximation [192], is given by

ÂR =
R∑

k=1

σkpkq
H
k , (2.55)

and the optimal approximation error is given by

∥
∥
∥ÂR −A

∥
∥
∥
F
=

√
√
√
√

rank(A)
∑

k=R+1

σ2
k. (2.56)
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From this, it can be seen that any matrix with a large number ofsmall singular values has the

potential to be accurately approximated with a low-rank matrix.
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Chapter 3

Reconstructing Correlated Images with a
Shared Edge Prior

Contrast in MR images is dependent on both the physical properties of the imaging subject and

on the experimental parameters used to acquire data. In manyexams, coregistered images of the

same anatomy are acquired with different contrast, providing different perspectives on the under-

lying characteristics of the imaging subject. However, as described in the previous chapter, the

acquisition of many different high-resolution images can be time-consuming, due to the relatively

slow data acquisition process and the trade-off between data acquisition time, image resolution,

and SNR. A simple way to improve SNR with fixed spatial resolution is to perform signal averag-

ing, though this comes at the expense of longer data acquisition time. A more common alternative

is to simply reducek-space coverage, which will simultaneously reduce data acquisition time and

improve the resulting image SNR, though this comes at the costof significant partial volume arti-

facts in the reconstructed images.

In practice, it can also be possible to use side information from related reference images to

alleviate resolution and noise concerns. The main assumption of this kind of constrained image

reconstruction approach is that coregistered images from the same subject will frequently be highly

correlated. This large amount of correlation can be observed visually in example image sequences

shown in Fig.3.1. The correlation observed in these images is not coincidental, and is the result

of the fact that the observed MR signal intensity is a function of the microstructural and chemical

characteristics of the tissue. If one type of tissue has significantly different characteristics from

another, this can easily lead to consistent observed MR differences between the tissues under a

variety of different MR contrast mechanisms. Thus, while the intensities of different features are

quite distinct, the images demonstrate, for example, highly-correlated edge structures and wavelet
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(a) Multi-Echo Spiral Data

(b) Diffusion Weighted Data

(c) Variable Flip-Angle FLASH Data

Figure 3.1: Coregistered image sequences with different contrast parameters. (a) Multi-echo spiral
data (courtesy of Dr. B. Sutton); data acquisition parameters are described in [593]. (b) Diffusion-
weighted image data (courtesy of Dr. X. Zhou); data acquisition parameters are described in [677].
(c) Variable flip-angle FLASH data (courtesy of Dr. N. Schuff). Though the contrast of each image
is different, there is significant visual similarity between the different images of the same subject.

33



coefficients, and this can mean that there is an opportunity to leverage information from one image

to help improve reconstruction of another. An example illustrating the high degree of edge and

wavelet correlation is shown in Figs.3.2and3.3.

There are two general classes of signal processing methods that have been proposed to use this

kind of prior information in the context of Nyquist-sampleddata:1

1. Super-Resolution Methods. This class of methods is based on the idea that high resolution

MR images with certain types of contrast are naturally faster to acquire than others. As a

result, high-resolution prior information from these images can be fused with low-resolution

high-SNR data from slower MR experiments to yield high-resolution reconstructions. The

constraints used by these approaches are derived from coregistered high-resolution anatom-

ical datasets, and include information about the locationsof different tissues within the field

of view (FOV) , edge locations, image phase, and image support [32,101,119,121,146,166,

197,233,262,271,307,319,325,335,370–372,400,403,405,464,475,512,592,611,673].

Similar super-resolution approaches have been proposed inother imaging modalities, in-

cluding emission tomography [13,20,30,42,70,72,76,93,128,136,139,145,210,242,243,

304, 316, 344, 375, 389, 410, 416, 478, 479, 481, 489, 530, 551, 579, 581, 582, 597, 629, 674],

transmission tomography [671], susceptibility/impedance imaging [162, 244], and optical

tomography [33, 71, 91, 158, 186, 261, 330, 395, 409, 477]. For this class of methods, the

quality of the reconstruction depends heavily on the quality of the constraints that are im-

posed. If the prior information leads to an accurate signal model with a small number of

unknown parameters compared to the number of measured data samples, very high quality

reconstructions can be achieved. However, if the constraints are not strong enough, then

reconstruction performance improvement may be limited. Inaddition, if the constraints are

inaccurate, then the modeling inaccuracies could result inimages with significant artifacts

and limited practical utility.

1We note that there are other types of constrained methods that have been proposed when sampling is not performed
at the Nyquist rate, though we will leave discussion of theseto subsequent chapters.
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(a) Proton Density Weighted Image

(b) T1 Weighted Image

(c) T2 Weighted Image

Figure 3.2: Three different MR brain images of the same anatomy in the same subject, but with
acquisition parameters adjusted to yield different image contrast. The first column shows the origi-
nal images, while the second and third columns show the corresponding edge structures (computed
using finite differences) and Daubechies-4 wavelet coefficients, respectively. There is a significant
degree of correlation between the image edge structures andwavelet coefficients.
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(a) r = 0.863
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(b) r = 0.767
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(c) r = 0.720

Figure 3.3: Joint histograms of the finite-difference edge magnitudes for the images shown in
Fig. 3.2. The correlation coefficient (Pearson’sr) between the edge magnitudes of each image pair
is given below each subfigure [541], indicating the strong level of statistical correlation.

2. Denoising Methods. Denoising methods have the general goal of removing noise contam-

ination from high-resolution images. While many approachesexist that can independently

denoise each image in the image sequence [9,10,14,29,36,94,95,149,152,176,200,246,

295,318,374,415,422,430,431,440,461,476,499,504,510,546,550,575,639,650,651,653,

660, 670], it is generally more powerful to use approaches that leverage correlated image

structure in the image sequence. Approaches for the joint denoising of a sequence of images

can again be divided into two groups:

(a) Parametric Contrast Models. Techniques in the first group begin by using a con-

strained image model in which the signal intensity variations between different images

in the sequence are modeled for each voxel in terms of a small number (relative to

the number of images in the sequence) of contrast parameters. Given this model, de-

noising is achieved by directly enforcing that the reconstructed images obey the con-

trast model, and/or by imposing prior information (e.g., spatial smoothness) directly

on the spatial maps of the contrast parameters. The body of work on parameter-space

denoising is large; some representative examples from the MR literature include regu-

larized field inhomogeneity mapping [215,303], regularized MR spectroscopic imag-

ing [372, 552], regularized pharmacokinetic parameter estimation [558], regularized
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relaxation parameter estimation [161], regularized apparent diffusion coefficient esti-

mation [628], regularized probability and orientation distribution function reconstruc-

tion [22,361,448,527], and various algorithms for tensor smoothing with application

to diffusion tensor MRI (DTI) [31,36,134,142,148,167,204,216,287,637,643,650].

However, techniques that regularize in a parametric space usually use relatively simple

contrast models to ensure the tractability of the estimation procedure, and thus often

lack the ability to cope with model mismatch or fully represent the complex inter-image

signal characteristics seen in real biological tissues.

(b) General Image Models. The second group of denoising techniques aims to reduce

noise in the reconstructed image sequence without imposinga strict contrast model on

the image sequence, and is thus more broadly applicable. These techniques are also

more amenable to fitting multiple potential contrast modelsin cases of model ambigu-

ity. These image-domain techniques typically rely on generalizations of methods devel-

oped for the reconstruction and restoration of single images. Example methodologies

include the joint filtering of vector-valued images using geometric partial differential

equations (PDEs) and related concepts (see [613] for review of the image processing lit-

erature and [135,172,239,266,449] for MR application examples), filtering using vec-

tor order statistics (see review in [419]), statistical thresholding/filtering in an appro-

priate transform domain (e.g., see [21,23,43,75,100,324,418,438,534,555,599,648]

and references), joint reconstruction using Bayesian/regularized statistical optimality

criteria to impose spatial smoothness (e.g., see [61, 79, 88, 159, 226, 296, 441, 457,

556, 562, 605, 617, 645, 666] and references), and methods based on non-local statis-

tics [66,225,432,650].

This chapter proposes a new sequence-based constrained imaging scheme that can be applied

in both super-resolution and denoising contexts, though wewill demonstrate that the scheme is
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more effective when used for denoising.2 The specific form of the reconstruction formulation is

based on the following considerations:

1. Images from typical MRI experiments usually consist of “smooth” regions separated by

edges. Smoothness constraints can be used to reduce the effects of noise, although edges

need to be preserved to avoid amplifying partial volume effects.

2. The edge structures seen in different frames of an image have strong correlation. For exam-

ple, object support boundaries will exist in every image, regardless of the image contrast.

Edge structures should be imposed in a joint fashion.

3. The reconstruction should not be overly sensitive to incorrect prior information.

4. The proposed method should be easily characterizable in terms of the trade-off between

resolution and SNR.

Traditional joint-reconstruction formulations for super-resolution and denoising only incorporate

the first two items of this list. In contrast to such schemes, our proposed method is not very

sensitive to incorrect prior information, and is easily characterized in terms of the trade-off between

resolution and SNR. An analysis of reconstruction properties indicates that collecting extendedk-

space information (at the expense of lower SNR) and performing denoising is more advantageous

with this approach than attempting to achieve super-resolution.

We formulate the joint reconstruction in the context of statistical estimation using a Markov

random field (MRF) smoothness prior [50,51,237] that models shared edge structures to achieve

image reconstruction with joint feature-preserving regularization, similar to several existing meth-

ods [13,30,93,128,136,145,158,162,166,186,210,226,242,243,296,304,361,370,372,375,389,

410,457,479,489,527,562,617,637,645,666,674]. Galatsanoset al. [226] previously proposed

2Some of the text and figures in this chapter have been previously published in [280,283], and are copyright of the
IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must beobtained from the IEEE.

In addition, some of the figures in this chapter have been previously published in [274], and are copyright of the
ISMRM.
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reconstructing correlated image sequences using a weighted multidimensional Laplacian regular-

ization operator to impose both spatial and inter-image intensity correlation between the different

images from the sequence. However, this form of smoothing can cause signal leakage between

different image frames. Schultz and Stevenson [562] proposed a spatial edge-preserving MRF

model that couples the reconstruction of different image frames by using prior knowledge about

the specific size of the spatial discontinuities that shouldbe observed in each frame. While this

procedure works well when the prior edge information is accurate, this type of smoothing can lead

to biased results in practice when the discontinuity sizes are estimated poorly. A more widely-

used class of methods simply applies smoothness constraints that are spatially-adapted to reduce

smoothing at the locations of suspected edges [13, 30, 93, 128, 136, 145, 158, 162, 166, 186, 210,

242,243,296,304,361,370,372,375,389,410,457,479,489,527,617,637,645,666,674]. Some

of these methods assume that edge information has been pre-estimated using edge-detection or

tissue-classification methods [13,30,93,128,145,158,162,186,210,304,370,372,375,410,479],

while others jointly estimate image voxel values and edge locations from the collection of im-

ages [136,166,242,243,296,361,389,457,489,527,617,637,645,666,674].

When jointly estimating the image values and the correlated image edge structure, most of

the existing methods use a multi-image extension of the lineprocess prior proposed by Geman

and Geman [237] to model edges and the coupling between edge locations in different image

frames. However, due to the complexity of this kind of prior,the proposed optimization procedures

have frequently used either a computationally intensive simulated annealing procedure or a greedy

algorithm that provides only local convergence. Recently, convex optimization methods have also

been proposed for joint estimation of images and coupled edge locations [296,361,617,645,666].

While this leads to fast, globally-optimal computations, the resolution and SNR characteristics of

these methods have not been characterized in depth.

Similar to the methods described in the preceding paragraph, our proposed approach performs

joint estimation of the images and their edge structures using a line process prior. Our proposed

prior and the resulting optimization algorithm are extended from the Geman and Reynolds [235]
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formulation of multiplicative half-quadratic regularization (see [54] for review of the early litera-

ture, and [15,131,163,328,471,472] and references for examples of more recent developments).

Like the previous convex formulations described in Refs. [296,361,617,645,666], our proposed

reconstruction problem is also convex, and optimization can be performed using globally con-

vergent iterative reconstruction algorithms. In addition, the proposed prior has a form that is

somewhat similar to certain cost functionals that appear inliterature on joint sparse approxima-

tion [147, 606], Bayesian multivariate modeling of wavelet coefficients [140, 570, 596, 626], and

multivariate median filtering [647]. Connections can also be made to the literature on joint PDE

filtering of vector-valued images; this is not surprising, given the similarities between geometric

PDE filtering and half-quadratic regularization [55, 598]. Our proposed half-quadratic formula-

tion with a shared line process prior can provide new insightinto these existing methods, and our

proposed scheme offers several distinct advantages for MR imaging applications.

Before introducing our proposed method to leverage this correlated information, we first de-

scribe a line process approach to modeling edges.

3.1 Line Processes for Modeling Image Edge Structures

In a seminal paper [237], Geman and Geman introduced a powerful framework for the Bayesian

restoration of images, utilizing simply-structured MRFs toinvoke complicated image priors. One

such MRF image model uses the prior information that natural images are mostly smooth; that is,

voxels which are spatially adjacent to each other typicallyhave similar values, and spatial smooth-

ing/averaging can improve SNR without significantly degrading image features. However, images

also contain significant edge structures which should not beignored; when neighboring voxels are

very dissimilar, it is likely that an edge structure exists between them, and smoothness constraints

should not be strongly enforced. Because of this, Geman and Geman suggested using an image

model in which adjacent voxels are related to each other through new auxiliary variables called

line processes, which are used to model the edge structure of the image (see Fig. 3.4 for illustra-
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Figure 3.4: An image model with line processes, where voxelsare shown as circles and line
processes are shown as horizontal and vertical lines. For each pair of adjacent voxels, there is
a corresponding line process variable defined between them,which is used to model the edge
structure of the image. In this example, the voxel coefficients ρn andρm will be encouraged to
be similar, unless the corresponding line process variableℓn,m indicates that an edge is present
between them.

tion). The resulting MAP estimation problem for this image model thus requires joint estimation

of the image and its edge structure, with the explicit edge modeling allowing for the preservation

of important edge features.

In the context of MR imaging with a finite-dimensional discrete model as in Eq. (2.30) (with

voxels spaced on a uniform Cartesian grid), the MAP estimation problem with explicit line pro-

cesses can be posed as

{

ρ̂, ℓ̂
}

= argmax
{ρ,ℓ}

p(ρ, ℓ;d)

= argmax
{ρ,ℓ}

p(d;ρ, ℓ)p(ρ, ℓ)

= argmax
{ρ,ℓ}

p(d;ρ)p(ρ, ℓ)

= argmax
{ρ,ℓ}

p(d;ρ)p(ρ; ℓ)p(ℓ)

= argmin
{ρ,ℓ}

− ln p(d;ρ)− ln p(ρ; ℓ)− ln p(ℓ),

(3.1)
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whereℓ is the vector of all the line process variables,p(ρ, ℓ;d) is the posterior distribution of

the image and the line process variables given the observed data,p(d;ρ, ℓ) is the probability of

the data given the image and the line process variables,p(d;ρ) is the conditional probability of

the data given the image model as introduced in Chapter2, p(ρ, ℓ) is the prior distribution of

the image and line process variables,p(ρ; ℓ) is the conditional distribution of the image variables

given the line process variables, andp(ℓ) is the marginal distribution of the line process variables.

In writing these equations, we have assumed that when conditioned on the image, the data is

independent of the line process variables, which is quite reasonable given that line processes are

simply components of our mathematical model rather than physical objects.

In this work, we choosep(ρ; ℓ) to be a smoothness prior of the form

− ln p(ρ; ℓ) =
N∑

n=1

∑

m∈∆n
m>n

ℓn,m |ρn − ρm|2 + ε

N∑

n=1

|ρn|2 , (3.2)

where∆n is the set of all voxels belonging to theneighborhoodof thenth voxel3 [237] andℓn,m is

the line process variable between thenth andmth voxels. Conditioned onℓ, the negative log-prior

of ρ is a quadratic function, and thus has the form of a multivariate Gaussian distribution. Note

that the covariance of this multivariate distribution is itself a random variable, due to the stochastic

model being used forℓ, which implies thatp(ρ, ℓ) has the form of aGaussian scale-mixture[18].

The first term in Eq. (3.2) encourages smooth variation between adjacent voxels, with the

strength of the smoothness constraint dependent on the value of the line process variables. In

locations where the line process variables are large, smoothness is imposed quite heavily, while

smoothness is not imposed heavily in locations where the line process variables have small val-

ues. As a result, line processes with small values can be considered as corresponding to locations

where edge structures are quite probable and where discontinuities will be preserved. The sec-

ond term in this expression is unrelated to edge structures,but is used to ensure thatp(ρ; ℓ) is

3In this work, we focus on the first-order or nearest-neighborsystem [237], for which∆n is the set of four pixels
that are vertically or horizontally adjacent to pixeln.
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a valid probability distribution; ifε = 0, thenρ does not have a mean-value andp(ρ; ℓ) is not

integrable. In practice, having a strictly proper prior is not essential, and we will generally use

ε = 0, since imposing a mean-value onρ can bias the reconstruction toward zero. As a result, the

approach we will present later is only quasi-Bayesian, and ismore appropriately considered as a

PML approach. This choice to deviate from a Bayesian reconstruction is reasonable for several

reasons: 1) true Bayesian priors for the joint distribution of MR images with different contrast are

frequently unavailable; 2) even when an accurate prior is available, it has been shown theoreti-

cally that Bayesian MAP reconstructions often deviate substantially from both the data acquisition

model and the prior model [470]; 3) the resolution and noise characteristics of the reconstructed

image can be described easily using the PML interpretation.Allowing ε = 0, Eq. (3.1) can be

rewritten (after combination with Eq. (2.33) and Eq. (3.2)) as

{

ρ̂, ℓ̂
}

= argmin
{ρ,ℓ}

1

σ2
‖Fρ− d‖2ℓ2 +

N∑

n=1

∑

m∈∆n
m>n

ℓn,m |ρn − ρm|2 − ln p(ℓ). (3.3)

The prior specified in Eq. (3.3) provides a reasonable way of statistically modeling and pre-

serving the edge structure of real images, and is quite prevalent in the image reconstruction and

enhancement literature. However, the statistical edge model is not complete without specifica-

tion of the line process priorp(ℓ). In Geman and Geman’s original conception, the line process

variables were binary (i.e., either an edge exists or it doesnot) and interacting (i.e.,p(ℓ) imposed

statistical dependence relationships on line processes innearby spatial locations) [237]. While

priors with interacting line processes are very powerful and flexible, optimization of Eq. (3.1) with

interacting line processes can be more computationally intensive than with non-interacting line

processes, and it can be hard in general to design interacting line process priors that perform sig-

nificantly better than non-interacting line process priors[54, 328]. As a result, following initial

work by Blake and Zisserman [57], many recent edge-preserving regularization methods usenon-

interacting line process models [54,131,235]. With a non-interacting line process model,p(ℓ) the
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ℓn,m values are assumed to be independent such that

ln p(ℓ) =
N∑

n=1

∑

m∈∆n
m>n

ln p(ℓn,m). (3.4)

In this case, and under suitable conditions onln p(ℓn,m), Eq. (3.3) can be simplified as

ρ̂ = argmin
ρ

1

σ2
‖Fρ− d‖2ℓ2 +

N∑

n=1

∑

m∈∆n
m>n

Ψnm (|ρn − ρm|) , (3.5)

where

Ψnm (t) = inf
ℓn,m

(
ℓn,mt

2 − ln p(ℓn,m)
)
. (3.6)

Conditions onln p(ℓn,m) under which Eq. (3.5) is valid are discussed in Refs. [131,235,328,471],

and we will elaborate on one specific set of conditions in the sequel.

Note that Eq. (3.5) has the same form as the PML reconstruction in Eq. (2.37), despite the fact

that line processes were not involved in the construction ofEq. (2.37). This illustrates the fact that

many PML image reconstruction approaches have a line process interpretation, even if the line

process variables are not represented explicitly [54,131,163,235,472]. An example of this is that

the ℓ1 norm (Laplace) regularization functional [137, 420, 546] (cf. Chapter4) can be obtained

using the line process model when using the following (improper and unnormalizable) prior for

eachℓn,m [54]:

p(ℓn,m) ∝ e
− 1

4ℓn,m 1{0<ℓn,m}. (3.7)

In practice, it is common for recent regularized reconstruction methods to start directly from

Eq. (3.5) using an appropriate choice ofΨnm(·), rather than starting directly from the formula-

tion involving line processes.

To encourage smooth reconstructions, an important featureof Ψnm(·) is that it should be non-

decreasing, so that larger image discontinuities are neverfavored over smaller image discontinu-

ities unless there is significant evidence for the discontinuity from the data. An additional desirable
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feature ofΨnm(·) is that it has the ability to preserve edges to some extent. Edge-preserving regu-

larization has been considered by a number of authors [54,131,163,469], and one of the defining

features of edge-preserving priors is that they do not significantly penalize large edges from form-

ing, i.e., thatΨ(t) does not grow too rapidly ast → ∞. Generally, this is often assumed to mean

thatΨ(t) grows slower than a quadratic function for large values oft. The quadratic function is

well known to over-smooth edges, as a result of the fact that the rapid growth of the quadratic

penalty function makes it difficult for reconstructions to contain significant edge structures.

3.2 Joint Reconstruction of Images with a Shared Line

Process Prior

The previous section introduced the line process model for describing edge structures in natural

images. In this section, we introduce a new scheme for joint-reconstruction of coregistered images

using a shared line process edge model. Before introducing our proposed reconstruction formu-

lation, we will first establish some notation. We consider the case where a length-Q sequence of

coregistered images is acquired with different contrasts from a static object. We let the length-Mq

vectordq represent the acquiredk-space data for theqth image frame, let the length-Mq vector

ηq represent the noise (assumed to be independent and identically distributed Gaussian noise with

varianceσ2
q ) in the data for theqth image, let theMq × N matrixFq represent the Fourier acqui-

sition operator, and let the length-N vectorρq represent the corresponding image. Note that the

k-space trajectory is allowed to be different for each image.

Our proposed reconstruction involves solving the following optimization problem:

{

ρ̂
1, ρ̂2, . . . , ρ̂Q

}

= argmin
{ρ1,ρ2,...,ρQ}

Q
∑

q=1

α2
q ‖Fqρ

q − dq‖22 +
N∑

n=1

∑

m∈∆n
m>n

Ψ





√
√
√
√

Q
∑

q=1

β2
q |ρqm − ρqn|2



 ,

(3.8)

whereΨ : [0,∞) → [0,∞) is an appropriate regularization function that is used to encourage
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smooth reconstructions, and{αq}Qq=1 and{βq}Qq=1 are user-selected real-valued positive weighting

coefficients. We will assume for simplicity thatΨ(t) is continuously differentiable. In addition, to

have edge-preserving regularization (as discussed in the previous subsection), we will assume that

Ψ′(t)/(2t) is non-increasing and thatlimt→∞Ψ(t)/(t2) = 0 (i.e.,Ψ(t) never grows faster than a

quadratic function, and grows significantly slower than a quadratic function ast→ ∞).

In order to have a line process interpretation, we will additionally impose thatΨ(
√
t) is con-

cave on(0,∞) [235, 492], and will assume that the limitsT = limt→∞Ψ′(t)/(2t) andL =

limt→0+ Ψ′(t)/(2t) are well defined. In this case, it can be proven [26] that there exists a convex

and decreasing functionJ(·) such that

Ψ(t) = inf
T≤ℓ≤L

(
ℓt2 + J(ℓ)

)
. (3.9)

In addition, for fixedt, the value ofℓ that optimizes Eq. (3.9) is ℓ = Ψ′(t)/(2t) [26].

As a result of this relationship, Eq. (3.8) has the line process interpretation

{

ρ̂
1, ρ̂2, . . . , ρ̂Q

}

= argmin
{ρ1,ρ2,...,ρQ}

inf
ℓ

C(ρ1,ρ2, . . . ,ρQ, ℓ), (3.10)

where

C(ρ1,ρ2, . . . ,ρQ, ℓ) =

Q
∑

q=1

α2
q ‖Fqρ

q − dq‖22 +
Q
∑

q=1

N∑

n=1

∑

m∈∆n
m>n

β2
q ℓn,m |ρqm − ρqn|2

+
N∑

n=1

∑

m∈∆n
m>n

J(ℓn,m).

(3.11)

Note that the line process variables in this expression are shared among allQ images. Thus, this

formulation has the ability to capture the correlated nature of the edge structures in the image

sequence. Ifℓn,m is small (indicating an edge could be present), then the reconstruction will avoid

smoothing any of the images significantly across that possible edge. On the other hand, ifℓn,m is

large, then smoothness will be imposed at that location for every image in the sequence.
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Due to the line process interpretation, optimization of Eq.(3.8) can be performed efficiently

using the following optimization procedure (this procedure is frequently called a multiplicative

half-quadratic optimization algorithm [15, 131, 163, 235, 472], though it also has a gradient lin-

earization interpretation, a quasi-Newton interpretation, a fixed-point method interpretation, and a

majorize-minimize interpretation [207,471,625]):

1. Set iteration numberj = 0, and set the estimated image sequence equal to an initial guess
{

ρ̂
1
(j), ρ̂

2
(j), . . . , ρ̂

Q
(j)

}

(e.g., set all voxel coefficient values based on an initial noisy Fourier

reconstruction).

2. At thejth iteration, define line process variables for each voxel pair as

ℓ(j) = arg inf
ℓ

C(ρ̂1
(j), ρ̂

2
(j), . . . , ρ̂

Q
(j), ℓ), (3.12)

i.e., set

ℓ(j)n,m =
Ψ′(t

(j)
n,m)

2t
(j)
n,m

(3.13)

wheret(j)n,m is given by

t(j)n,m =

√
√
√
√

Q
∑

q=1

β2
q

∣
∣
∣ρ̂

q
m,(j) − ρ̂qn,(j)

∣
∣
∣

2

, (3.14)

andρqm,(j) denotes themth element of̂ρq
(j). Note that this step is an explicit line process

calculation, and that the value of the line process depends on a weighted average of the

edge strengths in allQ images, where the weighting is defined through the user-selectedβq

parameters.

3. Update the image sequence according to

{

ρ̂
1
(j+1), ρ̂

2
(j+1), . . . , ρ̂

Q
(j+1)

}

= argmin
{ρ1,ρ2,...,ρQ}

C(ρ̂1
ρ̂
2, . . . , ρ̂Q, ℓ(j)). (3.15)
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This optimization problem is separable, such that the solution for eacĥρq
(j+1) is given by

ρ̂
q
(j+1) = argmin

ρq
‖Fqρ

q − dq‖2ℓ2 +
N∑

n=1

∑

m∈∆n
m>n

β2
q

α2
q

ℓ(j)n,m |ρqm − ρqn|2

= argmin
ρq

‖Fqρ
q − dq‖2ℓ2 +

N∑

n=1

∑

m∈∆n
m>n

β2
q

α2
q

ℓ(j)n,m |ρqm − ρqn|2

= argmin
ρq

‖Fqρ
q − dq‖2ℓ2 +

β2
q

α2
q

∥
∥
∥
∥
diag(

√

ℓ
(j)
n,m)Dρq

∥
∥
∥
∥

2

ℓ2

=

(

FH
q Fq +

β2
q

α2
q

DHdiag(ℓ(j)n,m)D

)−1

FH
q d

q,

(3.16)

whereD is the matrix that computes finite differences between neighboring voxels, the di-

agonal matricesdiag
(

ℓ
(j)
n,m

)

anddiag(
√

ℓ
(j)
n,m) have diagonal elements equal to the different

components ofℓ(j)n,m and
√

ℓ
(j)
n,m (arranged in the same order as the finite-differences inD),

respectively, and we have assumed that the matrix being inverted has full rank (which nec-

essarily implies that the nullspace ofD has trivial intersection with the nullspace ofFq for

eachq). This full rank condition will generally be satisfied if
β2
q

α2
q
ℓ
(j)
n,m is always a positive

number at every spatial location in every image, and if the center ofk-space is always sam-

pled. Alternatively, the condition that
β2
q

α2
q
ℓ
(j)
n,m is positive is not necessary whenFq has a

trivial nullspace.

On a practical note, the matricesFq andD are often very large, and working with them

directly would require large amounts of memory and processing time. However, iterative

optimization algorithms which only require computation ofmultiplications with these ma-

trices can be done efficiently;F is often related to the discrete Fourier transform due to

the form of Eq. (2.32), andD is sparse. Thus,̂ρq
(j+1) can be determined efficiently using

iterative algorithms like the conjugate gradient (CG) method [305] or LSQR [491]. Explic-

itly, each iteration will require multiplication of vectors with FH
q Fq andDHdiag(ℓ

(j)
n,m)D.

When the acquired data lies on a Cartesian grid matched to the size of the field of view, then
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multiplications byFq andFH
q can be performed efficiently using the FFT. Even when the

acquired data is not Cartesian, multiplication byFH
q Fq can be performed efficiently using a

simple convolution [212,627] that can be implemented efficiently using the FFT algorithm.

Multiplications withD andDH are also computationally simple due to sparsity.

TheQ different optimization problems in Eq. (3.16) are completely independent from each

other, and thus can be solved in parallel if appropriate parallel computation hardware is

available. However, if the matrices being inverted happen to be the same for allq (which

will occur if Fq and
β2
q

α2
q

are the same for allq), then use of an iterative algorithm that takes

advantage of this shared structure (e.g., the algorithm described in Ref. [129]) might be

more computationally efficient. In addition, we have previously shown that the computation

of each individual matrix inversion in Eq. (3.16) can also be significantly accelerated by

using parallel processing on graphics processing units [593,661].

4. Incrementj. Repeat steps 2 and 3 until convergence is achieved.

By construction, the value of the cost function in Eq. (3.10) is bounded below by zero and is non-

increasing as the iterations proceed. As a result, the valueof the cost function is guaranteed to

converge. In addition, stronger assumptions onΨ(·) can ensure global convergence of the iterates

to a global minimum. For example, Delaney and Bresler [163] have proven that the following

additional conditions will ensure global convergence of this half-quadratic algorithm to a unique

optimal solution:

1. Ψ(t) is strictly convex.

2. The nullspace ofβq

αq
D has trivial intersection with the nullspace ofFq for eachq.

3. θ(t) = Ψ(
√
t) is a twice continuously differentiable strictly concave function, withθ(0) = 0,

θ′(0) = 1, and0 < θ′(t) ≤ 1 for all t ∈ [0,∞).

Other conditions that can ensure good convergence properties for this algorithm can be found in

Refs. [15,131,472].
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3.2.1 Modes of Operation

Different modes of operation can be achieved through the choice of the{αq}Qq=1 and {βq}Qq=1

parameters. The value ofβq determines the influence of theqth image on the estimated shared

line-process variables. Large values ofβq imply that the spatial finite-differences computed from

theqth image should have a significant role in the estimation of the shared line-process variables,

while small values ofβq imply the opposite. In addition, the value of
β2
q

α2
q

will determine the trade-off

between spatial resolution and image SNR in the reconstructed images, andαq should be selected

to optimize this trade-off for the particular application context. Large values ofαq can be used to

impose that theqth reconstructed image should be highly data consistent (i.e., high resolution with

limited SNR improvement), while smaller values ofαq permit more significant data inconsistency

for improved denoising. In general, the selection of{αq}Qq=1 and{βq}Qq=1 will be different based

on whether the proposed method is being used for super-resolution or for denoising.

For the super-resolution context, we note that it is generally very difficult to accurately infer

high-resolution edge structure from low-resolution data unless very strong additional assumptions

are made.4 As a result, when the acquisition includes images with very different resolution char-

acteristics, it is better to rely on the high-resolution images to estimate the edge structures, and

βq can be set very small for the low resolution images. In the super-resolution context, it is often

the case that the high-resolution “reference” images also have relatively high SNR. In this case,

αq can be set very high for the high resolution images, to emphasize data fidelity for these high-

quality images. In the limiting case where
β2
q

α2
q

approaches zero for the high-resolution images,

andβq approaches zero for the low-resolution images (with appropriately scaledαq such that
β2
q

α2
q

is

non-zero), then the iterative algorithm described in the previous section will converge after a single

iteration if theFq matrices for the high-resolution images have trivial nullspaces. For this scenario,

reconstruction of the low-resolution images is perfectly linear with respect to the corresponding

4Note that in many cases, attempting to infer high-resolution edge structure from low-resolution data can lead
to image reconstructions possessing sharp edge features, but with significantly distorted image geometry compared
to the true high-resolution image. This issue is discussed briefly in Ref. [274], in the context of a special type of
reference-based super-resolution reconstruction, whereline processes are estimated both from the reference images
and from low-resolution noisy data.
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low-resolution data.

For the denoising context, we will assume that theQ different datasets all have similar resolu-

tion. In this case, it is useful to use every image to infer theshared edge structure, meaning that

βq should be greater than zero for allq. Settingβq to be exactly the same for all images would be

one simple approach. However, this simple approach could beproblematic in some contexts, since

it will give unequal weight to images which are scaled differently from one another. We gener-

ally chooseβq inversely proportional to the average magnitude of the signal within the region of

interest of theqth image, though it could also be adjusted manually if other prior information is

available on which images should play more or less significant roles in determining the joint edge

structure. The choice ofαq in the denoising context can depend on the experimental objectives.

From a PML point of view, it would be optimal to setαq = 1/σq, since the data fidelity criterion

in this case would exactly equal the negative log-likelihood of the measured data (neglecting irrel-

evant additive constants). In this case, the amount of smoothing applied to each image will depend

on the amount of noise present in each image. However, whenFq is the same for all images, it

can also be useful to chooseαq such that
β2
q

α2
q

is the same for all images. In this case, the recon-

struction matrix from Eq. (3.16) will be identical for all images, leading to uniform reconstruction

characteristics between the different images from the sequence.

3.3 Characteristics

The proposed method can reduce image noise and Gibbs ringingartifacts though the use of spatial

smoothing, and is applicable to both super-resolution and denoising contexts. However, as a result

of spatial smoothing, it is intuitive that there could also naturally be some loss in spatial resolu-

tion relative to traditional Fourier reconstruction. In contrast to most constrained reconstruction

methods, the loss of spatial resolution and the corresponding gain in SNR are easy to analyze

with the proposed method. These issues, as well as other important characteristics of the proposed

algorithm, are discussed in the next subsections.
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3.3.1 Resolution and Noise Characteristics of the Proposed Method

As illustrated by Eq. (3.16), for a given estimated edge map, the estimated imageρ̂
q can be viewed

as a linear transform of the measured datadq, even though the reconstruction procedure itself

is nonlinear. This linear perspective provides an analyticway to analyze the resolution of the

reconstructed image using the SRF as in Eq. (2.43). Analysis using the SRF is generally more

powerful than linearized local perturbation-based resolution analyses that have been developed for

non-linear reconstruction in emission tomography [8,213,524,588,631], since the SRF precisely

describes how a reconstructed voxel relates to the originaltrue image. In addition, due to the

use of a shared edge-map, for all images with the sameFq and the same value of
β2
q

α2
q
, the SRFs for

each reconstructed voxel will be identical over the different images. This latter point is particularly

important for quantitative studies, since the validity of any parametric voxel-by-voxel model-fitting

procedure would be compromised if the same voxel in different images does not correspond to the

same spatial spin population.

Linear noise analysis, as described previously in Eq. (2.46), is also possible if it is assumed that

the estimated line processesℓ are not a function of the noise, and can be treated as deterministic

variables rather than random variables. The ability to analytically characterize both resolution

and noise is very powerful, and provides ways to understand the performance characteristics of

the reconstruction algorithm that typically are not available for general non-linear denoising and

super-resolution approaches. In addition, it becomes possible to choose
β2
q

α2
q

based on the desired

trade-off between resolution and SNR in each image.

To understand the characteristics of reconstructions using Eq. (3.8), we first start by analyzing

the performance characteristics of weighted smoothness reconstructions as in Eq. (3.16), assuming

thatℓ is deterministic. As a first step, consider the SRFs shown in Fig. 3.5, which are formed from

regularized reconstruction of 1D Cartesian Fourier data sampled uniformly at the Nyquist rate.

The dashed vertical lines correspond to edge locations, at which ℓn,m has been set equal to0. At

all other spatial locations,ℓn,m has been set equal to1. The different subfigures correspond to
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Figure 3.5: SRFs calculated at several different spatial locations in the image, using a weighted
smoothness-regularized reconstruction with binary edge weights. The dashed lines indicate spatial
locations whereℓn,m = 0. The different subfigures correspond to different amounts of regulariza-
tion, with increasing regularization corresponding to increasingγ. Theγ = 1 case corresponds to
standard conjugate phase reconstruction.
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Figure 3.6: Improvement in SNR as a function of spatial location corresponding to the same
binary-edge regularized reconstructions considered in Fig. 3.5. The six different curves corre-
spond, from bottom to top, toγ = 1, 2, 4, 8, 16, and 32.

different values of
β2
q

α2
q
, which have been adjusted to achieve different levels of SNRimprovement

in the image. We use the symbolγ to denote theequivalent number of averages, which we define

as the number of averages that would have been necessary to acquire to achieve a similar level

of SNR improvement in smooth image regions. Notably, with little regularization, the SRFs are

not significantly modified. However, as regularization is increased, the SRFs become broader (i.e.,

resolution is degraded), and the SRFs are largely shift-invariant unless they are sufficiently close to

edge structures. However, the shapes of the SRFs begin to adapt as they encounter edge locations,

and this adaptation leads to small leakage of signal across the imposed edge locations. In the limit

as the regularization grows very large, the reconstructed image will become a piecewise constant

image, with the value of each piece of the image approximately equal to the average value of

the image within each image compartment, and with the different compartments separated by the

boundary locations.

The corresponding noise plot is shown in Fig.3.6. As can be seen, noise improvement is fairly

uniform, except near edge locations where the reduction in noise variance is not as significant as it

was in regions that were far from estimated edge locations. This result is not surprising, since less

smoothing (i.e., less spatial averaging) is applied in these regions to avoid signal leakage across

the known edge. Another notable feature is that the achievable improvement in SNR is limited by
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the size of the image feature. This observation is consistent with theoretical characterizations of

highly-constrained compartmental image models [321,404], for which the SNR is also known to

be highly dependent on the size of the compartment. Looking at both Figs.3.5and3.6, we observe

that increasing regularization has the effect of improvingSNR at the expense of spatial resolution,

as expected. However, the use of edge weights can help to ensure that partial volume artifacts are

minimal.

It is also insightful to look at the reconstructions that areobtained whenℓn,m = 0.1 instead

of 0 at edge locations, since the reconstruction behavior changes considerably for non-zero edge

weights. The resolution and noise characteristics in this case are shown in Figs.3.7 and3.8, re-

spectively. Unlike in the previous case, a small amount of leakage is allowed across edge locations

if the regularization is strong enough. However, use of non-zeroℓn,m allows the improvement in

noise variance to be more spatially uniform.

In the previous examples, we demonstrated the behavior of weighted-smoothness regulariza-

tion when edge weights were spatially separated from each other. Different behavior is observed

when contiguous regions of the image have smallℓn,m values. This is illustrated in Figs.3.9 and

3.10 for the case when edge locations receive a weight ofℓn,m = 0. While the SRFs and noise

variances behave similarly to those in Figs.3.5 and3.6 outside of the spatially-contiguous “edge

region,” the resolution and noise properties are extremelypoor inside this region. Figures3.11and

3.12show the behavior when edge locations receive a weight ofℓn,m = 0.1, and the situation is

much better in this case. In particular, we still observe a loss of resolution and improvement in

SNR in the “edge region,” though the changes are not as significant as those observed in the rest

of the reconstruction.

In the scenarios we have considered so far, the Fourier data resolution was higher than that

of the smallest separation between edge locations in the reconstructed image. In order to address

the issue of super-resolution reconstruction, it is also ofinterest to examine the case where the

features of interest are small with respect to the resolution of the data. One such case is shown in

Fig. 3.13. As can be seen, when the data resolution is lower than that ofthe edge information, the
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Figure 3.7: SRFs calculated at several different spatial locations in the image, using a weighted
smoothness-regularized reconstruction with non-binary edge weights. The dashed lines indicate
spatial locations whereℓn,m = 0.1. The different subfigures correspond to different amounts of
regularization, with increasing regularization corresponding to increasingγ. The γ = 1 case
corresponds to standard conjugate phase reconstruction.
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Figure 3.8: Improvement in SNR as a function of spatial location corresponding to the same reg-
ularized reconstructions with non-binary edge weights as considered in Fig.3.7. The six different
curves correspond, from bottom to top, toγ = 1, 2, 4, 8, 16, and 32.

edge constraints have limited ability to suppress signal leakage. In addition, the small compart-

ments actually have noise amplification rather than noise reduction. The implication of this is that

unless the prior edge constraints are very accurate and can be imposed in a very strong way, use

of the proposed technique for the reconstruction of sub-resolution features is not recommended.

Additionally, this result also implies that smoothness-based SNR improvement should only be at-

tempted when the spatial image regions of interest are largewith respect to the resolution of the

data.

Finally, while the results we have shown so far are all 1D examples, the results extend natu-

rally to 2D. This is illustrated with a simple example in Figs. 3.14and3.15. These figures show

that, as expected based on the previous 1D results, the SRFs for voxels far from edge locations

demonstrate the standard trade-off between resolution andSNR, while SRFs for voxels near edge

locations adapt to avoid signal leakage across edge locations. Notably, the SRFs from regularized

reconstruction of32× 32 Fourier data can have both smaller noise variance and smaller full-width

at half-maximum (FWHM) than the SRFs from the MNLS reconstructions from16 × 16 data,

even if the16× 16 data is averaged four times. The issue of resolution and SNR trade-offs in data

acquisition is significant, and will be discussed in more detail in the next subsection.

To summarize the results of this subsection:
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Figure 3.9: SRFs calculated at several different spatial locations in the image, using a weighted
smoothness-regularized reconstruction with binary edge weights, and a spatially-contiguous
“edge” region. The dashed lines indicate spatial locationswhereℓn,m = 0. The different subfigures
correspond to different amounts of regularization, with increasing regularization corresponding to
increasingγ. Theγ = 1 case corresponds to standard conjugate phase reconstruction.
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Figure 3.10: Improvement in SNR as a function of spatial location corresponding to the same
binary-edge regularized reconstructions (with a spatially-contiguous “edge” region) considered in
Fig. 3.9. The six different curves correspond, from bottom to top, toγ = 1, 2, 4, 8, 16, and 32.

• Weighted smoothness priors provide a mechanism for improving image SNR through spatial

smoothing, while preventing signal leakage and partial volume artifacts across known edges.

• Use of weighted smoothness priors is most effective when theresolution of the data is higher

than that of the smallest image feature to be preserved. The proposed regularization scheme

has limited capabilities for avoiding signal leakage with very low resolution data, unless the

smoothness model can be imposed very strictly [319,321,404]. Even when the model can

be imposed strictly, there is generally an amplification of noise rather than a reduction of

noise.

• Due to conditioning problems, it is generally not useful to have large contiguous regions of

the image withℓn,m = 0.

• Spatial smoothing of high-resolution data can lead to reconstructions with both higher reso-

lution and higher SNR than standard reconstruction of low-resolution data (averaged several

times for equivalent acquisition time).
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Figure 3.11: SRFs calculated at several different spatial locations in the image, using a weighted
smoothness-regularized reconstruction with non-binary edge weights, and a spatially-contiguous
“edge” region. The dashed lines indicate spatial locationswhereℓn,m = 0.1. The different subfig-
ures correspond to different amounts of regularization, with increasing regularization correspond-
ing to increasingγ. Theγ = 1 case corresponds to standard conjugate phase reconstruction.
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Figure 3.12: Improvement in SNR as a function of spatial location corresponding to the same reg-
ularized reconstructions with non-binary edge weights (and a spatially-contiguous “edge” region)
as considered in Fig.3.11. The six different curves correspond, from bottom to top, toγ = 1, 2, 4,
8, 16, and 32.
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(d) Noise Characteristics

Figure 3.13: (a)-(c) SRFs calculated at several different spatial locations in the image, using a
weighted smoothness-regularized reconstruction with binary edge weights, with low-resolution
Fourier data. Note that signal leakage is unavoidable for the very high-resolution signal compart-
ments. (d) The noise variance only improves with regularization for image compartments that are
larger than the native resolution of the data.
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(a) MNLS (b) λ = 0.0001 (c) λ = 0.001 (d) λ = 0.01

(e) MNLS (f) λ = 0.0001 (g) λ = 0.001 (h) λ = 0.01

Figure 3.14: Regularized reconstruction SRFs for different values ofλ =
β2
q

α2
q
, using binary edge

weights located along the white square. (a-d)16 × 16 Cartesian sampling at the Nyquist rate.
(e-h) 32 × 32 Cartesian sampling at the Nyquist rate. SRFs for voxels far from edge locations
demonstrate the standard trade-off between resolution andSNR.
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(a) MNLS (b) λ = 0.0001 (c) λ = 0.001 (d) λ = 0.01

(e) MNLS (f) λ = 0.0001 (g) λ = 0.001 (h) λ = 0.01

Figure 3.15: Regularized reconstruction SRFs for different values ofλ =
β2
q

α2
q
, using binary edge

weights located along the white square. (a-d)16×16 Cartesian sampling at the Nyquist rate. (e-h)
32×32 Cartesian sampling at the Nyquist rate. SRFs for voxels near edge locations adapt to avoid
signal leakage across edge locations.
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3.3.2 The Trade-off Between Resolution and SNR

In the previous subsection, we demonstrated that the proposed regularized reconstruction method

gives us the flexibility to choose the trade-off between resolution and SNR of the reconstructed

images. As a result, an important question is: how should data be acquired to optimize this trade-

off? The optimal design of MRI sampling strategies has been considered for a long time, and there

are two main strategies that have been advocated in the context of Nyquist-sampled Fourier data:

S1. Samplek-space over a region corresponding to the desired nominal resolution, and recon-

struct images using basic inverse Fourier-transform methods. Use additional time for aver-

aging.

S2. Samplek-space using the same total number of measurements as in S1, but cover a larger re-

gion ofk-space (i.e., encode higher-resolution information) at the expense of reduced signal

averaging. Reconstruct images using methods that reduce noise levels, necessarily reducing

image resolution in the process.

These strategies have been compared in previous work [99,194,497], and the general consensus

has been that S1 is more efficient than S2. Edelsteinet al. [194] and Parker and Gullberg [497]

demonstrate that, for fixed data acquisition time, simply averaging adjacent voxels within a high-

resolution reconstructed image yields lower SNR than if data was directly collected at lower resolu-

tion. One limitation of these analyses is that they do not consider the effect of this voxel-averaging

procedure on the SRF, which can provide both quantitative andqualitative measures of resolution.

Buxton’s analysis of the SNR/resolution trade-off [99] makes use of theequivalent width(EW) of

the SRF to quantify image resolution (see [346] for additional discussion of this resolution metric),

and shows that the trade-off between SNR and the EW is optimized when spatial smoothing is not

applied. However, as will be described later in this subsection, there are many alternative measures

of resolution based on the SRF, and the EW metric does not necessarily correspond as well with

qualitative perceptual assessment compared to many of these other resolution metrics.
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Despite these existing pessimistic characterizations of uniformly-sampled data with higher-

than-nominal resolution, there are still indications in the literature that there can be benefits to

strategy S2. For example, leveraging imaging physics, Liet al. [396] demonstrate that in MR

spectroscopic imaging studies, higher-resolution acquisition followed by spatial smoothing can

mitigate the loss in SNR associated with line-broadening due to intravoxelB0 field inhomogeneity.

Similarly, Triantafyllouet al. [604] demonstrate that this strategy can also reduce the effectsof

physiological noise in fMRI studies. Finally, as we have described in the previous subsection,

there can be a theoretical advantage in SNR/resolution efficiency for oversampling and filtering of

uniformly-sampled Fourier data with respect to the FWHM resolution metric in the context of our

regularized reconstruction method.

To examine the trade-offs between resolution and SNR, we willfocus on a simple abstraction

of our proposed reconstruction scheme. In particular, we will focus on the special 1D case where

Fq corresponds to theM low-frequency rows from anN×N 1D unitary discrete Fourier transform

(DFT) matrix (N andM both even numbers), and whereℓn,m = 1 at every spatial location. In

addition, we will assume periodic (toroidal) boundary conditions for the smoothness prior. In

this case, it can be shown that the solution to Eq. (3.16) has the form of the conjugate phase

reconstruction in Eq. (2.23), with

wm =
1

1 + 4
β2
q

α2
q
sin2

(
π km

N

) . (3.17)

This result indicates that shift-invariant quadratic smoothness regularization can be equivalent to

traditional windowed Fourier reconstruction.5 For simplicity, and because the proposed recon-

struction behaves like windowing in spatial regions that are far from edge locations, we will pro-

vide an analysis of the resolution and noise trade-offs for standard windowed Fourier reconstruc-

tion.
5Interested readers should note that Ref. [283] derives similar expressions that are applicable in the context of

slightly more general regularization and data acquisitionschemes.
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Resolution Metrics

We described resolution properties of linear reconstructions in Ch.2, though we did not specify

any quantitative resolution metrics because there is no universally accepted way of quantifying

resolution [165]. However, many heuristic approaches for measuring resolution based on the SRF

have been proposed in the literature. In one-dimension, popular choices include:

• Rayleigh Criterion (RC). The RC [533] measures resolution by the distance from the

maximum of the SRF to its first minimum. This definition was originated in the context of

optical imaging systems; for MRI, we will use the distance from the maximum of the SRF

to its first zero-crossing to define the RC, such that

h0 (RC) = 0. (3.18)

• Sparrow Criterion (SC). The SC [584] measures resolution by identifying the distance

between two identical point sources at which the “valley” that forms between them is no

longer visible. Mathematically, the SC is the smallest distance such that

∂2

∂x2

[

h0

(

x+
SC

2

)

+ h0

(

x− SC

2

)]∣
∣
∣
∣
x=0

= 0. (3.19)

• Full-Width at Half-Maximum (FWHM). . The FWHM [314] is one of the most common

measures of resolution in imaging, and is defined as twice thelargest distance from the

center of the SRF to a spatial location where the magnitude of the SRF is at least half of

its maximum value. For the smooth SRFs that can be obtained from finite Fourier data, the

FWHM is defined as the largest distance within the FOV such that

∣
∣
∣
∣
h0

(
FWHM

2

)∣
∣
∣
∣
=

1

2
. (3.20)
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• Full-Width at Tenth-Maximum (FWTM). Similar to the FWHM, the FWTM is defined

as twice the largest distance from the center of the SRF to a spatial location where the

magnitude of the SRF is at least one-tenth of its maximum value. With finite Fourier data,

the FWTM is defined as the largest distance within the FOV such that

∣
∣
∣
∣
h0

(
FWTM

2

)∣
∣
∣
∣
=

1

10
. (3.21)

• Standard Deviation Criterion (SD). The SD [630] measures resolution using the second

moment of the SRF. The original definition was developed for strictly positive SRFs. For

this dissertation, the SD will be defined (assuming the SRF is centered atx = 0 such that

the first moment is zero) as

SD =

√
∫

FOV

x2 |h0 (x)| dx. (3.22)

• Equivalent Width (EW). The EW [99,346] is equal to the width of a rectangle that has the

same integral and same maximum value as the SRF. In particular,

EW =

∫

FOV
h0 (x) dx

h0 (0)
. (3.23)

For a fixed 1Dk-space trajectory (with 256 Nyquist-rate samples that symmetrically cover the

low-frequency region ofk-space), the trade-off between spatial resolution and image noise variance

is illustrated in Fig.3.16 for strategy S2 with the apodization window described in Eq.(3.17)

with N = 256, as well as five other common window functions common in signal processing

applications [292]: the Gaussian window, the Kaiser-Bessel window, the Tukey window, the Hann

window, and the Dolph-Chebyshev window. In addition to this,the figure also shows the trade-

off between spatial resolution and image noise variance that would be obtained with strategy S1,

wherek-space coverage is reduced to provide additional time for data averaging. Notably, except
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Figure 3.16: Resolution r versus the equivalent number of averagesγ for several different apodiza-
tion functions. The black line (Low-Frequency Sampling) does not correspond to apodization, but
rather the standard Fourier reconstruction scheme where resolution can be traded for additional
data acquisition time.
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for the EW metric, most of the window functions have some operating points where they have

higher resolution (with respect to the appropriate resolution metric) and lower noise variance than

the standard low-frequency Fourier sampling scheme. This improvement in SNR efficiency can be

observed more clearly in Fig.3.17, where we have taken the curves from Fig.3.16and normalized

them by the curve obtained by standard low-frequency Fourier sampling. For fixedγ, this provides

a measure of the resolution-efficiency of strategy S2 relative to strategy S1, where a resolution

efficiency larger than 1 indicates that the S2 reconstruction has better resolution than S1 for the

same SNR. These plots indicate that it is possible to achieve higher spatial resolution (except

under the EW metric) for the same SNR using S2. However, this advantage is not maintained

for arbitrary amounts of SNR improvement; for example, it isno longer resolution efficient under

the RC to improve SNR more than aboutγ = 2 or 3 with any of the apodization windows that

were considered. These results extend to higher dimensionsin a nearly geometric fashion, withγ

between 4 and 9 being reasonably efficient for 2D imaging scenarios. However, it is also important

to realize that the performance curves shown in this subsection will vary as the image model and

the data acquisition scheme are varied.

Example comparisons between S1 and S2 with simulated and real data are shown in Figs.3.18

and3.19, respectively. In these 2D cases, the S2 reconstruction hasa roughly 1.4× advantage

in resolution (FWHM) compared to the S1 reconstruction, despite having identical SNR and data

acquisition time.

Given the results presented in this subsection, a natural question is whether or not it is pos-

sible to improve on the resolution/SNR efficiency of smoothness-based regularization by careful

optimization of apodizing window functions under appropriately-chosen resolution metrics. Our

preliminary experience using stochastic optimization suggests a positive answer – for a fixed SNR,

it is possible to achieve a better FWHM (for example) than thatobtained using smoothness reg-

ularization. On the negative side, additional constraintsare necessary to avoid undesirable SRF

characteristics. For example, direct minimization of the SRF FWHM leads to an SRF with very

poor side-lobe and tail characteristics. As a result, further investigation is necessary before op-
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Figure 3.17: The resolution efficiency E for fixed SNR of windowed reconstruction versus standard
low-frequency Fourier reconstruction.
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(a) (b) (c)

Figure 3.18: Comparison of S1 versus S2 acquisition and reconstruction strategies, with equal data
acquisition time assumed for both strategies. (a) Gold standard. (b) S1 image. (c) S2 image with
2× higher-than-nominalk-space sampling. The S1 and S2 reconstructions have the sameSNR,
though the S2 reconstruction has significantly better resolution (FWHM) than the S1 reconstruc-
tion.

timized window functions could pose significant competition to schemes based on smoothness

regularization.
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(a) (b) (c)

(d) (e) (f)

Figure 3.19: Comparison of S1 versus S2 acquisition and reconstruction strategies using experi-
mental MR images of a section of kiwi fruit. The top row shows high-SNR images reconstructed
from real data, while simulated Gaussian noise has been added to thek-space data for the bottom
row of images to reduce the SNR. (a,d) Standard Fourier reconstruction from high-resolution data.
(b,e) S2 image using shift-invariant quadratic regularization (γ = 4). (c,f) S1 image with image
resolution reduced by a factor of 2 along each dimension relative to (a). As before, the S1 and S2
reconstructions have the same SNR, though the S2 reconstruction has better resolution (FWHM)
than the S1 reconstruction. The difference in resolution ismost apparent when comparing the
visibility and reconstructed width of the small line features running through the images.
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3.3.3 ChoosingΨ(·)

The previous subsections showed that considerable improvements in SNR were achievable at a

relatively moderate loss of resolution, and that regularized reconstruction of high-resolution data

can be significantly more efficient than simple averaging of low-resolution Fourier data. However,

the key assumption for this resolution analysis to be applicable was thatℓ is largely deterministic,

such that the linear noise analysis can be applied to our nonlinear reconstruction. One way to

achieve such anℓ is to haveΨ′(t)/2t to be approximately constant for allt, and a perfect choice

for this is

Ψ(t) = t2. (3.24)

Unfortunately, this choice is not edge preserving, and leads to ℓn,m = 1 at all spatial locations.

However, due to the sparsity of edges in natural images, we can obtain a mostly-constant line

process map by using a Huber function [322] that transitions from quadratic to linear:

Ψ(t) =







t2, t ≤ ξ

2ξt− ξ2, t > ξ

= inf
0<ℓ≤1

(

ℓt2 +
ξ2

ℓ
− ξ2

)

,

(3.25)

whereξ is the parameter of the Huber function that controls where the transition takes place.

The Huber function is convex (though not strictly convex), and is common in the edge-preserving

regularization literature (e.g., see [54,468,472] and references for discussion). The corresponding

expression used in Eq. (3.13) is

Ψ′(t)

2t
=







1, t ≤ ξ

ξ
t
, t > ξ

. (3.26)

Note that the Huber function has the ability to reduce the degree of spatial smoothing across the

edges for whicht > ξ, since the corresponding line process variables will get smaller and smaller

as the argument of the Huber function grows large. Some of theedge-preserving characteristics of
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Figure 3.20: Illustration of some of the characteristics ofour proposed regularization function
based on the Huber function. The figure shows plots ofΨ(

√

|x|2 + |y|2)−Ψ(
√

|y|2) as a function
of x for different values of the Huber function parameterξ and the variabley. In the context of our
proposed reconstruction scheme,x andy would correspond to finite differences from different im-
ages, but from the same spatial location. As a result,x andy will share a line-process variable. For
illustrative purposes, we assume that the value ofy is fixed, and thus subtract out its contribution
to the cost function for different values ofx. Whenξ = ∞, the Huber function is equivalent to the
quadratic penalty in Eq. (3.24). In this case, the line-process variable always takes value one, and
the cost function increases rapidly as the magnitude ofx increases, heavily penalizing large edge
values. As a result, the optimal reconstruction will generally not include significant edge features
due to their large cost. In contrast, we are able to obtain edge preserving behavior whenξ is finite,
which manifests as smaller cost function values for large values ofx. In addition, when the value
of y is large (i.e., when a correlated image also has a large edge value at the same spatial location),
the cost function forx will decrease to enablex to more easily take on a large value.

the Huber function are illustrated in Fig.3.20.

When the finite differences for a given spatial location lead to a value oft that is smaller thanξ,

then the Huber function does not identify that location as anedge. Thus, ifξ is chosen to be larger

than the expected noise contribution to the finite-difference computation of Eq. (3.14) and if the

image is predominantly smooth, then the line process variables will be largely independent of the

noise, and the previously described linear noise analysis will be valid. An empirical illustration of

the proposed method’s ability to achieve approximately noise-independent line process estimates

with appropriately-chosenξ is shown in Fig.3.21, and Fig.3.22illustrates that after choosingξ in

this manner, we can accurately predict the SNR improvement using the previously-described linear
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(a) Gold standard (b) Noisy image

(c) Q = 1, ξ = 0 (d) Q = 1, ξ = 0.1
√
Q (e) Q = 1, ξ = 0.5

√
Q

(f) Q = 10, ξ = 0 (g) Q = 10, ξ = 0.1
√
Q (h) Q = 10, ξ = 0.5

√
Q

Figure 3.21: Empirical simulations were performed to illustrate that the proposed method with
appropriately-designed Huber function regularization leads to predictable noise characteristics.
For the simulation, noisy datasets were simulated for a noise-free image comprised of a homo-
geneous disc object on an empty background. The noise-free image is illustrated in (a), while a
representative noisy Fourier reconstruction is shown in (b). (c-e) Estimated line process variables
when reconstructing a single image (i.e.,Q = 1) with the proposed method for different values of
ξ. Dark values imply that the algorithm has identified a significant edge at the given spatial loca-
tion. (f-h) Estimated line process variables when reconstructing ten different noisy realizations of
the same image (i.e.,Q = 10, with αq andβq the same for allq) with the proposed method for
different values ofξ. Whenξ is small, virtually all spatial locations are identified as edges. On the
other hand, choosingξ larger than the noise level allows the proposed method to better differentiate
between real edge structures and noise, and the ability of the proposed method to robustly identify
edge structures improves with increasingQ.
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Figure 3.22: Illustration that appropriately-chosen values ofξ allow us to predict the noise variance
in reconstructed images using the “deterministic” reconstruction matrix in Eq. (3.16) and the linear
noise analysis from Eq. (2.46). The simulations described in Fig.3.21were repeated 500 times,
with different noise realizations in each trial, and the empirical variance of each reconstructed
pixel was computed. This was compared with the predicted variance for each pixel computed with
Eq. (2.46), after assuming the reconstruction matrix in Eq. (3.16) was independent of the data
noise. The figures show scatterplots comparing the empirical variance to the predicted variance.
These scatterplots illustrate that whenξ is large enough that the line-process variables are not
heavily influenced by the noise, the empirical pixel variance matches very well with the predicted
pixel variances. However, ifξ is chosen too small, then the influence of noise on the reconstruction
matrix in Eq. (3.16) makes it difficult to use Eq. (2.46) to predict the SNR improvement using the
proposed method.
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noise analysis. In addition to achieving approximately noise-independentℓ with appropriately

chosenξ, the use of the Huber function also gives roughly uniform spatial smoothness weights in

the smooth regions of the image, giving a fairly uniform improvement in SNR and uniform loss of

resolution within these regions.

While choosing large values ofξ improves our ability to reject noise in the estimated line pro-

cess variables, it also can lead to rejection of real edge structures. As a result,ξ should generally be

set large enough that the edge map is approximately deterministic, but no larger. The consequences

of different choices ofξ are illustrated with a real MR brain image in Fig.3.23.

We note that allowingξ to approach 0 is equivalent to using one form of the multichannel

TV prior [79,666]. However, as we have illustrated, our proposed Huber function prior can yield

significantly better reconstruction characteristics for MR imaging problems.

Convergence and Uniqueness Characteristics for the Huber Function

A nice feature of the Huber function is that it is convex, meaning that the cost function in Eq. (3.8)

is also convex [74]. Convexity implies that any local minimum of Eq. (3.8) is also a global min-

imum, and that globally optimal solutions can be obtained using standard convex optimization

methods [74]. However, it should be noted that the Huber function does not satisfy the strict

convexity and differentiability constraints required forthe global convergence guarantees of De-

laney and Bresler [163] for the multiplicative half-quadratic algorithm. Even so, the algorithm

is still guaranteed (by construction) to monotonically decrease the cost function in Eq. (3.8), and

it can be proven that the sequence of iterates of the multiplicative half-quadratic algorithm will

converge when using a Huber regularization penalty [472]. A formal proof that the multiplicative

half-quadratic algorithm will always converge to a global minimum with Huber regularization has

remained elusive, partly due to the lack of strict convexity/concavity and the fact that the Huber

function is not twice continuously-differentiable atξ [15,131,163,328,472]. However, it is still

possible to test for global convergence to a global minimum.In particular, the first-order neces-

sary and sufficient optimality condition for an optimal solution to the differentiable convex cost
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(a) Gold standard (b) Noisy image

(c) ξ = 10−4 (d) ξ = 10−3 (e) ξ = 10−2

(f) ξ = 10−4 (g) ξ = 10−3 (h) ξ = 10−2

Figure 3.23: Illustration of the effects of different choices ofξ. In this simulation, we have recon-
structed a noisy version of theT1-weighted image from Fig.3.2, assuming that the line-process
variables have been estimated independently from the coregistered proton-density andT2-weighted
images from that figure. (a) Gold standard image. (b) Gold standard image with additional simu-
lated noise. (c-e) Different line-process maps estimated from the proton-density andT2-weighted
images with different values ofξ. As expected, smaller values ofξ are able to better capture fine
structural image features, though they also lead to increased noise sensitivity. (f-g) Reconstructed
images using the proposed method. Whenξ is too large, denoising is still achieved, though many
image details are not preserved by the line processes. On theother hand, whenξ is too small,
many noise features are identified as actual image structure, and are falsely preserved. As a result,
ξ should be chosen to balance these two issues, and to ensure that the reconstructed image has
predictable noise properties.
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function in Eq. (3.8) is that the gradient of Eq. (3.8) is equal to 0 [74], i.e., that

2
(
α2
qF

H
q Fq + β2

qD
Hdiag (ℓn,m)D

)
ρ̂q − 2α2

qF
H
q d

q = 0 (3.27)

for q = 1, . . . , Q, wherediag (ℓn,m) is the diagonal matrix with diagonal elements equal to the

optimal line-process values for the{ρ̂q}, as computed using Eqs. (3.13) and (3.14). This equa-

tion provides a convenient means for testing for the global optimality of a numerical solution to

Eq. (3.8). Despite the lack of proven global convergence guaranteesfor the multiplicative half-

quadratic algorithm, global convergence has always been observed in practice. It should also be

noted that the multiplicative half-quadratic algorithm isnot the only algorithm that can be used to

minimize Eq. (3.8), and some of the alternative algorithms have global convergence guarantees;

these issues will be discussed in Sec.3.7. Regardless of the lack of theoretical global convergence

guarantees, the multiplicative half-quadratic procedureis of significant interest because it provides

the linear reconstruction interpretation in Eq. (3.16), which was the foundation of our resolution

and noise analysis.

An important question from the perspective of optimizationis whether Eq. (3.8) has a unique

solution. It can be difficult to prove uniqueness of a solution for arbitrary{Fq}, {D}, {αq}, and

{βq}; however, we will demonstrate that a unique solution existsin the context of two commonly-

appearing special cases:

1. Eq. (3.8) has a unique solution when, for eachq, Fq has a trivial nullspace andαq > 0. This

case is commonly obtained in the denoising context described in Sec.3.2.1. In this case,

the data fidelity terms in Eq. (3.8) will be strictly convex, such that the overall cost function

is also strictly convex. Strict convexity implies that there exists a unique globally-optimal

solution [74].

2. Eq. (3.8) has a unique solution for the super-resolution mode of operation described in

Sec.3.2.1. In particular, we assume that for eachq corresponding to a high-resolution

dataset,Fq has a trivial nullspace,βq > 0, and
β2
q

α2
q

is set arbitrarily close to zero. In this
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case, the high-resolution images are reconstructed uniquely as

ρ̂q =
(
FH

q Fq

)−1
FH

q d
q. (3.28)

Assuming also thatβq is set arbitrarily close to zero for the remaining images, then the line-

process variables depend only on the high-resolution reconstructed images from Eq. (3.28),

and are uniquely determined through Eq. (3.13). Finally, the remaining images are recon-

structed using Eq. (3.16), and have unique solutions as long as the nullspaces ofFq and βq

αq
D

have trivial intersection.

Nonconvex Alternatives to the Huber Function

One of the motivating factors for choosingΨ(·) to be the Huber function was convexity, since

convexity implies that global optimization can be achievedin a straightforward way. However, it

should also be noted that nonconvex regularization functionals can be beneficial, because they can

be even more edge-preserving (i.e., they can impose a smaller penalty on large edge values) than

the Huber function [163]. In general, it is often difficult to guarantee global optimization of a non-

convex cost functional without resorting to time-consuming stochastic algorithms like simulated

annealing [237]. However, for the super-resolution mode of operation for our proposed method,

the ease of obtaining a unique globally-optimal reconstruction is independent of the convexity of

Ψ(·). As a result, the use of the following nonconvexΨ(·) can be beneficial for the super-resolution

problem:6

Ψ(t) =







t2, t ≤ ξ

2ξ2−ν

ν
tν − 2ξ2

ν
+ ξ2, t > ξ

, (3.29)

6This nonconvexΨ(·) could also be useful for the denoising problem; however, it would be much more difficult to
ensure global optimality in this case, which leads us to prefer the Huber function for the denoising problem.
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Figure 3.24: Illustration of some of the characteristics ofthe nonconvexΨ(·) function in Eq. (3.29)
with ν = 0.5. The figure shows plots ofΨ(

√

|x|2 + |y|2) − Ψ(
√

|y|2) as a function ofx for
different values of the Huber function parameterξ and the variabley. Comparing this cost function
with the traditional Huber function shown in Fig.3.20, it is clear that the nonconvex cost function
penalizes large edge values much less than the Huber function would.

whereν ∈ (0, 1) is a small positive constant. This penalty function approaches the Huber function

asν → 1, and satisfies

Ψ′(t)

2t
=







1, t ≤ ξ
(
ξ
t

)2−ν
, t > ξ

. (3.30)

ComparingΨ′(t)/(2t) for this function with Eq. (3.26) for the Huber function, it is apparent that

the estimated line-process variables are much smaller for the nonconvex penalty whent is large,

particularly asν approaches 0. As a result, the nonconvex cost function is significantly more

tolerant to large edge-values than the Huber function, and thus can be even better at avoiding

partial volume effects when imposing spatial smoothness toenhance image SNR. The cost function

is illustrated in Fig.3.24, while the potential for improved performance using the cost function is

illustrated in Fig.3.25.
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(a) Huber function (b) Nonconvex function

(c) Huber function (d) Nonconvex function

Figure 3.25: Illustration of the difference between reconstruction using the Huber function and
the nonconvex penalty from Eq. (3.29). This simulation was exactly the same as the simulation
described in Fig.3.23. Reconstructions were performed using (a) the Huber function and (b) the
nonconvex penalty with a vanishingly-small value ofν, both with ξ = 10−2. Examining the
contour separating the extracranial tissues from the brainparenchyma in the ROI shown in (c,d),
it is clear that the reconstruction using the nonconvex penalty demonstrates somewhat less edge-
blurring and reduced partial volume artifacts, as expected.
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3.4 Application Examples

The previous section illustrated that the proposed approach is easy to characterize, and that it is

efficient to regularize high-resolution noisy data. We havereconstructed many different datasets

with this technique, and examples include MR spectroscopicimaging [269,270,274,276,277,286],

sodium and oxygen imaging [24,25], and diffusion imaging [232,267,278–280,284,285,378]. For

simplicity, we show just a few examples in this thesis.

3.4.1 Phantom Experiments

Phantom data was acquired on a Varian INOVA 14.1T MR system toillustrate the benefit of the

proposed reconstruction for standard imaging experiments. In these experiments, a phantom was

imaged using two phase-encoded spin-echo sequences, one with TE = 23 ms and TR = 1000

ms, and the other with TE = 40 ms and TR = 200 ms. The short TR experiment suffers from

SNR problems at high resolution, though the data was acquired five times faster than the long TR

experiment. Figure3.26shows the results of using the long TR image to constrain reconstruction of

the short TR image. In this case, the algorithm was used in super-resolution mode, where{αq} and

{βq} were adjusted so that the line-process values depended onlyon the reference image, and so

that the reference image was perfectly data consistent. Theproposed method successfully mitigates

the effects of noise while mostly preserving the resolutionof small image features. Importantly,

this experiment confirms our previous observation that the proposed method is more effective for

denoising high-resolution data than it is for achieving super-resolution reconstruction.

3.4.2 Mouse Brain Diffusion Experiment

Diffusion-weighted (DW) MRI experiments can be used to characterize the random microscopic

thermal Brownian motion of water molecules [388]. The diffusion process in biological tissues is

highly sensitive to tissue microstructure, making DW MRI a powerful clinical tool for the detec-

tion and characterization of various pathologies. DW MRI hasbeen found particularly relevant in
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Figure 3.26: Experimental phantom reconstruction results. A short TR spin-echo sequence was
used to acquire noisyk-space data, while data from a long TR spin-echo sequence wasused as
a reference image to generate anatomical constraints. The gold standard image was acquired by
averaging the short TR experiment 8 times. The proposed reconstruction from the high-resolution
noisy data has both high SNR and high resolution. This is in contrast to the reconstructions us-
ing low-resolution data, which have high SNR but reveal limited information regarding the small
features of the image.
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studies of the central nervous system, and has proven to be valuable in the assessment of trauma,

ischemia, cancer and neurodegenerative diseases [388]. However, quantitative DW MRI experi-

ments are often very time consuming, due to low SNR and the need to have multiple DW images

for quantitative assessment of diffusion characteristics.

DW MRI experiments were performed on a euthanized juvenile mouse to illustrate the perfor-

mance of our proposed method in this context. Experiments used a 14.1 T scanner, and sagittal

images were acquired with a standard spin-echo DW MRI pulse sequence (TE = 32 ms, TR = 1000

ms, δ = 8 ms,∆ = 20 ms). Twelve different diffusion weightings were applied, with diffusion-

weighting factors (b-values) ranging from0 to 10, 000 s/mm2. All diffusion gradients were applied

along the dorso-ventral direction. Each DW image was encoded using a128 × 256 k-space sam-

pling grid, with samples spaced evenly at the Nyquist rate corresponding to a1.9 cm × 3.8 cm

field of view, and the slice thickness was 0.25 mm. The experiment used a transmit/receive volume

RF coil. Four averages were acquired, but were saved separately. Reconstruction was performed

using the denoising mode of operation. Results are shown in Fig. 3.27, and demonstrate signifi-

cantly improved SNR. In particular, the SNR has improved equivalent to averaging four times in

the smooth regions of the image, while the average voxel size(FWHM) has only degraded from

0.15 × 0.15 × 0.25 mm3 to 0.17 × 0.17 × 0.25 mm3. Figure3.28illustrates the effect of varying

the Huber function parameterξ on the estimated line process variables and the resulting level of

SNR improvement, showing results consistent with the analysis in Sec.3.3.3.

Figure3.29provides a comparison of our proposed method with two other common denois-

ing schemes. The implementations and properties of these other reconstructions are summarized

below:

• BayesShrink thresholding in a decorrelated transform domain. We applied the method

described in Ref. [23]. This method first applies transforms to the image sequenceto obtain

a set of decorrelated image coefficients. Decorrelation is achieved between the different

image frames by applying the empirical Karhunen-Loeve transform, while decorrelation is

achieved in the spatial dimension by applying the wavelet transform. After decorrelation,
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Figure 3.27: One image frame from a 12-frame diffusion-weighted mouse-brain sequence. The
proposed method improves image SNR, while preserving important structural features.

0 1 2 3 4 5 6

Figure 3.28: The effects of changing the parameterξ in the Huber function. The image columns
from left to right show increasing values ofξ. The top row shows the estimatedℓn,m variables,
while the bottom row shows the equivalent number of averagesfor each voxel. Rather than directly
evaluating the reconstruction noise using Eq. (2.46), reconstruction noise was estimated empircally
using Monte Carlo methods (i.e., reconstruction of multiplesimulated complex Gaussian noise
vectors) to accelerate computations. Asξ increases,ℓ becomes less sensitive to noise and the SNR
improvement becomes more homogeneous over the FOV. On the other hand, image features are
no longer as clearly evident in the estimated edge map.
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denoising is performed using the BayesShrink adaptive thresholding algorithm [130]. This

method has the capability of preserving high-resolution features. However, the resolution

and noise characteristics of this method are not easily characterized. We observe that this

method has successfully reduced the visually-apparent image noise, though structural image

features and image contrast have also been adversely affected.

• Coherence-enhancing PDE filter. We implemented the PDE filtering approach described

in Ref. [172]. The evolution of the PDE was halted when the variance from non-signal re-

gions of the image was similar to that of the proposed method.The differences between

the PDE filtered images and the proposed reconstructions aresomewhat subtle; however,

close examination shows that high-resolution features aremore accurately preserved using

the proposed method. In addition, the noise and resolution properties of the proposed re-

construction are easily and precisely characterized in terms of the SRF, while no convenient

mechanisms exist for constructing SRFs in the PDE reconstruction. While point-spread

functions of the PDE reconstruction can easily be computed due to the linearity of the PDE

evolution at each discretized time step, this is not as useful as the SRF for characterizing

resolution and noise.

3.4.3 T1 Estimation Simulations

This experiment considered reconstruction of nine images from a variable flip-angleT1 measure-

ment experiment. The original images had high SNR, so additional simulated noise was added.

The proposed approach was applied (3× improvement in noise variance) in the denoising mode of

operation, and a denoising scheme based on principal component hard-thresholding [100] was also

implemented for comparison. The results are shown in Fig.3.30. While the principal component

denoising approach gives very visually impressive denoising results for the image, the parameter

estimate quality is actually worse than it was for the original noisy data. This illustrates the im-

portance of having characterizable reconstructions; manydenoising algorithms might be able to
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(a)

(b) (c)

Figure 3.29: Comparison of the proposed method with other common denoising methods. (a)
Proposed method. (b) BayesShrink thresholding. (c) Coherence-enhancing PDE filtering.

produce visually-attractive images, but characterization is important for proper understanding of

quantitative parameter estimates that are obtained using the denoised data.

3.4.4 Human Brain Diffusion Tensor Experiment

This subsection demonstrates the performance of the proposed method in the context ofin vivohu-

man brain diffusion tensor imaging [460]. Diffusion tensor imaging is the most widely-used form

of quantitative DW MRI. In this experiment, a total of 155 different DW images were acquired at

2 mm× 2 mm× 2 mm resolution on a 3T scanner, withb-values ranging from 0 s/mm2 to 5,000

s/mm2. Acquisition used 5/8ths partial Fourier sampling [101, 262, 307, 400, 475, 673], and an

array of 32 different receiver coils. The proposed reconstruction method was used in the denoising

mode of operation, but with additional modifications to the Fourier sampling operator to impose

the phase constraints necessary for partial Fourier reconstruction [284]. The images corresponding

to different receiver coils were reconstructed separatelyand combined in post-processing, though
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(e) Gold Standard Image (f) Noisy Image (g) Proposed Denoising(h) Principle Component
Denoising

Figure 3.30: Results from theT1 denoising simulation. The top row shows one image from the
nine-image sequence, while the bottom row showsT1 parameter estimates. The noisy parameter
map has 12.0% error in signal regions and the parameter map after the proposed denoising has
8.9% error, while the parameter map after principal component denoising has 14.0% error.
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(a)

(b)

(c) (d)

Figure 3.31: Results from thein vivo human brain diffusion tensor imaging experiment. (a) Stan-
dard reconstructions. (b) Proposed reconstructions. (c) Color-coded fractional anisotropy map
estimated from the standard reconstructions [460]. (d) Color-coded fractional anisotropy map es-
timated from the proposed reconstructions.

reconstruction assumed that the different coil images possessed a shared edge structure. Results

of this experiment are shown in Fig.3.31, and demonstrate significantly improved image SNR and

improved estimation of the diffusion tensor characteristics.
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3.5 Performance in the Presence of Inaccurate and

Incomplete Edge Information

A natural concern for the proposed method is how it behaves inthe presence of inaccurate and

incomplete edge information. The analysis of SRFs would leadto the conclusion that inaccurate

edge information should be somewhat benign. While the methodwill not be able to avoid partial

volume artifacts across unknown edge structures, the trade-off between resolution and SNR will

still be efficient. In addition, the method is also fairly resilient to false edge structures. In this

case, smoothing will not be performed across the false edge,leading to a slight reduction in SNR

improvement, though false edges will generally not manifest as false image structures unless
β2
q

α2
q

is so large that there is a significant loss in spatial resolution. Note that as
β2
q

α2
q

becomes larger and

larger, the reconstructed images are encouraged to become more and more piecewise constant,

with discontinuities at the image boundaries. As a result, incorrect boundary information could be

very detrimental in this extreme scenario. Illustrations of the resilience of the proposed method to

inaccurate edge information are shown in Figs.3.32-3.35.

3.6 Optimal Averaging Designs

We showed in Sec.3.3.2 that our proposed reconstruction was efficient with respectto the res-

olution/SNR trade-off when used with a high-resolution data acquisition strategy with uniform-

densityk-space coverage. However, it has also been shown previouslythat data filtering of uniformly-

sampled data is not as SNR efficient as if the acquisition strategy is modified to match the char-

acteristics of the filter function, and significant SNR/resolution efficiency advantages for filtered

reconstruction can be achieved with variable-density sampling/averaging [90, 253, 323, 436, 498,

513,586,589].

In this section, we derive an optimal data-averaging strategy for general fixed linear image

reconstruction problems. This strategy can be used to further enhance the SNR of our proposed
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(a)

(b)

(c)

Figure 3.32: Reconstruction of the noiseless Shepp-Logan phantom with (a) accurate edge in-
formation, (b) completely inaccurate edge information, and (c) misregistered edge information.
The left-most column of these subfigures shows the line-process variables used for reconstruction,
which were assumed to be given and were not estimated jointlywith the images. The remaining

images show reconstructions using the proposed method, with increasing values of
β2
q

α2
q

as we move
from left to right.
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(a)

(b)

(c)

Figure 3.33: Reconstruction of the noisy Shepp-Logan phantom with (a) accurate edge informa-
tion, (b) completely inaccurate edge information, and (c) misregistered edge information. The left-
most column of these subfigures shows the line-process variables used for reconstruction, which
were assumed to be given and were not estimated jointly with the images. The remaining images

show reconstructions using the proposed method, with increasing values of
β2
q

α2
q

as we move from
left to right.
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(a)

(b)

(c)

Figure 3.34: Reconstruction of the noiselessCameramanimage with (a) accurate edge informa-
tion, (b) completely inaccurate edge information, and (c) misregistered edge information. The left-
most column of these subfigures shows the line-process variables used for reconstruction, which
were assumed to be given and were not estimated jointly with the images. The remaining images

show reconstructions using the proposed method, with increasing values of
β2
q

α2
q

as we move from
left to right.
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(a)

(b)

(c)

Figure 3.35: Reconstruction of the noisyCameramanimage with (a) accurate edge information,
(b) completely inaccurate edge information, and (c) misregistered edge information. The left-most
column of these subfigures shows the line-process variablesused for reconstruction, which were
assumed to be given and were not estimated jointly with the images. The remaining images show

reconstructions using the proposed method, with increasing values of
β2
q

α2
q

as we move from left to
right.
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method when there is time for averaging during data acquisition. In our previous discussion,

we assumed that each measurement sample indq was acquired exactly once, and that the noise

variance was equal for all elements ofdq. This assumption will be relaxed in this subsection, so

that themth element ofdq is assumed to be averagedωm times, and thus has anm-dependent

variance ofσ2
q/ωm. Our goal in this section will be to optimize{ωm} to minimize the covariance

matrix of the reconstructed̂ρq.

The problem of designing an experiment to optimize the covariance of a reconstruction is well

studied in the field of statistics [205, 521, 576]. The existing literature generally considers the

case where an ML reconstruction is obtained. However, in this case, the ML solution is generally

an explicit function of the averaging strategy{ωm}, which makes optimization difficult. In the

absence of special problem structure, optimal designs havegenerally been found numerically with

iterative convex optimization techniques [74].

In this section, we observe that certain optimal averaging designs have simple closed-form

solutions when the reconstruction matrix is linear and independent of the noise covariance. As a

result, assume that a particular reconstructed image is obtained from measured data according to

the linear reconstruction

ρ̂q = Gdq, (3.31)

whereG is anN×M reconstruction matrix. In the context of our proposed method, it is reasonable

to takeG as the reconstruction matrix from Eq. (3.16), though the treatment in this section will be

written for the general case whereG is allowed to be arbitrary. For most ML or PML methods,

theG reconstruction matrix would be chosen to be a function of{ωm}. However, in the context of

MRI reconstruction, allowingG to be dependent on{ωm} would also mean that the reconstruction

SRFs would change as a function of{ωm}. This would be problematic, since modification of

the averaging strategy could lead to undesirable unpredicted changes in the SRF characteristics.

As a result, we will assume that we have already designed a reconstruction with desirable SRF

characteristics for a given set of line-process variables (e.g., the matrix equation in Eq. (3.16)), and
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will modify the averaging scheme to improve the SNR characteristics under this reconstruction.

Note that the optimal averaging scheme is dependent on the estimated line-process variables. This

is not a problem in the super-resolution mode of our proposedmethod, since the data for the high-

resolution reference images providing edge information can be acquired prior to the data for the

low-resolution images. This issue is more problematic for the denoising mode. In this case, it

is reasonable to optimize the acquisition scheme for futureexperiments based on the empirical

distribution of line processes that have been estimated in previous experiments.

We begin by assuming that theM measurements indq are partitioned intoP subsetsΘp of

size|Θp|. In addition, we assume that each subset of measurementsΘp must be acquired simulta-

neously, so that each element ofΘp must be allocated the same number of averages. This allows

us to accommodate the conventional case in MRI, where multiple k-space samples are measured

together after each RF excitation. Rather than dealing with integer-valued averaging schemes and

the{ωm} variables, we instead optimize the fractional amount of averaging effortχp ∈ (0, 1) that

is assigned to the subsetΘp, under the constraint that
∑P

p=1 χp = 1. Once theχp are obtained,ωm

is obtained by settingωm ≈ χp(m)/|Θp(m)|
∑M

m=1 ωm, wherep(m) returns the index of the subset

Θp containing themth data sample. Optimization of the real-valued averaging effort is known

asapproximate design, and avoids the need to solve the difficult integer-programming problems

associated with exact designs. Efficient algorithms for thepractical discretization of approximate

designs are presented, e.g., in Ch. 12 of Ref. [521]. Greedy algorithms also exist for exact designs

(see, e.g., Refs. [205,537,576]), but are beyond the scope of this work.

We will assume thatdq can be written as

dq =









d
q
1

...

d
q
P









, (3.32)

where eachdq
p represents the length-|Θp| vector of data samples belonging to the subsetΘp. With
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this representation, the covariance matrix of thedq is given by

E
[

dq (dq)H
]

∝









σ2
q

χ1
I|Θ1| . . . 0

...
. . .

...

0 . . .
σ2
q

χP
I|ΘP |









, (3.33)

whereI|Θp| denotes the|Θp| × |Θp| identity matrix for eachp. In addition, the covariance matrix

of ρ̂q is given by

E
[

ρ̂qρ̂
H
q

]

= E
[

Gdq (dq)H GH
]

= GE
[

dq (dq)H
]

GH

∝ G









σ2
q

χ1
I|Θ1| . . . 0

...
. ..

...

0 . . .
σ2
q

χP
I|ΘP |









GH .

(3.34)

Assuming thatG is also partitioned according to the subsetsΘp as

G =

[

G1 . . . GP

]

, (3.35)

then the reconstructed image covariance can be simplified as

E
[

ρ̂qρ̂
H
q

]

∝ σ2
q

P∑

p=1

1

χp

GpG
H
p . (3.36)

Our choice of{χp} is based on our desire to minimize the covariance ofρ̂q. However, there

are generally many different ways of defining an ordering of covariance matrices [521]. For this

work, we will say that one covariance matrix is smaller than another if it has a smaller trace, where

the trace of a matrix is equal to the sum of its diagonal elements. The trace of the covariance

matrix is equal to the sum of the variances of each reconstructed voxel, and is a standard criterion
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in optimal experiment design [205, 521, 576].7 The trace criterion is often also called thesum-

of-squared errors, theaverage variance, or theA-optimalitycriterion. In the present context, the

trace criterion can be expanded as

Trace
(

E
[

ρ̂qρ̂
H
q

])

∝ Trace

(
P∑

p=1

1

χp

GpG
H
p

)

=
P∑

p=1

1

χp

Trace
(
GpG

H
p

)

=
P∑

p=1

1

χp

Trace
(
GH

p Gp

)
.

(3.37)

Note thatTrace
(
GH

p Gp

)
can be expressed as

Trace
(
GH

p Gp

)
=

|Θp|∑

k=1

‖gpk‖2ℓ2 , (3.38)

wheregpk denotes thekth column of the matrixGp. As a result of this expression,Trace
(
GH

p Gp

)

can be computed in a straightforward manner.

3.6.1 Optimal Allocation of Averages

The optimal averaging design problem has a closed form solution whenG is independent of{χp}.

This is made explicit in the following theorem.

Theorem 3.1. For the optimal averaging problem described in the previoussubsection, a closed

form solution for the optimal{χp} is given by

χ̂p =

√

Trace
(
GH

p Gp

)

P∑

s=1

√

Trace (GH
s Gs)

, (3.39)

7Introducing a weighting function into the this criterion can also be useful if noise perturbation would more prob-
lematic in certain spatial regions of the image than in others. This extension is straightforward, and is omitted from
our discussion for simplicity.
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for p = 1, 2, . . . , P .

Proof. The optimal solution is derived using Lagrange multipliers, similar to the approach taken

in [436,498]. In particular, define the Lagrangian for the constrained optimization problem as

L (χ1, χ2, . . . , χP , λ) =
P∑

p=1

1

χp

Trace
(
GH

p Gp

)
+ λ

(
P∑

p=1

χp − 1

)

, (3.40)

whereλ is a Lagrange multiplier that is adjusted to enforce the constraint that{χp} should sum to

one. Differentiating the Lagrangian with respect to eachχp for p = 1, 2, . . . , P and equating with

0, we find that

χ̂p =

√

Trace
(
GH

p Gp

)

√
λ

(3.41)

for eachp. Choosingλ such that the constraint is satisfied results in Eq. (3.39).

Optimal averaging designs have been considered previouslyin the context of windowed Fourier

reconstruction where eachk-space sampling location was allowed to be sampled independently

(i.e., whenM = P ) [436, 498]. Our results coincide with these existing results for thatcase,

though they can also be applied in much more general linear reconstruction scenarios.

We note that our expression for the optimal averaging designcould also be derived using the

methods described by Pukelsheim and Torsney [522], who derived closed-form optimal averaging

designs for a special class of optimal linear statistical estimation problems. Applying their results

to our problem requires the construction of a specialized optimal estimation problem, under which

it can be proven that theG reconstruction matrix is independent of{χp}. We do not present the

details of this construction here, though the constructioncan be derived by manipulating the results

of Zyskind’s paper [680], which describes contexts where optimal statistical linear estimation is

independent of the averaging scheme. Though the derivations of Pukelsheim and Torsney are quite

interesting, their derivations are significantly more complicated than those we presented here, and

rely heavily on results from the subdifferential calculus of convex analysis.
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3.6.2 Application Example

We illustrate the benefits of the proposed averaging designsin the context of our proposed linear

image reconstruction method with noisy Fourier data. Simulation is performed using the Shepp-

Logan phantom shown in Fig.3.36(a). Data collection was performed by sampling the Fourier

transform of this image at the Nyquist rate on a 128×128 Cartesian grid. Simulated white Gaus-

sian noise was added to the data, and several different averaging schemes were applied. With

uniform averaging (two averages at eachk-space location) and conventional unregularized Fourier

reconstruction, we obtain the noisy image shown in Fig.3.36(b). Reconstruction was also per-

formed using the proposed method, where we assume the super-resolution mode of operation

where the line-site variables are derived completely from reference images instead of being jointly

estimated with the image from the noisy data. In this simulation, we assume that the prior infor-

mation about the image edge structure is known perfectly, and choose the line-process variables

in a binary way such that smoothness is never imposed across edge structures, and is imposed in

a uniform way at locations that do not demonstrate edges. As expected, the use of regularization

significantly improves SNR, even with uniform averaging (Fig. 3.36(c)). Two different averaging

protocols that can be available for typical MRI experiments were also optimized for this regular-

ized reconstruction. In 1D averaging, each of the sampling subsetsΘp corresponds to one of the

128 different rows of the sampling grid – this corresponds tothe standard phase-encoded MRI

experiment, in which each line ofk-space is acquired simultaneously. In 2D averaging, each of

the 1282 sampling locations can be averaged independently. Fig.3.36(d-e) shows regularized re-

constructions, using the optimized averaging patterns from Fig.3.36(f-g) (shown on the 128×128

sampling grid). Optimized 1D averaging and 2D averaging improve the average variance of the

regularized reconstruction by a factor of 1.76 and 2.71, respectively, as compared to uniform av-

eraging, and significantly improve experimental efficiency. In addition, the optimized averaging

schemes significantly reduce spatial correlations in the reconstructed noise fields.
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(a) True image (b) Unregularized

(c) Uniform averaging (d) Optimized 1D averaging (e) Optimized 2D averaging
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(f) 1D averaging design
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(g) 2D averaging design

Figure 3.36: Example of the benefits for using an optimized averaging scheme. (a) Noiseless im-
age. (b) Noisy image with unregularized Fourier reconstruction. (c-e) Regularized reconstructions
with different averaging schemes. (f-g) Optimized Fourieraveraging patterns. The colorscale
indicates the number of averages acquired at each Fourier sampling location.
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3.7 Alternative Algorithms

The algorithm we described in Sec.3.2 for minimizing Eq. (3.8) was based on the multiplicative

form of half-quadratic regularization. In practice, however, there are multiple other algorithms that

could be applied for minimizing Eq. (3.8), particularly when theΨ(·) regularization functional is

chosen as the Huber function as discussed in Sec.3.3.3. In this section, we will describe and

compare several alternative algorithms that could be used for minimizing Eq. (3.8) with Huber-

function regularization. In particular, we will describe the implementation of an additive half-

quadratic algorithm in Sec.3.7.1, the implementation of Nesterov’s algorithm in Sec.3.7.2, and the

implementation of a method for accelerating the traditional multiplicative half-quadratic algorithm

in Sec.3.7.3. Comparisons of all the algorithms are given in Sec.3.7.4.

3.7.1 Additive Half-Quadratic Algorithm

The multiplicative half-quadratic algorithm described inSec.3.2 was based on the line-process

representation of the potential functionΨ(·) as in Eq. (3.6). In contrast, additive half-quadratic

algorithms are based on an alternative representation ofΨ(·) [15,236,328,472]. In particular, it is

assumed thatΨ(·) can be expanded as

Ψ(t) = inf
b

{
(t− b)2 + U(b)

}
, (3.42)

whereU(·) is an appropriate functional. Unfortunately, the traditional additive half-quadratic algo-

rithm does not extend naturally to our proposed prior with shared line processes [472]. However,

Wang et al. [634] have recently described a new additive half-quadratic algorithm that can be

adapted for solving Eq. (3.8). In addition, Wanget al. have proven that this approach is globally

convergent, and have computed explicit convergence rates.

To explain the approach, we first observe that the expression
√
∑Q

q=1 β
2
q |ρqm − ρqn|2 appearing

104



in Eq. (3.8) can be equivalently written as

√
√
√
√

Q
∑

q=1

β2
q |ρqm − ρqn|2 = ‖Dmnρtot‖ℓ2 , (3.43)

whereDmn is aQ×NQ weighted finite-differencing operator, and

ρtot =









ρ1

...

ρq









. (3.44)

Next, assuming thatΨ(·) is the Huber function from Eq. (3.25), we are inspired by Ref. [634] to

rewriteΨ(‖Dmnρtot‖ℓ2) as

Ψ(‖Dmnρtot‖ℓ2) = inf
bmn∈Cq

{
‖Dmnρtot − bmn‖2ℓ2 + 2ξ ‖bmn‖ℓ2

}
. (3.45)

It is straightforward to derive that the optimizing value ofbmn in this expression is given by

bmn =







(‖Dmnρtot‖ℓ2−ξ)

‖Dmnρtot‖ℓ2
Dmnρtot, ‖Dmnρtot‖ℓ2 > ξ

0, else.
(3.46)

Using this relationship, it is clear that the optimal reconstructed images in Eq. (3.8) can also be

obtained by solving

{

ρ̂
1, ρ̂2, . . . , ρ̂Q

}

= argmin
{ρ1,ρ2,...,ρQ}

inf
{bmn}

G(ρ1,ρ2, . . . ,ρQ, {bmn}) (3.47)
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where

G(ρ1,ρ2, . . . ,ρQ, {bmn} =

Q
∑

q=1

α2
q ‖Fqρ

q − dq‖22

+
N∑

n=1

∑

m∈∆n
m>n

(
‖Dmnρtot − bmn‖2ℓ2 + 2ξ ‖bmn‖ℓ2

)
.

(3.48)

The iterative half-quadratic algorithm, whenΨ(·) is the Huber function from Eq. (3.25), pro-

ceeds as follows:

1. Set iteration numberj = 0, and set the estimated image sequence equal to an initial guess
{

ρ̂
1
(j), ρ̂

2
(j), . . . , ρ̂

Q
(j)

}

(e.g., set all voxel coefficient values based on an initial noisy Fourier

reconstruction).

2. At thejth iteration, compute the auxiliary vector for each voxel pair as

b(j)
mn =







(
∥

∥

∥
Dmnρ

(j)
tot

∥

∥

∥

ℓ2
−ξ)

∥

∥

∥
Dmnρ

(j)
tot

∥

∥

∥

ℓ2

Dmnρ
(j)
tot,

∥
∥
∥Dmnρ

(j)
tot

∥
∥
∥
ℓ2
> ξ

0, else.

(3.49)

3. Update the image sequence according to

{

ρ̂
1
(j+1), ρ̂

2
(j+1), . . . , ρ̂

Q
(j+1)

}

= argmin
{ρ1,ρ2,...,ρQ}

G(ρ̂1
ρ̂
2, . . . , ρ̂Q, {b(j)

mn}). (3.50)

This optimization problem is separable, such that the solution for eacĥρq
(j+1) is given by

ρ̂
q
(j+1) = argmin

ρq

{

α2
q ‖Fqρ

q − dq‖2ℓ2 +
∥
∥βqDρq − b(j)

q

∥
∥
2

ℓ2

}

=

(

FH
q Fq +

β2
q

α2
q

DHD

)−1(

FH
q d

q +
βq
α2
q

DHb(j)
q

)

,

(3.51)

whereD was previously defined in Sec.3.2, b(j)
q is the vector comprised of theqth entries

of the{b(j)
mn} vectors, and it is assumed that the nullspaces ofFq and

β2
q

α2
q
D have trivial inter-
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section. As in Sec.3.2, the matrix inversion in this expression can be computed efficiently

using iterative algorithms like CG or LSQR. However, it shouldalso be noted that the ma-

trix
(

FH
q Fq +

β2
q

α2
q
DHD

)

frequently has special structure that enables even faster inversion.

In particular,FH
q Fq is often a circulant matrix when using Cartesiank-space sampling, and

DHD is also circulant when the finite-differencing scheme assumes periodic boundary con-

ditions. Circulant structure implies that
(

FH
q Fq +

β2
q

α2
q
DHD

)

is diagonalized by the unitary

DFT matrix, meaning that the matrix inversion in Eq. (3.51) can be computed noniteratively

using a small number of FFT operations [207,625].

4. Incrementj. Repeat steps 2 and 3 until convergence is achieved.

Similar to multiplicative half-quadratic optimization, this additive half-quadratic algorithm mono-

tonically reduces the cost function in Eq. (3.8). Moreover, this half-quadratic algorithm has guar-

anteed global convergence to a global minimum of Eq. (3.8).

In general, it is known that additive half-quadratic algorithms tend to converge more slowly per

iteration than multiplicative half-quadratic algorithms[472]. However, when the matrix inversion

can exploit circulant structure, the computational effortfor each iteration of additive half-quadratic

algorithms is significantly smaller than that for multiplicative half-quadratic algorithms. As a

result, additive half-quadratic algorithms can lead to significantly reduced total computation times

in these cases.

3.7.2 Nesterov’s Algorithm

Our description of Nesterov’s algorithm follows the description given in Ref. [38]. Nesterov’s

algorithm is a first-order optimization method with an optimal convergence rate, that can be used

to minimize arbitrary smooth convex functions. In particular, assume that we wish to find a solution

to

min
x∈Qp

f (x) , (3.52)
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with x ∈ R
N , wheref is a smooth convex function and the primal feasible setQp is convex.

The functionf is assumed to be differentiable. In addition, the gradient∇f (x) is assumed to be

Lipschitz such that

‖∇f (x)−∇f (y)‖ℓ2 ≤ L ‖x− y‖ℓ2 , (3.53)

whereL is some upper bound on the Lipschitz constant. Given two scalar sequences{κk} and

{τk}, Nesterov’s algorithm takes the following form:

Initialize x0. Fork ≥ 0,

1. Compute∇f (xk).

2. Computeyk:

yk = arg min
x∈Qp

L

2
‖x− xk‖2ℓ2 + 〈∇f (xk) ,x− xk〉 , (3.54)

where< ·, · > denotes the standardℓ2 inner-product forRN .

3. Computezk:

zk = arg min
x∈Qp

L

Γp

pp (x) +
k∑

i=0

κi 〈∇f (xi) ,x− xi〉 . (3.55)

4. Updatexk:

xk+1 = τkzk + (1− τk)yk. (3.56)

5. Incrementk.

Stopwhen a given termination criterion is valid.

The functionpp (x) is a strongly convex function overQp with convexity parameterΓp. Fol-

lowing Ref. [38], we will use

pp (x) =
1

2
‖x− x̃‖2ℓ2 , (3.57)

wherex̃ ∈ Qp is an initial guess of the solution. Note thatΓp = 1 in this case.
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At each iteration,yk is the current guess of the optimal solution. Ifκk = (k + 1) /2 and

τk = 2/ (k + 3), thenyk has been proven to converge to

x∗ = arg min
x∈Qp

f (x)

with the convergence rate

f (yk)− f (x∗) ≤ 4Lpp (x
∗)

(k + 1)2 Γp

.

However, it should be noted that Nesterov’s algorithm does not necessarily converge monotoni-

cally.

While Nesterov’s algorithm is designed for real-valued problems, it is straightforward to write

Eq. (3.8) as a real-valued optimization problem with twice as many optimization variables (i.e.,

one real-valued variable for each of the real and imaginary parts of the complex random variable).

Simplifying the algorithm derived using the real-valued problem formulation, it is possible to

equivalently derive a complex-valued algorithm that makesuse of the same update equations in

Eqs. (3.54)-(3.56), and we will focus on this description for the remainder of this subsection.

Note thatQp = C
QN for the problem in Eq. (3.8), and the complex vectors that we compute in

Nesterov’s algorithm will all have lengthQN .

Finalizing the description of Nesterov’s algorithm for Eq.(3.8) is a simple matter of specifying

the gradient of Eq. (3.8), specifyingL, and describing the update equations in Eqs. (3.54) and

(3.55):

• For eachq, the gradient of Eq. (3.8) with respect toρq is given by the left-hand side of

Eq. (3.27). The full gradient of the cost function can be obtained by stacking these individual

length-N gradient vectors into a single length-QN vector.

• Applying the triangle inequality to the gradient expression in Eq. (3.27), it can be shown that
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an upper bound on the Lipschitz constant for Eq. (3.8) is given by

L = max
q

{
2α2

q ‖Fq‖22
}
+max

q

{
β2
q

}
2 ‖D‖22 , (3.58)

where‖·‖2 denotes the spectral norm. While the spectral norm is easy to compute analyt-

ically for certain matrices with special structure, there also exist fast iterative methods for

computing the spectral norm of arbitrary matrices [248].

• The update equation foryk in Eq. (3.54) is

yk = xk −
∇f (xk)

L
. (3.59)

• The update equation forzk in Eq. (3.55) is

zk = xk −
∑k

i=0 κi∇f (xk)

L
. (3.60)

3.7.3 Accelerated Multiplicative Half-Quadratic Algorithm

Ramani and Fessler have proposed an accelerated algorithm for solving the matrix inversion in

Eq. (3.16) that appears in the multiplicative half-quadratic algorithm [528]. Their method is based

on the observation that if we iterate

z(k+1) =

(

L+
β2
q

α2
q

DHdiag(ℓ(j)n,m)D

)−1
(
FH

q d
q +

(
L− FH

q Fq

)
z(k)
)

(3.61)

over k, thenz(k) converges to the optimal̂ρq
(j+1) in Eq. (3.16). The matrixL appearing in this

equation is anyN×N Hermitian invertible matrix for whichL−FH
q Fq is positive definite. Ramani

and Fessler use the matrix inversion lemma (MIL) to expand the matrix inversion appearing in
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Eq. (3.61) as

(

L+
β2
q

α2
q

DHdiag(ℓ(j)n,m)D

)−1

= L−1 − L−1DH
(
diag(ℓ(j)n,m)

−1 +DL−1DH
)−1

DL−1. (3.62)

As a result, the solution to Eq. (3.16) can be obtained by iterating the following procedure overk:

1. Compute

b(k) = L−1
(
FH

q d
q − FH

q Fqz(k)
)
+ z(k). (3.63)

2. Use an iterative algorithm like CG or LSQR to solve

(
diag(ℓ(j)n,m)

−1 +DL−1DH
)
a(k) = Db(k) (3.64)

for the vectora(k).

3. Set

z(k+1) = b(k) − L−1DHa(k). (3.65)

Though this procedure is more complicated than directly applying CG or LSQR to Eq. (3.16),

Ramani and Fessler argue that this method will hopefully converge after fewer iterations due to

similarities with a preconditioning strategy; see Ref. [528] for further details.

A key component of this algorithm is thatL should be chosen such that it is easily inverted.

Ramani and Fessler choose the matrix to take the formL = FH
q Fq + cDHD, wherec is a small

positive constant (we usec = 0.001), and it is assumed that the nullspaces ofFq andD have

trivial intersection. Note that this matrix has the same form as the matrix appearing in the additive

half-quadratic algorithm, and thus is similarly easy to invert using FFTs when data is sampled

on a Cartesiank-space grid and when the finite-differencing operation assumes periodic boundary

conditions.
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Figure 3.37: Computational performance of the different minimization algorithms with the DW
mouse dataset. (a) Convergence as a function of iteration number. (b) Convergence as a function
of time.

3.7.4 Algorithm Comparisons

The three different algorithms described in the preceding subsections were all implemented in

Matlab (Mathworks, Natick, MA), and compared to the multiplicative half-quadratic algorithm

described in Sec.3.2. Algorithm performance was systematically tested on two different datasets,

using a Linux-based workstation with two dual-core Xeon 3.60 GHz processors and 8 GB of RAM.

The first dataset was the DW mouse brain dataset described previously in Sec.3.4.2. For this

dataset, circulant matrix structure can be exploited for the additive half-quadratic algorithm and

the multiplicative half-quadratic algorithm with MIL-based acceleration. In our performance eval-

uation, the additive half-quadratic algorithm was evaluated with both standard matrix inversion

and fast matrix inversion. The results of the performance evaluation with this dataset are shown

in Fig. 3.37. It is observed that the standard and the MIL-accelerated multiplicative half-quadratic

minimization algorithms demonstrate the fastest per-iteration convergence, while Nesterov’s algo-

rithm demonstrates the slowest per-iteration convergence. However, due to the low computational

effort for each iteration, both Nesterov’s algorithm and the additive half-quadratic minimization

algorithm using the fast matrix inverse significantly outperform the other algorithms in terms of

raw speed. As expected, the MIL-based acceleration of the multiplicative half-quadratic algo-
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Figure 3.38: Computational performance of the different minimization algorithms with the simu-
lated phantom dataset. (a) Convergence as a function of iteration number. (b) Convergence as a
function of time.

rithm leads to reduced computation time. In addition, the multiplicative half-quadratic algorithm

is significantly faster than the additive half-quadratic algorithm when the additive half-quadratic

algorithm does not take advantage of circulant matrix structure.

The second dataset used was simulated fromQ = 10 different 96 × 96 phantom images.

Data was simulated based on a real EPI trajectory, which included ramp sampling. Ramp sam-

pling means that circulant matrix structure cannot be used for the MIL-accelerated multiplicative

half-quadratic algorithm or the additive half-quadratic algorithm. As a result, these accelerated

algorithms were not included in the performance evaluation. The results of this experiment are

shown in Fig.3.38. As before, the multiplicative half-quadratic algorithm demonstrated the fastest

per-iteration convergence. In addition, Nesterov’s algorithm maintained a clear advantage in terms

of raw speed.

This performance evaluation indicates that alternative algorithms can be preferable to the stan-

dard multiplicative half-quadratic algorithm for minimizing Eq. (3.8). Nesterov’s algorithm is

particularly attractive, since it can be applied for arbitraryk-space sampling patterns and is consis-

tently fast. When circulant structure can be exploited during the iterative procedure, the additive

half-quadratic algorithm also presents attractive features. It should be noted, however, that these
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algorithms could perform differently when optimization isperformed on different computational

platforms or when using different datasets, and that the choice of algorithm should ideally be

made on a case-by-case basis. We also remark that fast algorithms for regularized MR imaging

methods continue to be developed, and new emerging algorithms could possibly outperform the

algorithms we have evaluated here. A particularly promising class of new algorithms is based on

the augmented Lagrangian formulation [529].

3.8 Conclusion and Summary

In this chapter, we have described and analyzed a new approach to reconstructing a series of

correlated images. We formulated an edge preserving prior based on shared non-interacting line

processes, and showed that the solution to the resulting PMLoptimization problem could be found

efficiently using fast algorithms. In addition, we demonstrated that the method is easily character-

ized when reconstruction parameters are chosen appropriately, and this enables the user to directly

control the trade-off between resolution and SNR. We performed an analysis of this trade-off and

found that regularized reconstruction of high-resolutiondata was more efficient than simple recon-

struction of averaged low-resolution data. Finally, we demonstrated the potential of the proposed

approach with a series of simulation and experimental examples.
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Chapter 4

Compressed-Sensing MRI with Random
Encoding

In this chapter, we address the problem of reconstructing MRimages from highly-undersampled

high-SNR data.1 In particular, we make use of a relatively new approach to reconstructing signals

from limited data known as compressed sensing/compressivesampling (CS) [108,109,115,116,

177,206,622]. CS has generated significant interest in the signal processing community because of

its potential to leverage signal sparsity to enable robust signal reconstruction from much fewer data

samples than would be suggested by conventional sampling theory.2 In the context of MRI, this

type of undersampling could have the potential to significantly accelerate imaging experiments.

As described in Sec.2.2, the necessary sampling density requirements for conventionally-

reconstructed Fourier-encoded MRI are dependent on the spatial support of the imaging subject.

In particular, images with small support can be reconstructed with fewer Fourier samples (for a

given spatial resolution) than images with larger support,and as a result, strong prior informa-

tion about the image support can be used to accelerate data acquisition [6,92,233,320,426,464,

511,554,571,610]. Intuitively, the necessary sampling rate in CS is similarly governed by prior

information on the limited support of the image. However, rather than using precise information

about the known support of the image in the spatial domain, CS assumes only that the image will

1Some of the text and figures in this chapter have been previously published in [273], and are copyright 2010 IEEE.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must beobtained from the IEEE.

2CS is a rapidly developing field with a rapidly developing body of literature. Due to this rapid devel-
opment, it is common for new CS results to be distributed online prior to journal publication. A repository
of CS preprints and papers is currently maintained by the Digital Signal Processing group at Rice University
(http://dsp.rice.edu/cs , and is regularly updated with new CS-related manuscripts.The Nuit Blanche blog
(http://nuit-blanche.blogspot.com ) is another good resource, and provides daily updates on CS-related
preprints, papers, and ideas.
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(a) Original Image (b) Wavelet Transform (c) DCT Transform (d) Finite Differences

Figure 4.1: Typical medical images have sparse representation in appropriately chosen transform
domains. For example, the (a) brain image has relatively fewsignificant coefficients in the (b)
wavelet (the coefficients shown here were calculated using aDaubechies-4 wavelet transform) and
(c) discrete cosine transform (DCT) domains. (d) In addition, due to the piecewise-smooth nature
of this image, it also has a small number of significant coefficients using a transform that computes
finite differences between adjacent pixels.

be sparse (i.e., the signal has few non-zero coefficients) orcompressible (i.e., the signal has few

non-negligible coefficients) in a known transform domain. And, unlike support-limited reconstruc-

tion, traditional CS does not assume prior knowledge regarding the exact locations of the non-zero

transform-domain coefficients;3 instead, the theoretical results indicate that robust reconstructions

are possible even when the transform-domain support is estimated jointly with the image from

sparsely-sampled data.

It is well known that natural images, such as those seen in MRI,are highly compressible

in appropriately-chosen transform domains (frequently, this is the result of the images having

piecewise-smooth structure [170,196,429,484,658]). The transform compressibility of MR images

is illustrated with a typical brain image in Fig.4.1. As a result of image compressibility, MRI has

been viewed as a promising application for CS, and several MRI reconstruction schemes inspired

by CS theory have been reported in the literature (see, e.g., Refs. [11,60,228,240,317,350,362,

397, 420, 421, 557, 568, 608, 668]). In addition, sparsity-exploiting reconstruction methods for

limited-data scenarios existed in the MR literature for a long time, outside of the context of the

new CS theory (e.g., Refs. [34,78,82,264,401,439,500,505,508,553,578,662]).

3Fast MRI acquisition for the case where transform-domain support is knowna priori has been explored previously
[119–121, 495, 619, 678]. In addition, some recent developments in CS have addressed the case where the image
support is partially known, though this will not be a focus ofthis chapter; see, e.g., Refs. [336,620,621].
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The theoretical CS literature typically assumes finite-dimensional linear signal models (cf. the

discussion of such models in MRI from Sec.2.2.3), with the data acquisition model given by

d = Eρ+ η, (4.1)

whereρ is a length-N signal vector of interest,d is a length-M data vector,E is anM × N

encoding matrix withM ≪ N , andη is a length-M noise vector. SinceM < N , the matrixE

has a non-trivial nullspace, and there are an infinite numberof possible reconstructions that are

all maximally consistent with the measured data (cf. Sec.2.2); as result, the inverse problem is

ill-posed, and additional constraints must be imposed for there to be a unique reconstruction.

CS makes two key assumptions to ensure that the inverse problem becomes well-posed: (1) the

signal vectorρ is sparse or compressible in a given linear transform domain, and (2) the observa-

tion matrixE satisfies certain mathematical conditions with respect to this transformation. LetΨ

be a sparsifying transform matrix such that the vector

c = Ψρ (4.2)

is known to be sparse or compressible. The various existing CSreconstruction procedures often

find estimateŝρCS of ρ by solving

minimizeRs (Ψρ̂CS) subject to ‖Eρ̂CS − d‖2ℓ2 ≤ ε2, (4.3)

whereRs (·) is a functional that promotes sparsity, and the parameterε controls the allowed level
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of data discrepancy (usually chosen based on an estimate of the noise variance4). There are sev-

eral different choices forRs (·) that have been proposed in the literature [607]. The most intuitive

choice is to useRs (·) = ‖·‖ℓ0 , where theℓ0-“norm”5 counts the number of non-zero components of

its argument. Use of theℓ0-norm is desirable in that it results in a solution that has maximum spar-

sity among all possible solutions that are consistent with the data. However, using theℓ0-norm has

one major limitation: the resulting optimization problem is non-convex and very difficult to solve

(i.e., it is NP-hard [466]). While various greedy algorithms exist forℓ0-norm minimization, an-

other common approach is to choose anRs (·) that makes optimization of Eq (4.3) more tractable.

In particular, a common choice is theℓ1-norm (previously defined in Eq. (2.34)), resulting in

minimize ‖Ψρ̂CS‖ℓ1 subject to ‖Eρ̂CS − d‖2ℓ2 ≤ ε2. (4.4)

Theℓ1 norm is the tightest convex relaxation of theℓ0 norm, and its convexity implies that global

optimization of Eq. (4.4) can be achieved through standard convex programming methods. In

addition, there are many situations in which the solution totheℓ1-norm minimization problem is

equivalent or nearly-equivalent to the solution of theℓ0-norm minimization problem [178, 179].

The fact thatℓ1-norm minimization frequently leads to sparse solutions can be explained using

geometric arguments [291,600], as illustrated with the example shown in Fig.4.2.

The accuracy of CS reconstruction using Eq. (4.4) can be guaranteed ifE andΨ satisfy certain

4The constraint that‖Eρ̂CS − d‖2
ℓ2

is no larger than an upper bound of the total noise‖Eρ− d‖2
ℓ2

= ‖η‖2
ℓ2

is fre-
quently called thediscrepancy principle[48,207,289,625], and is a common method used for choosing regularization
parameters in ill-posed problems. When an upper bound on‖η‖2

ℓ2
is estimated well, using the discrepancy principle

can help ensure that the reconstructed solutionρ̂CS will have similar level of data mismatch to the true unknown signal
that we are trying to reconstruct. In CS theory, use of the discrepancy principle is also motivated by the fact that re-
construction characterizations can be derived that can guarantee the quality of reconstructed answers in certain cases.
For white complex Gaussian noise with varianceσ2, note that 2

σ2 ‖η‖2ℓ2 is chi-squared distributed with2M degrees

of freedom [73]. As a result,‖η‖2
ℓ2

has a mean ofMσ2, and a standard deviation ofσ
√
2M . Due to the central limit

theorem, the chi-squared distribution is approximately Gaussian whenM is large (e.g., whenM > 50 [73]). Thus,
the distribution is also peaked about its mean whenM is large, such that‖η‖2

ℓ2
≈ σ2M with high probability.

5Strictly speaking, this functional is not a true norm, because it does not satisfy the triangle inequality.
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Figure 4.2: Illustrative problem geometries for (a)ℓ1-norm minimization and (b)ℓ2-norm min-
imization. The blue lines correspond to the linear variety of points satisfyingEρ = d, with
E = [−1 2] andd = −2. The shaded light-blue regions correspond to the sets of points satisfying
‖Eρ− d‖2ℓ2 ≤ ε2, with ε2 ≈ 0.894. The red curves in (a) and (b) are isocontours of theℓ1- and
ℓ2-norms, respectively. The optimal solution to theℓ1-norm minimization problem can be obtained
by finding the smallest valueκ such that the curve defined by‖ρ‖ℓ1 = κ intersects the set of points
satisfying‖Eρ− d‖2ℓ2 ≤ ε2. The solution to theℓ1-norm minimization is sparse in this case, since
only one of the entries of the optimalρ is nonzero. This sparsity is the result of the fact that the
isocontours of theℓ1-norm are “pointy,” extending further along the coordinateaxes than along
other directions. Notice that theℓ2-norm isocontours are spherical rather than pointy. As a re-
sult, theℓ2-norm does not prefer solutions along particular orientations, andℓ2-norm minimization
generally does not yield sparse solutions.
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mathematical conditions.6 For example, consider the case whereΨ is a square, invertible matrix,

and defineΦ = EΨ−1.7 In this case, the performance of CS reconstruction can be guaranteed if

Φ satisfies appropriate restricted isometry properties (RIPs) [103,108,110,116,157,219], inco-

herence properties [41,104,107,181,182], or nullspace properties (NSPs) [144,183,254]. While

NSPs provide necessary and sufficient conditions for accurate CS in the absence of noise, this

chapter will focus on RIPs, which can provide some of the strongest existing performance guaran-

tees for stable and accurate reconstruction in the presenceof noise [103,116,219]. To define the

RIP, first letαs andβs denote the largest and smallest coefficients, respectively, such that

αs ‖x‖2ℓ2 ≤ ‖Φx‖2ℓ2 ≤ βs ‖x‖2ℓ2 (4.5)

is true for all vectorsx with at mosts non-zero entries. A simple generalization of the results in

Ref. [110] yields that the best possible8 restricted isometry constantof orders is given by

δs =
βs − αs

βs + αs

. (4.6)

The performance guarantees for CS reconstruction with Eq. (4.4) improve asδs gets smaller. For

example, Cand̀es [110] shows that ifδ2s <
√
2 − 1 ≈ 0.414 and in the absence of noise, the

solution to Eq. (4.4) with ε = 0 perfectly recovers any sparse vector with fewer thans non-zeros.

In the more general setting with noise and a compressiblec, a trivial modification of the results in

Ref. [110] shows that ifδ2s <
√
2−1 and if the noise obeys‖η‖2ℓ2 ≤ ε2, then the CS reconstruction

6Performance guarantees for other CS reconstruction formulations also exist (see references in Ref. [607]). These
guarantees are sometimes better than those that exist forℓ1-minimization (e.g., [132, 133, 220, 548, 609, 622, 652]),
though the methods that do better thanℓ1-norm minimization typically require additional prior information and/or
nonconvex optimization.

7Discussion of the case whereΨ is a more general matrix can be found in Ref. [111].
8The restricted isometry constant as defined in Ref. [110] is the smallest numberδs such that Eq. (4.5) holds with

αs = 1 − δs andβs = 1 + δs for all vectorsx with at mosts non-zero entries. This definition ofδs is not invariant
with respect to rescaling ofΦ, despite the fact that the solution to Eq. (4.4) would remain exactly the same (other
than scaling) under this problem transformation. Equation(4.6) represents the minimal value ofδs over the set of all
possible rescalings ofΦ.
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ĉcs = Ψρ̂CS satisfies

‖ĉcs − c‖ℓ2
︸ ︷︷ ︸

ReconstructionError

≤ C0s
−1/2 ‖c− cs‖ℓ1

︸ ︷︷ ︸

CompressionError

+C1ε/
√

ξ
︸ ︷︷ ︸

Noise Error

, (4.7)

where cs is the optimals-term approximation ofc [110], ξ = 1
2
(αs + βs), andC0 and C1

are dependent onδ2s. Recent improvements on this result have been made that provide similar

guarantees for stable and accurate reconstruction, but arevalid under the weaker conditions that

δs < 0.307 [103] or δ2s < 0.4734 [219].9

For an arbitrary pair of matricesE andΨ, it is often computationally infeasible to calculate

practically-useful guarantees on the quality and robustness of the CS reconstruction with Eq. (4.4).

As a result, joint optimization ofE andΨ for optimal performance in the context of specific re-

construction scenarios is an even more challenging problem. Therefore, a common practice has

been to construct CS matrices based on randomization, since certain randomized data acquisition

schemes have a high probability of possessing good CS properties [108,116,184,545], and because

the known deterministic constructions of CS matrices have significantly worse CS properties than

randomized matrices [169].10 Notably for Fourier-encoded MRI, ifΨ is an identity matrix and

M andN are large, then CS reconstruction is guaranteed to be robust with high probability ifE

is a randomly undersampled discrete Fourier transform operator [116, 545].11 However, Fourier

encoding is not necessarily well-suited to CS reconstruction with arbitraryΨ. For example, Lustig

et al.[420] have demonstrated that using slice-selective excitationas an additional encoding mech-

anism can improve CS reconstruction in 3D imaging with compressibility in a wavelet basis. As

9Most exisiting RIP-based results guaranteeing the performance of CS have assumed that all matrices and vectors
involved are purely real-valued. For MRI, however, the complex case is of more practical interest. Foucart’s recent
work has explicitly demonstrated that the same kinds of performance guarantees are also valid for complex vectors
and matrices [219].

10Note, however, that if performance requirements are relaxed such that sparse-recovery is guaranteed formost
sparse vectors instead ofall sparse vectorsc, then certain high-quality deterministic constructions are also known to
exist [105].

11Interestingly, random and/or nonuniform undersampled Fourier encoding had been proposed much earlier for
certain MR imaging scenarios with sparse or otherwise simplified image models, unrelated to CS-based guarantees
[34,82,355,439,500,505,508,553].
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a result, the use of other non-Fourier encoding schemes for CS-MRI could also potentially yield

benefits.

In this work, we investigate the use of random encoding for CS-MRI. This choice is moti-

vated by the insight from the CS literature that if the entriesof E are chosen independently from

a Gaussian distribution andM andN are large, then there is a high probability that the RIP will

be satisfied foranyunitary matrixΨ [108]. In addition, random GaussianE matrices have been

shown to be nearly optimal with respect to other encoding schemes for CS, and can be obtained

without significant computational effort. This leads Candès and Tao to describe Gaussian measure-

ments as a “universal encoding strategy” [109]. Many useful transforms for compressing medical

images are unitary, including the identity transform, various wavelet transforms, the discrete co-

sine transform (DCT), and the discrete Fourier transform. Recent results also suggest that Gaussian

measurements can often lead to good CS reconstructions even whenΨ is not unitary [111]. An

objective of this chapter is to evaluate the utility of random encoding for practical MR imaging

problems.

The use of a random matrixE instead of a Fourier matrix can have a dramatic effect on the

structure of theΦ matrix. This is illustrated in Fig.4.3, which showsΦ matrices for several unitary

bases when the matrixE is either a “fully-sampled” (i.e., square and invertible) Fourier matrix or a

“fully-sampled” random Gaussian matrix. WhenΨ corresponds to the identity transform, then the

use of Fourier encoding causes theΦ matrix to have rows with significant energy in every entry.

Practically, this means that every measurement contains significant information about every trans-

form coefficient. However, this is not the case with the wavelet and block DCT transforms, where

the signal energy for each row is significantly more concentrated. A concentration of signal energy

in the Fourier domain is expected for these transforms: wavelet basis functions are well-known to

be highly localized in both the spatial domain and the Fourier domain [429], and the cosine func-

tions used to form the block DCT basis functions are also naturally localized in the Fourier domain.

The consequence of this concentration is that low-frequency Fourier measurements provide very

strong information about the transform coefficients corresponding to the low-resolution image ba-
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Figure 4.3: The effects of different encoding strategies ontheΦ matrix. The top row shows the
magnitudes of the128× 128Ψ−1 matrices for (a) the identity transform, (b) the 1D Daubechies-4
wavelet transform, and (c) the 1D block DCT. The second row shows the magnitudes ofFΨ−1

for these three transforms, whereF is the128 × 128 DFT matrix (the magnitude ofFΨ−1 for
the identity transform is a matrix that has every entry equalto 1, which is not very interesting to
look at; as a result, (d) shows the magnitude of the real part of FΨ−1). The bottom row shows
the magnitudes ofGΨ−1 for these three transforms, whereG is a 128 × 128 random complex
Gaussian matrix.
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sis functions, but relatively little information about thetransform coefficients corresponding to

the high-resolution basis functions. Similarly, high-frequency Fourier measurements contain lim-

ited information about the transform coefficients corresponding to low-resolution basis functions.

This type of structure indicates that if CS-MRI with Fourier encoding is used for a wavelet- or

DCT-compressible image, the accuracy at which high- and low-resolution image features can be

reconstructed will likely be limited by the number of acquired high- and low-frequencyk-space

measurements, respectively. In contrast to the case with Fourier measurements, none of theΦ ma-

trices corresponding to a GaussianE matrix have rows with concentrated energy. As a result, each

row of theΦ matrix for a random GaussianE can simultaneously encode information about image

features at every resolution scale, which suggests that CS-MRI with random encoding could have

very different reconstruction characteristics compared to CS-MRI with Fourier encoding. This

hypothesis is confirmed by our empirical results, which are described later in this chapter.

A preliminary account of this work was first presented in Ref. [275], and related work on CS-

MRI with random and other non-Fourier encoding has subsequently been performed by other

authors [398, 523, 566, 632, 649, 656]. While we focus here on MRI, the results we present

could also provide insight into the utility of similar randomized encoding schemes with CS re-

construction in the context other imaging modalities, including coded-aperture computed tomog-

raphy [494], radio interferometry [523], and coded-aperture or moving random exposure optical

imaging [188,435,572].

4.1 CS-MRI with Random Encoding

The proposed random encoding scheme is achieved using tailored spatially-selective RF excitation

pulses. Non-Fourier encoding schemes using selective excitation have been investigated previously

(see, e.g., Refs. [83, 151, 342, 455, 496] and the discussion in Sec.2.1.2), though outside of the

context of CS-MRI. In contrast to these previous works, we use selective excitation to implement

an encoding scheme similar to the “universal” encoding suggested by the CS literature [109].
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MR data acquisition with slice-selective excitation (cf. Sec. 2.1.2) and uniform receive coil

sensitivity12 can be written generally as

dm =

∫

wm (x) ρ (x) exp (−ı2πkm · x)dx+ ηm,

m = 1, . . . ,M,

(4.8)

wherewm (x) represents the effects of RF excitation for themth sample. In conventional Fourier

encoding, the RF excitation profile is designed in such a way that wm (x) is a constant. In this

work, we allowwm (x) to vary withm andx, as described in the next two subsections.

To connect with the CS formulation in Eq. (4.1), we first approximate Eq. (4.8) using a discrete

voxel-based image model as in Eq. (2.30). Under this parameterization, Eq. (4.8) can be written

as Eq. (4.1), with theM ×N matrixE defined as

[E]mn =

∫

wm (x)φ (x− xn) exp (−ı2πkm · x)dx. (4.9)

In the following two subsections, we describe two schemes for designingE to achieve random

encoding.

4.1.1 Ideal Random Encoding

Ideally, we would like to have excitation profiles such that the matrix entries in Eq. (4.9) are drawn

independently from a Gaussian distribution. One way to achieve this would be to havewm (x)

be approximately constant within each voxel to minimize intravoxel signal dephasing, and choose

the value ofwm (x) at the center of each voxel randomly from a complex13 Gaussian distribution.

12In principle,wm (x) could also be used to absorb the effects of using a receive coil with spatially non-uniform
sensitivity, and this would be important to do when doing parallel imaging with an array of receiver coils (e.g., as in
Ref. [519]). To simplify the notation and discussion, we assume for this chapter that only a single receiver coil is used
for data acquisition and that any non-uniformity in the receiveB1 field is treated as a part of the image functionρ (x).

13We choose the complex Gaussian distribution because complex random Gaussian matrices typically have better
conditioning than real random Gaussian matrices [193].
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Mathematically, this excitation profile can be described, in the 2D imaging case, as

wm (x, y) =

Q/2−1
∑

q=−Q/2

P/2−1
∑

p=−P/2

γqpmΠ(x− q) Π (y − p) , (4.10)

whereΠ(·) is a rectangular window function with unit width, and eachγqpm is a realization of

a complex Gaussian random variable. In Eq. (4.10), we have assumed without loss of generality

that the image voxel positions{xn}Nn=1 lie on aQ × P Cartesian grid, normalized so that the

distance between adjacent voxels is 1. With excitation profiles generated according to Eq. (4.10)

and if φ (x) is chosen to be a Dirac delta function, the matrixE will have the desired Gaussian

distribution for anykm.

However, there are a couple of practical limitations to implementing this scheme with a distinct

excitation profile for each measurement sample. First, makingwm (x, y) distinct for eachm would

mean that only a single sample is obtained for each excitation, thereby wasting the free precession

period that is used for data acquisition in conventional Fourier schemes. Second, high-resolution

multidimensional excitation profiles are difficult to achieve using current excitation hardware, due

to practical constraints on pulse length. We next describe apractical alternative to this ideal random

encoding scheme.

4.1.2 Practical Implementation

To make random encoding more practical, we consider a modification based on the conventional

spin-warp imaging sequence shown in Fig.4.4(a). In spin-warp imaging, each excitation is fol-

lowed by phase encoding, and a full frequency-encoded line passing through the center ofk-space

is read out after the signal is refocused by a 180◦ pulse. In this manner, Cartesian coverage of

k-space is obtained, with the total number of excitations given by the total number of phase encod-

ings.

Our proposed modification of conventional spin-warp imaging replaces phase encoding by

random 1D spatially-selective excitation, and is shown in Fig. 4.4(b). In particular, assuming that
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Figure 4.4: (a) The conventional Fourier-encoded spin-warp sequence, and (b) the proposed 1D
random-encoding sequence.GPE, GFE, andGSS represent the gradients along the phase encod-
ing, frequency encoding, and slice select dimensions, respectively. Also shown are (c) a typical
random-encoding RF pulse and (d) its corresponding excitation profile. The impact of random
encoding is depicted with real experimental data in (e-h). The (e) magnitude and (f) phase of
a phantom acquired with standard excitation and full Fourier encoding, as compared to the (g)
magnitude and (h) phase of the same phantom acquired with random-encoding excitation and full
Fourier encoding. The frequency encoding (FE) and phase encoding (PE) directions for these
images are labeled in (e).
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x is the phase encoding dimension andy is the frequency encoding dimension, we use

wm (x, y) =

Q/2−1
∑

q=−Q/2

γqmΠ(x− q) , (4.11)

whereγqm are Gaussian distributed as before, andwm (x, y) is the same for all samples from the

same excitation.

The RF pulses used to achieve the 1D excitation profiles from Eq. (4.11) are designed using the

small tip-angle approximation [502], such that the excitation RF pulse waveform can be generated

by taking the Fourier transform of the desired 1D excitationprofile. An example RF pulse and the

corresponding excitation profile are shown in Fig.4.4(c-d).

This form of random encoding requires the use of RF pulses for both spatial encoding and slice

selection. Given the limitations of current multidimensional excitation technology, this necessi-

tates the use of multiple pulses in practice. This limitation is common to other two-dimensional

non-Fourier encoding schemes that use spatially-selective excitation (e.g., [455, 496]), though

it can be overcome if the RF encoding is applied only along the third dimension of a three-

dimensional experiment (e.g., [151, 420]). In addition, the use of varying excitation angles can

complicate steady-state behavior [659]. This issue is also present for other similar non-Fourier

encoding techniques, and is generally overcome by using small flip angles and relatively long rep-

etition times [506]. Use of random encoding outside of this regime can mean thatdata acquisition

is nonlinear and no longer accurately modeled by Eq. (4.8). The use of nonlinear random encoding

does not fall within the scope of conventional CS or this chapter; however, preliminary empirical

investigations of nonlinear random encoding can be found inRef. [656], in which ℓ1 regularization

is used in the context of a parametric nonlinear signal model.
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4.2 Evaluation

Experiments and simulations were performed to investigatethe properties of random encoding for

CS-MRI. In all cases, we compared three different data acquisition schemes with a fixed number

M of data samples:

• Random Encoding. The proposed practical random encoding scheme with 1D spatially-

selective RF excitations, as described in Sec.4.1.2.

• Fourier Encoding 1 (FE1). This scheme uses Fourier encoding with the standard spin-warp

sequence from Fig.4.4(a). The phase encoding locations are evenly spaced at the Nyquist

rate, and cover the low frequency portion ofk-space.

• Fourier Encoding 2 (FE2). Similar to FE1, FE2 uses Fourier encoding with the standard

spin-warp sequence. However, the phase-encoding locations are chosen randomly from the

Nyquist grid according to a discretized Gaussian distribution centered at low-frequencyk-

space. This type of variable-density random sampling scheme performs empirically better

than samplingk-space uniformly at random, and is consistent with both the prior knowledge

that the typical images seen in MRI have energy concentrated at low-frequencies and the

existing CS-MRI literature [420,500,635].

4.2.1 Experiments

The three different encoding schemes were implemented on a 14.1 T magnet system (Oxford

Instruments, Abingdon, UK) interfaced with a Unity console(Varian, Palo Alto, CA, USA). The

flip angle for FE1 and FE2 encoding and the root mean square flipangle for random encoding was

5◦, with an RF pulse duration of 2.5 ms. The field of view was 3 cm× 3 cm, the slice thickness

was 4 mm, and the sequence timing parameters were TE/TR = 26/500 ms. Data was collected for

reconstruction on a 256×256 voxel grid using two different test objects: a compartmental phantom
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(a) (b) (c)

Figure 4.5: The fully Fourier-encoded image of the section of kiwi fruit from a real experiment
is shown in (a). High-SNR images of the compartmental phantom and the brain image used for
simulations are shown in (b) and (c), respectively.

and a section of kiwi fruit. The estimated SNR14 for full 256×256 Fourier encoded data was

approximately 4 for the compartmental phantom image (shownin Fig. 4.4(e)), and approximately

6 for the kiwi fruit image (shown in Fig.4.5(a)).

Due to non-ideal experimental conditions (e.g.,B0 andB1 inhomogeneity), the experimentally

achieved excitation profiles used for random encoding did not match exactly with the designed

profiles. As such, the excitation profile of each pulse was calibrated using prescans. Specifically,

a fully-Fourier encoded imageρcal(x, y) was acquired for each of the spatially-selective excitation

pulses (one such image is shown in Fig.4.4(g-h)). From these images, theγqm parameters for each

excitation profile (recall Eq. (4.11)) were derived by solving the least squares problem

γ̂qm = argmin
γqm

P/2−1
∑

p=−P/2

|γqmρref(q, p)− ρcal(q, p)|2 , (4.12)

whereρref(x, y) is an image acquired using traditional excitation pulses. This calibration pro-

cedure is somewhat coarse, since we ignore any potential excitation inhomogeneity along the

frequency-encoding direction, though this choice leads toimproved noise robustness compared

14Noise variances were empirically estimated from background regions of fully-sampled Fourier-encoded reference
images that were free of visible artifacts, while signal levels were computed using the average value of the reference
images in signal-containing regions of interest. The estimated SNR was calculated as the ratio between the signal
level and the noise standard deviation.
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to voxel-by-voxel estimation. In addition, while acquiring data for this calibration procedure is

time consuming, the procedure could be simplified through direct mapping of theB1 transmit field

and more accurate modeling of the excitation physics.

CS reconstructions were performed by solving

minimizeTV (ρ̂CS) subject to ‖Eρ̂CS − d‖2ℓ2 ≤ ε2, (4.13)

whereε was chosen according to an estimate of the expected data error due to noise (i.e.,ε2 =

Mσ2, whereσ2 is the estimated noise variance andM is the number of measurements), andTV (ρ)

is the total variation (TV) [546] cost functional that penalizes theℓ1 norm of the magnitude of the

image gradient. Penalizing the image gradient is very common for CS reconstruction of MR

images (e.g., [60,362,420,608]), since medical images are often approximately piecewisesmooth,

though it should be noted that the magnitude of the image gradient is a nonlinear transformation of

the image and cannot be represented by a matrixΨ. Reconstructions were obtained using a version

of Nesterov’s algorithm as described in Ref. [38], with minor modifications to handle complex

images. In particular, Ref. [38] approximates the nonsmoothℓ1 norm as‖·‖ℓ1 ≈ ψ(·)/(2ξ) +

ξ2, whereψ(·) is the differentiable Huber function from Eq. (3.25). Subsequently, optimization

is performed using Nesterov’s algorithm as described previously in Sec.3.7.2. A continuation

approach is used, where the Huber function parameterξ is initially set large and gradually reduced

towards 0 during the optimization. Whenξ is large, the cost functional being minimized is nearly

quadratic, and Nesterov’s algorithm converges rapidly. Asξ → 0, the convergence speed of the

algorithm decreases, though the Huber-function approximation of theℓ1 norm also becomes more

and more accurate.

Instead of directly solving Eq. (4.13), Ref. [38] solves the Lagrangian form of the problem:

minimizeTV (ρ̂CS) + λ
(
‖Eρ̂CS − d‖2ℓ2 − ε2

)
, (4.14)
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whereλ is a Lagrange multiplier that is adjusted to satisfy the Karush-Kuhn-Tucker conditions

for Eq. (4.13). The specific implementation of the algorithm described inRef. [38] directly solves

Eq. (4.13) for the special case whenE is a submatrix of a unitary transform. In this case, the

optimal Lagrange multiplier associated with the inequality constraint in Eq. (4.13) has a closed

form expression that can be adjusted automatically during the iterative procedure [38]. While

the encoding matrix is a submatrix of a unitary transform when Cartesian Fourier encoding is

used,E does not have this property for random encoding. As a result,we manually adjustλ

when reconstructing data acquired with random encoding. Inmost practical cases of interest (i.e.,

when‖d‖ℓ2 > ε), λ should be chosen such that‖Eρ̂CS − d‖2ℓ2 = ε2, which will ensure that the

solution to Eq. (4.14) is equivalent to the solution of Eq. (4.13) [38]. Selection ofλ to satisfy this

condition is straightforward, since the data fidelity of thesolution to Eq. (4.14) is monotonically

decreasing with increasingλ. Note that theE matrix associated with random encoding has very

similar structure to the encoding matrix used in SENSE parallel imaging reconstruction [519],

except that RF excitation profiles are used in place of receiver coil sensitivity profiles. As a result,

multiplication withE and its conjugate transpose can be performed efficiently using fast Fourier

transforms [519], and these techniques were used to accelerate computations in the present context.

Reconstructions using experimental data from the low-SNR compartmental phantom and the

higher-SNR kiwi fruit are shown in Figs.4.6and4.7, respectively. With FE1, the CS reconstruction

looks very similar to what would be obtained from conventional zero-padded reconstruction of

low-frequency data, with accurate contrast information for low-resolution features, but also with

significant blurring and distortion of the object geometry.With FE2, contrast is less accurate than

with FE1, though the high-resolution image features are reconstructed better with FE2 than with

FE1 with sufficient data. Results using random encoding indicate that it is possible to use this new

scheme for CS-MRI, and that random encoding yields reconstructions with different characteristics

than what are obtained with more traditional Fourier-basedschemes. The figures suggest that

random RF excitation can encode both high- and low-resolution image structures reasonably well,

leading to a more balanced trade-off between contrast and resolution. Notably, some of the high-
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16 Excitations 32 Excitations 64 Excitations

FE1

FE2

Random

Figure 4.6: CS-MRI reconstructions from real experimental data from the compartmental phan-
tom. Each row represents a different encoding scheme, whileeach column represents a different
amount of measured data. These reconstructions demonstrate that CS-MRI with random encod-
ing is feasible, and has different characteristics than either FE1 (which samples low-frequency
k-space) or FE2 (which uses randomizedk-space phase-encoding locations).
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16 Excitations 32 Excitations 64 Excitations

FE1

FE2

Random

Figure 4.7: CS-MRI reconstructions of real experimental datafrom the section of kiwi fruit. Each
row represents a different encoding scheme, while each column represents a different amount of
measured data. As before, random encoding enables visualization of both low- and high-resolution
image features with very limited data.

134



resolution image geometry is visible using random encodingwith only 16 excitations (e.g., the

geometry of the circular compartments in Fig.4.6and some of the fine edge structures in Fig.4.7),

while these features are significantly distorted with the other two schemes.

Similar to FE1 and FE2, reconstructions with random encoding become more accurate with

increasing data. However, different from reconstructionswith highly-undersampled FE1 and FE2

acquisitions (which can demonstrate significant geometry and/or large-scale contrast errors), the

artifacts resulting from very limited random encoding dataare more similar to the artifacts that

might be observed from image compression (i.e., the loss of contrast for smaller image features).

In addition, we should note that random encoding reconstructions also contain some artifacts that

are not found in FE1 or FE2 reconstructions, and which could be attributed to noise, non-Gaussian

excitation profiles, and/or errors in the calibration of theexcitation profiles.

4.2.2 High-SNR Simulations

Compartmental Phantom

Simulations were also performed to illustrate performancewhen noise perturbations and calibra-

tion errors are minimal. The first set of simulations used a high-SNR image of the compartmental

phantom as a gold standard, used nominal Gaussian excitation profiles, and incorporated simulated

noise that was significantly weaker than that observed with the experimental data (the SNR was 80

with respect to the image from full 256×256 Fourier encoded data, which is shown in Fig.4.5(b)).

Figures4.8 and4.9 show representative results from these simulations. The improved SNR and

nominal excitation profiles have led to improved reconstruction quality for all schemes, but with

random encoding demonstrating a distinct advantage relative to the other schemes. The relative

errors are shown in Table4.1, where relative error is defined as

Relative Error =
‖ρ− ρ̂cs‖ℓ2

‖ρ‖ℓ2
, (4.15)
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Table 4.1: Relative reconstruction errors for the high-SNR simulations using the compartmental
phantom.

Relative Error
Encoding Scheme 16 Excitations 32 Excitations 64 Excitations

FE1 0.249 0.149 0.086
FE2 0.713 0.394 0.265

Random 0.245 0.121 0.053
Random (real profiles) 0.252 0.133 0.065
Random (2D profiles) 0.127 0.079 0.048

and serves as a measure of similarity between the reconstructed imagêρcs and the gold-standard

imageρ. For these simulations, random encoding outperformed bothFE1 and FE2 in relative error

at all investigated undersampling levels. As with the experimental results, it was observed that the

distribution of errors with random encoding CS-MRI reconstructions was more evenly distributed

between low- and high-resolution features than with FE1 or FE2.

Figure 4.10 shows results from additional random encoding simulations(relative errors for

these are also shown in Table4.1), where the excitation profiles were chosen to either be the

empirically measured excitation profiles from the real experiment (“real profiles”) or ideal two-

dimensional profiles (“2D profiles”) as in Eq. (4.10). As in the previous simulations, the SNR

with respect to fully-encoded Fourier data was 80, and one frequency encoding line was acquired

per excitation. The results with the real profiles are very similar to the results with the nominal

profiles, and illustrate that it is not necessary to have perfectly white Gaussianγqm excitation

profile parameters to have good reconstruction results. Theresults using 2D profiles in Fig.4.10

demonstrate significantly improved performance relative to 1D random encoding, and indicate that

even better results could be achieved if high-resolution multi-dimensional RF excitation techniques

become more practical.

The quality of reconstructed images using random encoding can also be affected by errors in

the encoding matrixE due to miscalibration of the RF excitation profiles. Theoretical analysis

of Eq. (4.4) whenE contains errors has been presented recently by Herman and Strohmer [302].

These results indicate that stable and accurate CS reconstructions can still be guaranteed with
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16 Excitations 32 Excitations 64 Excitations

FE1

FE2

Random

Figure 4.8: CS-MRI reconstructions from high-SNR simulations of the compartmental phantom.
Each row represents a different encoding scheme, while eachcolumn represents a different amount
of measured data. Relative to the experimental data, the improved SNR leads to better reconstruc-
tions for all encoding schemes. Reasonably accurate reconstruction was obtained using random
encoding with only 32 excitations, while the Fourier encoding schemes required more data to
achieve the same accuracy.
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16 Excitations 32 Excitations 64 Excitations

FE1

FE2

Random

Figure 4.9: Error images (i.e., the difference between the gold standard and the reconstruction)
corresponding to the high-SNR simulation results shown in Fig. 4.8. Each row represents a dif-
ferent encoding scheme, while each column represents a different amount of measured data. The
error images have been scaled up by a factor of 3 for improved visualization.
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16 Excitations 32 Excitations 64 Excitations

Real

Profiles

2D

Profiles

Figure 4.10: CS-MRI reconstructions from high-SNR random encoding simulations of the com-
partmental phantom. The top row shows results using the calibrated excitation profiles from a real
experiment, while the bottom row shows results using randomtwo-dimensional excitation profiles.

a noisyE, under the assumptions that the true measurement matrix satisfies an appropriate RIP

condition and that the magnitude of the perturbation is not too large. In particular, the theoretical

analysis and numerical simulations in Ref. [302] suggest that the stability of̂ρcs should scale

linearly with the amount of perturbation to the system matrix. Simulation studies were performed

to examine the effects of RF profile miscalibration. High-SNRdata was simulated using standard

1D random encoding with nominal Gaussian RF profiles, and the RFprofile parametersγqm used

for reconstruction were perturbed by Gaussian noise. Results of these simulations are shown in

Fig. 4.11. These results suggest a linear relationship between reconstruction error and calibration

error, as might be expected based on the theoretical analysis [302].
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Figure 4.11: Simulated random-encoding reconstruction results in the presence of miscalibration
of the RF excitation profiles. (a)-(c) Representative reconstructions from 32 excitations in the pres-
ence of increasing levels of calibration error. (d) The total reconstruction error (shown averaged
over 5 realizations) is observed to grow linearly with respect to the calibration error.
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Brain Phantom

High-SNR simulations were also performed with the brain image shown in Fig.4.5(c). The sim-

ulations in this case had the same noise level as the high-SNRcompartmental phantom simula-

tions. Representative reconstructions from 96 excitationsand either TV or a wavelet (Daubechies-

4) sparsifying transform are shown in Figs.4.12 and4.13. The TV-based reconstructions used

Nesterov’s algorithm, as described previously. However, for the wavelet-based reconstructions,

we used the primal-based alternating directions minimization (ADM) algorithm as described in

Ref. [667] for solving the constrained optimization problem in Eq. (4.4). This form of the ADM

algorithm was observed to have faster convergence and higher numerical stability than Nesterov’s

algorithm for these problems. Representative relative reconstruction errors for a range of under-

sampling levels are listed in Table4.2.

The brain image has lower compressibility than the compartmental phantom, and is thus more

challenging for CS-MRI and required a larger amount of data foraccurate reconstruction. In

addition, the performance advantage (in terms of relative error) of random encoding relative to

FE1 and FE2 was less substantial than it was with the compartmental phantom simulations. This

was particularly true using the wavelet-based constraint,which was significantly less effective than

the TV constraint for all encoding schemes. However, the spatial distributions of error for both

TV and wavelet sparsity are still consistent with what was observed previously. In particular, the

errors for FE1 encoding are concentrated around the high-resolution features of the image, while

there are significant contrast errors for low-resolution image features with FE2 encoding. The

distribution of errors with random encoding is intermediate between the FE1 and FE2 cases, with

the errors somewhat more uniformly distributed between low- and high-resolution image features.

These characteristics have been observed consistently in both simulations and experiments, and

are important to note when choosing an encoding scheme for a particular imaging scenario, since

different features will have more or less importance depending on the application.

141



Table 4.2: Relative reconstruction errors for the high-SNR simulations using the brain image.
Relative Error

Encoding Scheme
(Sparsifying Transform) 64 Excitations 96 Excitations 128Excitations

FE1 (TV) 0.179 0.119 0.076
FE2 (TV) 0.184 0.113 0.074

Random (TV) 0.154 0.090 0.055
FE1 (wavelet) 0.228 0.154 0.117
FE2 (wavelet) 0.330 0.191 0.133

Random (wavelet) 0.251 0.158 0.099

FE1 FE2 Random

Figure 4.12: Simulated CS-MRI reconstructions of the compressible brain image from 96 exci-
tations, with a TV penalty. The top row shows the reconstructions themselves, while the bottom
row shows the differences (scaled up by a factor of 6) betweenthe reconstructions and the gold
standard.
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FE1 FE2 Random

Figure 4.13: Simulated CS-MRI reconstructions of the compressible brain image from 96 excita-
tions, with a Daubechies-4 wavelet penalty. The top row shows the reconstructions themselves,
while the bottom row shows the differences (scaled up by a factor of 6) between the reconstructions
and the gold standard.
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4.2.3 Monte Carlo Simulations

Monte Carlo simulations were also performed to study the reconstruction and noise properties of

random encoding relative to FE1 and FE2. In these simulations, reconstructions were performed

using an image with a sparse gradient (the Shepp-Logan phantom) and an image with a compress-

ible gradient (the MR brain image shown in Fig.4.5(c)). Simulations were performed 50 times

for each combination of six data undersampling levels (8, 16, 32, 64, 128, and 256 excitations),

the three different encoding schemes (FE1, FE2, and random encoding), and seven different noise

levels (SNRs ranging from 1 to 80 with respect to full 256×256 Fourier encoding). The random

elements of the simulation (i.e., the sampling locations for FE2 encoding, the excitation profiles for

random encoding, and the noise) were different for each trial. To improve the computational speed

for these 12,600 reconstructions, each reconstruction made use of a simplified one-dimensional

TV penalty that only penalized theℓ1 norm of the difference between adjacent voxel values along

the phase-encoding dimension. Since the frequency encoding dimension was fully sampled, this

modified TV penalty means that the optimal two-dimensional 256×256 CS reconstruction could

be performed using 256 independent smaller one-dimensional CS reconstructions, one for each

line of the image. This simplification allows reconstructions to be performed much more rapidly

than if standard TV was used, and additionally means that theE matrix for each subproblem has

the ideal “universal” distribution. To solve these one-dimensional CS problems, we used the CVX

software package by Grant, Boyd, and Ye (http://www.stanford.edu/ ˜ boyd/cvx/ ).

Results from the Monte Carlo simulations using the brain imageand the sparse Shepp-Logan

phantom are shown in Figs.4.14and4.15, respectively. Images are generally more compressible

using a two-dimensional transform rather than a one-dimensional transform, leading to slightly

lower performance for these simulations compared to those in the previous subsection. However,

the relative performance characteristics of the differentencoding schemes with one-dimensional

sparsity constraints are consistent with the behavior observed with two-dimensional constraints.

For both images in the Monte Carlo simulations, the relative error decreases as the amount of ac-
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quired data increases, and FE1 encoding was generally superior to both FE2 and random encoding

in cases with very limited data or with high levels of noise. FE2 encoding consistently outperforms

FE1 encoding with high-SNR data when the number of measurements is large. Random encoding

can outperform both FE1 and FE2 encoding, though this only occurs with high-SNR data, and

the advantage of random encoding over the Fourier-based schemes disappears as the number of

measurementsM becomes comparable to the number of voxelsN . One way of understanding this

phenomenon is to consider the case of fully-sampled data (i.e.,M = N ) with standard reconstruc-

tion, where the reconstructed image is obtained byρ̂ = E−1d. In this case, the discrete Fourier

transform (DFT) matrix is unitary, which means that the noise in the data will not be amplified

byE−1. In contrast, fully-sampled random encoding matrices willgenerally have worse condition

numbers than the DFT matrix [193], resulting in more significant noise amplification.

Similar Monte Carlo simulations imposing a one-dimensionalDaubechies-4 wavelet-based

sparsity constraint are shown in Figs.4.16and4.17, and have similar characteristics to the one-

dimensional TV-based simulations. Notably, the regimes for which random encoding outperforms

the Fourier-based schemes (in terms of relative error) are different for the Shepp-Logan phantom

compared to the brain image, and are also different for different sparsifying transforms (i.e., the

one-dimensional TV and wavelet transforms and the two-dimensional transforms considered in

the previous subsection). This further suggests that the choice between the use of random encod-

ing versus a Fourier encoding scheme should be made carefully based on the constraints of each

application.

4.3 Discussion

4.3.1 Performance Guarantees

The use of random encoding in this work was motivated by the desire to improve restricted isom-

etry constants and improve the theoretical characterization of CS-MRI reconstruction. As men-
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Figure 4.14: Plots showing the median relative error as a function of SNR from the Monte Carlo
simulations with the brain image and TV-based sparsity constraints. In all cases, the relative error
decreases as the amount of acquired data increases. FE1 encoding was generally superior in cases
with very limited data or with high levels of noise. However,for moderate noise and sufficient data
acquisition, random encoding performed better than the other two schemes, and FE2 outperforms
FE1. For fully-encoded data, the SNR efficiency of the Fourier schemes allows them to dominate
the random encoding scheme.
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Figure 4.15: Plots showing the median relative error as a function of SNR from the Monte Carlo
simulations with the Shepp-Logan phantom and TV-based sparsity constraints. The trends are
similar to those observed for the compressible brain image,though for the same number of mea-
surements, smaller relative error is generally achieved with this sparse image. Notably, the regime
for which random encoding outperforms the Fourier-based schemes is different than it was with
the brain image.
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Figure 4.16: Plots showing the median relative error as a function of SNR from the Monte Carlo
simulations with the brain image and wavelet-based sparsity constraints.
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Figure 4.17: Plots showing the median relative error as a function of SNR from the Monte Carlo
simulations with the Shepp-Logan phantom and wavelet-based sparsity constraints.
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tioned in the introduction, it is generally computationally infeasible to compute the restricted

isometry constants.15 However, it is relatively straightforward to calculate theδ1 restricted isome-

try constant for a matrixΦ using Eq. (4.6) with

α1 = min
i

‖φi‖2ℓ2 and β1 = max
i

‖φi‖2ℓ2 , (4.16)

where the vectorsφi are the columns ofΦ.

Besides RIPs, there are also incoherence conditions onΦ that can guarantee good CS perfor-

mance and are significantly easier to compute [41,104,107,181,182]. While these incoherence-

based guarantees are generally weaker than RIP-based guarantees, they have been used previously

in the design of CS-MRI encoding schemes [420] and in other contexts [195]. For example, Lustig

et al. [420] suggested that the maximum of thetransform point spread function(TPSF) be used

to characterize the incoherence of a sampling scheme, with more incoherent sampling schemes

characterized as better for CS reconstruction. The TPSF has the form

TPSF {i; j} =
φ

H
j φi

‖φi‖ℓ2
∥
∥φj

∥
∥
ℓ2

, (4.17)

and is somewhat representative of the level of ambiguity between theith andjth transform coeffi-

cients. Ideally, the TPSF should be small wheni 6= j. The maximum of the TPSF is equal to the

mutual incoherenceµ:

µ = max
i 6=j

|TPSF {i; j}| , (4.18)

which can be used to generate another set of CS performance guarantees [104, 181, 182]. For

example, if‖c‖ℓ0 <
1
4
(1/µ+ 1) and if the columns ofΦ are normalized to unit length, then the

15Currently, the only known way to computeδs coefficients is to enumerate and test the singular values of the set
of all matrices formed by selectings columns ofΦ. This procedure is not practical even for small problems, due to
the combinatorial nature of the computation. Several practical procedures have been proposed to place bounds on
restricted isometry constants (and related computationally-intractable performance guarantees for CS) using a variety
of different approaches [155, 156, 185, 347, 390, 494]. While such approaches are significantly easier than direct
computation ofδs, the resulting optimization problems can still be quite challenging to compute for problem sizes of
interest.
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Table 4.3: Representativeδ1 restricted isometry constants and mutual incoherenceµ values for
different encoding schemes, different amounts of acquireddata, and different image grid sizes.
Calculations were performed using a Daubechies-4 wavelet basis.

Grid Encoding δ1 µ
Size Scheme 32 Excitations 64 Excitations32 Excitations 64 Excitations

FE1 0.9996 0.9876 0.9005 0.7833
256×256 FE2 0.7636 0.7093 0.7147 0.6665

Random 0.5070 0.3567 0.5594 0.4179
FE1 0.9874 0.7706 0.7840 0.7425

128×128 FE2 0.2655 0.0847 0.6201 0.3612
Random 0.4592 0.4129 0.5619 0.3635

solution to Eq. (4.4) is guaranteed to satisfy (see Thm. 3.1 in Ref. [182])

‖ĉcs − c‖2ℓ2 ≤
4ε2

1− µ
(
4 ‖c‖ℓ0 − 1

) , (4.19)

where‖x‖ℓ0 is defined as the number of non-zero entries ofx.

Table4.3 shows representative values ofδ1 andµ for the three encoding schemes we have

considered and using aΨ matrix corresponding to a Daubechies-4 wavelet transform.Values are

shown for reconstruction of both a256×256 image and a128×128 image. For the256×256 case,

bothδ1 andµ are smaller for random encoding than for FE1 and FE2. However, it is also important

to note thatδ1 is never less than0.307 for any encoding scheme, and only is only less than0.4734

for random encoding with 64 frequency encoding lines. Sinceit is always true thatδt ≥ δs when

t ≥ s, this implies that the current RIP-based guarantees for CS performance cannot be applied

to the other measurement matrices, even for signals that have only one non-zero entry. Similar

to what was observed withδ1, µ is also smallest for random encoding at this image resolution.

However, the characterization given by Eq. (4.19) can only be applied for non-zero vectorsc when

µ < 1/3, so the observedµ values give no useful guarantees for any of the encoding schemes.

Despite this, CS empirically works much better than what the theoretical bounds might suggest,

and it is promising that random encoding yields the smallestδ1 andµ values.

It is also important to note that the good theoretical properties for “universal” encoding are
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somewhat dependent on the problem size, with a higher probability of good RIPs asM andN

grow large [108]. We have observed that the superiority of theµ andδ1 values for random encoding

is also dependent on the problem size. For example, with a128 × 128 image, we have observed

that FE2 has consistently betterδ1 values relative to random encoding, which is the opposite ofthe

behavior observed with256×256 images. However, it is observed thatµ does not follow the same

trend asδ1 for this 128 × 128 case, and thatµ can still be smaller for random encoding than for

FE2 (cf. Table4.3).

4.3.2 Non-Cartesian Acquisitions and Multidimensional Undersampling

For both Fourier and random encoding, we have focused on 2D Cartesiank-space sampling pat-

terns with undersampling along a single dimension to keep the discussion as short and simple

as possible. In practice, however, several CS-MRI studies have shown good results when using

non-Cartesian Fourier sampling patterns and/or multidimensional undersampling schemes (e.g.,

Refs. [11, 60, 228, 317, 350, 362, 397, 420, 421, 557, 568, 608, 668]). We note that non-Cartesian

and multidimensionally-undersampled forms of random encoding are also possible, though there

are several ways of implementing such schemes. For example,a naive approach to non-Cartesian

random encoding would be to maintain the same 1D spatially-selective excitation scheme as in

Section4.1.2, but replace standard frequency encoding with a non-Cartesian readout. A more

complicated implementation could change the orientation of RF encoding for each excitation pulse

in combination with a non-Cartesian readout. Preliminary simulations using both of these schemes

with Fourier encoding along radial lines indicate further performance improvements [275], and an

illustrative example is shown in Fig.4.18. However, a detailed investigation of multidimensional

encoding schemes is left for future work.
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(a) Radial Fourier encoding. Relative error = 0.078. (b) Radial random encoding. Relative error = 0.074

Figure 4.18: TV-based reconstructions (left) and error images (right) of the brain image using sim-
ulated non-Cartesian data acquisition strategies. (a) Radial Fourier encoding with 64 excitations.
(b) Radial random encoding (both the frequency encoding and RFencoding orientations were
rotated) with 64 excitations. Error images are shown scaledup by a factor of 10. High-quality re-
constructions can be obtained with significantly fewer excitations when non-Cartesian trajectories
are used for data acquisition.

4.3.3 Other Considerations

A number of extensions to this work are possible. Some of the practical limitations of the proposed

approach are specific to the use of selective RF excitation to achieve non-Fourier encoding. In

particular, it can be difficult to achieve high-resolution multi-dimensional RF encoding pulses,

some of the flexibility in the choice of sequence timings and flip angles is limited by the need to

avoid disrupting steady-state behavior, and it is necessary to calibrate the excitation pulses. One

approach to overcoming these limitations is to use other non-Fourier encoding mechanisms in

place of or in addition to RF-based encoding. Initial work along these lines includes the use of

a multi-channel array of receiver coils with randomized sensitivity profiles [566] and the use of

nonlinear encoding gradients [523,649].

Another limitation of current compressed sensing theory isthat the spatial resolution and noise

characteristics of the reconstruction are difficult to characterize theoretically, and having access

to such characterizations is important for interpreting reconstructed images and for choosing data

acquisition/reconstruction parameters. While error bounds like Eq. (4.7) and Eq. (4.19) can be

derived when the measurement operator satisfies certain mathematical properties, good fidelity

with respect to theℓ2-norm does not necessarily imply good visual fidelity [636]. In addition,
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these bounds provide no information about how the error is distributed spatially (e.g., we do not

have easy characterizations of resolution in terms of the point-spread functions or spatial response

functions described for linear reconstruction in Chapter3) or about the statistical distribution of

the reconstructed image with respect to the noise distribution.

Approximate resolution characterizations for general nonlinear image reconstruction problems

(outside of the context of CS reconstruction) have been studied empirically and theoretically by

a number of authors [8, 213, 524, 587, 588], usually by studying how the reconstruction changes

when a small localized image feature is added to a gold-standard image. These studies indicate that

the resolution characteristics in nonlinear reconstruction problems are generally spatially-variant

and highly data-dependent. Our preliminary experience hasshown that this is also the case for CS

reconstruction, both with and without random encoding. However, many of the fast approximate

resolution characterization methods described in [8, 213, 524, 587, 588] are not applicable to CS

reconstruction, due to the fact that theE matrix in CS is underdetermined and theℓ1-norm is not

differentiable at the origin.

Noise characterizations for CS reconstruction can be obtained by brute-force Monte Carlo

simulation methods, where the same image is reconstructed repeatedly under different noise re-

alizations. However, due to the time consuming nature of CS reconstruction, this kind of ap-

proach is generally not computationally practical for realreconstruction problems. Approxi-

mate fast noise characterizations for general nonlinear reconstructions have also been studied

[8,208,211,524,588]. However, as with the previously described fast resolution characterization

methods, these methods cannot be applied to CS reconstruction due to the non-differentiability

of the cost functional and/or the underdetermined nature oftheE matrix. As a result, fast and

easy characterization of the resolution and noise characteristics of CS-MRI remain important open

problems.

A final open problem relates to the issue of choosing an appropriate image discretization for

CS-MRI reconstruction. While real MRI images are continuous functions, this chapter made use

of the finite-dimensional voxel-based image model described in Eq. (2.30) so that CS theory and
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algorithms for finite-dimensional discrete inverse problems could be used in the MR context. How-

ever, this choice also introduces modeling errors. While modeling errors can often be characterized

easily for linear reconstruction methods where point-spread functions or spatial-response functions

can be derived (cf. Chapter3), these modeling errors could be more pernicious for the nonlinear

reconstruction schemes typical of CS-MRI. In this context thechoice of the number of voxelsN

that are used in the image discretization could be an important issue. Frequently in MR, the choice

of N is made based on thek-space coverage of the data – for example, if thek-space samples all

fall within a region defined by a 64×64 Nyquist-rate grid, the reconstruction is often performed

using a 64×64 voxel grid. This choice generally leads to smaller problem sizes and faster com-

putation. However, an alternative approach would be to reconstruct with a largeN (i.e., a very

high-resolution voxel grid); this choice might seem intuitively better than the previous choice,

since the discrete approximation of the continuous integral equation could be more accurate. How-

ever, some theoretical and empirical analysis has shown that high-resolution discretizations might

not actually be able to correct modeling errors [138], and that asN grows large, the image prior

and/or the reconstructed image do not always converge to a useful limit [384]. Figure4.19shows

a simulation that illustrates some of the complex trade-offs in selecting the voxel grid size in CS-

MRI. In practice, virtually all existing empirical evaluations of CS-MRI algorithms are guilty of

what is known as an “inverse crime” – using a finite-dimensional image as the gold standard for

comparison when solving a discretely-formulated inverse problem, even though the true images

encountered in practical applications will be infinite dimensional [352]. While the results of these

“criminal” experiments are still insightful, the characteristics of CS-MRI reconstruction in the

presence of image modeling error are still not completely understood.

4.4 Conclusion and Summary

This chapter introduced a random encoding scheme for CS-MRI, replacing traditional phase en-

coding with RF encoding using randomized excitation profiles. This random scheme is conceptu-
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(a) Gold Standard Image (b) TV Reconstruction,N = 64× 64

(c) TV Reconstruction,N = 256× 256 (d) TV Reconstruction,N = 512× 512

Figure 4.19: TV-based reconstructions of the Shepp-Logan phantom with differentN . Simulated
data was generated on a 32×32 Nyquist-rate grid ink-space using the analytic form of the Fourier
transform for the Shepp-Logan phantom [493]. As N increases, the image model becomes more
similar to that of a continuous image. However, while some image features are reconstructed more
realistically for largerN , ringing artifacts also become more and more apparent as thegrid size
increases. The presence of ringing artifacts illustrates that the TV-based reconstruction is not able
to accurately extrapolate the high-frequencyk-space information from only low-resolution data.
As a result, while largerN leads to better modeling of the real imaging process, it remains unclear
howN should be chosen to yield good performance in practical experiments.
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ally similar to the “universal” encoding schemes suggestedby the CS literature, and simulations

and experiments reveal that it has the potential to outperform Fourier-based schemes in certain

high-SNR scenarios. However, our study also indicates thatthe random encoding scheme fails

to satisfy the theoretical sufficient conditions for stableand accurate CS reconstruction in many

scenarios of interest. Therefore, there is still no generaltheoretical performance guarantee for CS-

MRI, with or without random encoding. As a result, the practical utility of CS methodology for

MRI should be evaluated carefully for each application.
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Chapter 5

Low-Rank Matrix Recovery for
Spatiotemporal Imaging

The reconstruction schemes considered in the previous chapters were developed for contexts in

which the image itself did not change significantly during the course of the experiment. In this

chapter, we consider the reconstruction of spatiotemporalimagesρ (x, t) that change over time.1

Such experiments have a wide variety of applications, including dynamic cardiac imaging [217],

dynamic contrast-enhanced (DCE) imaging [141, 373], interventional imaging [58], and fMRI

[98].

In the context of Fourier imaging, spatiotemporal data acquisition can be modeled as [663]

s (kp, tp) =

∫

Ω

ρ (x, tp) exp (−ı2πkp · x) dx+ ηp, (5.1)

for p = 1, 2, . . . , P , wheres (kp, tp) is thepth measurement sample that takes place atk-space

locationkp and timetp, ηp is the corresponding noise perturbation, andP is the total number of

sampled data points. In practice, a givenk-space location might be sampled at multiple different

times, meaning that the set of points{kp}Pp=1 has repeated elements. As a result, we will intro-

duce a new set ofQ distinct points
{
k̄q

}Q

q=1
representing the set of unique elements of{kp}Pp=1.

Similarly, we will introduce a new set ofM distinct points{t̄m}Mm=1 representing the set of unique

elements of{tp}Pp=1.

For most medical imaging applications, it is commonly assumed thatρ (x, t) is a “conventional

support-limited signal,” i.e., that it is spatially support limited to a closed and bounded setΩ

1Some of the text and figures in this chapter have been previously published in [268,281,282], and are copyright
of the IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
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such thatρ (x, t) ≈ 0 for x 6∈ Ω (cf. Sec.2.2), and that it is temporally bandlimited such that

ρ̃ (x, f) ≈ 0 for |f | > fmax, where

ρ̃ (x, f) =

∫

ρ (x, t) exp (−ı2πft) dt, (5.2)

andfmax is a finite constant. Similar to the case for static imaging (cf. Sec.2.2), this spatial-

spectral support-limited model means that dynamic imagesρ (x, t) can be reconstructed from

Nyquist-rate samples acquired in thek-t domain.

For many applications, it is desirable to reconstructρ (x, t) with high spatial and temporal

resolution. However, as discussed in Sec.2.1, MR spatial encoding is a relatively slow process

due to physical and physiological constraints. While fast imaging sequences and parallel imaging

technology can enable high-resolution two-dimensional image formation from data acquired in

less than one second, many interesting physiological processes (e.g., human cardiac motion [563])

occur over significantly shorter time scales, and further acceleration is necessary for these scenar-

ios. As a result, samplingk-t space at the Nyquist rate can place practical limits on the achievable

spatiotemporal resolution.

There are many different signal processing approaches thathave been proposed to overcome

Nyquist limits in dynamic MRI applications (e.g., Refs. [6, 84–87, 92, 143, 187, 206, 228, 250,

251, 281, 282, 341, 348–350, 357, 373, 399, 402, 405, 420, 421, 426, 428, 454, 482, 501, 503, 516,

526, 540, 559, 569, 571, 610, 612, 615, 619, 622, 624, 664, 675, 676] and their references). Due to

the relatively high SNR in many dynamic imaging scenarios, sparse-sampling approaches have

featured prominently in the literature. These approaches sample both high- and low-frequency

k-space data below the Nyquist rate, and use prior information to avoid reconstruction artifacts

due to undersampling. Sliding window/interpolation/view-sharing methods [187, 373, 540, 619]

make the assumption that certain regions ofk-space change relatively slowly over time, so that

missing data can be accurately interpolated from nearby time-points. Other techniques assume

that the motion of the image between subsequent time points can be accurately predicted, leading
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to a reduced set of parameters that need to be estimated [209, 348, 349, 482, 516]. Several other

approaches leverage prior information to construct tailored spatial-spectral models of the image,

which similarly simplifies the inverse problem [6,92,357,402,426,501,526,571,610,612]. Finally,

there are techniques that make use of constraints on image structure derived directly from the data

itself [84, 87, 206, 228, 250, 251, 281, 341, 348–350, 399, 405, 420, 421, 428, 454, 503, 569, 615,

622, 624, 664, 675]. Many of these techniques use the observation that dynamicimages often

demonstrate sparse structure in an appropriately-chosen transform domain [206, 228, 348–350,

420,421,622] (cf. the discussion of compressed sensing in the previous chapter) or demonstrate

“low-rank” structure [84–87,143,250,251,281,282,341,399,428,503,559,569,624,664,675,676].2

In this chapter, we will focus on thepartial-separability(PS) model [84–87, 143, 281, 282,

341, 399, 559, 569, 664, 675, 676], which can be used to capture low-rank structure. Similar to

the sparsity constraints considered in the previous chapter, the use of rank constraints is based

on the idea that spatiotemporal images frequently have considerably more structure than being

support-limited. In particular, low-rank structure refers to the fact that the temporal behavior of

ρ(x, t) at different spatial locations is often highly correlated.Indeed, the correlation is often so

strong that we can observe approximate linear dependence relationships inany set of functions

of the form{ρ(xℓ, t)}Lℓ=1 for relatively small values ofL [399]. Equivalently, low-rank structure

reflects the observation that the temporal variations ofρ(x, t) are often approximately limited to a

low-dimensional subspace.

It is interesting to note that this kind of low-dimensional structure is not specific to dynamic

MRI. For example, it has been shown that high-quality low-rank representations exist for many op-

erators and functions that appear in mathematics and physics problems [52,53,456]. In addition,

low-rank or approximately low-rank structure is also frequently found in any high-dimensional

dataset containing interrelated variables. In many cases,the correlation in such high-dimensional

datasets can be described in terms of a much smaller set of latent variables, i.e., unobserved

2Also see Refs. [230,231] for an example of the use of rank constraints for dynamic imaging outside of the context
of MRI.
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variables that can still convey the essential features of the data [35]. This structure means that

high-dimensional datasets can often be approximated usinga small number of low-dimensional

subspaces (with significantly fewer degrees of freedom) without significant loss of information.

Similar to how sparsity has been used for compressing images(cf. the previous chapter), the

approximation of high-dimensional data using a lower-dimensional subspace has been widely

used for feature extraction and compression in a wide variety of fields [35, 238, 345, 367, 655].

As a result, the problem of reconstructing approximately low-rank signals from limited data has

been considered by a large number of authors from many different communities, including chem-

istry [19], computer vision [96, 160, 573, 603], systems theory [201], and collaborative filtering

(i.e., database-enabled recommendation systems where products/services are recommended to a

user based on ratings from users with similar tastes) [1,40,369,538,594], among others. This has

also motivated the recent development of theoretical results for low-rank reconstruction methods

(e.g., see Refs. [1,112–114,118,359,360,391,392,452,535,536]), many of which build upon the

earlier CS theory.

Low-rank structure can be captured by the PS-based spatiotemporal image model, which is

given by

ρ (x, t) =
L∑

ℓ=1

ρℓ (x, t) =
L∑

ℓ=1

uℓ (x) vℓ (t) , (5.3)

whereL is the model-order. In this expression, the{ρℓ (x, t)}Lℓ=1 are separable functions ofx

and t; i.e., they can be factored asρℓ (x, t) = uℓ (x) vℓ (t), where{uℓ (x)}Lℓ=1 and {vℓ (t)}Lℓ=1

are sets of signal dependent spatial and temporal functions, respectively. Given this model, the

temporal signals{ρ(xb, t)}Bb=1 will have linear dependence for any set of points{xb}Bb=1 if B > L.

The PS model can be viewed as a generalization of the earlier DIME model for representing

periodic dynamic images [402], which has the same form as Eq. (5.3), but restricted the functions

{vℓ (·)}Lℓ=1 to be complex sinusoids. Allowing general functions{vℓ (·)}Lℓ=1 greatly expands the

model class, and the set of PS-representable functions has been shown to be dense in the Hilbert

space of square-integrable spatiotemporal functions [399].
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While strict partial separability (i.e.,L = 1) applies only to a “small” set of signals, higher-

order partial separability (L > 1) significantly enhances the representational power of the model

and has proven useful in a number of imaging applications. For example, low-order partially-

separable representations have been used for image analysis and/or image reconstruction in the

context of dynamic cardiac MRI [87, 642], dynamic MRI and emission tomographic imaging of

contrast kinetics [75,84,198,399], relaxation experiments [100,175], diffusion experiments [21,

175,490], fMRI [ 17,350,599,648], and spectroscopic imaging [549], among others.3 Figures5.1

and5.2 illustrate the low-rank characteristics of typical dynamic MR datasets.

In this chapter, we present a novel rank-constrained matrixframework for imaging with the PS

model.4 The proposed method is quite flexible and relies only on the use of rank constraints; this

is in contrast to previous PS work, which generally made use of significant additional constraints

on both data acquisition and image reconstruction [399]. This chapter is organized as follows. In

Sec.5.1, we establish some notation and pose spatiotemporal image reconstruction in terms of the

recovery of an unknown matrix. In Sec.5.2, we introduce the use of rank constraints, and describe

several different approaches to enhanced image reconstruction by leveraging low-rank structure. In

Sec.5.3, we describe a novel algorithm that we have proposed for low-rank matrix reconstruction:

Incremented Rank PowerFactorization (IRPF). Section5.4presents some application examples for

our proposed formulation, while additional discussion is provided in Sec.5.5. Finally, we conclude

and summarize this chapter in Sec.5.6.

3Low-rank PS structure has also been exploited in the contextof static (i.e., non-dynamic) imaging [119,120,427,
678], where the image was modeled as being approximately partially-separable along different spatial dimensions
(e.g.,ρ (x) ≈ ∑L

ℓ=1
ψℓ (x)φℓ (y) in the 2D case withx = [x, y]

T ). However, typical images are frequently less
separable (i.e., require largerL for accurate representation) along two different spatial dimensions than they are using
spatiotemporal separability as in Eq. (5.3). As a result, the gains from using rank constraints are often more significant
for dynamic imaging applications. Low-rank structure has also been used previously for interpolating missingk-space
data [174]. However, the modeling assumptions for this case did not involve PS, instead assuming thatk-space was
linearly predictable.

4The review of matrix rank given previously in Sec.2.3will be helpful for understanding the material presented in
this chapter.
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(a) Snapshot images

(b) Cardiac region of interest from the snapshot images in (a)
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Figure 5.1: Low rank characteristics in cardiac cine imaging. (a) Three snapshot images from a
30-frame retrospectively-gated cardiac imaging experiment (courtesy of Dr. Peter Kellman). (b)
Cardiac region of interest from the snapshot images in (a). (c) Spatiotemporal image corresponding
to a vertical line passing through the heart. (d) Spatiotemporal image for the optimal rank-8 Eckart-
Young approximation of the spatiotemporal matrix representation of this dataset (see Secs.2.3and
5.1 for details). The rank-8 approximation has less than 27% of the degrees of freedom of the
full-rank model, but still captures the salient features ofthe cardiac motion. (e) The singular value
distribution for this dataset (cf. Sec.2.3). The large number of small singular values indicates that
the spatiotemporal data matrix is approximately low-rank.
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(a) Snapshot Images
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Figure 5.2: Low rank characteristics in DCE breast imaging. (a) Three snapshot images from an
18-frame imaging experiment. (b) Spatiotemporal image corresponding to a vertical line passing
through the contrast-enhancing tumor. (c) Spatiotemporalimage for the optimal rank-5 Eckart-
Young approximation of the spatiotemporal matrix representation of this dataset (see Secs.2.3and
5.1 for details). The rank-5 approximation has less than 28% of the degrees of freedom of the
full-rank model, but still captures the important characteristics of the contrast kinetics. (d) The
singular value distribution for this dataset (cf. Sec.2.3). The large number of small singular values
indicates that the spatiotemporal data matrix is approximately low-rank.
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5.1 Matrix Recovery

This section establishes additional notation and describes the formulation of spatiotemporal image

reconstruction as a general matrix-recovery problem. To simplify the discussion, we will focus on

a finite-dimensional image model (cf. Sec.2.2.3) whereρ (x, t) is represented through its samples

on a grid ofN spatial locations andM time points.5 In this case, the image can be represented by

theN ×M Casorati matrix

C =









ρ (x1, t̄1) · · · ρ (x1, t̄M)

· · · . .. · · ·

ρ (xN , t̄1) · · · ρ (xN , t̄M)









, (5.4)

where we have assumed without loss of generality that the setof time-points selected for repre-

senting the image is the same as the set of unique sampling times{t̄m}Mm=1.

Given the representation of the spatiotemporal image in terms of the Casorati matrix, Eq. (5.1)

can be written as

s = Ξ (FC) + η, (5.5)

wheres is theP × 1 vector of data sampless (kp, tp), η is theP × 1 vector of noise samplesηp,

F is aQ×N matrix with entries[F]q,n = exp
(
−ı2πk̄q · xn

)
, andΞ (·) : CQ×M → C

P is a linear

sampling operator satisfying[Ξ (S)]p = [S]q(p),m(p), whereq (p) =
{
q ∈ [1, . . . , Q] : k̄q = kp

}
,

andm (p) = {m ∈ [1, . . . ,M ] : t̄m = tp}.

The matrix recovery problem is to estimate the unknown matrix C from the measurement

vectors.
5An alternative discretization scheme is presented in [281, 399], in which the data domain (i.e.,k-t space) is

discretized instead of the image domain. Image-domain discretization can facilitate the use of additional constraints
(e.g., spatial regularization), while data-domain discretization can be more natural (due to the discrete nature of the
sampling process) and lead to simpler reconstruction algorithms. Many other discretizations are also possible.
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5.1.1 Unconstrained Matrix-Based Reconstruction

Without imposing any additional constraints, the maximum likelihood estimator ofC under a

white Gaussian noise model is given by the solution to the standard linear least-squares problem:

ĈML = arg min
C∈CN×M

‖Ξ (FC)− s‖2ℓ2 . (5.6)

The least-squares optimality condition for a global minimizer is thatĈML satisfies the normal

equations:

FHΞ∗
(

Ξ
(

FĈML

))

− FHS = 0, (5.7)

whereΞ∗ (·) : CP → C
Q×M is the adjoint ofΩ (·) (akin to a zero-filling operation), andS = Ξ∗ (s).

Equation (5.7) is separable in the columns ofĈML, resulting in the expressions:

FHdiag (ζm)Fĉm = FHsm (5.8)

for m = 1, . . . ,M , whereĉm andsm are themth columns ofĈML andS, respectively,{ζm}Mm=1

is the set ofQ × 1 vectors satisfying[ζm]q = 1 when
(
k̄q, tm

)
∈ {(kp, tp)}Pp=1, and[ζm]q = 0

otherwise, anddiag (ζm) is a diagonal matrix with diagonal entries equal to the entries of the

vector ζm. The necessary and sufficient condition for the uniqueness of a solution is that the

normal matrices in Eq. (5.8) are invertible. Note that theN × N matrix FHdiag (ζm)F cannot

be invertible unless{ζm}Mm=1 has at leastN non-zero elements. As a result, each row ofFC

should be sampled at leastN times, meaning that a total of at leastNM samples are needed to

have a well-posed reconstruction problem. As will be shown in the next section, the use of rank

constraints can significantly relax these sampling requirements.
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5.2 Low-Rank Matrix Recovery

5.2.1 Rank-Constrained Matrix Recovery with the PS Model

A consequence of using theLth-order PS model, as introduced at the beginning of this chapter,

is that for any sets of spatial locations{xn}Nn=1 and time points{t̄m}Mm=1, the Casorati matrix in

Eq. (5.4) has at most rankL [399]. This can be easily understood by using the model forρ (x, t)

in Eq. (5.3) to decomposeC as the sum ofL rank-1 matrices:

C =
L∑

ℓ=1









uℓ (x1)

...

uℓ (xN)









[

vℓ (t̄1) · · · vℓ (t̄M)

]

. (5.9)

This low-rank structure implies that use of theLth-order PS model can considerably reduce

sampling requirements. In particular, anN × M complex matrix of rankL hasNM entries

(specified by2NM real numbers), but as the SVD illustrates (cf. Sec.2.3), it has significantly

fewer degrees of freedom. In particular, there areL real-valued degrees of freedom associated

with the singular values themselves, there are at most2NL − L2 degrees of freedom for the

columns ofP associated with non-zero singular values,6 and there are at most2ML − L2 − L

degrees of freedom for the columns ofQ associated with non-zero singular values.7 As a result,

a rank-L matrix only has up to2 (N +M − L)L real-valued degrees of freedom. Thus, as few

asL (M +N − L) complex-valued samples could suffice for reconstruction, which would lead to

6Note that there areNL degrees of freedom for each of the real and imaginary parts ofP. This number is reduced
because of constraints. In particular, there areL constraints on the magnitudes of the firstL columns ofP, and

2

(
L

2

)

orthogonality constraints. As a result, there are at most2NL − L (L− 1) − L = 2NL − L2 degrees of

freedom.
7The computation of the number of degrees of freedom ofQ is similar to the computation forP. However, unlike

the case forP, we applyL additional constraints to control the phase of theL different columns ofQ (i.e., we
force the first non-zero entry of eachqℓ to be real and nonnegative). This is necessary because for any set of scalars

{aℓ}Lℓ=1
with |aℓ| = 1, the sets of vectors

{
1

aℓ

pℓ

}L

ℓ=1

and{a∗
ℓ
qℓ}Lℓ=1

will be orthonormal if{pℓ}Lℓ=1
and{qℓ}Lℓ=1

are

orthonormal, and1
aℓ

pℓaℓq
H

ℓ
= pℓq

H

ℓ
. Controlling the phase of the columns ofQ eliminates this problem of having

non-unique representation ofpℓq
H

ℓ
. Combining terms, there are at most2ML− L (L− 1)− 2L = 2ML− L2 − L

degrees of freedom.
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considerable savings over theNM samples required without the PS constraint, particularly when

L is small relative toN andM . The constrained analog to Eq. (5.6) is

ĈPS = arg min
C∈CN×M

rank(C)≤L

‖Ξ (FC)− s‖2ℓ2 . (5.10)

While this optimization problem looks very similar to Eq. (5.6), the nonlinearity of the rank con-

straint means that it is considerably more difficult to solvethan a set of decoupled linear least-

squares problems.

The problem formulation given in Eq. (5.10) will be the main focus of the rest of this chapter.

However, before discussing this problem further, we will first review some other existing problem

formulations for the recovery of low-rank matrices from limited data. While the PS-based recon-

struction in Eq. (5.10) makes use of explicit rank constraints whereL is assumed to be known,

there also exist matrix recovery formulations where low-rank matrices are reconstructed from lim-

ited measurements using softer constraints. For the sake ofgenerality, we will describe these

alternative formulations with our previous MR-specific datameasurement operator replaced by an

arbitrary linear data-measurement operatorA : CN×M → C
P . The data acquisition model from

Eq. (5.5) can be obtained as the special case whereA (C) = Ξ (FC).

One alternative to Eq. (5.10) is the affine rank-minimization problem [201,535]:

Ĉ = arg min
C∈CN×M

‖A(C)−s‖ℓ2≤ε

rank (C) , (5.11)

whereε represents a noise tolerance. This formulation is very similar to that of Eq. (5.10), with

the main difference being that explicit constraints have shifted from the rank of the reconstructed

matrix to the data consistency of the low-rank solution. As aresult of this similarity, algorithms

to solve one of these problems can also be used to solve the other. For example, noting that

the optimal cost function value for Eq. (5.10) is monotonically decreasing inL, the solution to

Eq. (5.11) can be achieved by solving Eq. (5.10) for increasing values ofL until ‖A (C)− s‖ℓ2 ≤
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ε. Similarly, a solution to Eq. (5.10) can be solved by adjustingε in Eq. (5.11) until the desired

rank constraint is achieved. It should be noted that affine rank-minimization is known to be NP-

hard [535].

Another alternative to Eq. (5.10) is based on regularization [1,202,203,250,427,535]:

Ĉ = arg min
C∈CN×M

‖A (C)− s‖2ℓ2 + λR (C) , (5.12)

whereR (·) is a regularization functional that favors matrices with low rank, andλ is a regu-

larization parameter. Choices ofR (·) that have been used previously include the nuclear norm

(NN) (RNN (C) =
∑

i σi, whereσi are the singular values ofC) [535], the log-determinant

functional (Rlogdet (C) =
∑

i ln (σi + δ), whereδ is a small constant) [203], and the Schatten

p-norm (RNN (C) =
∑

i σ
p
i ) with 0 < p < 1 [250,427]. Other reasonable choices could include

information-theoretic model selection criteria such as the Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC) [97,381,591], which have been previously proposed in the

context of sparsity-based reconstruction [28].

The NN-based regularization scheme is of particular interest [113, 535, 672]. The NN is the

tightest convex relaxation of matrix rank, in just the same way that theℓ1-norm is the tightest

convex relaxation of theℓ0-norm in the context of sparse-vector recovery [117]. Due to convexity,

problems involving the NN can be solved globally using efficient algorithms [102,247,414,423,

446,535,602]. And, similar toℓ1-minimization, the solution using NN minimization (NNM) can be

proven to be equivalent to the solution to Eq. (5.11) under appropriate constraints onA,C, λ, andε.

The Schattenp-norm and the log-determinant functional are nonconvex relaxations of matrix rank.

As a result, achieving global optimization with these functionals is nontrivial. However, similar

to the discussion of sparse-vector reconstruction from theprevious chapter, the use of nonconvex

functionals can lead to meaningful improvements in sampling requirements and/or reconstruction

quality.
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(a) (b) (c)

Figure 5.3: Illustrations of the special sampling schemes considered in Sec.5.2.2. Red matrix
elements are sampled byΞ (·). (a) Full sampling. (b) Specialized undersampling with a small
number of fully-sampled “navigator”-rows. (c) General undersampling.

5.2.2 Sampling Considerations and Performance Guarantees

An important practical question is whether the various low-rank matrix recovery formulations lead

to significant improvements in spatiotemporal data acquisition and image reconstruction. As we

will see, the difficulty of numerical optimization and the strength of reconstruction performance

guarantees are highly-related to thek-t space sampling pattern. For general linear measurement

operatorsA, theoretical results have been derived [112–114, 118, 359, 360, 391, 392, 392, 452,

535, 536] that provide sufficient conditions onA andC such that certain algorithms for solving

Eqs. (5.10)-(5.12) and their variations are guaranteed to be successful. These sufficient conditions

often require thatA obeys arank-restricted isometry property(rRIP), i.e., that‖A (C)‖ℓ2 ≈ ‖C‖F
for any sufficiently low-rankC.8 While computing rRIPs is computationally intractable, it is

known that certain classes of randomized sampling operators have good rRIP properties, as long

asP is large enough [452,535].

While the rRIP results with generalA indicate that rank constraints can lead to meaningful

reductions in sampling requirements, additional insight can be gained by analyzing the matrix

recovery problem in the context of common MR-specific data-acquisition strategies. We illustrate

three common sampling patterns in Fig.5.3, which we will discuss in detail below.

8The definition of the rRIP is very similar to the definition of the RIP from the previous chapter. In addition, the
performance guarantees for low-rank matrix recovery basedon the rRIP are very similar to the guarantees for sparse
vector recovery based on the RIP. This is not a coincidence, since there are many parallels between sparse vector
recovery and low-rank matrix recovery. See Ref. [535] for more detail.
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Full Sampling andFH is a Tight Frame

Under full sampling conditions (i.e.,Ξ∗ (Ξ (·)) is an identity operator) and assuming thatFH is a

tight frame (i.e.,FHF = αI, whereα > 0 andI is theQ×Q identity matrix),9 the optimal solution

to Eq. (5.10) is given byĈPS = H̃L/α, whereH̃L is the rank-L Eckart-Young (EY) approximation

of H = FHS. In this case, it can be shown (using Lemma 1.1 of [4]) that ĈPS satisfies

‖C− ĈPS‖F ≤ ‖C− C̃L‖F
︸ ︷︷ ︸

Approximation Error

+
1

α
‖ÑL‖F +

2√
α

√

‖ÑL‖F‖C̃L‖F
︸ ︷︷ ︸

Noise Error

,
(5.13)

whereC̃L andÑL are the rank-L EY approximations ofC andFHΞ∗ (η), respectively. Thus,

when the low-rank approximation is good and the noise is not too large, we obtain good perfor-

mance guarantees and a tractable reconstruction algorithm. Unfortunately, the requirements on

Ξ (·) andF for this case can only be satisfied ifP ≥ NM . Thus, this setting is not useful for

reconstruction from limited data, though it and its variations have proven useful for denoising,

dimensionality-reduction, and analysis of spatiotemporal imaging data (e.g., [21,75,100,222,549,

599,648]).

Specialized Undersampling with Navigator Data andF has a Trivial Null Space

Rather than fully samplingk-t space as in the previous section, we could instead manipulate the

data acquisition physics to ensure that matrix recovery canbe achieved with undersampled data

using simple algorithms [399]; this approach has been utilized heavily in the existing PSliterature,

and will be referred to as the “basic PS” approach. We consider the case where the sampling

operatorΞ (·) has been designed to fully measure at leastL rows of the matrixΦ = FC. We will

denote this fully-sampled submatrix ofΦ asΦn, with the corresponding submatrix ofF denoted

9The assumption thatFH is a tight frame is reasonable for Cartesian-sampling ofk-space, in which caseF will
often be proportional to the unitary DFT matrix.
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asFn such thatΦn = FnC. In the existing PS literature,Φn is often called navigator or training

data. We have the following result:

Theorem 5.1. LetC have rankL, assumeη = 0, and letFn andC be such thatΦn has rankL.

Then theL-dimensional row-space ofC is equal to theL-dimensional row-space ofΦn.

This follows from the fundamental theorem of linear algebra.

Corollary 5.1. Under the conditions of the previous theorem,C can be represented asC = RQH

for some matrixR ∈ C
N×L, whereQ is theM × L matrix of right singular vectors from the SVD

of Φn.

AssumingQ from the corollary is given, the nonlinear optimization problem in Eq. (5.10) can

be recast in terms of the linear least-squares problem

R̂ = arg min
R∈CN×L

∥
∥Ω
(
FRQH

)
− s
∥
∥
2

ℓ2
. (5.14)

The least-squares optimality condition for the solution toEq. (5.14) is given by the normal equa-

tions

FHΞ∗
(

Ξ
(

FR̂QH
))

Q− FHΞ∗ (s)Q = 0. (5.15)

While this problem may seem complicated, the optimalR̂ can be computed efficiently using the

same techniques that will be described for the IRPF algorithmin Sec.5.3. Note also that whenF

is square and full rank, the solution to Eq. (5.14) can be equivalently obtained by solving for the

matrix Ẑ = FR̂, and settingR̂ = F−1Ẑ. After this simplification, Eq. (5.14) becomes separable

in the rows ofZ, leading to further improvements in computational efficiency.

In addition to fast computations, use of this sampling scheme has the advantage that only a very

small number ofk-t samples are required for reconstruction. In particular, atleastLM samples

are required to obtainΦn. In addition, at leastNL − L2 other samples ofΦ must be acquired to

ensure that the total number of samples is at least as large asthe number of degrees of freedom in

C. This minimum number of additional samples is achievable. For example, in the special case
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whereF is an identity matrix,10 a unique reconstruction forR can only be obtained if each row

of Φ = C is sampled at leastL times. Though theLM samples forΦn already coverL of the

rows ofΦ, there remainN − L rows ofΦ that must each be sampled at leastL times, leading to

NL − L2 additional required samples. As a result, the use of a specialized sampling scheme can

potentially achieve the minimumL (N +M − L) required samples.

However, one limitation of this approach is that the row-space ofC is estimated only from a

subset of the measured data. As a result, this procedure implicitly assumes thatΦn has the same

dominant temporal subspace asC, and neglects the effects of noise and modeling error.

General Undersampling andF is Square and Invertible

WhenF is square and invertible, thêCPS obtained from solving Eq. (5.10) can equivalently be

obtained by solving

Φ̂ = arg min
Φ∈CQ×M

rank(Φ)≤L

‖Ξ (Φ)− s‖2ℓ2 , (5.16)

and settinĝCPS = F−1Φ̂. The problem in Eq. (5.16) has recently been termed the low-rankmatrix

completionproblem, and variations of this problem have recently been analyzed theoretically by

a number of authors [113,114,118,359,360,452]. The problem in Eq. (5.16) is non-convex, and

the affine rank-minimization variation of Eq. (5.16) is NP-hard [535]. Nevertheless, there exist an

ever-increasing number of relaxations and greedy heuristics to approximately solve this and related

problems including the alternative formulations in Eqs. (5.11) and (5.12). For some completion

algorithms, there also exist theoretical performance guarantees for these methods [113,114,118,

359, 360, 452]. Interestingly, it has been shown that for most low-rank matrices, if the operator

Ξ (·) samples a uniformly random subset of the matrix entries and if the number of samples is large

enough, then Eq. (5.16) is guaranteed to have a unique global minimizer that can be obtained using

existing fast algorithms [113,360]. In the presence of noise, this leads to performance guarantees

that are weaker but have a similar form to Eq. (5.13). Importantly, high-quality guarantees can

10Note that wheneverF is square and invertible, the previously described change of variablesẐ = FR̂ can be used
to formulate an equivalent optimization problem whereF can be treated as an identity matrix.
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be obtained when the number of measurementsP is as small asO (LN lnN) [360], where we

have assumedN ≤ M . This result indicates that PS images can be recovered robustly from

undersampledk-t space data without the use of specially-tailored sampling patterns, as long as

appropriate algorithms are used for reconstruction.

Compared to the previous two special cases, the optimizationproblems in Eqs. (5.10) and

(5.16) are flexible enough to accommodate very general sampling schemes. In addition, in contrast

to the basic PS procedure, the general matrix completion/recovery approach makes use of all of

the measured data to estimate the structure of the low-rank matrix C. The price that is paid for

this increased flexibility is that sampling requirements are no longer as easy to analyze, and that

the optimization problem becomes significantly more complicated.

Algorithms for solving Eqs. (5.10) and (5.16) have existed in the literature for a long time. One

of the earliest methods is based on alternating least-squares (ALS) . Early examples include the

use of ALS techniques for nonlinear iterative partial leastsquares matrix factorizations (NIPALS)

[654,655], and low-rank decomposition of tensor-valued data with the CANDECOMP/PARAFAC

model [89,126,293,367], where a tensor is a higher-dimensional generalization ofa matrix [367].

Also see Refs. [201,224,258,268,294,467,623] for descriptions of related ALS-based low-rank

matrix recovery methods. Other approaches to solving Eqs. (5.10) and (5.16) include alternating

projection algorithms [255], gradient descent and expectation-maximization algorithms [160,467,

585], Newton methods [96, 483], optimization over Grassmann manifolds [153, 359, 360], and

projected gradient algorithms [452]. Additionally, as described previously, many algorithmsexist

for solving the related problem formulations given in Eqs. (5.11) and (5.12). In this work, we will

make use of the IRPF algorithm [268] to solve matrix completion/recovery problems. The IRPF

algorithm, which falls into the class of ALS techniques, is described in detail in the next section.
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5.3 The Incremented Rank PowerFactorization Algorithm

The incremented-rank PowerFactorization (IRPF) algorithmwas designed to solve problems of

the form

Ĉ = arg min
C∈CN×M

rank(C)≤L

‖A (C)− s‖ℓ2 , (5.17)

whereA : CM×N → C
P is an arbitrary linear operator.

IRPF is an ALS approach that makes use of the factorizationC = UV, with U ∈ C
N×L and

V ∈ C
L×M , to enforce rank-L structure implicitly. Subsequently, we seek a local minimum of

{

Û, V̂
}

= arg min
U∈CN×L

V∈CL×M

‖A (UV)− s‖ℓ2 (5.18)

using an alternating minimization procedure overU andV.

IRPF is similar to and inherits its name from the PowerFactorization algorithm introduced by

Hartley and Schaffalitzky [294,623]. Without being aware of PowerFactorization and many of the

other ALS approaches for low-rank matrix recovery problems, Diego Hernando and I proposed

and evaluated IRPF as part of a course project for a graduate class in the Fall 2008 semester at

the University of Illinois at Urbana-Champaign. Our original name for IRPF was FARM (Fast

Alternating-subsets descent algorithm for Rank-constrained Matrix recovery). After viewing our

presentation on FARM, Professor Yi Ma informed us of the PowerFactorization algorithm, which

inspired us to rename the algorithm. However, it should be noted that most of the previous ALS

approaches (including PowerFactorization) assume the matrix completion problem, whereA has

the form of a sub-sampled identity operator. Unlike these methods, our formulation of IRPF works

for arbitrary linear operators, and has the flexibility to solve both Eqs. (5.10) and (5.16). Empirical

results indicate that IRPF is fast, works well for matrix recovery problems, and can give better

solutions than alternatives like NNM and PowerFactorization [268] for solving general low-rank

matrix recovery and completion problems.
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5.3.1 Algorithm Description

Let the action of the linear operatorA be expressed as

[A (C)]p =
N∑

n=1

M∑

m=1

anmp [C]nm

=
N∑

n=1

M∑

m=1

anmp

L∑

ℓ=1

[U]nℓ [V]ℓm

(5.19)

for appropriate constantsanmp, and forp = 1, 2, . . . , P . In this case, we can define

A (UV) ≡ AUvec (V) ≡ AVvec (U) , (5.20)

wherevec (·) stacks the columns of its matrix argument into a single column vector. The matrices

AU ∈ C
P×LN andAV ∈ C

P×ML are defined as

[AU](p,ℓ+L(m−1)) =
N∑

n=1

anmp [U]nℓ (5.21)

and

[AV](p,n+M(ℓ−1)) =
M∑

m=1

anmp [V]ℓm , (5.22)

respectively, forp ∈ {1, . . . , P}, ℓ ∈ {1, . . . , L},m ∈ {1, . . . ,M}, andn ∈ {1, . . . , N}.

PowerFactorization

The general PowerFactorization algorithm iterates by alternatingly optimizingU andV using a

linear least-squares procedure. The earlier NIPALS algorithm [654, 655] can be considered as a

special case of PowerFactorization, withL = 1. PowerFactorization (modified from Refs. [294,

623] to permit a general linear operatorA) runs as follows:

1. Initialize
(
U(0) ∈ C

N×L,V(0) ∈ C
L×M

)
. Set iteration numberq = 0.
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2. HoldingV(q) fixed, findU(q+1) by solving

U(q+1) = argmin
U

‖AV(q)vec (U)− b‖22 . (5.23)

3. Now fixingU(q+1), findV(q+1) by solving

V(q+1) = argmin
V

‖AU(q+1)vec (V)− b‖22 . (5.24)

4. Incrementq. If q exceeds a maximum number of iterations, if the iterations stagnate, or

if the relative error
∥
∥A
(
U(q)V(q)

)
− b

∥
∥
2
/ ‖b‖2 is smaller than a desired thresholdε, then

terminate the iterative procedure. Otherwise, repeat steps 2-4.

Various options exist for choosing the initialization
(
U(0) ∈ C

N×L,V(0) ∈ C
L×M

)
, and reasonable

choices include random initialization or an initialization based on the EY approximation ofA∗ (s).

Note that for large-scale problems, the EY approximation can be obtained efficiently by using fast

algorithms for computing a partial SVD (see, e.g., Ref. [102] and the associated source code for

an example of one such partial SVD implementation).

WhenA∗A is an identity operator, the PowerFactorization procedureis equivalent to the power

method for computing singular value decompositions, whichis known to converge quite rapidly

to the rank-L EY approximation ofC [248,294]. Moreover, if the rank ofC is not larger than the

value ofL used in the PowerFactorization procedure, then the algorithm will converge exactly to

C in a single iteration.

The convergence speed and global optimality characteristics of PowerFactorization in the pres-

ence of missing data and/or more generalA operators have not been rigorously characterized the-

oretically. However, in these cases, the PowerFactorization algorithm monotonically decreases the

cost function in Eq. (5.18), and thus the value of the cost function is guaranteed to converge since it

is bounded below by 0. In general, the estimates ofU(q) andV(q) themselves are not guaranteed to

converge, particularly in the case when there is sustained rank-deficiency in the linear least-squares
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problems. In particular, it should be noted that the factorizationC = UV is not unique, sinceC

could equivalently be factored asC = (UT) (T−1V) for anyL × L invertible matrixT. As a

result, Eq. (5.18) will never have a unique solution forU andV, though there can be a unique

solution for the product matrixC = UV. Despite this non-uniqueness for the factored problem,

our empirical results show that convergence ofU(q) andV(q) is not generally an issue when the

number of measurementsP is large enough.

Incremented Rank PowerFactorization

For matrix recovery and completion problems, we have obtained better results and faster conver-

gence by using a variation of the general PowerFactorization procedure that uses an incremented-

rank strategy. IRPF starts withL = 1, and gradually incrementsL until the desired rank constraint

is achieved. In this case, we initialize the new components of U andV using a rank-1 Power-

Factorization fit to the current residual. Since the lower-rank fits tend to have better conditioning

as a result of having fewer degrees of freedom, this incremented/continuation approach helps to

prevent the algorithm from getting stuck in local optima. The IRPF algorithm is given below:

• SetĈ ∈ C
N×M = 0.

• For ℓ = 1, . . . , L

1. Use PowerFactorization to find a rank-1 fit to the current residual:

{û, v̂} = arg min
u∈CN×1

v∈C1×M

∥
∥
∥A (uv) +A

(

Ĉ
)

− s

∥
∥
∥
ℓ2
. (5.25)

2. If ℓ = 1, setÛ = û andV̂ = v̂. Otherwise, set̂U =

[

Û û

]

andV̂ =






V̂

v̂




.
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3. Use PowerFactorization to solve

{

Û, V̂
}

= arg min
U∈CN×ℓ

V∈Cℓ×M

‖A (UV)− s‖ℓ2 , (5.26)

initializing the algorithm with thêU andV̂ matrices from step 2.

4. SetĈ = ÛV̂.

Since IRPF uses the PowerFactorization procedure directly,it inherits all of its theoretical conver-

gence properties.

The main computation in the IRPF procedure is solving the linear least-squares problems

in Eqs. (5.23) and (5.24). However, these linear least-squares problems are quite classical (cf.

Eq. (2.36)), and a number of efficient algorithms exist to directly compute solutions [248]. How-

ever, we do note that in some cases, the matricesAU andAV will not have full column rank,

meaning that the least-squares solutions to Eqs. (5.23) and (5.24) can be non-unique; for example,

if V is initialized to be identically zero, thenAV is also identically zero. In these situations, it is

beneficial to choose a least-squares solution that is distinct from the minimum-norm least-squares

solution; in our implementation, we randomly choose a vector from the linear variety of least

squares solutions.

Significant computational gains can be achieved when we apply IRPF to the MR-specific prob-

lems in Eqs. (5.10) and (5.16). In the context of Eq. (5.10), the least-squares optimality condition

for V(q+1) in Eq. (5.24) of the PowerFactorization procedure is that

[
U(q+1)

]H
FHΞ∗ (Ξ

(
FU(q+1)V(q+1)

))
−
[
U(q+1)

]H
FHΞ∗ (s) = 0. (5.27)

Note that this expression has similar form to Eq. (5.7). As a result, similar to the simplification

from Eq. (5.7) to Eq. (5.8), Eq. (5.27) is separable in the columns ofV(q+1). This separability

implies that the system matrixAH
U(q+1)AU(q+1) that appears in the normal equations for Eq. (5.24)

can be permuted into decoupled block diagonal form, withL × L blocks. This leads to efficient
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computation, either by direct inversion of eachL × L block separately, or by using the iterative

conjugate gradient algorithm to solve the sparse system. The iterative conjugate gradient (CG) al-

gorithm for matrix inversion would find optimal solutions (assuming infinite numerical precision)

afterL iterations [305]. Similar decoupling exists for Eq. (5.23) of the PowerFactorization proce-

dure when using the problem formulation in Eq. (5.16), or equivalently, the problem formulation

in Eq. (5.10) whenF is an identity matrix. Even whenF in Eq. (5.10) is not an identity matrix,

matrix-vector multiplications withF can often still be computed quickly (e.g., using the FFT for

Fourier-domain observations), meaning that solving Eq. (5.23) using iterative methods like CG

can still be very efficient.

Modified Incremented Rank PowerFactorization for Matrix Comp letion in the presence of

Navigator Information

The previously described IRPF algorithm works well for many problems of interest. However, we

have observed that a modified IRPF procedure can help to avoid local minima when solving matrix

completion problems with specialized sampling schemes that include navigator information. As

described previously, the fully sampled navigator rows ofΦ can provide strong information about

the dominant temporal subspace for the fully-sampledΦ matrix. However, it is often the case that

the acquired navigator data samples constitute only a smallpercentage of the totalP measured data

samples. Since standard IRPF seeks to find a low-rank matrix that is as data-consistent as possi-

ble, it will frequently happen that the IRPF procedure neglects data consistency for the navigator

samples in favor of improved data consistency with respect to the full dataset. Given sufficient

measured data, this issue is not problematic, and IRPF still performs well; however, whenP is

very small, the IRPF procedure can more easily become trappedin local critical points of the cost

function. Our proposed modification of IRPF leverages the strong subspace information that can

be extracted from the navigator data to help IRPF avoid local critical points and obtain reconstruc-

tions that more closely match with the acquired data. Our proposed modification of IRPF is given

below, formulated in the context of Eq. (5.16). It will be assumed that we have a total ofJ different
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fully-sampled navigator rows.

• SetΦ̂ ∈ C
N×M = 0.

• For ℓ = 1, . . . , L

1. Use PowerFactorization to find a rank-1 fit to the current residual:

{û, v̂} = arg min
u∈CN×1

v∈C1×M

∥
∥
∥Ξ (uv) + Ξ

(

Φ̂
)

− s

∥
∥
∥
ℓ2
. (5.28)

2. If ℓ = 1, setÛ = û andV̂ = v̂. Otherwise, set̂U =

[

Û û

]

andV̂ =






V̂

v̂




.

3. Find the data-consistent full-rank matrixB̂ that is as close as possible (in the Frobenius

norm) to the current estimate of the low-rank matrix:

B̂ = arg min
B∈CN×M

Ξ(B)=s

∥
∥
∥B− ÛV̂

∥
∥
∥
F

= Ξ∗ (s) + ÛV̂ − Ξ∗
(

Ξ
(

ÛV̂
))

.

(5.29)

4. Compute the rank-L EY approximation of the(N + J)×M matrix






B̂

αΦn




, where

α is a positive scalar that is large enough to ensure thatα ‖Φn‖F >> ‖B̂‖F . Let the

EY approximation be written in terms of its SVDPΣQH , whereP ∈ C
(N+J)×L and

Q ∈ C
M×L have orthonormal columns andΣ ∈ R

L×L is a positive-definite diagonal

matrix.

5. SetV̂ = QH , and setÛ = PJΣ, wherePJ is theN × L submatrix ofP obtained by

extracting its firstN rows.
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6. Use PowerFactorization to solve

{

Û, V̂
}

= arg min
U∈CN×ℓ

V∈Cℓ×M

‖Ξ (UV)− s‖ℓ2 , (5.30)

initializing the algorithm with thêU andV̂ matrices from step 5.

7. SetΦ̂ = ÛV̂.

The main difference between this algorithm and the previously described IRPF algorithm is the

inclusion of steps 3-5. These steps are designed to ensure that the rank-L initialization for the

PowerFactorization algorithm in step 6 is relatively data consistent with the navigator rows inΦn,

while still leveraging estimation results from the previous iterations. Data consistency with the

navigator rows will improve with increasingα; however, it is important to note that settingα

extremely large could, in practice, lead to significant numerical errors in the computation of the

SVD.

5.3.2 Comparison to Nuclear Norm Minimization

While IRPF has empirical speed advantages relative to NNM [268], we will focus here on the dif-

ferences in empirical matrix recovery performance. The matrix recovery capabilities of IRPF were

compared to those of NNM using two sets of experiments. In thefirst set of recovery experiments,

the amnp coefficients defining linear operatorsA were generated at random from the Gaussian

distribution, and random low-rank30 × 30 matricesC were generated asC = MLMr, where

the entries ofML ∈ C
30×L andMR ∈ C

L×30 were also generated from the Gaussian distributed.

Test cases were generated for many different combinations of the number of measurementsP

and rank (C) (assumed to be known), and 10 realizations were computed foreach(P,L) pair.

Theoretical properties of NNM for Gaussian observations and matrix completion are discussed

in [113,114,118,391,452,535].

The second set of recovery experiments was identical to the first set, except that the linear
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Figure 5.4: Matrix recovery results for (a) IRPF and (b) NNM with Gaussian observations. The
color of each cell corresponds to the empirical recovery rate, with white denoting perfect recovery
and black denoting failure in all 10 experiments. The vertical axis isL(N +M − L)/P , which
is the ratio of the number of degrees of freedom for anN ×M rank-L matrix to the number of
measurementsP .

operatorsA were chosen to correspond to the matrix completion problem,measuringP entries

(selected uniformly at random) fromC.

Figure5.4shows the results of the experiment with Gaussian observations. While NNM is able

to successfully recover a large fraction of the low-rank matrices, IRPF is able to recover a signifi-

cant additional fraction that NNM is unable to recover. As inNNM [117,535,536], there appears

to be phase-transition behavior for IRPF with Gaussian measurements, though the boundary of

this phase transition appears in a different location.

Figure5.5shows the results of the matrix completion experiment. Again, there is a significant

fraction of matrices that is successfully recovered by IRPF,but that is not recovered by NNM. The

superiority of IRPF over NNM for completion problems is consistent with the results obtained

by Dai and Milenkovic [153], in which IRPF also demonstrated advantages over several other

recently-proposed matrix completion algorithms.

It should be noted for our completion experiment that we observed a small number of cases

where NNM succeeded while IRPF failed, due to IRPF converging to a local stationary point of

the cost function. These few cases are easily identified without knowing the trueC, due to a large
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Figure 5.5: Matrix completion results for (a) IRPF and (b) NNM. The color of each cell corre-
sponds to the empirical recovery rate, as in Fig.5.4.

residual data error. For moderate-size problems, this can be efficiently overcome by performing

IRPF several times with randomly selected initializations.These results were obtained from rel-

atively small matrices. Preliminary experiments indicatethat an advantage of IRPF over NNM is

maintained for larger matrices, although the asymptotic behavior is unknown.

While IRPF is more successful at matrix recovery and can converge faster than classical Pow-

erFactorization, PowerFactorization alone can also perform surprisingly well given sufficient mea-

surements and appropriately-chosenL. To illustrate this, we again generated Gaussian observation

operatorsA for variousP values, and random40 × 40 matricesC of rank 8. We tested PF with

this dataset, allowingL to range from 1 up to 20. The results of this experiment, averaged over 10

realizations, are shown in Fig.5.6.

5.4 Application Examples

The following subsections present practical examples of applying the PS model and the IRPF

algorithm to different spatiotemporal imaging scenarios.
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Figure 5.6: Mean relative reconstruction error using PowerFactorization for variousL values. The
true rank is 8. Blue indicates untested cases (the number of degrees-of-freedom exceededP ). The
success/failure regimes for NNM and IRPF are indicated with yellow and pink lines, respectively.

5.4.1 Real-Time Cardiac Imaging Simulations

In this cardiac imaging example, simulations were performed using a version of the cardiac cine

dataset shown in Fig.5.1, which was spatiotemporally warped to emulate a 5 second free-breathing

experiment in the presence of cardiac arrhythmia [675] with M = 256 different time points. Carte-

sian phase encoding was simulated, with full sampling alongthe readout dimension. Only 1/6th

of thek-t locations were sampled; we acquired 27 fully-sampled navigator rows ofΦ at the center

of k-space as training data, while the remaining rows were sampled uniformly at random. The

use of Cartesian sampling with a square, invertibleF matrix allowed us to use the matrix comple-

tion formulation of Eq. (5.16). For improved computational efficiency, Fourier inversion was first

performed along the readout dimension, and the modified IRPF algorithm for matrix completion

with navigator data was applied to reconstruct the undersampled phase-encoding dimension in a

spatially-decoupled way. This led to a set of256 different low-rank matrix reconstruction prob-

lems withN = 200 andM = 256. The reconstruction usedL = 18, leading to a signal model

with 10% of the degrees of freedom compared to a full-rank image model. The results of this

simulation are shown in Fig.5.7, illustrating the potential of low-rank constraints for accelerating

this kind of imaging experiment. Other cardiac imaging results using the general matrix-recovery

framework can be found in [675].

185



(a) Gold Standard (b) k-t Sampling Pattern

(c) Low-Rank Result (d) Low-Resolution Result

Figure 5.7: Low-rank matrix completion results from 1/6th of the entries of a simulated dynamic
cardiacΦ matrix. The horizontal axis for all images corresponds tot, while the vertical axis
corresponds to the phase encoding dimensionx. (a) Gold standard image. (b) Sampling pat-
tern in k-t space. (c) Low-rank reconstruction usingL=18. Low-rank modeling enables high-
quality reconstruction from limited data. (d) Fourier reconstruction using a densely-sampled low-
resolution acquisition with the same numberP of data samples, illustrating the limitations of a
more-conventional approach to data acquisition and reconstruction.
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5.4.2 Diffusion MRI Experiments

In this diffusion MRI example, fully-sampled real data was acquired from a fixedex vivohuman

spinal cord sample using a 4.7 T Varian scanner (data provided by Y. Wang and S.-K. Song at the

Washington University in St. Louis). Data was acquired on a96×96 Cartesian grid at the Nyquist

rate for a24 mm × 24 mm FOV. Acquisition used a standard spin-echo pulse sequence that ac-

quires a single phase-encoding line per excitation, with anecho time of 35 ms and a repetition time

of 2 s. The data was diffusion weighted to enable fitting with the Diffusion Basis Spectrum Imag-

ing model [633]. In particular, a total of 99 different diffusion-weighted images were acquired,

with b-values ranging between 0 and 3,200 s/mm2 and diffusion times ofδ = 8 ms and∆ = 20

ms. Total data acquisition time was approximately 5.3 hours.

Diffusion MRI experiments acquire a series of images, where each image is exposed to dif-

ferent diffusion-encoding gradients. Diffusion imaging can be treated as spatiotemporal imaging

if the diffusion-encoding dimension is treated as a temporal dimension. The proposed low-rank

matrix formulation was applied to enable high quality reconstruction from undersampledk-space

data. In particular, we subsampled the dataset such that only 47 phase encoding lines were ac-

quired per diffusion-encoded image, representing approximately 49% of the fully-sampled data.

For a real experiment, this level of undersampling would reduce the total data acquisition time

down to only 2.6 hours, representing a significant improvement in imaging efficiency. Of these 47

phase encoding lines, 32 lines were consistently acquired for each image at the center ofk-space,

while the remaining lines were randomly distributed to the remaining phase encoding locations.

Results obtained by applying modified IRPF withL = 7 to solve Eq. (5.16) are shown in Fig.5.8.

As can be seen, the proposed low-rank matrix recovery framework enabled high quality recon-

struction from significantly undersampled data, and could enable this type of experiment to be

performed significantly faster.
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(a) Full Data (b) 49% Data (c) Error

(d) Full Data (e) 49% Data (f) Error

Figure 5.8: Low-rank matrix completion results from48% of the entries of a real diffusion-
weighted MRI dataset. (a) One diffusion-weighted image fromthe fully-sampled dataset. (b) The
same diffusion-weighted image after reconstruction usingIRPF. This particular image was chosen
for display because it was the image with the largest reconstruction error after reconstruction using
the proposed method. (c) Error image (scaled by a factor of 15for improved visualization) for the
reconstruction shown in (b). (d) Spatiotemporal profile of the fully-sampled diffusion-weighted
dataset. The horizontal axis corresponds to different diffusion-encoding parameters, while the ver-
tical axis corresponds to the phase-encoding dimension. (e) Spatiotemporal profile of the IRPF-
based reconstruction. (c) Error image (scaled by a factor of15 for improved visualization) for the
reconstruction shown in (e). These results indicate that the rank-7 PS model is able to accurately
represent the diffusion contrast of the signal within the spine parenchyma, and that IRPF can be
used to significantly accelerate data acquisition.
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5.4.3 DCE Breast Imaging Simulations

In this DCE breast imaging example, an exogenous contrast agent is injected into the bloodstream,

and the contrast kinetics are used to localize a tumor and provide information regarding its phys-

iological and morphological properties. Fourier data was simulated from a series of magnitude

images corresponding to 18 different time-points from a real DCE experiment. These 18 frames

were subsequently interpolated onto a set ofM = 52 equally-spaced time points. The simulated

data acquisition assumed a256× 256 Cartesiank-space sampling grid (i.e.,N = 2562). The mea-

surement operatorΞ sampled 25% of the entries inΦ uniformly at random. This was augmented

by an additional set of samples chosen to ensure that each rowand each column ofC was sampled

at least 10 times,11 resulting in a total of∼ 27% of the entries being sampled.

As in the previous examples, matrix recovery was performed using Eq. (5.16). Two temporal

frames from a standard IRPF reconstruction withL = 5 are shown in Fig.5.9. These results illus-

trate that high-quality PS-based reconstruction is possible from highly-undersampled data without

the use of specialized sampling.

For comparison, reconstruction of this same dataset was also performed using a more tradi-

tional compressed sensing approach exploiting the known sparsity of

ρ̂ (x, f) =

∫

ρ (x, t) exp (−ı2πft) dt (5.31)

in dynamic MR applications [228]. Figure5.10shows reconstructions performed by minimizing

the ℓ1 norm [117] of ρ̂ (x, f) subject to data-fidelity constraints, assuming a finite-dimensional

spatiotemporal image model with Dirac delta voxel functions spaced uniformly on a Cartesian

grid in x-f space. While both the IRPF andℓ1 reconstructions accurately recover the structure of

the image, theℓ1 reconstruction shows more significant spatially-localized errors.

11A necessary condition for matrix completion to be well-posed in this context is that each row and each column is
sampled at leastL times. Sampling more than this will improve the conditioning of the problem.
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Figure 5.9: Simulated PS-based spatiotemporal reconstruction (L=5) using IRPF with∼ 27% of
the full data. The left and right sides of the figure show different temporal frames.

5.5 Discussion

5.5.1 Specialized Sampling Versus Random Sampling

The DCE breast imaging example illustrated the potential of using IRPF for randomly-sampled

spatiotemporal images with PS structure, while the cardiacand diffusion MRI examples used the

specialized sampling scheme where a number of fully-sampled rows of theΦ matrix were ac-

quired. These results show that the proposed low-rank matrix recovery framework is very flexible,

and can be used successfully with a range of different sampling patterns. However, it is also

of interest to compare the random-sampling strategy with the special navigated sampling strat-

egy. Simulation-based comparisons between these two different sampling strategies are shown in
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Figure 5.10: Compressed sensing reconstruction from∼ 27% of the full data. In contrast to IRPF
reconstruction, the reconstruction errors have more apparent anatomically-correlated structure.

Figs.5.11and5.12. These results illustrate that it can be beneficial to acquire several fully-sampled

rows ofΦ. Fully sampling low-frequencyk-space can be especially beneficial for realistic data,

due to high signal energy concentration in this area, thoughit should also be noted that high-

frequencyk-space data can have higher temporal variability [59]. However, acquiring too many

fully-sampled rows can degrade reconstruction performance, because there are fewer samples to

distribute outsideΦn. These figures also illustrate that the proposed IRPF method can be sig-

nificantly more flexible than the basic PS method, enabling high-quality reconstructions across a

range of different acquisition strategies.

5.5.2 Selection ofL

One practical issue for Eq. (5.17) is the selection ofL. If L is chosen too small, the PS model

is not capable of accurately representing the true structure of the original spatiotemporal image,

leading to significant bias in the final reconstructed image.On the other hand, ifL is large, the

PS model will have a large number of degrees of freedom. As a result, while large-L models can
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Figure 5.11: Relative reconstruction errors for the cardiacdataset described in Sec.5.4.1 as a
function of the number of observationsP and the number of fully-sampled navigator rows. All
navigator rows were located in the low-frequency region ofk-space, while the remaining samples
were randomly distributed. Relative reconstruction errorswere measured in the Frobenius norm.
For each case,L was set to the value that yielded the smallest reconstruction error. Black squares
correspond to infeasible acquisition parameter combinations that were not tested. (a) Results using
the modified IRPF algorithm. Due to its flexibility, IRPF is ableto generate high-quality recon-
structions across a range of different sampling strategies. However, acquiring a small number of
fully-sampled navigator rows is observed to improve reconstruction performance, though it can
be detrimental to acquire too many navigator rows. (b) Results using the basic PS procedure. In
contrast to the IRPF method, the basic PS procedure is considerably less flexible. In particular, it
is not possible to use the basic PS procedure when no navigator information is available, and the
maximum rankL that can be used for reconstruction is limited by the total number of acquired
navigator rows.
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Figure 5.12: Relative reconstruction errors for random approximately low-rank matrices as a func-
tion of the number of observationsP and the number of fully-sampled navigator rows. Except for
the choice of matrices, simulation parameters were the sameas those used to generate Fig.5.11.
Approximately low-rank matrices were generated using the following procedure: first, a random
200×256 was generated from the Gaussian distribution. Next, SVD wasperformed on this matrix,
and its singular values were replaced with an exponentially-decaying set of values. In particular,
we setσk = exp(−0.35k) for k = 1, . . . , 200. This exponentially-decaying singular-value spec-
trum ensures that each of the random matrices can be well-approximated as a low-rank matrix. (a)
Results using the modified IRPF algorithm. As with the cardiac data, the IRPF algorithm is flexible
enough to accommodate a wide range of different sampling strategies. In some regimes, acquiring
a number of fully-sampled navigators is beneficial. However, unlike the case shown in Fig.5.11,
there are also cases where pure random sampling outperformsthe specialized navigator-based
sampling. One explanation for this is that, unlike the case for real data, the energy-distribution
for randomly-generated low-rank matrices is not concentrated near the center ofk-space. (b) Re-
sults using the basic PS procedure. As before, these resultsindicate that the basic PS procedure is
considerably less flexible than the IRPF-based low-rank matrix recovery approach.
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Figure 5.13: Mean-squared reconstruction error for different model orders. AsL increases, the
signal model has better capability to represent the true signal, leading to fewer signal features
being apparent in the error map. However, this additional flexibility comes at the expense of con-
ditioning, which is reflected by the increasing “noise” component of the error maps with increasing
L.

always fit the measured data better than smaller-L models, the model-fitting problem with large

L can be sensitive to noise and be prone to overfitting (i.e., interpreting noise perturbations as

actual signal structure). In general model selection problems, this situation is frequently called the

“bias/variance dilemma.” This issue is illustrated in Fig.5.13for the DCE breast imaging dataset.

A good choice ofL requires a careful balance between the expressive power of the signal model

and the robustness of the fitting procedure, and our choice ofL in the previous examples was based

on a qualitative assessment of visual reconstruction quality.

Estimation of the rank of a noisy fully-sampled matrix has been previously investigated by a

number of authors (e.g., Refs. [106,150,218,288,315,368,463,638,657] and their references), who

frequently made use of techniques from information-theoretic model selection [97,259,381,383,

462,591]. The choice ofL for PS model-fitting with limited data can also be consideredwithin this

information-theoretic framework. The literature on information-theoretic model selection provides

a variety of different quantitative metrics for selecting an appropriate model to explain a given
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dataset. In general, these methods favor models that fit the data accurately, while simultaneously

penalizing models with a large number of degrees of freedom.Well-known model selection criteria

include the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the

Final Prediction Error (FPE), and the Minimum Description Length (MDL). The assumptions and

objectives leading to the derivation of these different criteria are outside the scope of this thesis, and

the interested reader is referred to Refs. [97,259,381,383,462,591] for more detail. While these

criteria are all different, it is known that, as the number ofmeasurementsP grows to infinity, AIC

and FPE are asymptotically equivalent [474] and that BIC and MDL are asymptotically equivalent

in many cases of interest [259,462]. While various authors prefer different model selection criteria,

it should be noted that the best-performing model selectioncriteria can vary from application to

application [591].

We performed simulations to evaluate the performance of AIC,BIC, and FPE for model se-

lection in matrix completion problems. Assuming observations according to Eq. (5.5) under white

complex Gaussian noise with unknown variance, the AICc (the AIC with a correction to handle

small sample sizes [97,381]) for a rank-L image model is given by

AICc (L) = 2P ln

(∥
∥
∥Ξ
(

FĈ
)

− s

∥
∥
∥

2

ℓ2

)

+ 2K

(
2P

2P −K − 1

)

, (5.32)

whereK = 2L(N +M − L) + 1, andĈ is the rank-L optimal solution to Eq. (5.10). Under the

same assumptions and variable definitions, the BIC is given by

BIC (L) = 2P ln

(∥
∥
∥Ξ
(

FĈ
)

− s

∥
∥
∥

2

ℓ2

)

+K ln (2P ) , (5.33)

and the FPE is given by

FPE (L) =
∥
∥
∥Ξ
(

FĈ
)

− s

∥
∥
∥

2

ℓ2

(
1 +K/(2P )

1−K/(2P )

)

. (5.34)

In all cases, the optimal choice ofL will minimize the respective model selection criterion.
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MDL was not evaluated in the simulations, because the computation of MDL requires the

selection of a scheme to measure the joint complexity of the parametric model and the measured

data. While there exist several different approaches to describing the stochastic complexity of a

model [462], most of these would be very difficult to compute for the low-rank matrix recovery

problem.12 The literature we have found on the selection of matrix rank using MDL [218, 463,

638,657] generally chooses a simple measure of complexity that leads to an equivalence between

MDL and BIC.

Our simulations were performed using randomly-generated full-rank 128×128 complex Gaus-

sian matrices, whose singular values were replaced with deterministic singular value distributions.

In particular, the singular value distributions were chosen such thatσk = k−β for k = 1, . . . , 128.

Matrix completion experiments were performed for matricesdesigned withβ = 1, 2, 3, and 4.

Note that higher values ofβ are associated with faster singular value decays, and therefore would

be associated with better approximation using a low-rank matrix model. The set of observed

matrix entries was chosen uniformly at random, and the number of observationsP was varied be-

tween 20% and 80% of the total number of matrix entries. Simulations were performed 10 times

(with different random matrices and sampling patterns) foreach combination of parameters, and

cumulative results are shown in Figs.5.14-5.17.

Since the matrices used in this experiment were only approximately low rank, we would ideally

want the different model selection criteria to choose a rankfor which the relative reconstruction

error for IRPF was minimized. In practice, this was never achieved by any of the different model

selection criteria. In addition, it was frequently observed that there were large differences between

the ranks selected by the different criteria, and that the reconstruction quality using the models

selected by the different criteria depended heavily onβ. In particular, model selection using FPE

tended to result in more accurate matrix reconstruction when β was large, though the FPE results

12For example, one common approach to describing the complexity of the model requires the computation of the
Fisher information matrix [354, 514] for the unknown parameters [259, 462]. Computation of the standard Fisher
information matrix requires having an explicit parametricsignal model. However, as far as we are aware, there is no
model with exactly2L(N +M − L) explicit real parameters that can represent an arbitrary rank-L complex matrix,
meaning that the computation of the Fisher information matrix is seemingly nontrivial.
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Figure 5.14: Comparison of information-theoretic model-selection criteria for matrix completion
problems with different amounts of acquired data. The valueof β specifying the singular value
distribution was 4. The plots show the reconstruction errorusing IRPF as a function of rank
for 10 different trials, in addition to the reconstruction error as a function of rank for the EY
approximation of the fully-sampled original “gold-standard” matrix. Also indicated are the ranks
selected by the AICc, BIC, and FPE model-selection criteria.
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Figure 5.15: Comparison of information-theoretic model-selection criteria for matrix completion
problems with different amounts of acquired data. The valueof β specifying the singular value
distribution was 3. The plots show the reconstruction errorusing IRPF as a function of rank
for 10 different trials, in addition to the reconstruction error as a function of rank for the EY
approximation of the fully-sampled original “gold-standard” matrix. Also indicated are the ranks
selected by the AICc, BIC, and FPE model-selection criteria.
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Figure 5.16: Comparison of information-theoretic model-selection criteria for matrix completion
problems with different amounts of acquired data. The valueof β specifying the singular value
distribution was 2. The plots show the reconstruction errorusing IRPF as a function of rank
for 10 different trials, in addition to the reconstruction error as a function of rank for the EY
approximation of the fully-sampled original “gold-standard” matrix. Also indicated are the ranks
selected by the AICc, BIC, and FPE model-selection criteria.
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Figure 5.17: Comparison of information-theoretic model-selection criteria for matrix completion
problems with different amounts of acquired data. The valueof β specifying the singular value
distribution was 1. The plots show the reconstruction errorusing IRPF as a function of rank
for 10 different trials, in addition to the reconstruction error as a function of rank for the EY
approximation of the fully-sampled original “gold-standard” matrix. Also indicated are the ranks
selected by the AICc, BIC, and FPE model-selection criteria.
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were very poor whenβ = 1. This illustrates that it is not necessarily a good idea to rely on

these kinds of standard model-selection criteria without rigorous empirical testing in the specific

problem context of interest.

Finally, it is also important to note that while the previoussimulations judged performance

based on reconstruction accuracy (with error measured in the Frobenius norm), this standard metric

is not always very relevant for practical applications [636]. For example, revisiting the DCE breast

imaging example in Fig.5.13, it turns out that the minimum reconstruction error is achieved with

L = 2, despite the fact that this choice fails to capture all of thesignal dynamics of interest. We

prefer to useL = 5, since this choice reconstructs local contrast kinetics more faithfully, despite

higher total error. It is also interesting to note that AICc choosesL = 3, BIC choosesL = 1, and

FPE choosesL = 10. We conclude that selection ofL is complicated, and that the choices made

by statistical model selection criteria are not necessarily consistent with each other or with our

qualitative preferences. As a result, practical choice ofL must be adapted based on the specific

features and objectives of each imaging scenario.

5.5.3 Other Considerations

One important consideration for image reconstruction using the PS model is that the rankL needs

to be small enough relative to bothM andN that a constraint onrank (C) significantly reduces

the number of degrees of freedom. In practice, this can mean that more significant accelerations

are possible for large-scale reconstruction problems where the number of reconstructed time points

M is large. For example, a complex rank-5 matrix of size2562 × 18 has6.6× 105 real degrees of

freedom and1.2× 106 complex entries, meaning that it would be necessary to sample at least 25%

of the matrix to have any hope of successful reconstruction.In contrast, a complex rank-5 matrix

of size2562 × 52 still has roughly6.6 × 105 degrees of freedom, but has significantly more (i.e.,

3.4× 106) entries, so that accurate reconstruction is conceivable with only 10% of the data.

A further consideration is that, in some cases, we know more about a signal than merely the

subspace in which it lives (e.g., in the case of parametric imaging experiments, where the observed
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temporal contrast variations are known to obey a parametricmodel with a small number of un-

knowns). Spatiotemporal reconstruction from limited datain the presence of a parametric contrast

model has been previously investigated in Ref. [272], and a procedure based on PS modeling alone

would generally be relatively inefficient for this scenario.

It is also important to keep in mind that, similar to CS reconstructions, the spatial resolution

and noise characteristics of nonlinear reconstructions based on matrix recovery have not yet been

characterized rigorously. Thus, while the reconstructed images might appear visually pleasing, the

reconstructions could potentially be missing important image features of interest. As a result, when

choosing the PS model for a specific application, it is important to remember that use of the model

is based on the assumption that it is reasonable to approximate the original spatiotemporal image

by discarding the signal characteristics associated with small singular values. This suggests that

the PS model might not be a good choice when the image featuresof interest would not contribute

significantly to the Frobenius norm (e.g., subtle temporal contrast variations from highly-localized

spatial regions). However, it may also be possible to alleviate this issue by performing a linear

transform on the matrix to increase the transform-domain significance of the spatiotemporal fea-

tures of interest.

A number of extensions to the proposed PS-based reconstruction scheme are also possible.

For example, by invoking general linear sampling operatorsA, it becomes possible to incorporate

any prior information that might be available regarding theknown spatial-spectral support of the

spatiotemporal image [75, 77, 87]. A preliminary investigation of this is presented in [675], in

the context of cardiac MRI. In addition, a more general choiceof A makes it possible to model

non-Fourier acquisition physics, which could be useful fora variety of imaging contexts. It is also

relatively straightforward to include additional regularization in the formulation of the problem,

if additional prior information is available. Note that useof rank-constraints is completely com-

patible with the use of other types of constraints (e.g., sparsity, support-limits, or anatomical prior

information), and a combination of constraints can furtherimprove the quality of reconstruction

results over using a single constraint by itself (e.g., [84, 112, 143, 230, 231, 250, 251, 676, 679]).
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Another interesting extension is the generalization to low-rank tensor recovery [229]. Low-rank

tensor recovery can enable accelerated reconstruction of partially separable functions with higher-

dimensional structure (e.g., see Eq. (4) of [399]). Methods designed for low-rank tensor recovery

have already been successfully applied to address limited-data problems in computer vision [413],

multidimensional NMR spectroscopy [339, 340, 487], and electroencephalography [3], with the

potential to also be useful in many other high-dimensional imaging applications.

5.6 Conclusion and Summary

This chapter has presented a matrix recovery approach to estimating spatiotemporal images from

sparsely sampled data, based on the assumption that the underlying function is partially separable.

Spatiotemporal PS image modeling leads to the formulation of a low-rank matrix recovery prob-

lem, which can be solved to yield high-quality reconstructions from “arbitrarily”-sampled data.

To solve matrix recovery problems, we proposed and investigated the IRPF algorithm, which was

demonstrated to have good performance relative to existingalgorithms. The proposed matrix-

recovery framework was evaluated using simulated and experimental data. Results illustrated that

the matrix-recovery framework was significantly more flexible than existing basic PS methods,

and that the matrix-recovery formulation has the capability to enable image reconstruction with

highly-undersampled spatiotemporal imaging data.
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Chapter 6

Conclusion

As MR technology has developed over the past several decades, MRI has increasingly been used

to study biological tissues and organs from a large number ofdifferent perspectives. Biologi-

cal tissues are extremely complex, and a single voxel in typical MRI studies frequently contains

signal contributions from multiple chemical species in a number of distinct environments (e.g., cy-

toplasm, extracellular fluid, and the surfaces and interiors of various organelles). Under different

types of MR contrast encoding, each environment can influence the NMR signal in distinct ways.

As a result, MRI can offer the ability to untangle the contributions from different environments,

allowing MR experiments to probe the detailed anatomy, physiology, metabolism, and temporal

behavior of normal and pathological tissues. However, despite this potential, MR technology has

not matured enough to take full advantage of its capabilities. In particular, data acquisition for

MR studies is relatively slow, which limits throughput and prevents many applications that would

require high-dimensional encoding. In addition, experiments are frequently also limited by the low

sensitivity of the NMR phenomenon.

This dissertation proposed novel approaches to address speed and sensitivity limitations in

MRI. We developed fast data acquisition and image reconstruction methods that combine (1) the

modeling and manipulation of physical imaging processes; (2) the use of a statistical modeling

framework for image reconstruction; and (3) the use of novelconstrained signal and image models.

The utility of these methods has been demonstrated in a number of important MRI contexts, with

significant potential for extension to other MR applications and other imaging modalities. The

main contributions of this work include:

• The development and characterization of a novel method for enhancing the SNR of corre-
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lated image sequences. This method makes use of a novel MRF model for correlated im-

ages, which uses explicit shared line-process variables tomodel correlated image structure

and facilitates fast computation. The method has the capability to reduce noise contamina-

tion, while simultaneously preserving the high-resolution structure that is shared between

the different frames of a sequence of images. We have shown that the resolution and SNR

characteristics of the reconstruction scheme are easy to evaluate, giving users the ability to

precisely control the trade-off between resolution and SNR.In addition, our analysis sug-

gests new ways for designing MR experiments. In contrast to conventional wisdom, we have

demonstrated that resolution/SNR efficiency can improve significantly if k-space data is ac-

quired at frequencies beyond the nominal resolution of the experiment. This observation has

many implications for the way that MR data acquisition should be performed.

• The development and characterization of a novel non-Fourier data acquisition method to ac-

celerate encoding for images that are approximately sparsein a known transform domain.

We have demonstrated that Fourier-domain undersampling can be inefficient for many CS-

MRI applications, and that random encoding could overcome this limitation of Fourier en-

coding in high-SNR scenarios. In addition, we have demonstrated that the strong perfor-

mance guarantees from CS theory are not applicable for many real CS-MRI problems of

interest, underscoring the need for careful evaluation of CS-inspired MRI approaches on an

application-by-application basis.

• The development and characterization of a novel framework for reconstructing spatiotem-

poral images based on the use of PS-based image modeling. We have placed PS-based spa-

tiotemporal image reconstruction in the context of low-rank matrix recovery, and introduced

and evaluated a new efficient algorithm for solving the resulting optimization problem. The

proposed framework is significantly more flexible than previous PS-based reconstruction ap-

proaches, and was demonstrated to enable high-quality reconstruction from undersampled

data in a number of spatiotemporal MRI contexts.
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The use of novel imaging constraints will likely be essential for enabling the practical im-

plementation of future generations of advanced MR experiments. This dissertation focused on

constraints derived from two sources of prior information:(1) coregistered reference images from

the same imaging subject, and (2) the fact that medical images can frequently be compressed us-

ing sparsity and/or low-dimensionality constraints. However, there are many other sources of prior

information that could also be leveraged to improve MR imaging. Image databases, anatomical at-

lases, and historical medical images of the same patient contain a wealth of information that could

be used to constrain image acquisition and reconstruction.In addition, it would also be possible

to use other forms of context-based prior information to enhance MR imaging of specific body

parts. For example, when reconstructing an MR brain image, it could be possible to leverage prior

statistical information about the sizes, shapes, and spatial/geometrical relationships between dif-

ferent anatomical brain structures. These kinds of constraints are quite commonly used in image

analysis applications [190,583], but have largely not been used to influence the design of imaging

experiments and image reconstruction methods.

Through centuries of careful observation and experimentation, humanity has accumulated a

tremendous amount of knowledge about the characteristics of biological systems. However, to

date, only a small fraction of this knowledge has been used toenhance data acquisition and image

reconstruction in medical imaging applications. It will bea tremendous step forward for medical

imaging when technology reaches the stage where data acquisition, image reconstruction, image

interpretation, and image analysis are more tightly connected to each other, within a single inte-

grated framework that can take advantage of all the prior information that is available.
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“Expectation maximization reconstruction of positron emission tomography images using
anatomical magnetic resonance information,”IEEE Trans. Med. Imag., vol. 16, pp.
129–136, 1997.34, 38, 39

[411] C. Liu, R. Bammer, and M. E. Moseley, “Parallel imaging reconstructions for arbitrary
trajectories usingk-space sparse matrices (kSPA),”Magn. Reson. Med., vol. 58, pp.
1171–1181, 2007.14

[412] J. Liu and J. L. Koenig, “An automatic phase correctionmethod in nuclear magnetic
resonance imaging,”J. Magn. Reson., vol. 86, pp. 593–604, 1990.16

[413] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values
in visual data,” inProc. IEEE Int. Conf. Comput. Vis., 2009, p. 2298.203

[414] Z. Liu and L. Vandenberghe, “Interior-point method for nuclear norm approximation with
application to system identification,”SIAM J. Matrix Anal. Appl., vol. 31, pp. 1235–1256,
2009.169

[415] G. Lohmann, S. Bohn, K. M̈uller, R. Trampel, and R. Turner, “Image restoration and
spatial resolution in 7-Tesla magnetic resonance imaging,” Magn. Reson. Med., vol. 64, pp.
15–22, 2010.16, 36

[416] H. H.-S. Lu, C.-M. Chen, and I.-H. Yang, “Cross-referenceweighted least square estimates
for positron emission tomography,”IEEE Trans. Med. Imag., vol. 17, pp. 1–8, 1998.34

[417] D. G. Luenberger,Optimization by Vector Space Methods. New York: John Wiley &
Sons, 1969.19, 20, 21

236



[418] F. Luisier and T. Blu, “SURE-LET multichannel image denoising: Interscale orthonormal
wavelet thresholding,”IEEE Trans. Image Process., vol. 17, pp. 482–492, 2008.37

[419] R. Lukac, B. Smolka, K. Martin, K. N. Plataniotis, and A. N. Venetsanopoulos, “Vector
filtering for color imaging,”IEEE Signal Process. Mag., vol. 22, pp. 74–86, 2005.37

[420] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed
sensing for rapid MR imaging,”Magn. Reson. Med., vol. 58, pp. 1182–1195, 2007.24, 44,
116, 121, 128, 129, 131, 150, 152, 159, 160

[421] M. Lustig, J. M. Santos, D. L. Donoho, and J. M. Pauly, “k-t SPARSE: High frame rate
dynamic MRI exploiting spatio-temporal sparsity,” inProc. Int. Soc. Magn. Reson. Med.,
2006, p. 2420.116, 152, 159, 160

[422] M. Lysaker, A. Lundervold, and X.-C. Tai, “Noise removal using fourth-order partial
differential equation with applications to medical magnetic resonance images in space and
time,” IEEE Trans. Image Process., vol. 12, pp. 1579–1590, 2003.36

[423] S. Ma, D. Goldfarb, and L. Chen, “Fixed point and Bregman iterative methods for matrix
rank minimization,”Math. Program., Ser. A, 2010,
http://dx.doi.org/10.1007/s10107-009-0306-5. 169

[424] A. Macovski, “Volumetric NMR imaging with time-varying gradients,”Magn. Reson.
Med., vol. 2, pp. 29–40, 1985.19

[425] ——, “Noise in MRI,” Magn. Reson. Med., vol. 36, pp. 494–497, 1996.15

[426] B. Madore, G. H. Glover, and N. J. Pelc, “Unaliasing by Fourier-encoding the overlaps
using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI,”Magn.
Reson. Med., vol. 42, pp. 813–828, 1999.115, 159, 160

[427] A. Majumdar and R. K. Ward, “An algorithm for sparse MRI reconstruction by Schatten
p-norm minimization,”Magn. Reson. Imag., vol. 29, pp. 408–417, 2011.162, 169

[428] M. Makowski, C. Jansen, I. Webb, A. Chiribiri, E. Nagel, R.Botnar, S. Kozerke, and
S. Plein, “First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical
MR scanner,”Magn. Reson. Med., vol. 64, pp. 1592–1598, 2010.159, 160

[429] S. Mallat,A wavelet tour of signal processing: the sparse way. Academic Press, 2008.
116, 122

[430] J. V. Manj́on, J. Carbonell-Caballero, J. J. Lull, G. Garcia-Martı́, L. Mart́ı-Bonmat́ı, and
M. Robles, “MRI denoising using non-local means,”Med. Image Anal., vol. 12, pp.
514–523, 2008.36
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[440] M. Martin-Fernandez, C. Alberola-López, J. Ruiz-Alzola, and C.-F. Westin, “Sequential
anisotropic Wiener filtering applied to 3D MRI data,”Magn. Reson. Imag., vol. 25, pp.
278–292, 2007.36
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