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ABSTRACT

The ability of core networks to manage data transmission of increasing vol-

ume and variation is critical for the success of data-intensive and network-

centric applications as they grow in both scale and complexity. Traditionally,

static optical networks were the dominant transport for medium and long

distance communication. However, these networks can no longer meet the

needs of tomorrow’s applications for higher bandwidth at lower cost. New

dynamic optical networks greatly improve the reconfigurability of optical ter-

minal systems and support unprecedented flexibility for high-traffic resource

sharing.

However, managing dynamic networks poses challenging problems related

to scale and traffic volume. Traditional analytical techniques, which rely

heavily on simplification of network topologies and route choices, are insuf-

ficient to understand the significant performance differences implied by the

subtle path preferences of dynamic routing algorithms.

This dissertation presents an integrated approach to efficient and robust

resource management algorithms for on-demand data traffic on dynamic pho-

tonic switching networks. First, a resource management framework is pro-

posed to consider both resource dimensioning and routing for optical opaque

networks. I develop dimensioning and routing algorithms that are efficient

to implement and robust to evolutions of traffic load, network topology, and

scale. Second, using Poisson traffic assumptions, the thesis develops an op-

portunity cost model for analyzing threshold-based dynamic routing algo-

rithms. The model is scalable and provides better congestion management

than previous work. Third, applying the dimensioning technique developed

in this thesis, I have several important findings on managing dynamically

routed optical translucent networks, optical restorable networks, and mul-

tiple optical network domains. Finally, the thesis solves a combinatorial

optimization provisioning problem for a dynamic wavelength service traffic
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model on an optical translucent network. This work is the first to evaluate

the robustness of optical route rearrangement. New solutions are proposed

to design an optimal dynamic service network with rerouting capability.
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CHAPTER 1

INTRODUCTION

In recent years, optical networks have evolved toward higher bandwidth,

integrated routing planes, and flexible reconfiguration. At the same time,

the request for on-demand and high-bandwidth connection services emerged

from multiple application domains, such as cloud computing, video content

hosting, and enterprise private networks. These applications drive the need

for efficient management techniques for dynamic wavelength routed optical

networks.

This chapter provides background on the technological advances, a sum-

mary of new challenges, and the contributions of this thesis.

1.1 Background

Optical networks have evolved over the years to provide higher data-rate

services in a cost-effective manner [1, 2]. Dense Wavelength Division Multi-

plexing (DWDM), the major technology behind today’s backbone networks,

has improved over the years to support higher data transmission rates per

wavelength, larger numbers of wavelength channels multiplexed on a single

fiber, and longer photonic signal transmission distances. These efforts greatly

reduced the unit bandwidth cost and made high-bandwidth connections more

affordable to a large number of customers.

Higher layer protocols, especially the IP layer, have become more closely

integrated with the photonic layer. Traditionally, there were multiple digital

layers in between for routing and grooming IP traffic on the optical trans-

port. Synchronous Optical Networking (SONET) and Synchronous Digi-

tal Hierarchy (SDH) are typical electronics-optical networks that transport

Asynchronous Transfer Mode (ATM) traffic on optical networks. For a long

time, ATM networks were the primary method of carrying voice data and
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IP traffic. Today, however, the volume of IP traffic has outgrown that of

other traffic by several orders of magnitude due to the growing popularity of

Internet applications. IP is now the primary technology to support with the

photonic layer.

Simplifying network protocol stacks for supporting IP traffic cheaply has

become the technology priority for many network providers. Generalized

Multi-protocol Label Switching (GMPLS) [3] was developed to provide sig-

naling capability to directly reserve wavelength paths on WDM networks or

SONET-like networks. Border Gateway Protocol (BGP) can be built upon

GMPLS-over-WDM to carry regional Internet traffic. Further, a carrier-

grade Ethernet standard is under development so that WDM networks, to-

gether with other transport technologies, can directly transport Ethernet

frames. With integrated control planes, the photonic layer can be more

seamlessly connected to the user layer, and traffic at higher layers can have

a more direct influence on the photonic layer.

Route configuration on photonic networks has become more flexible. In

the past, route provisioning at the optical layer required intensive manual

work; therefore, backbone networks were managed statically and did not

allow frequent connection changes. Today, reconfigurable photonic devices—

such as Reconfigurable Optical Add-Drop Multiplexers (ROADM), Micro-

ElectroMechanical (MEM) photonic cross-connects, and tunable lasers—are

widely used in core photonic networks [4, 5], greatly increasing the dynamic

capability and transparency of the optical network. The GRIPhoN research

testbed being developed at AT&T Labs can configure an optical route auto-

matically in a few minutes and reroute a photonic path using a bridge-and-roll

technique [6].

Recently, practical interest in providing on-demand wavelength connection

services for future IP customers has grown [7, 8]. The emergence of relatively

short-duration applications that require high data rates for video delivery,

health care applications, etc. [9], has increased the dynamic variability of

traffic. However, building and upgrading optical networks in response to

frequent short-term traffic changes (i.e., hours and minutes) is expensive

and impractical. For long-haul optical networks, expensive construction is

needed to lay new fibers. Adding more active wavelength channels includes

hardware upgrade costs for transponders and switches and management costs

for tuning and testing the system. The entire duration may take weeks or
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even months, which makes it difficult to change as frequently as traffic varies.

Therefore, the network provider must have sufficient equipment on hand to

route dynamic traffic.

Although the majority of current long-haul optical networks remain stati-

cally provisioned, general discussions of dynamic WDM channel provisioning

dates back ten years [10]. The study in [11] showed that a dynamic network

(called Intelligent Optical Network (ION) by the authors) could potentially

save up to 80% capacity relative to the current static optical network (re-

ferred to as Optical Transport Network (OTN)) for dynamic demands. The

practical interests of providing on-demand wavelength connection services

for future IP customers have revived research into online, link-state-based

routing and load balancing on optical networks to supplement statically op-

timized paths. Correspondingly, the underlying physical networks should be

provisioned in response to the current and expected growth of dynamic traf-

fic demands while simultaneously allowing robust adaptation to load changes

and different network topologies.

1.2 Network Resource Management

Resource management for dynamic systems addresses three issues: traffic

load characterization, network dimensioning, and online routing. Traffic load

characterization involves finding a model to describe the amount of traffic in

relation to network resources. Network resource dimensioning involves the

distribution of equipment at initial setup or the upgrading of hardware on

rare occasions. Online routing selects and allocates a route when a connection

request arrives. As the frequency of demand variations (which change on

an hourly or minute-based timescale) outpace the hardware upgrade speeds

(which change on a days or weeks timescale) for new installations, it becomes

less likely that a system can stay at the optimal point between equipment

upgrades. Therefore, both the management of long-term load projection

using resource dimensioning and short-term load fluctuation using online

routing must occur. The goal is to improve performance and robustness of

networks under load variations to reduce the need for resource reallocation

and rebalancing.
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Dimensioning for online, state-based routing schemes is challenging. Pre-

vious studies on traditional circuit-switching networks tried to solve routing

and dimensioning problems together by planning an optimal path (or a few

alternative paths) for each demand. Many models were proposed to approx-

imate the steady state blocking probability in such networks [12, 13, 14, 15].

Analytical approaches for fixed-path routing [16] can be useful for traditional

telephony networks where traffic has a strong correlation to geographic fac-

tors; however, these are not appropriate for data networks [17]. New fixed-

point approximation techniques for routing online traffic on optical networks

is difficult to scale to large mesh networks. To reduce the network state, a

preselected path set is still used to approximate state-based online routing,

and some routing preferences are ignored [18, 19, 20]. In fact, these approx-

imations do not sufficiently capture the path selection preferences of online

routing algorithms, which can make a substantial difference in performance

results [20, 21, 22].

1.3 Thesis Contributions

This dissertation develops efficient network resource provisioning solutions

(including resource dimensioning and online routing algorithms) through a

combination of analysis and simulation. I built event-driven network simula-

tors to study the quantitative relationship between network resource dimen-

sioning and online routing. Traffic load characterization, dimensioning, and

routing were considered jointly in order to achieve an optimal solution.

The thesis first presents efficient resource dimensioning algorithms on op-

tically opaque networks for stochastic dynamic traffic. I then propose an

analytical model of the opportunity cost for accepting a connection with

a dynamic routing algorithm. Based on the model, I develop novel rout-

ing algorithms with efficient implementation, and the algorithms are robust

to network variables, such as topology and capacity. The resource dimen-

sioning technique can be applied to translucent networks, restorable opaque

networks, and multiple opaque network domains.

Further, the thesis pioneers the study of resource provisioning problems

for a practical dynamic traffic model with port constraints (called dynamic

wavelength services by AT&T). I develop several heuristic optimizers to find
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an optimal network resource provisioning. On problems of current practical

interest, my methods achieve an average of 8% overhead above lower bounds

of optimal values. I also introduce theoretical analysis of the traffic model

and leverage properties that can significantly reduce optimization time. This

work is the first to evaluate the benefit of using an optical bridge-and-roll

technique (a route changing technique for minimizing signal loss that sets

up the new route before removing the old route) for dynamic wavelength

services. Despite the benefits, the bridge-and-roll operation requires that the

resources for the new route must be available before the old route is torn

down. The analysis shows that optimal provisioning cannot always satisfy

the bridge-and-roll condition with optimized resources. I derive provable

bridge-and-roll safe provisioning technique and measure negligible overhead

for ensuring bridge-and-roll rerouting on real-scale network simulations.

The remaining chapters are organized as follows. Chapter 2 provides back-

ground information on dynamically routed optical opaque and translucent

networks, cost models, Poisson traffic models, dynamic wavelength services

models, typical routing algorithms, network topologies, assumptions, and

simulation methodologies. Chapter 3 introduces load metrics and dimen-

sioning algorithms for Poisson-loaded opaque networks. In Chapter 4, I pro-

pose a novel flow-based online routing algorithm, an opportunity cost model

for optimizing threshold-based congestion control routings, and an oracular

optimal routing. Chapter 5 describes the performance of the dimensioning

algorithms presented in Chapter 3 on translucent networks and evaluates the

resource distribution for four different wavelength operating modes. Chap-

ter 6 presents a redimensioning technique for a single-link failure restorable

network, and Chapter 7 develops dimensioning algorithms for two separately

managed optical networks and discusses fairness issues. I suggest efficient

techniques to tackle a challenging resource optimization problem for dy-

namic wavelength services and analyze the applicability of optical rerouting

techniques Chapter 8. Chapter 9 explores related work, while Chapter 10

concludes the thesis.
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CHAPTER 2

OPTICAL NETWORK MODELS AND

MANAGEMENT

This chapter discusses foundational concepts, including network models, cost

models, traffic models, and route management technologies.

2.1 Translucent Networks

In optical network systems, the term “transparent” refers to photonic cir-

cuit switching without per-packet electronic processing; all optical switch-

ing is also called optical-optical-optical (OOO). The term “opaque” refers

to switching that involves optical electronic conversion and regeneration in

which optical signals are converted, corrected, and retransmitted. Opaque

switching, also called optical-electronic-optical (OEO) switching, was used

at all nodes in early optical networks when all-optical switching devices were

too expensive and the insertion loss was too high, making long photonic

transmission without electronic regeneration impossible. With substantial

improvements in photonic devices, today’s transmission systems extend the

distance and switching hops between a pair of optical transmitters and re-

ceivers.

Given these changes, an emerging model of “translucent” networks has

become popular. In this model, optical signals are circuit-switched photon-

ically at some nodes and electronically regenerated at other nodes, as nec-

essary. Reconfigurable Optical Add-Drop Multiplexer (ROADM) networks

are a type of translucent network widely used in practice. Dense Wave-

length Division Multiplexing (DWDM) technology, harnessing the reconfig-

urable power of tunable lasers and photonic cross-connects, has emerged as

a key component in future dynamic ROADM infrastructures. This section

describes the network and cost model of a fully reconfigurable ROADM net-
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work architecture. A detailed description of the physical characteristics of

the transmission system can be found in [5, 23, 24, 25, 4].

2.1.1 Reconfigurable Optical Add-Drop Multiplexer Networks

In a wavelength division multiplexing system, data packets are modulated

into analog optical signals and multiplexed onto a specific wavelength fre-

quency of a DWDM signal. The signal is transmitted through a long-reach

fiber system that connects remote switching nodes. DWDM technology re-

markably improves the efficiency of optical systems by enabling a fiber link to

carry 40 to 80 different wavelength channels at the same time. An optically

reconfigurable network consists of ROADM as nodes and DWDM fibers as

links. A typical backbone ROADM network is a mesh topology that inter-

connects nodes at city’s level. Each city may have one (or more, depending

on the city population) switching node at the carrier’s central office. Each

fiber link transmits high-power optical signals for hundreds of miles without

electronic signal regeneration.

Figure 2.1 shows the architecture of a ROADM node on the GRIPhoN

testbed that is being developed at the AT&T Labs Research. All optical links

are bidirectional such that each port of the shown devices connects to a pair

of fibers, one for each direction. The ROADM node is fully reconfigurable:

any wavelength from one DWDM input can be switched to other available

DWDM ports or add/drop ports. The ROADM has colorless and steerable

add/drop ports, enabling OTs and REGENs to connect to any available

add/drop ROADM port and any available wavelength color.

GRIPhoN ROADM nodes achieve reconfigurability using Wavelength Se-

lective Switches (WSS). A WSS can deflect a wavelength channel from one

port to the other. Some devices use an array of electronically configurable

MicroElectroMechanical (MEM) mirrors as switching components. Newer

devices use Liquid Crystal (LC)-based channel blockers that can be con-

trolled to select pass-through wavelength channels. The wavelength channels

that need to drop locally are demultiplexed into individual wavelength sig-

nals that are carried by one fiber per wavelength channel. Typically, these

are low-power optical connections that transmit short-reach signals within

tens of meters.
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Figure 2.1: A ROADM node architecture.

An optical transponder (OT) has a local interface that connects to the

optical ports of access routers and a line-side interface (high-power laser

port) that connects the ROADM network. A local signal is electronically

transcoded at an OT and sent through its laser for long distance transmis-

sion. Today’s OTs are wavelength tunable, i.e., an OT can receive from any

wavelength channel of the demultiplexed DWDM signal and send to another

wavelength channel. A 3R regenerator (REGEN) receives the data from a

wavelength channel and resends the same data to another wavelength. Physi-

cally, a 3R REGEN is equivalent to a pair of optical OTs whose customer-side

ports are short-connected. However, a REGEN lacks customer-side ports, so

it cannot be used as an OT.

Traditionally, ROADM nodes are non-steerable or partially steerable be-

cause OT/REGENs can connect to only one wavelength channel of one

add/drop ports. GRIPhoN ROADM nodes achieve full steerability by us-

ing an optical cross-connect. Therefore, the OTs and REGENs can con-

nect to any of the wavelength channels of the D/MUX add/drop ports of

any direction. This design provides the opportunity to share OT/REGENs

throughout the entire node.

The access network interfaces the ROADM network to high layer protocols,

such as SONET/SDH, ATM, IP or carrier-grade Ethernet. In practice, the

access network consists of routers co-located with the ROADM node. The

routers connect fiber ports that transmit one single-wavelength optical signal
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per fiber for tens of meters. The access network provides an electronic layer

built on top of the photonic layer.

2.1.2 Route Provisioning

A wavelength connection is set up between a pair of OTs installed at source

and destination ROADM nodes. The route must be a simple path; no node

is visited twice. Figure 2.2 shows an example route. Intermediate ROADM

nodes, which route the connection through optical bypass cross-connects,

are called “bypass” nodes. If the connection distance exceeds the maximal

optical reachability for the network system, some intermediate nodes serve

as “regen” nodes and cross-connect the connection through a 3R REGEN. In

order to regenerate a signal, the connection is received by a REGEN through

a drop port and resent by the same REGEN through an add port. The

route segment between a pair of OTs or REGENs is called an “optically

transparent segment.” Except for the end nodes, all intermediate nodes in

an optically transparent segment are bypass nodes. Therefore, wavelength

continuity is enforced within a segment. The wavelength can change from

segment to segment using the REGEN.

ROADM networks are managed centrally and completely circuit switched.

ROADMs, optical cross-connects, OTs (both line-side and customer-side),

and REGENs are all remotely configurable. On the GRIPhoN testbed, wave-

length connections can be set up and torn down in a few minutes, which

makes it possible to provide a dynamic wavelength service. If a customer

owns a few OTs at different ROADM nodes, the network allows the cus-

tomer to reconfigure the optical network topology freely by creating and

removing connections on the reconfigurable ROADM network.

2.1.3 Reachability and Virtual Link Graph

Optical reachability is the maximum distance of an optically transparent

segment allowed for a system. For 10Gbps or 40Gbps systems, reachability

is typically 1500 km (932 mi). A virtual-link graph simplifies the routing of

optically transparent segments with reachability constraints. The original

virtual-link idea was explained as express links in [26]. To create a virtual
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Figure 2.2: Bidirectional wavelength connection. The connection includes
two optically transparent segments. The first segment routes on a red
wavelength. The second segment routes on a blue wavelength.
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(a)
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200mi 300mi600mi

900mi800mi

Figure 2.3: (a) Physical graph with link marked with fiber distance (in
miles). (b) The corresponding virtual-link graph for a 40Gbps system
(reachability of 932 mi). Virtual links are also marked with fiber distance.
(c) Example customer route on the virtual-link graph. The route passes
two transparent segments. The dashed wavelength is marked for use by all
links in the graph. A REGEN at the solid node connects two segments.
The cost of the path is 150 + 1100 70

1000
= 227.

link graph, a virtual link is created for every reachable optical transparent

segment (including each individual physical link). All virtual links that pass

the same physical link share the wavelength resources of the physical link. A

route can be created on the virtual-link graph. The physical route that maps

to the virtual-link route must be a simple path. A REGEN must be used at

each node that connects two virtual links. Figure 2.3 shows an example.

2.1.4 Photonic Bridge-and-Roll Rerouting

Optical bridge-and-roll (B&R) rerouting is supported by the GRIPhoN testbed.

Figure 2.4 illustrates the B&R process. A new route is set up between two

OTs for a customer while the old route is still connected. A 50/50 op-
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(3) The customer rolls the receivers to the new route.

(4) The old route is removed. Two OTs are freed. 

(2) A new ROADM route is configured between a pair of spare OTs. The customer bridges on two routes.

(1)The customer’s OTs are connected through a ROADM route.

Figure 2.4: Illustration of optical B&R operation steps. A 50/50 optical
passive splitter (SP) is preinstalled at the customer’s transmission side.

tical passive splitter is preinstalled at the customer’s transmission port. The

customer then has the opportunity to “bridge” two OT routes at any time

without interrupting the transmission. Once the customer bridges the old

and new routes, the receivers are quickly “rolled” to the OTs of the new

route. Finally, the old route is taken down. In order for B&R to work, there

must be one spare OT available at each node, and the new route must be

resource disjoint from the old route. The GRIPhoN testbed demonstrated

that the Ethernet packet loss period is about 8 milliseconds in a photonic

layer B&R experiment [6].

2.1.5 Cost Model

The capital expense of a ROADM network consists of the cost of OTs,

REGENs, ROADM ports, and DWDM fibers. Since the cost of tunable

OTs/REGENs is relatively high and increases linearly with the load of net-

work connections, they are counted as a per-equipment cost. The rest of the

equipment, shared by all wavelengths, has to be preinstalled. Therefore, it

is modeled as a common cost and prorated in wavelength-miles. The current
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normalized cost (based on vendor’s price) for 40Gbps systems is 100 for an

OT, 150 for a REGEN, and 0.07 per wavelength per mile. The cost of the

sample route in Figure 2.3(c) is 227. The REGEN cost is nearly double the

common cost for this route.

2.2 Opaque Networks

Typically, IP networks can be built directly upon WDM networks. Any link

between two IP routers is, in fact, one or more wavelength routes that may

have multiple OOO or OEO hops, where no electronic processing occur at the

IP layer. IP-WDM network architectures have become increasingly popular

as IP traffic (VPN channels) has dominated the usage of backbone networks.

The traditional opaque network model can apply to these VPN networks,

as optical signals in fact are electronically processed and circuit switched at

every VPN node. Wavelength continuity does not impose on the network as

a routing constraint.

2.2.1 Generalized Multi-Protocol Label Switching (GMPLS)

A GMPLS network [3] is an opaque network. GMPLS builds an electronic

network interface on the lower optical network of the IP layer. Each link

on the GMPLS network is an optical lightpath that consists of one or more

hops. Its control platform extends traditional MPLS [27] to support rout-

ing through various physical infrastructures, including synchronous optical

networks (SONET/SDH) and photonic networks (DWDM), aiming at in-

tegrating multiple network carriers into a single control structure. As an

extension of MPLS, GMPLS also provides signaling for explicit routing for

connection-oriented optical networks. The resource reservation protocol -

traffic engineering (RSVP-TE) [28] protocol provides resource reservation

or non-reservation routing through label switched routers (LSRs), including

establishing label switched paths (LSPs), preemption, and loop detection

functions. According to [7], GMPLS networks employ dynamic routing and

signaling mechanisms so that LSPs can be established and terminated on

demand, providing a platform necessary for dynamic routing.
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Figure 2.5: A label switching node structure.

Figures 2.5 depicts the node architecture of a GMPLS network. The label

switching router (LSR) has optical-electronic interfaces to the underlying op-

tical networks, such as DWDM or SONET. Local access (often implemented

as a label edge router (LER)) is an interface to an IP network. LER generates

end-to-end routing requests, and LSR forwards traffic. Practically, LER and

LSR together can be conceptualized as an electronic switch that integrates

multiple network layers and provides routing functionality at the IP layer.

However, in some networks, some nodes have either LER or LSR. The nodes

without an LER do not generate new traffic. Currently, the industry is also

developing standards for carrier-grade Ethernet that allow the optical layer

to carry native Ethernet frames. For a GMPLS on a ROADM design, the

label switching module accesses the ROADM network through OTs. The

label switch processes at the packet level and forwards packets according to

the labels. This thesis considers only the type of networks that switch at the

data rate of one wavelength channel. It does not discuss electronic traffic

grooming or sub-wavelength routing.

2.2.2 Cost Model

This thesis uses a per-wavelength cost model for opaque networks. One unit

cost is assigned to each wavelength channel provisioned between any pair of

nodes. For wavelength routing, the cost of a route simply counts the number

of hops. Such simplification is reasonable because the per-wavelength pho-
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tonic equipment comprises the majority of the network cost. The percentage

continues to grow as the data rate increases. A projection of the capital

expense of future 40 Gbps network systems showed that 91% of the cost is

at the terminal devices (switching ports, routers, transponders, regenerator

cards) [24]. Amongst terminal devices, electronic routing/grooming takes

40%. If we subtract the electronic part, OT and REGEN constitute 83% of

the photonic cost.

2.2.3 Online Routing Algorithms

The dynamic routing problem has been extensively studied for circuit-switched

ATM networks. Dynamic routing in a mesh network involves selecting an

available path on the arrival of an end-to-end connection request, based on

the current network capacity. A connection request is initiated by a source-

destination node pair. Without loss of generality, we consider only bidirec-

tional connections. For abbreviation, “node pair” or “request pair” refers to

a pair of nodes that initiates a connection request.

Adaptive shortest path first (ASPF) routing is a simple solution that se-

lects an available path with the fewest hops. The connection request is

dropped if no SPF paths can be found. Many other heuristic solutions have

been proposed to improve connection acceptance rates using an estimate of

the traffic load. This section introduces a few such online routing algorithms

(Algorithm 2.1).

Some algorithms select routes exclusively from the available shortest paths

on the residual graph. Widest shortest path first (WSP) routing picks the

path of the largest residual capacity at the bottleneck link. The WSP+1,

a one-hop relaxed WSP variant, chooses the widest path among all paths

within shortest hops plus one. Further ties are broken arbitrarily since the

choice would have little impact on the capacity distribution of future residual

networks.

Some algorithms select routes from available paths of any length. The

SWP algorithm chooses the shortest hop path from all paths with the widest

residual bottleneck capacity. Least resistant weighted (LRW) routing [29]

chooses the minimum cost path as defined by the sum of the ratios of to-

tal capacity to available capacity on each link. Minimal interference routing
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Algorithm 2.1: Routing algorithms

1 begin WSP
2 foreach p ∈ SPFs,d(C) do
3 γp ← mine∈p Ce;
4 Pick the widest path← argmaxp γp;

5 begin SWP
6 foreach p ∈ Ps,d(C) do
7 γp ← mine∈p Ce;
8 Widest path set Q ∪ arg maxp γp;
9 Pick the shortest path← argminp∈Q |p|;

10 begin LRW
11 foreach p ∈ Ps,d(C) do

12 γp ←
∑

e∈p
(Be+Xe)

Ce
;

13 path← arg minp γp;

14 begin MIR
15 foreach r ∈ R do
16 Compute min-cut link set MCr(C);
17 foreach p ∈ Ps,d(C) do
18 γp ←

∑
e∈p

∑
r 6=(s,d):e∈MCr(C)

λ
µ
;

19 path← arg minp γp;

20 begin SDR
21 foreach p ∈ Ps,d(C) do

22 γp ←
∑

e∈p
ErB(Ce,le)
ErB(Ue,le) ;

23 q ← argminp γp;
24 if γq > η then
25 Reject the connection;
26 else
27 Accept the connection on route q;

28 begin COL
29 foreach p ∈ Ps,d(C) do

30 γp ←
∑

e∈p υ− Ve
Ce ;

31 q ← argminp γp;
32 if γq > η then
33 Reject the connection;
34 else
35 Accept the connection on route q;
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(MIR) [30] uses the flow of information to compute network weights for rout-

ing. The computation of complete MIR routes is NP-hard. Therefore, an

online version of MIR was proposed to approximate the optimal solution

while reducing computation complexity. MIR first computes the min-cut

link set for the flows of all other node pairs excluding the current one. Then,

MIR computes the link cost by summing the min-cuts that involve this link

of all other pairs. The link cost is further weighted by the predetermined

“importance” of a pair. I use the expected Poisson load for the parameter.

Finally, MIR chooses the path with the minimum total weight. The compu-

tational time for each request is three orders of magnitude higher than for

non-flow-based algorithms.

There are also threshold-based routing algorithms. State-dependent rout-

ing (SDR) [31] attempted to compute the best route using a Markov decision

process. As the model quickly becomes intractable, a link cost model is

proposed to approximate the analytical solution. The cost of each link is

computed by ErB(Ce,le)
ErB(Ue,le)

, where ErB(Ce, le) is the Erlang-B blocking formula,

and le is the link load estimation. Link load is estimated using a SDRAdapt

algorithm [32]. Basically, SDRAdapt periodically measures residual capacity

on each link and updates estimated link load in a sliding window fashion.

SDRAdapt requires the selection of two parameters: a scan interval δ and

a sample number ∆; the authors picked δ = 0.5 and ∆ = 30. However,

the result is sensitive to these parameters, and better results were obtained

using δ = 0.05 and ∆ = 50 (Chapter 4). The difference is due to the lack of

normalization of timescales between papers.

Gawlick et al. [33] proposed a throughput-competitive online routing and

admission control algorithm (COL). The original version of the algorithm re-

quired knowledge of the actual holding time of each connection. The authors

therefore proposed a practical version in which each link cost is computed

by υ−
Ve
Ce . However, the determination of υ is nontrivial, and the result is

sensitive to υ [32]. The authors did not provide any effective way to choose

υ.
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2.3 Typical Network Topologies

As carrier-grade networks often contain proprietary information and are kept

away from public access, this thesis uses open topologies (mostly from re-

search projects) that provide characteristics similar to practical backbone

networks. Figure 2.6 shows the backbone topologies for simulating the per-

formance of optical opaque network models. NJ LATA provides a good case

study for performance evaluation on small networks. The other networks

all serve regional telecommunication needs. COST 239 interconnects major

cities in Europe. NSFNET was built to connect academic supercomputing

centers across the U.S for research purposes.

Figures 2.8 and 2.7 show the topology of U.S. CORONET, chosen as the

backbone topology for simulating translucent networks. CORONET was

created by a Telcordia-AT&T team to mimic a typical large international

core network [34]. We use the U.S. contiguous part of CORONET, which

consists of 75 nodes and 99 links. Table 2.1 shows the mapping of CORONET

nodes to U.S. cities. This thesis targets a 40Gbps ROADM system that has

the maximal optical reach of 932 miles. I proportionally scaled down the

link distance by 75% of the original CORONET to fit the single hop reach of

today’s 40Gbps system. Table 2.2 lists the new link distances in miles that

are used in this thesis.

2.4 Traffic Models

2.4.1 Poisson Traffic

This thesis uses the Poisson model to generate connection request arrivals,

but my algorithms do not depend upon this choice. Rather, the Poisson

model is chosen because the burstiness of traffic on backbone networks is usu-

ally suppressed by huge amounts of aggregation of higher layer services [35].

The real traffic distribution remains unknown as few practical dynamic op-

tical backbones exist today, and traffic statistics from carriers are often pro-

prietary information.

Unless otherwise specified, all node pairs in a network generate traffic

arrivals. Each node pair initiates a connection arrival following a Poisson
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Figure 2.6: Optical opaque network topologies with link and node numbers.

18



Figure 2.7: U.S. CORONET on the U.S. map.
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Table 2.1: U.S. CORONET node-to-city map.
# city # city # city

0 Abilene 25 Houston 50 Providence
1 Albany 26 Jacksonville 51 Raleigh
2 Albuquerque 27 Kansas City 52 Richmond
3 Atlanta 28 Las Vegas 53 Rochester
4 Austin 29 Little Rock 54 Sacramento
5 Baltimore 30 Long Island 55 Salt Lake City
6 Baton Rouge 31 Los Angeles 56 San Antonio
7 Billings 32 Louisville 57 San Diego
8 Birmingham 33 Memphis 58 San Francisco
9 Bismarck 34 Miami 59 San Jose
10 Boston 35 Milwaukee 60 Santa Barbara
11 Buffalo 36 Minneapolis 61 Scranton
12 Charleston 37 Nashville 62 Seattle
13 Charlotte 38 New Orleans 63 Spokane
14 Chicago 39 New York 64 Springfield
15 Cincinnati 40 Newark 65 St Louis
16 Cleveland 41 Norfolk 66 Syracuse
17 Columbus 42 Oakland 67 Tallahassee
18 Dallas 43 Oklahoma City 68 Tampa
19 Denver 44 Omaha 69 Toledo
20 Detroit 45 Orlando 70 Tucson
21 El Paso 46 Philadelphia 71 Tulsa
22 Fresno 47 Phoenix 72 Washington DC
23 Greensboro 48 Pittsburgh 73 West Palm Beach
24 Hartford 49 Portland 74 Wilmington

Table 2.2: U.S. CORONET link distance.
# mile # mile # mile # mile

0 252.7 25 252.3 50 517.8 75 153.1
1 570.9 26 95.0 51 98.3 76 102.1
2 207.8 27 284.5 52 238.4 77 224.0
3 175.7 28 322.6 53 139.7 78 287.8
4 850.1 29 119.9 54 94.2 79 99.5
5 485.8 30 344.4 55 184.9 80 851.8
6 327.7 31 124.0 56 235.5 81 19.3
7 707.7 32 268.2 57 353.2 82 145.0
8 199.7 33 144.9 58 313.8 83 206.8
9 329.4 34 133.1 59 371.9 84 145.1
10 415.6 35 582.8 60 525.0 85 431.0
11 211.5 36 179.2 61 196.0 86 166.8
12 107.7 37 143.4 62 22.0 87 355.2
13 134.4 38 221.0 63 167.9 88 703.3
14 288.6 39 324.6 64 113.0 89 915.9
15 50.4 40 415.5 65 221.3 90 209.3
16 375.1 41 275.2 66 355.3 91 142.6
17 110.5 42 690.3 67 283.4 92 109.0
18 546.8 43 548.5 68 297.8 93 57.9
19 660.0 44 80.4 69 97.4 94 335.2
20 636.6 45 723.3 70 426.3 95 167.8
21 264.3 46 379.3 71 421.0 96 333.2
22 436.9 47 372.2 72 490.0 97 108.0
23 554.2 48 290.0 73 18.2 98 295.6
24 59.9 49 217.5 74 149.7
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distribution. The thesis does not differentiate connection requests of opposite

directions. One arrival rate characterizes the load of each node pair. Existing

connections depart in an exponential distribution.

2.4.2 Dynamic Wavelength Service

AT&T’s dynamic wavelength service model allows customers to create or

remove a wavelength connection on-demand on a dynamic ROADM network.

Customers own or lease a set of OT ports to access the network. They can

choose to connect between their free OTs at different nodes in arbitrary ways.

Every connection occupies one of the customer’s OTs at each end of the

connection until the connection is released. The routes are preprovisioned at

the design phase to guarantee 100% acceptance of valid connection requests.

Network resources, such as REGENs and wavelengths, must be preinstalled

so the customers can reconfigure their connections at any time and within

a few minutes. A network can have many customers. But one customer is

not allowed to connect to another customer’s OT ports. The demands of

each customer are independent. No sharing of network resources between

customers is considered.

2.5 Simulation Assumptions

This thesis assumes that the topology of the backbone network is given. In

particular, we evaluate simulation results on a few existing backbone topolo-

gies. Often, backbone networks are built along railways. The location of

cities, costs of construction, and rights-of-way are all important factors in

determining where to place fibers. The problem of network topology design

is beyond the scope of this thesis.

The network is managed centrally. The route configuration time is shorter

than the expected inter-arrival time. Each connection arrival/departure can

be processed before the next arrival request. Bidirectional wavelength routes

are automatically set up and taken down for each request. Each wavelength

route occupies one wavelength channel on each link of both directions along

the path until the connection terminates. Based on the routing policy and

the current availability of wavelengths, the network either accepts or rejects
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Figure 2.9: Steady state performance on NJ LATA.

a connection request. No queuing/preemption/rerouting is assumed. We

use the same route for connection requests from opposite directions. We

assume that the traffic load changes slowly relative to connection arrivals and

departures. Specifically, request arrival rates and hold times for connections

allow sufficient time for signaling such that all new connections are routed

based on up-to-date information about residual capacity for all links in the

network. The dynamic network system can come sufficiently close to a steady

state.

This thesis studies the performance of networks under traffic evolutions.

To model various traffic demands, I introduce a traffic matrix space that

includes all possible traffic matrices. The traffic matrix space is defined by

an average arrival rate and a departure rate for each end-to-end pair. One

traffic matrix in the space is generated by randomly selecting an arrival rate

for each pair. The selection of an arrival rate follows uniform distribution,

normal distribution, or bimodal distribution of the same mean and devia-

tion. One departure rate is used for all connections. Connection arrivals and

departures are modeled by Poisson processes. The arrival process follows

the arrival rate of each pair from the traffic matrix. The departure process

of any connection follows the departure rate. Each connection requests one

wavelength capacity.

The blocking probability is sampled by averaging 5000 arrivals at steady

state behavior. The simulation is repeatedly run until the 95% confidence

interval is within ±5% of the value or the blocking probability is lower than

0.0001. Figure 2.9 illustrates the steady state of a dynamic network. For all
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the test networks given our traffic load and all the algorithms considered, the

system reaches a steady state after 20,000 requests.
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CHAPTER 3

DIMENSIONING OPAQUE NETWORKS

FOR EVOLVING TRAFFIC

New Internet applications are increasingly generating high-bandwidth, short-

lived demands. If network resources are available, establishing a lightpath on-

demand takes only a few minutes on today’s reconfigurable optical networks.

These demands thus create a more variable and unpredictable environment

for long-term network planning. At the same time, upgrading backbone net-

works is expensive and therefore occurs infrequently. Dimensioning network

resources to sustain variable traffic demands for the long term requires fewer

upgrades to achieve high performance but poses complex challenges.

Two kinds of dimensioning problems for optical opaque networks are pro-

posed and studied in this chapter: (1) basic dimensioning, which allocates

network resources for a newly built network; and (2) incremental dimension-

ing, which allocates extra resources for future demand growth and variations.

I propose new metrics to quantify the traffic load and the traffic pattern evo-

lution for dynamically routed networks. I evaluate performance under load

scaling, traffic evolution, and misdimensioning; a dimensioned network can

sustain a much higher load while providing the same performance compared

to misdimensioned ones. My approach is better adapted to traffic evolution

than either a uniform allocation or the asymptotic optimization approach

proposed earlier.

3.1 Load Definition

This section introduces network load metrics. Many previous studies still use

the traditional Erlang unit to model traffic volume. An Erlang represents the

use of a single voice channel; in practice, it has typically been measured by

averaging the (instantaneous) number of active channels over the span of an

hour. The Erlang unit can describe the average traffic volume on one link.
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However, on a dynamic mesh network, the number of calls does not clearly

connect to network resources. We can linearly approximate the resources

used per call using an average, but the scaling factor must be calculated for

a specific topology and a specific traffic pattern on that topology. The Erlang

definition is too simplistic to represent network loads adequately.

I propose a new load metric. I model the average network resources used

by the expected traffic by the sum of Poisson load weighted by the topo-

logical shortest path length for each request pair. Poisson dynamic traffic is

assumed (see Section 2.4.1). Let N be the set of nodes and R be the set of all

end-to-end request node pairs. Each pair i ∈ R in the network is character-

ized by the mean arrival rate λi, departure rate µi, and capacity demand 1.

Let E be the set of links. Each link e ∈ E is dimensioned with total capacity

Be + Xe, where Be is the capacity to support expected traffic, and Xe is

the incremental capacity to support future traffic variations. The Xe portion

can be deployed at a later time than the Be portion. Once both portions

are installed, they are treated the same in the total volume Be + Xe. For a

dimensioned network to support the expected traffic, the total basic capacity

should equal the expected traffic volume, as shown in Equation (3.1).

∑

e∈E

Be =
∑

i∈R

λi

µi
TSLi (3.1)

where TSLi is the topological shortest path length for request pair i ∈ R.

The extra capacity, X =
∑

e∈E Xe, is dimensioned for future traffic scal-

ing and variations. Therefore, the projected traffic load ratio, u, is defined

by Equation (3.2).

u =

∑
e∈E Be∑

e∈E(Be + Xe)
(3.2)

At routing time, the actual load ratio l can be greater or smaller than the

projected load ratio.

3.2 Dimensioning Procedure

The dimensioning algorithm appears in Algorithm 3.1. Basic dimension-

ing (Lines 1-12) computes basic capacity B, and incremental dimensioning

(Lines 13-20) computes extra capacity X according to the type of incremen-
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Figure 3.1: Traffic space and evolution model for two node pairs. The
arrival rates are noted by λ1 and λ2.

tal dimensioning algorithm ξ ∈ {MEAN, SD} used. If the projected load

ratio is u = 1, X = 0, no incremental dimensioning is needed. In general,

the simulation-based basic dimensioning algorithm can handle any traffic

distribution with a given mean for arrival rate, departure rate, and capac-

ity demand. Algorithm 3.2 shows a simpler analytical version for Poisson

traffic that can generate equivalent results. However, the simulation version

can be easily extended to handle more complicated cases. For example, if

a link/node is physically bounded by a maximum capacity, the routes can

avoid these links when they are full.

In our model, the load characteristics of each request pair (λi, µi) are ran-

domly drawn from a traffic space. The traffic space is characterized by an

arrival rate, a departure rate, and a distribution that defines the probability

of possible arrival rates. Let λ be the mean arrival rate and µ be the mean

departure rate. Any traffic matrix is a point inside the whole space of all

possible traffic matrices that can be generated from the distribution. Since

the departure rates are assumed the same, the arrival rates are the varying

values. Let T = {λi, µi}|R| denote a random projected traffic matrix that is

drawn from the space. Figure 3.1 illustrates a traffic space model for two

node pairs. Assume that the arrival rate follows a bounded uniform distri-

bution of mean λ. The space is a square. Over time, the real traffic load can

vary in both scale and pattern, which is characterized as traffic evolution in

Section 3.3.
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The average traffic load is defined in Equation 3.3 such that all arrival

rates equal the mean arrival rate λ.

loadavg =
λ

µ

∑

j∈R

TSLj (3.3)

The load of a random traffic matrix can be either lower or higher than the

average traffic load. In practice, estimation of projected traffic matrices is

susceptible to measurement errors or obsolete data. In order for the dimen-

sioning algorithm to be robust to traffic load changes, the arrival rates of a

projected traffic matrix are adjusted proportionally so the new load equals

the average load. Equation (3.4) shows the normalization. Given a traffic

matrix, each arrival rate is scaled by a constant.

λn
i = λi

loadavg∑
j∈R

λj

µj
TSLj

(3.4)

The goal of incremental dimensioning is to allocate extra capacity, perhaps

at a later time, to adapt to traffic evolution. The method should increase

capacity allocation without interfering with established connections (and re-

sources).

Two incremental dimensioning schemes (MEAN and SD) are proposed.

The MEAN scheme increases each link’s capacity by an amount proportional

to that capacity. MEAN over-dimensioning occurs implicitly when the offered

traffic load ratio is smaller than the projected load ratio. The result is equiv-

alent to explicit MEAN over-dimensioning in that the amount (1− l)
∑

e Be

is the part of the extra capacity that is incrementally dimensioned using the

MEAN algorithm.

The other scaling approach, SD, increases each link’s capacity propor-

tionally to the statistical standard deviation of the basic dimensioned link

capacity. The idea behind SD is that links with larger deviations tend to

block more frequently due to traffic variations. It is thus more effective to

allocate extra capacity to these links rather than to those with smaller traffic

fluctuations.

ADJUST (x) is a procedure that adjusts the simulated capacity of each

link into an integer (if it were not already) and makes the summed capacity

of all links to the expected traffic load. The result B should satisfy Equa-
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Algorithm 3.1: Dimensioning procedures (B, X) = BAL(T, u, ξ).

1 begin Basic dimensioning
Input: T

2 Get normalized traffic matrix T n (using Equation (3.4));
3 while System has not reached steady state do
4 Draw a random event according to the traffic matrix T n;
5 if An arrival event of connection request j then
6 Uniformly select a topological shortest path (SPF) p;
7 forall the Link e ∈ p do
8 Ce ← Ce + 1;

9 else
/* An departure event of connection request j */

10 forall the Link e ∈ p where p is the route of j do
11 Ce ← Ce − 1;

12 B ← ADJUST (C) ; /* Do it only once after incremental

dimensioning if incremental dimensioning is done immediately

after basic dimensioning */

13 begin Incremental dimensioning
Input: B, u, ξ

14 Compute extra capacity X = 1−u
u

∑
e∈E Be;

15 Compute statistic deviation σe =
√

Be;
16 if ξ = MEAN then

17 Get extra link capacity Xe = X Be
P

e∈E
Be

;

18 else if ξ = SD then
19 Get extra link capacity Xe = X σe

P

e∈E σe
;

20 X ← ADJUST (X);

tion (3.1), and X should satisfy Equation (3.2), where the traffic rates are

normalized. Since the load of traffic T n has been normalized, the computed

sum of Bes at steady state is the same as the expected load λ
µ

∑
i∈R TSLi.

The algorithm is presented in Procedure ADJUST(). I first round down the

real numbers, and then adjust from the difference to the expected value com-

puted by the equations. The total capacity difference is less than 0.2% of the

expected load volume.

Algorithm 3.2: Basic dimensioning with Poisson-independent traffic
matrix T{λi, µi}.
1 ∀e ∈ E, Ce ← 0;
2 foreach request pair r ∈ R do
3 foreach topological shortest path p ∈ TSPi do
4 foreach link e ∈ p do

5 Ce ← Ce + λi

µi|TSPi|
;

6 B ← ADJUST (C);
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Algorithm 3.3: Adjusted the simulated capacity ADJUST()
Input: Per link capacity B
Input: Total capacity t
Output: Per link capacity B

1 ∀e ∈ E, Ce ← ⌊Be⌋;
2 Sort Ce ascendantly by Be − Ce and let c(0 . . . |E| − 1) be the sorted array;
3 Computer the difference d← t−∑e∈E Ce;
4 if d > 0 then
5 i← |E| − 1;
6 else
7 i← 0;
8 while d 6= 0 do
9 if d > 0 then

10 c(i mod |E|)← c(i mod |E|) + 1;
11 d← d− 1;
12 i← i− 1;

13 else
14 c(i mod |E|)← c(i mod |E|)− 1;
15 d← d + 1;
16 i← i + 1;

17 Copy c() into B;

3.3 Traffic Evolution Model

The future offered traffic T ′ may vary from the normalized projected traffic

matrix T n in two ways: load scaling and pattern change. Figure 3.1 shows

load scaling and pattern changes. Load scaling means that the actual traffic

matrix is identical to the projected traffic matrix after normalization. If it

is not, the situation is referred to as a pattern change. Traffic evolution is a

combination of pure load scaling and pattern change. Assume that the new

traffic matrix (matrices) T ′ is drawn from the same distribution. Let λ′i, µ
′
i

be the new load characteristic for a pair i in T ′. The offered load ratio li

per pair is the ratio of the actual load to the normalized projected load, as

shown in Equation (3.5).

li =
λ′i
µ′i

µn
i

λn
i

(3.5)

Pure load scaling happens when the loads of all connection pairs from the

projected traffic matrix increase/decrease in the same ratio (li = l for all i).

However, if li varies with i, the variation indicates a change in traffic pattern.

The level of change in the traffic pattern can be modeled as linear evolution

of the original traffic (Equation (3.6)). I define ǫ as the traffic variance factor

that measures the degree of evolution in a transition from the original traffic
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T n to a new traffic T ′. The actual matrix Tǫ is computed by Equation (3.6)

using the matrix sum. Traffic evolution indicates a change of traffic load in

most cases.

Tǫ = (1− ǫ)T n + ǫT ′ (3.6)

3.4 Performance Study

This section quantitatively measures the benefits of basic dimensioning and

incremental dimensioning techniques for actual, random, and expected traffic

patterns in the traffic evolution model.

3.4.1 Simulation Setup

The simulator was built according to the network model described in Sec-

tion 2.5. In my simulation, the arrival rate of each connection ranges from

1 to 10. By default, the selection distribution is uniform. Each connection

requests one wavelength channel and has the same departure rate. The de-

parture rate is determined by the network load, which is the product of the

projected departure rate and the load ratio. The setup is statistically equiv-

alent to the general traffic model with variable departure rate and capacity

demands. I use three well-known networks for the experiments: NJ LATA,

COST 239, and ARPANET (Figure 2.6). The total capacity stays the same

for each network in all experiments, with an average of 120 wavelengths per

link. Network performance does vary with changes in the average link capac-

ity. The current setting provides a interesting range of operating load with

reasonable simulation effort.

The dimensioning process BAL(T, u, ξ) is defined by Algorithm 3.1.

RUN(T, B, X, β, l) is defined as a simulated routing process with a choice

of an online routing algorithm β ∈ {SPF, WSP, LRW, CAR}, given traffic

matrix T and capacity resource (B, X). SPF, WSP, and LRW are introduced

in Chapter 2. An optimized dynamic routing algorithm, congestion aware

routing (CAR) (which is introduced in Chapter 4), is also applied here. The

blocking probability is sampled by averaging 5000 arrivals in steady state.

For all test networks given the traffic load, the system reaches steady state

after 20,000 requests.
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Figure 3.2: Comparing projected load scaling (var u with l = u, ǫ = 0) and
offered load scaling (var l with u = 0.85, ǫ = 0) using Algorithm 3.4 and
SPF routing.

3.4.2 Traffic Load Scaling

I first study performance when complete traffic pattern information is known

at the dimensioning stage. The normalized future traffic matrix is the same

as the projected traffic matrix. There are two kinds of load scaling scenarios,

projected load scaling and offered load scaling (Algorithm 3.4). In projected

load scaling, the ratio of incremental dimensioning u varies with the projected

load ratio, as specified by Equation (3.2). The offered load l is the same as the

projected load u. As u increases, the portion of overdimensioned capacity

on each link decreases proportionally. In offered load scaling, the network

is assumed to be dimensioned at a fixed projected load ratio (u = 0.85,

and l varies from 0.75 to 0.9). However, the real traffic offered scales over

the projected traffic with the same ratio defined by Equation (3.5). The

results of both experiments are averaged across m = 100 random projected

traffic matrices. For both load scaling cases, MEAN results are identical

because offered load scaling is the same as implicit MEAN over-dimensioning.

Figure 3.2 shows that the SD approach improves relative to MEAN on both

ARPANET and COST. The performance results of projected load scaling

and offered load scaling are the same in the studied load range.
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Algorithm 3.4: Test procedure for load scaling with variable projected
load ratios (l = u, ǫ = 0), variable offered load ratios (u = 0.85, ǫ = 0),
and random evolutionary traffic patterns (u = l).

1 foreach projected load ratio l do
2 foreach project traffic matrices Ti picked from a sample set of size m do
3 Dimensioning (B, X) = BAL(Ti, u, ξ);
4 foreach traffic evolution factor ǫ do
5 foreach traffic matrices T ′

j picked from another sample set of size n

do /* n is picked so the 95% confidence interval of pi,ǫ,l is

within ±5% of the data or it is lower than 0.0001. */

6 Test blocking probability
pj,i,ǫ,l = RUN((1− ǫ)Ti + ǫT ′

j, B, X, β, l);

7 Get average blocking pi,ǫ,l = 1
n

∑n
j=1 pj,i,ǫ,l;

8 Get average blocking pǫ,l = 1
m

∑m
i=1 pi,ǫ,l;

3.4.3 Traffic Pattern Evolution

At a given load, I show the amount of performance degradation when the

traffic pattern varies from the projected traffic matrix. I compare incremental

dimensioning algorithms, MEAN and SD, on evolutionary traffic patterns so

that the load for each pair of connections λi/µi varies differently. The arrival

rate λi of each connection pair is picked randomly from three different gen-

eral distributions: uniform, normal and bimodal. The uniform distribution

ranges from 1 to 10. The normal distribution generates a Gaussian random

variable in the range of 1 to 10 with mean 5.5 and variance 6.75. The bi-

modal distribution picks either 2.9 or 8.1 with 50% probability. All three

distributions thus have the same mean and variance. The departure rate µi

is the same for all arrivals.

The test procedure for evolution traffic is shown in Algorithm 3.4. Fig-

ures 3.3 and 3.4 show the blocking probability of SPF and WSP using SD

and MEAN on ARPANET and COST at load 0.85. The actual traffic is

a mix of projected and future traffic in a ratio from 0 to 50 percent, i.e.,

ǫ ∈ [0, 0.5]. Again, I randomly choose m = 100 projected traffic matri-

ces. On ARPANET, SD improves MEAN by over 50% when ǫ = 0.5. The

improvement is smaller on COST.
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Figure 3.3: Comparison of MEAN and SD on traffic pattern evolution on
ARPANET (using Algorithm 3.4 with u = l = 0.85).
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Figure 3.4: Comparison of MEAN and SD on traffic pattern evolution on
COST (using Algorithm 3.4 with u = l = 0.85).
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Algorithm 3.5: Test procedure for expected traffic evolution and ran-
domized misdimensioning (l = u).

1 foreach projected load ratio u do
2 foreach project traffic matrices Ti picked from a sample set of size m do
3 Dimensioning (B, X)i = BAL(Ti, u, ξ);

4 Get average link capacity (B̄, X̄) = 1
m

∑m
i=1(B, X)i;

5 foreach s randomly misdimensioned network (B̂, X̂) = UNBAL(α, B̄, X̄) do
6 foreach traffic matrices T ′

j picked from another sample set of size n do

/* n is picked so the 95% confidence interval of pk,u,α is

within ±5% of the data or it is lower than 0.0001. */

7 Test blocking probability pj,k,u,α = RUN(T ′
j, B̂, X̂, β, l = u);

/* Complete traffic evolution ǫ = 1. */

8 Get average blocking pk,u,α = 1
n

∑n
j=1 pj,k,u,α;

9 Get average blocking pu,α = 1
s

∑s
k=1 pk,u,α;

3.4.4 Dimensioning for Expected Traffic Patterns

The performance improves by taking a set of expected traffic matrices (in-

stead of one matrix) during dimensioning. The idea is to average the di-

mensioned capacity of a set of projected traffic matrices. The test procedure

is described in Algorithm 3.5. The evolution factor is 100%. Unlike Algo-

rithm 3.4, which uses only one projected traffic matrix at the dimensioning

stage for each test, Algorithm 3.5 considers all m projected matrices in one di-

mensioning step. The network misdimensioning function, UNBAL(α, B̄, X̄),

is used in Section 3.4.5 to explore my misdimensioning model. Here, I pass

the misdimensioning part by setting α = 0 so (B̂, X̂) = (B̄, X̄) and s = 1

and randomly generate m = 100 for dimensioning. Many random testing

matrices n are used to meet the confidence interval requirement. The arrival

rate is uniform from 1 to 10.

Figures 3.5 and 3.6 present the normalized blocking reduction from MEAN

to SD and the average blocking probability of SD over all testing matrices,

for routing algorithms in set β. The normalized blocking reduction is defined

by one minus the ratio of the blocking probability of SD to the blocking

probability of MEAN. On ARPANET, SD reduces blocking by 10% to 80%

over the load range for all routing algorithms. On COST, the reduction is

around 0% to 10%.

I next investigate why the improvement of SD over MEAN is smaller on

COST than on ARPANET. Mean square difference (MSD) defines the differ-

ence of the dimensioned capacity between MEAN and SD. For m projected
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(a) Normalized SD blocking reduction over
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Figure 3.5: Comparison of MEAN and SD on ARPANET dimensioned with
100 random projected traffic matrices, with varying traffic loads and
patterns (using Algorithm 3.5, α = 0).
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Figure 3.6: Comparison of MEAN and SD on COST dimensioned with 100
random projected traffic matrices, with varying traffic loads and patterns
(using Algorithm 3.5, α = 0).

36



 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

C
a

p
a

c
it
y

ARPANET link number

SD
MEAN

(a) ARPANET u = 0.85.

 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

C
a

p
a

c
it
y

COST 239 link number

SD
MEAN

(b) COST u = 0.85.

Figure 3.7: Comparison of total dimensioned capacity with m = 100
randomly picked projected traffic matrices.

traffic matrices Ti, 1 ≤ i ≤ m, and projected load ratio u, let the capacity of

MEAN incremental dimensioning be:

(B̄M , X̄M) =
1

m

m∑

i=1

BAL(Ti, u, MEAN)

and the capacity of SD incremental dimensioning be:

(B̄S, X̄S) =
1

m

m∑

i=1

BAL(Ti, u, SD)

MSD is defined by Equation (3.7) as follows:

1

|E|
∑

e∈E

(B̄M
e + X̄M

e − B̄S
e − X̄S

e )2 (3.7)

The SD and MEAN schemes are identical at the limit u = 1 since B̄M
e = B̄S

e

and no incremental capacity exists (∀e, Xe = 0). However, they are not the

same with u < 1.

For m = 100 random projected matrices, Figures 3.7(a) and (b) compare

the total dimensioned capacity at projected load ratio u = 0.85 between SD

and MEAN. Table 3.1(a) compares the MSD between SD and MEAN at vari-

ous dimensioning loads. Clearly, COST has a smaller MSD than ARPANET

for all loads. The improvement of blocking probability for SD relative to

MEAN is thus also smaller on COST.
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Table 3.1: Mean square capacity difference (MSD) for dimensioning for
various projected loads.

(a) SD and MEAN

u 0.75 0.80 0.85 0.90 1.00
ARPANET 64.81 40.00 23.31 10.00 0
COST 50.22 30.70 18.27 8.32 0

(b) SD and UNI

u 0.75 0.80 0.85 0.90 1.00
ARPANET 4018.81 4003.69 4001.00 3998.94 3939.19
COST 3401.89 3369.89 3390.59 3400.92 3332.59

Finally, I show the benefit of having prior traffic pattern information dur-

ing the dimensioning stage. Figure 3.8 compares the blocking probability

of SPF using SD with actual, random, and expected traffic patterns. Di-

mensioning for the actual traffic pattern, the load scaling case, is when the

statistical behavior of all connection pairs is known but not the actual scale.

The normalized traffic matrix of the real traffic is identical to the projected

traffic matrix (Algorithm 3.4 with l = u, ǫ = 0). Dimensioning for the ran-

dom traffic pattern is the complete traffic evolution case with l = u, ǫ = 1.

Dimensioning for the expected traffic pattern uses 100 random projected ma-

trices (Algorithm 3.5 with m = 100, α = 0). The n testing traffic matrices,

randomly drawn from the original space, are not limited by 100 projected

traffic matrices. Both networks show significant performance improvements

with more prior knowledge of future traffic patterns. The performance of di-

mensioning for the actual traffic pattern degrades quickly when traffic evolves

into random traffic patterns. If the traffic is expected to evolve rapidly and

unpredictably, dimensioning for expected traffic that uses a set of traffic ma-

trices gives better performance.

3.4.5 Robustness

To study the sensitivity of the dimensioning algorithm, I randomly misdi-

mension the network and compare the performance. Noticeable performance

degradation starts to shown when each link is misdimensioned by at most 10%

(about ±12 wavelengths on average). The misdimensioning is modeled by a

misdimensioning factor α ∈ [0, 1]. UNBAL(α, B, X) denotes the procedure

to randomly misdimension a network. Given α, each dimensioned link e with
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Figure 3.8: The performance of SPF on SD dimensioned networks for
actual, expected and random traffic patterns.
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Figure 3.9: Performance degradation on misdimensioned networks for WSP
routing (using Algorithm 3.5).

capacity Be is re-dimensioned with a random capacity B̂e that is picked uni-

formly from the range [max(⌊Be(1−α)⌋, 0), ⌈Be(1+α)⌉]. The same approach

is applied to the extra capacity Xe. Hence, (B, X) = UNBAL(0, B, X). The

difference of total capacity is fixed by adjusting each link capacity up/down

to guarantee the same load. The network is more likely to be misdimensioned

as α increases. Figure 3.9 compares the blocking performance of WSP us-

ing MEAN with varying α values. The test was repeated for 100 randomly

generated misdimensioned networks. The result becomes worse as the mis-

dimensioning factor increases above 0.1. Similar results were found for SD

incremental dimensioning.
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3.5 Comparisons

In this section, I show that dimensioned networks achieve significant improve-

ments over undimensioned ones. A comparison with a previous study indi-

cates that dynamic routing with dimensioning achieves better performance

than fixed routing with dimensioning.

3.5.1 Uniform Dimensioning

The importance of network dimensioning can be illustrated by comparing the

performance of a dimensioned network with a uniform link capacity network.

Uniform dimensioning (called UNI) allocates the same capacity to all links.

It is 120, so the total capacity is the same as other dimensioning approaches.

The performance of WSP with random testing traffic matrices is compared in

Figures 3.10 and 3.11, showing that the same routing algorithm can reduce

blocking probability by 10 times on a better dimensioned network. Many

links tend to be underutilized on UNI networks because the capacity is not

distributed according to topology and traffic demand. Table 3.1(b) shows

the MSD between a SD dimensioned network and a uniform one. The MSD

between SD and UNI is much greater than that between SD and MEAN.

Earlier work [36] showed that a quick cut can form on a UNI network even

when the offered load is low.

3.5.2 Fixed Dimensioning and Routing

Nayak and Sivarajan [37] proposed a dimensioning method (called ABS here)

for dynamic traffic with increasing demands. Their incremental dimension-

ing algorithm is equivalent to the MEAN scheme. Comparing my methods

to ABS on one traffic matrix has been shown in previous work [36]. For

evolutionary traffic with ǫ = 1, I further show that my methods outperform

ABS on the averaging of m = 100 randomly chosen projected traffic matrices

and 100% traffic evolution at runtime with n randomly chosen runtime traf-

fic matrices. Figures 3.10 and 3.11 compare blocking and utilization of BAL

and ABS using different routing algorithms. SD supports dynamic routing

better at most load ranges. ABS and fixed SPF routing tend to underuti-
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Figure 3.10: Comparison of UNI, ABS, and BAL for random traffic
patterns on ARPANET (using Algorithm 3.4 with l = u, ǫ = 1).
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Figure 3.11: Comparison of UNI, ABS, and BAL for random traffic
patterns on COST (using Algorithm 3.4 with l = u, ǫ = 1).

lize network resources. Using better dynamic load balancing routing (CAR)

improves the results over all load ranges.

3.6 Conclusion

This section introduces simulation-based network wavelength capacity di-

mensioning algorithms for dynamic optical networks. I propose metrics for

traffic load and evolution to quantify traffic variations. Two stages of re-

source dimensioning are discussed: basic dimensioning and incremental di-

mensioning. The basic dimensioning algorithm dimensions network resources

according to traffic projection. Incremental dimensioning over-dimensions

the network for future traffic evolution. Two incremental dimensioning ap-
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proaches, MEAN and SD, are proposed. The performance of the algorithms

are evaluated in terms of blocking probability and robustness.

I show that dynamic routing algorithms, especially flow balancing algo-

rithms, are leveraged by my capacity dimensioning techniques. Compared to

fixed routing and dimensioning schemes, my approach provides better results

for dynamic traffic. For incremental dimensioning schemes, scaling network

capacity by standard deviation outperforms linear scaling in supporting traf-

fic variations. My solution is robust for random mis-dimensioning by an

average of 10% of the wavelengths on each link. Dimensioning for the ex-

pected traffic pattern is more robust to traffic evolution than dimensioning

for one specific traffic pattern.
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CHAPTER 4

ONLINE ROUTING AND CONGESTION

CONTROL ON DIMENSIONED OPAQUE

NETWORKS

Future network platforms must be able to support heterogeneous traffic mod-

els and provide low service-blocking rates, while minimizing the cost of ex-

pensive network resources. The difficulty of predicting changes in traffic

demands and the need for a rapid and robust response to traffic pattern

changes have thus generated great interest in online routing algorithms at all

levels of the network.

This chapter introduces efficient load balancing routing and admission con-

trol mechanisms that are optimized for the dimensioned optical opaque net-

works introduced in Chapter 3. An online routing algorithm is to choose

an available path upon the arrival of a connection request based on the

current network capacity state. The connections are bidirectional. Only

one wavelength is requested per connection. Each lightpath occupies one

wavelength on each link in both directions along the path until the connec-

tion terminates. Based on the routing policy and the current availability of

wavelengths, the network either accepts or rejects a connection request. No

queuing/preemption/rerouting is assumed.

The key question to answer for online routing is to what extent the cho-

sen route will affect the chance of blocking of future arrivals. I start with

analyzing the flow reduction of other pairs for each chosen route. I find that

choosing longer routes than the available shortest path on the residual graph

increases only the chance of blocking for future arrivals (Section 4.1). My

study also shows that the impact to other potential connections are local, as

the dimensioning algorithm distributes resources regarding pair’s topological

shortest paths. We need to consider only the highly likely used region (a.k.a.

shortest paths reduced graph) of each other arrival pairs to compute the

level of congestion. Such reduction greatly simplifies the flow computation

and improves the results.
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Further, I realize that the available shortest route can become excessively

long when the network is congested. Using extra resources beyond what

has been dimensioned for can only worsen network congestion. I propose a

threshold-based admission algorithm to limit the acceptance of excessively

long routes (Section 4.2.2). In order to find the optimal threshold, I develop

an opportunity cost model that is able to approximate the expected loss of

future arrivals. The model predicts optimal thresholds, and the optimized

thresholds remain the same for a set of practical network topologies in various

scales. I also find that expensive flow analysis becomes unnecessary when

admission control is used. So, a simple load balancing routing algorithm can

be applied with admission control to achieve the best blocking performance.

I also present the performance of algorithms on misdimensioned networks.

Finally, I build an oracular optimization model to explore the theoretical

optimality if a finite sequence of future arrivals is given. I show that comput-

ing the optimal solution is too expensive, even with a small set of oracular

arrivals, to provide enough capability for understanding any practical bene-

fits.

My study shows that the effect of admission control dominates sophisti-

cated route selections. A simple admission control rule that is scalable and

robust is useful for practical networks.

4.1 Reduced Flow Routing Algorithm

This section presents a novel reduced flow routing (RFR) algorithm, which

is a flow-based method, providing fast analysis of residual capacity. RFR

reduces blocking without knowledge of future arrivals.

4.1.1 Multiple Shortest Paths

Among the many different routing algorithms, SPF-based routing algorithms

generally outperform non-SPF counterparts under the same traffic distribu-

tion among all possible source-destination request pairs. Some representative

comparisons are shown in Section 4.1.3. Given the superior performance and

timing benefits of choosing from shortest paths, I was motivated to better un-
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Figure 4.1: Sample graph for SPF ties.

derstand the selection amongst multiple shortest paths and design a routing

algorithm based on the trade-offs.

The shortest path between any pair of nodes in a typical network topology

is often not unique, even when network capacity constraints are considered.

Intuitively, since most topologies are at least two-link-connected so as to

be robust to link failures, any node pair sits on some cycle in the network.

If the cycle is of even length, multiple paths exist. To illustrate how this

property holds under dynamic loading of networks, I counted the number of

topological and dynamic shortest paths (i.e., paths based on residual capacity

at load 60%) found in routing 25,000 connection requests selected uniformly

at random on networks with uniform capacity. Table 4.1 summarizes the

results for average tied shortest paths per request and the percentage of

requests that have more than one shortest path available. In most networks,

over 40% of the dynamic requests have more than one shortest path.

Table 4.1: SPF ties.
Network Topological Dynamic load 0.6

# ties per req % req # ties per req % req
NJ LATA 1.80 45 1.74 44
NATIONAL 2.07 47 1.77 40
COST 239 1.80 47 1.64 41
ARPANET 1.48 26 1.20 20

The simplest and most common approach to dealing with this multiplicity

is to break ties randomly. Although such an approach is fast, it also increases

the chance of blocking future requests. By using slightly more complicated

tie-breaking algorithms that consider information about the network topol-

ogy and traffic load, I can make better decisions and reduce the expected

blocking rate.
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As an example, consider the problem of routing a connection from node 1

to node 6 on the network of Figure 4.1. Assume that each link has sufficient

capacity to route the current request. The two shortest paths are 1-5-6

and 1-2-6. Choosing either of these may interfere with future requests. For

example, if I select path 1-5-6, link [1, 5] is on one of the SPF paths of six

other node pairs: (0, 5), (0, 6), (1, 5), (2, 5), (3, 5), and (4, 5). Similarly,

link [5, 6] may interfere with future requests from five pairs: (0, 6), (2, 5),

(3, 5), (4, 5), and (5, 6). Thus, a total of 11 pairs (some counted twice in

this simple analysis) may be blocked later if route 1-4-5 is taken. However,

links [1, 2] and [2, 6] are part of the SPF paths of 14 other pairs. Assuming

uniform traffic for all node pairs, I can argue that path 1-2-6 is more likely to

interfere with future requests. Intuitively, a more careful selection of shortest

paths among ties may reduce overall blocking. The next section explores this

problem and describes my algorithm to address the issue using information

on network topology and residual capacity.

4.1.2 Leveraging Residual Capacity

Network residual capacity is the most commonly used information for online

algorithms in selecting a path. WSP provides one simple selection method

based on the bottleneck residual capacity information. The new RFR algo-

rithm provides fast analysis of residual capacity and reduces blocking.

Algorithm 4.1 explains reduced flow routing. Initially, I compute the SPF

reduced graph (SRGi) for each request pair i on a given network topology.

SRGi is a subgraph consisting of all topologically shortest paths for a pair

i. RFR computes the maximum flow fj(C, SRGi) on the SRG with current

residual capacity C for each request pair other than the current connection

request. I compute the flow on SRG rather than on the entire graph because

(1) the computation time is greatly reduced, and (2) considering too many

links increases the sharing of links from different pairs and cancels out the

essential information indicating future network capacity demands, eventually

resulting in more blocking. Therefore, we think of SRG in general as a critical

part of the graph for a particular pair.

Any occupation on the critical part of the graph by routes of other con-

nections would interfere with the future routing requests issued by this pair.
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Algorithm 4.1: Reduced Flow Routing (RFR)

1 begin Initialize SRGs
2 foreach i ∈ R do
3 Compute SRGi;

4 begin RFR
Input: i ∈ R

5 foreach p ∈ TSPi(C) do
6 foreach j 6= i ∈ R do
7 aj ← fj(C, SRGi);
8 foreach e ∈ p do

9 C̃e = Ce − 1;
10 foreach e /∈ p do

11 C̃e = Ce;

12 bj ← fj(C̃, SRGi);

13 gj ← aj−bj

aj
;

14 costp ←
∑

j gj ;

15 path← arg minp∈TSPi(C) costp;

Such interference is instantiated by the reduction of max-flow caused by the

routing pair. As several SPFs are found for the routing request pair, I select

one SPF and temporarily remove the request capacity along the path. The

network capacity then becomes C̃. I again compute the maximum flow for

all other pairs on the SRG with modified capacity information. Then, I com-

pute the difference between two flows for each pair and normalize it by the

original flow. Considering all other pairs, the total cost for picking up one

SPF will be the summation of all other pairs by their normalized flow. For

each shortest path, I compute the cost and finally choose the one with the

minimal cost. Essentially, I am choosing the path that results in minimum

interference on the critical subgraph of the other pairs.

Figure 4.2 shows a sample SRG for pair (1, 10) in NJ LATA with residual

capacity indicated on each link. SRG is shown on the right side. RFR

computes the maximum flow on the SRG with current residual capacity for

each request pair other than the current connection request. The max-flow

on SRG for pair (1, 10) is 5. Figure 4.3 shows two SPF choices for request

pair (2, 7), path 2-0-7 or 2-4-7. If the requested capacity were R2,7 = 1,

the routing through path 2-4-7 would result in a reduction of 1 capacity on

link [2, 4], leading to a reduction of f1,10(C̃, SRG2,7) by 1. The normalized

reduction is 1/5, but path 2-0-7 reduces the capacity on link [0, 7], which is

not a critical link that affects the original max-flow of (1, 10). For pair (1,

10), path 2-0-7 is the preferable route for request (2, 7).
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If the traffic pattern, like the arrival rate of each pair, is well-known and

stable, the computation of cost in the normalized flow could be weighted

with each arrival rate. However, I tested both the weighted version (RFRw)

and unweighted version, and little difference was found between these two

schemes. The unweighted algorithm, presented in Sec.4.1.3, outperforms

other online algorithms and occasionally outperforms RFRw, as well. There-

fore, my scheme does not necessarily require an anticipated traffic model,

which is an essential property for the success of other online algorithms.

4.1.3 Simulation Results

The network is dimensioned using the basic dimensioning algorithm intro-

duced in Algorithm 3.1. The anticipated average link capacity is 120 wave-

lengths. Each request uniformly demands 1 wavelength channel. The pro-

visioned load is 1. In my experiment, the blocking rate is measured by

sampling 5000 arrivals after running 20,000 warm-up requests before the

sampling. Each pair has the same arrival rate under the uniform traffic load,

it holds a randomly preassigned arrival rate, uniformly selecting from 1 to

10. The average hold time for each pair is determined by the network load.

Each experiment will repeat 100 times with different arrivals to obtain the
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average blocking rate. The sample size I choose is adequate to provide repre-

sentative results for the system performance aspects I intend to study. I pay

special attention to the blocking probability ranging from 0.5% to 8%, be-

cause a higher blocking rate indicates network overloading. It also indicates

that more than one cut has been formed, which makes it impossible to route

a significant portion of requests. Since my goal is to find a better routing

algorithm to prevent congestion, any comparison under heavy congestion is

undesirable.

Figures 4.4 through 4.7 compare blocking probabilities in various online

routing algorithms. The horizontal axis represents the actual load that has

been normalized by the projected load. MIR, WSP, SWP, and WSP+1 are

introduced in Algorithm 2.1. All node pairs in the network are considered

as ingress-egress pairs for MIR testing. The α parameter is set to the arrival

rate for each pair. SPF uses a random tie-breaking strategy.

The results show that SWP and WSP+1 do not perform as well as other

algorithms. MIR presents a higher blocking rate when every pair in the

network issues connection requests, compared to when arrival requests are

generated by a specific set of predetermined ingress-egress pairs [30]. The

result also confirms that selecting paths beyond the shortest available paths,

such as what SWP, WSP+1 and MIR do, does not help improving the per-

formance. WSP has a marginally higher blocking rate compared to RFR

when the load is low, which increases faster as the network load increases.

RFR demonstrates the lowest blocking. RFR has less than 2% blocking com-

pared to WSP and less than 4% compared to SPF when the network is fully

loaded. The traffic rate weighted version, RFRw, shows little difference from

the nonweighted version, RFR; This means that RFR performs well even

without having a priori knowledge of traffic patterns.

Figures 4.4–4.7 also illustrate the actual network utilization by offered load.

The actual utilization is computed by the sum of average used capacity on

each link divided by the total available capacity. The actual utilization for

all algorithms exceeds the offered load because the latter is computed using

the topological shortest paths length, while real routing scenarios can utilize

longer paths when available. The results show that RFR uses the least

amount of total capacity compared to other algorithms and provides the

best resource balancing for future requests.
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Figure 4.4: Comparison of blocking probability, utilization, and time on
NJ LATA.
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Figure 4.5: Comparison of blocking probability, utilization, and routing
time on ARPANET.
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Figure 4.6: Comparison of blocking probability, utilization, and routing
time on COST 239.
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Figure 4.7: Comparison of blocking probability, utilization, and routing
time on NATIONAL.
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I now compare average routing times for SPF, WSP, RFR, SWP and MIR.

The relevance of timing depends on real inter-arrival times in the network.

If requests arrive on the order of minutes, all five algorithms will be good

enough (less than 1 sec to route one request) to meet the deadline. Figures 4.6

and 4.7 show the timing in units of logarithmic scale seconds. For smaller

networks, such as NJ LATA, the routing times for SPF and WSP are mostly

independent of the traffic load. In larger networks, such as NATIONAL, no-

ticeable increases in routing times are shown because SPF-based algorithms

take more time to search for a longer available path, especially when heavily

loaded. SWP is affected least by the change in network size. RFR performs

10 times better than MIR. Both RFR and SWP times decrease as the load

increases: their routing times are mainly spent choosing among available

paths, the number of which decreases when the network becomes congested.

4.2 Opportunity Cost Optimized Congestion Aware

Routing

The performance of pure routing mechanisms, such as RFR, is still not ideal

when networks are congested. Network congestion increases along with an

increase in offered load, causing congestion on many links. Admitting con-

nections with excessive path lengths can increase blocking for future requests.

Threshold-based admission control algorithms can respond to network con-

gestion rapidly by controlling the admission of new arrivals. However, these

algorithms achieve ideal performance only at the optimal values of their con-

trol parameters. These values, identified experimentally in previous studies,

are also sensitive to network scaling and topology changes. The cost for sim-

ulation can thus be expensive, as it is needed for every change made (such

as upgrades) for a large network.

I aim to improve these results in three ways: (1) limit the design to a single

control parameter, (2) analytically identify the optimal parameter, and (3)

find a consistent optimal parameter value that remains the same for varying

network topologies and sizes. To achieve these goals, a good estimation

of the network load is needed, which can then be used to relate network

congestion to the control parameter. Estimating real-time dynamic network

load is challenging because load information is time and location sensitive.
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The current network load can evolve from the projected load, and the average

load often fails to reflect temporary hot spots created by short-term traffic

fluctuations.

This section introduces the design of a threshold-based admission control

algorithm that is robust to various load and network scales. The algorithm

can be applied to any other online routing algorithms to further reduce block-

ing. I propose the concept of a “least opportunity cost path,” which provides

us with a deeper understanding of dynamic routing algorithms. To approx-

imate the least opportunity cost path using CAR, I develop an opportunity

cost model that can analytically identify the optimal threshold parameters

for CAR. Simple to compute, robust to different network topologies, and

scalable, this model aids in finding a family of improved congestion aware

routing algorithms. These algorithms, termed CAR-x, are described in detail

in this session. My simulation results show that these improved algorithms

are fast to implement and have the most robust thresholds.

4.2.1 Motivation for Limiting Path Length

This section illustrates the relationship between path lengths and network

loads for dynamic routed connections. Figure 4.8 presents the distribution of

extra hops to the TSL of each connection request among accepted connections

routed by ASPF at different offered network loads. When the network is

lightly loaded (75%), over 98% of the accepted paths use TSL. At 95% offered

load, the percentage of TSL paths drops to 70. TSL is defined on individual

connections, so two connections with different path lengths may be grouped

into the same TSL+n.

Figure 4.9 shows the notation for constraining hop lengths for connec-

tions depending on the traffic load (or the level of congestion). hc-TSL+n

denotes a hop-constrained routing in which a connection request is admit-

ted if the available shortest path length is less than or equal to its TSL+n.

We see that constraining hop lengths reduces blocking in highly loaded net-

works but hurts performance when the load is low. Figure 4.9 compares the

blocking probabilities of different hop-constraint policies applied on ASPF. I

use TSL+n as a hop limit to prevent connection pairs with long TSL from

being blocked much more frequently. hc-TSL+n is a similar approach to
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the adaptive length-limit strategy mentioned in [38]. Figure 4.9 shows that

constraining path length reduces network congestion when load is high. How-

ever, routing without constraint allows more aggressive use of the network

and provides the opportunity to admit more connections when load is low.

The two extremes are shown at hc-TSL+any and hc-TSL+0. Although it

has good low-load performance, hc-TCL+3 provides over 10% blocking at a

higher load. Similarly, hc-TCL+1 is attractive at high loads but presents two

times more blocking than the best achievable result at low loads. We want

to find an adaptive hop-constraint routing policy that determines hop lim-

its dynamically based on the current network state and potentially achieves

lower blocking compared to the best nonadaptive routing algorithms across

all loads.
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Algorithm 4.2: Congestion aware routing (CAR).
Input: request pair r
Input: current used capacity Ue, ∀e ∈ E
Input: total capacity Ce, ∀e ∈ E
Output: acceptance or rejection

1 foreach available shortest path p found for a connection generated by request pair

r by ASPF routing do
2 Compute the sum of congestion ratio;
3

γp =
1

|p|
∑

e∈p

Ue

Ce

(4.1)

/* Path selection metric varies across routing algorithms */

4 Path q ← p with min γp ; /* Optimality condition (min or max) */

5 if |q| = TSLr then /* Always accept a Topological Shortest Path (TSP)

*/

6 Accept the connection
7 The congestion estimator for path q is γq ; /* Different congestion

estimators can be used in combination with routing algorithms */

8 if γq > η then /* Threshold comparison (greater or smaller depending on

optimality condition) */

9 Reject the connection;
10 else
11 Accept the connection on route q;

4.2.2 Congestion Aware Routing

Algorithm 4.2 shows the threshold-based congestion estimation and conges-

tion aware routing algorithm (CAR) for each connection r. The degree of

congestion on the path of γp can be computed by Equation 3. CAR selects a

least loaded path from all available shortest paths (other routing algorithms

can also be used for this step). If an available path is found, and it has

the same length as the TSL of that node pair, we automatically accept it be-

cause it does not use any extra resources (links along the paths with high TSL

have been planned with more resources when the network is dimensioned, so

the routing algorithm should not bias against them). If not, we accept it

only if the congestion estimation value γp is smaller than a predetermined

threshold η. In other words, we accept a request either by no-hop constraint

or maximum-hop constraint of TSL+0, depending on the estimated level of

congestion. Usually, when a network starts to use longer paths to accept

new connections due to traffic load increases, local congestion propagates to

the rest of the network quickly. To suppress the spread of congestion, strict

admission control should be used on detection of local congestion. That is,
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when links are highly loaded in a neighborhood, no paths of extra length

should be admitted. I have tried also to estimate congestion by looking at

different local subnets. But using the path alone already gives the best result.

Algorithms with similar form appeared in earlier work [31, 33]. The dif-

ference is that CAR chooses paths exclusively from ASPFs and accepts TSP

regardless of the load. The benefit of choosing ASPFs in a dynamic rout-

ing environment was discussed in Section 4.1.1. Basically, assigning a longer

path when a shorter path is available increases the opportunity cost for the

network to accept future arrivals. TSP is always accepted because the con-

nection pair does not use any extra resource than what was planned. Also,

the links along the paths of a greater TSL have been planned with more

resources when the network is dimensioned. The routing algorithm, then,

should not be biased against these paths.

4.2.3 Opportunity Cost Model

I can evaluate dynamic routing algorithms according to the number of

blocked requests for a given number of arrivals. The path choice for an

accepted request affects the blocking of future arrivals. I define the oppor-

tunity cost for a path as the expected difference in the number of future

blocked arrivals, for an infinite time span, due to the acceptance of a request

using the path. The opportunity cost represents the expected future loss for

an immediate gain. The least opportunity cost path for a request is a path

with the minimum opportunity cost. If the least opportunity cost is greater

than one, accepting the request is expected to cause more than one future

connection to block (beyond those that will block anyway if the current re-

quest is rejected). In other words, the initial benefit of accepting the request

is eventually lost by the rejection of more than one future request.

The opportunity cost depends on the policies governing routing and ad-

mission control. This dependence arises because the two policies may differ

in their future decisions. However, calculating the opportunity cost is not al-

ways possible. Some policies are sample-path dependent and thus cannot be

modeled by memoryless state-transition graphs. For those that can be cal-

culated, computing the opportunity cost is expensive. The number of states

in the network for future arrivals/departures grows exponentially as network

58



size increases. The transitions defined by the policy do not necessarily con-

verge. For simulation approaches, possible arrival sample paths also grow

exponentially. The difference in blocking for a sample path can be infinite

(a two-link case is explained in Section 4.2.3).

However, in practice, good approximations of the least opportunity cost

path can be efficiently computed since traffic loads and path length have a

strong link to opportunity cost. When the network load is low, the oppor-

tunity cost is small because the path length is minimal and the network has

enough extra resources to support other connections. The opportunity cost

increases when the network load is high and many links have little spare

capacity. The available path becomes longer since some links become un-

available.

All existing dynamic routing algorithms can be viewed as approximations

of the least opportunity cost path. ASPF assumes that using more links

to route a path increases the chance of blocking future connections. WSP

assumes that depleting the little remaining available capacity on a link in-

creases the chance of blocking exponentially. Adaptive WSP leverages the

result from queuing theory: the blocking probability distribution varies for

the total capacity. Flow-based approaches approximate the opportunity cost

by calculating the reduced flows for expected future requests. RFR recognizes

the importance of locality to improve generic flow-based heuristics. However,

the performance of these algorithms degrades when network load increases.

Better routing algorithms are needed to optimize the performance for both

low and high network loads.

This section uses simple models to approximate the opportunity cost for

CAR algorithms and to derive the optimal threshold value. CAR can thus

efficiently approximate least opportunity cost routing. I start with a one-

link model, using an arbitrary link in a network, with the assumption that

all links have independent traffic. Then, a two-link independent model is

built on top of the one-link model. It is useful in practice to compute the

optimal threshold value and aids in the design of better routing algorithms.

One-Link Model

My simplified one-link model uses a random link in a network with the

assumption that all links have independent traffic. I define t = 0 to be the

decision time when an arrival requests a unit of capacity from the link for a

path that is longer than the TSL. Let the maximum capacity for a link be
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c. The aggregated arrival rate to this link is λ, and the departure rate for

each connection is µ. Let the offered link load be l. These model parameters

are scaled to the real network parameters in that the admission control of

future arrivals is already incorporated in the parameters. Therefore, all future

arrivals to the link are accepted if there is link capacity available. I do not

need to track (and make decisions for) future arrivals that use this link as

part of the extra hops. Such simplification does not affect the accuracy of my

model since I do not rely on global load estimation for congestion control.

When the network has been dimensioned (according to Chapter 3) and

each arrival requests one unit capacity, the load follows Equation 4.2. If the

link is loaded with i wavelengths at t = 0, where i < c, the expected amount

of future blocking in an arbitrary time interval (0, t) can be formulated by

Equation 4.3, where Pc,i(s) is the probability that this link is full at time s

given total capacity c and starting capacity i. As the time interval increases,

t→∞, and the expected blocking is nondecreasing. Therefore, Equation 4.3

is not bounded.
λ

µ
= c · l (4.2)

∫ t

0

Pc,i(s)λds (4.3)

Regarding the decision on whether to accept or reject the request at time

0, I want to estimate the difference in future blocking if I choose to use

this link (accept the request) or not. Given the two choices, I then have

two different initial link states. If I decide to take the extra request, the

initial capacity state is i + 1. If not, the initial state is still i. The ex-

pected difference in blocking of two choices, i.e., the opportunity cost, is then∫ t

0
Pc,i+1(s)λds −

∫ t

0
Pc,i(s)λds. Since future arrivals are always accepted if

there is free capacity, the difference of blocking probability, Pc,i+1(s)−Pc,i(s),

decreases exponentially. Therefore, the opportunity cost will converge as

t→∞ to a finite number, which is denoted as dc
i in Equation 4.4.

dc
i = lim

t→∞

(∫ t

0

Pc,i+1(s)λds−
∫ t

0

Pc,i(s)λds

)
(4.4)

By viewing the problem slightly differently, I show that dc
i ranges from 0

to 1 for any starting state i < c and capacity c. The initial capacity is i

for the case for which the extra-hop arrival is rejected at time 0, and the
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Figure 4.10: (a) Markov chain for one-link model. (b) Two extra links with
independent traffic.

initial capacity for the accepting case is i+1. Let the link state (wavelengths

in use) at time s be Li(s) with initial state i. Li+1(s) is the link state for

the case for which the arrival is accepted. The sequences of further arrivals

are the same for both decision branches, and they will be admitted as long

as there is unused capacity. Therefore, the number of wavelengths in use

for the decision branch Li+1 always exceeds the branch of Li by 1 until the

extra link request leaves Li+1 or Li is full. Li becomes full at exactly the

same time as Li+1 must reject the first future arrival. The two branches

then have equal capacity onwards. Otherwise, the extra-hop arrival in Li+1

leaves before Li becomes full. The expected future blocking probability for

two branches is equal after they reach equal capacity, as all connections have

equal exponential holding time distributions. I use the term END to describe

the state where the two branches reach equal capacity. If an END is caused

by the case for which Li+1 rejected a request (equivalently, Li gets full), the

difference of blocking probability is 1. Such an END is denoted as END1.

If an END is caused by the departure of the extra-hop arrival before Li+1

gets the first reject, there is zero difference in blocking probability. The END

is then denoted END0. Equation 4.4 shows the probability that the system

ends with END1 given the total capacity and initial state. The probability

equals one if the link is already fully loaded, i.e., i + 1 = c. Therefore, the

opportunity cost is a binary random variable with expected value dc
i .

Computing dc
i directly from Pc,i is difficult because Pc,i is unbounded. How-

ever, I can use a continuous Markov chain to compute the expectation. The

transition of states is shown in Figure 4.10(a). The number in each state

is the current amount of used link capacity for the case of Li (Li+1 always

equals Li + 1). The END1 state is equivalent to the state where Li is full

(also Li+1 rejects the first request). As the initial link capacity i ranges from
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0 to c− 1, the system can start at any state except the END states. Again,

all connections request one unit capacity, the arrival rate is λ, and the de-

parture rate on the link is Liµ as each connection departs at rate µ. From

the Li+1 state, the extra-hop arrival at t = 0 may also depart at rate µ. If

that happens, the system immediately enters END0. Since λ > 0 and µ > 0,

the system will eventually reach one of the two sink states, END1 or END0.

dc
i from Equation 4.4 can be computed by finding the probability that the

system ends at END1 when starting at state i. Trivially, dc
END1 = 1 and

dc
END0 = 0. The probability of the ending state is computed recursively by

Equations 4.5–4.7. These equations balance the in/out probability flows at

each state. 1

dc
0 = dc

1

λ

λ + µ
(4.5)

dc
c−1 =

λ

λ + cµ
+ dc

c−2

(c− 1)µ

λ + cµ
(4.6)

For 0 < i < c− 1,

dc
i = dc

i+1

λ

λ + (i + 1)µ
+ dc

i−1

iµ

λ + (i + 1)µ
(4.7)

Solving these equations by mathematical induction, I get the general form

for dc
i .

dc
i =

∑i
k=0

i!
(i−k)!

(µ
λ
)k

∑c
k=0

c!
(c−k)!

(µ
λ
)k

(4.8)

Combined with Equation 4.2 to cancel λ/µ, I have the opportunity cost for

one link:

dc,l
i =

∑i
k=0

i!
(i−k)!(cl)k

∑c
k=0

c!
(c−k)!(cl)k

(4.9)

Equation 4.9 shows that the opportunity cost in future blocking probability

on a link depends on total capacity c, initial capacity i, and traffic load l.

Figure 4.11 shows how dc,l
i varies with l and i/c when c = 100.

Two-Link Independent Model

The one-link model is not yet useful because the opportunity cost is always

less than one. I consider two links to find the condition for which the op-

portunity cost can exceed one. When a TSL path is not available, an online

routing algorithm may need two or more additional links to route around

1The detailed steps of solving these equations are not shown.
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Figure 4.11: The one-link model with various loads at c = 100.
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Figure 4.12: An illustration of unbounded expected difference of blocking
for two links.

unavailable links. TSL+n means that a path length is equal to its TSL plus

n extra hops. Figure 4.10(b) shows an example. Path p1 is the TSL+0 path

for the connection S to D. p2 is a TSL+1 path when the direct link S-D is

full, and p3 is a TSL+2 path that uses two additional links to route around

when links S-D and S-B are unavailable. This section develops a model of

two extra links with an independent traffic assumption. The next section dis-

cusses the case in which joint traffic is presented across two links. However,

the independent traffic model reveals important information that allows us

to predict the optimal CAR threshold.

In the two-link case, the opportunity cost is not bounded by one. Fig-

ure 4.12 illustrates an unbounded situation. Suppose there are two links,

each with capacity c = 2. Request 0 is the initial extra two-link request.

Later arrivals, Request 1 and Request 2, use the remaining capacity. Fu-

ture arrivals, such as Request 3, arriving on Link 2 before other connections

leave, can increase the number of blocking probability differences between

the Request 0 accepted and rejected cases to an arbitrary number. However,
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Figure 4.13: Threshold prediction using the two-link independent model.

the probability that an infinite number of arrival requests during the finite

holding-time of the current connections is sufficiently small that the expected

value remains finite.

Assuming that each link behaves independently, the opportunity cost is

equivalent to the sum of dc,l
i for each one-link mode. I can construct a three-

dimensional plot with the x- and y-axis representing the normalized initial

capacity of each link. Figure 4.13 illustrates the construction. The z-axis is

the opportunity cost computed by adding the results of two one-link models

to the corresponding traffic load and link capacity. If the sum is greater

than 1, accepting the connection at t = 0 is expected to cause the link to

reject more than one future connection. The threshold curve is shown in

Figure 4.13 on the z = 1 plane. In this case, the initial request should be

rejected. Equation 4.10 defines the contour curve, in set theory, of the 3D

graph at load l on plane z = 1. Figure 4.14 shows the curves (with legends

“mod ld=l”) at various loads; these curves show the ideal threshold at load

l. The lower the load, the higher the threshold can be to allow aggressive

admission. The threshold is lower at higher loads because fewer resources

are available for routing excessively long paths. At routing time, based on

the current residual graph, we know the operating point on the plane but

not the curve that should be used, since I may not know the offered load l.

Therefore, the threshold used at routing time must work for all loads.

{(x, y)|dc1,l
xc1 + dc2,l

yc2 = 1, 0 < x < 1, 0 < y < 1} (4.10)
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Two-Link Dependent Model

In general there are three types of traffic on two links: traffic using only

Link 1, traffic using only Link 2, and traffic using both links. A two-

dimensional Markov process suffices to represent the new ending situation

but does not terminate until accept/reject cases are loaded with the same

amount of two-link traffic and the same amount of one-link traffic on each

link. For example, if Link 1 of the accept case carries 50 one-link connections

and 20 two-link connections, Link 1 of the initial rejection case should also

have 20 two-link connections and 50 one-link connections. Other combina-

tions that occupy the same total resources may diverge due to subsequent

events. Unfortunately, the complexity of the 2-D Markov chain grows quickly:

the Markov chain of two links of capacity 2 contains 42 states and 203 tran-

sitions. So I use simulation to solve this problem. Figure 4.15 shows that

the z = 1 contour line of the simulation results for various traffic depen-

dency at offered load 0.9. Traffic dependency dp is the fraction of two-link

traffic amongst all arrivals. When dp = 1, all connections use both links,

and the model reduces to a one-link model. When dp = 0, only the initial

request uses both links, and the model is equivalent to the two-link inde-

pendent model. The only joint event is the departure of the initial request.

The result shows that the threshold drifts upwards in x and y when traffic

dependency increases, becoming a point at (1, 1) for dp = 1.

In real dynamic mesh networks, the traffic dependency between two links

is difficult to track. The flow pattern on the links depends on not only the

original dimensioned traffic but also on the usage from other connections as

alternative routes. I see that the threshold computed with the independent

assumption could be underestimated in a network with high traffic correla-

tion. However, the threshold estimated by the independent model is good

enough on typical topologies because long chains of major nodes (which might

create dependent traffic) are avoided in backbone network design.

Optimal Threshold Estimation for CAR

Each ideal threshold curve in the 2D graphs is optimal for a fixed and

homogeneous global traffic load l. In practice, however, I do not know the

exact offered traffic load at the area where the route passes through. It

is also expensive to identify the “extra” links during routing. As a simple

approach, CAR approximates the opportunity cost by averaging the load of

all links. Essentially, it is a linear approximation to the 2D curves. CAR
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Figure 4.14: Two links with
independent traffic (dp = 0).
c1 = c2 = 100.
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Figure 4.15: Two links with various
dependent traffic.
c1 = c2 = 100, ld = 0.9.
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Figure 4.16: Two links with
independent traffic (dp = 0).
c1 = c2 = 50.
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Figure 4.17: Two links with
independent traffic (dp = 0).
c1 = c2 = 200.
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independent traffic and different
capacity. ld = 0.9.
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with threshold η can be represented as a line 1
2
(x + y) = η for η = 0.94 in

Figure 4.14.

To identify the optimal η, I assume that the residual capacities on the two

links are the same and network offered load fluctuates from 0.8 to 0.95. I draw

a line x = y across the plane in Figure 4.14. Then, the contour of load 0.80

intersects the line around (0.97, 0.97), and the contour of load 0.95 intersects

it around (0.92, 0.92). Contours for loads less than 0.80 are hardly visible

on the plane: admission control is rarely needed on a lightly loaded network.

Therefore, the threshold should be a value in the range of [0.92, 0.97] if the

network is operating around offered load 0.75 to 0.95. The average threshold

is about 0.94. The simulation results in Section 4.2.5 verify the prediction

here. The model also indicates that the threshold should increase when the

network scales, as shown in Figures 4.16 and 4.17. This prediction is again

verified in the simulation results.

The model can analyze two links with different capacities. Figure 4.18

shows an example with link-independent traffic at load 0.9, link capacity

c1 = 50 and c2 = 100. The ideal threshold declines when moving close to the

axis of the link of smaller total capacity. CAR cannot catch such movement.

Other CAR-like algorithms that provide better approximation are introduced

in the next section.

4.2.4 Improved Routing and Congestion Estimation

The two-link model inspires better routing algorithms. Figures 4.14–4.17

show the ideal curves a routing algorithm should achieve. The original CAR

algorithm is only a linear approximation of the curve. Therefore, I present

these better algorithms by fitting the curves: CAR-G, CAR-C, and CAR-M.

All improved algorithms share most of the steps in Algorithm 4.2 except

Line 3 (computation of γp), Line 4 (picking minimum or maximum γp), and

Line 8 (comparison criteria). The changes are summarized in Table 4.2.

CAR-G uses a geometric mean of the link availability ratio to compute γp

in Equation 4.11, Line 3 of Algorithm 4.2. Since it uses the available capacity

ratio, the ηG is a maximum threshold. The optimized threshold for CAR-G,

0.06, translates to the threshold equation ((1 − x)(1 − y))1/2 = 0.06. The
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curve cuts the line of the CAR threshold at 0.94 in Figure 4.19 and shows

the best fitting shape of the ideal threshold curves.

CAR-C uses Equation 4.12, which normalizes available capacity by the

statistical deviation of the total capacity. Because the total capacity is de-

termined by 100% of the traffic load, the square root of the total capacity

approximates the expected standard deviation of dimensioned resources. If

the available capacity were smaller than the deviation of the total capacity,

transient traffic fluctuation would be more likely to overload the link. Fig-

ure 4.18 shows the threshold equation 1
2
(
√

c1(1 − x) +
√

c2(1 − y)) = 0.8

for link capacity c1 and c2 at the optimal threshold 0.8. CAR-C lines can

automatically adjust to different total capacities on each link to match the

trend of the ideal curves from the model. The range of optimal threshold

values for CAR-C is larger than for CAR since the denominator (square root

of the total capacity) in each term is smaller.

CAR-M is created from the two-link independent model. Equation 4.13

computes the average of the opportunity cost dc,l
i on each link with the es-

timated load l = Ue/Ce, capacity c = Ce, and initial capacity i = Ue.

The optimized simulation threshold ηM = 0.5 corresponds to the curve

{(x, y)|1
2
(dc1,x

xc1 + dc2,y
yc2 ) = 0.5, 0 < x < 1, 0 < y < 1}, which is shown in

Figure 4.19. Since the computation of γp takes the total capacity into ac-

count, the threshold is adaptive to capacity scaling.

4.2.5 Simulation Results

Simulation results show that the CAR-x family requires little computation,

improves call blocking across a wide range of traffic loads, and provides

blocking probabilities that are less dependent on path lengths than those

of previous algorithms. The thresholds of CAR-x algorithms can be iden-

tified analytically and can thus be robust to changes in topology, capacity,

and other factors. A comparison of CAR-x algorithms is shown in Table 4.3,

which shows that CAR-M has the most robust threshold with little additional

routing time.

Performance on Dimensioned Backbone Mesh Networks

The analytically optimized threshold value for CAR applies to major back-

bone mesh networks. Figure 4.20 shows that the optimal simulation threshold
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Figure 4.20: Optimal threshold parameter of CAR on major topologies.

69



Table 4.2: CAR-x algorithm family.

Line 3 Line 4 Line 8

CAR γp =
1

|p|
∑

e∈p

Ue

Ce
min γp γq > η

CAR-G γp =

(
∏

e∈p

Ve

Ce

)1/|p|

(4.11) max γp γq < ηG

CAR-C γp =
1

|p|
∑

e∈p

Ve√
Ce

(4.12) max γp γq < ηC

CAR-M γp =
1

|p|
∑

e∈p

d
Ce, Ue

Ce

Ue
(4.13) min γp γq > ηM

for CAR—i.e., the threshold that provides the best improvement in blocking

at all loads—falls within a small range around 0.94. Formally proving that

an optimal threshold works for all backbone topologies is difficult, as the

analytical approach is NP-hard due to inter-path dependence. My results

show that the analytical threshold works for many practical networks. More

examples are shown in [39].

The algorithms in the CAR-x family perform similarly at their best thresh-

olds in Figures 4.21 and 4.22, also showing that threshold selection can be

performed independent of the topology. The CAR-x family is compared

to pure route-selection algorithms—ASPF, WSP, and RFR—and previous

threshold-based congestion aware routing algorithms—COL and SDR—that

are discussed in detail in Section 4.2.6. Clearly, threshold-based routing algo-

rithms outperform pure route-selection algorithms by blocking connections

that use excessive resources.

Figures 4.23 and 4.24 show the stability of thresholds in CAR-C and

CAR-M under capacity scaling. ARPANET is dimensioned at average link
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Figure 4.21: Comparison of routing algorithms with optimal parameters on
ARPANET. SDR-orig does not have competitive blocking.
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capacity 60 (1/2 of 120, the reference scale) and 600 (5 times 120) respec-

tively. The best threshold values for CAR and CAR-G drift down as average

link capacity declines from 120 to 60, which has been predicted by my model

in Figures 4.16 and 4.17. On the other hand, the same threshold values hold

for CAR-C and CAR-M since they can automatically adjust the curve at

different total link capacities.

Comparison of the routing time per connection request is shown in Ta-

ble 4.3 as a multiplier to the routing time of ASPF. In fact, CAR-x algo-

rithms are more than 10 times faster than RFR, one of the fastest flow-based

routing algorithms. These results were obtained from a Linux desktop with

a 3.20GHz P4 CPU. CAR (CAR-G/C are similar) and CAR-M are within 10

microseconds of ASPF for the same network. CAR-M is implemented with

a fast lookup table that has all dc,l
i values precomputed for each link.

In addition to CAR approaches, I have tried to estimate the least oppor-

tunity cost path directly. I warm up the network with 20,000 arrivals using

CAR-M. For the 5000 arrivals during the test window, I compute the aver-

age difference of blocking for 1000 sample paths, each with 20 future arrivals.

These future arrivals are routed by CAR-M, as well. As a result, the per re-

quest routing time is about 60-200 times that of CAR-M, but the blocking

probability is still 10% higher than CAR-M at the load range. Given our

computing power, I do not expect to get better opportunity cost heuristics

by simulating more sample points in the state spaces. I conclude that the

direct approach is impractical for real networks given the computational cost

for each request.

Performance on Misdimensioned Networks

Robustness to misdimensioning is an important aspect of performance for

routing algorithms. Although all routing algorithms work poorly on an undi-

mensioned network, how fast they degrade on partially misdimensioned net-

works is as important as the study on dimensioned networks. This section

shows that CAR-G and CAR-M perform better than CAR and CAR-C on

misdimensioned networks.

Partial network misdimensioning can happen for many reasons. One pos-

sible cause is that the network provider decides to upgrade the capacity for

some links but not for others. Some routing algorithms may receive ben-

efits from such upgrades, e.g. WSP. However, the upgrade can unbalance

the network and negatively affect other algorithms. If the routing algorithm
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uses load information for upgraded links, these links appear less loaded than

other links and attract more traffic to them. In this case, their surround-

ing links without upgrades can overload. To illuminate such effects, I create

a misdimensioned network by doubling the total capacity of link (7, 10) on

ARPANET (Figure 3.8). The rest of the network remains the same. All

algorithms are compared in Figure 4.25. The results of WSP and CAR-M

on dimensioned ARPANET are also shown for comparison. WSP, CAR-G,

and CAR-M show the same performance for all loads on misdimensioned

ARPANET. The blocking probability of CAR and CAR-C increase by about

16% at high loads: CAR and CAR-C use a linear sum of link load ratio for

all links in the path. When Link (a, b) presents an exceptionally low load,

the overall estimated congestion level becomes much smaller than the real

network congestion. In contrast, CAR-G and CAR-M are robust because

higher loaded links have higher weights than lighter loaded ones in a geo-

metric sum or the sum of opportunity costs. The one-link opportunity cost

increases exponentially to the traffic load, as I show in Figure 4.11.

I also study the performance on randomly misdimensioned networks. Each

link of ARPANET is re-dimensioned randomly in a uniform range from

max(⌊Ce(1 − α)⌋, 0) to ⌈Ce(1 + α)⌉, where Ce is the dimensioned capac-

ity shown in Figure 3.8. The level of misdimensioning is defined by a real

number, α ∈ [0, 1], called the misdimensioning factor. The network becomes

more misdimensioned as α increases. For a given α, I average the results

on different misdimensioned instances until the 95% confidence interval is

within ±5% of the data values. Figures 4.26 and 4.27 show that CAR-G

and CAR-M degrade more slowly than other CAR-x algorithms. Since the

network is misdimensioned on a much larger scale compared to the previous

setup, the average blocking is always worse than it is on the dimensioned

network.

4.2.6 Comparison to Previous Work

I compare CAR-x to two previous threshold-based approaches, SDR and

COL, described in Algorithm 2.1. I use both the original SDR and COL

algorithms (denoted as SDR-orig and COL-orig, respectively) as well as my

improved versions (SDR and COL). SDR-orig uses only a fixed threshold
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Figure 4.25: Comparison of routing algorithms on misdimensioned
ARPANET with total capacity of link (7, 10) doubled.
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Table 4.4: SDR and COL algorithms.

Line 3 Line 4 Lines 5-6 Line 8

SDR-orig
[31]

γp =
∑

e∈p

B(Ce, le)

B(Ue, le)

(4.14)

min γp remove γq < η = 1

SDR γp =
∑

e∈p

B(Ce, le)

B(Ue, le)
min γp

no
change

γq < η

COL-orig
[33]

γp =
∑

e∈p

υ−
Ve
Ce (4.15) min γp remove γq < η = 1

COL γp =
∑

e∈p

υ−
Ve
Ce

min γp
no
change

γq < η = 1

η = 1. My version always accepts TSL paths and tries to optimize the

threshold value for the best blocking performance. Table 4.4 summarizes the

changes to the CAR algorithm to implement SDR-orig, SDR, COL-orig, and

COL.

The comparisons with CAR-M on the dimensioned topologies are shown in

Figures 4.21 and 4.22. The optimized υ for COL-orig is 1020, and for COL is

1012, on ARPANET. On other topologies, however, the optimal parameters

for COL-orig and SDR are changed. SDR-orig also presents a higher blocking

probability at low loads. On scaled ARPANET (Figures 4.23 and 4.24),

COL-orig, COL, and SDR require re-optimized parameters. At their optimal

threshold values, COL and SDR perform the same as CAR-M. In practice,

however, optimizing SDR and COL is challenging. SDR has three parameters

to optimize: the threshold, the scan interval, and the sample number (the

latter two are not shown in the figures). For COL, the best µ value increases

exponentially with the network capacity.
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I show that SDR-orig and COL-orig favor shorter connections. The block-

ing probability at each TSL group is compared in Figure 4.28. SDR-orig rep-

resents a deliberate choice to always accept the single-link path. This choice

may be appropriate in a network dominated by telephony traffic, which tends

to have high geographic locality [17]. Preference to shorter connections (Fig-

ure 4.21) may not be acceptable in a network dominated by other types of

data traffic.

Improved SDR and COL are robust to network misdimensioning. Both

SDR and COL perform well on misdimensioned ARPANET with link (a, b)

capacity doubled (Figure 4.25). When I randomly change link capacity by

20 percent of the dimensioned total (Figure 4.26), CAR-M and COL show

an advantage over SDR at low loads. As the network becomes more misdi-

mensioned (with 40% changes in Figure 4.27), SDR and COL show slightly

better results compared to CAR-M.

Table 4.3 compares routing times. Both original and improved versions

are similar in timing. COL is comparable to CAR. Routing time for SDR is

much slower, even without accounting for the overhead of updating link load

at 1/20 the interval of the average holding time.

4.3 Oracular Optimal Routing

Long-term optimization of dynamic traffic demands is neither feasible nor

meaningful as a point of comparison. The precomputed results are subopti-
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mal because the amount of future knowledge is limited. Since rerouting is not

allowed for existing connections, in practice, the optimization of a sequence

of oracular future arrivals is always placed on a residual network with some

existing connections. In particular, given information about a number of fu-

ture requests (as well as the current state of the network and the termination

times for active connections) the oracle selects routes for future requests in

a way that minimizes the number of those requests that cannot be routed.

This oracular result thus puts a lower bound on the blocking rate achieved

by any algorithm operating in the window considered. The oracular window

size is selected so as to make the problem of finding the oracular optimum

tractable.

I now describe the oracle optimization problem in more detail and present

an ILP formulation that allows us to solve it. Optimization begins at a

specific simulation time after the network has reached a steady state. In

addition to information about the current state of the network and hold time

information for all active connections, the optimizer receives a number of

future requests with arrival and departure information. (This is the “oracle”

part; no real algorithm can have such information.) Figure 4.29 shows an

example of six oracle requests and active connection information that should

be recorded. (The routes used by each connection active at the start of the

optimization window must also be recorded, of course, but are not readily

shown by a timeline.)

Let E be the set of graph links, and let R be the set of oracle request pairs,

including the arrival and departure timestamps. Let t be a discrete timeline

ordered by the arrival time of requests. Therefore, a set of requests sorted by

arrival time can be indexed by t. Let rt be the request that arrives at time

t, and let drt be the scheduled departure time for request rt. Let Ce,t be the

residual capacity on link e at time t, at which point any capacity freed by

the termination of active connections before time t has been considered in

the network resource constraints. Let Prt be the set of all available paths for

request r based on the network’s residual capacity at time t. Let qrt be the

requested capacity of pair rt. Let Qe represent the set of paths that traverses

edge e ∈ E. Denote by yrt a binary variable representing the acceptance

of request rt. A solution with rt = 0 implies that rt is not taken, while a

value of 1 means taken. The variable xrt,p is a positive integer representing

the occupancy of path p ∈ Prt . Again, 0 means not taken, while any other
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number represents the number of wavelength channels assigned to that path.

The ILP formulation is stated as follows.

Maximize
∑

rt

yrtqrt

∀rt ∈ R,
∑

p∈Prt

xrt,p ≥ yrtqrt (4.16)

∀rt ∈ R, ∀e ∈ E,
∑

p∈Qe∩Prt

xrt,p +
∑

rτ :τ<t,drτ≥t

∑

p∈Qe∩Prτ

xrτ ,p ≤ Ce,t (4.17)

xrt,p ∈ Z+ (4.18)

yrt ∈ {0, 1} (4.19)

Equation (4.16) ensures that for each accepted request (right side), enough

paths have been allocated to handle the request (left side). Equation (4.17)

constrains the channels utilized at any point t in time and at any edge e to the

capacity available in the network. The right side of the equation is simply

the capacity available in the link e at time t, considering both the initial

capacity of the link and the capacity dedicated to connections that were

active at the start of the optimization period and have not yet terminated.

The terms on the left side include the channels to be provided for request t,

as well as the channels provided for other connections allocated before t and

terminating after t. The last two equations constrain the values of the integer

variables that specify how requests are accepted and routed. As a general

form, the ILP solution may assign multiples to one request that maximize

the utilization of network resources. However, I do not consider a request

capacity greater than one here; thus, no splitting of capacity would occur on

multiple available paths. Equivalently in the ILP formulation, the x variables

are binary and qs are uniformly one.

Finally, I compare RFR and CAR with the oracular optimal result (OPT)

in Figure 4.30. Due to the limitation of computational resources for larger

networks, we reduce the per link capacity to 48. Dynamic arrival rate ranges

from 1 to 10. Each request asks for one unit capacity. No splitting of paths

can occur during optimal routing. The experiment is on the NJ LATA net-

work, and I use SPF to run the first 10,000 arrivals on the network to reach
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Figure 4.29: Illustration of Oracle requests.
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Figure 4.30: Comparison of blocking rates on NJ LATA and OPT.

and obtain a steady state. Then, the next 200 requests are routed by SPF,

WSP, RFR, and OPT, respectively. Each data point is an average of 1000

experiments. In this experiment, starting with the same initial network

state, CAR is the closest online algorithm to OPT. As the network load

increases, the gap between RFR and OPT increases, showing that oracular

knowledge becomes increasingly important to reduce blocking in congested

network states. Without the aid of oracular knowledge, CAR provides the

lowest blocking rate.
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4.4 Conclusion

I propose a reduced flow online routing algorithm that provides the lowest

blocking and network resource usage, compared to commonly used online

algorithms. RFR is most robust to changes in traffic load and shows timing

advantages relative to other flow-based algorithms. I also improve online

routing with threshold-based admission controlled mechanisms. Using an

opportunity cost model, I efficiently estimate the optimal threshold value

for the threshold. The model enables me to find several improved conges-

tion estimation routing algorithms. Compared to other algorithms found

in previous studies, CAR-M is fast and the optimal threshold value can be

identified analytically and is robust to changes in important network param-

eters, such as topology and capacity. I also discuss an oracular optimization

model, showing that the long-term optimization of a network is practically

impossible. The results show that good performance is achieved more effec-

tively through deciding whether to admit an available route altogether versus

which route to use.
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CHAPTER 5

DIMENSIONING DYNAMIC

TRANSLUCENT NETWORKS

This chapter discusses the problem of dimensioning resources for dynamic

translucent networks. In particular, I consider the Reconfigurable Optical

Add-Drop Multiplexer (ROADM) network model, which is introduced in

Section 2.1.1. For these networks, optical transponders (OTs), 3R regener-

ators (REGENs), and wavelengths are disjoint network resources that must

be considered separately. A previous study [40] addressed only the REGEN

placement problem for this type of network. However, OTs, REGENs, and

wavelengths can all affect overall blocking probability, so understanding the

dynamics between blocking probability and each resource type is a more im-

portant problem. With more variables, dimensioning translucent networks

becomes more challenging than dimensioning opaque ones.

I choose CORONET as a targeted design for an efficient resource dimen-

sioning algorithm. Poisson dynamic traffic and four different wavelength

operating modes with different levels of wavelength channel restrictions are

anticipated for the network. I propose a dimensioning algorithm for OTs,

REGENs, and wavelengths and evaluate the performance and cost under the

four operating modes. My study shows that bounding the upper limit of the

set of usable wavelength achieves the most balanced resource usage.

5.1 Resource Dimensioning Algorithm

On CORONET, the minimal cost route between any pair of nodes is unique,

but the placement of REGENs can vary. I use a virtual-link graph model

to ease the routing process. A virtual link is created for every reachable

optical transparent segment; REGEN is needed to connect two virtual links.

The dimensioning algorithm uses a simulation approach that estimates the

resource demands on each node and link for a given traffic matrix, as shown
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in Algorithm 5.1. Let N be the set of nodes, E be the set of physical links,

and V be the set of virtual links. Let W be the set of wavelength channels.

The connection request set is denoted by D = {(s, d)|s 6= d ∈ N}, and

λr is the arrival rate for a node pair r ∈ D. A route on the virtual-link

graph is denoted by p = {Vp, Np}, where Vp is the set of virtual links, and

Np is the set of regen nodes. p(e) is the wavelength assigned on physical

link e ∈ E. At node n, On is the dimensioned number of OTs, while Rn

is the dimensioned number of REGENs. Cw,e indicates whether wavelength

channel w is dimensioned at physical link e.

Simulation runs routing of 20,000 Poisson arrival calls until steady state.

Initially, I assume that all resources are available. An arrival is accepted on

the preassigned min-cost path if there are enough OT, REGEN, and wave-

length resources. Each connection requires two OTs at each of the end nodes,

one wavelength on each link, and one REGEN between two virtual links. I

use first-fit wavelength assignment. If the preassigned min-cost path is not

available, I find another available min-cost path. Each link has maximally

80 wavelength channels, and the maximal number of OTs and REGENs is

unbounded. The dimensioned network is acquired by averaging the final used

resources of 1000 random runs and rounding each resource allocation to the

nearest integer. At the dimensioning stage, I assume the maximal network

capacity can support 100% traffic load so no blocking occurs. At the routing

stage, the actual traffic follows the same distribution as the dimensioned traf-

fic. Since only dimensioned resources are available for use, call blocking can

occur. Each arrival first tries the preassigned min-cost path. If the path is

not available, I accept the connection on an alternative min-cost path that is

available in the residual graph. If there are not enough resources on any path,

the call is rejected. As with dimensioning, first-fit wavelength assignment is

used.

5.2 Wavelength Operating Modes

Once OTs and REGENs are installed, reallocating them is expensive and

infrequent. Once a DWDM system is installed on a fiber pair, all wavelength

channels on that fiber can potentially be used. Depending on the operating or

charging mode, a network carrier may use the channels more flexibly. I antic-
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Algorithm 5.1: Dimensioning for an independent Poisson traffic ma-
trix.
1 foreach request pair r ∈ D do

2 Find a minimal cost path on the virtual-link graph spfr;
3 Overall counter ctr ← 0;
4 Generate a random traffic matrix λr ∈ UNIF(1, 5), ∀r ∈ D;
5 while ctr < 1, 000 do

/* Set maximal resources */

6 ∀e ∈ E,∀w ∈ W, C′

w,e ← 1;

7 ∀n ∈ N, R′

n ←MAX;
8 ∀n ∈ N, O′

n ←MAX;
9 Arrival counter actr ← 0;

10 while actr < 20, 000 before reaching steady state do

11 Generate a new Poisson arrival or departure request j;
12 if j is an arrival of pair r(s, d) then

/* Allocate resources on path pj */

13 actr ← actr + 1;
14 if spfr is free then

15 Route j on pj ← spfr;
16 else

/* Assume enough resources */

17 Route j on an available min-cost path pj (firstly found and using first-fit) ;

18 foreach virtual link v ∈ Vpj
do

19 foreach physical link e ∈ v do

20 C′

pj (e),e
← 0;

21 foreach node n ∈ Npj
do

22 R′

n ← R′

n − 1;
23 O′

s ← O′

s − 1;
24 O′

d
← O′

d
− 1;

25 else /* Release resources for departure request on path pj */

26 foreach virtual link v ∈ Vpr do

27 foreach physical link e ∈ v do

28 C′

pr(e),e
← 1;

29 foreach node n ∈ Npr do

30 R′

n ← R′

n + 1;
31 O′

s ← O′

s + 1;
32 O′

d
← O′

d
+ 1;

33 ∀e ∈ E,∀w ∈ W, Cw,e ←
ctr

ctr+1
Cw,e + 1

ctr+1
(1− C′

w,e);

34 ∀n ∈ N, Rn ←
ctr

ctr+1
Rn + 1

ctr+1
(MAX − R′

n);

35 ∀n ∈ N, On ←
ctr

ctr+1
On + 1

ctr+1
(MAX −O′

n);

36 ctr← ctr + 1;

/* Round to the nearest integers */

37 ∀e ∈ E,∀w ∈ W, Cw,e ← round(Cw,e);
38 ∀n ∈ N, On ← round(On);
39 ∀n ∈ N, Rn ← round(Rn);
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ipate four different modes for operating wavelength channels. In the TIGHT

mode, only the wavelength channels in the dimensioned network are available

for use. This mode represents networks that partition wavelength channels

between dynamic traffic and statically provisioned traffic. Each wavelength

channel in this mode is restricted to its predefined use. The BOUND mode

is a variation of TIGHT that allows the use of all channels with ranks under

the maximum-dimensioned channel rank on each link. Since I use first-fit

wavelength assignment for both resource dimensioning and routing, lower-

ranked channels are more likely to be packed than higher-ranked channels.

Therefore, BOUND can lower the blocking probability with little additional

cost. The next mode, LOOSE, bounds only the number of channels to be

used on each link but allows the choice of which specific channels to use at

routing time. This mode reflects networks with more flexible channel allo-

cations that nevertheless require the maximum number of channels used at

any time not to exceed the number dimensioned. Finally, the FREE mode

allows free use of all channels on dimensioned fibers. Dedicated dimensioned

networks are likely to operate in this mode because fibers are not shared with

other types of traffic.

5.3 Simulation Results

As noted, the simulation uses CORONET and assumes a 40Gbps system

with an optical reach of 932 miles. Each fiber pair contains 80 wavelength

channels. I use 100 for the normalized cost of an OT, 150 for a REGEN,

and 0.07 for the cost per λ-channel-mile. Using the 15 large cities shown

in Figure 5.1, I allow connection requests to be generated between any pair.

For 100% traffic load, the arrival rate for each pair is uniformly chosen from

1 to 5. The departure rate is 1. Connections arrive at an average rate of one

per hour and last for an average of three hours.

Figure 5.2 shows the blocking probability of the four operating modes from

load 0.5 to 0.8. The traffic load is defined by proportionally reducing the

holding time for each connection. Each data point is an average of simulating

100 random traffic matrices. As expected, the FREE mode yields the lowest

blocking. I also study the contributions of each of the three types of resources

to the total blocking probability and attribute a blocked call to OT blocking if
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Figure 5.1: U.S. CORONET with 15 large cities highlighted. Links are
labeled with distance in miles.

no OTs are available at the end nodes. Otherwise, if a blocked call would have

been accepted given enough REGENs (only nodes previously dimensioned

with some REGENs), I attribute the call to wavelength blocking. Other

blocked calls count as REGEN blocking.

The total blocking probability and the distribution of blocking in the three

resource categories can change with shifts in wavelength constraints for dif-

ferent operating modes. For the TIGHT mode, REGENs and wavelengths

are the major constraining factors. OTs become the major constraining fac-

tor in the FREE mode since wavelength constraints are completely removed

(and the need for REGENs is also reduced). The LOOSE mode shows a

higher blocking on wavelengths because it provides more freedom of choice

on wavelength channel than BOUND and TIGHT modes, and thus more

blocked calls are attributed to wavelength blocking versus REGEN blocking.
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Figure 5.2: Blocking probability on CORONET for random dynamic
connection requests from 15 large cities.

The BOUND mode costs only an average 0.88% dimensioning overhead rel-

ative to the TIGHT mode. But the FREE mode costs an average of 40.37%

dimensioning overhead. With little overhead, BOUND provides the best bal-

ancing of resources and the best overall performance relative to TIGHT and

LOOSE modes.

5.4 Conclusion

This chapter proposes an efficient resource dimensioning algorithm that al-

locates OTs, REGENs, and wavelengths for dynamic ROADM networks. I

study the performance of a carrier-grade ROADM network under four modes

of wavelength channel operation. My results provide network carriers with

useful guidance for balancing resource investments on the network.
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CHAPTER 6

DIMENSIONING DYNAMIC OPAQUE

NETWORKS FOR LINK FAILURE

RESTORATION

Failures in optical networks can cause the loss of enormous amounts of data.

For critical applications that require rapid service recovery, varied protec-

tion schemes have been proposed. However, many applications can tolerate

short-term outages and can be exempt from the added expense of provid-

ing protection. These applications can be classified under best-effort traffic,

which is rerouted when there is a failure. This process can take seconds to

minutes (in contrast to protected traffic with rapid recovery, which is 50 to

100 microseconds). Differentiating traffic based on the level of survivabil-

ity on IP/GMPLS networks has been studied to take advantage of the cost

saving opportunities that different types of traffic offer [41, 42].

This chapter explores the potential of network restoration by applying the

dimensioning techniques from Chapter 3. These best-effort traffic techniques

take more minutes to find a new path, so we do not need to provision the

backup path ahead of time. However, before the failure is repaired, the

network should be able to restore most of the connections and operate at

normal performance with new arrivals. The key question concerns how much

extra capacity is needed for the network to sustain good performance after

a single link failure.

I start with quantifying the short-term impact of single-link failures by

computing the percentage of reroutable connections. The percentage of

reroutable connections starts to drop steeply at network load 0.75 and be-

yond. I then quantify the longer-term impact of link failures, which I show

is critical to network performance. My results show that performance can

be severely limited for traffic on certain nodes. Under failure conditions,

some nodes experience blocking probability 100 times higher than the one

under normal operation. I then quantify the costs associated with restoring

the network. The thesis applies a redimensioning technique that effectively

rebalances the network and addresses the issue of fairness among nodes.
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The redimensioned network in fact requires the amount of resources close to

shared path protection.

6.1 The Cost of Protection

I use ARPANET to illustrate the ideas and performance results covered in

this chapter, but other well-known networks such as NJ LATA and NSFNET

were also evaluated.1 Poisson processes are used to model call arrivals and

hold times. Each connection requests a uniform 1-unit capacity and has the

same departure rate. The departure rate is determined by the network load

(i.e., the product of the projected departure rate and the load ratio). The

arrival rates are uniformly distributed between 1 to 10, and the load ratio is

varied at some fraction of the projected traffic load. Each request demands

the same capacity and hold time, and SPF is used.

Table 6.1 reports the total number of linecards that drive all wavelength

capacity for ARPANET with and without protection for a 100% projected

load. The original network is dimensioned with an average of 1000 randomly

chosen, fully loaded, projected traffic matrices from the same uniform dis-

tribution. Since the number of linecards is the true network resource that

drives the wavelengths, we use linecard capacity for network cost. The num-

ber of linecards is computed by doubling the number of wavelength channels

dimensioned. For protected networks, I apply a similar dimensioning algo-

rithm for the same dynamic traffic until steady state. The only difference is

that I route two paths, a primary path and a backup path, for each arrival.

The backup path is path disjoint to the primary one, so any existing connec-

tion is protected under any single link failure. The wavelength capacity is

also converted into the number of linecards. The dedicated path protection

(DPP) always uses the shortest backup path. The wavelength capacity used

by both the primary and backup path is removed on the departure of the

arrival. Since the backup path can be longer than the primary path, DPP

can cost more than 100% of the original capacity. For shared path protec-

tion (SPP), I use a greedy algorithm to find the best shared backup path

for each arrival. A new shared backup path may share the wavelength re-

sources of some existing backup paths if their primary paths will not fail at

1These results are omitted for brevity, given that they exhibit similar trends.
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Table 6.1: Protection capacity overhead (at 100% expected load).
Protection Scheme #linecards % overhead

no protection (reroute) 7702 0%
DPP 19202 149%

SPP(N-hop backup) 11848 53%
SPP(shortest backup) 12424 61%

Restoration and Redimensioning
Worst case 11683 52%

Mobile linecards 8556 11%

the same time. The N-hop scenario finds any backup path of the lowest cost.

The shortest length finds only the lowest cost amongst the shortest paths.

Therefore, shared channels are removed if and only if no existing connection

is using the channel. Any channel used by a primary path is removed upon

the departure of the arrival. The overhead of the SPP is smaller than DPP

because of sharing.

6.2 Impact of Link Failures on Restoration

6.2.1 Reroutability

Even though the class of traffic in question is considered noncritical, and thus

has no protection assigned, it is important to guarantee stability in perfor-

mance. For this traffic, rerouting is used to restore the broken connections.

Rerouting is to find a new available route for a broken connection and it

is initiated as soon as the end points detect path failure. Rerouting does

not require capacity reservation and does not depend on failure localization.

However, as there is no extra capacity is reserved, one can reasonably expect

to see less than 100% recovery. The metric used to measure the immediate

impact of a link failure is the reroutability ratio. This measure is obtained

by taking the ratio of the number of connections that can be successfully

rerouted to the total number of connections affected by the failure, when the

system is in steady states. The reroutability ratio is obtained by averaging

100 runs of randomly chosen traffic. Figure 6.1 shows this reroutability un-

der a dimensioned network. Starting with a half load (where all connections

can be rerouted), most of the connections at load ratios below 0.75 can be
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Figure 6.1: Reroutability after a one-link failure on dimensioned
ARPANET. Each data point is an average of single failure cases for all links.
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Figure 6.2: Comparison of overall steady-state blocking of a one-link failure
on ARPANET with and without redimensioning. Each data point is an
average of all single link failure scenarios.

rerouted. However, the next section shows that the real impact on perfor-

mance occurs after the rerouting stage, before the failure can be physically

repaired.

6.2.2 Steady-State Blocking

Until the failure is physically repaired, the network is left operating under

suboptimal conditions. Due to the failed link, many of the connections are

also forced to use (topologically) non-shortest paths, as well as a limited

number of path choices, which exacerbates the impact of the failures. The

steady-state blocking probabilities of the network before and after a link

failure at different load ratios are shown in Figure 6.2. The numbers for
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Figure 6.3: The steady-state blocking of each node on ARPANET at load
ratio 0.75.

after-failure results are averaged over all single link failure scenarios. The

average blocking performance under a link failure may seem reasonable up

to relatively high load ratios (for example, 0.77, where blocking is around

5%). However, when the blocking probability for each node is computed,

there is a detrimental impact in terms of fairness. Figure 6.3 shows each

network node’s blocking probability under normal operation and after failure

along with the worst-case blocking for each node. At a load ratio of 0.75,

requests may be blocked over 30% of the time (a load ratio of 0.75 was

chosen for demonstration purposes because the post-failure blocking remains

reasonable, at slightly below 5%). At a load ratio of 0.85 (around 3% blocking

without failures, as shown in Figure 6.2), a link failure causes some nodes

to drop about a third of their traffic, with the rest of the network dropping

around 13% on average.

Repairing an optical link can take a few days to a week. The process

is much slower than the anticipated arrival rate of dynamic traffic, which

is one in tens of minutes or an hour. Before the failure is repaired, the

dynamic network is left in extreme congestion if no additional resources are

provisioned.

6.3 Redimensioning and Discussion

In order to rebalance network resources when a failed link occurs, the net-

work is redimensioned with the failed link removed for the same expected

100% traffic load using the basic dimensioning algorithm (Algorithm 3.1).
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Figure 6.4: Distribution of dimensioned linecards over nodes.

Each single link failure scenario gives a different distribution of linecards on

nodes. Practically, each node should prepare enough linecards for a quick

installation whenever the worst-case failure occurs. Therefore, the cost of

a redimensioned network is the sum of worst-case linecards on each node.

Figure 6.4 shows the original capacity and the worst-case capacity after red-

imensioning over all link failures. The overhead is a result of an increase in

many topological shortest paths with a link missing. The total worst-case

capacity is 11,683, which is 52% over the original capacity. The overhead

of redimensioning is close to the overhead of N-hop backup SPP. Further, if

the linecards are mobile (in which the spare linecards at one location can be

shipped and installed at another location timely), the total required capacity

is reduced to the maximum total capacity over all failure cases, which is 8556

(only 11% overhead). However, such mobility is not expected to happen in

near future optical networks.

6.4 Conclusion

I measure the impact of link failures on dynamically routed networks beyond

the recovery stage and showed significant degradation in longer-term per-

formance. I then illustrate that a network redimensioning algorithm can be

used to restore network balance, but it still requires an overhead of linecards

that is close to that of SPP.
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CHAPTER 7

DIMENSIONING MULTIPLE DYNAMIC

OPAQUE NETWORK DOMAINS

Network domains vary for many different reasons that range from manage-

ment decisions to geographic locations to vendor-specific component tech-

nologies. Multi-domain networks can be defined as the joining of peer indi-

vidual networks (e.g., single routing areas (RA)) through a set of connected

border nodes (external network-network interface (E-NNI) as defined in OIF

or edge routers (ER) in GMPLS networks). Domains can also be defined hi-

erarchically, corresponding to multiple layers of the optical network (DWDM,

SONET/SDH, IP routers, etc) that historically have been implemented in

many carrier networks [2].

The ability to dynamically establish connections across the network be-

comes increasingly important in supporting applications that require high

bandwidth on demand. Given the diverse geographic locations of end-users

and service providers, many connection requests will require dynamic pro-

visioning across multiple network domains with varying protocols and stan-

dards (as well as ownership and management policies). Recent progress in

new standards development and multi-domain control plane design improves

support for multi-domain services at the optical layer. However, it has also

opened the door to new problems that arise in designing algorithms and

evaluating performance of multi-domain dimensioning, routing, and man-

agement [43, 44]. Many studies have been devoted to designing control and

signaling platforms to enable inter-domain path computation. [45, 46] pro-

posed path computation schemes with various QoS constraints in a multi-

domain context. A network service plane has been developed to integrate

diverse transport network systems [47]. A path computation element (PCE)

framework has been extended to support cross-domain shortest path selec-

tion [48]. The authors in [49] proposed a framework for a wavelength path

establishment mechanism using a ranking database. However, resource pro-
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visioning, which is critical to dynamic network performance, has not been

considered.

This chapter quantifies the performance of three inter-domain network

dimensioning approaches paired with appropriate routing algorithms. I pro-

pose a fairness measure to capture the penalty of inter-domain traffic on each

network. Using the two basic routing schemes presented by [50], end-to-end

global shortest path routing and source-initiated concatenated shortest path

routing (equivalent to a single node for two domain case)–I illustrate poten-

tial fairness issues in peer-viewed domains. A normalized (and more fair)

routing scheme is introduced for limited information sharing. The impact

of network scaling and traffic load deviations is shown. My study of multi-

domain provisioning for dynamic traffic motivates a new direction in network

design in which fairness in network operating costs and benefits is considered.

7.1 Problem Description

In Chapter 3, I saw that an unbalanced network can artificially obscure the

differences in performance between various routing algorithms and that a

dynamically routed network must be dimensioned properly in order to take

full advantage of the overall capacity set in place. When considering a multi-

domain network, not only should each domain be dimensioned for its own

intra-domain (internal or local) traffic but also it should provide support for

inter-domain (external) traffic. When considering network domains that are

owned and managed independently, resource usage can become more com-

plicated. I show that one poorly dimensioned domain can cause performance

degradation in other well-dimensioned domains. In addition, fluctuations in

both internal and external traffic can also affect the performance of exter-

nal/internal traffic. Therefore, multi-domain dimensioning cannot be solved

by simply dimensioning single domains independently. It requires a better

understanding of the interaction between network domains and considera-

tion of the impact that levels of shared information (for dimensioning and

routing) has on overall performance.

Routing through multiple domains, especially when the domains are bound

by conflicting economic interests, raises questions about fairness that require

careful attention. A simple example of a conflict between two domains is
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Figure 7.1: NSFNET-ARPANET joint topology (link number is shown on
each link).

shown here. Figure 7.1 is a two-domain network connecting NSFNET and

ARPANET. Each network has three border nodes (marked in solid color)

connected to the borders of the other domain. Each domain may have sub-

domains, but for the purpose of this study I use only main domains with

different ownership. Between the node pair (A, B), we have two choices of

global shortest paths, denoted path 1 and path 2. Without loss of generality,

if each link has the same cost, path 1 favors ARPANET because fewer re-

sources are used on the ARPANET side. However, path 2 favors NSFNET.

When both paths are available, which network should bear the extra cost

to establish a connection from A to B? This question not only requires a

closer look at performance tradeoffs, but also it motivates cost models for

dimensioning and routing policies that consider the notion of fairness.
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7.2 Multi-Domain Network Dimensioning

A dynamic network domain must be dimensioned for both inter-domain and

intra-domain traffic. Inter-domain traffic is routed through its border nodes:

the selection of border nodes is thus critical to the performance and fairness

for both domains. Such routing introduces additional loads between inter-

nal nodes and border nodes in each network domain. This section discusses

general multi-domain dimensioning algorithms. For illustration purposes, all

discussions are presented for two-domain scenarios, but my results can be

readily extended to an arbitrary number of domains using standard informa-

tion sharing/hiding techniques, e.g., topology aggregation or virtual topology

abstraction.

I assume that every node in each domain can initiate Poisson arrivals to all

other nodes in the same domain and to all other nodes in the other domains

(equivalent to a full-mesh demand). Domains are joined through their border

nodes, on which each border node is connected to a border in the other

domain. In most cases, the number of border nodes in both domains is the

same. A link connects each pair of border nodes (as shown in Figure 7.1).

In practice, it is possible for some border node pairs to be located in the

same building/site. In such cases, they may be viewed logically as a single

node with finite capacity (equal to the inter-domain link capacity). In fact,

the mapping of border nodes between two domains may also not be one-to-

one; however, such variations do not affect how dimensioning and routing

techniques are designed.

Dimensioning for external traffic for each domain can be treated as dimen-

sioning for additional traffic between each pair of internal nodes to border

nodes. I separate the capacity of external and internal traffic loads for the

purpose of analysis: in practice, the wavelength resources are shared and

no distinction in usage is made. I also define the capacity CI
b for the inter-

domain links that connect border node pairs. Each dynamic connection pair

(internal or external) has arrival/departure/capacity rates defined.

The intra-domain traffic matrix is defined as it is for a single domain

(Chapter 3). Let T = {(λ, µ)}R be the traffic matrix, where λ is the arrival

rate, µ is the departure rate for all request pairs in all end-to-end request

pairs R. All traffic across domains, i.e., source and destination nodes are

from different domains, is external traffic. Let N be the set of nodes in this
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domain and S be the set of nodes in the other domain. The external traffic

matrix is defined by T ′ = {(λ, µ)}N×S, where the same arrival and departure

rates, λ and µ, apply for each external request pair. On a given domain,

all external traffic comes from its border nodes. Let N ′ be the set of border

nodes. The equivalent external traffic on the local network is modeled by a

traffic matrix, T ′L, in which the arrival and departure rates between all nodes

n ∈ N and all borders b ∈ N ′ are defined and the elements are indexed by

(n, b). The traffic load between any external node s and local node n can

come from any one of the borders. Let pn,s,b be the probability that traffic

between n and s comes from border b, such that
∑

b∈N ′ pn,s,b = 1. Therefore,

the equivalent external arrival rate for n and b is an aggregated arrival rate of

all external nodes, weighted by the probability, pn,s,b. Equation 7.1 presents

the equivalent external traffic matrix on the local network. The entire traffic

matrix is then the sum of T and T ′L for the same pair of nodes.

T ′L = {(
∑

s∈S

λpn,s,b,
∑

s∈S

µpn,s,b)}N×N ′

(7.1)

The projected load of a network is the amount of traffic that the total

given network capacity can support without being overloaded. Equation 7.2

defines the projected load for internal traffic. It is the ratio of average traffic

load (stochastic arrival/departure rate times the topological shortest path

lengths) to the total available network capacity. Topological Shortest Length

(TSL) is the minimum number of hops for a connection in an empty network;

obviously, available shortest paths selected on residual networks can be longer

than their TSL. For external traffic, the average amount of resources used

for each connection is the average shortest path lengths to all border nodes.

Equation 7.3 defines the external traffic load. All dimensioning techniques

use the same load metrics for fair comparison.

proj loadint =

λ
µ

∑
i∈R TSLi∑
e∈E Ce

(7.2)

proj loadext =
|N ||S|λ

µ

∑
b∈N ′

TSL(n,b)

|N ′|∑
e∈E C ′e

(7.3)

Note that dimensioning a network domain to support traffic to the other

domain can be the same as dimensioning a single network with an estimate
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of external traffic distribution on borders. I use the basic dimensioning algo-

rithm (Algorithm 3.2) to dimension each network separately, using the sum

of T and T ′L. The external load (so as to the total capacity) on each domain

network remains the same regardless of dimensioning algorithms. Using a

similar dimensioning approach, the capacity of inter-domain links is deter-

mined according to Equation 7.4.

CI
b =

⌊λ

µ

∑

n∈N

∑

s∈S

pn,s,b

⌋
(7.4)

7.3 Several Routing and Dimensioning Techniques

This section discusses three dimensioning techniques that estimate the traf-

fic loads to each border node (i.e., pn,s,p). This depends on the amount

of information shared across domain borders and the inter-domain routing

agreement.

Three dynamic routing algorithms are used here. The first two are the

same as the algorithms found in [50]. In source-initiated concatenated

shortest path routing (CSR), the requesting node chooses the closest

border node and uses the shortest path. Starting from this border node, the

path in the other domain is selected. No information other than the desti-

nation is shared between border nodes. If the downstream domain cannot

find a path to the destination through the selected border or the inter-border

link is full, the call is rejected.1 End-to-end global shortest path rout-

ing (E2E) chooses the border nodes that result in available shortest global

paths. Network domains do not have to disclose detailed topology and link

load information to other domains. For each connection request, they need

broadcast only the available (reachable) shortest path distance from source

to each border for the source domain, from each border to all other borders

for the intermediate domains, and from each border to the destination for the

destination domain. Then, the global shortest path can be found by choos-

ing the combination that yields the shortest length global path. If a domain

has no available paths or if two domains cannot join paths due to resource

1I omit crankback path selection because paths found by other shared routing algo-
rithms present similar properties to those found by fail-and-retry mechanisms in two-
domain cases.
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unavailability, the call is rejected. Equation 7.5 shows the computation of

shortest paths between connected border pairs in two-domain networks. The

border pair is picked with minimum lE2E
b,b′ . Normalized global shortest

path routing (nE2E) is similar to E2E, but each reported distance is

normalized by the average TSL of each respective domain before being ad-

vertised and summed. Equation 7.6 shows the computation of nE2E path

length. The pair of border nodes is picked with minimum normalized dis-

tance lnE2E
b,b′ . nE2E is important because E2E favors the border node selection

for the larger network when two domains are of different sizes: since the the

larger domain is more likely to have longer paths to the border, its shortest

path length can dominate the length of the global shortest path and force

the smaller domain to pick unfavorable paths.

For example, assume available SPF lengths from a source node to three

borders are 5, 7, and 11 hops in the larger domain A (average TSL=7). In

the smaller domain B (average TSL=2), three corresponding borders to the

destination node can be 3, 2, and 1 hops away. In E2E, the path with 5

hops in A and 3 hops in B is chosen. In nE2E, the path with 7 hops in A

and 2 hops in B is chosen. Although the path picked by nE2E is longer, it is

more fair and yields better overall performance for both internal and external

traffic on the network, if the network is also dimensioned for nE2E.

lE2E
b,b′ = TSL(n,b) + TSL(s,b′) (7.5)

lnE2E
b,b′ =

|R|TSL(n,b)∑
i∈R TSLi

+
|S|TSL(s,b′)∑

i∈S×S TSLi

(7.6)

I now describe the computation of pn,s,b in three dimensioning algorithms.

Once the distribution is computed, I can use the basic dimensioning algo-

rithm (Algorithm 3.2) to dimension each network separately. Independent

shortest path dimensioning (IS) is used for two networks that share only

node information.2 In this case, an internal node has no idea which border

node(s) external calls will come from. Therefore, external traffic is split uni-

formly across all border nodes, in this case, pn,s,b = 1
|N ′|

. Global shortest

path dimensioning (GS) allocates wavelength resources using least-cost

2Node information is the minimal amount of information needed to support full
bandwidth-on-demand services; no request is ever made without knowing which desti-
nation node to connect to.
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Algorithm 7.1: Computation of pn,s,b for GS/NS.

1 foreach inter-domain connection pair (n, s) do
2 foreach border node pair (b, b′) from each domain do
3 Compute the total path length lE2E

(b,b′) (or lnE2E
b,b′ for NS);

4 Identify the subset of borders B ⊆ N ′ of minimal total path length;
5 foreach shortest path border nodes b ∈ N ′ do
6 pn,s,b = 1

|B| for b ∈ B, pn,s,b = 0 for b /∈ B;

routes crossing two domains (assuming E2E). This approach is used when

two networks are willing to share path lengths at the border node (the ap-

propriate E-NNI interface) to pick the global shortest path. The traffic rate

to each border node is then weighted by the likelihood that each border node

will be chosen using E2E. Algorithm 7.1 shows the computation of pn,s,b for

each inter-domain connection pair (n, s). Normalized shortest path di-

mensioning (NS) is similar to GS except for the metric used to compute

the concatenated shortest path length. Algorithm 7.1 shows the procedure

to compute pn,s,b for NS, assuming the use of nE2E.

7.4 Fairness Measurement

I propose a penalty ratio to measure the fairness of resource usage on each

network domain for shared routing. The penalty incurred by each network,

computed by Equation 7.7, sums the normalized number of extra hops used

for each inter-domain routing. For example, if the TSLs of an internal node

to three borders are 1, 4, 10, and the selected path uses the border that is

4 hops away, the penalty for that connection is 3. The total penalty for the

dimensioned network is the weighted sum of penalties to all border nodes,

given the traffic load distribution. Then, the penalty ratio of two networks

is the ratio of the penalty of each domain.

penalty =
λ

µ

∑

n∈N\N ′,s∈S,b∈N ′

pn,s,b

TSL(n,b) −minn,k∈N ′ TSL(n,k)

minn,k∈N ′ TSL(n,k)

+
λ

µ

∑

n∈N ′,s∈S,b∈N ′

pn,s,bTSL(n,b) (7.7)
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Table 7.1: NSFNET wavelength
capacity (total 1491).

link# IS GS NS
0 60 65 74
1 31 38 37
2 75 68 70
3 79 62 61
4 108 94 91
5 126 114 112
6 65 57 52
7 104 88 79
8 80 105 119
9 43 57 66
10 92 96 97
11 44 45 42
12 36 38 38
13 84 91 94
14 34 45 48
15 21 31 34
16 82 62 48
17 90 113 117
18 122 97 86
19 49 49 47
20 66 76 79

Table 7.2: ARPANET wavelength
capacity (total 2496)

link# IS GS NS
0 26 26 26
1 71 67 64
2 144 116 118
3 93 93 96
4 48 48 51
5 123 114 115
6 89 78 81
7 55 53 51
8 29 40 37
9 116 95 92
10 118 80 75
11 127 81 90
12 145 126 125
13 135 166 165
14 49 59 60
15 10 19 17
16 41 52 51
17 42 56 51
18 67 111 106
19 50 82 75
20 100 91 101
21 68 99 96
22 205 153 172
23 63 80 80
24 38 48 48
25 65 91 84
26 34 45 46
27 36 39 37
28 31 60 55
29 167 119 124
30 65 62 61
31 46 47 46
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7.5 Simulation Results and Discussion

I ran simulations on joint NSFNET-ARPANET networks (Figure 7.1) with

uniform arrival rates and departure rates for Poisson traffic. Table 7.1 shows

the dimensioned network capacity for NSF, while Table 7.2 shows it for

ARPANET. For routing, I ran multiple random arrival sequences until the

95% confidence interval fell within ±5% of the results. In my network con-

figuration, the computed penalty ratio for NSFNET to ARPANET is 2.46

using GS and 0.99 using NS. Therefore, NS-nE2E is a fairer dimensioning

and routing scheme compared to GS-E2E since it is closer to one.

Figures 7.2–7.4 show the inter-domain call blocking probabilities and intra-

domain blocking on NSFNET and ARPANET, respectively, as the inter-

domain load changes. The results show that a significant reduction in block-

ing can be achieved using shared information dimensioning (GS and NS)

compared to IS. For example, an over 90% reduction in call blocking can be

seen at load 0.95. However, applying shared routing on an independently di-

mensioned network instead of independent routing (CSR) does not improve

the result significantly. Therefore, the networks must be jointly dimensioned

in order to fully benefit from shared routing algorithms.

In terms of resource allocation, NSFNET has a higher external/internal

capacity ratio (2.82) compared to ARPANET (1.38) because it is a smaller

network. In other words, NSFNET has to pay more for capacity to sustain

the inter-domain traffic in proportion to its own size. Internal traffic blocking

is greatly improved using a fair routing scheme (nE2E) on NSFNET without

affecting the performance of (Figure 7.3). ARPANET Figures 7.5–7.7 show

the changes in blocking performance on the three types of traffic as the

NSFNET is scaled (Figures 7.8–7.10 show ARPANET scaling). Note that

using shared dimensioning, a network cannot under-dimension below 0.95 of

the desired traffic load without hurting the performance of other traffic, both

internally and externally. However, using independent dimensioning, the

internal blocking of one network actually increases when the other network

is overdimensioned (Figures 7.7 and 7.9).

Because an overdimensioned network can sustain more inter-domain traf-

fic, it puts more pressure on the internal traffic of the other network. As

the capacity of one network further increases, the blocking probability of

the other network becomes stable because the inter-domain links become
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Figure 7.2: Inter-domain blocking (internal offered load 1.0).
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Figure 7.3: NSFNET internal blocking (internal offered load 1.0).
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Figure 7.4: ARPANET internal blocking (internal offered load 1.0).
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Figure 7.5: Inter-domain blocking (all offered load 1.0).
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Figure 7.6: NSFNET internal blocking (all offered load 1.0).
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Figure 7.7: ARPANET internal blocking (all offered load 1.0).
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Figure 7.8: Inter-domain blocking (all offered load 1.0).
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Figure 7.9: NSFNET internal blocking (all offered load 1.0).
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Figure 7.10: ARPANET internal blocking (all offered load 1.0).
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saturated and limit the volume of inter-domain traffic. When there is no

capacity limit on inter-domain links3, Figures 7.11–7.16 show similar trends;

but much lower blocking can be achieved for shared dimension algorithms.

This is because unlimited inter-domain links prevent external traffic routing

through unfavorable paths (much longer than TSL) to a nonoptimal border

node that has available capacity.

7.6 Conclusion

I quantify the performance and fairness of various routing and dimensioning

schemes in a multi-domain environment with simple abstract levels of infor-

mation being shared between the domains. I propose the metrics to measure

the loads of multi-domain traffic and the fairness of dimensioning and routing

schemes. My results show that joint provisioning—for both dimensioning and

routing—and playing fair are crucial to the performance of both networks for

both internal and external traffic. I also show that scaling of one network

domain can affect the performance of the other network, especially if they

are independently dimensioned. These results motivate the need to gain a

deeper understanding of the interaction between network domains of vary-

ing sizes, especially to maximize the overall performance and fairness across

domains that are independently owned.

3Typical cross-domain links, like cross-ocean cables, can have sufficiently more capacity
allocated.
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Figure 7.11: Inter-domain blocking (all offered load 1.0, CI
b =∞).
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Figure 7.12: NSFNET internal blocking (all offered load 1.0, CI
b =∞).
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Figure 7.13: ARPANET internal blocking (all offered load 1.0, CI
b =∞).
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Figure 7.14: Inter-domain blocking (all offered load 1.0, CI
b =∞).
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Figure 7.15: NSFNET internal blocking (all offered load 1.0, CI
b =∞).
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CHAPTER 8

DIMENSIONING AND ROUTING FOR

DYNAMIC WAVELENGTH SERVICES ON

TRANSLUCENT NETWORKS

There is a need for rapid, on-demand connection provisioning for large cus-

tomers, such as national banks or chain retailers, who manage high-rate

private line networks spreading over multiple cities. Carriers already offer

bandwidth-on-demand services at lower data rates, such as AT&T’s Hosh

VPN [51] and Optical Mesh Service (OMS) [52]. Expanded service models

have been proposed for high data-rate, bandwidth-on-demand private net-

works at the photonic layer [53]. With these dynamic wavelength services, a

customer can purchase/lease photonic access interfaces at multiple locations

and set up photonic connections to support high (wavelength) rate private

lines between pairs of available access interfaces. Carriers must preinstall

enough network resources to support arbitrary changes of customer connec-

tions.

One goal of a carrier is to minimize installed network resources needed to

support dynamic wavelength services. However, finding an optimal network

resource dimensioning solution for even one customer requires prohibitive

computing power. Given a fixed set of access interfaces, a customer can

interconnect them in a large number of potential patterns. The carrier has

the opportunity to route each connection over many possible routes in the

backbone network. The number of possible routes grows exponentially in

network scale. Furthermore, other provisioning variables, such as wavelength

selection and placement of intermediate regenerators, further increase the size

of the problem. Even if provisioning is done at the design phase, one must

reduce the problem space to enable near-optimal solutions to be found. In

the future, customers may even add or remove a few ports gradually, either

monthly or weekly. Fast provisioning algorithms are important for network

carriers to serve a large number of customers timely and efficiently.

On the other hand, many dynamic wavelength service applications are

also mission critical, including private networks for military, financial, and
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medical use. These networks often require additional reliability and robust-

ness [54]. As the dynamic wavelength service allows customers to change

their connections over time, taking down and restoring a connection can cost

tera-bytes of data loss on a 10 Gbps link with current system technology.

Such loss is intolerable for many critical applications. Therefore, the carrier

must provision its network to be nonvolatile, that is, to ensure that existing

connections are not affected by demand changes. I find that the optimal

provisioning solution is generally volatile, even allowing one photonic bridge-

and-roll (B&R) operation per connection. A nonvolatile solution is needed

and proposed for the dynamic wavelength service to successfully serve these

applications.

This chapter discusses the dimensioning and routing problem for a prac-

tical dynamic traffic model, called the dynamic wavelength service, on a re-

configurable optical add/drop multiplexers (ROADM) network, a type of

translucent optical network. First, I introduce efficient algorithms to solve

the resource optimization problem for a single customer. In particular, I

propose a demand-matrix reduction technique that can greatly simplify the

problem, as well as an efficient lower bound computation. Next, I develop

heuristic optimization algorithms based on simulated annealing and genetic

algorithms and a few heuristics for search space reduction. Also shown there

is an scalable and fast greedy approach to the problem. I study the robustness

of the dimensioned network by analyzing the volatility of the optimal provi-

sioning solution for two types of traffic modes: individual demand changing

mode and maximum demand changing mode. A sufficient condition for a

guaranteed nonvolatile resource provisioning is proposed.

8.1 Problem Description

This section formulates an integer linear programming (ILP) problem for

resource optimization. Finding an optimal solution is impractical given the

size and structure of the problem.

In a ROADM network of a set of nodes N , the customer has a fixed number

of OT ports at each node, denoted by On, where n ∈ N . The customer can

connect nodes freely if spare ports are available.

112



Denote E for the set of physical DWDM links. The set of virtual links is

denoted by V. A virtual link, v ∈ V, is a set of physical links corresponding

to a simple path. V includes virtual links representing individual physical

links ({e ∈ E}), as well as paths within an optical reach limit ({e1, e2, e3}).
Each physical link is associated with a distance le in miles. Each virtual link

is also associated with a distance value that is the sum of distance values of

all member physical links (Equation 8.1).

lv =
∑

e∈v

le (8.1)

A route p includes a set of virtual links, along with wavelength assignment

information (pv) and a set of regen nodes (pn). The cardinality of pv is the

number of transparent segments in the path. If a route has three segments,

the route is represented by p = {Vp = {(v1, w1), (v2, w2), (v3, w3)}, Np =

{n1, n2}}, where v1 ∩ v2 = v1 ∩ v3 = v2 ∩ v3 = ∅, n1 6= n2 given simple path

constraints. The route cost C(p) is associated with a common cost rate CC

and a REGEN cost rate RC in Equation 8.2.

C(p) = CC

∑

(v,w)∈Vp

lv + RC|pn| (8.2)

The definition of the customer’s traffic demands is the following.

Definition 1 (Demand). A demand is a unique OT-to-OT bidirectional con-

nection between a pair of nodes.

If there is more than one connection between a node pair, each connection

is treated as a distinct demand.

Definition 2 (Port constraint). A port constraint is the maximal number of

connections allowed at each node in the network.

Port constraints thus ensure that the number of ports at one node is less

than or equal to the sum of ports at all other nodes.

∀i, Oi ≤
∑

j∈N,j 6=i

Oj (8.3)

Definition 3 (Demand matrix). A demand matrix is a set of demands within

the port constraint of a customer.
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Definition 4 (Routable). A demand is routable if at least one route is avail-

able in the network to connect the demand.

Definition 5 (Demand matrix satisfactory). A demand matrix is satisfied if

all member demands can be routed concurrently.

Using the dynamic wavelength service, the OT cost is fixed per customer.

Only REGEN and wavelengths are subject for optimization.

Definition 6 (Dimensioned network). A dimensioned network is a network

with enough wavelength capacity and REGEN devices to satisfy all demand

matrices.

A dimensioned network is described by (We,w, Rn), ∀e ∈ E, w ∈ W, n ∈ N .

W is the set of wavelengths available in a fiber. We,w is a binary variable

that indicates whether wavelength w on physical link e is allocated. Rn is a

nonnegative integer representing the number of allocated REGENs at node

n. In this paper, I assume that the number of wavelengths and REGENs

allocated is always smaller than the capacity.

A demand matrix is a possible set of concurrent connections that may be

requested by the customer. Sharing of network resources is allowed between

demands of different demand matrices since they are different sets of concur-

rent connection requests. However, no resource sharing is allowed within a

demand matrix. Let N(d) be the node pair of a demand d. PN(d) is the set of

possible routes for that pair regardless of resource availability. On a dimen-

sioned network, for each demand matrix D ∈ D, a route must be available

for each demand d ∈ D. A customer can have many possible dimensioned

networks.

The resource optimization problem is to find a route allocation for each

demand that produces the minimal-cost dimensioned network. The cost

objective function for the network is defined by Equation 8.4.

minimize CC

∑

e∈E

∑

w∈W

We,wle + RC

∑

n∈N

Rn (8.4)

Let the binary value Xp,d be the indicator for whether a route p ∈ PN(d)

is chosen for demand d. One route is selected for each demand.

∀D ∈ D, ∀d ∈ D,
∑

p∈PN(d)

Xp,d = 1 (8.5)
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Figure 8.1: Virtual-link graph of a triangular network with node and link
numbers.

Equation 8.6 prevents wavelength sharing within the same demand matrix

and ensures that only allocated wavelengths are used to route demands. I{}

is an indicator function, which is 1 if the condition is met or 0 if not.

∀e ∈ E, ∀w ∈ W, ∀D ∈ D,
∑

d∈D

∑

p∈PN(d)

I{(v,w)∈Vp,e∈v}Xp,d ≤We,w (8.6)

Equation 8.7 prevents REGEN sharing within the same demand matrix.

∀n ∈ N, ∀D ∈ D,
∑

d∈D

∑

p∈PN(d)

I{n∈Np}Xp,d ≤ Rn (8.7)

I use Figure 8.1 to illustrate an example. The customer has one OT

port at each node. The port constraints are O0 = O1 = O2 = 1. As-

sume l0 = 400, l1 = 400, l2 = 900, and l3 = 800 (in miles). There are

three demand matrices. Each demand matrix contains one demand. They

are d0,0 = (0, 1), d1,0 = (0, 2), and d2,0 = (1, 2). The optimal solution is

W0,1 = W1,1 = 1, Wi,j = 0otherwise. Route {(0, 1), ∅} is assigned to d0,0.

Route {(1, 1), ∅} is assigned to d1,0. Route {(3, 1), ∅} is assigned to d2,0. No

REGEN is required. All demands can share the same wavelength channel.

8.2 Differentiation to the Hose Model for VPN Traffic

Dynamic wavelength service shares some similarity with the “hose model”

that was proposed for characterizing VPN traffic [51]. The hose model defines

the total input and output bandwidth (which can be different) of each access

node and allows variable node-to-node pipe bandwidth. Kumar et al. [55]

proposed the optimal tree solution for the hose model as the tree topology
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Figure 8.2: An example that the optimal solutions may not be a tree.
Physical graph of a triangular network with node port numbers and link
distances in miles. All links are 400 miles. Assume that reachability is 932
miles. If all nodes have two ports, the optimal solution is one wavelength
per link, which is not a tree.

presents several advantages for the IP network. Dynamic wavelength service

is an analogy of hose model at the photonic layer. The input and output

bandwidths are the same since wavelength routes are bidirectional. How-

ever, the tree solution can not be readily applied to our problem for the

following reasons. First, as with VPNs, the optimal solution does not have

to be a tree. Figure 8.2 shows an example. Some benefits of the tree net-

work, such as simplified label switching does not apply to the photonic layer.

Second, Kumar’s polynomial time tree construction problem for symmetric

bandwidth (equal I/O bandwidths for all nodes) does not directly apply to

my problem with wavelength continuity and REGEN placement problems.

Figures 8.3 and 8.4 show examples that the lowest-cost tree is not necessarily

the lowest cost after wavelength assignment or REGEN placement, even if

Kumar’s original algorithms are extended for weighted graphs.

8.3 Optimization Techniques

I next introduce demand-matrix reduction and problem decomposition tech-

niques. The input of the optimization problem, i.e., the number of demand

matrices, can be reduced using my demand-matrix reduction algorithm.

8.3.1 Demand-Matrix Reduction

The number of demand matrices grows rapidly in terms of the number of

ports. Table 8.1 presents the numerical values of the demand matrices for

a few representative constraints. Figures 8.5 and 8.6 show that the total

number of demand matrices grows exponentially in terms of the number of
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Figure 8.3: An example showing that Kumar’s algorithm does not apply to
the wavelength assignment problem. (a) Physical graph of a network. The
nodes are marked with the number of ports available and links are marked
with distance in miles. Assume that reachability is 932 miles. (b) The
lowest-cost tree created applying Kumar’s algorithm. (c) Minimal
wavelength assignment requires 5× 200 = 1000 miles. (d) An alternative
tree. (e) Minimal wavelength assignment requires 2× 200 + 2× 250 = 900
miles, which is smaller than the wavelength cost of (c).
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Figure 8.4: An example showing that Kumar’s algorithm does not apply to
the REGEN placement problem. (a)Physical graph of a network. The
nodes are marked with the number of ports available and links are marked
with distance in miles. Assume that reachability is 932 miles. (b) The
lowest-cost tree created applying Kumar’s algorithm. (c) Minimal
wavelength and REGEN placement requires 2 REGENs and 3 wavelengths.
Total costs 0.07(2× 900 + 800) + 2× 150 = 482. (d) An alternative tree. (e)
Minimal wavelength and REGEN placement requires 1 REGEN and 3
wavelengths. Total costs 0.07(3× 900) + 150 = 339, which is smaller than
the wavelength cost of (c).
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ports. Figure 8.7 shows that the number also grows exponentially in terms

of the number of nodes. I now develop techniques to reduce the number of

demand matrices used for optimization.

Port Number Bound

Figure 8.8 shows growth in the number of demand matrices versus one

node’s port count, with other nodes’ ports staying fixed. The number of

demand matrices converge to a fixed number, 2609, when O3 ≥ 15. The

reason is obvious: the 16th port cannot find a peer port to connect to if all

other 15 ports are connected. In practice, no customer will buy a 16th port.

Maximal Demand Matrix

The solutions to some demand matrices will apply to a large number of

other demand matrices. For example, assume the port constraint for three

nodes is O0 = 2, O1 = O2 = 1. If a demand matrix D = {(0, 1), (0, 2)} is

satisfied, demand matrices D1 = {(0, 1)}, D2 = {(0, 2)} that are subsets of

D must also be satisfied. Therefore, I do not need to include D1 or D2 if D

is included in the optimization. I define a maximal demand matrix as the

following.

Definition 7 (Maximal demand matrix). A maximal demand matrix is a

demand matrix to which no more demands can be added without removing

an existing demand.

Maximal demand matrices satisfy a “same node rule” for spare OTs. The

proof is easy: if two nodes have spare OTs, at least one more new demand

can be created by connecting their spare ports.

Lemma 1 (Same node rule). ∀M ∈ M, at most one node that has spare

OTs can exist in M .

The number of maximal demand matrices is often smaller than the total

number by two orders of magnitude, as shown in Figures 8.5–8.8. Although

the growth of maximal demand matrices is much slower than the total num-

ber, it is still exponential in the number of ports for some cases.

Reduced Demand Matrix

I can further reduce the number of demand matrices by using the spare OTs

in one demand matrix as REGENs. Figure 8.9 shows that D1 can be reduced

into D2. The red demand in D1 can be covered by the red demands in D2.

The blue demand in D1 can be covered by the blue demand in D2. Therefore,
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Figure 8.5: Semi-log plot for demand-matrix counts for three nodes with
the same number of ports: O0 = O1 = O2 = x. The total number of
demand matrices and maximal demand matrices grows exponentially in
their number of ports. The number of reduced demand matrices follows
Theorem 3.
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Figure 8.6: Semi-log plot for demand-matrix counts for four nodes with the
same number of ports: O0 = O1 = O2 = O3 = x. All numbers grow
exponentially in their number of ports.
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Figure 8.7: Semi-log plot for demand-matrix counts for x nodes with one
port each. ∀x, Ox = 1. The numbers grow exponentially in their number of
nodes.
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Table 8.1: Comparison of demand-matrix counts.
O0 O1 O2 O3 total max reduced
1 1 1 0 3 3 3
2 2 2 0 10 4 1
3 3 3 0 22 6 3
4 4 4 0 41 7 1
5 5 5 0 68 9 3
6 6 6 0 105 10 1
7 7 7 0 153 12 3
8 8 8 0 214 13 1
9 9 9 0 289 15 3
10 10 10 0 380 16 1
15 15 15 0 1123 24 3
20 20 20 0 2485 31 1
25 25 25 0 4653 39 3
30 30 30 0 7815 46 1
35 35 35 0 12158 54 3
40 40 40 0 17870 61 1
5 5 5 0 68 9 3
5 5 5 1 239 21 3
5 5 5 2 512 42 21
5 5 5 3 863 52 10
5 5 5 4 1247 79 55
5 5 5 5 1619 73 21
5 5 5 6 1933 100 66
5 5 5 7 2179 88 15
5 5 5 8 2353 100 45
5 5 5 9 2469 86 10
5 5 5 10 2538 89 28
5 5 5 11 2577 77 6
5 5 5 12 2596 77 15
5 5 5 13 2605 71 3
5 5 5 14 2608 71 6
5 5 5 15 2609 69 1
2 1 1 0 4 2 1
3 2 2 0 12 4 3
4 3 3 0 26 5 1
5 4 4 0 47 7 3
3 2 2 1 39 8 3
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Figure 8.8: Log-linear plot for demand-matrices counts for four nodes with
O0 = O1 = O2 = 5, O3 = x. The numbers stay the same for
O3 ≥ O0 + O1 + O2.

if D2 is satisfied, D1 can be satisfied by connecting the blue demand on the

route of the blue demand in D2 and connecting the red demand on the routes

of the two red demands in D2. The routes for the red demands are connected

at node 2 by pairing the spare two OTs that are not used in D1. Since I

pair the two OTs as a REGEN, the two routes can be connected regardless

of total distance and wavelength colors. Therefore, D1 is also satisfied.

The condition for reducing one maximal demand matrix to another is

explained in the following.

Definition 8 (Reduction). Let A ∈M be a maximal demand with spare OTs

at node no, and let B ∈M be another maximal demand matrix. The demands

of the same node pairs in A and B, denoted by A ∩ B, are automatically

reduced. The demands left to be reduced in A are denoted by α = A\(A∩B).

The demands left in B are denoted by β = B \ (A ∩ B). If β contains all

the demands required to reduce all demands in α by using OTs at node no,

s.t.
⋃

(i,j)∈α{(i, no)
⋃

(j, no)}|Ω(i,j)| ⊆ β, where Ω(i,j) = {d ∈ α|N(d) = (i, j)}
is the number of demands of pair (i, j) in α, A can be reduced into B.

Then, I have a necessary and sufficient condition to identify reduced de-

mand matrices.

Theorem 1. A demand matrix is a reduced demand matrix if and only if

the demand matrix has one extra OT port for constraints with an odd total

number of ports and zero extra ports for constraints with an even total number

of ports.
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Figure 8.9: Reduce maximal demand matrices. The port numbers on the
three nodes are O0 = O1 = O2 = 2. The maximal demand matrix
D1 = {(0, 1), (0, 1)} is illustrated graphically by two links between node 0
and 1. The maximal demand matrix D2 = {(0, 1), (0, 2), (1, 2)} is also
illustrated graphically. D1 is reduced into D2 by mapping the blue demand
in D1 to the blue demand in D2 and mapping the red demand in D1 to the
red demands in D2. The two spare OTs at node 2 for demand D1 are
connected as a REGEN to make the connection for the red demand. In
fact, all other maximal demands for the given port constraint can be
reduced to D2.

Proof. For necessity, I first show that a reduced demand matrix has no more

than one extra port. If a node n has two or more extra ports but no more

reductions can be made, all existing demands must connect to that node.

Therefore, On ≥
∑

i6=n Oi, which violates Equation 8.3. With an even total

number of ports, having one extra port is impossible, so no extra port exists.

With an odd total number of ports, all demand matrices have at least one

extra port, so exactly one extra port exists. For sufficiency, with fewer than

two extra ports, a demand matrix cannot be further reduced, so the matrix

must be a reduced demand matrix.

If a reduced demand matrix finds a route allocation, all demand matrices

that can be reduced into this one can use the same allocation. It proves

Theorem 2 that I need consider only reduced demand matrices for resource

dimensioning.

Theorem 2 (Satisfactory). If demand matrix A can reduce into B, demand

matrix A must be satisfied if demand matrix B is satisfied.

In fact, the reduction idea leverages spare OTs in some demand matrices

as REGENs in order to shrink both the total resource cost and the optimiza-

tion space. With this technique, fewer demand matrices are considered for

optimization, but the optimal result stays the same.

122



Reduction shrinks the number of demand matrices by another order of

magnitude relative to the number of maximal demand matrices (see Fig-

ures 8.5–8.8).

The number of reduced demand matrices forms a periodic pattern in some

cases (see Figures 8.5 and 8.8). In particular, for three nodes, I have the

following theorem. Let S be the set of reduced demand matrices.

Theorem 3. Assume the sum of ports in a port constraint of three nodes

O0 + O1 + O2 is even, |S| = 1. If O0 + O1 + O2 is odd, |S| = 3.

Proof. For three nodes, if there is an even number of OT ports, s.t. O0 +

O1+O2 = 2k where k ≥ 0, a demand matrix can maximally have k demands.

Let x be the number of demands between nodes 0 and 1. Let y be the

number of demands between nodes 0 and 2. Let z be the number of demands

between nodes 1 and 2. If these demands consist of a maximal demand

matrix and contain exactly k demands, x, y, z must satisfy the following

equalities, x + y = O0, x + z = O1, y + z = O2, such that all ports are

used. Solving the equation set, the maximal demand matrix S is solved:

x = 1
2
(O0 + O1 − O2), y = 1

2
(O0 + O2 − O1), z = 1

2
(O1 + O2 − O0). The

solution is unique. It can next be shown that all other maximal demand

matrices can be reduced into this demand matrix S. If a maximal demand

matrix contains l < k demands, there are 2(k − l) spare OTs in the graph.

In order to satisfy the condition of a maximal demand matrix, these spare

OTs must be located at one node. If node 0 has 2(k − l) spare OTs, I can

route (k − l) demands between nodes 1 and 2 to the demand route of (0, 1)

and (0, 2). Then, all spare OTs are used, and the reduced demand matrix is

the same as S because of uniqueness. Figure 8.9 is such an example: D2 is

the only reduced demand matrix for O0 = O1 = O2 = 2.

If there is an odd number of ports, the total number is O0 + O1 + O2 =

2k + 1 = 2(k− 1) + 3 where k ≥ 1. The demand matrix can maximally have

k demands, and one spare OT is left. If one port at each node is removed,

the total number becomes even, which is 2(k−1). According to the previous

discussion, a unique reduced demand matrix S ′ that contains k− 1 demands

can be found for the even portion of ports. Then, the remaining three ports

at one node each can create the last demand. The last demand thus combines

with S ′ to form a reduced demand matrix S for all ports. Since there are three

ways to create the last demand, there are three reduced demand matrices.
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The fact that only one demand matrix needs to be considered for an even

port count is extremely useful for the optimization. With only one demand

matrix, no sharing needs to be considered for optimization. The lower bound

computed by LowBound (discussed in Section 8.4.1) for this case is thus the

optimal result. A huge amount of computation time can be saved for this

special case. However, I have not found useful reduction patterns for more

than three nodes.

Figure 8.7 shows that the number of reduced demand matrices is still

exponential in the number of nodes. Specifically, Theorem 4 says that the

growth is at least on the order of a factorial.

Theorem 4. Consider n ≥ 3 nodes with Oi = 1 for all 0 ≤ i ≤ n − 1.

Let an be the number of reduced demand matrices for n nodes. Then, an =

n(n− 2)(n− 4) · · ·1 for n odd and an = (n− 1)(n− 3) · · ·1 for n even.

Proof. For an odd number of nodes n, there are n ways to choose one node

out of n. After this node is chosen, all other nodes can be paired. There is

a total of (
n−1

2

)(
n−3

2

)
· · ·1

(n−1
2

)!

ways of pairing. Canceling n−1
2

, n−3
2

, . . . with the denominator, the total is

(n − 2)(n − 4) · · ·1. Combined with the choices of the leftover node, the

number of reduced demand matrices is n(n − 2)(n − 4) · · ·1. In the same

way, if n is even, there are (n− 1)(n− 3) · · ·1 ways of pairing up.

8.3.2 Problem Decomposition

To solve an optimization problem, I must devise a plan to walk though the

solution space. For this particular optimization, I decompose the entire prob-

lem into a wavelength assignment problem and a route allocation problem.

Basically, I first choose a virtual-link graph route without wavelength as-

signments for every demand. The aggregation of all demand-route pairs is

called a route allocation. Let A be the set of all route allocations without

wavelength assignments. For each allocation, I find the minimum cost wave-

length assignment Aw. Aw is, in fact, a set of solved Xp,ds. The cost of Aw,
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Algorithm 8.1: Problem decomposition.

1 foreach Possible allocation A ∈ A do
2 Compute the optimal wavelength assignment Aw with minimal cost C(Aw);
3 Pick the route allocation that generates the lowest wavelength assignment cost

Amin ← arg minA∈A C(Aw);

a.k.a C(Aw), can be computed by Equation 8.4, where We,w and Rn equal

the left-hand sides of Equation 8.7 and Equation 8.6 with the solved Xp,d.

Finally, I choose the route allocation that generates the minimal cost.

Algorithm 8.1 shows the decomposition. Heuristic algorithms in later sec-

tions are built on this algorithm. There are many benefits from this decom-

position. I can focus on smaller problems and develop better optimization

techniques for each. The decomposition also helps us understand the prob-

lem structure better and trim the space more efficiently later for heuristic

optimizations.

Wavelength Assignment

Given the set of route allocation for all demands, finding the minimal cost

wavelength assignment is an NP-hard problem. The proof uses a reduction

from the known NP-complete k-color decision problem and shows that the

minimal cost wavelength assignment problem is at least as hard as the k-color

problem.

Theorem 5. The optimal wavelength assignment problem is NP-hard.

Proof. The decision problem of k-color is phrased as the following. Given a

graph and k distinct colors, can each node in the graph be labeled by a color

in k such that any adjacent nodes have different colors? The effort of proving

NP-completeness is to reduce the k-color problem into a decision wavelength

assignment problem, which includes create demands, demand matrices, and

routes.

For clarity, let me refer the original k-color graph as graph A and the

reduced network graph as graph B. The entire reduction is illustrated in

Figure 8.10. First, I create Demand matrix 1. For a given graph A, each

node is mapped into a demand in Demand matrix 1. For each link in graph A,

create a physical link in graph B. Then, allocate this link into the wavelength

routes of the two demands that map to the adjacent nodes of the link in

graph A. In order to create a realistic graph B and continuous routes for

each demand, additional links may be arbitrarily added into demand routes,
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Figure 8.10: Illustration of reduction of a 3-color problem to a wavelength
assignment problem. (a) The original 3-color graph A. (b) Create one
demand per node for Demand matrix 1. Assign each link in A into the
routes of demands that are adjacent to the link. For example, link 0 of A is
assigned to demand 0 and 1. (c) Create Demand matrix 2 that has 3
demands, each is assigned to a route includes all shared links in Demand
matrix 1. The number of demands created matches the number of colors.
(d) The physical link graph B that is created based on graph A. Links 4
and 5 are not shared and do not map to any link in graph A. Demand
route (physical links) allocation is as the following: Demand M (0, 1),
Demand N (0, 4, 5, 2, 3), Demand S (1, 2), Demand T (3), Demand U (0,
1, 2, 3), Demand V (0, 1, 2, 3), Demand W (0, 1, 2, 3). Note that each
route is on a virtual link that includes all listed physical links. As Demand
matrix 2 requires at least 3 wavelengths on all shared links, the min-cost
wavelength assignment problem is whether 3 wavelengths on Links 0, 1, 2,
and 3 are sufficient for Demand matrix 1.
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given that these links do not map to any of the links in A and must belong

to only one demand. Therefore, only these links that have a mapping in A

are shared by demands.

Second, I create Demand matrix 2. Demand matrix 2 includes k demands.

Each demand is allocated with a route that includes all shared physical links

appearing in Demand matrix 1.

Further, for each demand, construct a virtual link that at least includes all

the links that map to A. (Assume that each link in B has the same distance

and the distance is small enough that the entire route of any simple route in

B is reachable.) This constraint ensures that all physical links included in the

virtual link must be assigned to the same wavelength. In this way, whenever

two demands share the same physical link, the virtual link that includes the

physical link can not be assigned to the same wavelength as they are in the

same demand matrix. The demand routes in the second demand matrix are

also constraint to virtual links. The setup of Demand matrix 2 guarantees

that at least k wavelengths on each shared physical links must be assigned.

The smaller number of wavelengths used, the smaller cost of wavelength

resources are allocated on graph B as all links in B are of the same distance.

For a min-cost assignment, Demand matrix 1 should maximize sharing to

the allocated k wavelengths and avoid extra wavelengths.

Then, the reduced wavelength assignment problem is whether k wave-

lengths is sufficient on these links in B that have a mapping in A. The

original k colors maps to k wavelengths. These links in B that do not map

to A are not shared, so their wavelength assignment does not affect the op-

timal value. For each demand, the physical links that have a mapping in

A have to be assigned to the same wavelength, and the wavelength is dif-

ferent from that of any other demand that shares physical links with this

demand. If there is an assignment that does not exceed k wavelengths, the

original graph A can be k-colored. The wavelength that is assigned to each

demand for their shared links is the color that the corresponding node in A

is labeled. The solution guarantees that adjacent nodes in A are not labeled

in the same color. The reduction is polynomial time as one needs only to

go through all nodes and links in A once. Once the k-wavelength decision

problem is solved (a.k.a. the min-cost assignment problem with two demand

matrices), mapping the solution to the k-color problem is trivial.
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Route Allocation

The route space is difficult to trim while retaining optimality due to the

complexity of sharing potential between demand matrices. To find an optimal

route allocation, I must try to combine routes for all demands. Example 1

illustrates this complexity.

Example 1. Using Figure 8.1, assume this time that l0 = 800, l1 = 800, and

l2 = 800 (in miles). Then, l3 = 1600 is unreachable. Let the customer’s new

port constraint be O0 = 2, O1 = 1, O2 = 1. Trivially, the optimal solution is

still a treelike structure, which is W0,1 = W1,1 = 1, or Wi,j = 0, otherwise.

To connect the demand between nodes (1, 2), the two spare customer OTs

at node 0 is used as a REGEN. However, when the customer ports increase

to O0 = 3, O1 = 2, O2 = 2, the optimal solution is no longer a tree, which

is W0,1 = W1,1 = W2,1 = 1, or Wi,j = 0, otherwise. For the two demands

between (1, 2), one uses link 2 and the other uses a route through links 1 and

0. In general, a large number of routes must be considered to find an optimal

solution.

8.4 Lower Bound Computation and Heuristic

Optimization

Structurally, the problem is a discrete combinatorial optimization problem.

Finding an optimal solution is challenging because of the problem size. The

number of possible routes per connection grows exponentially in terms of

network size. In general, the number of demand matrices after reduction may

also grow exponentially in terms of ports and nodes used by the customer.

The permutation space for wavelength assignments grows exponentially in

demand.

I now propose a useful lower bound and introduce the heuristic algorithms

for the wavelength assignment and route allocation problems. I also discuss

a few space-limiting heuristics that help to solve the problem faster. Fi-

nally, a greedy algorithm that provides fast computation for large problems

is developed.
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8.4.1 Lower Bound

A lower bound that is easy to compute is useful in practice. For this problem,

I can compute the minimal resource cost Cmin(D) for each demand matrix

D independently. The maximum of Cmin(D) over D ∈ D is the necessary

cost to support all Ds and is thus a lower bound for the problem. Since the

demands of the same demand matrix cannot share wavelength capacity, the

total cost for a demand is at least the sum of the cost of each route in each

demand. To find the minimal cost of each D, I simply choose the least-cost

route for each of its demands.

Finding the maximum cost demand matrix can be considered as an ILP

problem. Let P be the set of all possible node pairs. Let ci be the minimum

cost route for pair i ∈ P . Let xi be the integer variable indicating the number

of demands created for the pair i. The maximum cost demand matrix is

constructed by finding xi, ∀i ∈ P such that

maximize
∑

i∈P

xici (8.8)

The sum of demands for each node must observe the port constraint.

∀n ∈ N,
∑

i∈P,n∈i

xi ≤ On (8.9)

The problem space is exponential, as I must check every possible combi-

nation of ports (effectively finding all possible demand matrices). Therefore,

checking the cost of all reduced demand matrices is a better solution. The

cost of the combined routes through a third node (using OTs for a REGEN

as needed) is always greater than or equal to the least-cost route between

the source and destination nodes. Therefore, checking only the reduced de-

mand matrices gives the same lower bound as checking all demand matrices.

Procedure LowBound shows an algorithm. However, the number of reduced

demand matrices still grows exponentially although at a much smaller rate. I

can further reduce the average time complexity of the algorithm by combin-

ing ILP and LowBound. The idea is to first solve a relaxed problem (with real

coefficients), which is polynomial time. Then, I have a maximum cost with

nonintegral optimal x̂i values. The maximum cost is essentially an upper

bound for the optimal integer solutions. I can use the upper bound to enu-

129



Procedure LowBound–Compute the lower bound Clb of the network
resource cost.

Input: Reduced demand matrix set S
Output: The lower bound Clb

1 foreach reduced demand matrix D ∈ S do
2 Initialize Cmin(D)← 0;
3 foreach demand d ∈ D do
4 Get the least-cost path cost Cmin(d)← minp∈PN(d)

C(p);

5 Add the cost Cmin(D)← Cmin(D) + Cmin(d);

6 The lower bound Clb ← maxD∈S Cmin(D);

merate each reduced demand matrix in LowBound. If the cost of a demand

matrix equals the upper bound, the demand matrix is the “maximum cost

demand matrix” and I do not need to check the rest. However, if the upper

bound is loose, I must still check all demand matrices.

Computing the lower bound is polynomial time in the number of reduced

demand matrices and network size. Although the number of reduced demand

matrices grows exponentially in some cases, the complexity has been greatly

reduced compared to the original optimization problem.

8.4.2 Wavelength Assignment

I developed a simulated annealing version to solve the problem heuristically.

Trying the combination of all wavelengths for each route is not an efficient

approach. Only a few wavelengths are needed on each link when the traffic

demand is low. Instead, I propose a heuristic wavelength assignment algo-

rithm. The idea is to use a “first-fit” wavelength assignment strategy to

an ordered list of virtual link and demand tuples. For each virtual link in

the route to which the demand is allocated, a tuple is created. The tuple

is a wavelength assignment unit. We use virtual links because a route can

have different wavelengths on each virtual-link segment. Each permutation

of the order of tuples determines wavelength assignment priority. Without

loss of generality, I assign the wavelength to tuples in left-to-right order. The

wavelength assignment for a permutation is explained in AssignWavelength.

Figure 8.11 illustrates an example. According to the route allocation,

the list contains four tuples. If the wavelength assignment follows or-

der t1, t2, t3, t4, AssignWavelength gives the result: t1 = (v1, d0,0, 1), t2 =

(v2, d0,0, 1), t3 = (v3, d0,1, 2), t4 = (v4, d1,0, 1). The solution is suboptimal be-
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Procedure AssignWavelength–Assign wavelengths to a permutation.
Input: Virtual link and demand list L
Input: List permutation l
Output: Wavelength assignment Aw

l

1 foreach element (v, d, ∅) ∈ L iterated in the order of l do
2 foreach wavelength w from 1 to |W| do /* Maximize sharing by using

the same iteration order */

3 if w on all physical link e ∈ v is yet not assigned to any other demand in

the same demand matrix then /* Demands in the same demand matrix

cannot share wavelengths on the same physical link. */

4 Assign wavelength Aw
l ← Aw

l ∪ {(v, d, w)};
5 break;

route 2 (v3) for demand d0,1
v3

v1
v2

v4 route 3 (v4) for demand d1,0

route 1 (v1, v2) for demand d0,0

Figure 8.11: Wavelength assignment for the routes of three demands.
Relevant virtual links are marked with numbers. Route 1 uses two virtual
links, v1 and v2. Route 2 uses virtual link v3. Route 3 uses virtual link v4.
The problem contains three demands, denoted by ds,t, from two demand
matrices. Route 1 is allocated to demand d0,0. Route 2 is allocated to
demand d0,1. Route 3 is allocated to demand d1,0. Four tuples with empty
wavelength assignments are:
t1 = (v1, d0,0, ∅), t2 = (v2, d0,0, ∅), t3 = (v3, d0,1, ∅), and t4 = (v4, d1,0, ∅). t1, t3
must not share wavelengths because they share both demand matrix and
physical link.

cause t3 and t4 use different wavelengths, which occurs because of the first-fit

rule. However, if I assign t3 first using the permutation t3, t1, t2, t4, the algo-

rithm finds an optimal result.

I define a permutation of the virtual-link-demand list as a solution. A

neighbor solution is created by swapping any two virtual-link-demand tu-

ples. Depending on the temperature and the new cost, I decide whether or

not to move to the neighbor for the next iteration. Procedure SaWaveAssign

explains the details. The temperature-dropping schedule is determined ex-

perimentally. In my experience, the solution is not sensitive to minor changes

in schedule.
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The initial solution uses a permutation sorted by the count of physical

links. The link distance is used to break ties. The heuristic gives longer

links higher priority to assign wavelength. It increases the probability of

sharing for many cases but is not optimal for all. Assume the link distance

relationship in Figure 8.11 to be lv4 > lv1 > lv3 > lv2 . The heuristic link

assignment order is t4, t1, t3, t2, which is not optimal.

8.4.3 Route Allocation

I introduce two algorithms for route allocation. The algorithms use

SaWaveAssign for the wavelength assignment subproblem and generate the

final heuristic optimization results.

Simulated Annealing

The simulated annealing algorithm starts with allocating least-cost routes

to all demands. A neighbor solution is generated by randomly changing

the route of a random demand drawn uniformly over all demands. The op-

timal wavelength assignment cost of the allocation defines the cost of the

allocation. Again, depending on the temperature and the new cost, I de-

cide whether or not to move to the neighbor for the next iteration. Pro-

cedure SaOptimize explains the details. I use the same temperature-drop

schedule as in SaWaveAssign.

Genetic Algorithm

If many demands require longer routes for optimal solutions, the searching

speed of simulated annealing can be too slow since only one route is changed

in each step. In contrast, a genetic algorithm can explore more demand-route

combinations by generating a group of route allocations in each generation.

These allocations are evaluated and merged to create the next generation.

Procedure GaOptimize, shows the algorithm. Each demand-route tuple

represents a gene. The route set for the demand represents all possible choices

for this gene. A route allocation of all demands represents a chromosome. A

chromosome also maps to a solution. A set of chromosomes forms a genera-

tion. In my implementation, a generation is represented by a list of solution

and cost tuples. The first generation is a set of randomly chosen allocations.

Further generations are created by mating chromosomes from the previous

generation. The mating candidate is chosen using the RouletteWheelPick
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Procedure SaWaveAssign–Simulated annealing wavelength assign-
ment for route allocation.

Input: Allocation A for all demands
Input: Optimization steps k
Output: Optimal wavelength assignment Aw

1 Empty list L← ∅;
2 foreach demand d ∈ D ∈ S do
3 Get the route allocation p← A(d);
4 foreach virtual link v ∈ p do
5 Create a link-demand tuple (v, d, ∅);
6 L← L ∪ {(v, d, ∅)};
/* Initial wavelength assignment */

7 Get permutation l by sorting L in descending order of number of physical links
and distance in v;

8 Aw
l ← AssignWavelength(L, l);

/* Compute the lower bound */

9 Get lower bound Clb ← LowBound();
10 Get initial cost c← C(Aw

l );
11 Initialize minimum cost cm ← c;

/* Temperature schedule */

12 Set start temperature T ← 10c; /* Start temperature is set 10 times the

initial cost. */

13 Set minimal temperature Tm ← 0.0001; /* It is extremely unlikely to move

to a higher cost neighbor at this temperature. */

14 Linear temperature drop step ∆T ← T−Tm

k
;

15 while k ≥ 0 and c > Clb do
16 Create a new permutation l′ by swapping the order of two uniformly chosen

tuples in l;
17 Aw

l′ ← AssignWavelength(L, l′);
18 New cost c′ ← C(Aw

l′ );
19 if c′ < cm then
20 c← c′;
21 l ← l′;

/* Save the new minimum */

22 cm ← c′;
23 Aw ← Aw

l′ ;

24 else
25 Get a uniform random real number x ∈ [0, 1);

26 if e−
c′−c

T > x then /* Move to the neighbor. If c′ < c, always

move. */

27 c← c′;
28 l ← l′;

29 Update temperature T ← T −∆T ;
30 Update steps k ← k − 1;
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Procedure SaOptimize–Simulated annealing route allocation opti-
mization.

Input: Reduced demand matrix set S
Input: Optimization steps k
Input: Optimization steps for wavelength assignment k′

Output: Optimal allocation and wavelength assignment Aw

/* Compute the lower bound */

1 Get lower bound Clb ← LowBound();
/* Initial path allocation */

2 foreach demand d ∈ D ∈ S do
3 A(d)← argminp∈PN(d)

C(p);

4 Get the wavelength assignment Aw ← SaWaveAssign(A, k′);
5 Get initial cost c← C(Aw);
6 Initialize minimum cost cm ← c;
/* Temperature schedule */

7 Set start temperature T ← 10c; /* Start temperature is set 10 times the

initial cost. */

8 Set minimal temperature Tm ← 0.0001; /* It is extremely unlikely to move

to a higher cost neighbor at this temperature. */

9 Linear temperature drop step ∆T ← T−Tm

k
;

10 while k ≥ 0 and c > Clb do
11 Uniformly choose a demand d′ ∈ D ∈ S;
12 Uniformly choose a new route p 6= A(d′) ∈ PN(d′);
13 Get a new allocation A′ by A′(d′)← p, A′(d)← A(d), ∀d 6= d′;
14 Get the wavelength assignment A′w ← SaWaveAssign(A′, k′);
15 New cost c′ ← C(A′w);
16 if c′ < cm then
17 c← c′;
18 A← A′;

/* Save the new found minimum */

19 cm ← c′;
20 Aw ← A′w;

21 else
22 Get a uniform random real number x ∈ [0, 1);

23 if e−
c′−c

T > x then /* Move to the neighbor. If c′ < c, always

move. */

24 c← c′;
25 A← A′;

26 Update temperature T ← T −∆T ;
27 Update steps k ← k − 1;

134



Procedure GaOptimize–Genetic algorithm route allocation optimiza-
tion.

Input: Reduced demand matrix set S
Input: Generations k
Input: Population per generation s
Input: Optimization steps for wavelength assignment k′

Output: Optimal allocation and wavelength assignment Aw

1 Crossover rate α← 0.6;
2 Mutation rate β ← 0.001;

/* Compute the lower bound */

3 Get lower bound Clb ← LowBound();
4 Initialize minimum cost cm ←∞;

/* Generate a random generation of s allocations */

5 for i from 1 to s do

6 foreach demand d ∈ D ∈ S do

7 Ai(d)← p where p is uniform randomly chosen in PN(d);

8 Get the wavelength assignment Aw
i ← SaWaveAssign(Ai, k′);

9 Compute cost ci ← C(Aw
i );

10 if ci < cm then /* Record the minimum cost */

11 cm ← ci;
12 Aw ← Aw

i ;

13 while k > 0 and cm > Clb do

/* Generate a new generation of s allocations */

14 for i from 1 to s do

/* Mating algorithm */

15 Get the father m← RouletteWheelPick({(Aw
i , ci)}

s);
16 Get the mother n← RouletteWheelPick({(Aw

i , ci)}s);
17 Get a uniform random real number r ∈ [0, 1);
18 if r > α then

19 Get a uniform random integer a ∈ (1, |Am|);
20 Create a child by merge two parents A′

i ← Am[1 : a] + An[a + 1 : |Am|];

21 else

22 Copy the father to the child Ai ← Am;
/* Mutation algorithm */

23 foreach demand d ∈ D ∈ S do

24 Get a uniform random real number r ∈ [0, 1);
25 if r < β then

26 A′

i(d)← p where p is uniformly chosen in PN(d);

27 Get the wavelength assignment A′w
i ← SaWaveAssign(A′

i, k
′);

28 Compute cost c′i ← C(A′w
i );

29 if c′i < cm then /* Record the minimum cost */

30 cm ← c′i;
31 Aw ← A′w

i ;

32 Update the generation {Aw
i , ci}s ← {A′w

i , c′i}
s;

33 Update steps k ← k − 1;
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Figure 8.12: Illustration of mating algorithm used in GaOptimize.

Procedure RouletteWheelPick–Pick chromosomes from a generation.
Input: Generation {(Aw

i , ci)}s
Output: Picked candidate t

1 Generate a uniform random real value r ∈ [0, 1);
2 Initialize the cumulative probability density P1 ← 0;
3 for i from 1 to s do
4 Cumulative probability density Pi ← Pi + 1

ci

P

0≤j≤s
1

cj

;

5 if r ≤ Pi then /* Pick the candidate. */

6 t← i;
7 return;

algorithm. The choosing probability is proportional to the inverse of the cost

value of the solution. Therefore, low-cost solutions are more likely to pass to

the next generation, while high-cost solutions still have some chance to get

chosen. Two chromosomes mate in a probability of a crossover rate. Mating

combines a random upper half of the father’s chromosome with the random

lower half of the mother’s chromosome.

Figure 8.12 illustrates the mating algorithm. If two chromosomes do not

mate, the father’s chromosome is used. Each gene of a child is subjected to

mutation according to a mutation rate. If a gene is selected for mutation, a

random route is reselected for the demand. In the algorithm, the crossover

rate is set to 0.6. The mutation rate is set to 0.001. The algorithm is not

sensitive to minor changes of these numbers.

8.4.4 Route Space Reduction

Even though I use efficient heuristic optimization techniques, the number of

routes for each demand can be large. This section introduces space-limiting

techniques that help to find good results fast.
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Limiting Route Cost

Except in extreme cases, expensive routes are unlikely to be included in an

optimal solution. However, searching too few routes can reduce the quality

of the results. On CORONET, our testing network, I find it to be a good

tradeoff of efficiency and quality to limit the search space of routes for each

demand to within 1.4 times the cost of the demand’s least-cost route.

Fixing Route per Node Pair

Even if two demands have the same end nodes, they can use different

routes. In many cases, these demands must use different routes in an optimal

solution. For example, the red and blue demands in Figure 8.9 use different

routes in the optimal solution. Demands that have been reduced to other

demands, such as the red demand in D1 that reduces to two red demands

in D2, need not be considered by the optimizer. Demand matrix reduction

has already taken care of the diverse routes of many demands by removing

a large portion of demand matrices. However, amongst the reduced demand

matrices, some demands still need to use different routes to achieve optimal

results. Example 1 in Section 8.3.2 shows that two demands between nodes

(1,2) should use two different routes. In theory, I may need to select distinct

routes per demand to achieve an optimal result.

However, in practice, optimizing routes per demand can be extremely ex-

pensive on a larger network, where the nodes are more distant and route

choices are many. If I use only one route per node pair, the search space is

greatly reduced. In fact, I find that the optimizer can find a good enough

solution much faster by using a fixed route per node pair.

Versions of SaOptimize and GaOptimize were developed to leverage this

heuristic. In SaOptimize, the only change occurs in Lines 11-13. Instead of

randomly changing the route of a demand, we randomly change the route of

a node pair. During initialization, all demands of the same pair are allocated

with the same least-cost route. The GaOptimize algorithm retains its struc-

ture except for the changing concept of genes and chromosomes. Demands

can no longer choose their routes as freely as before. Node pairs are the unit

for route mapping. I define a new tuple, called pair-route, which maps a

route for each node pair. Each pair-route tuple represents a gene. The route

set for the pair represents all possible choices for this gene. A route alloca-

tion of all pairs represents a chromosome. Since the route for each demand is

determined by its node pair, a chromosome also maps to a solution. A set of
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Figure 8.13: Motivation for two-stage optimization. Demand (0,2) should
share the route 1 and 2 to achieve an optimal result. However, there are too
many other routes between (0, 2), making it hard for the optimizer to
choose route 1 and 2.

chromosomes forms a generation. Extending SaOptimize and GaOptimize

to support fixed routes per pair is straightforward, so I omit the algorithms

in this paper.

Two-Stage Optimization

The huge space of candidate routes makes convergence to an optimal solu-

tion difficult. Figure 8.13 illustrates the situation. The figure shows part of

the network. Ideally, I want demand (0, 2) to share route 1 for demand (0, 1)

and route 2 for demand (1, 2) to achieve the optimal result. However, there

are hundreds of candidate routes (on the virtual-link graph) for demand (0,

2). The chance that demand (0, 2) merges with route 1 plus route 2 is small.

To solve the problem, I use a two-stage optimization technique, explained

in Algorithm 8.2. The algorithm uses GaOptimize, but any optimizer I dis-

cussed previously can be used. In fact, I use those supporting fixed routes in

my results.

The two-stage optimization finds a reasonable solution in the first round.

Then, the graph is reduced to include only the physical nodes and links that

appear in the solution. The second round tries to find a better solution

based on the reduced graph. During the second stage, the optimizer may

find better routes, as is the case in Figure 8.13, since many possible routes

are ruled out. Also, I find that the second stage can run much faster by

reducing the number of generations to two-thirds of the number used in the

first stage and reducing the population by half.
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Algorithm 8.2: Two-stage genetic algorithm optimization.
Input: Reduced demand matrix set S
Input: Generations k
Input: Population per generation s
Input: Optimization steps for wavelength assignment k′

Output: Optimal allocation and wavelength assignment Aw

1 Run the optimizer Aw
1 ← GaOptimize(d, k, s, k′);

2 Reduce the virtual-link graph to only include the nodes N ′ ← {n|n ∈ A1} and
physical links E ′ ← {e|e ∈ A1};

3 Run the optimizer Aw
2 ← GaOptimize(d, ⌊ 23k⌋, ⌊ 12s⌋, k′) on the new graph;

4 Pick the minimum Aw ← min(Aw
1 , Aw

2 );

8.4.5 Greedy Algorithm

Procedure Greedy is to greedily allocate the resources of all demands that

maximally reuse the resources that have already been allocated. Note that

the demands of different demand matrices can share resources but the de-

mands of the same demand matrix cannot. I allocate each demand matrix

one-by-one in an arbitrary order. In the beginning, there is no resource al-

located, so the routes allocated for the demands in the first demand matrix

are their least-cost paths, using default costs for wavelength channels and

REGENs. After the first demand matrix, I have a network on which some

resources have been already provisioned.

Starting with the second demand matrix, the resources that have been pro-

visioned previously are marked with zero cost. Then, the route for each newly

allocated demand attempts to maximally reuse the wavelength and REGENs

that are used by other provisioned demand matrices. The demands of the

same demand matrix must pick non-overlaping paths to avoid resource shar-

ing. This is done by assuming maximally available resources on the residual

network at the beginning of each demand matrix. After a route is picked

for a demand, the resources used by the route are removed from the residual

network and so forth. The resources used by the demand matrix are then

combined with the currently provisioned graph. I use “union” operation so

the resources that were there previously are not doubly counted. During

routing, if there are multiple available wavelength channels of the same cost,

the first-fit wavelength assignment algorithm is used. The network is provi-

sioned after all demand matrices have been allocated. The algorithm is linear

in network sizes for a given number of demands. Although I am aware that

the possible number of demands can still grow exponentially in terms of the
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Procedure Greedy–Greedy provisioning algorithm.

1 Initialize empty resource graph G← ∅;
2 foreach reduced demand matrix D ∈ S do
3 Initialize residual resource graph with full capacity

RG← ∪∀e∈E,w∈W (e, w) ∪∀r∈Rn,n∈N r;
4 foreach (e, w) ∈ RG do
5 if (e, w) ∈ G then
6 coste,w ← 0;
7 else
8 coste,w ← le × CC;

9 foreach (n, r) ∈ RG do
10 if (n, r) ∈ G then
11 costn,r ← 0;
12 else
13 costn,r ← RC;

14 foreach demand d ∈ D do
15 Find the least-cost path available on the residual graph p ∈ RG;
16 RG← RG \ p;
17 demand route A(d)← p;

18 Get used resource graph UG← RGc;
19 Combine resource graphs G← G ∪ UG;

number of ports, the complexity of the algorithm has been greatly reduced

by eliminating the combinatorial optimization part.

8.5 Volatility Analysis

This section studies the robustness of the network through analyzing the

volatility of the optimized networks. First, I define the concept of individual

and group nonvolatility and show that the optimal dimensioning and routing

allocation cannot guarantee a nonvolatile solution. The analytical results

are used to find additional conditions that guarantee individual and group

nonvolatility.

As customers move from one demand matrix to another, they may add

new connections, remove old connections, and retain some connections. If

the designated route for an existing connection in the old demand matrix

differs from the designated route for the same connection in the new demand

matrix, the connection must be rerouted. If I tear down the old route and

set up a new route, customers can experience a few minutes of interruption

(hundreds to thousands gigabytes of data loss on 10Gbps links), which is

unacceptable for mission-critical applications. To minimize the loss, I can
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take advantage of B&R, which incurs less than 50 milliseconds interruption

(SONET restoration threshold time). However, B&R requires certain re-

sources to be available.

Definition 9 (B&R condition). Each node must have a spare OT. All cus-

tomer access equipment has an SP installed at the transmission side. To

reroute a connection using B&R, the wavelength and REGEN resources for

the new route must be available before the old route is taken down.

In this paper, I assume that the network is provisioned with spare OTs and

SPs to perform B&R (the cost of these OTs and SPs is fixed and not counted).

I assume that each customer connection can tolerate the loss due to one B&R

operation during the interval between two demand matrix changes. Now, I

must define connection non-interruption. If I must reroute a connection

and the B&R condition for that route is not met, the connection must be

interrupted by removing the old route and creating a new route.

Definition 10 (Non-interruption). A connection is not interrupted if the

allocated route is not changed or is changed to another route using one B&R

operation for any demand matrix change.

The demands of one node pair may be assigned different routes in an

optimal solution. In such cases, rerouting is inevitable. In Figure 8.14, B&R

suffices for all changes, so the red demand must reroute.

There are two possible modes in which a customer may use their network.

For the first mode, the individual demand changing mode, demand change is

defined by an arrival of a new demand or a departure of an existing one. The

arrivals and departures are random events with some probability. Assume

that no two events happen concurrently. Individual demand changing mode

applies to the case for which each OT-OT pair is managed independently,

and an established OT-OT connection should not be interrupted unless the

connection departs. Each event corresponds to a change of demand matrix,

and any demand matrix can be reached through a series of events. Figure 8.14

shows an example of the mode. The red connection is different from the black

connection in (b) even if it ends up using the same route in (d) and (e) as

the black connection.

The second mode, the maximum demand changing mode, assumes that

the customer uses only maximal demand matrices at any time. A maximal
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Figure 8.14: Example for demand rerouting using eager B&R. (a) The
virtual-link graph for the three-node network with port constraints O0 = 3,
O1 = 3, and O2 = 4. Assume that all 2-hop routes need a REGEN. An
optimal solution allocates wavelength 1 on link 0, and wavelengths 1 and 2
on both link 1 and link 2. All 2-hop routes use spare OTs as REGENs. (b)
The customer starts with a maximal demand matrix: three demands from
node pair (0, 1). The routes of demands are marked with different colors.
Red and blue routes are regenerated at node 2 using two spare OTs. A
solid line indicates wavelength 1. A dashed line indicates wavelength 2. (c)
The black and blue demands depart. (d) The green demand for (0, 2)
arrives. The red demand must be rerouted to the correct route on link 0.
(e) Three more demands arrive to form another maximal demand matrix.

demand matrix is one for which no more demands can be added without re-

moving an existing demand. A non-maximal demand matrix means resource

idling. Maximum demand changing mode applies to customers who manage

their entire private network; using partial network resources is unlikely for

these customers. Therefore, the change of demands must be from one maxi-

mal demand matrix to another. In this mode, the demands of the same node

pair in two maximal demand matrices are considered the “same” demands.

The same demands are retained and should not be interrupted during re-

configuration. The customer in Figure 8.14 would change directly from (b)

to (e); steps (c) and (d) are not allowed. The black route will be retained

in (e) in place of the red one. I define individual and group nonvolatility

corresponding to these application modes.

Definition 11 (Individual nonvolatility). Using individual demand changing

mode, a new arrival demand can always be accepted without interrupting any

retained connection.
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Figure 8.15: The proof of Theorem 6. (a) The physical graph for a
four-node network with port constraint O0 = O3 = 1, O1 = O2 = 2. Assume
that all routes are reachable, so no REGEN is needed in the solution. An
optimal solution requires one wavelength channel (channel 1) on all links,
as shown in the figure. (b) The route allocation for demands: blue (0, 2),
red (1, 2), and green (1, 3). (c) The route allocation for demands: Cyan (0,
1), red (1, 2), black (2, 3). The red routes of (1, 2) are self-locked with
wavelength resources and cannot reroute using B&R, so the allocation is
volatile.

Definition 12 (Group nonvolatility). Using maximum demand changing

mode, the connections shared between the initial and final demands are not

interrupted when switching from one maximal demand matrix to another.

Even if a maximal demand matrix change can be decomposed into a se-

quence of individual demand arrival events, individual nonvolatility does not

necessarily infer group nonvolatility: individual nonvolatility cannot guaran-

tee one B&R per retained connection for the entire maximal demand matrix

change. The inference is not necessarily true in the other direction as well.

Studying the relationship between individual and group nonvolatilities is the

goal for future work.

Theorem 6. An optimal route provisioning solution may satisfy neither in-

dividual nor group nonvolatility.

Figure 8.15 shows the proof of Theorem 6 using an example that fails to

meet nonvolatility conditions. The red route is self-locked with wavelength

resources, so neither individual nor group nonvolatility holds if the demand

(1, 2) needs to be retained. In general, an optimal solution is not free from

resource contention that prevents a B&R. Constructing an optimal solution

that satisfies nonvolatility is challenging for many cases, but I yet have no

proof or counterproof for the existence of nonvolatile optimal solutions for

all problems. The problem thus becomes a future area of study.
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8.6 Sufficient Nonvolatile Conditions

Rerouting across demands is the major cause of volatility in optimal solu-

tions. A sufficient nonvolatile condition is to limit the possibility of demand

rerouting. If the demands of each node pair must be chosen from a fixed pool

of resource disjoint routes, where the selection priority of routes is strictly

defined for the order of demands appearing in the demand matrix, I can

guarantee individual and group nonvolatility. More specifically, if there are

at most three demands between nodes 0 and 1, I create three candidate routes

in the pool {p0, p1, p2}. If a demand matrix contains only one demand (0,1),

route p0 must be selected. If a demand matrix contains two demands (0,1),

routes p0, p1 must be selected. If a demand matrix contains three demands

(0,1), all routes are selected. With the strict route selection order, group

nonvolatility is easily satisfied, since the possibility of rerouting has been

completely removed.

For individual nonvolatility, each arrival demand selects its route in order,

and eager B&R is applied to reroute retained connections on each arrival.

If p0 is available when a (0,1) demand arrives, the demand selects p0. If

p1 is available but p0 is not, the demand selects p1. On each new arrival,

every retained demand must check if the current route is appropriate. A

demand needs to be rerouted to the appropriate route using B&R. The way

that we reroute demands on each arrival is called eager B&R. Eager B&R

can avoid the resource deadlock that can arise on a heavily loaded network.

In Figure 8.14, assume that the route selection order for node pair (0, 1) is

{p0, p1, p2}, where the virtual-link-wavelength set (v, w) of routes are Vp0 =

{(0, 1)}, Vp1 = {(1, 1), (2, 1)}, and Vp2 = {(1, 2), (2, 2)}. The route selection

order for node pair (0, 2) is {p3, p4, p5}, where the virtual-link-wavelength

set (v, w) of routes is Vp3 = {(1, 1)}, Vp4 = {(1, 2)}, and Vp5 = {(0, 1), (2, 1)}.
The red demand uses route p1 in (b), indicating that it is a later arrival than

the black one. The red demand does not need to reroute at (c) because there

is no new arrival. The red demand must B&R to the high-priority route p0

on the arrival of the green demand at (d) since the allocated route for the

green demand, p3, conflicts with p1 on wavelength 1.

Formally speaking, the following constraint (Equation 8.10) is added into

the ILP described in Section 8.1 to guarantee individual and group non-
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volatility (Theorem 7):

∀d1 = {(i, j), s1, t}, ∀d2 = {(i, j), s2 6= s1, t},
∀p ∈ P(i,j), Xp,d1 = Xp,d2 (8.10)

Each demand d is described by a node pair Nd = (i, j), demand matrix s, and

the order t of the node pair’s demands in the demand matrix. For example,

in Figure 8.14(b), the black demand has t = 0, the red demand has t = 1,

and the blue demand has t = 2. Note that the demand order t for a node

pair in a demand matrix indicates route priority in the individual demand

changing mode. The same OT-OT demand connection can change its order

when the demand matrix changes. Again in Figure 8.14, the red demand has

order t = 1 in (b), but the order is switched to t = 0 in (d). However, for

maximum demand changing mode, the order always stays the same.

Theorem 7. The optimal provisioning solution computed with Equation 8.10

guarantees individual and group nonvolatility.

Proof. A demand d of node pair Nd with order t will reroute only to a route

p′ that is previously used by another demand d′ of the same node pair with

order t′ < t. After d′ departs, the appropriate route for d becomes p′. The

legal route for d should further change to p′′ if another demand of pair Nd

depart with orders t′′ < t′. Without loss of generality, I assume the legal

route for d is p′ when the next new arrival comes. Because the appropriate

route was occupied by a recently departed demand and no new demand has

arrived to use more network resources, ever since, demand d can reroute to p′

using one B&R operation. Any other inappropriate route can be fixed by one

B&R for the same reason. Since the network is provisioned with the condition

specified by Equation 8.10, and all retained connections are on appropriate

routes, the new arrival can be accepted without contending with any retained

connection. Therefore, the route ordering scheme and eager B&R guarantee

individual nonvolatility. Group nonvolatility also holds since there is no need

of B&R on any transition.
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Figure 8.16: U.S. CORONET topology. Nodes are labeled with numbers.
Links are labeled with distance in miles. Geographic information has been
removed for clarity. Node 14, 39, 57 are marked in red. Other nodes
referred to by Figure 8.20 are marked in blue.

8.7 Numerical Results

CORONET was created by the Telcordia-AT&T team to mimic a typical

large international core network [34]. I use the U.S. contiguous part of

CORONET, which consists of 75 nodes and 99 links. Each node maps to

a U.S. city. Figure 8.16 shows the topology of the network; node numbers

and link distance are marked. I assume a 40 Gbps ROADM system for the

network. Each DWDM link has 80 wavelengths. The photonic transparent

reachability is 932 miles. Each REGEN costs 150, and the common cost is

0.07 per mile per wavelength.

Three cities are chosen as base cities for a customer. They are node 14

(Chicago), node 39 (New York City), and node 57 (San Diego). Assume that

the default port constraint is O14 = 2, O39 = 3, O57 = 2. Only the reduced

demand matrices are used by the optimizer.

I tested five optimization algorithms: simulated annealing (SA), simulated

annealing with fixed routes (SAF), genetic algorithm (GA), genetic algorithm

with fixed routes (GAF), and two-stage genetic algorithm with fixed routes
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Figure 8.17: SAF cost color map for O14 = 2, O39 = 3, O57 = 2.
Clb = 2292.84. Each data point is an independent optimization process.

(GAF2). They are all compared with the lower bound (low). The simulation

is run on an AMD Opteron 64bit machine with a 2.2GHz CPU, 1MB cache

memory, and 7GB main memory.

First, I study the performance of the simulated annealing optimizers by

varying the number of optimization steps. Figure 8.17 shows the color map of

the resulting cost of SAF for the customer traffic demands O14 = 2, O39 = 3,

and O57 = 2. The trends for SA are similar. The lower bound computed is

3216.32. Each data point is a complete new optimization with renewed seeds

for random number generators. Therefore, larger steps do not always yield

better solutions than smaller steps. The solution improves with an increasing

number of steps in the route allocation. However, the benefit of increasing

steps for wavelength assignment is not present. Then, I choose k′ = 50 for

the steps for wavelength assignments for the rest of the paper.

I next study the performance of the genetic algorithm by varying the num-

ber of generations k and population per generation s. Figure 8.18 shows the

color map of the optimal cost of GAF. The lower bound stays the same for

the same customer demand. Better solutions are found with an increasing

number of generations and population. Using k = 80 and s = 2000, the

values are good enough.

Heuristic optimization methods get closer to an optimal value as the run-

ning time increases, but the optimal value may never be reached in a finite

length of time. Instead of comparing the runtime, I compare the optimized re-

sults given the same amount of computing work. I compare the performance
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Figure 8.18: GAF cost color map for O14 = 2, O39 = 3, O57 = 2.
Clb = 2292.84. Each data point is an independent optimization process.

of all algorithms using a four-node demand constraint O14 = 2, O39 = 3,

O57 = 2, Ox = 1, x ∈ N . The fourth node is an arbitrary node in the

network. If x ∈ {14, 39, 57}, there are still 3 nodes, except one has an ad-

ditional port. I choose the parameters k = 240, 000, k′ = 50 for SA/SAF

and s = 2000, k = 80, k′ = 50 for GA/GAF so every test case walks the

same number of samples in the space and runs approximately for an hour (a

smaller number is picked for GAF2 for each stage, so it takes about the same

amount of time). The runtime for the lower bounds is on the scale of a few

seconds.

The comparison is shown in Figure 8.19(a). The result of GA is not shown

because GAF and GAF2 outperform GA for all cases. GAF2 can find a better

solution than other algorithms for most cases. GAF is slightly better than SA

and SAF. SA and SAF are about the same. Figure 8.19(b) shows results for

O14 = 2, O39 = 3, O57 = 2, Ox = 1, x ∈ N , and Figure 8.19(c) shows results

for O14 = 2, O39 = 2, O57 = 3, Ox = 1, x ∈ N . All the nodes are sorted by

increasing order of the lower bound. The results for x ∈ {14, 39, 57} and the

node of the highest (GAF2 − Clb) value are annotated. If x ∈ {14, 39, 57},
the total number of ports is even for the three nodes and the optimal result

equals the lower bound. On average, GAF2 requires 8% additional cost of

the lower bound. GAF is 11%, SA is 20%, SAF is 21%, and GA is 27% over

the lower bound. The worst-case nodes are those geographically far from the

original three nodes. Because of a larger route space due to the distance, the

optimizer is less likely to land on a solution as good as others. The amount
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Figure 8.19: The performance of the heuristic optimization algorithms. The
additional port is added to any one of the nodes in the network. Each data
value is a random optimization run. SA/SAF k = 240, 000, k′ = 50,
GAF/GAF2 k = 2000, s = 80, k′ = 50. The nodes are sorted in increasing
order of their lower bounds.
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some cases. The standard deviations are within 4% of the mean values.
The additional nodes are marked in Figure 8.16.

of resources that cannot be shared by demand matrices is also likely to be

higher. Node 68, which is the farthest of the original three nodes, requires

the highest additional cost for all experiments.

To understand the randomness of the optimizer, I compute the standard

deviation for some cases with 100 repeated random GAF2 runs. The results

are shown in Figure 8.20. The deviations are all within 4% of the mean

value. Therefore, the cases where other algorithms are better than GAF2 in

Figures 8.19(a)–8.19(c) can be attributed to deviations.

I then compare the performance of the greedy algorithm (GDY) with the

optimized result (OPT) in Figures 8.21(a)–8.21(c). Unlike the hour run of the

optimization algorithms, the GDY result can be obtained within a second.

On average, GDY incurs an overhead of 19% of the lower bound.

Figure 8.22 shows that the average cost difference between the optimal

nonvolatile solution and the volatile one is within the error range of the

heuristic optimizer. I run for representative customer demands: there are

four to five geographically remote nodes with two to five OTs at each node.

Some large cities—such as New York, Chicago, Boston, Seattle, San Diego,

and Raleigh—are chosen with a higher probability. Both simulations use

GAF2 and run for the same number of generations and steps (the longest

one runs for approximately four days). No significant overhead for applying

the nonvolatile condition is incurred on the network.
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Figure 8.21: Performance of the greedy algorithm. The additional port is
added to any one of the nodes in the network. The nodes are sorted in
increasing order of their lower bound results.
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8.8 Conclusion

In this chapter, I formulate a resource optimization problem for dynamic

wavelength services. I propose a demand matrix reduction algorithm to re-

duce the input demand matrices for the optimizer by an order of magnitude.

However, I find that the number of reduced demand matrices still grows as

a factorial as the number of ports increases. I solve the optimization prob-

lem by decomposing it into a wavelength assignment problem and a route

allocation problem. For the former, I show that the optimization problem is

NP-hard and then introduce a simulated annealing version. For the latter,

I show a simulated annealing version and a genetic algorithm version. The

use of fixed routes and two-stage optimization techniques lets me trim the

solution space. Since finding an optimal solution is impractical on a realistic

backbone network due to the problem size, I propose a lower bound and a

greedy algorithm that can be computed quickly. On a network of realistic

size, the optimizer solver using the genetic algorithm with space trimming

techniques (GAF2) obtains solutions within 8% of the lower bound. My

greedy approach can achieve 19% overhead at about 0.02% of the runtime

of GAF2. The greedy algorithm reduces the provisioning cost for network

carriers that want to expand their on-demand dynamic wavelength services

to a large number of customers on a national-scale backbone network.

Further, I define the volatility problem that can occur when dynamic wave-

length services are used for mission-critical networks in which connection

interruptions are not allowed. Network volatility is analyzed under the as-
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sumption that the underlying photonic layer can perform photonic bridge-

and-roll to reroute a connection. At most, one B&R operation is allowed

for each connection during a demand change. I conclude that the optimal

resource optimization solution does not guarantee a nonvolatile network. A

sufficient condition for nonvolatile solutions is proposed, and I show that the

nonvolatile solution incurs no additional cost relative to the volatile one.
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CHAPTER 9

RELATED WORK

9.1 Network Dimensioning

Resource dimensioning generally focuses on three main topics: physical wave-

length channel provisioning on opaque networks (opto-electronic-opto (OEO)

or fully wavelength convertible networks) [37, 56, 36], placement of elec-

tronic/optical devices (wavelength converters, regenerators, or transponders)

on transparent/translucent networks [57, 58, 59, 60, 61, 62, 40, 63, 64], and

virtual topology design on a transparent WDM network [65, 66, 67, 68, 69,

70]. The work in [71] discussed a combined planning for both fiber resources

and converters. However, many of the results were still applied to static or

dynamic traffic models with fixed-path routing or fixed alternate routing.

Dimensioning fiber/equipment resources on topologies that support dynamic

traffic with complicated link-state-based routing algorithms still has not been

sufficiently studied.

Regarding dimensioning an opaque network, Nayak and Sivarajan [37] pro-

posed an asymptotic routing and dimensioning approach based on absorption

probability analysis of a linear traffic growth model. The authors in [56] then

proposed a time-dependent blocking probability approach to further reduce

network capacity. Their work studied transient network behavior, starting

from zero initial traffic, with the assumption that the network would be pe-

riodically redimensioned and could be reconstructed in a timely manner to

respond to traffic change. Further, the authors in [36] studied the dimension-

ing problem for dynamic traffic using a system perspective; they proposed

a heuristic basic dimensioning algorithm for boot-strapping network design

and a few incremental dimensioning algorithms for future network growth.

The study compared the new approaches to previous studies that showed
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that using a more flexible path-selection algorithm for dynamic demands on

a well-dimensioned network can greatly improve blocking performance.

Previous work on dimensioning optical transparent/translucent networks

with wavelength continuity constraints and physical impairments [72] mostly

focused on placement of wavelength converters and regenerators. The au-

thors of [57] investigated the usefulness of wavelength converters on varying

topologies, traffic loads, and available wavelengths per fibers. Yates [58]

provided a comprehensive modeling and performance study on wavelength

converter placement in dynamic networks. This analysis showed that the

performance improvement strongly depended on the wavelength assignment

schemes and wavelength channel allocation. For static traffic demands, the

light path provisioning problem is usually solved by formulating a mixed-

integer Linear Programming (ILP) solution. The paper [60] proposed an ILP

solution to provision wavelength fiber resources with or without wavelength

converters. The authors in [71] formulated another ILP solution to allocate

wavelength channels, optical cross-connects and wavelength converters on a

physical topology dimensioned for a given traffic demand. They decomposed

the large problem into dimensioning and routing subproblems and wavelength

assignment subproblems to alleviate the computational hurdle. The authors

in [64] studied a network coverage problem by minimizing switching nodes

and transceivers on a topology.

Many have studied the regenerator placement problem on a given WDM

network. The authors in [59] proposed several heuristic regenerator place-

ment algorithms for dynamic traffic. The authors in [61] proposed an ILP

formulation to compute optical regenerator placement for static demands.

In [62], they studied the reduction needed in the cost of electro-optical equip-

ment to increase the reachability of the network for a given traffic demand.

Further, a more thorough discussion about regenerator based translucent

optical network models is discussed in [40]; heuristic regenerator assignment

algorithms were proposed with traffic demand predictions, where routing was

done by heuristic online RWA algorithms.

Some studies address wavelength allocation for transparent networks but

with limited problem scale. Baroni and Bayvel [73] studied the number of

required wavelengths for a static and uniform demand on a given topology.

The paper modelled the physical topological connectivity and derived the

lowest bound of the wavelength number for each network. A heuristic RWA
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was also proposed to compute the minimal required wavelength number. A

dimensioning solution with a small number of wavelengths per link was dis-

cussed in [74]. The authors in [63] compared the lowest theoretical bound of

the capacity requirement for optical packet switching, optical burst switch-

ing, and optical flow switching networks regardless of routing algorithms.

Another important study related to WDM network dimensioning is the

design and reconfiguration of virtual topologies (also called “logical topol-

ogy/layer” in some studies). A virtual topology consists of all-optical light-

paths, reserved from the physical WDM topology, that provide a layer of ab-

straction for IP customers to route and traffic engineer without consideration

of wavelength continuity and physical reachability [65, 66, 67]. Many logical

layers can share one or more WDM lower-level networks. Virtual topology

design is particularly useful for static optical network models, where reserv-

ing/releasing a bypass lightpath is time-consuming and expensive. As the

lower-level WDM network becomes more dynamic, virtual topologies can be

more frequently reconfigured according to traffic demand changes [68, 69, 75].

The authors in [68] proposed an online, logical topology reconfiguration based

on live traffic measured on a daily basis. For a different dynamic traffic model,

a subwavelength grooming resource optimization problem for multiple possi-

ble static traffic matrices was introduced in [76]. In contrast, dimensioning

the physical network as I do is increasingly important: upper layer traffic

has a more direct impact on the WDM network, with increasing support for

on-demand, high-bandwidth services.

9.2 Online Routing

Research on routing and wavelength assignment (RWA) is closely related

to network dimensioning, especially for static traffic models. ILP is com-

monly applied to optimize resource utilization when selecting paths for a set

of traffic demands. However, the ILP can grow intractable, and optimizing

for large networks over a long period of time is infeasible in practice. Off-

line routing algorithms are also infeasible when future information is simply

unavailable. For dynamic traffic models, efficient heuristic algorithms are

used to route each arrival connection request. Online RWA is usually treated

independently of network dimensioning (assuming given network resources).
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The routing and wavelength assignment problem for a given traffic model

on translucent networks has long been known to be NP-hard[77], but many

heuristic algorithms were proposed [78, 79, 80, 18]. A previous study also

suggested that routing algorithms have a higher impact on performance than

wavelength assignment[81].

Routing algorithms have been studied extensively for many years in the

network community. Shortest path first (SPF) routing has been widely

adopted for online routing because it is efficient to adopt and responsive to

changes in network traffic demands. Many variants of SPF with additional

resource constraints have been developed to improve network load balancing

and reduce congestion (often referred to as Least Loaded Routing (LLD)).

Data traffic engineering techniques, such as trunk reservation (TR), may also

be applied to further improve load balancing and accommodate multiclass

data flows.

In the past, LLD in circuit-switched networks was studied extensively in

the context of ATM broadband networks [82, 83], WDM networks [38, 18,

29, 84, 85, 86, 22] and general broadband networks [87, 88, 19, 20]. The

set of candidate paths can be preselected or dynamically discovered. Pre-

selected paths allow a simplified signaling process for path setup. Dynami-

cally selected paths offer flexibility and tolerance to traffic fluctuations. Many

LLD algorithms select a path with maximum residual capacity on bottle-

neck links. The widest-shortest path (WSP) [89, 87, 90] and shortest-widest

path (SWP)[91] algorithms are examples. In [87] and [38], variants of WSP

were proposed with hop-extension limits. SWP chooses the shortest one

among those paths with maximum residual capacity. It has been shown that

SWP is inferior to WSP in dynamic wavelength routed networks [90]. Some

others, like the fixed-paths least-congestion (FPLC) algorithm for wavelength

continuity networks [18], use the sum of free capacity along the path. Min-

imal interference routing (MIR) [30], a flow-based algorithm, attempts to

select the path that is least likely to interfere with future requests from other

node pairs. An improved reduced-flow-based routing algorithm (RFR) was

proposed in [22]. The work also compared many routing algorithms on dimen-

sioned networks. Instead of looking at the absolute residual bandwidth, the

authors in [84] proposed a convex function that uses a fraction of wavelength

utilization to compute the link congestion cost. In [29], the authors proposed

a Least Resistance Weight (LRW) routing that uses the available capacity
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normalized by the maximum link capacity in the network. The authors

in [85] proposed another congestion estimation using the inverse of avail-

able link capacity. The admission control technique is also used for network

congestion management. Krishnan et al. proposed admission control mech-

anisms, called state-dependent routing (SDR), for dynamic circuit-routed

networks[31]. Later, Gawlick et al. [33] proposed another admission control

mechanism, called throughput-competitive online routing (COL). The per-

formance of these algorithms was compared in [32]. However, optimizing

the parameters for these algorithms has not been addressed. Combined ad-

mission control and routing was studied in [92]. For WDM networks, wave-

length continuity, physical impairments or survivability requirements may

constrain the choice of routes [72, 93, 94]. Specific wavelength assignment

techniques can reduce the impact of crosstalk to increase the reachability of

some routes[95]. These techniques are not mature in near-future devices, so

I do not include them in our model.

Combinations of online and offline approaches have been suggested in [7]

and [96]. The adaptive design based routing (Adaptive DBR) scheme [7]

takes advantage of expected network traffic demands to select and provi-

sion candidate routes for each pair optimally at the offline stage. The on-

line stage of DBR then assigns either a precomputed route or dynamically

computed available route with trunk reservation. This method utilizes the

currently monitored load to compensate for the variations from the static

traffic demand estimates used in offline optimization. Profile-based rout-

ing (PBR) [96] uses the expected traffic demands to perform offline compu-

tation of the threshold of trunk reservation for each class of connections, and

SPF is then used at the online stage.

Analytical models [18, 19, 20] have been proposed to approximate the

blocking probability with state-dependent routing for preselected adaptive

routing. Some theoretical analysis for RWA can also be found in [18]. In

[21], the author used reduced load approximation to analyze the blocking

performance of dynamic traffic grooming. However, due to the complexity

of the space and dependencies for state-dependent routing algorithms, ana-

lytical models are still insufficient to catch the performance of complex and

flexible dynamic routing algorithms.

There have been many studies on traffic rerouting at the optical layer.

On a given resource provisioned network, connection disruption on traf-
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fic changes cannot always be avoided with rerouting [97]. Bridge-and-roll

techniques were applied to WDM connections to expedite rerouting of ex-

isting lightpaths [98]. However, rerouting or preemption [88, 99] should be

carefully engineered to avoid excessive service interruption on existing high-

speed connections so it is generally avoided in the WDM layer. Minimizing

the number of disrupted connections is a known NP-hard problem and has

been studied in [100]. Prioritizing connections for non-interruption was then

discussed in [101]. On the design of electronic layer topologies, an incremen-

tal topology-configuration approach was proposed by [102] for guaranteed

non-interruption during reconfiguration. In contrast with previous studies,

my work approaches the problem from the resource provisioning perspec-

tive. Rerouting is managed by the carrier, and the number of rerouting

operations is limited due to the small amount of interruption allowed in a

realistic WDM network. Dynamic wavelength service traffic model is port-

constrained, which is also different from other studies.

New traffic models, such as scheduled traffic or hybrid traffic, also call for

further research on routing algorithms [103, 104, 105]. Many studies have

been devoted to wavelength continuity routing and subwavelength grooming

on virtual topologies. Different definitions of Quality-of-Service (QoS) and

Service Level Agreements (SLAs) for each class of traffic further complicate

the problem [89, 106, 107, 108, 109, 110, 111].

9.3 Multiple Network Domains

Performance studies with different levels of information sharing have been

the main research focus. Sharing complete network state information across

multiple network domains can be impractical for two reasons: (1) the scale of

the aggregated domain exceeds the signaling capacity to flood all link states,

and (2) information (e.g., complete network topology) is often considered

proprietary/private. With regard to scalability, [112] proposed an efficient

information aggregation and updating system for large-scale networks. [113]

is a theoretical study on the minimum information needed between network

domains to route within a tolerable error rate. Topology aggregation tech-

niques have been used to reduce the amount of information shared between

domains, often utilizing virtual topologies to provide more compact and ab-
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stract information. [50] compared the performance of global shortest path,

concatenated SPF (similar to source routing in other studies), and single-

node aggregation/hierarchical routing (equivalent to stitched path routing).

They also proposed three different border selection criteria for source rout-

ing: random selection, closest border, and least loaded path to border. [114]

further proposed a quantitative study of hierarchical routing performance

by using simple node (same as single node), full-mesh and symmetric star

aggregation schemes.

The study of routing algorithms generally falls into three categories de-

pending upon the level of information sharing. (1) End-to-end global short-

est path routing. This is complete information sharing, though not necessar-

ily needed. (2) Source-initiated-concatenated shortest path routing, which

searches for a path domain by domain starting from the source (minimum

information sharing). Crankback signaling may be used to reattempt a failed

search in a segment. (3) Hierarchical/hybrid routing, with various topology

aggregation techniques and hence varying amounts of information shared,

depending on topology exposure. Generally, performance improves as more

information is shared, but the scalability problem increases, as does the inter-

domain problem.

9.4 Heuristic Optimization

Combinatorial optimization problems can quickly become unmanageable

when the number of elements to be chosen is large. Simulated annealing

[115, 116] is a practical heuristic optimization tool to find a good solution

given a certain amount of time. The algorithm simulates the random walk

of atoms in a metal that is heated and slowly cooled, in order to explore the

solution space. Genetic algorithms [117] apply the idea of natural selection

to find the optimal combination of elements. These algorithms have been

found useful for discrete and unstructured problems. However, for each spe-

cific problem, solution elements must be carefully structured and algorithm

parameters tuned to achieve the best performance. A genetic algorithm

heuristic for routing and dimensioning fully wavelength convertible networks

of Poisson dynamic traffic was proposed by [118].
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CHAPTER 10

CONCLUSION

Managing large-scale dynamic networks is a hard problem. Network state

in analytical models can quickly grow, and it becomes impossible to find a

equilibrium solution for routing algorithms that heavily utilize residual graph

information. To find a practical solution, I explored the directions that can

provide the necessary information to compute at runtime without expensive

analysis. In the beginning, I looked at the problem space of Poisson traffic on

optical opaque networks. Optical signals must be electronically regenerated

at every node. The Poisson traffic model aims for the most flexible on-

demand connection services, with blocking probability, for a large number

of customers. Traditional WDM networks are opaque. Today, optical reach

is extended beyond a single hop, but the opaque network model is widely

applied to generalized label switching networks that carry IP traffic directly

on a WDM backbone.

Initially, I computed flow reductions for each route option. Then, I re-

alized that the result really depends on how the network is dimensioned.

However, there are few previous research discussions about network dimen-

sioning. The whole thing motivated me to approach the routing problem

and the dimensioning problem altogether. The effect of the combined ap-

proach is phenomenal. As the dimensioning algorithm places resources at

the shortest routes of pairs, the amount of useful information for routing

algorithms becomes highly localized. In reduced flow routing, I need only

to compute the flow interference on the region of affected shortest routes.

My reduced flow routing thus improved previous work remarkably in both

blocking probability and computation time. Further, I found that the per-

formance of online routing is penalized at high loads because new arrivals

are more likely to select excessively long routes. In order to prevent long

routes, I used admission control algorithms. I developed an opportunity cost

model, trying to predicting the right threshold. Using admission control, I
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can achieve the optimal solution at both high and low loads. I found that

the effect of admission control dominates that of route selection. Even with

random shortest routing, near-optimal solutions can be achieved with ad-

mission control. For managing dynamic networks, we should really focus on

admission control instead of routing.

As optical reach extends beyond hundreds of miles, WDM routes require

fewer regeneration sites and become more transparent. A translucent network

model is applied to newer type of WDM networks, which allow wavelength

routes to bypass switching nodes photonically if the transmission distance

is within the maximal photonic reachability. I attempted to apply the di-

mensioning algorithms for Poisson traffic to translucent networks. But the

cost model is more complicated compared to the opaque model, and I have

yet to go beyond identifying the bottleneck network resources under a few

anticipated operating modes.

I developed an interest in another dynamic traffic model, called “dynamic

wavelength services” while I was collaborating with AT&T Labs Research.

The main missing part was how to determine the cost of each route that

was used to find the cost distribution of demand matrices. I formulated the

problem and tried to optimize the cost. I chose a genetic algorithm since

it generally provides good performance for discrete combinatorial problems.

Further, I considered how the bridge-and-roll rerouting technology developed

by the GRIPhoN project could be applied to dynamic wavelength services. I

found that finding an optimal dimensioning in which bridge-and-roll can be

always applied to migrate inappropriate routes is extremely challenging.

There are many areas worth exploring beyond this thesis. Dynamic traf-

fic imposes another challenge for survivable optical network provisioning. I

touched on the dimensioning problem for restoration but remain far from

sufficiently understanding the implications of applying admission control to

shared backup path protections or Stream protections [119]. There are av-

enues of thought on selecting the right pair of primary and backup routes.

Also, protection for dynamic wavelength services is an interesting problem.

Backup resources are shared not only from different demand matrices but

also between the same demand matrix. These constraints introduce new

variables into the optimization problems and volatility analysis.

To summarize, this thesis contributes to the network management problem

in five areas:
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1. This thesis presents a joint resource dimensioning and routing approach

for Poisson traffic on opaque networks. As a result, the implementation of

each dimensioning and routing algorithm is much simplified, for which I check

only the residual capacity along the route. My algorithms provide better

performance than previous work. I propose basic dimensioning algorithms for

initial network resource allocation and incremental dimensioning algorithms

for network scaling. The performance is evaluated with a traffic evolution

model, where the traffic load ranges from completely expected to completely

unknown. My solution is more robust than previous solutions to inaccurate

traffic load estimation and long-term pattern evolutions.

2. I develop an opportunity cost model to optimize the connection re-

quest acceptance rate on dimensioned networks. Using the model, I design

threshold-based routing and admission control algorithms that are efficient to

implement and for which the optimal threshold is analytically determined and

remains roughly constant for a wide range of traffic loads, network topologies,

and scales.

3. The dimensioning technique is applied to several novel problems. I

study the resource bottleneck problem for dynamic translucent networks.

I identify the bottleneck resources for four different wavelength operating

modes. Then, I evaluate the resource requirements for dynamic restorable

networks. I develop a redimensioning algorithm to maintain comparable

performance after a single-link failure and find that the actual restoration

overhead is close to that for shared path protection. Finally, I study the

fairness problem for multiple optical domains. I dimension joint-domain

networks and studied routing and resource usage between two domains. I

show that a certain joint dimensioning and routing is important to achieve

operating fairness.

4. This thesis is the first to formulate and solve a combinatorial dimension-

ing and routing optimization problem for a practical dynamic traffic model

(called “dynamic wavelength services”) on optical translucent networks. I

reduce the problem size by exploring several properties of the traffic model

and approach the problem using a combination of meta-heuristic optimiza-

tion techniques. Further, I propose a quick greedy algorithm for scalable

problems.

5. For mission-critical applications, I evaluate a photonic bridge-and-roll

rerouting technique on optimized dynamic wavelength service networks. I
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find that some transient arrival sequences will cause bridge-and-roll to fail.

I solve the problem by developing a provable sufficient bridge-and-roll safe

condition.
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