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ABSTRACT 
 

Catalytic hydrogenation over Pd-based catalysts has emerged as an effective treatment 

approach for nitrate (NO3
-) removal, but its full-scale application for direct treatment 

of drinking water or ion exchange regenerant brines requires improved selectivity for 

the end-product dinitrogen (N2) over toxic ammonia species (NH4
+, NH3). A key to 

improving N2 versus NH4
+ production is to elucidate nitrate reduction pathways and 

identify the key intermediate(s) that determine selectivity. To address this challenge, 

aqueous reduction experiments with an Al2O3-supported Pd/In bimetallic catalyst 

were conducted using isotope-labeled nitrite (15NO2
-), the first reduction intermediate 

of NO3
-, alone and in combination with unlabeled proposed reduction intermediates 

(N2O, NO), and using N2O and NO alone, each as a starting reactant. Use of 
15N-labeled species eliminated interference from ambient 14N2 when assessing mass 

balances and product distributions. Simultaneous catalytic reduction of 15NO2
- and 

14N2O showed no isotope mixing in the final N2 product, demonstrating that N2O does 

not react with other NO2
- reduction intermediates. N2O reduction alone also yielded 

only N2, verifying that N2O reduction occurs after the reaction step controlling final 

N2/NH4
+ product distribution. In contrast, simultaneous catalytic reduction of 15NO2

- 

and 14NO yielded mixed-labeled N2 (mass 29), and 15NO reduction alone yielded both 

N2 and NH4
+, indicating that NO is a key intermediate involved in determining final 

product selectivity. N2/NH4
+ product selectivity was also evaluated as a function of 

varying initial 15NO concentration, and results show that selectivity for N2 increases 

with initial NO concentration to a point, above which product selectivity remains 

unchanged. This trend is attributed to the increasing importance of N-N pairing 

reactions leading to N2O formation as the concentration of catalyst-adsorbed NO 

(NOads) increases to a point of saturating available adsorption sites, above which no 

further increases in N2 selectivity occur. These results are important because they 

yield mechanistic insights into the NO3
- reduction pathway and information on how 

catalytic reduction processes can be optimized to maximize N2 production over NH4
+. 
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CHAPTER 1: INTRODUCTON 

Nitrate (NO3
-) is a common contaminant detected in surface water and underground 

aquifers. It can result from overuse of agricultural fertilizers, sewage discharges, and 

contaminant leachate from landfills [1]. Nitrate contamination can cause serious 

health risks to humans, such as methemoglobinemia (blue baby syndrome) and cancer 

[2]. The latter risk results when NO3
- reduction intermediates (e.g., nitrite) are 

converted to nitroso compounds in the human body [3]. Although the concentration of 

NO3
- in the natural environment is generally less than 2 mg/L, domestic groundwater 

wells and other impacted water sources are often found with concentrations exceeding 

the maximum contaminant level [3] of 10 mg/L NO3
- N (44 mg/L as NO3

-). 

Epidemiological studies have linked exposure to NO3
- at concentrations well below 

Environmental Protection Agency (EPA) and World Health Organization (WHO) 

standards to several cancers and negative birth outcomes [4]. Numerous technologies 

exist for removing nitrate from drinking water. A key challenge is developing more 

sustainable technologies that remove nitrate from drinking water and do not create 

unwanted byproducts. 

 

Conventional methods for NO3
- treatment can be divided into two categories, 

physicochemical and biological. Physicochemical treatment methods, such as ion 

exchange, electrodialysis, and reverse osmosis, are effective, but only serve to transfer 

NO3
- from water into a concentrate phase which requires further treatment or disposal 

[5,6,7,8]. Biological denitrification is commonly used for wastewater treatment, but 

less so for drinking water due to challenges associated with the variability of 

incoming water quality and operational control, the production of unwanted side 

products, high turbidity in finished water, and concerns for pathogen exposure 

[9,10,11]. Catalytic hydrogenation with Pd-based bimetallic catalysts has emerged as 

a promising new technology for treating NO3
- and other oxyanions (e.g., nitrite, 

bromate, perchlorate) in drinking water or concentrate waste streams that is capable of 
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converting NO3
- to harmless dinitrogen gas (N2) [12,13,14,15]. 

 

Rapid nitrate reduction has been reported for supported Pd/Cu, Pd/In, and Pd/Sn 

catalysts using exogenous hydrogen (H2) as the reducing agent [16,17,18,19,20]. A 

proposed but heretofore unproven reduction pathway is shown in Scheme 1. Nitrite 

(NO2
-), nitric oxide (NO), and nitrous oxide (N2O) are reduced on monometallic Pd 

[21,22,23], but a second metal (e.g., Cu, In, Sn, Co) is needed as a promoter for the 

first reduction step converting NO3
- to NO2

- [21,24]. It has been proposed that NO3
- 

adsorbs onto the bimetallic ensemble and is reduced to NO2
-, which is further 

converted to other N-containing intermediates on Pd. The stable end-products of 

catalytic nitrate reduction are dinitrogen (N2) and ammonium (NH4
+); the former is 

innocuous and ubiquitous in the atmosphere, while the latter is considered a 

hazardous aquatic pollutant. Hence, catalysts and operating conditions that select for 

N2 production are desirable. 

 

A number of factors have been reported to affect the N2/NH4
+ end-product distribution 

during aqueous NO3
- or NO2

- reduction on Pd-based catalysts. These include pH, 

temperature, N:H molar ratios, Pd nanocluster size and shape, and catalyst support 

[25,26,27,28,29]. A fundamental issue that affects the impact of all such factors on 

selectivity is the NO3
- reduction pathway. More specifically, what key intermediate(s) 

control the end-product distribution? Reduction of NO2
- has been identified as a key 

step in the overall NO3
- reduction pathway that determines selectivity [30,31,32,33]. 

In a recent FTIR-based study, Ebbesen et al (2008) [34] reported detecting formation 

of absorbed NO (NOads) from aqueous NO2
- on a Pd/Al2O3 catalyst in the presence of 

H2. Because no change in NH2(ads) or NH4
+ was detected for the first 12 min during 

the hydrogenation of NOads, they postulated that NOads does not contribute to NH4
+ 

production during NO2
- reduction [34]. However, in a follow-up study they reported 

that NH4
+ instead of N2 was formed predominantly from NOads during NO2

- reduction 

over Pt/Al2O3 [35].  
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NO has also been proposed as a key intermediate that determines selectivity for N2 

and NH4
+ as indicated in Scheme 1 [20,36]; however, there is no direct experimental 

evidence to support this in aqueous systems. In gas phase systems, both N2 and NH3 

were observed as NO reduction products on three-way catalysts [37,38,39]. In 

contrast to NO, N2O is a known intermediate that has been measured during NO3
- 

reduction [20,35]. It has been proposed as the direct precursor to N2. Conflicting 

reports concerning the role of NO2
- and NO on final product selectivity highlight the 

need for further elucidation of the NO3
- reduction pathway. 

 

The goals of this work are to elucidate the NO3
- reduction pathway(s) on a Pd/In 

bimetallic catalyst supported on γ-Al2O3 that was previously shown to exhibit high 

activity for NO3
- reduction and regenerability after sulfide fouling [15,17,40,41]. 

Specifically, experiments were conducted to identify the key intermediates that 

determine selectivity for N2 versus NH4
+, and to assess how changes in concentrations 

of intermediate species affect the preference of pathways leading to each stable 

end-product. To accomplish this, 15N-labeled nitrogen species were used to aid in 

tracking nitrogen mass balances through the reduction process. Kinetics experiments 

used NO2
- as the initial reactant, since it has been unambiguously identified as the 

first intermediate in the nitrate reduction pathway [24]. Selectivity was measured 

using 15NO2
- alone, and in the presence of unlabeled NO and N2O. In the latter 

experiment, the mix of N isotopes in N2 is used to determine which species are 

involved in N-N pairing reactions necessary to form N2. Product selectivity 

experiments were also conducted using NO and N2O as initial reactants. Initial 

concentrations of NO2
- and NO were varied to evaluate the effects of NOads 

concentration on selectivity. To our knowledge, this is the first report of the use of 15N 

isotopes to aid in the study of aqueous NOx species reduction over supported Pd 

catalysts. 
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Scheme 1. Previous proposed nitrate reduction pathways 
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CHAPTER 2: EXPERIMENTAL 

2.1 Reagents 

Reagent grade sodium nitrite (NaNO2) was purchased from Fisher. Sodium 

dihydrogen phosphate (H2NaO4P, 99.0%+) and sodium hydrogen phosphate 

(HNa2O4P·2H2O, ~99%) were purchased from Fluka. 15N-labeled sodium nitrite (15N, 

98%+), and gas cylinders of 15N2 (98%+, for calibration) and 15NO (15N, 98%+) were 

purchased from Cambridge Isotope Laboratories (Andover, MA). Gas cylinders of 

ultrahigh purity hydrogen (H2, 99.999%), nitrogen (N2, 99.999%), nitric oxide (NO, 

99.0%), and nitrous oxide (N2O, 99.99%) were supplied by Matheson Tri-Gas (Joliet, 

IL). Deionized, nanopure water (DNW) was tap water purified by ion exchange 

(resistivity 16 MΩ·cm resistivity) and filtered through a nanopure membrane 

(Barnstead) to obtain a resistivity of 18 MΩ·cm. A 5 wt% Pd on γ-Al2O3 catalyst and 

Indium(III) nitrate hydrate (In(NO3)3·xH2O, 99.999%) were purchased from 

Sigma-Aldrich. 

 

2.2 Catalyst preparation and characterization 

Pd/In catalysts were prepared by incipient wetness using a procedure described 

previously [41]. The nominal 5 wt% Pd on γ-Al2O3 catalyst was wet sieved to obtain 

particles <38 μm in diameter. Indium was then immobilized by pore volume 

impregnation of an In(NO3
-)3 solution. The Pd/In-γ-Al2O3 catalysts were then dried in 

air at 120 °C for 14 h and reduced with H2 at 120 °C for 1 h. The catalyst had a final 

metal loading of 5.42wt%Pd and 0.86wt%In, as determined by ICP-MS (ELAN 

DRCe, Perkin Elmer SCIEX, CT), and a BET specific surface area of 104 m2/g 

(ASAP 2020, Micromeritics). 

 

2.3 Reduction experiments 

A complete list of batch experiments performed is provided in Table 1. All catalytic 
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reduction experiments were performed at room temperature (21±0.7 °C) in 120 ml 

glass serum bottles sealed with thick rubber stoppers, and were magnetically stirred at 

ca. 850 rpm to overcome external mass transfer limitations of H2(aq) to the catalyst 

surface. Each serum bottle was initially filled with 80 ml of DNW and phosphate 

buffer (pH 7, 20 mM), and then a desired amount of catalyst was introduced before 

sealing to form a closed system with 40 ml of headspace. The closed system was 

sparged with H2 for 30 min while venting to reduce the Pd/In catalyst surface, remove 

dissolved oxygen, and saturate the solution and headspace with H2. The target 

nitrogen species (NO2
-, NO, or N2O) was then added to the reactor alone or in 

combination with another nitrogen species to initiate reaction. Headspace samples 

(0.1 mL) were then periodically collected and immediately analyzed by gas 

chromatography with mass spectrometry (GC-MS). Aqueous aliquots (1 mL) were 

also collected at regular intervals, filtered (0.45 μm PTFE; Cole-Parmer) to remove 

catalyst particles and quench reactions, and stored in a refrigerator at 4 °C before 

analysis.  

 

Mass Balance Experiments. Labeled and unlabeled nitrite reduction experiments 

(Exps. 1 and 2) were carried out under the same conditions, with a catalyst 

concentration of 0.375 g/L and an initial NO2
- concentration of 1 mM. Nitrogen mass 

balances for the two cases were calculated for the whole reactor (aqueous and gas 

phase) using aqueous concentrations of NO2
- and NH4

+ and headspace gas 

concentrations of N2, N2O, and NO. We assumed that headspace gases were in 

equilibrium with aqueous phase concentrations of the same species at all times (i.e., 

that aqueous/gas partitioning processes are rapid compared to the catalytic reaction). 

Excellent mass balances using labeled N species supports this assumption. 

 

An unlabeled N2O reduction experiment (Exp. 3) was carried out with a catalyst 

concentration of 0.25 g/L and 1 ml of N2O at 1 atm. Samples from the aqueous phase 

and headspace were analyzed to determine intermediates and end-products. A 
15N-labeled NO reduction experiment (Exp. 7) was carried out with a catalyst 
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concentration of 0.375 g/L and 1 ml of 15NO(g) at 1 atm. Samples from the aqueous 

phase and headspace were analyzed to determine possible intermediates and end 

products. 

 

Isotope Mixing Experiments. A series of 15N-labeled nitrite and unlabeled nitrogen 

species (14N2O or 14NO) combined reduction experiments (Exps. 4, 5, and 6, with 
14N2O; Exps. 8, 9, and 10, with 14NO) were carried out to assess the involvement of 

individual N species in N-N pairing reactions critical to N2 formation. Each 

experiment was performed in triplicate. In each closed reactor system, a constant 

amount of 15NO2
- was added at time zero with varying amounts of 14N2O or 14NO 

(yielding different 15N:14N ratios: 4:1, 1:1, 1:4, respectively). The purpose of varying 

the amounts of exogenous supplied unlabeled 14N2O/14NO was to investigate its 

possible reaction with intermediates from 15NO2
- reduction, and to assess N2O’s and 

NO’s impact on the selectivity for N2 over NH4
+ respectively. The final product 

distribution was determined for each reactor system when the component amounts in 

both aqueous and gaseous phases became constant. 

 

Product Distribution Experiments. A series of reactions were conducted to measure 

the end-product distributions as a function of varying initial concentration of either 
15NO or 15NO2

- (Exps. 11-20, each triplicated). Each reactor was prepared and 

buffered in the same manner described above. After allowing reactions to reach 

completion, 15N2 headspace and NH4
+ aqueous concentrations were analyzed. 

 

2.4 Analytical methods 

All gas samples with N2O, NO, and N2 were analyzed by gas chromatography with 

mass spectrometry (GC-MS; Agilent Technologies, 6850 Network GC System, and 

5975C VL MSD with Triple-Axis Detector; Column, Varian Plot CP-Molesieve 5Å, 

25 m length × 0.25 mm i.d.; oven temperature 165 °C; helium as carrier gas, 1.0 

ml/min). Mixed calibration standards were prepared in the same way as the reactor 
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setup: 120 ml serum bottle filled with 80 ml of DNW and phosphate buffer (pH 7, 20 

mM), sealed with thick rubber stopper, sparged with H2 for 30 min while venting. For 

one designated calibration standard, each gaseous nitrogen species (14N2, 15N2, 14N2O, 
14NO and 15NO) was added into the closed system in the same volume at 1 atm. 

Similar GC-MS sensitivities were observed for 14NO and 15NO, but atmospheric 

interference of 14N2 measurements prevented accurate comparison of MS detector 

sensitivity towards 15N2.  

 

Aqueous NO3
- and NO2

- concentrations were analyzed by ion chromatography with 

conductivity detection (Dionex ICS-2000 system; Dionex IonPac AS18 column; 36 

mM KOH as eluent; 1 mL/min eluent flow rate; 25 μL injection loop). Ammonium 

concentrations were analyzed by UV-Vis colorimetric analysis (HACH DR/4000U 

spectrophotometry) using the low-range (0.02 to 2.50 mg/L NH3-N) Test ‘N Tube 

nitrogen ammonia reagent set from HACH.  

 

Concentrations of all analytes are shown in terms of total moles of N in the closed 

reactor (i.e., aqueous + gas) so that all analytes can be represented on a common scale 

and to illustrate N mass balances that include contributions from monoatomic and 

diatomic N species. Product distributions are presented in terms of selectivity for the 

desired N2 product, calculated using measurements of both N2 and NH4
+ according to 

Equation 1: 

2

2

2 4

2 ( )
2 ( ) ( )N

n NS
n N n NH +=

+
       (Eq. 1) 

in which 
2NS  is the selectivity for N2; 2( )n N  and 4( )n NH +  are the moles of N2 

and NH4
+ monitored in actual reduction experiments respectively. 
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2.5 Tables 

 
Table 1. List of experiments performed 

 

Exp. No. 
Catalyst 
loading 

(mg) 

Initial concentration/amount 
15NO2

- NO2
- 15NO NO N2O 

(mM) (ml, at 1 atm) 
1 30  1    
2 30 1     
3 20     1 
4* 10 1    0.25 
5* 10 1    1 
6* 10 1    4 
7 30   1   
8* 10 1   0.5  
9* 10 1   2  
10* 10 1   8  
11* 30   0.1   
12* 30   0.2   
13* 30   0.5   
14* 30   1   
15* 30   2   
16* 10 0.125     
17* 10 0.25     
18* 10 1     
19* 10 2     
20* 10 4     

* Each experiment was performed in triplicate. 
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CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Labeled N eliminates background N2 interference 

Results from the unlabeled nitrite reduction experiment (Exp. 1) are shown in Fig. 

1(a). A loss of NO2
-
(aq) was observed, while N2(g) was detected in the gas phase and 

NH4
+

(aq) was formed in the aqueous phase. There was also transient formation and 

disappearance of N2O(g) in the system, whereas no NO(g) was detected in the 

headspace. The calculated total moles of N during the reaction (represented by the 

solid black line) increase with time, and markedly exceed the initial moles after 3 min 

of reaction (represented by the horizontal dashed line). This is attributed to 

atmospheric N2(g) (~210,000 ppmv) leaking into the closed system during repeated 

sampling. The poor mass balance makes it challenging to quantify intermediates 

formed during the reduction process. 

 

To avoid interference from atmospheric nitrogen, 15N-labeled NO2
- was used in the 

place of unlabeled NO2
- for catalytic reduction under the same experimental 

conditions (Exp. 2). Results are shown in Fig. 1(b). The observed pseudo-first-order 

rate constant for 15NO2
-
(aq) reduction (kobs = 20.2 L/(min, g Pd)) and concentration of 

NH4
+

(aq) produced during the reaction (32 μmol) are similar to those observed with 

unlabeled NO2
- (kobs = 18.9 L/(min, g Pd); 27 μmol NH4

+), indicating that kinetic 

isotope effects are not significant. Pseudo-first-order rate constants for NO2
- reduction 

at pH 5.0 on 5wt% Pd/γ-Al2O3 and 5wt%Pd-0.5wt%In/γ-Al2O3 were 4.4 L/(min, g Pd) 

and 7.6 L/(min, g Pd) respectively, as reported by Shuai et al [15]. The difference in 

kobs may be due to differing experimental conditions, e.g. pH, and catalyst loading. 

The total moles of nitrogen agree with the initial moles of nitrogen throughout the 

reaction after eliminating interference from atmospheric 14N2. The labeled 

intermediate 15N2O was also detected during the reaction; however, no significant 
15NO was detected. A selectivity of 65.0% for N2 was observed for 15NO2

- reduction, 

which was calculated using both measurements of N2 and NH4
+. Previously only 
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NH4
+ produced from NO2

- reduction was used to calculate selectivity, assuming the 

remaining fraction of the product mass balance was N2 [29,42].  

 

3.2 Confirmation of N2O as an intermediate 

Reduction experiments with N2O as the initial reactant alone and in the presence of 

NO2
- were performed in order to determine if N2O is a key intermediate in 

determining product selectivity. When used alone, N2O was unlabeled due to its 

excessive cost (~$6000 per liter of 15N2O). Results are shown in Fig. 2(a) for the case 

when N2O(g) was the only initial reactant (Exp. 3). Only N2(g) was detected in the 

headspace, and no NH4
+

(aq) was detected in aqueous samples either during the reaction 

or at the end of the reaction, indicating that N2O is only reduced to N2, and has no 

contribution to NH4
+ production. Mass balance results in Fig. 2(a) indicate leaking of 

background nitrogen into bottles was not a significant concern over the experimental 

time scale. This is because extracting only gas and not liquid samples reduces 

sampling time and frequency compared to NO2
- reduction experiments.   

 

Results are shown in Fig. 2(b) for reactions where unlabeled N2O(g) is initially added 

to the reactor at the same time as 15N-labeled NO2
- (Exps. 4-6). No mixed-labeled N2(g) 

(MW: 29) was detected with increasing initial N2O(g) concentrations, and the amounts 

of 15N2(g) (MW: 30) and NH4
+

(aq) production was unaffected by the amount of 

unlabeled N2O initially added to the reactor at time zero. This indicates that N2O 

reacts stoichiometrically to form N2 and does not interact with either NO2
- or any of 

its other reduction intermediates on the catalyst surface. 

 

The N2O results generally support the previously proposed mechanism (Scheme 1) 

that N2 but not NH4
+ is produced from N2O reduction. The mass-normalized reduction 

rate constant (kobs) for N2O reduction is 13.1 L/(min, g Pd), smaller than that of NO2
- 

reduction (kobs = 20.2 L/(min, g Pd)). This enables detection of N2O in the reactor 

headspace when monitoring NO2
- reduction in this study (Fig. 1), as well as previous 
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studies reporting on reduction of NO3
-, NO2

-, and NO [32,35,37]. Sa et al [43] 

proposed that the formation of gaseous N2O is related to the high surface coverage of 

NO2
-. The presence of N2O(g) in the gas phase during NO2

- reduction in our work 

supports this assertion. 

 

3.3 Confirmation of NO as an intermediate 

Reduction experiments with NO as the initial reactant alone and in the presence of 

NO2
- were performed in order to determine if NO affects selectivity. Results are 

shown in Fig. 3(a) for the case when 15NO was the only initial reactant (Exp. 7). 
15N-labeled NO was used to maintain a mass balance, enabling correct measurement 

of N2 produced from NO. 15N2O (MW: 46) was also detected in the headspace as an 

intermediate. The final product 15N2 was detected in the headspace, and NH4
+ was 

detected in the aqueous phase, indicating that NO reduction can lead to both end 

products, as well as N2O. Since the mass-normalized reduction rate constant (kobs) for 

NO reduction is 1.3 L/(min, g Pd), much smaller than those of NO2
- and N2O 

reduction (kobs = 20.2 and 13.1 L/(min, g Pd), respectively), the accumulation of NO 

should be expected during NO2
- reduction experiments, unless the adsorbed NO that 

forms on the catalyst surface from NO2
- reduction is strongly bound and/or much 

more reactive than externally supplied NO. 

 

Results are shown in Fig. 3(b) for the cases when unlabeled NO is initially added 

along with 15N-labeled NO2
- (Exps. 8-10). The production of mixed-labeled N2 (MW: 

29) increases with increasing initial concentrations of unlabeled NO. This indicates 

that NO is a reaction intermediate of NO3
-. It also demonstrates that NO2

- or one of its 

daughter intermediates/products interact with NO (or a daughter product thereof) to 

form N2. Since no NO was detected in the headspace during NO2
- reduction 

experiments, and mass balances are good, it is likely that the intermediate NO is in an 

adsorbed and highly reactive form on the catalyst surface. Ebbesen et al (2008) [34] 

reported infrared spectroscopic data that indicated the formation of NOads during NO2
- 
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reduction on a supported Pd catalyst. 

 

These NO results are consistent with Scheme 1, and contradict reports by Ebbesen et 

al [34] that no ammonium is formed from NOads during NO2
- reduction on a Pd/Al2O3 

catalyst. The fact that NO reduction can follow two parallel pathways, one leading to 

N2 production and the other to NH4
+ production, indicates that NO might be the key 

intermediate that controls the final product selectivity. Results from gas phase 

catalysis studies support this assertion. For example, Miller et al [37] observed N2, 

N2O, NH3 during reduction of NO pulsed with H2 over Pd/ Al2O3 at 773 K. Hornung 

et al observed these same products during reduction of NO with H2 on Ru/γ-Al2O3, 

and selectivity for N2 reaching 100% at temperatures as low as 470 K [38]. This same 

author performed temperature-programmed surface reaction (TPSR) experiments and 

found that higher heating rates and lower H2 partial pressures shift selectivity from 

NH3 to N2. 

 

Van Hardeveld et al [39] studied NH3 formation during NOx reduction on a three-way 

Ru catalyst. They proposed that NO dissociates into adsorbed N and O atoms, and 

hydrogenation to NH3 occurs stepwise by addition of H atoms to Nads produced by 

NO dissociation. Several authors have also studied N2O formation during NO 

reduction [44,45]. Results indicate that NO reduction to N2O takes place via the 

formation of an NO dimer, (NO)2, which results from weak adsorption of NO 

molecules on Pd sites [44,46]. This leads to N-N bond formation during the catalytic 

reduction of NO [47]. 

 

3.4 The effects of intermediate NO concentrations on 

selectivity for N2 over NH4
+. 

The effect of NO concentration on selectivity is apparent in the isotope mixing 

experiments (Fig. 3(b)). With increasing unlabeled NO present in the system with 
15NO2

-, the production of total NH4
+ decreased by up to 35% compared to the 
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15NO2
--only batch reaction; recall that no effect on NH4

+ occurred when 15NO2
- was 

reduced in the presence of excess unlabeled N2O. This suggests that the concentration 

of NO may affect the N2/NH4
+

(aq) product selectivity. It has been generally accepted 

that the selectivity is a function of the ratio of the surface coverage of intermediate 

N-species to reductant species [24], and this key intermediate may be NOads. It is 

proposed that higher concentrations of NO intermediate would results in lower NH4
+ 

production and higher selectivity for N2. With higher NO concentrations on the 

catalyst surface, interactions between adsorbed N-O molecules increase, and at the 

same time, NO molecules have less exposure to Pd-adsorbed H atoms. Therefore, N2 

production from N-N coupling becomes more favored over NH4
+ production, leading 

to an improved selectivity for N2. 

 

The effect of NO concentration on selectivity is further explored in Fig. 4(a), where 

selectivity for N2 is explored as a function of initial 15NO concentration (Exps. 11-15). 

Increasing the initial amount of 15NO increases the selectivity for N2, reaching a 

maximum selectivity of ~0.9. However, when the initial NO concentration exceeds 20 

μmol (13.3 μmol/mg Pd), no further increases in selectivity is observed. This is 

attributed to saturation of NO adsorption/reaction sites on the catalyst surface, and the 

plateau value of 20 μmol NO is on the same order as the calculation of the theoretical 

maximum NO coverage on 30 mg of a 5.42% Pd catalyst, i.e. 5.7 μmol NOads (or 3.8 

μmol NOads/mg Pd). The NO coverage on Pd clusters was estimated by assuming the 

following: (1) spherical Pd nanoparticles; (2) Pd active sites are occupied by N atoms 

in NOads molecules; and (3) monolayer coverage of NO molecules on all surfaces of 

Pd clusters. The mean diameter ( d ) of one Pd nanoparticle in the catalyst is 3.12 nm, 

and 4 31.2 10 /Pd kg mρ = × . For one Pd cluster,  

2 24surfaceA r dπ π= =  

3 34 1
3 6

V r dπ π= =  

191.91 10m V gρ −= = ×  
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For 30 mg of a 5.42wt% Pd catalyst, the total mass of Pd is 1.626 mg. Thus, the 

number of Pd clusters and total surface of Pd sites in 30 mg catalyst can be 

determined as, 

15
19

1.626 8.50 10
1.91 10Pd

mgN
g−= = ×

×
 

17 22.60 10total Pd surfaceA N A nm= = ×  

The dominant bonding between Pd and NO involves covalent σ bonds [46], but no 

bonds are formed between adjacent NO molecules packed on the Pd surface. 

Therefore, the van der Waals radius of the N atom ( 155Wr pm= ) is adopted for 

calculation instead of the covalent radius ( cov 71r pm= ). The total number of adsorbed 

N atoms saturated on Pd sites can be determined as, 

2
total

NO N
W

AN N
rπ

= =  

Dividing this by Avogadro’s number ( 23 16.02 10AN mol−= × ) results in an estimated 

saturation surface concentration 5.7NOn molμ= . Although this calculation should 

only be considered a rough estimate, the close match to the experimental observations 

of 20 μmol supports the role of NO-NO reactions being critical to production of 

diatomic N products. 

 

We indirectly evaluate the effects of NO concentration on selectivity by varying the 

initial 15N-labeled NO2
- concentration (Exps. 16-20); results are shown in Fig. 4(b). 

Increasing initial amounts of NO2
- in the system also increases selectivity for the N2. 

However, when the initial NO2
- exceeds 160 μmol (320 μmol/mg Pd), the selectivity 

shows no further improvement. The plateau value for N2(g) selectivity occurs at higher 

initial NO2
- concentrations than NO concentrations (16.8 μmol/mg Pd). Because of its 

high reactivity, we proposed that NOads formed during NO2
- reduction cannot 

accumulate to concentrations as high as in exogenous supplied 15NO reductions. So, 

higher concentrations of NO2
- are needed to produce sufficient NOads for maximum 
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coverage of catalyst active sites. The same trend regarding the effect of initial nitrite 

concentration on end product selectivity was reported by Chinthaginjala and 

coworkers (2010) [29], though no plateau in selectivity was observed due to a lower 

NO2
- concentration range examined. Similar results were reported by Katsounaros et 

al (2008) [48] during studies of electrochemical NO3
- reduction at a tin electrode. 

Hence, it appears that surface saturation of NOads will also occur for NO3
- reduction at 

sufficiently high initial concentrations. 

 

3.5 Confirmed nitrate reduction mechanisms 

A nitrate/nitrite reduction mechanism (Scheme 1) has been proposed in previous 

studies [49,50,51]. Typically, NO3
- is hydrogenated by palladium-based bimetallic 

catalysts, while NO2
- and further intermediates can be reduced with Pd catalyst. With 

H2 as the reducing agent, NO3
- is converted to N2 as a desired product and NH4

+ as 

by-product. In this typical reaction scheme, the role of NO reduction on N2 and NH4
+ 

formation was previously unclear due to lack of direct experimental evidence. The 

findings of our research confirm the involvement of NO in the nitrate/nitrite reduction 

pathways and its key role in affecting the end product distribution of N2 and NH4
+. 

Therefore, a slightly revised reaction scheme is proposed in Scheme 2. 

 

NO3
- is proposed to adsorb onto Pd-In bimetallic sites of the catalyst and be reduced 

to NO2
- by hydrogen. The intermediate NO2

- undergoes fast reduction on Pd 

monometallic sites, and is converted to the intermediate NO. The adsorbed NO is 

stepwise reduced by H2 to NH4
+ and H2O respectively. Parallel with direct reduction 

of NOads, (NO)2 dimers can also be formed on Pd surfaces, and this interaction leads 

to the formation of N-N bonds, producing N2O, which is subsequently reduced to N2. 

With higher NOads concentrations on the catalyst surface, the formation of (NO)2 

dimers is favored, and direct reduction of NOads is disadvantageous due to lack of 

adjacent H/H2. Therefore, a higher selectivity for N2 can be observed. The same 

mechanism applies to decreasing N2 selectivity corresponding to decreasing NOads 
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concentration. 

 

 
 

Scheme 2. Revised nitrate reduction pathways 
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3.6 Figures 

 
 
Figure 1. Nitrite reduction profiles (1 mM NO2

-, 0.375 g/L catalyst) using (a) 
unlabeled NO2

- and (b) 15NO2
-. All analytes are plotted in terms of micromoles of 

molecules. 
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Figure 2. (a) N2O reduction profiles (50 μmol N2O, 0.25 g/L catalyst); (b) Final 
product distribution from the combined reduction of 15NO2

- (80 μmol) and different 
amounts of unlabeled N2O (note that the values and error bars for N2(29) are zeros). 
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Figure 3. (a) 15NO reduction profiles (41 μmol 15NO, catalyst 0.375 g/L); (b) Final 
product distribution from the combined reduction of 15NO2

- (80 μmol) and different 
amounts of 14NO. 
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Figure 4. (a) Selectivity for N2 with different initial amounts of NO; (b) Selectivity 
for N2 with different initial amounts of 15NO2

-. 
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CHAPTER 4: CONCLUSIONS 

15N-labeling was shown to be an effective tool for elucidation of the nitrate/nitrite 

reduction pathway by eliminating the effect of atmospheric 14N2. For a Pd-In/Al2O3 

catalyst, no isotope effect was observed for reaction kinetics. N2O is confirmed as an 

intermediate in nitrate/nitrite reduction pathways; N2O can only be reduced to N2, and 

not NH4
+. Using isotope mixing experiments, NO is confirmed as a key intermediate 

in nitrate/nitrite reduction pathway, and is responsible for both N2 and NH4
+ 

production. A highly reactive and strongly bound NOads species is formed on the 

catalyst surface, and no NO(g) is detected in the headspace. The N2(g)/NH4
+

(aq) product 

selectivity is determined by NOads concentration. The selectivity for N2 increases with 

increasing NOads concentrations on the catalyst surface, but cannot be further 

improved when NOads concentration reaches maximum surface coverage. A revised 

reaction scheme for catalytic hydrogenation of nitrate/nitrite has been proposed. 
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APPENDIX: DATA USED FOR FIGURES 

Data for Fig. 1(a) Unlabeled NO2
- reduction profiles (1 mM NO2

-, 0.375 g/L catalyst) 

 
Table 2. Aqueous phase data for 1 mM 14NO2

- reduction 
 

Time NO2
- Time NO2

- fit NH4
+ 

(min) (μmol) (min) (μmol) 
0.5 61.8 0.0 77.5 0.0 
1.5 50.1 0.5 64.9 3.6 
2.5 34.1 1.5 45.5 5.2 
4.5 13.1 2.5 32.0 6.8 
5.5 9.8 4.0 18.8 10.3 
7.0 4.8 5.5 11.0 15.5 
8.5 2.7 7.0 6.5 18.6 
15.0 0.0 8.5 3.8 22.9 
20.0 0.0 10.0 2.2 26.7 
30.0 0.0 12.0 1.1 28.3 

  15.0 0.4 30.9 
  20.0 0.1 32.1 
  25.0 0.0 31.4 
  30.0 0.0 32.4 
  35.0 0.0 32.0 
  40.0 0.0 30.7 
  50.0 0.0 31.7 
  60.0 0.0 33.0 
  75.0 0.0 33.5 
  90.0 0.0 32.5 
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Table 3. Gaseous phase data for 1 mM 14NO2

- reduction 
 

Time N2O (44) N2 (28) N total Theoretical 
N total 

(min) (μmol) 
0.0 0.0 0.0 77.4 80.0 
1.0 3.1 0.0 72.1 80.0 
9.0 14.7 18.7 102.7 80.0 
17.0 2.9 43.7 139.5 80.0 
25.0 0.0 73.7 180.0 80.0 
33.0 0.0 56.8 145.7 80.0 
41.0 0.0 61.6 155.2 80.0 
50.0 0.0 80.5 193.1 80.0 
60.0 0.0 89.3 210.7 80.0 
75.0 0.0 103.2 238.4 80.0 
90.0 0.0 116.4 264.8 80.0 

Species N2O (45, 46) and N2 (29, 30) were also monitored but not detected or below 
the detection limit of 0.1 μmol. 
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Data for Fig. 1(b) 15NO2
- reduction profiles (1 mM 15NO2

-, 0.375 g/L catalyst) 

 
Table 4. Aqueous phase data for 1 mM 15NO2

- reduction 
 

Time 15NO2
- Time 15NO2

- fit NH4
+ 

(min) (μmol) (min) (μmol) 
0.5 43.8 0.0 53.4 0.0 
3.0 19.1 0.5 44.2 5.3 
5.5 5.3 3.0 17.2 9.3 
8.0 0.8 5.5 6.7 13.7 
11.0 0.4 8.0 2.6 17.7 
13.0 0.2 11.0 0.8 23.6 
15.0 0.0 13.0 0.4 24.8 
20.0 0.0 15.0 0.2 25.0 
24.0 0.0 20.0 0.0 27.2 
30.0 0.0 24.0 0.0 28.2 
40.0 0.0 30.0 0.0 28.4 
52.0 0.0 40.0 0.0 27.0 
62.0 0.0 52.0 0.0 30.1 
77.0 0.0 62.0 0.0 26.8 
88.0 0.0 77.0 0.0 26.4 

  88.0 0.0 25.3 
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Table 5. Gaseous phase data for 1 mM 15NO2

- reduction 
 

Time N2O (46) N2 (29) N2 (30) 15N total Theoretical
15N total 

(min) (μmol) 
0.0 0.0 0.0 0.0 53.4 80.0 
1.0 0.9 0.0 0.0 40.6 80.0 
9.0 7.2 0.0 18.0 71.1 80.0 
17.0 0.0 0.0 27.8 83.2 80.0 
25.0 0.0 0.0 25.2 77.8 80.0 
33.0 0.0 0.0 25.2 77.9 80.0 
41.0 0.0 0.0 26.3 80.1 80.0 
50.0 0.0 0.0 27.8 83.1 80.0 
60.0 0.0 0.0 25.4 78.1 80.0 
75.0 0.0 0.0 24.0 75.4 80.0 
90.0 0.0 0.0 24.7 76.7 80.0 

Species N2O (44, 45) and N2 (28) were also monitored but not listed. Amounts of N2O 
(44, 45) were below the detection limit of 0.1 μmol, and N2 (28) was twofold of 
measured N2 (30). 
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Data for Fig. 2(a) N2O reduction profiles (50 μmol N2O, 0.25 g/L catalyst) 

 
Table 6. Aqueous phase data for N2O reduction 

 

Time NH4
+ 

(min) (μmol) 
15.0 0.0 
35.0 0.0 
55.0 0.0 
60.0 0.0 
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Table 7. Gaseous phase data for N2O reduction 

 

Time N2O (44) N2 (28) N total Theoretical
N total Time N2O fit 

(min) (μmol) (min) (μmol) 
0.0   149.3 107.5 0.0 74.7 
2.0 53.7 11.6 130.6 107.5 2.0 53.8 
10.0 14.8 43.8 117. 2 107.5 4.0 38.7 
20.0 2.1 56.2 116.6 107.5 6.0 27.9 
30.0 0.3 58.2 117.1 107.5 8.0 20.1 
40.0 0.1 60.3 120.8 107.5 10.0 14.4 
50.0 0.1 60.6 121.3 107.5 12.0 10.4 
60.0 0.0 61.0 122.1 107.5 14.0 7.5 

     16.0 5.4 
     18.0 3.9 
     20.0 2.8 
     22.0 2.0 
     24.0 1.4 
     26.0 1.0 
     28.0 0.7 
     30.0 0.5 
     32.0 0.4 
     34.0 0.3 
     36.0 0.2 
     38.0 0.1 
     40.0 0.1 
     42.0 0.1 
     44.0 0.1 
     46.0 0.0 
     48.0 0.0 
     50.0 0.0 
     60.0 0.0 

Species N2 (29, 30) were also monitored but not detected or below the detection limit 
of 0.1 μmol. 
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Data for Fig. 2(b) Final product distribution from the combined reduction of 15NO2
- 

(80 μmol) and different amounts of unlabeled N2O 

 
Table 8. Summary of 15NO2

- and N2O combined reductions 
 

15N:14N 
Average Standard Deviation 

N2 (30) N2 (29) NH4
+ N2 (30) N2 (29) NH4

+ 
(μmol) 

4:1 20.4 0.0 33.5 0.8 0.0 1.1 
1:1 21.0 0.0 40.5 2.2 0.0 1.0 
1:4 20.5 0.0 33.8 5.1 0.0 3.9 

 
 

Table 9. Replicates of 15NO2
- and N2O combined reductions 

 

15N:14N Product 
Replicate

1 
Replicate

2 
Replicate

3 Average Standard 
Deviation

(μmol) 

4:1 
N2 (30) 21.3 19.9 20.1 20.4 0.8 
N2 (29) 0.0 0.0 0.0 0.0 0.0 
NH4

+ 34.6 32.4 33.5 33.5 1.1 

1:1 
N2 (30) 18.5 22.0 22.5 21.0 2.2 
N2 (29) 0.0 0.0 0.0 0.0 0.0 
NH4

+ 41.7 39.8 40.0 40.5 1.0 

1:4 
N2 (30) 15.1 25.3 21.1 20.5 5.1 
N2 (29) 0.0 0.0 0.0 0.0 0.0 
NH4

+ 29.7 37.4 34.4 33.8 3.9 
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Data for Fig. 3(a) 15NO reduction profiles (41 μmol 15NO, catalyst 0.375 g/L) 

 
Table 10. Aqueous phase data for 15NO reduction 

 

Time NH4
+ 

(min) (μmol) 
0.0 0.0 
5.0 0.2 
15.0 2.2 
30.0 4.0 
45.0 4.1 
65.0 5.5 
85.0 6.7 
118.0 7.3 
178.0 6.5 
238.0 7.5 
298.0 7.7 
420.0 7.4 
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Table 11. Gaseous phase data for 15NO reduction 

 

Time 15NO N2O 
(46) N2 (30)

15N 
total 

Theoretical
15N total Time 15NO fit

(min) (μmol) (min) (μmol) 
0.0    41.6 41.6 0.0 41.6 
1.0 43.2 2.9 0.1 49.3 41.6 10.0 32.3 
9.0 30.4 1.7 4.7 43.8 41.6 20.0 25.1 
17.0 25.7 1.2 7.8 45.0 41.6 30.0 19.5 
25.0 22.2 1.0 9.0 44.0 41.6 40.0 15.2 
33.0 17.9 1.0 11.5 45.3 41.6 50.0 11.8 
41.0 15.4 0.9 12.1 44.5 41.6 60.0 9.1 
50.0 12.0 0.7 13.5 44.0 41.6 70.0 7.1 
60.0 10.1 0.7 14.0 44.1 41.6 80.0 5.5 
75.0 6.5 0.5 14.1 41.2 41.6 90.0 4.3 
90.0 4.8 0.4 15.7 43.7 41.6 100.0 3.3 
120.0 2.2 0.3 15.7 41.4 41.6 110.0 2.6 
180.0 0.5 0.1 16.8 41.6 41.6 120.0 2.0 
240.0 0.1 0.0 17.4 42.1 41.6 130.0 1.6 
300.0 0.0 0.0 18.1 43.5 41.6 140.0 1.2 
360.0 0.0 0.0 19.7 46.7 41.6 150.0 0.9 
420.0 0.0 0.0 19.0 45.3 41.6 160.0 0.7 

      170.0 0.6 
      180.0 0.4 
      190.0 0.3 
      200.0 0.3 
      210.0 0.2 
      220.0 0.2 
      230.0 0.1 
      240.0 0.1 
      250.0 0.1 
      260.0 0.1 
      270.0 0.0 
      280.0 0.0 
      290.0 0.0 
      300.0 0.0 
      330.0 0.0 
      360.0 0.0 
      390.0 0.0 
      420.0 0.0 

Species N2O (44, 45) and N2 (28, 29) were also monitored but not listed. Amounts of 
N2O (44, 45) and N2 (29) were below the detection limit of 0.1 μmol, and N2 (28) was 
twofold of measured N2 (30).  
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Data for Fig. 3(b) Final product distribution from the combined reduction of 15NO2
- 

(80 μmol) and different amounts of 14NO 

 
Table 12. Summary of 15NO2

- and NO combined reductions 
 

15N:14N 
Average Standard Deviation 

N2 (30) N2 (29) NH4
+ N2 (30) N2 (29) NH4

+ 
(μmol) 

4:1 22.4 0.0 38.4 6.3 0.0 2.6 
1:1 18.6 0.8 37.7 4.6 1.3 2.0 
1:4 12.8 16.8 13.8 3.3 1.2 2.0 

 
 

Table 13. Replicates of 15NO2
- and NO combined reductions 

 

15N:14N Product 
Rep. 1 Rep. 2 Rep. 3 Average Standard 

Deviation
(μmol) 

4:1 
N2 (30) 24.7 15.3 27.2 22.4 6.3 
N2 (29) 0.0 0.0 0.0 0.0 0.0 
NH4

+ 38.9 35.6 40.7 38.4 2.6 

1:1 
N2 (30) 23.8 16.4 15.5 18.6 4.6 
N2 (29) 0.0 0.0 2.3 0.8 1.3 
NH4

+ 36.9 39.9 36.2 37.7 2.0 

1:4 
N2 (30) 15.1 10.4 12.6 12.7 2.4 
N2 (29) 17.6 15.9 16.6 16.7 0.9 
NH4

+ 15.2 12.4 13.1 13.6 1.5 
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Data for Fig. 4(a) Selectivity for N2 with different initial amounts of NO 

 

Table 14. Summary of selectivity for N2 with different initial amounts of NO 
 

15NO 
injected 

15NO C0 Selectivity for N2 

(ml, 1 
atm) 

(μmol/mg 
Pd) Rep. 1 Rep. 2 Rep. 3 Average Standard 

Deviation
0.1 2.8 0.5 0.5 0.6 0.5 0.1 
0.2 5.5 0.6 0.6 0.6 0.6 0.1 
0.5 13.8 0.8 0.8 0.8 0.8 0.0 
1.0 27.6 0.8 0.8 0.9 0.8 0.0 
2.0 55.3 0.9 0.9 0.9 0.9 0.0 

 
 

Table 15. Replicates of selectivity for N2 with different initial amounts of NO 
 

15NO 
injected Product 

Rep. 1 Rep. 2 Rep. 3 Average Standard 
Deviation(ml, 1 

atm) (μmol) 

0.1 
N2 (30) 1.4 1.4 2.1   
NH4

+ 3.0 2.8 3.0   
selectivity 0.5 0.5 0.6 0.5 0.1 

0.2 
N2 (30) 3.4 3.0 2.9   
NH4

+ 3.7 3.7 4.8   
selectivity 0.6 0.6 0.6 0.6 0.1 

0.5 
N2 (30) 9.2 9.2 9.5   
NH4

+ 4.5 5.6 4.9   
selectivity 0.8 0.8 0.8 0.8 0.0 

1.0 
N2 (30) 20.8 18.5 21.6   
NH4

+ 8.2 7.3 6.4   
selectivity 0.8 0.8 0.9 0.8 0.0 

2.0 
N2 (30) 38.9 42.0 58.6   
NH4

+ 10.8 8.6 9.2   
selectivity 0.9 0.9 0.9 0.9 0.0 
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Data for Fig. 4(b) Selectivity for N2 with different initial amounts of 15NO2
- 

 

Table 16. Summary of selectivity for N2 with different initial amounts of 15NO2
- 

 
15NO2

- C0 Selectivity for N2 

(mM) (μmol/mg 
Pd) Rep. 1 Rep. 2 Rep. 3 Average Standard 

Deviation
0.125 20.0 0.3 0.4 0.3 0.3 0.0 
0.25 40.0 0.5 0.5 0.5 0.5 0.0 
1.0 160.0 0.7 0.7 0.7 0.7 0.0 
2.0 320.0 0.8 0.8 0.7 0.8 0.0 
4.0 640.0 0.7 0.8 0.8 0.8 0.1 

 
 
 

Table 17. Replicates of selectivity for N2 with different initial amounts of 15NO2
- 

 
15NO2

- C0 Product 
Rep. 1 Rep. 2 Rep. 3 Average Standard 

Deviation(mM) (μmol) 

0.125 
N2 (30) 2.0 1.9 1.6   
NH4

+ 9.8 6.8 6.7   
selectivity 0.3 0.4 0.3 0.3 0.0 

0.25 
N2 (30) 5.3 5.7 5.1   
NH4

+ 10.4 10.2 11.7   
selectivity 0.5 0.5 0.5 0.5 0.0 

1.0 
N2 (30) 28.1 32.2 30.4   
NH4

+ 24.2 26.9 28.6   
selectivity 0.7 0.7 0.7 0.7 0.0 

2.0 
N2 (30) 65.6 68.0 63.2   
NH4

+ 40.4 38.4 42.5   
selectivity 0.8 0.8 0.7 0.8 0.0 

4.0 
N2 (30) 84.7 132.0 126.5   
NH4

+ 84.4 48.2 46.1   
selectivity 0.7 0.8 0.8 0.8 0.1 
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