ELUCIDATION OF NITRATE REDUCTION MECHANISMS ON A PD/IN BIMETALLIC CATALYST USING ISOTOPE LABELED NITROGEN SPECIES

BY

RUI ZHANG

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering in Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Advisers:

Professor Charles J. Werth Associate Professor Timothy J. Strathmann

ABSTRACT

Catalytic hydrogenation over Pd-based catalysts has emerged as an effective treatment approach for nitrate (NO_3) removal, but its full-scale application for direct treatment of drinking water or ion exchange regenerant brines requires improved selectivity for the end-product dinitrogen (N_2) over toxic ammonia species (NH_4^+, NH_3) . A key to improving N₂ versus NH₄⁺ production is to elucidate nitrate reduction pathways and identify the key intermediate(s) that determine selectivity. To address this challenge, aqueous reduction experiments with an Al₂O₃-supported Pd/In bimetallic catalyst were conducted using isotope-labeled nitrite $(^{15}NO_2)$, the first reduction intermediate of NO3, alone and in combination with unlabeled proposed reduction intermediates (N₂O, NO), and using N₂O and NO alone, each as a starting reactant. Use of ¹⁵N-labeled species eliminated interference from ambient ¹⁴N₂ when assessing mass balances and product distributions. Simultaneous catalytic reduction of ¹⁵NO₂⁻ and ¹⁴N₂O showed no isotope mixing in the final N₂ product, demonstrating that N₂O does not react with other NO2⁻ reduction intermediates. N2O reduction alone also yielded only N₂, verifying that N₂O reduction occurs after the reaction step controlling final N_2/NH_4^+ product distribution. In contrast, simultaneous catalytic reduction of ${}^{15}NO_2^$ and ¹⁴NO yielded mixed-labeled N₂ (mass 29), and ¹⁵NO reduction alone yielded both N_2 and NH_4^+ , indicating that NO is a key intermediate involved in determining final product selectivity. N₂/NH₄⁺ product selectivity was also evaluated as a function of varying initial ¹⁵NO concentration, and results show that selectivity for N₂ increases with initial NO concentration to a point, above which product selectivity remains unchanged. This trend is attributed to the increasing importance of N-N pairing reactions leading to N₂O formation as the concentration of catalyst-adsorbed NO (NO_{ads}) increases to a point of saturating available adsorption sites, above which no further increases in N2 selectivity occur. These results are important because they yield mechanistic insights into the NO₃⁻ reduction pathway and information on how catalytic reduction processes can be optimized to maximize N_2 production over NH_4^+ .

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all those who helped to complete this thesis. Most of all I would like to thank my advisors, Prof. Charles J. Werth and Prof. Timothy J. Strathmann, who gave numerous helpful suggestions and always trusted and encouraged me during the completion of this research project and the writing of this thesis. I would also thank the Department of Civil and Environmental Engineering for giving me the opportunity to access department resources to conduct my research.

This work was financially supported by The WaterCAMPWS, a Science and Technology Center of Advanced Materials for the Purification of Water with Systems, under the National Science Foundation agreement number CTS-0120978. Many thanks to the WaterCAMPWS center, which provides precious opportunities for me to present and discuss my research work with other researchers.

I would like to thank Prof. John R. Shapley (Dept. Chemistry, Univ. Illinois) for his great guidance and help in catalysis research, Dr. Kathryn A. Guy for her help with GC/MS usage and great cooperation at labs, Kathleen Kelly for sharing ¹⁵NO gas with us, and Danmeng Shuai for great discussions on researches.

TABLE OF CONTENTS

LIST OF FIGURES	1
LIST OF TABLES	i
CHAPTER 1: INTRODUCTON1	L
CHAPTER 2: EXPERIMENTAL	5
2.1 Reagents	5
2.2 Catalyst preparation and characterization	5
2.3 Reduction experiments	5
2.4 Analytical methods	7
2.5 Tables)
CHAPTER 3: RESULTS AND DISCUSSION)
3.1 Labeled N eliminates background N ₂ interference)
3.2 Confirmation of N ₂ O as an intermediate	L
3.3 Confirmation of NO as an intermediate	2
3.4 The effects of intermediate NO concentrations on selectivity for N_2 over	
NH4 ⁺	3
3.5 Confirmed nitrate reduction mechanisms	5
3.6 Figures	3
CHAPTER 4: CONCLUSIONS	2
REFERENCES	3
APPENDIX: DATA USED FOR FIGURES	7

LIST OF FIGURES

Figure 1. Nitrite reduction profiles $(1 \text{ mM NO}_2^-, 0.375 \text{ g/L catalyst})$ using (a)
unlabeled NO_2^- and (b) ${}^{15}NO_2^-$. All analytes are plotted in terms of micromoles
of molecules
Figure 2. (a) N_2O reduction profiles (50 µmol N_2O , 0.25 g/L catalyst); (b) Final
product distribution from the combined reduction of ${}^{15}NO_2^-$ (80 µmol) and
different amounts of unlabeled N_2O (note that the values and error bars for
N ₂ (29) are zeros)
Figure 3. (a) 15 NO reduction profiles (41 µmol 15 NO, catalyst 0.375 g/L); (b) Final
product distribution from the combined reduction of ${}^{15}NO_2^-$ (80 µmol) and
different amounts of ¹⁴ NO
Figure 4. (a) Selectivity for N_2 with different initial amounts of NO; (b) Selectivity
for N ₂ with different initial amounts of ¹⁵ NO ₂ ⁻ 21

LIST OF TABLES

Table 1. List of experiments performed	9
Table 2. Aqueous phase data for 1 mM $^{14}NO_2^-$ reduction	27
Table 3. Gaseous phase data for 1 mM $^{14}NO_2^-$ reduction	28
Table 4. Aqueous phase data for 1 mM $^{15}NO_2^-$ reduction	29
Table 5. Gaseous phase data for $1 \text{ mM}^{15}\text{NO}_2^-$ reduction	30
Table 6. Aqueous phase data for N2O reduction	31
Table 7. Gaseous phase data for N2O reduction	32
Table 8. Summary of ${}^{15}NO_2^-$ and N_2O combined reductions	33
Table 9. Replicates of ${}^{15}NO_2^-$ and N_2O combined reductions	33
Table 10. Aqueous phase data for ¹⁵ NO reduction	34
Table 11. Gaseous phase data for ¹⁵ NO reduction	35
Table 12. Summary of ${}^{15}NO_2^-$ and NO combined reductions.	36
Table 13. Replicates of ${}^{15}NO_2$ and NO combined reductions	36
Table 14. Summary of selectivity for N2 with different initial amounts of NO	37
Table 15. Replicates of selectivity for N_2 with different initial amounts of NO	37
Table 16. Summary of selectivity for N_2 with different initial amounts of ${}^{15}NO_2^{-1}$.	38
Table 17. Replicates of selectivity for N_2 with different initial amounts of ${}^{15}NO_2^{-1}$.	38

CHAPTER 1: INTRODUCTON

Nitrate (NO₃⁻) is a common contaminant detected in surface water and underground aquifers. It can result from overuse of agricultural fertilizers, sewage discharges, and contaminant leachate from landfills [1]. Nitrate contamination can cause serious health risks to humans, such as methemoglobinemia (blue baby syndrome) and cancer [2]. The latter risk results when NO₃⁻ reduction intermediates (e.g., nitrite) are converted to nitroso compounds in the human body [3]. Although the concentration of NO₃⁻ in the natural environment is generally less than 2 mg/L, domestic groundwater wells and other impacted water sources are often found with concentrations exceeding the maximum contaminant level [3] of 10 mg/L NO₃⁻ at concentrations well below Environmental Protection Agency (EPA) and World Health Organization (WHO) standards to several cancers and negative birth outcomes [4]. Numerous technologies exist for removing nitrate from drinking water. A key challenge is developing more sustainable technologies that remove nitrate from drinking water and do not create unwanted byproducts.

Conventional methods for NO_3^- treatment can be divided into two categories, physicochemical and biological. Physicochemical treatment methods, such as ion exchange, electrodialysis, and reverse osmosis, are effective, but only serve to transfer NO_3^- from water into a concentrate phase which requires further treatment or disposal [5,6,7,8]. Biological denitrification is commonly used for wastewater treatment, but less so for drinking water due to challenges associated with the variability of incoming water quality and operational control, the production of unwanted side products, high turbidity in finished water, and concerns for pathogen exposure [9,10,11]. Catalytic hydrogenation with Pd-based bimetallic catalysts has emerged as a promising new technology for treating NO_3^- and other oxyanions (e.g., nitrite, bromate, perchlorate) in drinking water or concentrate waste streams that is capable of

converting NO₃⁻ to harmless dinitrogen gas (N₂) [12,13,14,15].

Rapid nitrate reduction has been reported for supported Pd/Cu, Pd/In, and Pd/Sn catalysts using exogenous hydrogen (H₂) as the reducing agent [16,17,18,19,20]. A proposed but heretofore unproven reduction pathway is shown in **Scheme 1**. Nitrite (NO₂⁻), nitric oxide (NO), and nitrous oxide (N₂O) are reduced on monometallic Pd [21,22,23], but a second metal (e.g., Cu, In, Sn, Co) is needed as a promoter for the first reduction step converting NO₃⁻ to NO₂⁻ [21,24]. It has been proposed that NO₃⁻ adsorbs onto the bimetallic ensemble and is reduced to NO₂⁻, which is further converted to other N-containing intermediates on Pd. The stable end-products of catalytic nitrate reduction are dinitrogen (N₂) and ammonium (NH₄⁺); the former is innocuous and ubiquitous in the atmosphere, while the latter is considered a hazardous aquatic pollutant. Hence, catalysts and operating conditions that select for N₂ production are desirable.

A number of factors have been reported to affect the N_2/NH_4^+ end-product distribution during aqueous NO₃⁻ or NO₂⁻ reduction on Pd-based catalysts. These include pH, temperature, N:H molar ratios, Pd nanocluster size and shape, and catalyst support [25,26,27,28,29]. A fundamental issue that affects the impact of all such factors on selectivity is the NO₃⁻ reduction pathway. More specifically, what key intermediate(s) control the end-product distribution? Reduction of NO₂⁻ has been identified as a key step in the overall NO₃⁻ reduction pathway that determines selectivity [30,31,32,33]. In a recent FTIR-based study, Ebbesen *et al* (2008) [34] reported detecting formation of absorbed NO (NO_{ads}) from aqueous NO₂⁻ on a Pd/Al₂O₃ catalyst in the presence of H₂. Because no change in NH_{2(ads)} or NH₄⁺ was detected for the first 12 min during the hydrogenation of NO_{ads}, they postulated that NO_{ads} does not contribute to NH₄⁺ production during NO₂⁻ reduction [34]. However, in a follow-up study they reported that NH₄⁺ instead of N₂ was formed predominantly from NO_{ads} during NO₂⁻ reduction over Pt/Al₂O₃ [35]. NO has also been proposed as a key intermediate that determines selectivity for N_2 and NH_4^+ as indicated in **Scheme 1** [20,36]; however, there is no direct experimental evidence to support this in aqueous systems. In gas phase systems, both N_2 and NH_3 were observed as NO reduction products on three-way catalysts [37,38,39]. In contrast to NO, N_2O is a known intermediate that has been measured during NO_3^- reduction [20,35]. It has been proposed as the direct precursor to N_2 . Conflicting reports concerning the role of NO_2^- and NO on final product selectivity highlight the need for further elucidation of the NO_3^- reduction pathway.

The goals of this work are to elucidate the NO_3^- reduction pathway(s) on a Pd/In bimetallic catalyst supported on γ -Al₂O₃ that was previously shown to exhibit high activity for NO₃⁻ reduction and regenerability after sulfide fouling [15,17,40,41]. Specifically, experiments were conducted to identify the key intermediates that determine selectivity for N₂ versus NH₄⁺, and to assess how changes in concentrations of intermediate species affect the preference of pathways leading to each stable end-product. To accomplish this, ¹⁵N-labeled nitrogen species were used to aid in tracking nitrogen mass balances through the reduction process. Kinetics experiments used NO_2^- as the initial reactant, since it has been unambiguously identified as the first intermediate in the nitrate reduction pathway [24]. Selectivity was measured using $^{15}\mathrm{NO_2}^-$ alone, and in the presence of unlabeled NO and N2O. In the latter experiment, the mix of N isotopes in N₂ is used to determine which species are involved in N-N pairing reactions necessary to form N2. Product selectivity experiments were also conducted using NO and N2O as initial reactants. Initial concentrations of NO2⁻ and NO were varied to evaluate the effects of NO_{ads} concentration on selectivity. To our knowledge, this is the first report of the use of ¹⁵N isotopes to aid in the study of aqueous NOx species reduction over supported Pd catalysts.

• Reducing agent: H₂

Scheme 1. Previous proposed nitrate reduction pathways

CHAPTER 2: EXPERIMENTAL

2.1 Reagents

Reagent grade sodium nitrite (NaNO₂) was purchased from Fisher. Sodium dihydrogen phosphate (H₂NaO₄P, 99.0%+) and sodium hydrogen phosphate (HNa₂O₄P·2H₂O, ~99%) were purchased from Fluka. ¹⁵N-labeled sodium nitrite (¹⁵N, 98%+), and gas cylinders of ¹⁵N₂ (98%+, for calibration) and ¹⁵NO (¹⁵N, 98%+) were purchased from Cambridge Isotope Laboratories (Andover, MA). Gas cylinders of ultrahigh purity hydrogen (H₂, 99.999%), nitrogen (N₂, 99.999%), nitric oxide (NO, 99.0%), and nitrous oxide (N₂O, 99.999%) were supplied by Matheson Tri-Gas (Joliet, IL). Deionized, nanopure water (DNW) was tap water purified by ion exchange (resistivity 16 MΩ·cm resistivity) and filtered through a nanopure membrane (Barnstead) to obtain a resistivity of 18 MΩ·cm. A 5 wt% Pd on γ-Al₂O₃ catalyst and Indium(III) nitrate hydrate (In(NO₃)₃·xH₂O, 99.999%) were purchased from Sigma-Aldrich.

2.2 Catalyst preparation and characterization

Pd/In catalysts were prepared by incipient wetness using a procedure described previously [41]. The nominal 5 wt% Pd on γ -Al₂O₃ catalyst was wet sieved to obtain particles <38 µm in diameter. Indium was then immobilized by pore volume impregnation of an In(NO₃⁻)₃ solution. The Pd/In- γ -Al₂O₃ catalysts were then dried in air at 120 °C for 14 h and reduced with H₂ at 120 °C for 1 h. The catalyst had a final metal loading of 5.42wt%Pd and 0.86wt%In, as determined by ICP-MS (ELAN DRCe, Perkin Elmer SCIEX, CT), and a BET specific surface area of 104 m²/g (ASAP 2020, Micromeritics).

2.3 Reduction experiments

A complete list of batch experiments performed is provided in Table 1. All catalytic

reduction experiments were performed at room temperature (21 ± 0.7 °C) in 120 ml glass serum bottles sealed with thick rubber stoppers, and were magnetically stirred at ca. 850 rpm to overcome external mass transfer limitations of H_{2(aq)} to the catalyst surface. Each serum bottle was initially filled with 80 ml of DNW and phosphate buffer (pH 7, 20 mM), and then a desired amount of catalyst was introduced before sealing to form a closed system with 40 ml of headspace. The closed system was sparged with H₂ for 30 min while venting to reduce the Pd/In catalyst surface, remove dissolved oxygen, and saturate the solution and headspace with H₂. The target nitrogen species (NO₂⁻, NO, or N₂O) was then added to the reactor alone or in combination with another nitrogen species to initiate reaction. Headspace samples (0.1 mL) were then periodically collected and immediately analyzed by gas chromatography with mass spectrometry (GC-MS). Aqueous aliquots (1 mL) were also collected at regular intervals, filtered (0.45 µm PTFE; Cole-Parmer) to remove catalyst particles and quench reactions, and stored in a refrigerator at 4 °C before analysis.

Mass Balance Experiments. Labeled and unlabeled nitrite reduction experiments (Exps. 1 and 2) were carried out under the same conditions, with a catalyst concentration of 0.375 g/L and an initial NO_2^- concentration of 1 mM. Nitrogen mass balances for the two cases were calculated for the whole reactor (aqueous and gas phase) using aqueous concentrations of NO_2^- and NH_4^+ and headspace gas concentrations of N_2 , N_2O , and NO. We assumed that headspace gases were in equilibrium with aqueous phase concentrations of the same species at all times (i.e., that aqueous/gas partitioning processes are rapid compared to the catalytic reaction). Excellent mass balances using labeled N species supports this assumption.

An unlabeled N₂O reduction experiment (Exp. 3) was carried out with a catalyst concentration of 0.25 g/L and 1 ml of N₂O at 1 atm. Samples from the aqueous phase and headspace were analyzed to determine intermediates and end-products. A ¹⁵N-labeled NO reduction experiment (Exp. 7) was carried out with a catalyst

concentration of 0.375 g/L and 1 ml of ${}^{15}NO_{(g)}$ at 1 atm. Samples from the aqueous phase and headspace were analyzed to determine possible intermediates and end products.

Isotope Mixing Experiments. A series of ¹⁵N-labeled nitrite and unlabeled nitrogen species (¹⁴N₂O or ¹⁴NO) combined reduction experiments (Exps. 4, 5, and 6, with ¹⁴N₂O; Exps. 8, 9, and 10, with ¹⁴NO) were carried out to assess the involvement of individual N species in N-N pairing reactions critical to N₂ formation. Each experiment was performed in triplicate. In each closed reactor system, a constant amount of ¹⁵NO₂⁻ was added at time zero with varying amounts of ¹⁴N₂O or ¹⁴NO (yielding different ¹⁵N:¹⁴N ratios: 4:1, 1:1, 1:4, respectively). The purpose of varying the amounts of exogenous supplied unlabeled ¹⁴N₂O/¹⁴NO was to investigate its possible reaction with intermediates from ¹⁵NO₂⁻ reduction, and to assess N₂O's and NO's impact on the selectivity for N₂ over NH₄⁺ respectively. The final product distribution was determined for each reactor system when the component amounts in both aqueous and gaseous phases became constant.

Product Distribution Experiments. A series of reactions were conducted to measure the end-product distributions as a function of varying initial concentration of either ${}^{15}NO$ or ${}^{15}NO_2^-$ (Exps. 11-20, each triplicated). Each reactor was prepared and buffered in the same manner described above. After allowing reactions to reach completion, ${}^{15}N_2$ headspace and NH₄⁺ aqueous concentrations were analyzed.

2.4 Analytical methods

All gas samples with N₂O, NO, and N₂ were analyzed by gas chromatography with mass spectrometry (GC-MS; Agilent Technologies, 6850 Network GC System, and 5975C VL MSD with Triple-Axis Detector; Column, Varian Plot CP-Molesieve 5Å, 25 m length \times 0.25 mm i.d.; oven temperature 165 °C; helium as carrier gas, 1.0 ml/min). Mixed calibration standards were prepared in the same way as the reactor

setup: 120 ml serum bottle filled with 80 ml of DNW and phosphate buffer (pH 7, 20 mM), sealed with thick rubber stopper, sparged with H₂ for 30 min while venting. For one designated calibration standard, each gaseous nitrogen species (${}^{14}N_2$, ${}^{15}N_2$, ${}^{14}N_2O$, ${}^{14}NO$ and ${}^{15}NO$) was added into the closed system in the same volume at 1 atm. Similar GC-MS sensitivities were observed for ${}^{14}NO$ and ${}^{15}NO$, but atmospheric interference of ${}^{14}N_2$ measurements prevented accurate comparison of MS detector sensitivity towards ${}^{15}N_2$.

Aqueous NO_3^- and NO_2^- concentrations were analyzed by ion chromatography with conductivity detection (Dionex ICS-2000 system; Dionex IonPac AS18 column; 36 mM KOH as eluent; 1 mL/min eluent flow rate; 25 µL injection loop). Ammonium concentrations were analyzed by UV-Vis colorimetric analysis (HACH DR/4000U spectrophotometry) using the low-range (0.02 to 2.50 mg/L NH₃-N) Test 'N Tube nitrogen ammonia reagent set from HACH.

Concentrations of all analytes are shown in terms of total moles of N in the closed reactor (i.e., aqueous + gas) so that all analytes can be represented on a common scale and to illustrate N mass balances that include contributions from monoatomic and diatomic N species. Product distributions are presented in terms of selectivity for the desired N_2 product, calculated using measurements of both N_2 and NH_4^+ according to Equation 1:

$$S_{N_2} = \frac{2n(N_2)}{2n(N_2) + n(NH_4^+)}$$
(Eq. 1)

in which S_{N_2} is the selectivity for N₂; $n(N_2)$ and $n(NH_4^+)$ are the moles of N₂ and NH₄⁺ monitored in actual reduction experiments respectively.

2.5 Tables

	Catalyst	Initial concentration/amount					
Exp. No.	loading	¹⁵ NO ₂ ⁻	NO ₂	¹⁵ NO	NO	N ₂ O	
	(mg)		(mM)		(ml, at 1 a	atm)	
1	30		1				
2	30	1					
3	20					1	
4*	10	1				0.25	
5*	10	1				1	
6*	10	1				4	
7	30			1			
8*	10	1			0.5		
9*	10	1			2		
10*	10	1			8		
11*	30			0.1			
12*	30			0.2			
13*	30			0.5			
14*	30			1			
15*	30			2			
16*	10	0.125					
17*	10	0.25					
18*	10	1					
19*	10	2					
20*	10	4					

 Table 1. List of experiments performed

* Each experiment was performed in triplicate.

CHAPTER 3: RESULTS AND DISCUSSION

3.1 Labeled N eliminates background N₂ interference

Results from the unlabeled nitrite reduction experiment (Exp. 1) are shown in **Fig. 1(a)**. A loss of $NO_{2(aq)}^{-}$ was observed, while $N_{2(g)}$ was detected in the gas phase and $NH_{4(aq)}^{+}$ was formed in the aqueous phase. There was also transient formation and disappearance of $N_2O_{(g)}$ in the system, whereas no $NO_{(g)}$ was detected in the headspace. The calculated total moles of N during the reaction (represented by the solid black line) increase with time, and markedly exceed the initial moles after 3 min of reaction (represented by the horizontal dashed line). This is attributed to atmospheric $N_{2(g)}$ (~210,000 ppm_v) leaking into the closed system during repeated sampling. The poor mass balance makes it challenging to quantify intermediates formed during the reduction process.

To avoid interference from atmospheric nitrogen, ¹⁵N-labeled NO₂⁻ was used in the place of unlabeled NO₂⁻ for catalytic reduction under the same experimental conditions (Exp. 2). Results are shown in **Fig. 1(b)**. The observed pseudo-first-order rate constant for ¹⁵NO₂⁻ (aq) reduction (k_{obs} = 20.2 L/(min, g Pd)) and concentration of NH₄⁺ (aq) produced during the reaction (32 µmol) are similar to those observed with unlabeled NO₂⁻ (k_{obs} = 18.9 L/(min, g Pd); 27 µmol NH₄⁺), indicating that kinetic isotope effects are not significant. Pseudo-first-order rate constants for NO₂⁻ reduction at pH 5.0 on 5wt% Pd/ γ -Al₂O₃ and 5wt%Pd-0.5wt%In/ γ -Al₂O₃ were 4.4 L/(min, g Pd) and 7.6 L/(min, g Pd) respectively, as reported by Shuai et al [15]. The difference in k_{obs} may be due to differing experimental conditions, e.g. pH, and catalyst loading. The total moles of nitrogen agree with the initial moles of nitrogen throughout the reaction after eliminating interference from atmospheric ¹⁴N₂. The labeled intermediate ¹⁵N₂O was also detected during the reaction; however, no significant ¹⁵NO was detected. A selectivity of 65.0% for N₂ was observed for ¹⁵NO₂⁻ reduction, which was calculated using both measurements of N₂ and NH₄⁺. Previously only

 NH_4^+ produced from NO_2^- reduction was used to calculate selectivity, assuming the remaining fraction of the product mass balance was N_2 [29,42].

3.2 Confirmation of N₂O as an intermediate

Reduction experiments with N₂O as the initial reactant alone and in the presence of NO₂⁻ were performed in order to determine if N₂O is a key intermediate in determining product selectivity. When used alone, N₂O was unlabeled due to its excessive cost (~\$6000 per liter of ¹⁵N₂O). Results are shown in **Fig. 2(a)** for the case when N₂O_(g) was the only initial reactant (Exp. 3). Only N_{2(g)} was detected in the headspace, and no NH₄⁺_(aq) was detected in aqueous samples either during the reaction or at the end of the reaction, indicating that N₂O is only reduced to N₂, and has no contribution to NH₄⁺ production. Mass balance results in **Fig. 2(a)** indicate leaking of background nitrogen into bottles was not a significant concern over the experimental time scale. This is because extracting only gas and not liquid samples reduces sampling time and frequency compared to NO₂⁻ reduction experiments.

Results are shown in **Fig. 2(b)** for reactions where unlabeled $N_2O_{(g)}$ is initially added to the reactor at the same time as ¹⁵N-labeled NO_2^- (Exps. 4-6). No mixed-labeled $N_{2(g)}$ (MW: 29) was detected with increasing initial $N_2O_{(g)}$ concentrations, and the amounts of ¹⁵N_{2(g)} (MW: 30) and NH_4^+ (aq) production was unaffected by the amount of unlabeled N_2O initially added to the reactor at time zero. This indicates that N_2O reacts stoichiometrically to form N_2 and does not interact with either NO_2^- or any of its other reduction intermediates on the catalyst surface.

The N₂O results generally support the previously proposed mechanism (**Scheme 1**) that N₂ but not NH₄⁺ is produced from N₂O reduction. The mass-normalized reduction rate constant (k_{obs}) for N₂O reduction is 13.1 L/(min, g Pd), smaller than that of NO₂⁻ reduction ($k_{obs} = 20.2$ L/(min, g Pd)). This enables detection of N₂O in the reactor headspace when monitoring NO₂⁻ reduction in this study (**Fig. 1**), as well as previous

studies reporting on reduction of NO_3^- , NO_2^- , and NO [32,35,37]. Sa et al [43] proposed that the formation of gaseous N₂O is related to the high surface coverage of NO_2^- . The presence of $N_2O_{(g)}$ in the gas phase during NO_2^- reduction in our work supports this assertion.

3.3 Confirmation of NO as an intermediate

Reduction experiments with NO as the initial reactant alone and in the presence of NO_2^- were performed in order to determine if NO affects selectivity. Results are shown in **Fig. 3(a)** for the case when ¹⁵NO was the only initial reactant (Exp. 7). ¹⁵N-labeled NO was used to maintain a mass balance, enabling correct measurement of N₂ produced from NO. ¹⁵N₂O (MW: 46) was also detected in the headspace as an intermediate. The final product ¹⁵N₂ was detected in the headspace, and NH₄⁺ was detected in the aqueous phase, indicating that NO reduction can lead to both end products, as well as N₂O. Since the mass-normalized reduction rate constant (k_{obs}) for NO reduction is 1.3 L/(min, g Pd), much smaller than those of NO₂⁻ and N₂O reduction (k_{obs} = 20.2 and 13.1 L/(min, g Pd), respectively), the accumulation of NO should be expected during NO₂⁻ reduction experiments, unless the adsorbed NO that forms on the catalyst surface from NO₂⁻ reduction is strongly bound and/or much more reactive than externally supplied NO.

Results are shown in **Fig. 3(b)** for the cases when unlabeled NO is initially added along with ¹⁵N-labeled NO₂⁻ (Exps. 8-10). The production of mixed-labeled N₂ (MW: 29) increases with increasing initial concentrations of unlabeled NO. This indicates that NO is a reaction intermediate of NO₃⁻. It also demonstrates that NO₂⁻ or one of its daughter intermediates/products interact with NO (or a daughter product thereof) to form N₂. Since no NO was detected in the headspace during NO₂⁻ reduction experiments, and mass balances are good, it is likely that the intermediate NO is in an adsorbed and highly reactive form on the catalyst surface. Ebbesen et al (2008) [34] reported infrared spectroscopic data that indicated the formation of NO_{ads} during NO₂⁻ reduction on a supported Pd catalyst.

These NO results are consistent with **Scheme 1**, and contradict reports by Ebbesen et al [34] that no ammonium is formed from NO_{ads} during NO₂⁻ reduction on a Pd/Al₂O₃ catalyst. The fact that NO reduction can follow two parallel pathways, one leading to N₂ production and the other to NH₄⁺ production, indicates that NO might be the key intermediate that controls the final product selectivity. Results from gas phase catalysis studies support this assertion. For example, Miller et al [37] observed N₂, N₂O, NH₃ during reduction of NO pulsed with H₂ over Pd/ Al₂O₃ at 773 K. Hornung et al observed these same products during reduction of NO with H₂ on Ru/ γ -Al₂O₃, and selectivity for N₂ reaching 100% at temperatures as low as 470 K [38]. This same author performed temperature-programmed surface reaction (TPSR) experiments and found that higher heating rates and lower H₂ partial pressures shift selectivity from NH₃ to N₂.

Van Hardeveld et al [39] studied NH₃ formation during NO_x reduction on a three-way Ru catalyst. They proposed that NO dissociates into adsorbed N and O atoms, and hydrogenation to NH₃ occurs stepwise by addition of H atoms to N_{ads} produced by NO dissociation. Several authors have also studied N₂O formation during NO reduction [44,45]. Results indicate that NO reduction to N₂O takes place via the formation of an NO dimer, (NO)₂, which results from weak adsorption of NO molecules on Pd sites [44,46]. This leads to N-N bond formation during the catalytic reduction of NO [47].

3.4 The effects of intermediate NO concentrations on selectivity for N_2 over NH_4^+ .

The effect of NO concentration on selectivity is apparent in the isotope mixing experiments (**Fig. 3(b**)). With increasing unlabeled NO present in the system with ${}^{15}\text{NO}_2^-$, the production of total NH₄⁺ decreased by up to 35% compared to the

¹⁵NO₂⁻-only batch reaction; recall that no effect on NH₄⁺ occurred when ¹⁵NO₂⁻ was reduced in the presence of excess unlabeled N₂O. This suggests that the concentration of NO may affect the N₂/NH₄⁺_(aq) product selectivity. It has been generally accepted that the selectivity is a function of the ratio of the surface coverage of intermediate N-species to reductant species [24], and this key intermediate may be NO_{ads}. It is proposed that higher concentrations of NO intermediate would results in lower NH₄⁺ production and higher selectivity for N₂. With higher NO concentrations on the catalyst surface, interactions between adsorbed N-O molecules increase, and at the same time, NO molecules have less exposure to Pd-adsorbed H atoms. Therefore, N₂ production from N-N coupling becomes more favored over NH₄⁺ production, leading to an improved selectivity for N₂.

The effect of NO concentration on selectivity is further explored in **Fig. 4(a)**, where selectivity for N₂ is explored as a function of initial ¹⁵NO concentration (Exps. 11-15). Increasing the initial amount of ¹⁵NO increases the selectivity for N₂, reaching a maximum selectivity of ~0.9. However, when the initial NO concentration exceeds 20 µmol (13.3 µmol/mg Pd), no further increases in selectivity is observed. This is attributed to saturation of NO adsorption/reaction sites on the catalyst surface, and the plateau value of 20 µmol NO is on the same order as the calculation of the theoretical maximum NO coverage on 30 mg of a 5.42% Pd catalyst, *i.e.* 5.7 µmol NO_{ads} (or 3.8 µmol NO_{ads}/mg Pd). The NO coverage on Pd clusters was estimated by assuming the following: (1) spherical Pd nanoparticles; (2) Pd active sites are occupied by N atoms in NO_{ads} molecules; and (3) monolayer coverage of NO molecules on all surfaces of Pd clusters. The mean diameter (*d*) of one Pd nanoparticle in the catalyst is 3.12 nm, and $\rho_{Pd} = 1.2 \times 10^4 kg / m^3$. For one Pd cluster,

$$A_{surface} = 4\pi r^{2} = \pi d^{2}$$
$$V = \frac{4}{3}\pi r^{3} = \frac{1}{6}\pi d^{3}$$
$$m = \rho V = 1.91 \times 10^{-19} g$$

For 30 mg of a 5.42wt% Pd catalyst, the total mass of Pd is 1.626 mg. Thus, the number of Pd clusters and total surface of Pd sites in 30 mg catalyst can be determined as,

$$N_{Pd} = \frac{1.626mg}{1.91 \times 10^{-19} g} = 8.50 \times 10^{15}$$
$$A_{total} = N_{Pd} A_{surface} = 2.60 \times 10^{17} nm^2$$

The dominant bonding between Pd and NO involves covalent σ bonds [46], but no bonds are formed between adjacent NO molecules packed on the Pd surface. Therefore, the van der Waals radius of the N atom ($r_w = 155 \, pm$) is adopted for calculation instead of the covalent radius ($r_{cov} = 71 \, pm$). The total number of adsorbed N atoms saturated on Pd sites can be determined as,

$$N_{NO} = N_N = \frac{A_{total}}{\pi r_W^2}$$

Dividing this by Avogadro's number $(N_A = 6.02 \times 10^{23} mol^{-1})$ results in an estimated saturation surface concentration $n_{NO} = 5.7 \mu mol$. Although this calculation should only be considered a rough estimate, the close match to the experimental observations of 20 µmol supports the role of NO-NO reactions being critical to production of diatomic N products.

We indirectly evaluate the effects of NO concentration on selectivity by varying the initial ¹⁵N-labeled NO₂⁻ concentration (Exps. 16-20); results are shown in **Fig. 4(b)**. Increasing initial amounts of NO₂⁻ in the system also increases selectivity for the N₂. However, when the initial NO₂⁻ exceeds 160 μ mol (320 μ mol/mg Pd), the selectivity shows no further improvement. The plateau value for N_{2(g)} selectivity occurs at higher initial NO₂⁻ concentrations than NO concentrations (16.8 μ mol/mg Pd). Because of its high reactivity, we proposed that NO_{ads} formed during NO₂⁻ reduction cannot accumulate to concentrations as high as in exogenous supplied ¹⁵NO reductions. So, higher concentrations of NO₂⁻ are needed to produce sufficient NO_{ads} for maximum

coverage of catalyst active sites. The same trend regarding the effect of initial nitrite concentration on end product selectivity was reported by Chinthaginjala and coworkers (2010) [29], though no plateau in selectivity was observed due to a lower NO_2^- concentration range examined. Similar results were reported by Katsounaros et al (2008) [48] during studies of electrochemical NO_3^- reduction at a tin electrode. Hence, it appears that surface saturation of NO_{ads} will also occur for NO_3^- reduction at sufficiently high initial concentrations.

3.5 Confirmed nitrate reduction mechanisms

A nitrate/nitrite reduction mechanism (**Scheme 1**) has been proposed in previous studies [49,50,51]. Typically, NO_3^- is hydrogenated by palladium-based bimetallic catalysts, while NO_2^- and further intermediates can be reduced with Pd catalyst. With H_2 as the reducing agent, NO_3^- is converted to N_2 as a desired product and NH_4^+ as by-product. In this typical reaction scheme, the role of NO reduction on N_2 and NH_4^+ formation was previously unclear due to lack of direct experimental evidence. The findings of our research confirm the involvement of NO in the nitrate/nitrite reduction pathways and its key role in affecting the end product distribution of N_2 and NH_4^+ . Therefore, a slightly revised reaction scheme is proposed in **Scheme 2**.

 NO_3^- is proposed to adsorb onto Pd-In bimetallic sites of the catalyst and be reduced to NO_2^- by hydrogen. The intermediate NO_2^- undergoes fast reduction on Pd monometallic sites, and is converted to the intermediate NO. The adsorbed NO is stepwise reduced by H₂ to NH_4^+ and H₂O respectively. Parallel with direct reduction of NO_{ads} , (NO)₂ dimers can also be formed on Pd surfaces, and this interaction leads to the formation of N-N bonds, producing N₂O, which is subsequently reduced to N₂. With higher NO_{ads} concentrations on the catalyst surface, the formation of (NO)₂ dimers is favored, and direct reduction of NO_{ads} is disadvantageous due to lack of adjacent H/H₂. Therefore, a higher selectivity for N₂ can be observed. The same mechanism applies to decreasing N₂ selectivity corresponding to decreasing NO_{ads} concentration.

• Reducing agent: H₂

Scheme 2. Revised nitrate reduction pathways

3.6 Figures

Figure 1. Nitrite reduction profiles (1 mM NO_2^- , 0.375 g/L catalyst) using (a) unlabeled NO_2^- and (b) $^{15}NO_2^-$. All analytes are plotted in terms of micromoles of molecules.

Figure 2. (a) N₂O reduction profiles (50 μ mol N₂O, 0.25 g/L catalyst); (b) Final product distribution from the combined reduction of ¹⁵NO₂⁻ (80 μ mol) and different amounts of unlabeled N₂O (note that the values and error bars for N₂(29) are zeros).

Figure 3. (a) ¹⁵NO reduction profiles (41 μ mol ¹⁵NO, catalyst 0.375 g/L); (b) Final product distribution from the combined reduction of ¹⁵NO₂⁻ (80 μ mol) and different amounts of ¹⁴NO.

Figure 4. (a) Selectivity for N_2 with different initial amounts of NO; (b) Selectivity for N_2 with different initial amounts of ${}^{15}NO_2^{-1}$.

CHAPTER 4: CONCLUSIONS

¹⁵N-labeling was shown to be an effective tool for elucidation of the nitrate/nitrite reduction pathway by eliminating the effect of atmospheric ¹⁴N₂. For a Pd-In/Al₂O₃ catalyst, no isotope effect was observed for reaction kinetics. N₂O is confirmed as an intermediate in nitrate/nitrite reduction pathways; N₂O can only be reduced to N₂, and not NH₄⁺. Using isotope mixing experiments, NO is confirmed as a key intermediate in nitrate/nitrite reduction pathway, and is responsible for both N₂ and NH₄⁺ production. A highly reactive and strongly bound NO_{ads} species is formed on the catalyst surface, and no NO_(g) is detected in the headspace. The N_{2(g)}/NH₄⁺_(aq) product selectivity is determined by NO_{ads} concentration. The selectivity for N₂ increases with increasing NO_{ads} concentration reaches maximum surface coverage. A revised reaction scheme for catalytic hydrogenation of nitrate/nitrite has been proposed.

REFERENCES

[1] Wakida, F. T.; Lerner, D. N. Non-agricultural sources of groundwater nitrate: a review and case study. *Water Research*, 2005, 39, 3-16.

[2] Binns, H. J.; Forman, J. A.; Karr, C. J. *et al.* Drinking water from private wells and risks to children. *Pediatrics*, 2009, 123, 1599-1605.

[3] Cantor, K. P. Drinking water and cancer. *Cancer Causes and Control*, 1997, 8, 292-308.

[4] Puckett, L. J.; Tesoriero, A. J.; Dubrovsky, N. M. Nitrogen contamination of surficial aquifers – a growing legacy. *Environmental Science and Technology*, 2011, 45, 839-844.

[5] Kim, J.; Benjamin, M. M. Modeling a novel ion exchange process for arsenic and nitrate removal. *Water Research*, 2004, 38, 2053-2062.

[6] Yang, P. Y.; Nitisoravut, S.; Wu, J. S. Nitrate removal using a mixed-culture entrapped microbial cell immobilization process under high salt conditions. *Water Research*, 1995, 29, 1525-1532.

[7] Wisniewski, C.; Persin, F.; Cherif, T. et al. Denitrification of drinking water by the association of an electrodialysis process and a membrane bioreactor: feasibility and application. *Desalination*, 2001, 139, 199-205.

[8] Ersever, I.; Ravindran, V.; Pirbazari, M. Biological denitrification of reverse osmosis brine concentrates: II. Fluidized bed adsorber reactor studies. *Journal of Environmental Engineering and Science*, 2007, 6, 519-532.

[9] Aslan, S. Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system. *Process Biochemistry*, 2005, 40, 417-424.

[10] Ergas, S. J.; Rheinheimer, D. E. Drinking water denitrification using a membrane bioreactor. *Water Research*, 2004, 38, 3225-3232.

[11] Moreno, B.; Gomez, M. A.; Gonzalez-Lopez, J.; Hontoria, E. Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. *Journal of Hazardous Materials*, 2005, 117, 141-147.

[12] Soares, O. S. G. P.; Orfao, J. J. M.; Ruiz-Martinez, J. et al. Pd-Cu/AC and Pt-Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcinations and reduction temperatures. *Chemical Engineering Journal*, 2010, 165, 78-88.

[13] Mikami, I.; Kitayama, R.; Okuhara, T. Hydrogenations of nitrate and nitrite in water over Pt-promoted Ni catalysts. *Applied Catalysis A: General*, 2006, 297, 24-30.

[14] Chen, H.; Xu, Z.; Wan, H. et al. Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. *Applied Catalysis B: Environmental*, 2010, 96, 307-313.

[15] Shuai, D.; Chaplin, B. P.; Shapley, J. R. et al. Enhancement of oxyanion and diatrizoate reduction kinetics using selected azo dyes on Pd-based catalysts. *Environmental Science and Technology*, 2010, 44, 1773-1779.

[16] Soares, O. S. G. P.; Orfao, J. J. M. Nitrate reduction catalyzed by Pd-Cu and Pt-Cu supported on different carbon materials. *Catalysis letters*, 2010, 139, 97-104.

[17] Chaplin, B. P.; Shapley, J. R. The selectivity and sustainability of a Pd-In/ γ -Al₂O₃ catalyst in a packed-bed reactor: The effect of solution composition. *Catalysis Letters*, 2009, 130, 56-62.

[18] Palomares, A. E.; Franch, C.; Corma, A. Nitrate removal from polluted aquifers using (Sn or Cu)/Pd catalysts in a continuous reactor. *Catalysis Today*, 2010, 149, 348-351.

[19] Sa, J.; Vinek, H. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. *Applied Catalysis B: Environmental*, 2005, 57, 247-256.

[20] Berndt, H.; Monnich, I.; Lucke, B.; Menzel, M. Tin promoted palladium catalysts for nitrate removal from drinking water. *Applied Catalysis B: Environmental*, 2001, 30, 111-122.

[21] Soares, O. S. G. P.; Orfao, J. J. M.; Pereira, M. F. R. Activated carbon supported metal catalysts for nitrate and nitrite reduction in water. *Catalysis Letters*, 2008, 126, 253-260.

[22] Qi, G.; Yang, R. T.; Rinaldi, F. C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts. *Journal of Catalysis*, 2006, 237, 381-392.

[23] Pekridis, G.; Athanasiou, C.; Konsolakis, M. et al. N₂O abatement over γ -Al₂O₃ supported catalysts: Effect of reducing agent and active phase nature. *Topics in Catalysis*, 2009, 52, 1880-1887.

[24] Prusse, U.; Vorlop, K.-D. Supported bimetallic palladium catalysts for water-phase nitrate reduction. *Journal of Molecular Catalysis A: Chemical*, 2001, 173, 313-328.

[25] Lemaignen, L.; Tong, C.; Begon, V. et al. Catalytic denitrification of water with palladium-based catalysts supported on activated carbons. *Catalysis Today*, 2002, 75, 43-48.

[26] Matatov-Meytal, Y.; Barelko, V.; Yuranov, I. et al. Cloth catalysts for water denitrification II. Removal of nitrates using Pd-Cu supported on glass fibers. *Applied Catalysis B – Environmental*, 2001, 31, 233-240.

[27] Horold, S.; Tacke, T.; Vorlop, K.-D. Catalytical removal of nitrate and nitrite from drinking water: 1. Screening for hydrogenation catalysis and influence of reaction conditions on activity and selectivity. *Environmental Technology*, 1993, 14, 931-939.

[28] Zhang, F.; Miao, S.; Yang, Y. et al. Size-dependent hydrogenation selectivity of nitrate on Pd-Cu/TiO2 catalysts. *Journal of Physical Chemistry C*, 2008, 112, 7665-7671.

[29] Chinthaginjala, J. K.; Lefferts, L. Support effect on selectivity of nitrite reduction in water. *Applied Catalysis B: Environmental*, 2010, 101, 144-149.

[30] Yoshinaga, Y.; Akita, T.; Mikami, I.; Okuhara, T. Hydrogenation of nitrite in water to nitrogen over Pd-Cu supported on active carbon. *Journal of Catalysis*, 2002,

207, 37-45.

[31] Chollier-Brym, M. J.; Gavagnin, R.; Strukul, G. *et al.* New insights in the solid state characteristics, in the possible intermediates and on the reactivity of Pd-Cu and Pd-Sn catalysts, used in denitrataion of drinking water. *Catalysis Today*, 2002, 75, 49-55.

[32] Nakamura, K.; Yoshida, Y.; Mikami, I.; Okuhara, T. Selective hydrogenation of nitrate in water over Cu-Pd/mordenite. *Applied Catalysis B: Environmental*, 2006, 65, 31-36.

[33] Witonska, I.; Karski, S.; Goluchowska, J. Kinetic studies on the hydrogenation of nitrate in water using Rh/Al₂O₃ and Rh-Cu/Al₂O₃ catalysts. *Kinetics and Catalysis*, 2007, 48, 823-828.

[34] Ebbesen, S. D.; Mojet, B. L.; Lefferts, L. *In situ* ATR-IR study of nitrite hydrogenation over Pd/Al₂O₃. *Journal of Catalysis*, 2008, 256, 15-23.

[35] Ebbesen, S. D.; Mojet, B. L.; Lefferts, L. Mechanistic investigation of the heterogeneous hydrogenation of nitrite over Pt/Al₂O₃ by attenuated total reflection infrared spectroscopy. *Journal of Physical Chemistry C*, 2009, 113, 2503-2511.

[36] Warna, J.; Turunen, I.; Salmi, T.; Maunula, T. Kinetics of nitrate reduction in monolith reactor. *Chemical Engineering Science*, 1994, 49, 5763-5773.

[37] Miller, D. D.; Chuang, S. S. C. Pulse transient responses of NO decomposition and reduction with H₂ on Ag-Pd/Al₂O₃. *Journal of Physical Chemistry C*, 2009, 113, 14963-14971.

[38] Hornung, A.; Muhler, M.; Ertl, G. On the mechanism of the selective catalytic reduction of NO to N₂ by H₂ over Ru/MgO and Ru/Al₂O₃ catalysts. *Topics in Catalysis*, 2000, 11, 263-270.

[39] Van Hardeveld, R. M.; Van Santen, R. A.; Niemantsverdriet, J.W. Formation of NH_3 and N_2 from atomic nitrogen and hydrogen on rhodium (111). *Journal of Vacuum Science and Technology A – Vacuum Surfaces and Films*, 1997, 15, 1558-1562.

[40] Chaplin, B. P.; Roundy, E.; Guy, K. A. et al. Effects of natural water ions and humic acid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst. *Environmental Science and Technology*, 2006, 40, 3075-3081.

[41] Chaplin, B. P.; Shapley, J. R.; Werth, C. J. Regeration of sulfur-fouled bimetallic Pd-based catalysts. *Environmental Science and Technology*, 2007, 41, 5491-5497.

[42] Marchesini, F. A.; Gutierrez, L. B.; Querini, C. A.; Miro, E. E. Pt, In and Pd, In catalysts for the hydrogenation of nitrates and nitrites in water. FTIR characterization and reaction studies. *Chemical Engineering Journal*, 2010, 159, 203-211.

[43] Sa, J.; Anderson, J. A. FTIR study of aqueous nitrate reduction over Pd/TiO₂. *Applied Catalysis B: Environmental*, 2008, 77,409-417.

[44] De Vooys, A. C. A.; Koper, M. T. M.; Van Santen, R. A.; Van Veen, J. A. R. Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes. *Journal of Catalysis*, 2001, 202, 387-394.

[45] Burch, R.; Daniells, S. T.; Hu, P. The mechanism of N₂O formation via the (NO)₂

dimer: A density functional theory study. *Journal of Chemical Physics*, 2004, 121, 2737-2745.

[46] Smith, G. W.; Carter, E. A. Interactions of NO and CO with Pd and Pt atoms. *Journal of Physical Chemistry*, 1991, 95, 2327-2339.

[47] Brown, W. A. NO chemisorptions and reactions on metal surfaces: A new perspective. *Journal of Physical Chemistry B*, 2000, 104, 2578-2595.

[48] Katsounaros, I.; Kyriacou, G. Influence of nitrate concentration on its electrochemical reduciont on tin cathode: Identification of reaction intermediates. *Electrochimica Acta*, 2008, 53, 5477-5484.

[49] Pintar, A.; Batista, J.; Levec, J.; Kajiuchi, T. Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. *Applied Catalysis B: Environmental*, 1996, 11, 81-98.

[50] Daub, K.; Emig, G.; Chollier, M.-J. et al. Studies on the use of catalytic membranes for reduction of nitrate in drinking water. *Chemical Engineering Science*, 1999, 54, 1577-1582.

[51] Prusse, U.; Hahnlein, M.; Daum, J.; Vorlop, K.-D. Improving the catalytic nitrate reduction. *Catalysis Today*, 2000, 55, 79-90.

APPENDIX: DATA USED FOR FIGURES

Data for Fig. 1(a) Unlabeled NO₂⁻ reduction profiles (1 mM NO₂⁻, 0.375 g/L catalyst)

Time	NO ₂	Time	NO_2 fit	$\mathrm{NH_4}^+$
(min)	(µmol)	(min)	(µm	ol)
0.5	61.8	0.0	77.5	0.0
1.5	50.1	0.5	64.9	3.6
2.5	34.1	1.5	45.5	5.2
4.5	13.1	2.5	32.0	6.8
5.5	9.8	4.0	18.8	10.3
7.0	4.8	5.5	11.0	15.5
8.5	2.7	7.0	6.5	18.6
15.0	0.0	8.5	3.8	22.9
20.0	0.0	10.0	2.2	26.7
30.0	0.0	12.0	1.1	28.3
		15.0	0.4	30.9
		20.0	0.1	32.1
		25.0	0.0	31.4
		30.0	0.0	32.4
		35.0	0.0	32.0
		40.0	0.0	30.7
		50.0	0.0	31.7
		60.0	0.0	33.0
		75.0	0.0	33.5
		90.0	0.0	32.5

Table 2. Aqueous phase data for $1 \text{ mM}^{14}\text{NO}_2^-$ reduction

Time	N ₂ O (44)	N ₂ (28)	N total	Theoretical N total
(min)		(µn	nol)	
0.0	0.0	0.0	77.4	80.0
1.0	3.1	0.0	72.1	80.0
9.0	14.7	18.7	102.7	80.0
17.0	2.9	43.7	139.5	80.0
25.0	0.0	73.7	180.0	80.0
33.0	0.0	56.8	145.7	80.0
41.0	0.0	61.6	155.2	80.0
50.0	0.0	80.5	193.1	80.0
60.0	0.0	89.3	210.7	80.0
75.0	0.0	103.2	238.4	80.0
90.0	0.0	116.4	264.8	80.0

Table 3. Gaseous phase data for $1 \text{ mM}^{14}\text{NO}_2^-$ reduction

Species N_2O (45, 46) and N_2 (29, 30) were also monitored but not detected or below the detection limit of 0.1 µmol.

Data for Fig. 1(b)	$^{15}NO_2$ reduction	profiles (1 mM	$^{15}NO_{2}^{-}, 0.375$	g/L catalyst)
--------------------	-----------------------	----------------	--------------------------	---------------

Time	¹⁵ NO ₂ ⁻	Time	¹⁵ NO ₂ ⁻ fit	$\mathrm{NH_4}^+$
(min)	(µmol)	(min)	(µm	ol)
0.5	43.8	0.0	53.4	0.0
3.0	19.1	0.5	44.2	5.3
5.5	5.3	3.0	17.2	9.3
8.0	0.8	5.5	6.7	13.7
11.0	0.4	8.0	2.6	17.7
13.0	0.2	11.0	0.8	23.6
15.0	0.0	13.0	0.4	24.8
20.0	0.0	15.0	0.2	25.0
24.0	0.0	20.0	0.0	27.2
30.0	0.0	24.0	0.0	28.2
40.0	0.0	30.0	0.0	28.4
52.0	0.0	40.0	0.0	27.0
62.0	0.0	52.0	0.0	30.1
77.0	0.0	62.0	0.0	26.8
88.0	0.0	77.0	0.0	26.4
		88.0	0.0	25.3

Table 4. Aqueous phase data for $1 \text{ mM}^{15}\text{NO}_2^-$ reduction

Time	N ₂ O (46)	N ₂ (29)	N ₂ (30)	¹⁵ N total	Theoretical ¹⁵ N total
(min)			(µmol)		
0.0	0.0	0.0	0.0	53.4	80.0
1.0	0.9	0.0	0.0	40.6	80.0
9.0	7.2	0.0	18.0	71.1	80.0
17.0	0.0	0.0	27.8	83.2	80.0
25.0	0.0	0.0	25.2	77.8	80.0
33.0	0.0	0.0	25.2	77.9	80.0
41.0	0.0	0.0	26.3	80.1	80.0
50.0	0.0	0.0	27.8	83.1	80.0
60.0	0.0	0.0	25.4	78.1	80.0
75.0	0.0	0.0	24.0	75.4	80.0
90.0	0.0	0.0	24.7	76.7	80.0

Table 5. Gaseous phase data for $1 \text{ mM}^{15}\text{NO}_2^-$ reduction

Species N_2O (44, 45) and N_2 (28) were also monitored but not listed. Amounts of N_2O (44, 45) were below the detection limit of 0.1 µmol, and N_2 (28) was twofold of measured N_2 (30).

Data for Fig. 2(a) N_2O reduction profiles (50 μ mol N_2O , 0.25 g/L catalyst)

Time	$\mathrm{NH_4}^+$
(min)	(µmol)
15.0	0.0
35.0	0.0
55.0	0.0
60.0	0.0

Table 6. Aqueous phase data for N_2O reduction

Time	N ₂ O (44)	N ₂ (28)	N total	Theoretical N total	Time	N ₂ O fit
(min)		(µr	nol)		(min)	(µmol)
0.0			149.3	107.5	0.0	74.7
2.0	53.7	11.6	130.6	107.5	2.0	53.8
10.0	14.8	43.8	117.2	107.5	4.0	38.7
20.0	2.1	56.2	116.6	107.5	6.0	27.9
30.0	0.3	58.2	117.1	107.5	8.0	20.1
40.0	0.1	60.3	120.8	107.5	10.0	14.4
50.0	0.1	60.6	121.3	107.5	12.0	10.4
60.0	0.0	61.0	122.1	107.5	14.0	7.5
					16.0	5.4
					18.0	3.9
					20.0	2.8
					22.0	2.0
					24.0	1.4
					26.0	1.0
					28.0	0.7
					30.0	0.5
					32.0	0.4
					34.0	0.3
					36.0	0.2
					38.0	0.1
					40.0	0.1
					42.0	0.1
					44.0	0.1
					46.0	0.0
					48.0	0.0
					50.0	0.0
					60.0	0.0

Table 7. Gaseous phase data for N_2O reduction

Species N_2 (29, 30) were also monitored but not detected or below the detection limit of 0.1 µmol.

Data for Fig. 2(b) Final product distribution from the combined reduction of ${}^{15}NO_{2}^{-1}$ (80 µmol) and different amounts of unlabeled N₂O

		Average		Standard Deviation		
¹⁵ N: ¹⁴ N	N ₂ (30)	N ₂ (29)	$\mathrm{NH_4}^+$	N ₂ (30)	N ₂ (29)	$\mathrm{NH_4}^+$
			(µr	nol)		
4:1	20.4	0.0	33.5	0.8	0.0	1.1
1:1	21.0	0.0	40.5	2.2	0.0	1.0
1:4	20.5	0.0	33.8	5.1	0.0	3.9

Table 8. Summary of ${}^{15}NO_2^-$ and N_2O combined reductions

Table 9. Replicates of ${}^{15}NO_2$ and N_2O combined reductions

¹⁵ N: ¹⁴ N	Product	Replicate 1	Replicate 2	Replicate 3	Average	Standard Deviation
				(µmol)		
	N ₂ (30)	21.3	19.9	20.1	20.4	0.8
4:1	N ₂ (29)	0.0	0.0	0.0	0.0	0.0
	$\mathrm{NH_4}^+$	34.6	32.4	33.5	33.5	1.1
	N ₂ (30)	18.5	22.0	22.5	21.0	2.2
1:1	N ₂ (29)	0.0	0.0	0.0	0.0	0.0
	$\mathrm{NH_4}^+$	41.7	39.8	40.0	40.5	1.0
1:4	N ₂ (30)	15.1	25.3	21.1	20.5	5.1
	N ₂ (29)	0.0	0.0	0.0	0.0	0.0
	$\mathrm{NH_4}^+$	29.7	37.4	34.4	33.8	3.9

Data for Fig. 3(a) ¹⁵NO reduction profiles (41 µmol ¹⁵NO, catalyst 0.375 g/L)

Time	$\mathrm{NH_4}^+$
(min)	(µmol)
0.0	0.0
5.0	0.2
15.0	2.2
30.0	4.0
45.0	4.1
65.0	5.5
85.0	6.7
118.0	7.3
178.0	6.5
238.0	7.5
298.0	7.7
420.0	7.4

 Table 10. Aqueous phase data for ¹⁵NO reduction

Time	¹⁵ NO	N_2O	$N_{2}(30)$	¹⁵ N	Theoretical	Time	¹⁵ NO fit
	110	(46)	1(2(50)	total	¹⁵ N total	Time	no m
(min)			(µmol)			(min)	(µmol)
0.0				41.6	41.6	0.0	41.6
1.0	43.2	2.9	0.1	49.3	41.6	10.0	32.3
9.0	30.4	1.7	4.7	43.8	41.6	20.0	25.1
17.0	25.7	1.2	7.8	45.0	41.6	30.0	19.5
25.0	22.2	1.0	9.0	44.0	41.6	40.0	15.2
33.0	17.9	1.0	11.5	45.3	41.6	50.0	11.8
41.0	15.4	0.9	12.1	44.5	41.6	60.0	9.1
50.0	12.0	0.7	13.5	44.0	41.6	70.0	7.1
60.0	10.1	0.7	14.0	44.1	41.6	80.0	5.5
75.0	6.5	0.5	14.1	41.2	41.6	90.0	4.3
90.0	4.8	0.4	15.7	43.7	41.6	100.0	3.3
120.0	2.2	0.3	15.7	41.4	41.6	110.0	2.6
180.0	0.5	0.1	16.8	41.6	41.6	120.0	2.0
240.0	0.1	0.0	17.4	42.1	41.6	130.0	1.6
300.0	0.0	0.0	18.1	43.5	41.6	140.0	1.2
360.0	0.0	0.0	19.7	46.7	41.6	150.0	0.9
420.0	0.0	0.0	19.0	45.3	41.6	160.0	0.7
						170.0	0.6
						180.0	0.4
						190.0	0.3
						200.0	0.3
						210.0	0.2
						220.0	0.2
						230.0	0.1
						240.0	0.1
						250.0	0.1
						260.0	0.1
						270.0	0.0
						280.0	0.0
						290.0	0.0
						300.0	0.0
						330.0	0.0
						360.0	0.0
						390.0	0.0
						420.0	0.0

 Table 11. Gaseous phase data for ¹⁵NO reduction

Species N_2O (44, 45) and N_2 (28, 29) were also monitored but not listed. Amounts of N_2O (44, 45) and N_2 (29) were below the detection limit of 0.1 µmol, and N_2 (28) was twofold of measured N_2 (30).

Data for Fig. 3(b) Final product distribution from the combined reduction of ${}^{15}NO_{2}^{-1}$ (80 µmol) and different amounts of ${}^{14}NO$

	Average			Standard Deviation		
¹⁵ N: ¹⁴ N	N ₂ (30)	N ₂ (29)	$\mathrm{NH_4}^+$	N ₂ (30)	N ₂ (29)	$\mathrm{NH_4}^+$
	(µmol)					
4:1	22.4	0.0	38.4	6.3	0.0	2.6
1:1	18.6	0.8	37.7	4.6	1.3	2.0
1:4	12.8	16.8	13.8	3.3	1.2	2.0

Table 12. Summary of ${}^{15}NO_2^-$ and NO combined reductions

Table 13. Replicates of ¹⁵NO₂⁻ and NO combined reductions

¹⁵ N: ¹⁴ N	Product	Rep. 1	Rep. 2	Rep. 3	Average	Standard Deviation
				(µmol)		
	N ₂ (30)	24.7	15.3	27.2	22.4	6.3
4:1	N ₂ (29)	0.0	0.0	0.0	0.0	0.0
	$\mathrm{NH_4}^+$	38.9	35.6	40.7	38.4	2.6
1:1	N ₂ (30)	23.8	16.4	15.5	18.6	4.6
	N ₂ (29)	0.0	0.0	2.3	0.8	1.3
	$\mathrm{NH_4}^+$	36.9	39.9	36.2	37.7	2.0
1:4	N ₂ (30)	15.1	10.4	12.6	12.7	2.4
	N ₂ (29)	17.6	15.9	16.6	16.7	0.9
	$\mathrm{NH_4}^+$	15.2	12.4	13.1	13.6	1.5

Data for Fig. 4(a) Selectivity for N_2 with different initial amounts of NO

¹⁵ NO injected	¹⁵ NO C ₀		Se	lectivity for	N ₂	
(ml, 1 atm)	(µmol/mg Pd)	Rep. 1	Rep. 2	Rep. 3	Average	Standard Deviation
0.1	2.8	0.5	0.5	0.6	0.5	0.1
0.2	5.5	0.6	0.6	0.6	0.6	0.1
0.5	13.8	0.8	0.8	0.8	0.8	0.0
1.0	27.6	0.8	0.8	0.9	0.8	0.0
2.0	55.3	0.9	0.9	0.9	0.9	0.0

Table 14. Summary of selectivity for N_2 with different initial amounts of NO

Table 15. Replicates of selectivity for N_2 with different initial amounts of NO

¹⁵ NO injected	Product	Ren 1	Ren 2	Ron 3	Average	Standard
(ml, 1 atm)	(µmol)	Kep. I	Rep. 2	Кер. 5	Average	Deviation
	N ₂ (30)	1.4	1.4	2.1		
0.1	$\mathrm{NH_4}^+$	3.0	2.8	3.0		
	selectivity	0.5	0.5	0.6	0.5	0.1
0.2	N ₂ (30)	3.4	3.0	2.9		
	$\mathrm{NH_4}^+$	3.7	3.7	4.8		
	selectivity	0.6	0.6	0.6	0.6	0.1
	N ₂ (30)	9.2	9.2	9.5		
0.5	$\mathrm{NH_4}^+$	4.5	5.6	4.9		
	selectivity	0.8	0.8	0.8	0.8	0.0
	N ₂ (30)	20.8	18.5	21.6		
1.0	$\mathrm{NH_4}^+$	8.2	7.3	6.4		
	selectivity	0.8	0.8	0.9	0.8	0.0
2.0	N ₂ (30)	38.9	42.0	58.6		
	$\mathrm{NH_4}^+$	10.8	8.6	9.2		
	selectivity	0.9	0.9	0.9	0.9	0.0

Data for Fig. 4(b) Selectivity for N_2 with different initial amounts of ${}^{15}NO_2^{-1}$

¹⁵ N	$O_2^- C_0$		Selectivity for N ₂				
(mM)	(µmol/mg Pd)	Rep. 1	Rep. 2	Rep. 3	Average	Standard Deviation	
0.125	20.0	0.3	0.4	0.3	0.3	0.0	
0.25	40.0	0.5	0.5	0.5	0.5	0.0	
1.0	160.0	0.7	0.7	0.7	0.7	0.0	
2.0	320.0	0.8	0.8	0.7	0.8	0.0	
4.0	640.0	0.7	0.8	0.8	0.8	0.1	

Table 16. Summary of selectivity for N_2 with different initial amounts of ${}^{15}NO_2^{-1}$

Table 17. Replicates of selectivity for N_2 with different initial amounts of ${}^{15}NO_2^{-1}$

$^{15}NO_{2}C_{0}$	Product	Don 1	Don 2	Don 2	Auorogo	Standard
(mM)	(µmol)	Kep. I	кер. 2	кер. 5	Average	Deviation
	N ₂ (30)	2.0	1.9	1.6		
0.125	$\mathrm{NH_4}^+$	9.8	6.8	6.7		
	selectivity	0.3	0.4	0.3	0.3	0.0
	N ₂ (30)	5.3	5.7	5.1		
0.25	$\mathrm{NH_4}^+$	10.4	10.2	11.7		
	selectivity	0.5	0.5	0.5	0.5	0.0
1.0	N ₂ (30)	28.1	32.2	30.4		
	$\mathrm{NH_4}^+$	24.2	26.9	28.6		
	selectivity	0.7	0.7	0.7	0.7	0.0
	N ₂ (30)	65.6	68.0	63.2		
2.0	$\mathrm{NH_4}^+$	40.4	38.4	42.5		
	selectivity	0.8	0.8	0.7	0.8	0.0
	N ₂ (30)	84.7	132.0	126.5		
4.0	$\mathrm{NH_4}^+$	84.4	48.2	46.1		
	selectivity	0.7	0.8	0.8	0.8	0.1