
c© 2011 Conrad Soorba Tucker

DATA TREND MINING FOR PREDICTIVE SYSTEMS DESIGN

BY

CONRAD SOORBA TUCKER

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Systems and Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Assistant Professor Harrison M. Kim, Chair
Loretta Auvil
Professor Deborah Thurston
Professor Yuanhui Zhang

Abstract

The goal of this research is to propose a data mining based design framework that can be used to solve complex sys-

tems design problems in a timely and efficient manner, with the main focus being product family design problems.

Traditional data acquisition techniques that have been employed in the product design community have relied primar-

ily on customer survey data or focus group feedback as a means of integrating customer preference information into

the product design process. The reliance of direct customer interaction can be costly and time consuming and may

therefore limit the overall size and complexity of the customer preference data. Furthermore, since survey data typi-

cally represents stated customer preferences (customer responses for hypothetical product designs, rather than actual

product purchasing decisions made), design engineers may not know the true customer preferences for specific product

attributes, a challenge that could ultimately result in misguided product designs. By analyzing large scale time series

consumer data, new products can be designed that anticipate emerging product preference trends in the market space.

The proposed data trend mining algorithm will enable design engineers to determine how to characterize attributes

based on their relevance to the overall product design. A cell phone case study is used to demonstrate product design

problems involving new product concept generation and an aerodynamic particle separator case study is presented

for product design problems requiring attribute relevance characterization and product family clustering. Finally, it

is shown that the proposed trend mining methodology can be expanded beyond product design problems to include

systems of systems design problems such as military systems simulations.

ii

To my parents and siblings, for their unconditional love and support

iii

Acknowledgments

I would like to thank my advisor, Professor Harrison Kim for his guidance and support throughout the years. His

dedication and vision served as a true inspiration for this work and I am grateful to have had him as an advisor.

I extend my sincere appreciation to my committee members, Loretta Auvil (NCSA), Professor Deborah Thurston

(IESE), and Professor Yuanhui Zhang (ABE) for their dedication and fruitful discussions that have enhanced the

quality of this work. I would like to thank the Gates Millennium Scholars (GMS) foundation for their unprecedented

financial support and motivation throughout the years. I would like to thank Sandia National Labs for their generous

support from 2008-2010 and for providing the necessary simulation and analysis tools for certain components of this

research. Undergraduate researchers also played a vital role in the software development of some aspects of this work.

I would like to acknowledge Yohannes Kifle and Sukolsak Sakshuwong for the programming aspects and software

development of this work that helped validate some of the proposed methodologies. I would also like to thank the

Department of Industrial and Enterprise Systems Engineering (IESE) for granting me the opportunity to grow as a

researcher and scholar.

This work has also been supported by the National Science Foundation under Award No. 0726934. I would

like to thank the NSF CIEG program for providing the High Performance Computational resources to conduct this

research. A special thank you to Dr. Natasha Balac for being such a great mentor during the CIEG summer project. In

addition, I would like to thank to the SDSC CIEG program director, Dr. Amitava Majumdar, and researchers Dr. Jerry

Greenberg, Dr. Hector Jasso, Dr. Mahidhar Tatineni and all of the other researchers and staff that added to the quality

of this research.

Finally, I would like to thank Stephanie Thea for her patience and support while I pursued this degree and for being

there during my trials and tribulations.

Any opinions, findings, and conclusions or recommendations expressed in this dissertation are those of the author

and do not necessarily reflect the views of the National Science Foundation, Sandia National Laboratories, Gates

Millennium Scholars (GMS) foundation or other relevant supporting entities.

iv

Table of Contents

List of Tables . vii

List of Figures . viii

List of Symbols . x

Chapter 1 Introduction . 1
1.1 Objective and Scope . 2
1.2 Motivation . 2
1.3 Literature Review and Related Work . 3

1.3.1 Customer Preference Data Acquisition . 3
1.3.2 Traditional Demand Modeling Techniques in Product Design 4
1.3.3 Data Mining in Product Design . 6
1.3.4 Product Family Design . 8

1.4 Overview of Data Mining Driven Design Methodology . 11
1.4.1 PHASE 1: Customer Knowledge Discovery . 12
1.4.2 PHASE 2: Linking Customer Knowledge Discovery with Product Design 15

1.5 Overall Organization . 18

Chapter 2 Naı̈ve Bayes Classification for Flexible Product Design . 19
2.1 Flexible Product Design Methodology . 19

2.1.1 Product Portfolio Optimization at Product Family Supersystem Level 24
2.1.2 Enterprise System Level . 25
2.1.3 Engineering Design Subsystem Level . 27

2.2 Application . 28
2.2.1 Product Portfolio Formulation: Cellular Phone Product Family 28
2.2.2 Enterprise System Level . 29
2.2.3 Engineering Sub-system Level . 31
2.2.4 Optimization Study . 34

2.3 Results and Discussion . 36
2.4 Conclusion . 40

Chapter 3 ReliefF and X-Means Clustering Product Family Methodology 41
3.1 Product Family Design Methodology . 41

3.1.1 Data Mining Product Preferences . 41
3.1.2 Engineering Design Optimization of Product Family . 47

3.2 Application: Aerodynamic Particle Separator Case Study . 51
3.2.1 The Engineering Design Problem . 52
3.2.2 Data Mining Product Preferences . 53
3.2.3 Engineering Design Optimization of Product Family . 54

3.3 Results and Discussion . 58
3.3.1 Aerodynamic Particle Separator Optimization Results . 58

3.4 Conclusion . 60

v

Chapter 4 Decision Tree Classification for Product Concept Generation 61
4.1 Product Concept Generation Methodology . 61

4.1.1 The Concept of Novel, Previously Unknown Customer Information 61
4.1.2 Product Concept Generation using C4.5 Machine Learning Algorithm 63
4.1.3 PHASE 2: Product Concept Validation through Multilevel Optimization 67

4.2 Application: Cell Phone Design . 71
4.2.1 PHASE 1: Cell Phone Customer Knowledge Discovery . 71
4.2.2 PHASE 2: Product Concept Validation . 74

4.3 Results and Discussion . 78
4.4 Conclusion . 81
4.5 Product Concept Generation with Multi-Response Preference Data 81

4.5.1 Existing Single Response Predictive Data Mining . 82
4.5.2 Existing Multi-response Predictive Data Mining . 84
4.5.3 Multi-Response Preference in Engineering Design . 88

4.6 Comparative Analysis Between Demand Modeling Techniques . 88
4.6.1 Vehicle Choice: A Comparative Case Study . 90
4.6.2 Results and Discussion . 92
4.6.3 Summary and Conclusion . 100

Chapter 5 Trend Mining for Predictive Product Design . 102
5.1 Trend Mining Methodology . 102
5.2 Methodology . 103

5.2.1 Discovering Emerging Trends For Product Design . 104
5.2.2 Quantifying Attribute Relevance . 107
5.2.3 Characterizing Attribute Irrelevance in Product Design . 109

5.3 Product Design Example . 115
5.3.1 Cell Phone Design Study . 115

5.4 Results and Discussion . 116
5.4.1 Model Validation . 118

5.5 Conclusion and Path Forward . 120

Chapter 6 Capturing Product Preference Trends Using Publicly Available Customer Review Data . . . 121
6.1 Introduction . 121

6.1.1 Traditional Customer Preference Acquisition Techniques . 122
6.1.2 Online Customer Preference Acquisition Techniques . 123

6.2 Methodology . 124
6.2.1 Step 1: Customer Review Text Retrieval . 124
6.2.2 Step 2: Product Feature Text Mining . 125
6.2.3 Step 3: Product Preference Trend Modeling . 128

6.3 Conclusion . 130

Chapter 7 Conclusion and Future Work . 131
7.1 Future Work . 132

7.1.1 Capturing Emergent Behavior in Systems of Systems Modeling 132
7.1.2 Sustainable Product Portfolio Design . 132
7.1.3 Cyberinfrastructure in Multidisciplinary Design Optimization 132

Chapter 8 References . 134

Chapter 9 Appendix . 144
9.1 Cyberinfrastructure in Product Design . 144

vi

List of Tables

2.1 Conditional probability calculations for each attribute . 22
2.2 Sample customer response data . 23
2.3 Customer Survey Questions and Response Options . 29
2.4 Demand information based on the Naı̈ve Bayesian predictive model . 31
2.5 Possible Shared Component Variables . 34
2.6 Optimal Product Family Results (Part 1). Highlighted architectures represent the most profitable product portfolio

given maximum five architectures allowed in the portfolio. 37
2.7 Optimal Product Family Results (Part 2). Highlighted architectures represent the most profitable product portfolio

given maximum five architectures allowed in the portfolio. 38

3.1 Design variable notation for aerodynamic particle separator . 52
3.2 Snapshot of aerodynamic particle separator data set consisting of 1000 states 53
3.3 Attribute ranking of raw data set via ReliefF algorithm . 54
3.4 Product cluster centroids based on X-means clustering algorithm . 55
3.5 Optimal solutions for individual aerodynamic particle separator designs* 59
3.6 Optimal Solutions for Aerodynamic Particle Separator Product Families sharing the Vane Component* 60

4.1 Example data set of customer attributes . 63
4.2 Test Data for Decision Tree Generation . 73
4.3 Results of C4.5 data mining product concept generation. The yellow highlighted rows indicate members of the

optimal product portfolio. 78
4.4 Detailed Engineering Design Product Variant Solutions . 79
4.5 Attribute Characterization based on Attribute Definition . 85
4.6 Data set illustrating metric stability . 86
4.7 Stability of Attribute Evaluation Measures . 87
4.8 Physical and performance based attributes for the different vehicle types . 91
4.9 Socio-demographic based attributes based on consumer identity . 91
4.10 Class variable (response variable) which is the make of a particular vehicle 91
4.11 Snapshot of vehicle data with both physical and demographic attributes, and the class variable (Make) 92
4.12 Vehicle attribute importance based on beta (β) coefficients of the Discrete Choice Model 94
4.13 Summary of the DCA and C4.5 DT techniques . 100

5.1 Attribute Characterization based on Attribute Definition . 108
5.2 Comparison of predictive accuracies between the PTM and DT models using Time Series Data 118

vii

List of Figures

1.1 Sequence of topics discussed in the Literature Review and Related Work section 3
1.2 Overall Predictive Product Portfolio Formulation (Adapted from D2K manual [1]) 12
1.3 Overall organization of dissertation . 17

2.1 Flow Diagram of Naı̈ve Bayes Flexible Product Design Methodology . 20
2.2 D2K Naı̈ve Bayes Prediction of Maximum Customer Purchasing Price (MaxPrice) and associated Market Share αi. 24
2.3 Optimal Product Portfolio Example. Illustrates how just two product architectures can generate product variants

that make up a family of products (product portfolio of K = 5 products). 35

3.1 Flow Diagram of Proposed Product Family Design Methodology: From Data Mining Product Architecture Iden-
tification to Component Sharing through X-Means Clustering. 42

3.2 Visual representation of family design based on Data Mining ReliefF attribute weighting and X-means clustering
for Product Centroid generation and X-Means Clustering for Product Family Component Sharing Optimization. . 43

3.3 Uniflow type aerodynamic particle separator flow pattern and design variables 52

4.1 Overall flow of product portfolio optimization process. 62
4.2 Set of linear design equations (in matrix form) guiding the product architecture formulation 75
4.3 A matrix forming the linear equation set. The matrix is sparse, with active elements signified by a value of 1 . . 76
4.4 Linking Multi-response Data Mining with Systems Design . 87
4.5 Visual Representation of C4.5 Decision Tree Model based on demographic attributes alone 94
4.6 Visual Representation of C4.5 Decision Tree Model based on both product attributes and demographic attributes . 95
4.7 Histogram of prediction results of the MNR and C4.5 DT models based on demographic attributes alone 96
4.8 Histogram of prediction results of the MNR and C4.5 DT models based on demographic and product attributes . 97

5.1 Overall Flow of Preference Trend Mining Methodology . 103
5.2 Attribute-class distributions over time (attribute a1,1 is highlighted although both attribute patterns change over

time) . 104
5.3 Characterizing Attribute Preference Trend Over Time . 105
5.4 Example Decision Tree Result for Product Design . 107
5.5 Product Design Implications of Attribute Irrelevance Classification . 110
5.6 Attribute (Ai) characterization (relevant and irrelevant categorization) from iteration 1 to iteration m (each iteration

contains a total of n time series data sets). 112
5.7 Time Series Gain Ratio at iteration 1 (Period 1-12 with Period 13 predicted by employing the Holt Winters

predictive model) . 114
5.8 Decision Tree Model using Period 12, 2009 data set only for model generation(results attained using Weka 3.6.1

[2]) . 116
5.9 Trend Mining Model using Periods 1-12, 2009 data for model generation (results attained using ESOL developed

Java Based PTM code compatible with Weka [2]) . 117
5.10 Time Series Attribute Entropy values for irrelevance characterization . 118
5.11 Comparison of predictive accuracies between the PTM and DT models (using 12 unseen time stamped data from

2010 [2]) . 119

viii

6.1 Overall flow of from Customer Review Text Retrieval to Product Preference Trend Modeling 124
6.2 Text Summarized Customer Review Data (Partitioned into Pros and Cons) 125
6.3 Algorithm flow of product feature search aggregation . 126
6.4 Transformation of unstructured customer review text data to structured customer feature preference data 127
6.5 Plot of product preference trends with Holt-Winters forecasting . 128
6.6 Trend Comparison of negative product features between Apple and HTC . 130

9.1 Java based Graphical User Interface (GUI) of Data Driven Product Design Platform 145
9.2 KDD Toolkit options allowing the user to choose between parallel and serial data mining 146
9.3 Enterprise Objective Function . 151
9.4 Enterprise NONLINEAR Constraints . 152
9.5 Enterprise variable bound definitions . 153
9.6 Script file calling the optimization sequence . 154
9.7 Engineering Objective Function . 155
9.8 Engineering Design Constraints . 156
9.9 Engineering Variable bound definition . 169

ix

List of Symbols

• γ: The maximum predicted price (MaxPrice) a customer is willing to pay

• Λi: Attribute selection which can assume a range of values ai

• K: Product portfolio limit (Maximum number of existing products at launch)

• π: Profit of product variant based on engineering design and predicted demand

• TC: Architecture target component predicted by data mining product preference model.

• RE : Engineering response component cascaded up to the enterprise level

• y: Linking variable at the engineering sub-system level cascaded up to enterprise level

• εR: Deviation tolerance between customer performance targets and engineering response

• εy: Deviation tolerance between linking variables

x

Chapter 1

Introduction

The emergence of highly competitive markets in the global market space have caused companies to reevaluate strate-

gies for ensuring sustainable business endeavors. Attempts to satisfy a wide array of customers quickly and efficiently

have lead to the concept of product customization, wherein enterprise decision makers strive to better cater to the

needs of their customers through a wider array of products to choose from [3]. In this product design and develop-

ment paradigm, the physical and functional characteristics of products are more flexible to address the rapid changing

customer needs [4]. Though the strategy of mass customization has great potential to increase market share and en-

terprise competitive advantage, efficient execution and management of such large scale operations can prove quite

cumbersome, especially during the manufacturing process reconfiguration. In an attempt to mitigate some of the costs

associated with customization, companies have focused on commonality among product variants [5].

Commonality among product variants has the potential to reduce the design and manufacturing complexities that

may arise due to mass customization. Products designed around a shared and efficient product architecture can reap

the benefits of economies of scale [6] that exist due to a consistent and stable manufacturing process. The term product

architecture is frequently defined as the set of modules/components wherein product variants evolve [7, 8, 9]. In many

instances, product variety and product commonality are competing objectives. On one hand, the more diverse a product

portfolio is, the fewer shared components within the product family. On the other hand, the more similar a product

portfolio is, the greater the potential for shared components within the product family. These tradeoff decisions should

be justified based on the level of customer satisfaction and overall enterprise profits. There have been many proposals

for determining customer preference information and the degree of commonality in product design and development.

However, the lack of standard performance metrics to evaluate product family decisions has hindered consensus in this

field [10].Companies continue to place a high premium on the methodologies needed to ensure that mass customization

decisions lead to increased, consistent profit margins.

1

1.1 Objective and Scope

This research aims to develop a Multidisciplinary Design Optimization (MDO) approach to product design through a

synergistic methodology that incorporates the objectives of each discipline (marketing, engineering design, manufac-

turing, distribution, etc.) into the realization of an optimal product portfolio. As consumers’ demand for customizable

products continue to increase, companies are faced with the complex challenge of balancing design and manufactur-

ing costs. The product family paradigm allows companies to design products around a shared and efficient product

architecture. This allows for cost savings benefits to be realized through economies of scale that exist as a result of

component sharing decisions. Commonality decisions between products can however lead to decreased product per-

formance and ultimately, diminished customer demand. With the incorporation of predictive data mining techniques,

this research merges customer preferences directly with engineering design to achieve an optimal family of prod-

ucts. This process is an iterative approach that employs the decomposition and integration techniques of multilevel

optimization.

Although this research has focused primarily on machine learning in the context of product design, it can be

extended to other complex systems design problems involving large scale data generation. One such expansion has

been the application of the aforementioned machine learning approaches to Systems of Systems research involving

the simulation of military operations. Through collaborative research with Sandia National Laboratories, it has been

demonstrated that machine learning techniques can be employed in Systems of Systems problems to help quantify

critical military systems relevant to the overall mission success. The newly proposed Trend Mining algorithm that

has been employed in product design scenarios will be extended to include time varying military simulations to help

discover emerging systems trends.

1.2 Motivation

The challenges facing enterprise decision makers in the product portfolio development process are multifaceted, in-

cluding identifying candidate product concepts that have the greatest probability of market success. Attempts to design

and produce every possible product concept may be impractical in real life design processes, especially when first to

market may create tremendous competitive advantages in the market space. In such highly dynamic markets, the

acquisition and translation of customer wants into engineering design targets needs to be swift and efficient. Tra-

ditional customer preference techniques that have been employed in the design community have relied on customer

survey approaches to quantify customer wants. The time and resources needed under these traditional customer pref-

erence techniques may limit the size and complexity of the demand modeling process and hence, adversely affect the

engineering design of next generation products. Moreover, traditional demand modeling techniques frequently em-

2

ployed in the product design community typically generate predictive models using data from a single snapshot in time

(usually the most currently available data set) and hence may not reflect the evolving nature of product trends. The

absence of a temporal demand model for product design presents a challenge to design engineers trying to determine

the relevant product attributes to include/exclude in the next generation of products.

To overcome the aforementioned limitations of current product design methodologies, this research integrates large

scale, time series data sets of customer preference and extracts meaningful product attribute information to help guide

the product design and development process. The overall objective of maximizing company profit is realized when a

feasible set of product variants is presented in the final solution process.

1.3 Literature Review and Related Work

Data Acquisition Review Model Generation Review Detailed Engineering Design Review

Customer Preference Data Mining Driven Traditional Demand Product Family Design
Data Acquisition
(Section 1.3.1)

Techniques
(Section 1.3.3)

Modeling Techniques
(Section 1.3.2)

Techniques
(Section 1.3.4)

Figure 1.1: Sequence of topics discussed in the Literature Review and Related Work section

The literature review in this dissertation is partitioned into 3 sections as illustrated in Figure 1.1: Data Acquisition

Review, Model Generation Review, and Detailed Engineering Design Review. Each section discusses the state of the

art and formally introduces concepts and terminology that will be relevant in understanding the proposed data mining

driven product design methodologies introduced later in this work.

1.3.1 Customer Preference Data Acquisition

Preference data frequently used in demand modeling techniques can be characterized as either revealed data or stated

data. Revealedpreference data can be thought of as data that is acquired directly from actual customer actions and

can be used to estimate future customer behavioral patterns [36]. Revealed preference data can be acquired through

credit card transactions, online purchases, and in-store transactions. Stated preference on the other hand deals more

with hypothetical purchasing scenarios and is more survey focused [37]. Customer data is acquired through direct

interaction where customers state their preferences based on the perceived value of a product. In stated preference

data, attributes may be more theoretical as this type of data is typically used to test novel attributes and new product

concepts. The need for close customer interaction with the stated preference data therefore limits the size of the data

3

set compared to revealed data that can comprise of extremely large data sets of electronic customer data.

1.3.2 Traditional Demand Modeling Techniques in Product Design

Quality Function Deployment

The Quality Function Deployment (QFD) is a design and development methodology that attempts to acquire customer

requirements (CR) otherwise known as the Voice of the Customer (VOC) and translates them into functional engi-

neering targets [11]. A conventional approach to customer preference acquisition is through focus group interviews

or surveys of a sample of current or future customers [12]. Corresponding weights are assigned to each customer

requirement based on an importance rating indicated by a customer [13, 14]. A QFD matrix is often used to depict

the interdependence between customer requirements and the engineering metrics (EM) and aid in brainstorming and

designing the optimal product to address customer needs. QFD driven product development methodologies suggest

that QFD is well suited for out of the box solutions to customer needs due to the fact that engineering design features

are evaluated based on their positive and negative contributions to solving the product design problem. The design of

the QFD matrix also makes it easier to benchmark a particular design solution against competing brands. Since the

QFD methodology is based on direct customer feedback data, the size of the data set as well as the number of attributes

studied may not capture the overall requirements of the market space. Furthermore, the customer importance weight-

ing of attributes is somewhat qualitative in nature and nonuniform amongst respondents. These limitations of QFD

based methodologies in product design serve as motivation for the data mining based product design methodology that

is proposed in this work.

Conjoint Analysis

Conjoint Analysis (CA) has been used successfully in marketing to determine how customers value combinations of

different product attributes/features [11]. In this approach, a target customer group is identified for the study and

presented with a set of attributes (survey format or prop cards [15]), each with different levels (attribute ranges) [16].

Part-worth utilities are estimated based on customer importance ranking of individual product attributes. The result-

ing utility function is used to evaluate customer preferences for different attribute combinations. Although Conjoint

Analysis application areas can range from human psychology to advertising, attempts to directly incorporate it into

engineering design optimization and product development have been investigated [17, 18, 19, 20]. These Conjoint

Analysis based product development methodologies highlight the ability of the approach to quantify specific product

attribute levels in new product development. This approach is primarily survey driven and therefore as the attribute

space becomes large, preserving the quality of the model becomes a challenge.

4

Discrete Choice Analysis

The Discrete Choice Analysis (DCA) approach has been employed extensively in the product design community to

model consumer choice behavior from a set of mutually exclusive, collectively exhaustive choice alternatives [21,

22, 23, 24]. DCA incorporates probabilistic choice theory in determining which product a customer is most likely

to choose, based on expected utility [25]. DCA employs a random utility to measure the variations in customer

preferences. Given m choice alternatives, it is assumed that a customer n enjoys a certain utility Uni of a given

choice alternative i, i=1, .., m [26]. From a research standpoint, only the observed utility for a customer can be

estimated, resulting in error due to utility not observed by the researcher. The utility function Uni therefore contains

a deterministic observable part (Wni), and an unobservable random part (εni) which constitutes the error. The three

fundamental assumptions of the DCA are the following: (1) The choice set contains finite, quantifiable alternatives.

(2) The alternatives within the choice set are mutually exclusive, that is, choosing one alternative implies that no other

alternative within the choice set is selected. (3) The choice set is collectively exhaustive meaning that all possible

alternatives are included within the choice set. While there are a number of DCA techniques popular in literature (e.g.,

Multinomial Logit, Nested Logit, Mixed Logit), they are distinguished from each other by the degree of sophistication

with which they model the unobserved error and heterogeneity in customer preferences. In this work, the Multinomial

Logit (MNL) choice model is employed. The MNL choice model is also known as the conditional logit model, which

differs from standard Multinomial Logistic Regression (abbreviated MNR in this work). The MNL choice model

assumes that a respondent’s choice is a function of both the attributes of the product and the customer, rather than the

attributes of the customer only as assumed in the MNR model. The MNL model assumes that the error terms (εni)

found in the utility function in equation (1.1) are independent and identically distributed (i.i.d) and follow a Gumbel

distribution. This is represented by:

Uni = Wni + εni (1.1)

The deterministic part (Wni) of the utility function (Uni) can be represented by the observable independent variables Z

and the unknown coefficients β as given by the equation below [26]:

Wni = f (Ai,Pi,Sn : βn) (1.2)

Where,

Ai: Represents the quantifiable product attributes desired by the customer

Pi: Represents the price for a given product (choice alternative i)

Sn: The socio-demographic attributes of a customer

5

βn: The unknown coefficients representing a customer’s taste preference

Estimation of the observed utility function Wni allows for the choice probability of a design alternative to be estimated.

The probability that a customer n will choose alternative i over alternative j (i 6=j) from a choice set Cm is mathematically

defined as [8, 20]:

Pn(i = Cm) =
eWni/u

∑
m
j=1 eWn j/u =

eβT
n zni/u

∑
m
j=1 eβT

n zn j/u
(1.3)

Where,

Pn(i=Cm): Represents the probability that a customer n chooses alternative i within the choice set Cm .

βn: Unknown parameters estimated using the Maximum Likelihood Estimation (MLE)

Zni: Represents the observable independent variables which include the product attributes (A), the customer demo-

graphic attributes (S) and the price of the product (P).

u: scaling parameter set to 1, assuming all choice alternatives are equally considered by customer n.

1.3.3 Data Mining in Product Design

Static Machine Learning Models

The acquisition of customer preference data to determine patterns is vital to the overall stability and success of a

company’s next generation product portfolio. Stored data can be related to manufacturing capabilities, consumer

tendencies, distribution patterns, sales, etc. [27]. To this end, automated analysis and discovery tools that are powerful

enough to analyze large data sets are becoming more popular. As data storage and information retrieval capabilities

become more widely available, there is an emerging trend for companies to acquire and store customer preference

data. For example, the physical characteristics (vehicle horsepower, number of doors, color, etc.) of an automobile

purchased by a customer visiting a dealership, along with the customer’s demographic information (age, gender,

household income, etc.) can used to determine emerging trends in the automotive industry and design next generation

products accordingly. A great challenge in storing such data for product design purposes is the non-homogeneity

of customers preferences. Consequently, as the size of non-homogeneous data increases, so does the complexity of

identifying natural patterns within the data set. The ability to determine suitable product architectures for a particular

group of customers becomes a challenge as enterprise decision makers and engineers attempt to extract meaningful

patterns within the data set to aid in the product design and development process. Data mining in the context of

product development is an emerging area of research that has the potential to significantly impact engineering design

and manufacturing efforts [28, 29]. By identifying patterns within the large data set of customer preferences, engineers

can incorporate this knowledge in the product family design process.

6

The incorporation of data mining techniques in product portfolio development is emerging as a well-founded

approach to extracting and analyzing relevant customer information. Kusiak and Smith highlight several key areas in

industrial and manufacturing design processes where data mining techniques could potentially have great benefits [30].

In the context of product portfolio development, the application of data mining clustering techniques in the design of

modular products has also been investigated. Moon et al. use data mining to represent the functional requirements

of customers and use fuzzy clustering techniques to determine the module composition of a product architecture [3].

Nanda et al. propose a Product Family Ontology Development Methodology (PFODM) that utilizes a formal concept

analysis approach in the design of product families [31]. This approach incorporates existing knowledge of the product

family in generating a hierarchical conceptual clustering of design components. Agard and Kusiak [30] employ data

mining clustering techniques to segment a customer data set into candidate target markets for the design of product

families. Association rule mining is then used to determine attribute patterns in the segmented data. Menon et al

propose applying a textual based data mining approach to search large data sets within different stages of the product

development process in order to reduce human error in the analysis process [32]. The association rule mining algorithm

with support and confidence levels is used to identify patterns that exists in a call center database case study. Su et al

approach the customer segmentation problem in product development through a combination of data mining clustering

techniques; k-means, self organizing map (SOM) networks and Fuzzy Adaptive Resonance (FuzzyART) theory [33].

Time Series Machine Learning Models

The area of data mining dealing with dynamic information processing is relatively new and has great potential to

address many challenging areas of research. Change Mining is the umbrella term used to describe research involving

data evolution in dynamic data bases [34]. Data Stream Mining is a subcategory of Change Mining that deals more

with the continuous flow of data that needs to be analyzed with limited memory complications.

There have been several data mining algorithms proposed to address continuously-changing data streams. For

example, the Very Fast Decision Tree (VFDT) learner employs the Hoeffding statistic to build a decision tree classifier

that has similar predictive characteristics as a conventional decision tree learner (the C4.5 or gini based decision tree

learners) but with a fraction of the memory requirements [35]. Another example is the Concept-adapting Very Fast

Decision Tree (CVFDT) which extends the capabilities of the VFDT by enabling it to accommodate time-sensitive

streaming data that may tend to exhibit concept drift. Concept drift is a phenomenon in dynamic information pro-

cessing where the target variable shifts over time and causes the data mining model to diminish in its predictive

accuracy [36]. While these models have the ability to handle incoming data streams, they are more focused on gener-

ating/adapting a model based on incoming data, rather than understanding how the data patterns evolve altogether.

Research domains more interested in data trends, rather than the speed of the data streams also present another

7

interesting area of study. For example the RePro classifier is a data streaming algorithm that applies both proactive and

reactive predictions during model generation [37]. The algorithm attempts to alleviate the problems of concept drift by

anticipating concept changes and making predictions that if incorrect, cause the model to readjust and revert back to a

previous model. Another example is the PreDet algorithm that fits a polynomial regression model to the monotonically

increasing or decreasing time series attribute relevance statistics. The resulting time series model anticipates future

attribute patterns that are inherent in the evolving data [34].

In the product design domain, there has been little research in design methodologies that have the ability to capture

the evolving nature of customer preferences. The Preference Trend Mining (PTM) algorithm that is proposed in this

work differs from the PreDet and other change mining algorithms by having the ability to anticipate emerging attribute

behavior whether the attribute exhibits a monotonically increasing or decreasing trend, cyclical trend, or no trend at all.

In addition to this, the aforementioned change mining algorithms do not suggest approaches to characterize attributes

that may exhibit weaker predictive power over time. The notion of attribute irrelevance is handled by classifying

attributes based on their time series predictive power. This enables the PTM model to accommodate attributes that

may be experiencing changes in the distribution of the attribute values themselves or novel/emerging attributes. The

goal of the proposed PTM algorithm is to enable design engineers to understand changing customer preferences and

anticipate emerging product design trends in a timely and efficient manner.

1.3.4 Product Family Design

Once customer preference data has been acquired and a predictive preference model has been generated for new prod-

uct designs, engineers are then faced with the challenge of designing product portfolios that meet customer preferences

in a cost effective and efficient manner. The product family paradigm has been proposed to address the challenges

of designing products for mass customization or for highly diversified customer functionality requirements. The term

product family is frequently defined in literature as a group of related products that share an underlying product de-

sign architecture [38, 39, 29]. The product family paradigm enables companies to standardize certain aspects of a

product and at the same time provide product diversity to customers through product variants. Product cost savings

may be realized as a result of product standardization due to economies of scale (e.g., cost savings due to a standard

manufacturing line for all products, rather than a specialized manufacturing line for each product). However, greater

product standardization may also lead to lower product diversity in the market space and diminished product perfor-

mance (e.g., limited customizable features for customers such as product color, reliability, size, etc.) Therefore, in

the product family approach, the level of product standardization versus product variety presents a trade-off scenario

as product performance and appeal (from the customer’s perspective) may diminish in an attempt to increase product

standardization [38].

8

The product family design problem has been segmented into two well established domains: the Bottom-Up ap-

proach and the Top-Down approach [39]. In the Bottom-Up approach, companies are more interested in making

significant improvements to an existing product portfolio by combining products within the existing product family

into a new product architecture. An assumption in the Bottom-Up approach is that the newly redesigned product fam-

ily will be able to satisfy customer needs through minimal additional technology investments. On the other hand, in

the Top-Down approach to product family design, the next generation of products is not based on an existing product

family, but instead emerges from a market driven need. This need arises from the evolution of customer preferences

far beyond what the current product portfolio can satisfy [39]. In this work, a Top-Down product family methodology

is proposed that analyzes large customer preference data sets and identifies candidate product architectures that will be

used in the product family design. This product design architecture can represent a group of design components that

perform a series of functional processes. Products sharing similar product architecture can satisfy a broader range of

customer requirements simply by possessing functionality capabilities that vary beyond the underlying architecture.

The sharing of components also has the potential to reduce the time and costs associated with manufacturing diverse

products. The challenges that face such decisions include designing product variants with an excess of common com-

ponents that ultimately decrease the individual performance aspects required by customers. Therefore tradeoffs have

to be made in regards to the level of commonality exhibited by product families [40]. A major externality that drives

commonality decisions is the added pressure by customers that have established product customization as a standard

market requirement.

de Weck and Chang propose an approach that utilizes sales volume sensitivities and product variant performance

to dictate the number of optimal product architectures existing in the product portfolio [41]. Messac et al. employ a

physical programming based approach that focuses on scale-based product family optimization. In this approach, the

concept of scaling is used to change product specifications due to external factors [38]. Gonzales-Zugasti et al. use

an Interactive Implementation approach that first establishes a product architecture design, then its variants [42]. The

assumption of a pre-existing product architecture significantly constrains the engineering design team in attempting to

satisfy external performance requirements. Other approaches by Desai et al. [43] and Kim and Chhajed [44] partition

the consumer market into two groups: high end and low end customers, and design product variants based on the

performance and quality expectations desired by each market. These approaches to some extent incorporate customer

input in the design of product families but greatly restrict the customer pool by only partitioning the market into

high-end and low-end segments, hereby possibly overlooking customers in between these two segments.

9

Commonality in Product Family Design

Commonality among product variants is a widely acceptable method of mitigating the inevitable cost increases of

such highly differentiated products. By designing product variants around a shared and efficient product architecture,

companies can reduce design and manufacturing costs associated with product differentiation [5, 45]. Commonality

indices in product family formulation can be traced back to works by Collier in his proposal of the Degree of Com-

monality Index (DCI) [46, 47]. The DCI is the ratio between the number of common components in a product family

and the total number of components. Mathematically, this can be represented as:

DCI =

i+d

∑
j=i+1

φ j

d
(1.4)

Where

• φ j: Represents the number of immediate parents that component j has over a set of end items or product structure

level(s).

• d: Represents the total number of distinct components in a complete product

• i: Represents the total number of end/highest level parent items for the product structure level(s).

The DCI can vary between 1 and β, where

β =
i+d

∑
j=i+1

φ j (1.5)

That is, if DCI=1, component sharing is nonexistent in the product family and products comprise of individually

unique components. On the other extreme where DCI=β, then all of the components are shared within the product

family [46]. The relative simplicity of the DCI formulation makes this a less computationally complex index for

evaluating product commonality decisions and therefore may be quite beneficial for low fidelity optimization models.

One major limitation of this approach however is the difficulties in evaluating commonality decisions across highly

diverse product families. Later works by Collier propose an improvement to the DCI metric by introducing the

Total Constant Commonality Index (TCCI) [37]. In this formulation, an absolute bound is set within [0,1] to gain

10

a quantifiable measurement of commonality decisions. In this updated index, increases in the degree of commonality

are easier to measure. Other contributions such as that proposed by Jiao and Tseng [48] expand on the DCI by Collier

to include production, operating, and component costs.

With the Product Line Commonality Index (PCI) introduced by Kota, et al [49], product families comprising of

highly differentiated products are penalized on the basis of lack of component similarity. This is a departure from the

DCI that penalizes for product variety, which in some cases may be what the customer market demands.

In the product commonality approach adopted by Fellini et al., null platform optimal designs are first identified and

with the incorporation of sensitivity information of the design variables [50, 8]. A performance deviation vector (Π)

is then computed, with component sharing decisions subsequently made on the basis of the acceptable performance

deviation from the performance deviation vector [8].

The Percent Commonality Index (%C) partitions the commonality problem into 3 separate categories: Namely,

Component, Connection and Assembly [51]. The number of similar components present in a product family is repre-

sented by the component commonality while the connection commonality represents the level common connections

between components. The assembly commonality index is similar to the previous, as it measures the level of common

assembly workstations [47]. The combination of these three metrics gives the commonality evaluation for a particular

architecture. Similar works by Martin and Ishii [52] define a Commonality Index that identifies unique components as

the basis of commonality decisions.

More recent contributions to the product family commonality paradigm are introduced by Thevenot and Simpson

[53] with their proposed Comprehensive Metric for Commonality (CMC). The CMC approach classifies components

based on its cost Ci and f ji factors, as defined by the methodology [53]. A predefined rating criteria is used to

reward/penalize commonality decisions based on the CMC.

1.4 Overview of Data Mining Driven Design Methodology

The proposed product design research methodology aims to systematically link customer product preferences with

the enterprise decision making processes in an attempt to design an optimal portfolio of products that meets enter-

prise level targets, while at the same time satisfying customer needs. The customer preference modeling is based

on data mining/machine learning principles while the engineering product validation is formulated as a multi-level

optimization model. This multi-level optimization strategy aims to maintain consistent interaction among all facets of

the product development process (customer predicted targets, product component sharing, enterprise profit objectives,

etc.). The process from data extraction to predictive product design model is illustrated in Figure 1.2, with the detailed

description of each step presented below.

11

Data Mining

Knowledge Discovery in Product DesignPHASE I

Customer/System Data Acquisition
Interpretation/Evaluation

Data Mining
Predictive Model

Data Transformation

Data Mining/Pattern
Discovery

Data

Data Selection and Cleaning

System Level Targets

Enterprise System Level Upper Level Targets

PHASE II

Architecture 1

Lower Level Responses

Linking Variables

Multidisciplinary
Design
Optimization

Architecture 2 Architecture k…

Figure 1.2: Overall Predictive Product Portfolio Formulation (Adapted from D2K manual [1])

1.4.1 PHASE 1: Customer Knowledge Discovery

Knowledge Discovery in Databases (KDD) has become known as the nontrivial means of extracting information in

large scale databases that were previously too complex for human analysis [54]. As data extraction and storage capabil-

ities become cheaper and more readily available, there is tremendous opportunity for design engineers and enterprise

decision makers to incorporate this vast wealth of knowledge directly into new product development efforts. Data

mining is a step along the KDD process that utilizes machine learning algorithms to extract meaningful, previously

unknown information from large data sets [27]. The concept of data mining can be applied to product portfolio for-

mulation wherein the exact product specifications and manufacturing quantity (predicted demand information for each

individual product concept) can be determined directly from data mining predictions. The process from data extraction

to predictive model is as follows (Figure 1.2):

Step 1: Data Acquisition

The acquisition and storage of data is paramount in the product portfolio formulation process. The process begins by

acquiring the raw data set to be used in the data mining sequence. This data can be acquired in several ways. One

approach is by conducting a realistic customer survey to capture customer product preferences, then translating these

preferences into meaningful engineering design targets [55]. Another approach would be for this data to already exist

in a data warehouse, i.e., stored data from past customer purchasing behavior (e.g., SQL Server) [56].

Traditional Database Management Systems (DBMS) can be found in many of today’s large corporations and have

12

become the foundation of modern day data storage and analysis [57]. The success of the internet has increased the

importance of Database Management Systems in areas such as business transactions, communication networks, social

networks, to name but a few. DBMS have evolved since the early concepts proposed in the early 1960s that were

based on the CODASYL query language [58]. A significant advancement in DBMS came when Ted Codd proposed a

novel representation of data as relations that could then be queried using a high level language such as the Structured

Query Language (SQL) [59]. The Entity-Relationship (ER) [60] model proposed by Peter Chen in subsequent years

helped compliment the original Relational model by providing a providing a more microscopic representation of the

interactions within the data itself. Together, both the Relations model and the ER model form the foundation of many

of today’s large scale Database Management Systems.

Step 2: Data Preprocessing (Data Selection and Cleaning)

Once the data has been captured from Step 1, Step 2 is where irrelevant or noisy data is identified and removed and

relevant data is extracted from the raw data [56]. There are many well established approaches that deal with missing

attributes or ambiguous responses ranging from most common attribute, event covering method, or ignoring the value

altogether [61, 62, 63]. When dealing with electronic transactional data (online, in-store), it is then possible to collect,

clean and store this data in a data warehouse. A data warehouse is a preprocessing stage that integrates all data into

one source (this includes, raw data, historical data, summarized data, etc.)[64]. The accuracy of the data mining model

will be highly dependent on the data selection and cleaning step and it is therefore important that considerable time

is allocated to preparing high quality data for the pattern discovery step that follows. There are many algorithms

that exist in today’s data mining analysis tools that are now capable of incorporating this data selection and cleaning

process directly with the overall knowledge discovery process [1, 65].

Step 3: Data Transformation

The final data preprocessing step involves transforming the data into acceptable forms for the appropriate mining

algorithm. Data transformations can include binning, normalizing, missing value imputation, etc. [66]. This can either

be done manually by the user or automatically by a data mining analysis tool [1].

Step 4: Data Mining/ Pattern Discovery

The majority of the work in this dissertation focuses on proposing specific Data Mining/ Pattern Discovery method-

ologies to address a variation of product design challenges. Engineers will be able to assess their existing engineering

design needs and employ one of the proposed product design methodologies below to help solve them:

13

• Naı̈ve Bayes Classification for Flexible Product Design: For design problems involving flexibility in the product

attribute space, the Naı̈ve Bayes machine learning approach is employed to help design engineers understand

the implications of attribute inclusion/exclusion in new product design. That is, given a large customer data

set containing revealed preference data (customer product preferences acquired after a customer has made a

purchasing decision, ex: credit card transactions, store purchases or online transactions, etc.), design engineers

can include/exclude certain product attributes and observe the subsequent consequence on the overall product

design objective. The final set of attributes is then linked with a multilevel optimization model for product

design optimization.

• ReliefF and X-means Clustering for Product Family Design: For product family design problems involving mul-

tiple products, design engineers may not always know the total number of products that would satisfy a specific

subset of customers. Furthermore, design engineers may want to quantify and rank the relevance of attributes

so that product designs can be more customizable. The ReliefF attribute weighting machine learning technique

is proposed to help design engineers quantify attribute relevance to the overall product design decisions made

by customers. The X-Means clustering technique can then be employed to group similar product designs based

on the overall structure of the given product data, rather than an approximation by engineers. As a result, the

appropriate number of products within a product family can be identified and designed around a shared and

efficient product architecture.

• Decision Tree Classification for Product Concept Generation: The C4.5 Decision Tree Classification technique

has been employed for solving product concept generation problems where design engineers are primarily fo-

cused on identifying relevant attribute combinations pertaining to a given design objective. This iterative ma-

chine learning technique generates a set of decision rules that can be then used to guide new product designs,

modeled as a multilevel optimization problem. This approach is well suited for large scale customer data in-

volving a high dimensional attribute space as the resulting decision tree will only include attribute combinations

that are strong indicators of an overall product design objective.

• Trend Mining for Predictive Product Design: Although several machine learning techniques exist dealing with

temporal data, there exists the need for a data mining algorithm that specifically captures evolving customer

preference in product design. To solve this, a trend mining algorithm is proposed to help quantify and model

changes in customer preference towards given product design attributes. An attribute classification model is

proposed to help design engineers make decisions involving attributes that are deemed irrelevant by a machine

learning algorithm. That is, if an attribute is consistently characterized as irrelevant to the overall product design

objective, design engineers can consider this attribute obsolete and exclude from all future product designs,

14

standard and include in future product designs (regardless of its irrelevant characterization by the machine

learning model), or non- standard and realize that such an attribute has not been fully adopted/understood in

the market segment and therefore has no consistent effect on product design decisions.

• Capturing Product Preference Trends Using Publicly Available Customer Review Data: A major challenge that

has plagued the product design community has been the lack of large scale, realistic customer data to validate

proposed product design methodologies or solve complex design problems. Researchers and design engineers

often resort to conducting customer surveys or focus group interviews that can be costly and time consuming.

Recent research studies have shown that a major online retail company can have as many as 10 million active

product reviews while it has been reported that more than 50% of online customers indicated that customer

reviews played an important role in influencing their purchasing decisions. Based on these findings, a publicly

available online interface (www.trendminingdesign.com) has been developed that is built upon an automated

computer exploration algorithm that captures and stores time series product preference data. This research aims

to provide design engineers with direct access to large scale, time series customer preference data that can be

used to guide next generation product designs.

Step 5: Interpretation and Evaluation:

The results from the Knowledge Discovery phase will aid in the next generation product design process by systemat-

ically linking novel, previously unknown customer preferences with a detailed engineering design model for product

design validation (Phase 2).

1.4.2 PHASE 2: Linking Customer Knowledge Discovery with Product Design

Solving Product Family Design Problems Through Multidisciplinary Design Optimization Techniques

With the incorporation of predictive data mining and machine learning techniques, this research merges customer

preferences directly with engineering design to achieve the most profitable, and concurrently the most desirable family

of products. This process is an iterative approach that employs the decomposition and integration techniques proposed

to solve Multidisciplinary Design Optimization problems. Multidisciplinary Design Optimization (MDO) is a systems

engineering approach to designing complex systems (such as automotive, aeroplanes, consumer electronics, etc.)

across multiple disciplines in a decomposed setting [67]. This departs from conventional All In One (AIO) formulation

that integrates subsystem design variables and constraints in an overall system objective [68]. The major driving force

for the paradigm shift is the computational complexities that are involved in solving AIO problems involving multiple

disciplines. The MDO solution approach addresses these challenges in many ways, one of which is by decomposing

15

the overall system objective into subsystem models that can be solved more efficiently [67].

There have been several proposed approaches to solving MDO problems such as Collaborative Optimization [69],

Bi-Level Integrated System Synthesis (BLISS) [70], the constraint margin approach based on the decomposition of

quasi separable problems [71], Analytical Target Cascading (ATC)[72, 73, 74, 75], Penalty Decomposition (PD) meth-

ods [76], an augmented Lagrangian decomposition method (for quasi-separable problems) [71], to name but a few.

The solution approach is highly dependent on the type of problem being solved as each algorithm has its strengths and

limitations.

The ATC decomposition approach has been employed to solve product family design problems, where customer

predictive targets are to be satisfied by an engineering design response. The linking variable concept proposed by ATC

will be utilized in the commonality and component sharing decisions discussed later in the work as well as the criteria

for determining optimality (Matching customer targets with engineering response).

Analytical Target Cascading Analytical Target Cascading (ATC) is a multilevel decomposition approach for solv-

ing large scale engineering problems [77]. In the product development process, matching performance targets closely

with final product functionality is paramount and hence the need for a robust design methodology to help accomplish

this.

The ATC formulation process partitions the AIO problem into system and subsystem levels, enabling top level

system design targets to be cascaded down to lower subsystem level. The steps are [75]:

1. Development of appropriate analysis models

2. Partitioning the system

3. Formulating the target problems for each element of the partition

4. Solving the partitioned problem through a coordination strategy to compute all stated targets

ATC has also been extended to product families through the linking variable concept wherein subsystems attempt

to share common design variables [78]. A predefined architecture is presented and products attempt to share com-

mon components while still maintaining a consistent hierarchical ATC formulation. The goal of this approach is to

realize the benefits of commonality of parts among variants. This is modeled by the shared linking variable in the bi-

level quasi-separable problem formulation that attempts to achieve an optimal design solution for each product while

concurrently satisfying specific product functionality requirements [76]. The term quasi-separable is used to denote

independent subproblems that share a common design variable/component. In this work, subproblem simply means

a unique product design. The bi-level formulation is used in this work to coordinate these sharing decisions among

subproblems. Therefore, the individual subproblem formulation for the bi-level quasi-separable problem is as follows:

16

Minimize fk (ys,k ,xk)

Subject to:

gk(ys,k,xk)≤ 0 (1.6)

hk(ys,k,xk) = 0 (1.7)

For the quasi-separable formulation, each xk represents the vector of local design variables unique to each subproblem

(k), where k=1,..., K subproblems. The vector of linking variables ys,k makes the subproblems quasi-separable as

each subproblem sharing a linking variable becomes influenced by the solution of other subproblems sharing the same

linking variable. A master problem is used to coordinate the linking variable among subproblems and is explained in

more detail in each chapter of this dissertation where the ATC decomposition technique is employed.

The Analytical Target Cascading formulation described above will serve as the multi-level optimization framework

in this dissertation and will be used to solve the data mining driven product family/portfolio design problems.

Chapter 1:
IntroductionIntroduction

Data Mining Driven Product Portfolio Design

Chapter 2: Chapter 3: Chapter 4: Chapter 5: Chapter 6:Chapter 2:
Naïve Bayes for

Flexible Product Design

Chapter 3:
X‐Means Clustering for
Product Family Design

Chapter 4:
Decision Tree Classification:
Product Concept Generation

Chapter 5:
Trend Mining for

Predictive Product Design

Chapter 6:
Customer Review

Text Mining

Chapter 7Chapter 7
Conclusion and Future work

Figure 1.3: Overall organization of dissertation

17

1.5 Overall Organization

This dissertation is organized as seen in Figure 1.3. Chapter 1 provides an introduction and motivation of this disser-

tation. Chapter 2 proposes a Naı̈ve Bayes product design methodology to address product design problems involving

flexibility in attribute selection. Chapter 3 proposes a machine learning clustering technique for product family de-

signs involving multiple operating states. Chapter 4 presents a product concept generation methodology for large

scale consumer preference data. Chapter 5 proposes a data trend mining algorithm for capturing consumer preference

trends and attribute relevance over time. Chapter 6 proposes a methodology of capturing product trends using publicly

available customer review data. Chapter 7 concludes the dissertation and discusses future work in the research domain.

18

Chapter 2

Naı̈ve Bayes Classification for Flexible
Product Design

2.1 Flexible Product Design Methodology

The Naı̈ve Bayes data mining technique is proposed for product design scenarios involving flexibility in the product

attribute selection process. The Naı̈ve Bayes data mining technique can handle large scale customer preference data,

making the product design attribute selection process efficient and cost effective. In the proposed product design

methodology, specific attributes can be selected manually (as the conditional probability is sequentially updated), with

corresponding class prediction updated accordingly. The Naı̈ve Bayes data mining approach to classifying is based

on the fundamental assumption of attribute independence in predicting the class variable [79, 80]. The correct class

prediction is achieved so long as it is more probable than any other class [81]. Since the Naı̈ve Bayes class prediction is

updated with each subsequent attribute selection/deselection, it is possible for enterprise decision makers to model the

product design process as an optimization problem, where the overall objective would be to maximize the probability

of predicting a single class variable, given a combination of attributes.

The flow diagram in Figure 2.1 illustrates the flexible product portfolio design methodology by employing the

Naı̈ve Bayes data mining technique, linked with multilevel optimization.

Naı̈ve Bayesian Model

The Naı̈ve Bayes algorithm builds a predictive model based on supporting evidence from a fraction (typically 2/3rds)

of the customer preference data used to train the computer learning model [1]. Applied to a customer’s maximum

purchasing price, the Naı̈ve Bayesian model can be posed as follows:

• Given N elements in a set of customer attributes ai ∈ A.

• The dependent class variable MaxPrice(γ) has outcomes conditional on customer attributes ai, ...,aN

• p(γ|a1, ...,aN)=p(γ) · p(a1,...,aN |γ)
p(a1,...,aN) −→ Probability of MaxPrice(γ), given certain input attribute(s)

• Since the denominator of the above equation is independent of MaxPrice (γ) and the input attributes are known

a priori, the denominator is essentially constant and can therefore be ignored [80] .

19

Acquire Raw Customer Data

Naïve Bayes Classification
of MaxPrice for a particular

Architecturei based on

Calculate Cost for

i
desired attributes

Calculate Cost for
designing and
Manufacturing desired
Architecturei

OCalculate expected Profiti

i=i+1
No

>

Yes

Profiti > Profit (i-1)

Add to Product Portfolio

No

Product Portfolio = Portfolio Limit

Optimal Product Portfolio Attained

Yes

Figure 2.1: Flow Diagram of Naı̈ve Bayes Flexible Product Design Methodology

• Using the definition of conditional probability: [82]

p(γ|a1, ...,aN) = p(γ) · p(a1, ...,aN |γ) (2.1)

= p(γ) · p(a1|γ) · p(a2, ...,aN |γ,a1) (2.2)

...

= p(γ) · p(a1|γ) · p(a2|γ,a1)...p(aN |γ,a1,a2...,aN−1) (2.3)

The fundamental basis of the Naı̈ve Bayesian model is the assumption of conditional independence of each input

attribute, i.e. attribute ai is independent of a j where i 6= j [80]. This is a valid assumption for the cell phone case study

that will be expounded on later. For example, the assumption is made that: The probability that a cell phone is a flip

design, given a MaxPrice of $200 is independent of the probability that a cell phone has a battery life of 5 hours, given

the same MaxPrice of $200.

• The assumption of independence enables the conditional distribution of MaxPrice (γ) to be expressed as [79]

p(γ,a1, ...,aN) = p(γ)
n

∏
i=k

p(ai|γ) (2.4)

A machine learning approach known as Supervised Learning attempts to estimate the parameters of the developed

Naı̈ve Bayesian model [83]. The assumption of attribute independence allows the class variable (MaxPrice) to be

estimated prior to testing the model. The Naı̈ve Bayes Classifier combines the probability model with a decision rule;

20

in most cases, a most probable hypothesis rule known as maximum a posteriori probability (MAP) is computed, which

determines the maximum likelihood of a given class [80]. The function is modeled as follows, where arg max is the

likelihood estimator of MaxPrice [79].

classi f y(a1, ...,aN) = arg maxγ p(Γ)
n

∏
i=k

p(Λi|Γ) (2.5)

• Where Γ takes on a value in the set γ, i.e. the value of MaxPrice must match a numerical value of one of the

elements in the MaxPrice set.

• Similarly, Λi takes on a value in the set ai, i.e. attribute value i takes on a value of an element that exists in the

overall attribute set.

Prior knowledge of the attribute distribution is assumed and a point estimate of the class variable can be obtained [84].

Based on the posterior distribution, the class variable γ is estimated as the statistical mode or in other words, the most

recurring. The Naı̈ve Bayes Classifier using the maximum a posteriori [79] decision rule is a valid approach in the

study of customer predictive preferences, as the model takes into account a priori [85] preference of attributes. The

robustness of the classifier validates the assumption of attribute independence and correctly predicts the class variable

MaxPrice [80]. The following simple example illustrates the predictive strengths of the Naı̈ve Bayes Classifier in

determining previously unknown knowledge from a given customer data set.

There are 10 unique customer responses represented by each row in the example data set (Table 2.2). The 3 attribute

types (Phone Type, Connectivity, Feature) are mutually exclusive and comprise of binary selections. For example,

the first attribute Phone Type can assume one of two values, (Flip or Shell), etc. The objective is to determine what

combination of attributes would result in a particular class variable prediction, i.e., purchase a phone (Yes or No). For

example, assume that a cell phone design having the attributes Flip phone, Bluetooth, MP3 needs to be classified.

Note that this attribute combination does not exist in the example data set (Table 2.2) and such a classification would

therefore be considered as new, previously unknown knowledge [54]. To determine the class (Purchase Phone= Yes

or No) that such an attribute combination would fall under, the conditional probability rule explained in equation (2.4)

is employed. The conditional probabilities of each attribute are presented in Table 2.1 and the subsequent classification

presented in the following calculations.

21

Table 2.1: Conditional probability calculations for each attribute

3/6P(Feature=MP3 | Purchase Phone =NO)

2/6P(Connectivity=Bluetooth | Purchase Phone=NO)

4/6P(Phone Type=Flip | Purchase Phone=NO)

3/4P(Feature=MP3 | Purchase Phone =YES)

2/4P(Connectivity=Bluetooth | Purchase Phone=YES)

2/4P(Phone Type=Flip | Purchase Phone=YES)

Purchase Phone=NO
(6 Occurrences)

Purchase Phone=YES
(4 Occurrences)

Class PredictionConditional Probabilities

p(Y ES|FlipPhone,Bluetooth,MP3)

= p(Y ES) · p(FlipPhone|Y ES) · p(Bluetooth|Y ES) · p(MP3|Y ES)

=
4

10
· 2

4
· 2

4
· 3

4
= 0.075 (2.6)

p(NO|FlipPhone,Bluetooth,MP3)

= p(NO) · p(FlipPhone|NO) · p(Bluetooth|NO) · p(MP3|NO)

=
6
10
· 4

6
· 2

6
· 3

6
= 0.067 (2.7)

The maximum likelihood function utilized by the Naı̈ve Bayes model selects the class variable with the maximum

likelihood of occurring, which in this case would be Purchase Phone=YES with a probability of 0.075. In other

words, this new combination of cell phone attributes has the potential of appealing to the consumer market and would

therefore be a candidate cell phone design. Such powerful insights have the potential to significantly enhance the

product family formulation process as attribute combinations can be analyzed and optimized to achieve a more efficient

product development strategy.

This example is a simplified version of the actual customer preference data utilized in this work which comprises

of a customer data set of 100,000 and a wider array of attributes. Despite such a large data set, the final Naı̈ve Bayes

predictive results took less than 300 seconds to generate, running on an Intel Pentium IV desktop (3.2 GHz).

22

Table 2.2: Sample customer response data

Camera

MP3

Camera

MP3

MP3

Camera

MP3

MP3

Camera

MP3

Feature

Flip

Flip

Flip

Shell

Flip

Flip

Shell

Shell

Shell

Flip

Phone Type

YESWifi9

NOWifi10

NOBluetooth8

YESBluetooth7

YESWifi6

NOWifi5

NOBluetooth4

NOWifi3

YESBluetooth2

NOWifi1

Purchase Phone?ConnectivityCustomer

Attribute Selections Class Variable

Data Mining using Data to Knowledge (D2K)

The predictive model will enable a seamless translation of customer data into tangible design targets for the engineering

design level. Selection or deselection of attributes to observe the effects on the class variable (MaxPrice) can be

formulated as a Mixed Integer Programming Problem [86], where the objective is to search through a combination of

attributes that would yield the MaxPrice and market share percentages needed to maximize the overall profit of the

company.

The visual representation in Figure 2.2 is the D2K Graphical User Interface output that enables the user to manually

select/deselect attributes that influence the MaxPrice prediction. The square box enclosing each attribute indicates

which attributes are active in the predictive model. Only one parameter value per attribute can be active at once

due to the Naı̈ve Bayes assumption of attribute independence. The Naı̈ve Bayesian prediction of MaxPrice has a

percentage value associated with each MaxPrice prediction which translates into the percentage of customers with the

same MaxPrice prediction. If none of the attributes are selected, then the MaxPrice prediction is calculated solely on

the initial state of information, i.e. the surveyed customers and their overall preferences.

The active attributes in the prediction of MaxPrice are set as targets at the engineering design sub-level, while the

MaxPrice is used to determine the enterprise profit for product variant i. In order to ensure an optimal product that

satisfies customer wants, customer targets cascaded down to the engineering sub-level are weighted more than any

other objective in the engineering sub-level such as cost minimization.

The iterative process of trying to match customer targets with the engineering capabilities yields an optimal product

that is both profitable and desirable to customers. The overall process from D2K’s Naı̈ve Bayes prediction of MaxPrice

23

MP3 Camera SMS Games Internet Generic

5 3 7

cost Size Weight

Screensize Resolution

Wifi Bluetooth None Infrared

Shell Flip

MaxPrice (γ), given:

[MP3, 5 hour, Cost,
Screensize, Wifi, Shell]

$200

$120 $160

$80

$40

Figure 2.2: D2K Naı̈ve Bayes Prediction of Maximum Customer Purchasing Price (MaxPrice) and associated Market Share αi.

to product design and development using multi-level optimization (analytical target setting [87] and analytical target

cascading [72] are utilized in the proposed approach) in the engineering level is illustrated in Figure 2.2.

Commonality is achieved by the linking of component variables among architectures. The proposed methodology

suggests that commonality decisions be made on the primary basis of how they affect customer preferences and ulti-

mately, enterprise profit. The Mcconnell/Stigler relationship between unit cost and output suggests that diseconomies

of scale may mitigate the cost-savings benefit that commonality provides to the manufacturing process as output

increases exponentially [88]. Therefore, the benefits of commonality and modularity will focus less on the manufac-

turing cost savings, but rather on overall company profit. The reason for this performance metric shift is due to the

ambiguities that exist when product manufacturing cost is the primary reason for justifying sharing decisions. Such

cost minimization commonality decisions may have adverse effects on the satisfaction of intended customers who may

suffer due to performance sacrifices in an attempt to reduce cost. Future research aspirations include incorporating the

entire supply chain process into the product family cost model to better understand the effects of downstream processes

in enterprise decision making.

2.1.1 Product Portfolio Optimization at Product Family Supersystem Level

The primary product portfolio objective is achieved through a finite launch of product architectures deemed most prof-

itable by the enterprise system level objective. The profit maximizing objective is realized through an iterative process

24

of acquiring the maximum price (MaxPrice) a customer is willing to pay for a particular product (determined by a

customer predictive model), and the cost derived from the component selection process that defines that particular

product. The overall maximum profit (πoverall) is used as the metric for this selection process, where pro f itoverall is

the summation of the individual product profits that would yield the maximum overall company profit. The product

portfolio limit used in this case study is assumed to be the maximum number of product variants in the manufac-

turing process that would allow the process to still remain efficient, i.e. the point of inflection before a company’s

manufacturing and distribution capabilities are exceeded.

Minimize

−
k

∑
j=1

x j ·πVariant(j) (2.8)

Where:

πVariant(j) : Profit of variant (j)

x j : Binary discrete variable selecting or deselecting particular product variant (πVariant j) where
k

∑
j=1

x j ≤ K

k: Total feasible product architectures that can be designed

K: Product portfolio limit (number of architectures in the product family)

Subject To

h1 : x j = {0,1} j ∈ {1, . . . ,k} (2.9)

g1 :
k

∑
j=1

x j−K ≤ 0 (2.10)

Product portfolio limit K is a finite number meaning that a company cannot produce every possible combination

of architectures, which would be an impractical real life target.

2.1.2 Enterprise System Level

The Naı̈ve Bayes predictive model allows for a customer’s maximum price (MaxPrice) value to be used in determining

the maximum Variant j profit (πVariant j), where pro f it j for a particular product is determined by:

πVariant{ j} = MaxPrice{ j}−Cost j (2.11)

25

where

• MaxPrice j: is the Naı̈ve Bayesian prediction based on certain input attributes. The MaxPrice can be partitioned

during the customer survey to N number of price preference choices to reflect the objective of the enterprise

decision maker. i = [1, ...,N]. The most probable (as defined by equation (2.5)) class variable is used in profit

calculation in equation (2.11).

• Cost j: is the engineering sub-level response for the cost needed to produce a product desired by the customers,

based on the Naı̈ve Bayes prediction.

The mathematical model at the enterprise level is summarized as follows. (The norm notation indicates || · || =

|| · ||22, i.e., squared L-2 norm.)

Minimize

−πVariant j +‖T
C−REnt‖+ εR + εy (2.12)

With respect to REnt=REnt (xEnt , REng), εR, εy

Subject to

h1 : πVariant j −D ·
(
MaxPrice{ j}−Cost{ j}

)
= 0 (2.13)

h2 :
m

∑
i=1

n

∑
j=1

ai, j−m = 0 (2.14)

h3 : D−MarketDemandVariant j = 0 (2.15)

h4 :
N

∑
i=1

αi−1 = 0 (2.16)

g1 : ‖REng−REngL‖− εR ≤ 0 (2.17)

g2 : ‖y−yL‖− εy ≤ 0 (2.18)

(h2: Given an m×n matrix of attributes, equality constraint h2 restricts the parameter value of each attribute to only

one per row due to the Naı̈ve Bayesian assumption of attribute independence.)

where:

πVariant j : Profit of product variant j.

TC : Product variant target component predicted by Naı̈ve Bayes customer model.

26

REnt : Engineering response component cascaded up to the enterprise level.

REnt=REnt (xEnt , REng) means that the enterprise level response is a function of system variables and the response

of the engineering subsystem level.

y : Linking variables at the enterprise level. The linking variable concept applied to product family design represent

shared attributes or components that exist among product variants.

yL : Target values for linking variable at the engineering sub-system level cascaded up to enterprise level.

εR : Deviation tolerance variable between customer component targets and engineering response.

εy : Deviation tolerance variable between linking variables.

2.1.3 Engineering Design Subsystem Level

The engineering design sub-system level is defined as the stage in product design wherein engineering design objec-

tives and constraints are formulated to produce a product/variant that satisfies the enterprise level objective [89].

Analytical Target Setting [87]

The multi-objective formulation of the engineering design sublevel focuses primarily on designing an architecture

(around which product variants are designed) at product launch that will satisfy customer wants, predicted by the

Naı̈ve Bayesian model, while simultaneously minimizing the overall cost of the product. Satisfying customer wants

is weighted more due to obvious reasons: a cheaper product will not automatically translate into an attractive product

if customer preferences are not satisfied. The mathematical model at the engineering design level is summarized as

follows:

Minimize

Cost j +‖REngU −REng‖+‖y j−yU
j ‖ (2.19)

Cost j : Cost of product variant (j)

REngU
: Response from the enterprise system level, cascaded down to the engineering level (At the enterprise system

level mathematical formulation, REngU
is simply REng).

REng : Response from the engineering sublevel, i.e. REng=REng(xEng, yEng). It means that the response of the engi-

neering design sublevel is a function of local design variables and also sharing linking variables (REng at the

engineering subsystem level will become REngL
at the enterprise system level).

27

y j : Linking variables at the engineering design level

yU
j : Target value for linking variables from the upper enterprise level cascaded down to engineering level

Subject To

h1 : Cost−
J

∑
i=1

xiqi = 0 (2.20)

design constraints : g j(xEng)≤ 0 (2.21)

xi : Binary discrete variable selecting or deselecting particular product variant component (qVariant)

qi : Product variant Component (Discrete or Continuous Variable)

• Discrete Component Variable: Manufactured by a supplier with predefined performance and cost attributes

• Continuous Component Variable: Company manufactured with changing specifications to cater to dynamic

architecture design

J : Total available components in the engineering product design

The engineering design sub-system level objective is modeled as a mixed integer nonlinear programming problem

with discrete variables that dictate the component selection process and continuous variables for the engineering

designed components. A branch and bound algorithm is used to achieve an optimal solution [86]. Since there are

both discrete and continuous variables in the mathematical model, the branch and bound algorithm attempts to find

an optimal solution by first solving the relaxation problem (i.e., integer restrictions are relaxed) which is simply a

nonlinear optimization problem [86]. In the subsequent solution, if all the discrete variables take integer values, then

the mixed integer programming problem is solved and an optimal solution is reached [86]. For each discrete variable

that does not take on an integer value, the algorithm takes this variable and divides the problem (branches) into two

new nonlinear programming problems. This process is continued until a global optimum is achieved.

2.2 Application

2.2.1 Product Portfolio Formulation: Cellular Phone Product Family

To demonstrate the effectiveness of the proposed methodology, a realistic cell phone case study is presented. The

methodology begins by introducing a customer survey questionnaire (Table 2.3) that is modeled to realistically capture

the true essence of what customers want. The data is acquired through a realistic customer survey, although the

28

Table 2.3: Customer Survey Questions and Response Options

Survey Questions Survey Answer Choices

Customer Data Acquisition Process

y Q y

What feature would you most like your
cellular phone to have?

MP3, Camera, Internet, Games,
SMSText, Just Talkp , J

What is more important to you? Weight, Size , or Cost of Cell Phone

What type of Cell Phone Design do you Flip Phone Design, Shell Phone DesignWhat type of Cell Phone Design do you
Like?

Flip Phone Design, Shell Phone Design

What Type of Connectivity would you Bluetooth, WiFi, Infrared, None
prefer your phone to have?
What is the minimum talk time you
require before a recharge?

3 Hours, 5 Hours, 7 Hours
require before a recharge?
What is more important to you? Display Screen Size, Display Resolution

What is the Maximum Price you would $40 $80 $120 $160 $200What is the Maximum Price you would
be willing to pay for the features you just
described?

$40, $80, $120, $160, $200

proposed framework is not limited to customer survey methods. For example, data can also be acquired from existing

company databases containing transactional data. Performance metrics determined by the customer prediction will be

set as targets at the engineering level.

From the results of the survey, a model can now be developed that will predict the maximum purchasing price

that a customer is willing to pay based on certain attributes. The D2K software helps to develop this model with

the transformation of the customer raw data. MaxPrice can then be used in a sensitivity analysis to determine the

profit for a particular product design, given certain selected attributes. The attributes selected are used as targets in the

engineering level.

2.2.2 Enterprise System Level

Cell Phone System Profit Optimization

The Naı̈ve Bayesian model developed by D2K allows the user to select/deselect attributes and observe the change in

MaxPrice and the market share associated with each. As can be seen in figure 2.2, an MP3 phone architecture is used

as a starting point with customer attributes including [5 hour Battery life [90], Cost Objective, Screen Size Priority,

Wifi Connectivity [91], and Shell Phone Design] .

These attribute targets are then cascaded down to the engineering sub-level to determine whether or not such a

product design is feasible. The MaxPrice prediction is used at the enterprise level in calculating the Profit(π) for this

29

particular MP3 Phone. Mathematically, this is represented as:

Minimize

−πMP3Variant1 +‖T BatteryLi f e−RBatteryLi f eEnt‖+‖TWi f i−RWi f iEnt‖

+‖T Shell−RShellEnt‖+ εBatteryLi f e + εWi f i + εShell (2.22)

In the cell phone case study, RBatteryLi f eEnt
is considered as a linking variable at the engineering design level. Thus,

a deviation constraint g1 is added in the constraint set.

Subject To

h1 : πMP3Variant1 −D · (MaxPrice{MP31}−Cost{MP31}) = 0 (2.23)

h2 : MaxPrice{MP31}−$200 = 0 (2.24)

h3 :
m

∑
i=1

n

∑
j=1

ai, j−m = 0 (2.25)

h4 :
K

∑
i=1

αi−1 = 0 (2.26)

h5 : αi = {51%,23%,22%,3%,1%} (2.27)

h6 : MaxPricei = {200,120,160,80,40} (2.28)

g1 : ‖RBatteryLi f eEnt −RBatteryLi f eEngL
‖− εBatteryLi f e ≤ 0 (2.29)

g2 : ‖RWi f iEnt −RWi f iEngL
‖− εWi f i ≤ 0 (2.30)

g3 : ‖RShellEnt −RShellEngL
‖− εShell ≤ 0 (2.31)

g4 : D−D0 ≤ 0 (2.32)

where:

πMP3Variant j : Profit (in $) of MP3 Variant with specific design features

TBatteryLi f e : Battery Life (hours) Target predicted by Customer Naı̈ve Bayes Model

RBatteryLi f e :=Battery Life Response cascaded up from Engineering Sublevel

TWi f i : Connectivity (bluetooth,wifi,or infrared) Target predicted by Customer Naı̈ve Bayes Model

30

RWi f i :=Connectivity Response cascaded up from Engineering Sublevel

TShell : Shell Design Target predicted by Customer Naı̈ve Bayes Model

RShell=Shell Design Response cascaded up from Engineering Sublevel

y : Linking variables at the enterprise level. The linking variable concept applied to product family design represents

shared attributes or components that exist among product variants.

yL : Target values for linking variable at the engineering sub-system level cascaded up to enterprise level.

εBattery Life : Deviation tolerance variable between customer component targets and engineering response.

εWifi : Deviation tolerance variable between customer component targets and engineering response.

εShell : Deviation tolerance variable between customer component targets and engineering response.

Here, D0 = 100,000 (Represents the total market population of cell phone consumers) and K is 5 (Product Portfolio

limit that would enable manufacturing process to remain efficient). The table of demand information for a given class

variable prediction is given in Table 2.4, where D=8395 represents the demand for a $200 phone based on the Naı̈ve

Bayesian model in equation (2.5). One of the values of MaxPrice will be selected for each attribute combination

(customer predicted preference) so long as it is more probable than any other class variable of MaxPrice. (See Equation

(2.5))

Table 2.4: Demand information based on the Naı̈ve Bayesian predictive model

7,899$40

12,908$80

21,796$120

16,001$160

8,395$200

Customer demand (D) at given priceMaxPrice

2.2.3 Engineering Sub-system Level

Cell Phone Subsystem

The engineering sub-system level comprises of a multi-objective function of cost minimization while simultaneously

minimizing the deviation between customer design targets and engineering response. During the first iteration in the

31

Product Portfolio optimization, linking variables are nonexistent due to the fact that only one optimal cell phone design

exists in the product portfolio set.

The basic mathematical formulation of successive cell phone variants is similar to perturbations occurring with

each successive product variant (Figure 2.2), depending on the customer targets.

Minimize

CostMP3Variant1 +‖RBatteryLi f eU −RBatteryLi f e‖

+‖RWi f iU −RWi f i‖+‖RShellU −RShell‖ (2.33)

Subject To:

Screen Resolution Constraints

h1 : (A1∗LCDlength ∗LCDwidth)−LCDres = 0 (2.34)

h2 : (A2∗LCDlength ∗LCDwidth)−CostLCD = 0 (2.35)

h3 : (A3∗LCDlength ∗LCDwidth)−WeightLCD = 0 (2.36)

h4 : (A4∗LCDlength ∗LCDwidth)−PowerLCD = 0 (2.37)

h5 : (A5∗OLEDlength ∗OLEDwidth)−OLEDres = 0 (2.38)

h6 : (A6∗OLEDlength ∗OLEDwidth)−CostOLED = 0 (2.39)

h7 : (A7∗OLEDlength ∗OLEDwidth)−WeightOLED = 0 (2.40)

h8 : (A8∗OLEDlength ∗OLEDwidth)−PowerOLED = 0 (2.41)

Battery Design Constraints

h9 : CapNIMH − ((NIMHConst1 ∗ (VNIMH))−

THours ∗
N

∑
i=1

PComponenti = 0 (2.42)

h10 : CapLION− ((LIONConst1 ∗ (VLION))

−THours ∗
N

∑
i=1

PComponenti = 0 (2.43)

h11 : BatteryTalkTime− (NIMH ∗ ((0.0053∗

(CapacityNIMH))+0.0269)+(LION ∗

((0.0061∗ (CapacityLION))+0.1667))) = 0 (2.44)

32

h12 : ((NIMHConst2∗(LNIMH∗WNIMH∗TNIMH))−CostNIMH)=0 (2.45)

h13 : (LIONConst2∗(LLION∗WLION∗TLION))−CostLION)=0 (2.46)

h14 : ((NIMHConst3∗(LNIMH∗WNIMH∗TNIMH))−WgNIMH)=0 (2.47)

h15 : ((LIONConst3∗(LLION∗WLION∗TLION))−WgLION)=0 (2.48)

g1 : (NIMH∗LNIMH+LION∗LLION)−0.60

∗(SHELL∗LSHELL+FLIP∗LSHELL)≤0 (2.49)

g2 : (NIMH∗WNIMH+LION∗WLION)

−0.95∗(SHELL∗WSHELL+FLIP∗WFLIP)≤0 (2.50)

g3 : (NIMH∗TNIMH+LION∗TLION)

−0.45∗(SHELL∗TSHELL+FLIP∗TFLIP)≤0 (2.51)

(To enhance the overall flow of the dissertation, several variable names are abbreviated (L=Length, W=Width,

T=Thickness, Wg=Weight, V=Volume, Cap=Capacity, P=Power Consumption, etc.))

Cell Phone Outer Casing Design Constraints

h16 : (SHELLConst1∗LSHELL∗WSHELL∗TSHELL)−CostSHELL=0 (2.52)

h17 : (FLIPConst1∗LFLIP∗WFLIP∗TFLIP)−CostFLIP=0 (2.53)

h18 : (SHELLConst2∗LSHELL∗WSHELL∗TSHELL)−WgSHELL=0 (2.54)

h19 : (FLIPConst2∗LFLIP∗WFLIP∗TFLIP)−WgFLIP=0 (2.55)

g4 : LLCD−(0.60∗SHELL∗LSHELL+0.60∗FLIP∗LFLIP)≤0 (2.56)

g5 : (0.30∗SHELL∗LSHELL+0.30∗FLIP∗LFLIP)−LLCD≤0 (2.57)

g6 : WLCD−0.90∗(SHELL∗WSHELL+FLIP∗WFLIP)≤0 (2.58)

g7 : 0.7∗(SHELL∗WSHELL+FLIP∗WFLIP)−WLCD≤0 (2.59)

g8 : LOLED−(0.60∗SHELL∗LSHELL+0.60∗FLIP∗LFLIP)≤0 (2.60)

g9 : (0.30∗SHELL∗LSHELL+0.30∗FLIP∗LFLIP)−LOLED≤0 (2.61)

g10 : WOLED−0.90∗(SHELL∗WSHELL+FLIP∗WFLIP)≤0 (2.62)

g11 : 0.7∗(SHELL∗WidthSHELL +FLIP∗WidthFLIP)−OLEDwidth≤0 (2.63)

33

Table 2.5: Possible Shared Component Variables

Manufacturer OLED [24]Discrete Variable Display Type

Manufacturer TFT LCD [24] Discrete Variable Display Type

Manufacturer External Speaker Discrete Variable Audio Codec

Manufacturer Audio Jack Discrete Variable Audio Codec

Manufacturer Earpiece Discrete Variable Audio Codec

Manufacturer Microphone Discrete Variable Audio Codec

Manufacturer Infra Red Discrete Choice Variable Connectivity

Manufacturer Wifi Discrete Choice Variable Connectivity

Manufacturer Bluetooth Connection Discrete Variable Connectivity

EngineeringDesignLithium Ion [5] Battery Design Variables Battery Type

EngineeringDesignLithium Polymer [5] Battery Design Variables Battery Type

EngineeringDesignFlip Phone Design Variables Phone Design

EngineeringDesignShell Phone Design Variables Phone Design

Manufacturer 2GB Storage Discrete Choice Variable Hard Drive

Manufacturer 1GB Storage Discrete Choice Variable Hard Drive

Manufacturer Memory Stick Duo Discrete Choice Variable External Memory

Manufacturer Memory Stick Pro Discrete Choice Variable External Memory

Manufacturer 64 MB RAM Discrete Choice Variable Internal Memory (RAM)

Manufacturer 32 MB RAM Discrete Choice Variable Internal Memory (RAM)

Design OptionsDescriptionComponent

Design Objectives

h20 : TotalCost−
N

∑
i=1

Component(i)Cost = 0 (2.64)

h21 : TotalWeight−
N

∑
i=1

Component(i)Weight = 0 (2.65)

Table 2.5 identifies the possible shared components of each individual MP3 capable phone. Sharing decisions are

influenced by customer performance expectations and engineering capabilities. Certain components are purchased

directly from a manufacturer and would therefore have fixed performance specifications, while other components can

be manufactured by the company to meet customer needs.

2.2.4 Optimization Study

With a methodological approach to product architecture formulation, enterprise decision makers can have a validation

tool to justify product portfolio formulation and launch decisions. The study begins by defining a finite number of

unique architectures that will constitute the optimal product family. For the study, a product portfolio of five product

variants will be set as the maximum manufacturing ability. It is assumed in this case study that a product portfolio

greater than five will begin to result in diseconomies of scale and ultimately, reduced profit [88].

34

Shell Phone Flip Phone

InfraredWifi Bluetooth Wifi Bluetooth

Product Platforms

Product Variants

1 G byte
HardDrive

Li Ion

Battery (3 Hours)

Shared Components
Between Platforms

OLEDEXT Speaker MicrophoneSpeakerAudio Jack wifibluetoothInfrared TFT LCDRAM

Component Pool

Component Selection:

Iterative Process

Optimal Product Portfolio = K

Cell Phone Product Generation

Figure 2.3: Optimal Product Portfolio Example. Illustrates how just two product architectures can generate product variants that
make up a family of products (product portfolio of K = 5 products).

Predictive product performance targets are acquired through the proposed data mining process and used to set the

initial starting point values at the enterprise level as targets for the engineering subsystem level, i.e. [MP3, 5 hour

Battery Life, Cost Objective, Screensize, Wifi Connectivity, Shell Design]. For this particular Cell Phone design,

an engineering product design cost of $98.3/unit is attained. The cost response from the engineering design level is

then cascaded up to the enterprise level where the MaxPrice is used to calculate the predicted profit (πVariant). With

a predicted MaxPrice of $200 and an associated demand (D) of 8395, the resulting projected profit is $853,448 . The

particular product design however fails to meet the battery life target of 5 hours, instead designing a cell phone with a

battery life of only 4.5 hours.

The customer focused objective of matching predicted performance expectations and the engineering design ob-

jective of designing the lowest cost product are competing objectives. The enterprise profit calculations presented

in this work are the projected profit calculations for a given product launch, based on a particular phone design and

how closely it matches customer performance expectations (which may consequently affect the product demand). The

argument is made that it is better to launch a product that has lower projected profits (but fully satisfies customer

expectations) than to launch a product with a higher projected profit margin (but fails to satisfy customer wants).

Failure to satisfy customer wants would adversely affect the actual demand for that product and decrease the actual

enterprise profit as customers switch to alternative products that more closely satisfy their performance expectations.

The disparity between projected vs. actual profit calculations is therefore highly dependent on product performance.

35

Optimal Product Portfolio Model

Mathematically, this optimization process is translated to

Minimize

k

∑
j=1
−x j(D j · (πVariant(j)−λ ·

N

∑
i=0

εi)) (2.66)

πVariant(j) : Profit for Variant (j)

x j : Binary discrete variable selecting or deselecting particular product variant (πVariant(j)) where ∑
k
j=1 x j ≤K, where

K is the optimal product portfolio limit of 5 for the example and k symbolizes the 9 studied MP3 architectures.

D j: Demand for a given product design

λ: Weighted value for penalty term εi

εi: Tolerance deviation term for particular customer target (i)

N: Total number of shared components

The comparative analysis can now begin where the above calculated profit ($853,448) is used as a reference

amount. The profits of the first five product variants that can be feasibly designed with the MP3 technology are

calculated. For each successive iteration, the newly calculated profit of Variant j will be compared to that of each

Varianti[i=1,...,K] existing in the feasible product family set. If the newly calculated product variant profit is greater

than any of the variant profits in the set, the least profitable product variant is discarded and replaced with Variant j.

Depending on the number of possible combinations of the predictive model, either an exhaustive search approach

or a tree branching algorithm can be used. For the MP3 Architecture, nine combinations are analyzed with a battery

life of 3 hours as the primary sharing component.

2.3 Results and Discussion

To determine the optimal product portfolio of five architectures, the nine combinations of MP3 capable cell phones

were analyzed (Tables 2.6 and 2.7) to determine the profit margins of each product variant. The optimization results

reveal that Variant1 fails to satisfy customer targets on one of the performance metrics. I.e. deviation between cus-

tomer battery life target and engineering battery manufacturing capabilities ‖T BatteryLi f e−RBatteryLi f e‖ is greater than

tolerance εBatteryLi f e and is therefore deemed less profitable with the incorporation of the penalty term described in

equation (2.66).

36

Table 2.6: Optimal Product Family Results (Part 1). Highlighted architectures represent the most profitable product portfolio given
maximum five architectures allowed in the portfolio.

Variable
Description

 Component
Source

MP3 Phone1
Solution

MP3 Phone2
Solution

MP3 Phone3
Solution

MP3 Phone4
Solution

MP3 Phone5
Solution

MP3 Phone6
Solution

MP3 Phone7
Solution

MP3 Phone8
Solution

MP3 Phone9
Solution Units

32 Megabyte
Discrete Variable Manufacturer 1 0 1 1 1 1 1 1 1 1 -

 Manufacturer 2 0 0 0 0 0 0 0 0 0 -
 Manufacturer 3 0 0 0 0 0 0 0 0 0 -

64 Megabyte
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

 Manufacturer 2 1 0 0 0 0 0 0 0 0 -
 Manufacturer 3 0 0 0 0 0 0 0 0 0 -

Memory Stick Pro
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

 Manufacturer 2 0 0 0 0 0 0 0 0 0 -
 Manufacturer 3 0 0 0 0 0 0 0 0 0

Memory Stick Duo
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
Manufacturer 3 0 0 0 0 0 0 0 0 0 -

1GB Storage
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 1 1 1 1 1 1 1 1 1 -
Manufacturer 3 0 0 0 0 0 0 0 0 0 -

2 GB Storage
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
Manufacturer 3 0 0 0 0 0 0 0 0 0

Shell Phone Discrete
Variable

Engineering
Design 1 1 0 1 0 1 0 1 0 -

Phone Length
Engineering

Design 85.0 80.0 120.0 80.0 120.0 80.0 120.0 80.0 120.0 mm

Phone Width
Engineering

Design 48.4 40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0 mm

Phone Thickness
Engineering

Design 19.1 17.7 16.3 17.7 16.3 16.6 12.0 17.4 12.0 mm

Phone Weight
Engineering

Design 40.0 28.9 40.0 28.9 40.0 27.0 29.4 28.4 29.4 g

Phone Cost
Engineering

Design 18.0 13.0 18.0 13.0 18.0 12.1 13.2 12.8 13.2 $
Flip Phone Discrete
Variable

Engineering
Design 0 0 1 0 1 0 1 0 1 -

Phone Length
Engineering

Design 100.0 100.0 100.0 100.0 100.0 135.1 100.0 100.0 100.0 mm

Phone Width
Engineering

Design 45.0 68.0 45.0 68.0 45.0 45.0 45.0 45.0 45.0 mm

Phone Thickness
Engineering

Design 18.1 12.0 12.0 12.0 12.0 12.0 12.0 18.1 12.0 mm

Phone Weight
Engineering

Design 40.0 40.0 26.5 40.0 26.5 35.7 26.5 40.0 26.5 g

Phone Cost
Engineering

Design 12.0 12.0 7.9 12.0 7.9 10.7 7.9 12.0 7.9 $
Nickel Metal Hydride
Battery Discrete
Variable

Engineering
Design 0 0 0 0 0 0 0 0 0 -

Battery Weight
Engineering

Design 42.4 49.2 50.0 50.0 50.0 50.0 50.0 50.0 50.0 g

Battery Length
Engineering

Design 46.2 51.1 36.6 59.7 72.5 38.2 80.0 70.0 80.0 mm

Battery Width
Engineering

Design 54.7 34.2 48.6 37.0 32.3 60.0 60.0 50.4 25.5 mm

Battery Thickness
Engineering

Design 17.9 30.0 30.0 24.1 22.7 23.3 11.1 15.1 26.1 mm

Battery Cost
Engineering

Design 17.1 19.9 20.2 20.2 20.2 20.2 20.2 20.2 20.2 $

Battery Capacity
Engineering

Design 803.9 958.9 962.6 976.8 962.6 1016.8 1002.6 986.8 972.6 mAh
Lithium Ion Battery
Discrete Variable

Engineering
Design 1 1 1 1 1 1 1 1 1 -

Battery Weight
Engineering

Design 17.76 12.82 13.11 12.82 13.11 12.00 12.29 12.62 12.91 g

Battery Length
Engineering

Design 51.00 48.00 72.00 48.00 72.00 48.00 72.00 48.00 63.58 mm

Battery Width
Engineering

Design 45.97 38.00 42.75 38.00 42.75 38.00 42.75 38.00 42.74 mm

Battery Thickness
Engineering

Design 8.58 7.96 4.82 7.96 4.82 7.45 4.52 7.83 5.38 mm

Battery Cost
Engineering

Design 16.16 11.67 11.93 11.67 11.93 10.92 11.19 11.48 11.74 $

Battery Capacity
Engineering

Design 706.77 464.47 464.47 464.47 464.47 464.47 464.47 464.47 464.47 mAh

Cell Phone Talk Time
Engineering

Design 4.48 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 h
Bluetooth Discrete
Variable Manufacturer 1 0 0 0 1 1 0 0 0 0 -
WiFi Discrete
Variable Manufacturer 1 1 1 1 0 0 0 0 0 0 -
Infra-Red Discrete
Variable Manufacturer 1 0 0 0 0 0 0 0 1 1 -

37

Table 2.7: Optimal Product Family Results (Part 2). Highlighted architectures represent the most profitable product portfolio given
maximum five architectures allowed in the portfolio.

Variable Description
 Component

Source
MP3 Phone1

Solution
MP3 Phone2

Solution
MP3 Phone3

Solution
MP3 Phone4

Solution
MP3 Phone5

Solution
MP3 Phone6

Solution
MP3 Phone7

Solution
MP3 Phone8

Solution
MP3 Phone9

Solution Units
Microphone Discrete
Variable Manufacturer 1 1 1 1 1 1 1 1 1 1 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
EarPiece Discrete
Variable Manufacturer 1 0 0 1 0 1 0 1 0 1 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
Manufacturer 3 1 1 0 1 0 1 0 1 0 -

Audio Jack Discrete
Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
External Speaker
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 1 0 0 0 0 0 0 0 0 -
Manufacturer 3 0 1 1 1 1 1 1 1 1 -

LCD Discrete
Variable

Engineering
Design 1 1 1 1 1 1 1 1 1 -

Length of LCD
Engineering

Design 25.50 24.00 30.00 24.00 30.00 24.00 30.00 24.00 30.00 mm

Width of LCD
Engineering

Design 34.94 28.00 31.50 28.00 31.50 28.00 31.50 28.00 31.50 mm

Display Resolution
Engineering

Design 13131.32 9905.28 13929.30 9905.28 13929.30 9905.28 13929.30 9905.28 13929.30 pixels
LCD Manufacturing
Cost

Engineering
Design 4.45 3.36 4.73 3.36 4.73 3.36 4.73 3.36 4.73 $

LCD Unit Weight
Engineering

Design 35.63 26.88 37.80 26.88 37.80 26.88 37.80 26.88 37.80 g
LCD Power
Consumption

Engineering
Design 8.91 6.72 9.45 6.72 9.45 6.72 9.45 6.72 9.45 mhA

OLED Discrete
Variable

Engineering
Design 0 0 0 0 0 0 0 0 0 -

Length of OLED
Engineering

Design 25.50 35.33 30.00 25.57 30.00 33.41 31.75 33.21 30.00 mm

Width of OLED
Engineering

Design 39.22 28.09 31.50 36.00 31.50 28.00 31.50 28.00 33.33 mm

Display Resolution
Engineering

Design 19620.00 19473.58 18540.90 18060.00 18540.90 18352.50 19620.00 18245.00 19620.00 pixels
OLED Manufacturing
Cost

Engineering
Design 8.00 7.94 7.56 7.36 7.56 7.48 8.00 7.44 8.00 $

OLED Unit Weight
Engineering

Design 30.00 29.78 28.35 27.61 28.35 28.06 30.00 27.90 30.00 g
OLED Power
Consumption

Engineering
Design 30.00 29.78 28.35 27.61 28.35 28.06 30.00 27.90 30.00 MhA

1 MegaPixel Camera
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -

2 MegaPixel Camera
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
MP3 Module Discrete
Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 1 1 1 1 1 1 1 1 -
Manufacturer 3 0 0 0 0 0 0 0 0 0 -
Manufacturer 4 1 0 0 0 0 0 0 0 0 -

Internet Module
Discrete Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
Graphics Module for
Games: Discrete
Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 -
Manufacturer 3 0 0 0 0 0 0 0 0 0 -

SMS Text Message
Technology: Discrete
Variable Manufacturer 1 0 0 0 0 0 0 0 0 0 -

Total Architecture
Cost

Engineering
Solution 98.34 84.46 81.05 82.96 79.55 75.59 73.01 80.50 77.30 $/unit

Total Architecture
Weight

Engineering
Solution 141.82 121.29 129.69 117.39 125.79 105.83 116.07 116.33 125.19 g

38

Each subsequent product variant uses a battery life of 3 hours, which may initially seem less profitable due to

changes in the Naı̈ve Bayes predictions of MaxPrice (Figure 2.2 and Figure 2.3). After an engineering design valida-

tion however, it can be seen that such architectures would be cheaper to manufacture and would yield the highest profit

margins while satisfying customer wants. (note: An engineering response is an evaluation of technical capabilities

by the engineering team in determining the feasibility of such a product. The relevance to battery life is that certain

product concepts may have unattainable battery life expectations.)

The optimal product portfolio (Figure 1.2) given this approach will therefore be architectures {3,5,6,7,9}, yielding

a total company profit of:

πOverall = $848,902+$881,596+$967,996

+$1,024,232+$930,769 = $4.65 Million (2.67)

The multi-level optimization solution (adopting the ATC methodology [72]) took approximately 500 seconds per

product variant running on an Intel Pentium IV desktop (3.2 GHz). The model was developed in the Matlab R© [92]

environment with Tomlab R© [86] used in the optimization sequence.

The cost-savings benefit of manufacturing can be realized when a product manufacturing process has minimal

number of interruptions. Thus the more components that a product shares with variants, the higher the probability of

lowering overall company operating costs. Sharing decisions focused solely on manufacturing process cost savings can

however have adverse effects on customer preferences and ultimately their willingness to pay as seen in the following

example. Four out of the nine product architectures share a flip phone design (Table 2.6, 2.7). Although it would

be more desirable for all architectures to share the same type of design (flip or shell), it is clearly observed that such

a decision would not yield the most profitable product portfolio. For example, sharing a shell phone design for 5

architectures would mean selecting architectures {1,2,4,6,8}, which would yield a maximum profit of:

πOverall = $853,448+$774,642+$807,336

+$967,996+$632,093 = $4.03 Million (2.68)

Even without penalizing Variant1 for failing to satisfy the customer battery target of 5 hours (actual engineering

response =4.5 hours), a sharing decision of a SHELL phone design would yield a less profitable product portfolio.

The solution to product portfolio optimization is multifaceted requiring input from different specializations across

different boundaries. Such powerful insights will help enterprise decision makers understand the intricate link that

exists between what customer wants and engineering design capabilities.

39

2.4 Conclusion

The emergence of a customer driven need for product differentiation has lead companies to re-evaluate current design

and manufacturing processes. Consequently, analytical techniques are required to alleviate the costs associated with

product differentiation. The greatest challenge is to develop an optimal product architecture for a family of products

in a dynamic market space. To overcome this challenge, the proposed methodology has successfully demonstrated

how data mining techniques can help develop a product family by encompassing customer requirements directly with

engineering capabilities using ATS [87] and ATC [89]. Modularity and component sharing decisions can now be

expanded beyond manufacturing cost savings to include consumer price sensitivity to product architecture changes.

The dynamic product architecture concept utilized in this work has the benefit of continuously changing architecture

design variables throughout the product design phase to cater to customer preference requirements. A product portfolio

is achieved which not only maximizes profit, but simultaneously satisfies what the customer wants.

The cell phone analysis systematically attains a feasible product portfolio by simultaneously focusing on changing

demand due to a particular product design choice. The model places emphasis on deterministic (and in later works

stochastic) methods in product architecture formulation. The long term goal is to provide decision makers in industry

with a useful tool that helps mitigate the associated risks involved in product portfolio formation and product launch

decisions. Such a tool has the potential to drastically reduce errors associated with ad hoc product portfolio method-

ologies or disjointed expertise between the business and engineering teams. The manufacturing benefits of product

architecture design and product portfolio formulation will be incorporated in later models to reflect a wider scope

of product design. Careful attention will be paid to the efficiency at which the algorithm of choice will converge to

an optimal solution. An exhaustive search algorithm or a branch and bound algorithm will help to ensure a global

optimum for the maximum attainable profit for a family of architectures.

40

Chapter 3

ReliefF and X-Means Clustering Product
Family Methodology

3.1 Product Family Design Methodology

The primary contribution of this work is to present a product family design methodology for complex engineering

systems that autonomously identifies the number of products to design by extracting weighted product preference

information from a customer data set. This work focuses on design problems with large product preference data sets

that can be integrated into the product design process. Figure 3.1 represents the overall methodology that begins with

the acquisition of raw customer product preference data and employs data mining attribute weighting and clustering

techniques to determine the number of unique products needed for a given data set. For this, the ReliefF attribute

weighting algorithm is employed to identify attributes in order of importance in the data set. Then, the X-means

clustering algorithm is employed to identify groups of similar operating states within the raw data set. As a result, the

number of product variants that should be introduced to reflect preferences (represented in the data) can be identified.

Steps 2 and 3 in Figure 3.1 illustrate the added benefits of component sharing by clustering similar products together

in an attempt to reduce product design costs. The X-Means clustering technique is employed at the engineering design

level to determine which products are similar enough to potentially benefit from component sharing decisions. These

sharing design decisions are implemented in a multidisciplinary design optimization framework where an individual

product variant is modeled as an individual subsystem. For products with highly diverse operating conditions, the data

set itself may be highly heterogeneous, making it quite difficult for engineers to determine the number of products to

design in order to satisfy the market space. By employing the Data Mining ReliefF attribute weighting and X-Means

clustering techniques to the raw data set (Figure 3.1), engineers can determine the initial product architectures to

design. The details of Figure 3.1 will now be explained in depth in the following sections.

3.1.1 Data Mining Product Preferences

The Data Mining of product preferences is the stage where dominant patterns are identified within the raw data set

[54]. With each unique instance in the data set representing a customer’s preferred operating state for the product,

the number of operating states can increase rapidly, thereby making it impractical for a single design to exist for

41

Figure 3.1: Flow Diagram of Proposed Product Family Design Methodology: From Data Mining Product Architecture Identifica-
tion to Component Sharing through X-Means Clustering.

each unique state. The engineering design goal is to identify operating states within the data set that are similar in

design requirements (as determined by the data mining algorithm). Since product attributes may vary in terms of

design significance, an appropriate attribute weighting technique would help guide the engineering design process.

To accomplish these product design challenges, the ReliefF attribute weighting algorithm is first employed to weight

attributes in order of importance in the data set [93]. The X-means clustering algorithm is then employed to identify

groups of similar operating states within the raw data set (illustrated in the Data Mining flow diagram in Figure 3.1 and

visually represented on the left in Figure 2). The weighted attributes will influence both the data clustering process

as well as the engineering design model and more valued product attributes will be given more weight in the overall

product family design methodology. The X-means clustering algorithm is employed again in the component sharing

decisions during the product family optimization stage as similar individual product designs are grouped together by

similarity of design (Steps 2 and 3 in Figure 3.1 and visually represented on the right in Figure 3.2). Below is an

introduction to the ReliefF attribute weighting technique that will later be applied to the raw data set.

42

Figure 3.2: Visual representation of family design based on Data Mining ReliefF attribute weighting and X-means clustering for
Product Centroid generation and X-Means Clustering for Product Family Component Sharing Optimization.

ReliefF Product Attribute Weighting Algorithm

In this work, the enhanced version of the Relief algorithm called ReliefF is employed [94]. ReliefF extends the original

Relief algorithm by enabling it to efficiently handle multi-class variables and also missing values within the data set

[94]. A class variable can be thought of as the response or predictor variable of interest. Examples of class variables

in product design data sets may include efficiency, energy consumption, price, etc.

The original Relief algorithm proposed by Kira and Rendell is an attribute evaluation technique that will enable

product development engineers to extract the importance of individual product attributes within a raw data set without

explicit user provided ranking information [93]. This can prove to be a vital time saving strategy, especially for

extremely large data sets containing many attributes. Identifying the order of attribute relevance within a data set can

reduce the overall computational complexity and increase the efficiency of data mining algorithms [93, 94].

Given a raw data set S, m instances are selected to serve as the number of sampled instances where p denotes the

total unique attributes within the sample set m [93]. The overall objective of the Relief algorithm is to take a random

sample, and using a nearest neighbor search, to identify an identical class variable, which is defined as a NEAREST

HIT (H), and also a different class variable that is nearest to the sample, defined as a NEAREST MISS (M) [93].

The iterative process of Relief estimates attribute weights W[Ai] based on their similarity to a given class, where Ai,

represents a unique attribute within the data set. The general form of the algorithm can be represented as follows [93].

43

Given m - desired number of sampled instances, and p - number of attributes,

1. set all weights W[Ai]:= 0.0;

2. for j := 1 to m do begin;

3. randomly select an instance X;

4. find nearest hit H and nearest miss M;

5. for i := 1 to k do begin;

6. W[Ai]:= W[Ai]- diff(Ai;X;H)/m + diff(Ai;X;M)/m;

7. end;

8. end;

Where the diff function above measures the difference between the attribute being evaluated Ai taken from the

randomly selected instance X, and the value of that same attribute given the closest hit (H) or closest miss (M). For

discrete attributes, if the value of the attribute (Ai) of the randomly selected instance (X) matches that of the nearest hit

(H) or nearest miss (M), then the diff value is 0 (meaning values are identical), otherwise 1 meaning they are different.

For continuous attributes, the actual difference is used and then normalized on a scale of [0,1].

By its design, the ReliefF attribute weighting technique does not constrain the attributes to non-negative values.

Therefore, the weights will first be normalized based on the mini-max normalization [95]. For a given vector of

attribute weights [w1, w2,..., wp], the weights are normalized using the following formulation:

For weight i=1,. . . ,p

w′i =
wi−minw

maxw−minw
(new maxw−new minw)+new minw (3.1)

Here,

wi’: The newly transformed weight (i) of attribute (i)

minw: The minimum value in the vector of ReliefF attribute weights

maxw: The maximum value in the vector of ReliefF attribute weights

new maxw: The maximum value of the new range

new minw: The minimum value of the new range

The new vector of weights w’ determines the level of importance for each target vector (TC j) at the engineering design

level.

The data set with the newly updated weighted attributes will be used to:

1. Weight clusters generated by the X-means clustering approach (discussed in the following section).

2. Serve as attribute target weights for the engineering product design model.

44

X- Means Clustering

The X-means clustering algorithm in data mining is an enhancement of the k-means clustering algorithm [96]. Be-

fore investigating the X-means clustering algorithm and its significance in product family optimization, the k-means

algorithm will be briefly described.

Given a raw data set of unique customer preferences (operating conditions), the k-means algorithm attempts to

partition the original data set into k subsets of the data, where k represents the number of unique subsets or in the

appropriate data mining terminology, clusters [97, 98]. Each cluster contains a centroid, with data points of the cluster

associated with this centroid. It is important to note that the number of clusters in the k-means algorithm is given a

priori as a user defined input. In the context of product family design, this would be analogous to the engineering

design team specifying the number of product platforms that the customer’s product operating requirements must

adhere to. Rather than design teams making postulations about the raw data set, a more natural process would be for

the inherent patterns of the raw data set to help guide the product platform number (this is one of the contributions

of the X-means data mining technique). Although there have been many enhancements to the k-means since its

conception [99, 100, 101], the basic underlying mathematical formulation can be represented as follows:

f =
K

∑
j=1

∑
xi∈S j

||xi− c j||2 (3.2)

Here,

1. S j is a cluster of data points. Here, S will be defined as all instances in the raw data set and S j would simply be

a subset of this.

2. c j is the centroid of a cluster S j.

3. xi is a data point existing within a cluster.

4. K is the total number of clusters (specified a priori by the user).

The iterative process of the k-means algorithm begins by initially selecting the desired number of clusters (S j)

and making an initial guess of the cluster centroid values (c j) [97]. The next stage involves assigning a data point to

the closest cluster centroid and centroid value (if necessary) by minimizing the error function in Equation (3.2) until

negligible deviation occurs with each iteration.

The X-means clustering algorithm aims to improve on three key areas of the k-means algorithm [96].

1. Eliminating the need for number of clusters to be known a priori

2. Improving the computational scalability

45

3. Enhancing the search criteria for updating cluster centroids

The process by which X-means achieves these improvements is in part based on its selection criterion to determine

when to add or replace a specific cluster centroid with child centroids. Child centroids originate from splitting the

original solution of a k-means iteration and determining if the child clusters more accurately represent the data points

once belonging to the parent centroid [96]. The posterior probabilities will be used to rank the models Pr[M j|D], where

D represents the given data set and M j represents each model with a given cluster size k. The Bayesian Information

Criterion (BIC) is used by X-means to rank which model is a more accurate representation of the original raw data set.

Mathematically, the Bayesian Information Criterion (BIC) is represented as follows [102, 96]:

BIC(M j) =−l j(D)+
p j

2
logR (3.3)

Here,

1. l j(D): is the log likelihood of the data taken at the maximum likelihood point.

2. D: represents the given data set.

3. p j: represents the number of parameters in M j.

4. R: is the total number of data points of candidate centroids.

Relevance of X-means to Engineering Product Architecture Design

Engineering design problems involving a wide range of operating states specified by customers can benefit from X-

means clustering by identifying appropriate product functionality criterion for developing a product architecture and

subsequent product family. The X-means clustering technique eliminates the need to guess the number of product

architectures needed for a particular customer pool by analytically generating the appropriate number of clusters

(product architectures) with corresponding product functionality specifications. A user instead specifies a broad range

for the number of clusters and X-means will identify the optimal cluster, given the natural patterns within the data

set [96]. This will ensure that the resulting product family will be a true representation of the data set for which the

designs are made. Figure 3.2 illustrates how the cluster centroids of the X-means data mining clustering approach

are integrated into the engineering design. The product centroids illustrated in Figure 3.2 represent the individual

vectors of attribute value solutions that best describe similar groups of customers within the raw data. Each unique

product centroid will form a vector of product preference targets used to guide the product architecture optimization

process. The engineering design illustrated in Figure 3.2 represents the design of individual products based on the

46

X-means cluster centroids where each product will have unique functionality characteristics that aim to satisfy the

overall customer preference targets. Section 3.1.2 of this work describes how product variants are then designed based

on underlying product architecture under the notion of component sharing.

3.1.2 Engineering Design Optimization of Product Family

Step 1: Individual Product Design Optimization

The results from the data mining stage provide product design engineers with several vital pieces of information.

First, the results from the X-means clustering represent the vector of product attributes that form the product design

targets (TC j) around which a product architecture is designed (Step 1 in Figure 3.1). Product design targets can range

anywhere from physical product dimension targets such as length or width to product performance targets such as

efficiency or speed.

The second vital piece of information from the data mining stage is the relevance of each attribute target to the

customer as determined by the ReliefF attribute weighting technique. That is, for each attribute target vector (TC j),

there will be an accompanying vector of attribute target weights w’. The engineering product architecture optimization

is comprised of the detailed engineering design model and incorporates the results from the data mining stage that

help guide the product architecture design. Here, local design variables are used to model the physical dimensions and

performance objectives of the product architecture subject to engineering design constraints.

The general mathematical model for the engineering product architecture optimization is as follows:

Note:The deviation is measured by the squared L-2 norm, which will be used throughout the engineering optimization

models presented in this work. For example: ‖x− y‖2
2 = ∑i(xi− yi)2

For the kth product architecture,

Minimize

F(x)Architecture(k) = fk +w′
∥∥∥TC j −REng

k

∥∥∥2

2
(3.4)

Subject to:

gk(xk) ≤ 0

hk(xk) = 0

Here,

fk Local product design objective function (s), a function of local design variables: fk(xk).

TC j : Vector of product attributes represented by the cluster centroid in the data mining model. That is, for cluster

centroid C j=[A1, A2,..., Ap] target is set as TC j where A1, A2,..., Ap represent attribute values for a given centroid C j.

47

w’ : The vector of newly transformed ReliefF weights for target vector TC j .

REng
k : Vector of engineering responses based on the formulation of the engineering design model. REng

k is a function

of local design variables xk, and is represented by REng
k (xk).

gk: Inequality design constraints bounding the product architecture model.

hk: Equality design constraints bounding the product architecture model.

k: The kth candidate product architecture determined by the results of the X-means clustering.

K: The total number of cluster centroids C j that exist for the X-means clustering solution.

Note: It is important to note that although there may be K candidate product architectures to investigate, there may

not always be a feasible design solution for the kth product architecture as generated product preference requirements

may be too demanding, given the constraints of the engineering design model. That is, at optimality k = K.

Step 2: Component Sharing Through X-Means Clustering

If a feasible design solution exists after Step 1, X-means data mining clustering technique is once again employed,

this time to determine the most similar product architecture design solutions within the product portfolio. While

the first X-means clustering technique helped identify the similar groups of attributes in the raw data, the X-means

clustering employed in Step 2 will help identify the similar groups of design variable values among the feasible product

architecture design solutions (Step 2 in Figure 3.1).

For a given vector of design variables (xk) of an optimal product architecture solution, (where the objective function

F(xk) of product architecture (k) has been minimized given the external targets TC j and the local objective(s) fk(xk)),

the goal is to determine the similarity among product architecture variable solutions. The notion is that the closer the

optimal design solutions are, for example [(xk) and (xk+1)], the more likely these product architectures may be able to

share certain design components.

Step 3: Product Family Optimization with Shared Design Components

The third and final step in the proposed product family design methodology aims to reduce the product portfolio cost

by sharing certain components among product architectures, thereby creating a family of products (Step 3 in Figure

3.1). Since the component sharing decision is inherently a combinatorial problem, Step 2 of the design methodology

eliminates the need to search all possible component sharing combinations by guiding the component sharing decisions

based on the optimal solution of each resulting product architecture. Once similar product architectures have been

identified by the X-means technique in Step 2, the component variables are identified and modeled as linking variables

(ys,k) in the quasi-separable bi-level problem. The model in Step 1 is adapted into a bi-level hierarchical optimization

model where level 1 strictly handles the coordination of the linking variables and level 2 still remains the product

48

architecture design level, but this time including the linking variable targets as part of the objective function. The

bi-level design problem is modeled based on the quasi-separable problem [103, 104, 105, 106]. A bi-level model is

presented which comprises the component sharing coordination model at the upper level and the individual product

design model at the lower level. At the component sharing level, updated linking variable values are distributed among

product variants in an iterative manner until a feasible solution is achieved that is common among all product variants.

If a feasible design solution does not exist for a given sharing scenario (that is, linking variable value yS does not

converge to a solution shared by all products), the original product design solutions (without shared variables) from

Step 1 are kept.

Upper Level: Component Sharing Coordination

The Upper Level (Component Sharing Coordination) handles the coordination of linking variables to each of the

product variants. In an effort to minimize design costs, certain design intensive and costly product components are

shared among the different product variants. Under the quasi-separable formulation, these are represented as the

linking variables (ys,k). The sharing strategy is handled at the component sharing level wherein updated linking

variable values from the lower level product architecture design are cascaded up to the component sharing level.

Constraint Equation (3.5) is formulated as an inequality rather than an equality constraint due to numerical difficulties

reported in the literature of equality constraint based bi-level formulations that fail to satisfy the standard Karush-

Kuhn-Tucker (KKT) conditions for a constrained optimization problem [107].

Minimize εy

Subject to:

g1 : ∑
k∈Q

∥∥∥ys−yEng
s,k

∥∥∥2

2
− εy ≤ 0 (3.5)

Here,

ys : Linking variable at the Upper Level. In essence, ys is simply a coordination variable ensuring that at the optimal

solution, all of the subsystems attain the same value. Equation (3.5) is always active in the above formulation so

solving for ys, it can be observed that at each iteration ys assumes the average value of the linking variable(s) being

shared across the products within the product family.

yEng
s,k : Linking variable value at the Lower Level cascaded to the Upper Level. This is constant at each iteration in the

above formulation that is subsequently updated at the engineering product architecture optimization level after each

iteration.

k: The kth candidate product architecture that has been identified for component sharing.

Q: The total number of products that exist in a particular candidate product family. This is based on the X-means

49

cluster solutions described in Step 2. The term candidate product family is used because until a feasible design

solution can be achieved for the shared component case, these Q products will remain unique products within the

product portfolio (Note that Q = K which simply means that the number of candidate product families cannot exceed

the total number of unique products that initially exist).

εy: Deviation tolerance between linking variables. For each shared variable, another constraint g(i) is added based on

a similar formulation as equation (3.5) and add another tolerance variable in the objective function to represent this

additional shared variable.

Lower Level: Product Family Optimization

In the kth subproblem,

Minimize

F(x)Architecture(k) = fk +w′
∥∥∥TC j −REng

k

∥∥∥2

2
+
∥∥yU

s − ys,k
∥∥2

2 (3.6)

Subject to:

gk(xk, ys,k) ≤ 0

hk(xk, ys,k) = 0

Here,

fk: Local product design objective function (s).

TC j : Vector of product attributes represented by the cluster centroid in the data mining model. That is, for cluster

centroid C j=[A1, A2,..., Ap] target is set as TC j where A1, A2,..., Ap represent attribute values for a given centroid C j.

w’ : The vector of newly transformed ReliefF weights for target vector TC j .

REng
k : Vector of engineering responses based on the formulation of the engineering design model. REng

k is a function

of local design variables xk, and is represented by REng
k (xk).

gk: Inequality design constraints bounding the product architecture model.

hk: Equality design constraints bounding the product architecture model.

k: The kth candidate product architecture determined by the results of the X-means clustering.

K: The total number of cluster centroids C j that exist for the X-means clustering solution.

yU
S : Linking variable target value cascaded down to the Lower Level from the Upper Level; a constant value at each

iteration that is subsequently updated with each successful iteration.

ys.k: Linking variable at the Lower Level. This is local to the kth model and attempts to match the value of yU
S at each

iteration.

The overall flow of the proposed product family optimization is succinctly described below:

50

Bi-level Product Family Optimization

Step 1:

Given w’ vector of weights and TC j targets, where length(w’)=length(TC j) and K cluster centroids:

1. Solve K engineering design problems (with no linking variables ys,k) weighting each ||TC j − REng
k ||22

based on ReliefF;

2. If solution exists for the Individual Product Design Optimization Model

(i.e., optimal ||TC j − REng
k ||22 solution while satisfying local objectives and constraints);

3. Optimal solution found for weights w’ and targets TC j without sharing components;

Step 2:

4. Employ X-means clustering to identify candidate product families based on solution similarities from

Step 1;

Step 3:

5. Solve bi-level quasi-separable problem (component sharing among products) using the Upper Level-Lower

Level formulation with linking variables ys,k ;

6. If feasible solution exists (i.e., optimal ||TC j − REng
k ||22and || ys − yL

s,k ||22 at the Lower Level and also

optimal εy at the Upper Level, (εy should be close to 0 at the Upper Level, indicating a feasible shared

component among product variants within a product family)) ;

7. Optimal solution found for weights w’ and targets TC j and linking variables ys,k for each product variant;

8 Else, solution does not exist for linking variable scenario; that is, sharing ys,k is not feasible for product

variants, therefore keep initial solutions found from Step 1;

9. end;

10. end;

3.2 Application: Aerodynamic Particle Separator Case Study

Indoor Air Quality (IAQ) is becoming an increasing concern for human health. Particulate matter is a leading cause

of human respiratory illness in addition to degrading the performance of Heating Ventilation and Air Conditioning

(HVAC) systems (W.H.O.). As a result, abatement technologies for these aerosols are in high demand. Aerodynamic

particle separators are filter-less air cleaning devices that can be capable of removing micron size particles with low

energy consumption and minimal maintenance [108]. Determining the optimal aerodynamic particle separator design

for a specific application is challenging when taking into account its unique system requirements and environmental

conditions.

51

Table 3.1: Design variable notation for aerodynamic particle separator
Variable Units Description
r1 meters (m) Inner tube radius
r2 meters (m) Outer tube radius
LS meters (m) Maximum pressure drop
α Radians (rad) Vane discharge angle() V g g
LC meters (m) Length of converging gap

r3 meters (m) Radius of exit tube
LE meters (m) Length of exit tube
N # Number of units in parallel

3.2.1 The Engineering Design Problem

Aerodynamic Particle Separator Design

To demonstrate the effectiveness of the proposed design methodology, the design of a uniflow type particle separator

is investigated (illustrated in Figure 3.3). The basic design of this device can be partitioned into three sections: (1)

Vane section, (2) Straight Region and (3) Converging Region/Dust Bunker. These sections are defined by eight design

variables as shown in Figure 3.3 and Table 3.1).

Figure 3.3: Uniflow type aerodynamic particle separator flow pattern and design variables

The performance of an aerodynamic particle separator design is strongly dependent on system requirements and

environmental conditions. System requirements such as the air cleaning efficiency, pressure drop (thus power con-

sumption), air flow rate and overall device size contribute to the design objectives and directly define the constraints

for a given application. Environmental conditions, including the air properties and contaminant particle size distribu-

tion can have a significant impact on the performance of a particular design and must also be incorporated into the

system model [109]. Together, these two groups can be used to characterize a given application or operating state.

These factors can vary by an order of magnitude between different applications, thereby complicating the design pro-

52

Table 3.2: Snapshot of aerodynamic particle separator data set consisting of 1000 states

cess. The product architecture design objective will, therefore, be to minimize cost while satisfying external product

preference targets and local design constraints. The broader enterprise portfolio objective will be to minimize overall

product design and development costs by capturing the component sharing opportunities that exists within the product

portfolio.

3.2.2 Data Mining Product Preferences

Raw Data Set of Product Operating States

A data set of 1,000 operating states was generated to simulate the large variation in physical requirements and en-

vironmental conditions characterizing the broad range of applications in which aerodynamic particle separators are

frequently employed [109]. Table 3.2 represents a snapshot of the 1,000 operating states with distinct product at-

tributes and environmental conditions represented by each column. Section 3.3 of this work presents the results from

both the ReliefF attribute ranking algorithm and the X-means data mining clustering approach and demonstrates how

the data mining process influences product family design efforts.

ReliefF Attribute Weighting

The results from the ReliefF attribute ranking approach in Table 3.3 reveal that the two engineering design targets –

efficiency (ζ) and flow area (AFmax) – have normalized weights of 0.1687 and 0.0785 respectively. The other attributes

in Table 3.1 are used as design parameters in the engineering design model and also play a significant role in the overall

optimal solution. The efficiency (ζ) and flow area (AFmax) are selected based on the type of engineering problem being

solved (in other applications, one may choose to set all attributes in the data set as targets for the product architecture

design model). This vital information is a data preprocessing step that will help generate product cluster centroids that

take into account the weighted attribute preferences of the different operating states given by the raw data set.

Note: ReliefF results were obtained using Weka version 3.5.8 [2] and it took approximately 20 seconds running on a

Intel Pentium Duo 2.5 GHz Processor. The normalized attribute weights are based on Equation (3.1) in Section 3.1.1.

53

Table 3.3: Attribute ranking of raw data set via ReliefF algorithm

Attribute Rank Attribute Name Attribute Weight Normalized Attribute Weight
Highest Nmax 0.0881 1.0000

Efficiency 0.0110 0.1687
Tair 0.0100 0.1575
Pair 0.0099 0.1570
Q 0.0073 0.1287
Dpmax 0.0036 0.0888
Afmax 0.0026 0.0785
Lmax 0.0018 0.0695
Rhop -0.0006 0.0433
Operating States -0.0031 0.0169

Lowest Fdp -0.0046 0.0000

Data Mining X-means Clustering Results

The X-means clustering results reveal that a total of five clusters most accurately represents the similarities in the

data set of 1,000 operating states. The results from Table 3.1 represent the product design targets and parameters

for the product portfolio of aerodynamic particle separators. Initially, each product centroid will be used to design

an individual aerodynamic particle separator. Component sharing benefits will then be presented based on the vane

section component. [Results attained using Weka version 3.5.8 [2] and Data to Knowledge D2K [1]].

3.2.3 Engineering Design Optimization of Product Family

Step 1: Individual Product Design Optimization

The X-means clustering algorithm generates k=1,. . . , 5 clusters (Table 3.4, each with unique centroids C j). Based

on the results from the X-means clustering, and the ReliefF attribute weights accompanying each cluster centroid,

engineers can now determine whether an optimal product design solution exists based on the aerodynamic particle

separator response model.

The aerodynamic particle separator objective function attempts to match the particle separation efficiency target

(ζ
C j
k) and the flow area target (AFC j) generated from the X-means clustering results while at the same time mini-

mizing product design and manufacturing cost objective. The attributes within a cluster centroid (C j) will form the

design/environmental parameters of the model. The efficiency model selected was initially developed by Zhang [108]

and later augmented by Barker [109]. In this model, the flow is assumed to be fully turbulent and the steady state

particle motion results from a balance between the centrifugal force and aerodynamic drag in the Stokes regime [109].

The vector x contains the eight design variables as described by Table 3.1 and Figure 3.3. The cost function was based

54

Table 3.4: Product cluster centroids based on X-means clustering algorithm

on the estimated mass of material required and injection molding costs of the vane section. The material selected is

an engineered polymer with a density of 1200 kg/m3 at a cost of $3.00 per kilogram. The injection molding cost is

estimated at a fixed cost of $10,000 per design for the required capital equipment and labor. The efficiency model as a

function of variables in x and particle size dpi is shown in Equation (3.7). The total efficiency for a given particle size

distribution is then calculated by Equation (3.8).

ξ(x,dpi) = 1− exp

(
−

ρpd2
pi

CcQ tan(α)LS

9η(r2
2− r2

1)

)
· exp

(
ρpd2

pi
Cc
(
V 2

t Gt(x)+V 2
z Gr(x)

)
ηVz

)
(3.7)

ξT =
N

∑
i=1

ξ(x,dpi) ·F(dpi) (3.8)

Here,

Cc: Cunningham slip correction factor.

dpi : Diameter of particle (i), m.

F(dp): Particle size distribution.

Gt (x): Efficiency model geometric relationship between design variables, tangential acceleration.

Gr(x): Efficiency model geometric relationship between design variables, radial acceleration.

ρp : Particle density, kg/m3.

η : Air viscosity, Pas or kgm/s.

Q : Air flow rate, m3/s.

Vt : Tangential velocity of particle mixture.

Vz: Axial velocity of particle mixture.

r1: Inner tube radius.

r2: Outer tube radius.

α: Vane discharge angle.

55

LS: Maximum pressure drop.

The engineering design model for the aerodynamic particle separator can be mathematically represented as:

kth Aerodynamic Particle Separator Minimize:

F(x)Architecture(k) = w′
ζ

∥∥∥ζ
C j
k −ζ

Eng
k

∥∥∥2

2
+w′AF

∥∥∥AFC j
k −AFEng

k

∥∥∥2

2
+Costk (3.9)

Subject to:

Pressure drop constraint (g1):

PT (x)−Pmax ≤ 0 (3.10)

Face Area constraint (g2):

4r2
2N−AFmax ≤ 0 (3.11)

Product Length constraint (g3):

LV +LS +LC +LE −Lmax ≤ 0 (3.12)

Here,

AFk : Maximum allowable face area perpendicular to air flow direction.

wζ’: Efficiency ReliefF attribute weight.

w′AF : Flow area (AF) ReliefF attribute weight.

Lmax: Total allowable length of the system.

LV : Length of vane section.

LS: Length of straight region.

LC: Length of converging region.

LE : Length of exit tube.

PT(x): Total pressure drop of the system as a function of design variables x.

N: Number of aerodynamic particle separator units in one module.

Pmax: Maximum allowable pressure drop (air flow restriction).

Costk: Total product cost represented as the summation of individual component costs.

Note: The design model is also bounded by a set of linear inequality constraints Ax = b and constraints Equations

(3.10)-(3.12) that can be further expanded. A more detailed design model can be found in [109].

56

Step 2: Component Sharing Through X-Means Clustering

If an optimal solution exists for the aerodynamic product portfolio based on the X-means clustering targets, the next

step is to determine whether additional costs savings can be realized by sharing the most design intensive components

among different product architectures. The X-means clustering technique is employed to determine the similarities

among the unique aerodynamic particle separator designs based on the solution results after Step 1. A successful

sharing solution among products represents a unique product family. The results from the unique aerodynamic particle

separator solutions can be seen in Table 3.5.

Step 3: Product Family Optimization with Shared Design Components

For the aerodynamic particle separator case study, the vane section is the most design intensive and costly component.

The complex curved vanes must be injection molded, which requires a unique mold to be machined for each vane

section design. By employing the X-means clustering technique, product engineers will be able to: (1) determine

which product architecture designs are similar based on the solutions attained during Step 1 and (2) determine the

number of candidate product families to include in the enterprise product portfolio based on the number of X-Means

cluster centroids generated. The L2 norm distance measure used by X-means will favor those design solutions that are

numerically close to one another. This will help guide the sharing decision of the vane section as products with close

numerical values for the variables that define the vane section (vane angle α, the inner and outer tube radii r1 and r2)

will be favored within a given cluster centroid.

Upper Level: Component Sharing Coordination The Upper Level (Component Sharing Coordination) of the

Aerodynamic Particle Separator model will handle the coordination of the shared vane section among product families.

The Component Sharing objective function will minimize the tolerance deviation variable of each shared variable.

There are three variables that define the vane section, including the vane angle α, the inner and outer tube radii r1 and

r2.

Minimize εα + εr1 + εr2

Subject to:

g1 :
∥∥∥αs−α

Eng
s,k

∥∥∥2

2
− εα ≤ 0 (3.13)

g2 :
∥∥∥r1,s− rEng

1,s,k

∥∥∥2

2
− εr1 ≤ 0 (3.14)

57

g3 :
∥∥∥r2s− rEng

2s,k

∥∥∥2

2
− εr2 ≤ 0 (3.15)

Here,

αs : Vane angle linking variable at the component sharing level.

α
Eng
s,k : Value of vane angle linking variable response of Engineering Design Model for product k.

r1s,k : Inner tube radius (r1) linking variable at the component sharing level.

r1
Eng
s,k : Value of Inner tube radius (r1) linking variable response of Engineering Design Model for product k.

r2s,k: Outer tube radius (r2) linking variable at the component sharing level.

r2
Eng
s,k : Value of Outer tube radius (r2) linking variable response of Engineering Design Model for product k.

εα: Deviation tolerance variable between vane angle linking variable that is minimized in the objective function.

εr1: Deviation tolerance variable between inner radius linking variable that is minimized in the objective function.

εr2: Deviation tolerance variable between outer radius linking variable that is minimized in the objective function.

Lower Level: Product Family Optimization To minimize overall product portfolio costs, the number of unique

vane section designs will be minimized by sharing this component with products that can attain a feasible design so-

lution given this added objective. Equation (3.9) is reformulated to reflect the candidate product families and also the

shared vane components among each of these products within a given product family (represented as linking variables).

Minimize:

F(x)Architecture(k) = w′
ζ
‖ζC j

k −ζ
Eng
k ‖

2
2 +w′AF‖AFC j

k −AFEng
k ‖2

2 +Cost

+‖αs,i−α
Link
s,k ‖2

2 +‖r1s,i− r1Link
s,k ‖2

2 +‖r2s,i− r2Link
s,k ‖2

2 (3.16)

Subject to: Constraints as defined in Equations (3.10), (3.11) and (3.12)

3.3 Results and Discussion

3.3.1 Aerodynamic Particle Separator Optimization Results

Given the product design targets from the Data Mining X-means clustering step, the aerodynamic particle separator

model first attempts to identify feasible design solutions for the efficiency (ζC j), flow area (AFC j) targets and given

physical and environmental (Tair, Pair, etc.) parameters for each unique cluster centroid (C j). The aerodynamic particle

58

separator solutions in Table 3.5 reveal that a total of five unique products can be designed for the initial five cluster

centroids targets generated by the X-means clustering with a total product portfolio cost of $173,910.

Table 3.5: Optimal solutions for individual aerodynamic particle separator designs*

If Step 1 of the product family design methodology is successful, engineers can further investigate the potential

costs savings (Steps 2 and 3) that may be realized due to component sharing. The X-means clustering technique

performed during Step 2 reveals that out of the five unique aerodynamic particle separator solutions, products 1 and

5 form a feasible unique product family cluster, products 2 and 3 another and finally product 4 cannot be shared

with any other product and, therefore, reverts back to the original solution from Step 1. The cost of the injection mold

manufacturing process presents an opportunity for the initial product portfolio of five unique products to be redesigned.

The vane section of the product which is made through the injection molding process is shared among similar products

existing in the original portfolio. In this case study, the decision to share the vane angle is known as a priori due to the

high cost of designing each individual injection mold for the vane. Step 3 of the product family design methodology

employs the X-means clustering algorithm to identify products that have similar vane design solutions. The decision

to share the vane angle is an attempt to minimize the overall costs of the enterprise product portfolio by minimizing

the number of unique vane sections needed for the five aerodynamic particle separators. Products successfully sharing

a vane section will be considered a unique product family and each product existing in this product family, is defined

as a variant. However, it must be noted that the cost savings benefits of component sharing using the product family

approach to design may be offset by the decrease in the performance capabilities attainable by the newly designed

product variants. This trade-off scenario will, therefore, be based on how much cost savings can be realized through

component sharing and how much performance deviation can be accommodated by the customer.

The results in Table 3.6 reveal that sharing products 1 and 5, 2 and 3 (with product 4 being a separate unique

design), reduces the total product portfolio cost to $163,150: a total savings of approximately $10,760 for this product

portfolio design scenario. However, the efficiency of product 2 decreases from 85.99% with the individual optimization

model solution (Table 3.5) to 85.84% with the component sharing product family model solution (Table 3.6). The level

59

Table 3.6: Optimal Solutions for Aerodynamic Particle Separator Product Families sharing the Vane Component*

of allowable performance deviation will be dependent on customer expectations and the level of competition within

the market space. Although a feasible design may not always exist for every sharing scenario (for example sharing

a single vane component for each of the five products returned an infeasible solution), the benefits of investigating

sharing strategies through the X-means clustering recommendations may prove beneficial as can be seen from the

results in Table 3.6.

3.4 Conclusion

In this work, a comprehensive product family design methodology is presented that integrates realistic product op-

eration data with the engineering design of complex products such as the aerodynamic particle separator. The data

mining ReliefF algorithm is employed to determine the weights of each attribute. This information is then incorporated

into the data mining X-means clustering algorithm in order to generate the number of clusters along with the cluster

centroids that are inherent to the data itself. The results of the data mining clustering technique aid in determining

the number of unique products to design for a group of highly diverse customers. With this clustering information,

a product architecture can be designed that takes into account specific customer product functionality needs that are

represented in a large data set. Further cost savings can be realized through a component sharing strategy that is

achieved in this work by once again employing the X-means clustering technique to identify similar design solutions.

The hope is to expand on the concepts presented in this work by enabling the feasibility of the product architecture

optimization step to influence the generation of X-means cluster centroids. That is, local objective functions may be

highly sensitive to certain local design variables which can be taken into account during the X-means clustering step.

60

Chapter 4

Decision Tree Classification for Product
Concept Generation

4.1 Product Concept Generation Methodology

The proposed Data Mining Decision Tree Classification approach to product portfolio design takes large data sets of

customer preference data and extracts meaningful product attribute information to help guide next generation product

design and development process. The overall objective of maximizing company profit is realized when a feasible set

of product variants is presented in the final solution process. The reduction of resources in this fast and highly efficient

narrowing of product concepts will be demonstrated through a cell phone example where an entire product concept

generation space of 576 (exhaustive combination of product attributes) product concepts is narrowed to only 46 through

a decision tree data mining approach. The generated product designs are then subsequently tested for engineering

feasibility. This is formulated as a multilevel optimization problem, where the generated predictive product concepts

are first translated into functional specifications and set as targets at the engineering level for design validation. A

feasible product design is therefore defined as one in which all customer preferences are satisfied, without violating

engineering design constraints.

The entire product portfolio generation process is divided into two phases. Phase 1 is the customer knowledge

discovery process which entails customer data acquisition and processing and data mining for feasible set generation.

Phase 2 involves the product concept validation through multilevel optimization and finishes with a product portfolio

selection. Figure 4.1 shows the overall flow of this process (The general flow on the left and the detailed flow on the

right of Figure 4.1) starting with customer data acquisition and ending with enterprise portfolio selection. The details

of the methodology are presented as follows:

4.1.1 The Concept of Novel, Previously Unknown Customer Information

The term product concept that is defined in the dissertation relates to the notion of novel, previously unknown customer

information that data mining is well known for [27, 28, 32]. To illustrate this concept, a simple test data set is presented

in Table 4.1. The data set contains 6 customer attributes (columns 1-6) with 1 predictor variable (Class variable in

61

Product Design Validation

Product 1 Product 2 … Product K

Entire Product Concept Space

Data Mining: C4.5

Predicted Product Concepts

Feasible Products validated
by Engineering Design

Product Portfolio Selection

Product 3

Raw Customer Preference Data

Most Profitable, Feasible
product variants

PHASE 1

PHASE 2

Customer Attributes Class

i=i+1

Calculate Gain Ratio (i)

YES

Replace node (i-1)
with node (i) in Tree

Gain Ratio (i) >
Gain Ratio (i-1)

Test Attribute (i)

Split Data Set via mutually
exclusive attribute values

Create node (i) after
node (i-1) in Tree

NO

i=1,…,N
N=Total Number of attributes

Basic Overview of C4.5 Tree Generation

Max Product Profit + |TC-R eng|Enterprise Level

Engineering Level Min Product Cost + |RengU-Reng|

[Vector of predicted attribute targets TC]

Iterative

Targets

Response

Portfolio Selection Max Overall Portfolio Profit

Overall Product Portfolio Design Flow Detailed Product Portfolio Design Flow

Preference Data

Feasible, validated product designs

Figure 4.1: Overall flow of product portfolio optimization process.

column 7). Based on the attribute values in Table 4.1 of Feature, Objective, Design, Connectivity, Battery Life, and

Display, there are a total of 3 · 2 · 2 · 3 · 3 · 2= 216 possible unique combinations (although only 10 out of the 216

exist in the sample data in Table 4.1). Two fundamental questions arise from observation:

• How can engineers determine novel attribute combinations without performing additional data acquisition pro-

cedures (customer surveys, focus groups, etc.)?

• How efficiently can engineers extract these new attribute combinations?

The term novel in this dissertation relates to information that is not readily observable or not explicitly defined

within the data set but can be quantified through the proposed decision tree induction technique. The following

product design question aims to illustrate how novel information can be extracted from a raw dataset.

• Given a specific attribute combination not existing within the data set: (For example referring to Table 4.1 in

the dissertation, it can be observed that the combination of {Games, Weight, Flip, Bluetooth, 5 hours battery,

ScreenSize} does not exist within the data set):

1. What price category (MaxPrice) would the above attribute combination fall under?

2. Are all of these attributes even needed in predicting the price category? That is, if only a subset of the at-

tribute space is included {Games, Weight and Flip} instead of the entire attribute space {Games, Weight, Flip,

Bluetooth, 5 hours battery, ScreenSize}, would it still result in the same price category (MaxPrice) prediction?

62

Table 4.1: Example data set of customer attributes

3

5

7

5

3

3

5

3

3

5
Battery Life

Cost

Weight

Cost

Cost

Weight

Weight

Cost

Weight

Weight

Cost
Objective

160ScreenSizeInfraredFlipGames

160ScreenSizeBluetoothFlipGames

200ResolutionWifiShellGames

200ResolutionBluetoothFlipGames

120ResolutionWifiFlipCamera

120ScreenSizeWifiShellCamera

80ScreenSizeInfraredShellMP3

160ResolutionBluetoothFlipMP3

160ScreenSizeWifiFlipMP3

200ScreenSizeBluetoothFlipMP3
MaxPriceDisplayConnectivityDesignFeature

The case study example in section 4.2.1 helps address these questions. For example the decision tree structure

in Figure 3.2 reveals that for the Games phone, as long as the product also includes bluetooth connectivity and a 5

hour battery life, a price of $120 would be predicted. Therefore if design engineers were aiming to design the next

generation of Games phones to a customer market segment willing to pay $120, then these product attributes would

make up the primary product architecture.

Another example of attribute knowledge discovery can be observed in Table 4.1. If a camera phone product were

to be designed, rows 5 and 6 indicated that both camera phones, each with slightly different attribute combinations,

yield a purchase price of $120. However, based on the C4.5 algorithm (explained in section 1.4.1), no additional

attributes are needed to yield a camera phone price of $120 (see the initial partitioning in Table 4.2). Therefore from

a product design perspective, no additional resources should be invested in improving additional design features that

do not significantly influence the purchase decisions of a customer. This type of information is not readily observed

in the raw data set and will enable design engineers to design the next generation of Games and Camera phones by

including only the relevant attributes along with their predicted attribute levels. Such insights have the potential to

save on manufacturing and materials costs as well as on the time and efficiency of the product design process.

4.1.2 Product Concept Generation using C4.5 Machine Learning Algorithm

The proposed product concept generation methodology employs Quinlan’s C4.5 data mining tree generation algorithm

for attribute characterization [110]. The algorithm is based on the Divide and Conquer [111, 110] technique that de-

composes a set of training cases T with class variables {C1,C2, ...,CN} until the partitioning yields a collection of cases

that predicts a single class variable Ci. Each subsequent decomposition of the tree tests a single attribute that has out-

comes {O1, ...,OK} that are mutually exclusive to one another [111]. When applied to product portfolio optimization,

the class variable can be thought of as the overall performance criteria (determined by the enterprise decision maker)

influencing product launch decisions. The class variable selected by the enterprise decision maker can range from a

Price metric (later to be demonstrated in the cell phone example) to a Weight or Dimensionality metric, etc.

63

The manner in which attributes are selected during each stage of tree decomposition is the fundamental strength of

the C4.5 algorithm and the primary reason why this data mining technique is so successful when applied to the product

portfolio paradigm. The term attribute can be thought of as the quantifiable product requirements of a customer. Ex-

amples of attributes may be minimum fuel economy expectations (miles per gallon) in the context of automotive design

or the battery life expectations of a hand held device. The tree termination criterion eliminates the need for an exhaus-

tive search of all possible attribute combinations, and when applied to multi-level optimization formulation in product

development, significantly improves on the time and efficiency of developing a portfolio of products. (Demonstrated

later in the cell phone example).

C4.5 Gain Ratio Criteria:

To avoid an exhaustive search of all possible attribute combinations, a systematic approach is to partition the data and

identify what attribute to split in the most efficient manner so as to gain the most information about the class variable.

For a given training set T , a particular attribute that has K possible outcomes {O1, ...,OK} [111] can be tested. If S is

defined to be any set of cases (which can either be the entire training set T or a subset of T), then the occurrence of a

particular class variable Ci can be denoted by

f req(Ci,S) (4.1)

This is simply the number of times a particular class occurs in a given data set. The information gained by splitting a

particular attributei gets its foundation from classical information theory that states: The information conveyed by a

message depends on its probability and can be measured in bits as minus the logarithm to base 2 of that probability

[110] . If f req(Ci,S) determines the number of occurrences of a particular class, then the probability of randomly

selecting this class over the entire set of S cases would simply be:

f req(Ci,S)
|S|

(4.2)

where | S | represents the total number of cases in the data set S.

Following the definition of information conveyed, the information that this particular example conveys can be

represented as [111]

− log2(
f req(Ci,S)
|S|

) [bits] (4.3)

It is interesting to note that the range of the class variable C can be set by the enterprise decision maker depending

64

on the desired objective of the company. If customer willingness to pay is the performance metric (Class) to be

predicted, then this can be partitioned into {C1,C2, ...,CN}, that is if the data is obtained through a direct customer

survey approach.

Later in the cell phone example, the primary criterion for selecting one device over the other is the maximum price

a customer is willing to pay for that particular design: MaxPrice, as it is abbreviated in the example is therefore the

class variable to be predicted. To measure the average amount of information needed to identify the class (for example,

all values of MaxPrice ranging from [$40 $80 $120 $160 $200]) of a case in a training set, the classes are summed

relative to their frequencies in the data set [110].

in f o(S) = −
N

∑
i=1

(
f req(Ci,S)
|S|

) · log2(
f req(Ci,S)
|S|

)[bits] (4.4)

Note: T represents the entire set of training cases while S represents any set of cases within T. Therefore, the above

formula can be used to calculate the information of subsets of T or the entire data set T. info(T) therefore measures

the average amount of information required to identify the class of a case in T by summing over the product of all the

class probabilities and their information as defined by equation 4.4 [111]. To test the amount of information gain of a

particular attribute, the attribute is partitioned into its respective mutually exclusive outcomes.

After partitioning T into k possible outcomes for a specified test X (attribute selection), the expected information

requirement is the summation of all subsets as given by [112]:

in f ox(T) =
k

∑
j=1

|Tj|
|T |
· info(Tj) (4.5)

The gain can therefore be defined as the difference in the total average information required to identify a class in

the training set minus the information achieved by testing a particular attribute [113]:

gain(X) = in f o(T)− in f ox(T) (4.6)

The above equation itself is an optimization problem where the objective is to maximize the information gain,

subject to the constraints of the algorithm sequence. Due to the fact that certain attributes may have significantly

greater outcomes, this metric alone may not be sufficient as it may skew the predictive capabilities of the algorithm in

favor of attributes with greater outcomes. A more accurate predictor of the information that is gained by partitioning

T is the gain ratio criterion that is defined as [111]:

65

GainRatio(X) =
gain(X)

SplitIn f o(X)
(4.7)

Where:

SplitIn f o(X) =−
n

∑
j=1

|Tj|
|T |
· log2

|Tj|
|T |

(4.8)

The gain ratio represents the proportion of information (i.e., scaled information) generated by the split that is useful

in predicting the class variable [111].

The partitioning of a problem into subproblems (i.e., generating concepts) will be terminated when there is only

one class in that particular branch [111]. Pruning of subsequent branches can occur if replacing a branch with a leaf

will reduce the % error of that node and ultimately the entire branch [114].

C4.5 Discretization of Continuous Attributes

The C4.5 algorithm performs discretization and tree induction concurrently and is therefore not a user defined input

[115, 116]. For the case of a continuous attribute within a given data set (for example, a price or weight variable), a

binary split is determined for each attribute based on minimal entropy criteria [117, 116]. More recent contributions

to the C4.5 discretization of continuous attributes employ the Minimum Description Length (MDL) to help minimize

the bias that may be inherent in the underlying gain ratio criterion explained above.

Since discretization of continuous attributes is handled during the C4.5 tree generation approach [110, 117] , the

resulting attribute combination represents the most appropriate discretization to predict the class variable. Since C4.5

discretization is limited to the attribute space, and does not include the class variable, enterprise decision makers may

opt to choose a discrete variable to serve as the class variable. In the cell phone example presented later in the work,

the class variable represents pricing information gathered through an online interactive customer survey and therefore

is discrete based on the design of the survey. On the other hand if the data set comprises of revealed preference data

such as electronic store purchases or online transactions, the pricing information may be inherently continuous and

can therefore either be discretized during the data mining preprocessing step explained in section (1.4.1) or serve as an

attribute in the C4.5 formulation (another class variable such as “purchase phone: Yes or No,” may serve as the class

variable in this scenario). One also has the option to employ other data mining techniques that can handle continuous

class variables such as M5 Prime [118] or Classification and Regression Trees (CART) [119] which could then be

applied to other product design scenarios containing continuous class variables.

66

Interpretation and Evaluation

PHASE 1 of the product portfolio formulation process provides design engineers with three critical pieces of informa-

tion vital to the product concept validation process (PHASE 2).

• Set of candidate product concepts: Represented as a unique combination of customer attributes.

• Class variable prediction: The predicted performance evaluation for product concept (j). In the example, this

is denoted by MaxPrice.

• Aggregated demand for a particular product concept: Represented by the total supported cases for a partic-

ular predicted class variable (represented as a leaf in the C4.5 decision tree).

4.1.3 PHASE 2: Product Concept Validation through Multilevel Optimization

The product concepts generated by the C4.5 decision tree data mining technique in PHASE 1 need to be validated to

ensure that such performance expectations can be realistically designed. This is modeled as a multilevel optimization

problem by adopting the Analytical Target Cascading (ATC) [89] multilevel optimization approach (although the

methodology is not limited to the ATC only). Phase 2 ends with a portfolio selection decision after feasible product

concepts have been validated by the interactions between the enterprise level and engineering level.

Enterprise System Level

This is where the profit of each individual architecture is calculated. This level includes the set of generated product

concepts that are directly incorporated into the engineering product design process. Also included in the Enterprise

System level is the market demand information predicted for a particular product variant (j). Mathematically, this is

represented as:

Given

TC,MaxPrice{ j},d j,REngL
,CostL

Architecture{ j}

min −πArchitecture j +‖T
C−REng‖2

2 + εR + εC (4.9)

with respect to

REng,CostArchitecture{ j}

67

subject to

h1 : πArchitecture j

−d j ·
(
MaxPrice{ j}−CostArchitecture{ j}

)
= 0 (4.10)

g1 : ‖REng−REngL‖2
2− εR ≤ 0 (4.11)

g2 : ‖CostArchitecture{ j}−CostL
Architecture{ j}‖

2
2− εC ≤ 0 (4.12)

Enterprise Level: Variable Notation Definitions

TC : Architecture targets (set of attribute combinations) predicted by C4.5 Decision Tree model.

d j: Represents the customer demand for product concept j predicted by the C4.5 data mining tree generation.

(Conceptually, this represents the number of cases supporting the final attribute partitioning, yielding a

single leaf, i.e., class prediction).

MaxPrice j: is the single class variable predicted by the continual partitioning of the set of training data until

a single leaf (class) is achieved.

REngL
: Engineering performance response target from the engineering subsystem level, cascaded up to the

enterprise level.

REng : At iteration 1 of the ATC formulation [72, 77] REng represents the enterprise estimation of engi-

neering design capabilities. This will be updated with each iteration to reflect the true design values

achievable by the engineering level, i.e. REngL
.

CostL
Architecture{ j} : This represents the product cost based on the engineering capabilities of meeting pre-

dicted customer attributes. At iteration 1, this is estimated by enterprise decision makers and updated

to reflect the true cost based on engineering response thereafter.

πArchitecture j : Profit of architecture j, which is a function of price and cost of the product variant j.

εR : Deviation tolerance between customer performance & targets and engineering response.

εC : Deviation tolerance between enterprise product cost estimation & targets and engineering response.

Engineering Level

This is where the individual architecture costs are calculated, along with the physical product architecture design.

The engineering design level is modeled as a mixed integer nonlinear programming problem [120], with discrete

68

selection variables that govern component choice selections (manufacturer specifications, component design, etc) and

continuous variables that regulate the product dimensions and aesthetic design. The iteration between the enterprise

level and the engineering level determines the feasibility criteria for each product as customer targets are set at the

enterprise level and subsequently validated with an engineering subsystem response within a specified tolerance of ε.

Mathematically, this is represented as:

Given

REngU

min CostArchitecture j +‖R
EngU −REng‖2

2 (4.13)

with respect to

xEng

subject to:

Engineering product design equality constraints,

production capacity, materials, supplier constraints

hEng(xEng) = 0 (4.14)

gEng(xEng)≤ 0 (4.15)

Engineering Level: Variable Notation Definitions

CostArchitecture j : The engineering design objective, Cost, is the primary performance criterion influencing

the product design, while the objective is not limited to the cost. The objective can be any individual

product performance objective, such as cost, weight, etc. In the cell phone example problem, the

engineering objective is to minimize the cost as well as matching the attributes targets REngU
.

REngU
: Engineering performance response target from the enterprise system level, cascaded down to the

engineering level.

REng : Performance response from the engineering design, i.e., REng=REng(xEng),

(The engineering response REng will become REngL
at the enterprise system level.)

The product architecture is defined in this work as the engineering design foundation from which product variants

can evolve. The functionality of each product architecture is unique and addresses the fundamental requirements of

69

the product. For example, an MP3 product architecture would be designed such that the MP3 functionality can be

easily accessed and controlled by the user. An interactive Game capable (Noted as Games in the cell phone example)

cell phone would have a product architecture that allows the user to seamlessly switch from Game playing mode to

phone operation mode. These differences are addressed in the engineering design level, where customer attributes are

translated into engineering design functionality through a set of linear constraints (See Figure 4.3 and Figure 4.2).

Enterprise Portfolio Selection

This is where the overall enterprise portfolio profit is determined by searching through the feasible product space and

selecting/deselecting architectures in an attempt to maximize profit by generating an optimal product portfolio. Here,

the optimal portfolio is defined as the selected products that maximize the enterprise profit within the product portfolio

limit K. The termination of this selection process is determined when either 1) the product portfolio limit is reached in

case there exist more profitable product concepts than the limit, or 2) all the profitable product concepts are identified

in case the number of profitable product concepts is less than the limit. Mathematically, this is represented as:

min −
k

∑
j=1

x j ·πArchitecture(j) (4.16)

subject to

h1 : x j = {0,1} j ∈ {1, . . . ,k} (4.17)

g1 :
k

∑
j=0

x j−K ≤ 0 (4.18)

70

Enterprise Portfolio Selection: Variable Notation Definitions

πArchitecture(j) : Profit of architecture j

x j : Binary variable selecting or deselecting particular architecture (πArchitecture) where ∑
k
j=1 x j ≤ K

k: Total feasible product/variants that can be designed. This numeric value is attained through the engineer-

ing design validation process. The value k therefore represents the total number of product/variants

that satisfy customer performance and price expectations

K: Product portfolio limit. To avoid impractical manufacturing expectations and an over-saturation of prod-

ucts in the market space, the number of products existing in the product portfolio must be constrained.

The value set as the maximum portfolio limit may be a function of many externalities including compe-

tition, distribution and marketing constraints, etc. In the proposed approach, the product portfolio limit

is assumed to be set by the enterprise decision maker. (Note: Depending on the number of existing

feasible products, this limit may/may not be reached.)

The flow diagram in Figure 4.1 represents the overall process from customer preference acquisition via database

extraction to the generation of product concepts. The validated product concepts with the highest profit margins will

form the product portfolio (Subject to the product portfolio limit as determined by enterprise decision makers).

4.2 Application: Cell Phone Design

4.2.1 PHASE 1: Cell Phone Customer Knowledge Discovery

To validate the proposed decision tree approach in generating a product portfolio, a cell phone product portfolio case

study is presented. A cell phone survey was designed using the UIUC webtools platform where respondents had the

option of selecting a combination of attribute values and the price category that most closely represented their selection

[121] . To emphasize the strength of data mining in handling large datasets, additional data was simulated (based on

the generated survey questionnaire) using Excel Visual Basic to achieve a total of 40,000 customer responses. The data

preprocessing steps explained in section 1.4.1 are handled by the data mining analysis tool [1]. In machine learning

techniques, the raw data is partitioned: typically 2/3 is used to train the algorithm and the remaining 1/3 to test the

model for predictive accuracy [1]. For demonstration purposes, a small fraction of the train data T is used to illustrate

the decision tree generation algorithm discussed earlier. A set of 10 cases will demonstrate the gain ratio criteria in

decision tree decomposition (see Table 4.2).

The class variable in Table 4.2 is MaxPrice and is defined as the maximum price a customer is willing to pay

71

for a particular product. The class variable can be altered, depending on the focus of the enterprise decision makers

to reflect the strategic objectives of the company. The proposed methodology aims to quantify the price sensitivity

information predicted by the decision tree model.

Each row in Table 4.2 will be defined as an independent Case. (The term Case refers to a unique customer response

containing certain attribute values along with the associated class value). There are 6 attributes in the example Table

represented as {Feature, Priority, Type, Connectivity, Battery Life, and Display}. The class variable MaxPrice is

partitioned into 5 separate, mutually exclusive classes [$40, $80, $120, $160, $200].

Since the 10 cases in the example do not all belong to the same class, the C4.5 divide and conquer algorithm can

be implemented in an attempt to split the cases into subsets. There are 4 classes in the cell phone sample train T file

(The $40 class of MaxPrice did not occur in this illustration but does in larger training sets). T contains three cases

belonging to $200 class, four cases belonging to $160 class, two cases belonging to $120 class and one case belonging

to $80 class for a total of 10 cases for the training data in Table 4.2.

Product Concept Generation Through C4.5 Decision Tree Classification

Step 1 Class Identification

Following the C4.5 algorithm, the first step is to determine the average information needed to identify a value of

MaxPrice in the training data. info(T)[bit] will be defined as:

in f o(T) =− 3
10
· log2(

3
10

)− 4
10
· log2(

4
10

)− 2
10
· log2(

2
10

)− 1
10
· log2(

1
10

)

= 1.846[bits] (4.19)

The above info(T) calculation is determined directly from Table 4.2 where the information needed to identify the

three cases of the $200 class out of the total 10 cases is represented in equation (4.19) as − 3
10 · log2(

3
10), and similarly

for each subsequent class identification.

Step 2 Attribute Selection

The information gained by selecting a particular attribute will determine the sequence of attribute selection and

consequently the structure and length of the decision tree or in product development terms, the number of candidate

product concepts that are generated and deemed to be the best predictors of each class of MaxPrice. The tree decom-

position process is an iterative approach, substituting one attribute over another if a higher information gain can be

realized by selecting this attribute as a node in the tree. To demonstrate this process, an attribute is selected as the

initial node (root) with the information gained calculated for the given selection.

(Attribute Test=Feature) The attribute selected is then partitioned into its individual mutually exclusive outcomes

72

Table 4.2: Test Data for Decision Tree Generation

(represented by branches in the actual decision tree). There are 4 cases that are MP3, 2 cases that are Camera, and

4 cases that are Games to comprise of the 10 Feature cases as illustrated in Figure 4.2. The expected information

requirement of the Feature attribute is the weighted sum of the three subsets {MP3, Camera, Games}.

in f o{X=Feature}(τ) =
4
10
· {−1

4
· log2(

1
4
)− 2

4
· log2(

2
4
)

−0
4
· log2(

0
4
)− 1

4
· log2(

1
4
)− 0

4
· log2(

0
4
)}

+
2
10
· {−0

2
· log2(

0
2
)− 0

2
· log2(

0
2
)

−2
2
· log2(

2
2
)− 0

2
· log2(

0
2
)− 0

2
· log2(

0
2
)}

+
4
10
· {−2

4
· log2(

2
4
)− 2

4
· log2(

2
4
)

−0
4
· log2(

0
4
)− 0

4
· log2(

0
4
)}− 0

4
· log2(

0
4
)

= 1.00 bits (4.20)

Therefore, the information gained by testing Attribute = Feature is simply:

gain(X) = in f o(T)− in f o{X=Feature}

= 1.864−1.00 = 0.864 [bits] (4.21)

73

In the event that the data set contains one or several attributes with a significantly greater range of outcomes, the Split

Info(X) function can attempt to normalize the attributes.

GainRatio(X) =
gain(X)

SplitIn f o(X)
= 0.57 (4.22)

Each subsequent attribute that is tested on the basis of gain ratio criteria is compared with the previous attribute,

and substituted if a higher gain ratio is achieved. This iterative process is continued until a single class is identified for

a given attribute split.

Translation of customer attributes to engineering design functionality Customer predicted attribute information

must be translated into meaningful engineering functionality criterion for the product design process. A set of linear

equations represented by Figure 4.2 indicate which of the product functionality components are included in a particular

product architecture. Figure 4.3 is simply a textual explanation of the A-matrix and indicates which of the engineering

components are active.

Depending on the cell phone architecture type and the engineer design objective function, one or several of the

elements in each row of the A-matrix will be active (1) or inactive (0). The upper and lower bounds for the linear equa-

tions (b-matrix) therefore fluctuate based on the product concept requirements currently being tested. For example, if

an MP3 product concept requires a bluetooth connectivity feature, the element representing bluetooth connectivity in

row 7 of the A-matrix will automatically be active (1) and the lower bound for the connectivity linear constraint (which

comprises of 3 possible connectivity options: Bluetooth, Infrared or Wifi (See row 7 of Figure 4.3)) will immediately

be set to 1. That is, b7 of Figure 4.2 will be≥ 1. Furthermore, the lower bound for the external speaker (Row 11 of the

A-matrix in Figure 4.3) will be set to 1, indicating that the MP3 cell phone, will come equipped with external audio

capability (A functionality translation based on the customer attribute requirement of MP3 music playback). The red

highlighted numbers in each row of the A-matrix in Figure 4.3 (i.e., column indices) indicate the number of possible

choices for that particular component group.

4.2.2 PHASE 2: Product Concept Validation

Enterprise Level: Cell Phone Design Validation and Profit Calculation Once the customer data set of 40,000

cases (with 576 unique attribute combinations) has been narrowed down to 46 generated product concepts (vector of

74

b17x88a17,88...a17,2a17,1

........

........

.=.x......

b2x2a2,88...a2,2a2,1

b1x1a1,88...a1,2a1,1

A Matrix Design Variables b Matrix

Figure 4.2: Set of linear design equations (in matrix form) guiding the product architecture formulation

predicted product attribute combinations) via the C4.5 data mining tree generation technique, the engineering design

feasibility and potential profit margin for each product can now be determined: mathematically represented as follows:

Given

T BatteryLi f e,TConnection,T Priority,T Display,T Type

MaxPrice j,d j,RBatteryLi f eEngL
,RConnectionEngL

RPriorityEngL
,RDisplayEngL

,RTypeEngL
,CostL

j

min −πArchitecture j +‖T
BatteryLi f e−RBatteryLi f eEng‖2

2

+‖TConnection−RConnectionEng‖2
2 +‖T Priority−RPriorityEng‖2

2

+‖T Display−RDisplayEng‖2
2 +‖T Type−RTypeEng‖2

2

+εBatteryLi f e + εConnection + εPriority

+εDisplay + εType + εC (4.23)

with respect to

RBatteryLi f eEng
,RConnectionEng

,RPriorityEng
,

RDisplayEng
,RTypeEng

,Cost j

75

1A(17,86) Cell Phone module for SMSText capability:1 manufacturer to choose from

1A(16,[83,84,85]]) Cell Phone processor for Games capability: 3 manufacturers to choose from

1A(15,[81,82]]) Cell Phone Internet module: 2 manufacturers to choose from

1A(14,[77,78,79,80]]) Cell Phone MP3 module: 4 manufacturers to choose from

1A(13,[73,74,75,76]]) Cell Phone Camera module: 4 manufacturers to choose from (1Mpixel VS 2 Mpixel)

1A(12,[59:66]]) Cell Phone Display Type: 2 Designs (TFT or OLED display) manufactured in-house

1A(11,[56,57,58]) Cell Phone External Audio: External Speaker- 3 manufacturers to choose from

1A(10,[54,55]) Cell Phone Audio: Audio Jack component- 2 manufacturers to choose from

1A(9,[51,52,53]) Cell Phone Earpiece: 3 Manufacturers to choose from

1A(8,[49,50]) Cell Phone Microphone selection: 2 Manufacturers to choose from

1A(7,[46,47,48]) Cell Phone Connectivity: Bluetooth, Wifi, Infrared from manufacturer

1A(6,[31:38]) Cell Phone Battery Design: 2 Types (NIMH or LION) manufactured in-house

1A(5,[19:25]) Cell Phone Design: 2 Designs (Flip phone or Shell phone) manufactured in-house

1A(4,13:18) Cell Phone Hard Drive Storage: 3 manufacturers of 1 Gig and 3 manufactures of 2 Gig

1A(3,7:12) Cell Phone External Memory Storage: 6 Manufacturers to choose from

1A(2,4:6) Cell Phone 64MB RAM: 3 Manufacturers to choose from

1A(1,1:3) Cell Phone 32MB RAM: 3 Manufacturers to choose from

Matrix Element
ValueA Matrix (Functional Component Selection Process)

Linear Constraints: Cell Phone Engineering Design

Figure 4.3: A matrix forming the linear equation set. The matrix is sparse, with active elements signified by a value of 1

subject to

h1 : πArchitecture j −d j · (MaxPrice j−Cost j) = 0 (4.24)

h2 : MaxPrice j = {$40,$80,$120,$160,$200} (4.25)

g1 : ‖RBatteryLi f eEng −RBatteryLi f eEngL

‖2
2 ≤ εBatteryLi f e (4.26)

g2 : ‖RConnectionEng −RConnectionEngL

‖2
2 ≤ εConnection (4.27)

g3 : ‖RPriorityEng −RPriorityEngL

‖2
2 ≤ εPriority (4.28)

g4 : ‖RDisplayEng −RDisplayEngL

‖2
2 ≤ εDisplay (4.29)

g5 : ‖RTypeEng −RTypeEngL

‖2
2 ≤ εType (4.30)

g6 : ‖Cost j−CostL
j ‖2

2 ≤ εC (4.31)

Here, the attributes are given as product design targets T and the engineering design responses are R, for which

deviations are defined as ε. Individual product demand is noted d j with corresponding price MaxPrice j and cost

Cost j. The initial evaluation of the engineering design response is estimated and then subsequently updated with each

engineering design response thereafter.

76

Engineering Level: Product Design Validation After the enterprise profit is calculated for each of the 46 product

variant concepts, individual product variants are checked for their feasibility in the engineering design space. Based

on the attribute targets, the engineering design team attempts to minimize the cost while meeting the product attribute

requirements.

Given

RBatteryLi f eU
,RConnectionU

,RPriorityU
,RDisplayU

,RTypeU

min CostArchitecture j +‖R
BatteryLi f eU −RBatteryLi f e‖2

2

+‖RConnectionU −RConnection‖2
2 +‖RPriorityU −RPriority‖2

2

+‖RDisplayU −RDisplay‖2
2 +‖RTypeU −RType‖2

2 (4.32)

with respect to

xEng

subject to1

Screen Resolution Constraints,

Battery Design Constraints,

Outer Casing Design (Phone Type) Constraints,

Design Priority Constraints,

gEng(xEng)≤ 0,hEng(xEng) = 0 (4.33)

Product Portfolio Selection Among the feasible product variants (35 out of 46), the final step is to generate product

portfolio under the specified limit of 7 total products. For each product variant, the selection variable x is defined to

achieve the final most profitable product portfolio.

min −
k

∑
j=0

x j ·πArchitecture(j) (4.34)

subject to

h1 : x j = {0,1} j ∈ {1, . . . ,35} (4.35)

g1 :
35

∑
j=0

x j−7 ≤ 0 (4.36)

1To enhance the overall flow, the elaborate constraints governing the engineering design of cell product variants are condensed and represented
by only gEng(xEng) and hEng(xEng) above. Refer to the Appendix for detailed cell phone design model.

77

4.3 Results and Discussion

Table 4.3: Results of C4.5 data mining product concept generation. The yellow highlighted rows indicate members of the optimal
product portfolio.

Product
Platform

Product
Variants

Objective Design Connectivity Battery_Life Display Demand MaxPrice Engineering Design
Validation

Product Unit
Cost

Generated
Profit

Product Portfolio
Member

Generic 1 Weight Bluetooth 3 293 $80 Feasible $46.04 $9,951 Yes
2 Cost Bluetooth 3 297 $40 Feasible $43.66 -$1,087 No
3 Infrared 3 591 $80 Feasible $41.59 $22,701 Yes
4 Weight Wifi 3 284 $40 Feasible $47.77 -$2,206 No
5 Cost Wifi 3 318 $80 Feasible $45.42 $10,997 Yes
6 Weight Bluetooth 5 290 $40 Feasible $53.69 -$3,970 No
7 Weight Infrared 5 283 $40 Feasible $57.08 -$4,833 No
8 Weight Wifi 5 302 $80 Feasible $60.65 $5,845 Yes
9 Cost Flip 5 468 $80 Feasible $45.04 $16,363 Yes
10 Cost Shell 5 413 $40 Feasible $51.28 -$4,659 No
11 7 1123 $40 Infeasible $53.73 -$15,422 No

SMS Text 1 3 ScreenSize 907 $160 Feasible $45.61 $103,752 Yes
2 Flip 3 Resolution 441 $160 Feasible $48.44 $49,196 Yes
3 Shell 3 Resolution 423 $80 Feasible $47.91 $13,575 Yes
4 Weight Bluetooth 5 314 $160 Feasible $66.64 $29,316 Yes
5 Cost Bluetooth 5 331 $80 Feasible $58.33 $7,174 Yes
6 Infrared 5 578 $120 Feasible $56.26 $36,844 Yes
7 Wifi 5 600 $80 Feasible $59.83 $12,104 Yes
8 7 ScreenSize 579 $80 Infeasible $61.22 $10,872 No
9 Weight 7 Resolution 296 $80 Infeasible $64.09 $4,710 No
10 Cost 7 Resolution 294 $40 Infeasible $64.06 -$7,073 No

Games 1 Bluetooth 3 581 $160 Feasible $55.33 $60,812 Yes
2 Bluetooth 5 563 $120 Feasible $68.21 $29,158 Yes
3 Infrared 1185 $160 Feasible $49.42 $131,031 Yes
4 None 1104 $120 Feasible $45.69 $82,033 Yes
5 Weight Wifi 598 $160 Feasible $56.30 $62,011 Yes
6 Cost Wifi 3 304 $120 Feasible $56.83 $19,203 Yes
7 Cost Wifi 5 321 $160 Feasible $69.71 $28,983 Yes

 Camera 1 Bluetooth 1166 $200 Feasible $87.59 $131,075 Yes
2 Infrared 1222 $200 Feasible $88.58 $136,150 Yes
3 None ScreenSize 602 $120 Feasible $88.59 $18,909 Yes
4 None Resolution 580 $80 Feasible $79.99 $6 No
5 Wifi 1184 $200 Feasible $79.98 $142,103 Yes

Internet 1 Bluetooth ScreenSize 583 $120 Feasible $54.67 $38,085 Yes
2 Bluetooth Resolution 546 $160 Feasible $57.51 $55,960 Yes
3 Weight Infrared 559 $160 Feasible $56.59 $57,807 Yes
4 Cost Infrared 543 $120 Feasible $52.60 $36,596 Yes
5 Weight Flip None 295 $160 Feasible $52.86 $31,607 Yes
6 Cost Flip None 294 $80 Feasible $48.87 $9,151 Yes
7 Weight Shell None 297 $80 Feasible $51.53 $8,455 Yes
8 Cost Shell None 295 $160 Feasible $48.36 $32,932 Yes
9 Wifi 1120 $120 Feasible $56.17 $71,485 Yes

MP3 1 - - Bluetooth - - 1239 $200 Feasible $98.48 $125,778 Yes
2 - - Infrared - - 1108 $200 Feasible $95.90 $115,337 Yes
3 - - None - - 1124 $80 Feasible $92.17 -$13,685 No
4 - - Wifi - - 1161 $200 Feasible $99.47 $116,710 Yes

The proposed product portfolio methodology presents more than just a set of feasible product concepts, but rather

a validated portfolio of product designs that are the best indicators of market success which ultimately maximize

overall enterprise profit. Table 4.3 presents the final solution achieved in the cell phone case study of 40,000 customer

responses that are subsequently narrowed down to 46 predictive product concepts. As can be seen in Table 4.3 , column

10, the multilevel optimization formulation returns a vector of feasible/infeasible product designs based on customer

predictive preference targets cascaded down to the engineering level. In the proposed methodology, the term feasibility

is defined as customer preference targets attained through data mining predictive techniques that are matched within

the engineering design response tolerance of (ε=0.01). A product design that fails to satisfy this tolerance is considered

to be a suboptimal product variant and is excluded in the optimal product portfolio.

78

Table 4.4: Detailed Engineering Design Product Variant Solutions

Variable Description
 Component

Source
SMS Phone1

Solution
SMS Phone2

Solution
Phone3
Solution

SMS Phone4
Solution

Phone5
Solution

SMS Phone6
Solution

Phone7
Solution

SMS Phone8
Solution

Phone9
Solution

SMS Phone10
Solution Units

Objective Cost Cost Cost Weight Cost Cost Cost Cost Weight Cost
64 Megabyte Discrete Manufacturer 1 0 0 0 1 0 0 0 0 1 0 -

 Manufacturer 2 0 0 0 0 0 0 0 0 0 0 -
 Manufacturer 3 1 1 1 0 1 1 1 1 0 1 -

Shell Phone Discrete Engineering Design 0 0 1 1 0 0 0 0 0 0 -
Phone Length Engineering Design 80.5 120.0 80.0 80.0 120.0 120.0 120.0 120.0 120.0 120.0 mm
Phone Width Engineering Design 40.0 40.0 40.0 40.0 40.0 40.0 40.0 46.5 40.0 40.0 mm
Phone Thickness Engineering Design 12.0 16.3 13.1 22.4 16.3 12.0 12.0 12.0 16.3 16.3 mm
Phone Weight Engineering Design 19.7 40.0 21.4 36.5 40.0 29.4 29.4 34.1 40.0 40.0 g
Phone Cost Engineering Design 8.8 18.0 9.6 16.4 18.0 13.2 13.2 15.3 18.0 18.0 $
Flip Phone Discrete Engineering Design 1 1 0 0 1 1 1 1 1 1 -
Phone Length Engineering Design 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 mm
Phone Width Engineering Design 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0 mm
Phone Thickness Engineering Design 12.0 12.0 18.1 18.1 13.2 13.2 13.2 18.1 18.1 18.1 mm
Phone Weight Engineering Design 26.5 26.5 40.0 40.0 29.2 29.2 29.2 40.0 40.0 40.0 g
Phone Cost Engineering Design 7.9 7.9 12.0 12.0 8.8 8.8 8.8 12.0 12.0 12.0 $
Nickel Metal Hydride Engineering Design 0 0 0 0 0 0 0 0 0 0 -
Battery Weight Engineering Design 50.0 50.0 50.0 49.6 50.0 50.0 50.0 50.0 50.0 50.0 g
Battery Length Engineering Design 80.0 60.6 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 mm
Battery Width Engineering Design 22.2 60.0 48.8 26.4 22.2 22.2 22.2 22.2 48.8 48.8 mm
Battery Thickness Engineering Design 30.0 14.7 13.7 25.0 30.0 30.0 30.0 30.0 13.7 13.7 mm
Battery Cost Engineering Design 20.2 20.2 20.2 20.0 20.2 20.2 20.2 20.2 20.2 20.2 $
Battery Capacity Engineering Design 1139.4 1139.4 1139.4 1129.4 1139.4 1139.4 1139.4 1139.4 1139.4 1139.4 mAh
Lithium Ion Battery Engineering Design 1 1 1 1 1 1 1 1 1 1 -
Battery Weight Engineering Design 9.49 9.49 9.49 16.20 16.19 16.19 16.19 22.19 22.19 22.19 g
Battery Length Engineering Design 48.30 46.56 48.00 48.00 72.00 72.00 72.00 72.00 72.00 72.00 mm
Battery Width Engineering Design 41.21 42.75 38.00 38.00 42.75 42.75 42.75 42.75 42.75 42.75 mm
Battery Thickness Engineering Design 5.40 5.40 5.89 10.06 5.96 5.96 5.96 8.16 8.16 8.16 mm
Battery Cost Engineering Design 8.64 8.64 8.63 14.74 14.73 14.73 14.73 20.19 20.19 20.19 $
Battery Capacity Engineering Design 464.23 464.23 463.94 792.34 791.95 791.95 791.94 1085.13 1085.13 1085.13 mAh
Cell Phone Talk Time Engineering Design 3.00 3.00 3.00 5.00 5.00 5.00 5.00 6.79 6.79 6.79 h
Bluetooth Discrete Manufacturer 1 0 0 0 1 1 0 0 0 0 0 -
WiFi Discrete Variable Manufacturer 1 0 0 0 0 0 0 1 0 0 0 -
Infra-Red Discrete Manufacturer 1 0 0 0 0 0 1 0 0 0 0 -
Microphone Discrete Manufacturer 1 1 1 1 1 1 1 1 1 1 1 -

Manufacturer 2 0 0 0 0 0 0 0 0 0 0 -
EarPiece Discrete Manufacturer 1 1 1 1 0 1 1 1 1 0 1 -

Manufacturer 2 0 0 0 1 0 0 0 0 1 0 -
Manufacturer 3 0 0 0 0 0 0 0 0 0 0 -

LCD Discrete Variable Engineering Design 1 0 0 0 1 1 1 1 0 0 -
Length of LCD Engineering Design 30.00 30.00 24.00 35.71 30.00 30.00 30.00 30.00 30.00 30.00 mm
Width of LCD Engineering Design 31.50 31.50 28.00 28.00 31.50 31.50 31.50 31.50 33.33 31.50 mm
Display Resolution Engineering Design 13929.30 13929.30 9906.16 14740.00 13929.30 13929.30 13929.30 13929.30 14740.00 13929.30 pixels
LCD Manufacturing Engineering Design 4.73 4.73 3.36 5.00 4.73 4.73 4.73 4.73 5.00 4.73 $
LCD Unit Weight Engineering Design 37.80 37.80 26.88 40.00 37.80 37.80 37.80 37.80 40.00 37.80 g
LCD Power Engineering Design 9.45 9.45 6.72 10.00 9.45 9.45 9.45 9.45 10.00 9.45 mhA
OLED Discrete Engineering Design 0 1 1 1 0 0 0 0 1 1 -
Length of OLED Engineering Design 30.00 30.00 24.00 24.00 30.00 30.00 30.00 30.00 30.00 30.00 mm
Width of OLED Engineering Design 31.50 31.50 28.00 28.00 31.50 31.50 31.50 31.50 31.50 31.50 mm
Display Resolution Engineering Design 18540.90 18540.90 13184.64 13184.64 18540.90 18540.90 18540.90 18540.90 18540.90 18540.90 pixels
OLED Manufacturing Engineering Design 7.56 7.56 5.38 5.38 7.56 7.56 7.56 7.56 7.56 7.56 $
OLED Unit Weight Engineering Design 28.35 28.35 20.16 20.16 28.35 28.35 28.35 28.35 28.35 28.35 g
Consumption Engineering Design 28.35 28.35 20.16 20.16 28.35 28.35 28.35 28.35 28.35 28.35 MhA
SMS Module Manufacturer 1 1 1 1 1 1 1 1 1 1 1 -
Product Unit Cost Solution 45.61 48.44 47.91 66.64 58.33 56.26 59.83 61.22 64.09 64.06 $/unit
 Product Unit Weight Solution 93.35 83.90 70.61 99.94 111.69 111.29 115.58 119.59 108.74 110.14 g

79

Product feasibility is however not the only measure of product design success. With the incorporation of demand

information directly acquired through the C4.5 data mining process, each product variant profit can be calculated based

on the unit product cost, the MaxPrice class prediction and the demand for a particular product concept i. Referring

to the results for the Generic Phone architecture in Table 4.3, there are 11 product concepts generated through the

data mining technique. As the results indicate, generic product variant 11 with a predicted battery life expectation

of 7 hours and a MaxPrice prediction of $40, was found to be infeasible in the engineering design formulation. The

violated target in this scenario was that of the battery life with a maximum attainable engineering design response of

6.79 hours (Table 4.4). Using the proposed metric for evaluating feasible designs, this product concept clearly violates

the tolerance limit, hence is excluded as a candidate for the optimal product portfolio. In addition to the feasibility

check, the proposed approach also generates the unit cost for product design with its corresponding profit. For this

specific variant, Generic variant 11 in the Table 4.3, the unit cost is $53.73, therefore its corresponding loss is $15,422.

Customers shows their preference for this specific variant. However, this concept should not be pursued due to the

projected loss.

Referring to the Generic architecture results in Table 4.3, there are several product concepts that have a feasible

engineering design but are omitted in the optimal product portfolio set. As discussed earlier, this is due to the fact

that overall enterprise profit is the second criteria for evaluating product variants to be included in the optimal product

portfolio. There are total of 11 infeasible and/or negative profit generating product variants out of the 46 product

concepts predicted by the data mining process, resulting in 35 candidate products to introduce to the cell phone

market. Depending on the enterprise product portfolio limit, and the number of product families that can be managed,

all or a few of these products could be considered for market launch.

If a maximum portfolio limit size of 7 is assumed, the enterprise optimal product portfolio as described in section

4.1.3, would simply be a selection of the most profitable product variants, subject to the portfolio limit constraint. This

is modeled by the selection problem in (4.34) – (4.36). Exploring the entire product concept space generates a solution

of 7 product variants spanning multiple product families. The final solution yields 1 product variant from the Games

product family, 3 product variants from the Camera product family (Camera product variants {1,2,5}) and 3 product

variants from the MP3 product family (MP3 product variants {1,2,4}) yielding a total product portfolio sales volume

(based on demand information) of 8265 units and an overall enterprise profit of $898,185.

Such powerful insights enable enterprise decision makers to evaluate products/variants based on several dimen-

sions of performance. In the example of 40,000 customers, each customer does not have to be provided with his/her

own unique customizable product, but rather purchasing behaviors can be addressed with the 46 product concepts

generated in the data mining predictions. Furthermore, enterprise decision makers can determine which out of these

product concepts would be the most successful in an attempt to maximize profit.

80

4.4 Conclusion

The volatility of highly competitive consumer markets is the major driving force shaping company strategies in product

development. The power to accurately predict and design products before they launch is a fundamental tool in ensuring

a competitive advantage amongst fierce competition. The major focus of this research is to predict customer wants and

subsequently design the most profitable products or product variants. The predictive aspects of product development

are addressed through data mining techniques that generate candidate product concepts along with individual predicted

demand information. The validation of these product concepts at the engineering design level increases the likelihood

of the products being market successes if launched. As a result, enterprise decision makers will have several options in

formulating an optimal product portfolio. Other metrics such as level of commonality among product variants can be

used as an additional evaluation metric in deciding product launches. Additional cost savings benefits may be realized

through post optimality analysis of shared components.

4.5 Product Concept Generation with Multi-Response Preference Data

Engineering design efforts often involve many disciplines trying to coordinate between system performance expecta-

tions and design capabilities. Product performance expectations can include many competing objectives such as high

reliability, low energy consumption, minimal environmental impact, to name but a few. In today’s modern era of mass

customization, design engineers are faced with the challenge of delivering product diversity at a relatively low cost.

There have been several proposed techniques for acquiring and incorporating performance feedback into the systems

design process, ranging from traditional statistical driven methods such as conjoint analysis and discrete choice anal-

ysis to data mining methods such as decision tree classification and clustering approaches [21, 22, 55, 122]. A major

drawback of existing performance preference acquisition techniques is their limitation to single output response vari-

able predictions. Single output response variable predictions may be insufficient for design teams in realistic product

development settings when attempting to accurately model next generation designs.

To overcome some of the limitations of single response modeling techniques, this section presents a novel approach

to predict multiple output responses. The proposed Multi-Response Data Mining methodology is a tree induction

algorithm that attempts to simultaneously predict multiple variable responses (performance criterion) based on an

output response filtering technique and a generalized association measure for efficient model generation. The results

of the Multi-Response Data Mining model will serve as system performance targets in a multi-objective design space

and aid in assessing the feasibility of product design solutions. Instead of exhaustively investigating the Pareto space

in a multi-objective design model, design engineers will be guided by the performance target solutions which will

serve as product design targets in the multi-objective design model.

81

4.5.1 Existing Single Response Predictive Data Mining

There are many well established predictive data mining algorithms capable of handling single response predictions

with proven results. Some of which include Naı̈ve Bayes classification, Support Vector Machines, Decision Tree

Classification, to name but a few [95].

The Naı̈ve Bayesian data mining algorithm assigns output response predictions by employing Bayes’ Theorem in

calculating posterior probabilities. The fundamental assumption of the Naı̈ve Bayes algorithm is the assumption of

attribute independence which significantly reduces the complexity of the formulation. Under the Maximum Likelihood

function, the correct output response prediction is achieved so long as it is more probable than any other output

response [80].

Support Vector Machines (SVMs) is a relatively new classification algorithm that has been successfully applied to

both linear and non-linear data sets. SVMs attempt to identify the unique response values by creating the maximum-

separating hyper-plane that partitions the instances within the data set that belong to a particular response. By trans-

forming the original data into a higher order dimensionality space, SVMs can identify the optimal boundary that

maximizes the distance between the output response labels and the hyper-plane [123].

The Decision Tree Classification algorithm predicts the response variable based on a data-partitioning strategy

that incorporates the notion of node impurity in determining the structure of the tree. Attributes are independently

tested to determine their ability to reduce the impurity of the response variable at each node of the tree. The iterative

data partitioning sequence continues until a single response is identified, accompanied by supporting instances. Many

attribute evaluation metrics have been proposed throughout the data mining and statistics community with two of

the most popular metrics being the Information Gain metric (used in the C4.5 decision tree classification algorithm

discussed in section 4.1.2) and the Gini Index (used in the Classification and Regression Trees (CART) algorithm

[119]). The mathematical overview of these two metrics will now be presented. Each metric measures the impurity

(heterogeneity) of the response variable at node T in relation to an attribute’s ability to reduce this impurity. For

the Information Gain metric presented earlier in section 4.1.2, this impurity reduction is achieved by maximizing the

Information Gain equation, succinctly represented below (note: for a detailed overview of the Information Gain metric,

please refer to section 4.1.2):

In f ormation Gain(T) = (−
N

∑
i=1

p(ci) · log2 p(ci))− (
K

∑
j=1

Tj

T
(−

N

∑
i=1

p(ci|a j) · log2 p(ci|a j)))[bits] (4.37)

Here,

• p(ci) : represents the fraction of a response variable ci in the data set T.

82

• p(ci|a j) : represents the fraction of a response variable ci when conditioned on a particular attribute value a j.

• N: represents the number of mutually exclusive response values within the data set (discrete case).

• Tj
T : represents the fraction of the data set that exists in the attribute partition a j (∑K

j=1
Tj
T =1).

• a j : represents a unique value of the current test attribute A (a j ∈ A).

• K: represents the number of mutually exclusive attribute values of the current test attribute A.

The attribute that maximizes equation 4.37 is selected as the split attribute at each iteration until a purely homo-

geneous response variable exists in the data subset. The Gini Index presents a similar formulation as the Information

Gain metric with the mathematical formulation as follows:

Gini Index(T) = (1−
N

∑
i=1

p(ci)2)− (
TL

T
(1−

N

∑
i=1

p(ci|aL)2)+
TR

T
(1−

N

∑
i=1

p(ci|aR)2))) (4.38)

Here,

• p(ci) : represents the fraction of a response variable ci in the data set T.

• p(ci|aL) : represents the fraction of a response variable ci when conditioned on the left attribute partition aL.

• p(ci|aR) : represents the fraction of a response variable ci when conditioned on the right attribute partition aR.

• N: represents the number of mutually exclusive response values within the data set (discrete case).

• aL : represents the left partition of the test attribute (binary attribute splits).

• TL
T : represents the fraction of the data set that exists in the left attribute partition aL (TL

T + TR
T =1).

• aR : represents the right partition of the test attribute (binary attribute splits).

• TR
T : represents the fraction of the data set that exists in the right attribute partition aR (TL

T + TR
T =1).

In many systems design scenarios, engineers and design teams must make decisions about complex systems that

will be evaluated on more than one objective. Consequently, existing single response data mining approaches may be

insufficient in capturing next generation systems performance requirements.

83

4.5.2 Existing Multi-response Predictive Data Mining

The complexities of many real life design problems demand higher dimensions of performance evaluation in order to

provide feasible candidate design solutions. The output from multi-response data mining models can then be set as

targets in multi-objective engineering design models.

There have been several data mining approaches that have been proposed to handle multi-response variables.

Zhang proposes a generalized entropy measure to handle multiple binary response variables [124]. This is achieved by

maximizing the log likelihood function derived from an exponential distribution used to fit multiple binary responses.

This approach however would severely limit design scenarios involving responses that have more than a binary output.

Siciliano and Mola investigate multi-response variables that are not limited to binary cases and use a weighted Gini

index as a measure of multi-response impurity that can be mathematically represented as[125]:

h(t) = (1−
G

∑
g=1

N

∑
i=1

w(g) · p(cg,i)2)− (
TL

T
(1−

G

∑
g=1

N

∑
i=1

w(g) · p(cg,i|aL)2 +
TR

T
(1−

G

∑
g=1

N

∑
i=1

w(g) · p(cg,i|aR)2)) (4.39)

Here,

• p(cg,i :) represents the fraction of a multi-response variable (g) with given value (i) g∈G, i∈N.

• p(cg,i|aL) : represents the fraction of a multi-response variable (g) with given value (i) when conditioned on the

left attribute partition aL.

• p(ci|aR) : represents the fraction of a multi-response variable (g) with given value (i) when conditioned on the

right attribute partition aR.

• N: represents the number of mutually exclusive response values within the data set (discrete case).

• aL : represents the left partition of the test attribute (binary attribute splits).

• TL
T : represents the fraction of the data set that exists in the left attribute partition aL (TL

T + TR
T =1).

• aR : represents the right partition of the test attribute (binary attribute splits).

• TR
T : represents the fraction of the data set that exists in the right attribute partition aR (TL

T + TR
T =1).

• w(g): represents the assigned weight to multi-response variable (g).∑G
g=1w(g)=1 and w(g)≥0∀g=1,...,G.

One of the challenges with the above formulation is that the weights w(g) can be subjective, creating biases in the

attribute evaluation metric and subsequent decision tree model [126]. A related multi-response approach has been

84

proposed by Kim and Lee which extends the original information gain metric in equation 4.37 to include multiple re-

sponses [126]. This approach however may result in an exhaustive combination of multiple response values rendering

the metric incapable of reducing the impurity of the multi-response data set. To illustrate this scenario, 3 response

variables are given, each with 2 mutually exclusive values. That is, C1={c1,1, c1,2}, C2={c2,1, c2,2}, C3={c3,1, c3,2}.

There are a total of 23=8 possible combinations. Therefore if each of the response combinations is to be present in the

data set, a minimum of 8 instances are needed to represent each unique combination. For a tree generation (data set

partitioning) strategy to be feasible, the instance-response proportion must be high, otherwise a large tree may result

with single instances existing at the final leaf.

In order to avoid the exhaustive multi-response combinations, an Apriori-like algorithm is first employed to the

set of responses to determine the frequently occurring response combinations. Unlike the existing multi-response

approaches discussed in the previous section, this enables subsets of response combinations to serve as the evaluation

metric in the absence of a suitable number of complete response combinations. The multi-response combinations

will satisfy the anti-monotone Apriori property: if any length k pattern is not frequent in the database, its length

(k+1) super-pattern can never be frequent [127]. The example below will help illustrate the benefit of multi-response

frequent pattern analysis as a means of generating a stable attribute performance metric. In Table 4.5, response C1 has

a purely homogenous distribution with values c1,1.

Table 4.5: Attribute Characterization based on Attribute Definition
Data Instance Response C1 Response C2 Response C3

Instance 1 c1,1 c2,1 c3,1
Instance 2 c1,1 c2,2 c3,1
Instance 3 c1,1 c2,3 c3,2
Instance 4 c1,1 c2,4 c3,3
Instance 5 c1,1 c2,5 c3,3

If this were a single response model, the tree would terminate at this data subset due to the purely homogenous

distribution. In the multi-response scenario however, responses C2 and C3 must also be investigated. It can be observed

that response C2 is the opposite of response C1 with a purely heterogenous distribution of values ranging form c2,1 to

c2,5. If multi-responses C1 ,C2 and C3 were being evaluated simultaneously, this would yield 5 unique combinations,

representing the most impure response distribution case. Instead, it is assumed that a minimum threshold for multi-

response frequency is 2 instances within the data set. By employing the Apriori frequent pattern analysis on the

multi-response cases, there are 2 response combinations left that satisfy the minimum threshold constraint. That

is, combinations {c1,1 and c3,1} and {c1,1 and c3,3}. Therefore, the attribute evaluation metric that is presented in the

following section will judge an attribute’s predictive power based on the frequent response combinations as determined

by the Apriori algorithm, rather than an exhaustive combination of all possible response combinations.

85

Multi-response Attribute Evaluation Metric

The Generalized Association Measure (GAM) is proposed to handle design scenarios involving multi-response out-

puts. The GAM represents an attribute evaluation metric which is mathematically defined as[128].

GAM = k

√
sup(X)k

n
(

1
sup(ai)k +

1
sup(c1)k ...+

1
sup(cm)k) (4.40)

Here,

• X: represents a set containing n events (ai, and c1...,cm). ai represents the value of the test attribute and c1...,cm

(m ≥2) represent the set of multi-response values.

• n: represents the total number of events including the attribute value of interest (ai, and c1...,cm).

• sup: represents the number of instances of an event(s) within the data set/subset.

• k: represents the exponent of the generalized mean. The given value of k enables the Generalized Association

Measure to take the form of one of the null invariant measures such as: AllConf (k −→ -∞), Coherence (k =

−1), Cosine (k = 0), Kulc (k = 1) and MaxConf (k −→ +∞). Each of these special cases of the Generalized

Association Measures possess the null-invariant property which distinguishes them from many existing metrics.

That is, their interestingness score is not influenced by irrelevant instances in the data set that do not contain the

event combination of interest [128].

When investigating an attribute’s predictive power through time, the stability of the multi-response attribute eval-

uation metric becomes critical. The following section discusses the stability of the Generalized Association Measure

compared to traditional metrics such as the Information Gain.

Stability comparison of multi-response metrics

Table 4.6: Data set illustrating metric stability
Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Response

a1,1 a2,1 a3,2 a4,2 a5,1 c1
a1,2 a2,1 a3,1 a4,1 a5,2 c1

To gain a deeper understanding of the implications of these challenges, 3 different scenarios are presented with the

results given in Table 4.7. For simplicity, the instances in Table 4.6 will serve as the basis for scenario 1. From Table

4.6, it can be observed that the attribute value a2,1 is perfectly correlated with the response c1 and would therefore

86

be unanimously considered as the attribute with the highest distinguishing power, regardless of the interestingness

measure selected. It can be observe in the following 3 scenarios how the addition of irrelevant instances (null-data)

can influence some interestingness measures.

• Scenario 1: The data set contains 2 instances as seen in Table 4.6.

• Scenario 2: 10 additional instances are added to scenario 1. For attribute 2, these 10 new instances assume

the value (a2,2) while the 10 additional response values assume the value (c2), making a2,2 and c2, perfectly

correlated.

• Scenario 3: Similar to scenario 2 but in this case, each of the 10 instances of both the attribute and response is

unique however still perfectly correlated. That is, the 10 newly added instances of attribute 2 range from a2,2 to

a2,11 and the 10 newly added response instances range from c2 to c11.

Table 4.7: Stability of Attribute Evaluation Measures
Evaluation Metric Formulation Bound Scenario 1 Scenario 2 Scenario 3

Information Gain Entropy(Class)−Entropy(Class|Attribute) {0,∞} 0.00 0.650 3.418

GAM
k

√
sup(X)k

n (1
sup(ai)k + 1

sup(c1)k ...+
1

sup(cm)k) {0,1} 1.00 1.00 1.00

System Target Space Multi-Response Data Mining Model

System Design Space

Multi-response System Targets

e
2

Feasible solution

y g p

O
bj
ec
ti
v

Objective 1

Infeasible solution

Figure 4.4: Linking Multi-response Data Mining with Systems Design

87

Although there exists perfect correlation between the attribute and response value in each of the scenarios, Table 4.7 re-

veals some of the inconsistencies that are inherent in the actual numeric interpretations of different attribute evaluation

metrics. As can be seen from Table 4.7, the Generalized Association Measure (GAM) presents a more consistent nu-

meric solution for perfectly correlated attribute-response relationships. This becomes critical when modeling the time

series attribute behavior as time series modeling techniques may be sensitive to such variations in attribute correlation

statistics.

4.5.3 Multi-Response Preference in Engineering Design

The complexity of many real life systems design problems demand higher dimensions of performance evaluation in

order to provide more robust design solutions. Single system objectives such as cost minimization or environmental

impact minimization are in many cases not mutually exclusive performance objectives and should therefore be investi-

gated simultaneously during the design phase. The proposed Multi-Response Data Mining methodology can therefore

be integrated into the design process and serve as targets to multi-objective, multi-level design models as seen in Fig-

ure 4.4. The attributes accompanying the multi-response model in Figure 4.4 can serve as constraints and parameters

for the design variables involved in achieving the performance objectives in the multi-objective design space.

4.6 Comparative Analysis Between Demand Modeling Techniques

This section presents a comparative study of choice modeling and classification techniques that are currently being

employed in the engineering design community to understand customer purchasing behavior. An in-depth comparison

of two similar but distinctive techniques – the Discrete Choice Analysis (DCA) model and the C4.5 Decision Tree (DT)

classification model – is performed, highlighting the strengths and limitations of each approach in relation to customer

choice preferences modeling. A vehicle data set from a well established data repository is used to evaluate each model

based on certain performance metrics: how the models differ in making predictions/classifications, computational

complexity (challenges of model generation), ease of model interpretation and robustness of the model in regards

to sensitivity analysis, and scale/size of data. The results reveal that both the Discrete Choice Analysis model and

the C4.5 Decision Tree classification model can be used at different stages of product design and development to

understand and model customer interests and choice behavior. However, the C4.5 Decision Tree may be better suited

in predicting attribute relevance in relation to classifying choice patterns while the Discrete Choice Analysis model is

better suited to quantify the choice share of each customer choice alternative.

Choice modeling through Discrete Choice Analysis (DCA) and classification through Decision Tree (DT) data

mining modeling techniques are becoming well established approaches in the product design community to character-

88

ize customer choice behavior. The product design process requires many complex decisions that arise across multiple

disciplines ranging from enterprise driven profit maximization to engineering product design optimization. In real life

product design scenarios, many of these interactions are represented in the form of large-scale, heterogeneous data

often containing great uncertainty through variations in customer preferences. These customer preference variations

present a challenge to product development engineers trying to quantify and incorporate relevant product attributes

into the final product design. In new product development, design engineers may want to predict the choice share

of their brand (in relation to other brands) and understand how the absence or presence of particular attributes influ-

ence customer choice behavior. A quantifiable measure of attribute importance would enable both enterprise decision

makers and design engineers better understand customer preference trends and product functionality demands as they

relate to enterprise profit realization.

In the transportation research domain, several researchers have conducted comparative studies between the Dis-

crete Choice Analysis models (in particular, the multinomial and nested logit models) and data mining classification

models (in particular, the C4.5 Decision Tree classification model) [129, 130, 131, 132, 133]. The focus of these stud-

ies has been to identify choice patterns (i.e., modes of transportation) based primarily on an individual’s behavioral

and demographic information. The findings from the transportation mode studies reveal that the predictive capabil-

ities of both the Discrete Choice Analysis models and the Decision Tree classification models are quite comparable

[130, 131]. Although some distinguishing factors remain between the two techniques such as computation speeds and

ease of interpretability, both techniques can be applied to modeling customers’ transportation choices. In the trans-

portation domain literature however, the choice set that customers are presented with is limited to a few alternatives

and focuses primarily on socio-demographic attributes to predict customer choice behavior [129, 130, 131]. The size

of the data sets used in these studies is also quite manageable when compared to the large scale data sets that have

been used in data mining related product design problems [55].

Research Motivation:

In the product design research domain, no comparative study has been reported between Discrete Choice Analysis

and data mining Decision Tree techniques. This work seeks to investigate the effectiveness of employing Discrete

Choice Analysis and Decision Tree classification to specific product design scenarios involving a wide range of product

design alternatives and heterogeneous customer preference data. As data acquisition and storage capabilities become

less costly, there is a growing trend towards large scale data analysis and knowledge discovery. The increase in

customer preference data may also lead to an increase in the number of attributes and product choice alternatives

being investigated and may result in the curse of dimensionality problem, a situation that results when the performance

of a model significantly diminishes as the dimension of the data set increases. This presents a tremendous design

challenge when trying to identify significant attributes and choice alternatives within a high dimensional data set. It

89

is therefore necessary to investigate demand modeling techniques currently being employed in product design and

development in order to understand their future potential in handling large scale customer preference data. Under

this design paradigm, a comparison is made between the well established C4.5 Decision Tree (DT) classification

technique and the Discrete Choice Analysis modeling (DCA) techniques that are so frequently used in the product

design research community [21, 22, 23, 24].

The comparative study between the DCA technique and DT classification technique aims to address several key

research questions:

1. Research Question 1: Model Building Complexity

How much time do design engineers have to spend on customer choice data analysis and model construction?

2. Research Question 2: Model Usage

How do the models differ in terms of the potential usage?

3. Research Question 3: Quantifying Attribute Importance

How do design engineers quantify the relevance of different attributes (physical design attributes as well as

socio-demographic attributes) in the design of next generation products?

4. Research Question 4: Model Scalability

How easily can data sets and attribute dimensions be scaled and what effect does this have on the model integrity

and complexity?

4.6.1 Vehicle Choice: A Comparative Case Study

The Experimental Data Set

A well established data repository of vehicle data developed by the University of California, Irvine is used to study

the effectiveness of the Discrete Choice Analysis and the C4.5 Decision Tree classification techniques in product

design [134]. The particular vehicle data set used in the comparative case study is based on real life data and has been

successfully used by researchers in other fields such as the Computer Science and System Engineering to validate other

unrelated research topics [135, 136, 137]. The selection of this data set for the comparative study was done primarily

due to its relevance to product design related problems (ex. vehicle design) and enables the reader to independently

investigate the findings of this work through the freely accessible University of California, Irvine data repository.

Future research investigations aim to expand on the number of open source product development data sets used in the

analysis in order to strengthen the theoretical findings of the demand modeling comparative study. The choice model

90

and decision tree estimated from this data set are intended to demonstrate the features of these techniques and do not

necessarily represent optimal models for use in actual design.

Table 4.8: Physical and performance based attributes for the different vehicle types
Attribute Names Attribute Values

aspirations std, turbo
num-of-doors four, two

num-of-cylinders two, three, four, five, six, eight, twelve
horsepower continuous from 48hp to 288hp
peak-rpm continuous from 4150-6600
city-mpg continuous from 13-49

highway-mpg continuous from 16-54
price continuous from 5118-45400

body-style hardtop, wagon, sedan, hatchback, convertible

Table 4.9: Socio-demographic based attributes based on consumer identity
Attribute Names Attribute Values
annual income continuous from $25,000 to $120,000

age continuous from 21-60
education level high school, college, graduate
marital status single, married

ethnicity 8 distinct categories
gender male, female

Table 4.10: Class variable (response variable) which is the make of a particular vehicle
Attribute Names Attribute Values

class alpha romeo, audi, bmw, chevrolet, dodge,
honda, isuzu, jaguar, mazda, mercedez-benz, mercury, mitsubishi,

nissan, peugot, plymouth, porche, renault, saab,
subaru, toyota, volkswagen, volvo

The vehicle data set has been partitioned into two types of attribute information. First is the vehicle physical

attribute information in Table 4.8 which includes performance and dimension specific attributes. In this multivariate

data set, attributes can be numeric (having either discrete integer values or a continuous numeric range of values)

or nominal (which do not contain an ordering of the attribute values such as the color of a vehicle or name of a

dealership).

The demographic attributes in Table 4.9 make up the second part of the data set and include specific customer

behavioral attributes such as age, marital status, annual income, etc. As with the vehicle physical attributes, demo-

graphic attributes can be either numeric or nominal attributes. The demographic attributes were not part of the original

vehicle data set but were included in the analysis to be more consistent with the Discrete Choice Analysis model. De-

mographic attributes were simulated using MS Excel to reflect natural demographic correlations of customers based

91

on online sources investigated by the authors. For example, the simulated code accounted for higher likelihood that an

individual with a higher education level would more likely have a higher annual income as compared to an individual

with a lower education level.

The class variable presented in Table 4.10 can be thought of as the output given a specific attribute combination.

In the vehicle data set used for the comparative study, the vehicle make is what is defined to be the class variable with

class values ranging from Alfa-Romero to Volvo, all of which are nominal values. Therefore for a given combination

of vehicle physical attributes and demographic attributes, a vehicle make is predicted.

Table 4.11 represents a snapshot of the data set wherein a given combination of attributes yields a preference in the

class variable (make of the vehicle selected). Together, the physical vehicle attributes and the demographic attributes

are used to quantify the response variable, vehicle class.

Table 4.11: Snapshot of vehicle data with both physical and demographic attributes, and the class variable (Make)

4.6.2 Results and Discussion

Product Design Research Questions

Research Question 1: Model Building Complexity

How much time do design engineers have to spend on customer choice data analysis and model construction?

This research question was addressed based on several key measures of complexity. First is the complexity of handing

the raw data set and transforming it into an acceptable form for the Discrete Choice Analysis and C4.5 Decision Tree

classification models. For the DCA model, dummy variables had to be created for each attribute where the ordering

of attribute values was not desired. Fortunately this only had to be done for the body style vehicle attribute to avoid

bias towards one type of vehicle body style (ex. sedan, hatchback, convertible, etc.) over another. In addition to this,

the choice set of each customer has to be defined. In the event that the choice set is non uniform for all customers

within the data set, this may present a great challenge in trying to develop the DCA model. Overall, the computational

time needed to generate the discrete choice model using the Stata R© software package was approximately 3 seconds

running on an Intel Pentium Duo 2.5 GHz Processor.

For the DT classification model, there was little preprocessing of the raw data set required, however the data set

had to be in a comma separated value (CSV) file format or the ARFF file format to be compatible with the Weka 3.5

92

data mining package that was employed in this study [2]. The overall computational time needed to generate the data

mining classification model was approximately 0.08 seconds running on an Intel Pentium Duo 2.5 GHz Processor.

Some factors that may have contributed to the significant disparity between the two demand modeling techniques

may lie in their underlying approach to model development. The DCA model uses the maximum likelihood estimation

to develop the parameters of the model which can be computationally expensive: especially if there exists noticeable

correlations among the attributes. The C4.5 DT model on the other hand is an iterative induction technique that

continues to partition the data set, hence making the information gain ratio calculation less computationally expensive

with each iteration (partitioning of the data set into smaller subsets).

Research Question 2: Model Usage:

How do the models differ in terms of the potential usage?

To address this product design research question, the model prediction results of both the Discrete Choice Analysis

and the C4.5 Decision Tree classification are analyzed for their respective usage. A primary question concerns what

each model is actually predicting/classifying. The DCA model is a probabilistic model which uses a utility function

to predict a given person’s probability of choice of a given alternative as a function of both attributes of the product

and attributes of the person. The DT model is a classifier which classifies a set of alternatives (i.e., classes) based on

attribute values. The DT model determines attributes to be included in the tree based on the information gain, i.e.,

how effective is an attribute in differentiating the alternatives. These two techniques can be compared to determine

the information each provides to the design process, although a direct comparison may not be straightforward. This

is due to the different problem context that each model is used for. However, there have been successful comparisons

of these two approaches in the transportation domain as discussed in the introduction section of this work [129, 130,

131, 132, 133].

The DCA model provides a model which considers the impact of both product and demographic attributes on the

choice process. The model beta parameters are shown in Table 4.12. Such a model allows parametric studies to be

conducted to determine the effects of changing product attributes, changing the target population, or both, on choice

probability and hence choice share for a product of interest.

Because the model is parametric, it can easily be incorporated into an optimization framework to identify the

product design attributes which maximize choice share of a given product, or a more advanced application can be used

to identify product attributes which maximize enterprise level profit for a given target population as discussed again

later in research question 4.

As discussed in the previous section, potential issues with the DCA model are that multicollinearity may inhibit

the inclusion of all desired product or demographic attributes of interest in the model. Also, the MNL suffers from

the Independence of Irrelevant Alternatives (IIA) property, which restricts the overall change in choice share due to

93

Table 4.12: Vehicle attribute importance based on beta (β) coefficients of the Discrete Choice Model

a change in a given attribute. This may result in unrealistic predictions of choice share changes for a given design

change. Another issue with the DCA model is that because it is a parametric model, the underlying assumption is

that the product and demographic attributes follow a standard functional relationship (i.e. linear, quadratic) with the

underlying utility. This may impede its usage in situations in which utility does not follow a well defined functional

relationship with product or demographic attributes.

Education Level

Age

>49<=49

ToyotaAnnual Income

Figure 4.5: Visual Representation of C4.5 Decision Tree Model based on demographic attributes alone

94

>4

Peak RPM

Number of Cylinders

<=5400
Peak RPM

>5400

Vehicle Price Number of Cylinders

<=5 >5>19699<=19699

Audi Porsche

<=5 >5

Toyota Nissan

>19699

Marital StatusPeak RPM

<=19699

Horse

Single Married
Toyota Nissan

Figure 4.6: Visual Representation of C4.5 Decision Tree Model based on both product attributes and demographic attributes

The C4.5 Decision Tree shown in Figure 4.5 can be used to classify product choices as a function of demographic

attributes and in Figure 4.6 can be used to classify both demographic and product attributes together from the data

mining classification perspective. For example Figure 4.5 reveals that the most significant demographic that influences

vehicle classification is the Education Level that an individual attains. Furthermore, by traversing down the Decision

Tree path in Figure 4.5 (indicated in red), a classification rule is reached that states: If Education Level=Graduate

and Age>49===> Vehicle Class= Toyota. For design engineers designing the next generation of vehicles, this vital

piece of information would enable more customized design features for this specific demographic group. However

there are several noticeable distinctions in the model predictions. For example in Figure 4.6, the most important

attribute in differentiating, or classifying products, is number of cylinders, followed by vehicle price and peak RPM.

Such attributes may or may not be important in the choice process, (as will be described in the next subsection) but

do provide information to design engineers. Therefore knowledge that the vehicles can be differentiated by peak

RPM can lead to a benchmarking study to understand why there is much variation in this attribute, leading to a better

understanding of competitive designs. Although peak RPM may not be a significant choice attribute, it may be found

that peak RPM is correlated with a performance that is important in the choice process through a technical analysis.

Also, decision trees do not require a smooth functional relationship between attributes and choice. As shown in the

Figures 4.5 and 4.6, the decision tree provides a more visual understanding of how choices are classified, which can be

useful for designers who want to better understand how different segments of the population select different products.

95

The C4.5 Decision Tree built with S can be compared to a parametric Multinomial Logit Regression (MNR) model

built using only S to predict choices. Figure 4.7 gives the histogram results of both the MNR and the C4.5 Decision

Tree. For this given data set of only demographic attributes, the MNR and C4.5 Decision Tree are quite comparable

on most of the vehicle choice predictions, except the Toyota brand which the MNR over predicts and the C4.5 under

predicts. One reason for this disparity may be due to the fact that the Toyota brand is the most frequently occurring

brand within the data set, and each of the models compensates for this brand bias differently. The C4.5 DT tends

to over predict choice alternative more frequently than the DCA. However when the DCA over predicts, it does so

by an extremely significant margin (as is seen with the Toyota brand). This provides tremendous insight as to what

product development scenario each model may be better suited for. For example if consistent minor miscalculations

in a product create significant backlash in the customer market segment, then product development engineers may

opt to employ the DCA model. However if the consequences of having a large disparity between customer wants

and engineering capabilities is high, then product development engineers may decide to employ the DT model instead

which seemed to not over predict by great margins. Similar results (i.e., comparable prediction result) are also observed

in Figure 4.8 when both demographic and product attribute data are considered.

Figure 4.7: Histogram of prediction results of the MNR and C4.5 DT models based on demographic attributes alone

Research Question 3: Quantify Attribute Importance

How do design engineers quantify the relevance of different attributes (physical design attributes as well as socio-

demographic attributes) in the design of next generation products?

Both Discrete Choice Analysis and the C4.5 Decision Tree classification employ different techniques to quantify

attribute importance. In regards to the product specific attributes (which in the case study include attributes such

96

Figure 4.8: Histogram of prediction results of the MNR and C4.5 DT models based on demographic and product attributes

as horse power, mpg, number of doors, etc.), the DCA model uses the beta coefficients β to represent the level of

significance a particular product attribute has in determining a customer’s utility for a particular vehicle brand.

In the case study, since it is assumed that all vehicle choice alternatives have the same attributes (although they

may have varying degrees of attribute values), the beta coefficient β for a given physical vehicle attribute is constant

across all vehicle alternatives. Similar coefficients are calculated for the socio-demographic information, and a utility

function represents significance of these attributes in predicting customer choice behavior of vehicle alternatives.

The C4.5 Decision Tree classification employs a different technique to quantify attribute relevance in product

design and development. Based on the gain ratio criterion defined in equation (4.7), the C4.5 Decision Tree algorithm

tests each attribute and iteratively partitions the data set based on the attribute that maximizes this gain ratio. The

C4.5 Decision Tree structures presented in Figures 4.5 and 4.6 give a visual representation of attribute relevance to

vehicle choice alternatives. The closer the attribute is to the root of the tree (top most point of the tree in Figure 4.5),

the greater the gain ratio calculated for this attribute and hence the greater the attribute relevance to vehicle choice

classifications.

Several attributes in Figure 4.5 appear more than once within the tree due to the fact that continuous attributes are

discretized during the iterative partitioning of the data set and therefore different bounds for a particular attribute may

exist for different branches within the tree.

An interesting comparison can be made between the decision tree built using product and demographic attributes

and the choice model. As noted in the previous sub-section, product and demographic attributes important in the

decision tree are those which are most important in terms of differentiating, and hence classifying, vehicles. Product

97

and demographic attributes important in the choice model are those which are important in terms of describing why

people choose different vehicles. It is possible that attributes important in terms of classifying vehicles, such as peak

RPM, are not important in the choice process and vice versa. Table 4.12 reveals that Horsepower is the most important

choice attribute, whereas number of cylinders provided has the highest gain ratio and can be interpreted as being the

most important attribute for classifying vehicles. While there are differences among the rankings of importance of

attributes between the two methods, there is also much agreement. Price, horsepower, city MPG, and number of

cylinders are important to both classifying vehicles as well as describing the choice process. This information is

important to designers as it shows that vehicles do differ significantly on these attributes and they are important to the

choice process. On the other hand, Peak RPM has high relative importance in the decision tree but is insignificant in

the choice model. This tells the designer that peak RPM may be an attribute to study during design from a technical

standpoint since it varies quite a bit among vehicles, but that it is not important in the choice process.

Both the Discrete Choice Analysis and the C4.5 Decision Tree classification techniques provide researchers and

design engineers quantifiable measure of relative attribute importance in predicting product choice alternatives. Al-

though the Discrete Choice Analysis gives more of a quantitative measure (β coefficients) while the C4.5 Decision

Tree gives more of a qualitative measure (the position of the attribute within the tree structure) in the attribute im-

portance context. However in the attribute classification process, the splitting of a quantitative attribute (for example

horse power) in the decision tree can also give a quantitative measure of that specific attribute level.

In terms of model sensitivity, the structure of the C4.5 Decision Tree model in Figure 4.6 can be analyzed in detail.

Traversing down the tree as indicated by the red path, that is, citation{Number of Cylinders = 4, Peak RPM = 5400,

Vehicle Price = $19699, Marital Status=Single}, would result in a classification of Class=Toyota. Therefore for a

design engineer trying to understand the effects of changes in product attributes in relation to customer preference,

the decision tree rule stated above would indicate that as long as the peak RPM was less than 5400 (holding all of

the other attribute values constant), the resulting classification would be the preference of the Toyota brand. As an

enterprise decision maker of Toyota trying to maximize revenue, one would be tempted to decrease the peak RPM of

the vehicle (while holding all other attribute levels constant, hereby possibly reducing the manufacturing costs of the

vehicle). This may be theoretically sound based on the formulation of the C4.5 algorithm itself, however in reality,

reducing the peak RPM of the vehicle beyond a certain lower bound may cause customers to forgo this vehicle brand

altogether (e.g. if the vehicle had a peak RPM below all other customer choice alternatives).

The Discrete Choice Analysis technique approaches sensitivity analysis of attributes in a slightly different manner.

Where the C4.5 Decision Tree generates hard decision rules, the Discrete Choice Analysis model in comparison

updates the probability of choosing a particular brand of vehicles by once again generating a utility function based on

updated attribute values.

98

Research Question 4: Model Scalability

How easily can data sets and attribute dimensions be scaled and what effect does this have on the model integrity and

complexity?

The term model scalability used in this work relates to the ease at which the dimensions of the attribute space or the

size of the data can be increased and does not refer to scaling factors that may be used as parameters in different

demand modeling techniques. One of the major challenges of employing the Discrete Choice Analysis model in this

work was the issue of multicollinearity when attempting to minimize the Maximum Likelihood Estimate (MLE). This

is a frequent challenge often occurring in high dimensional data where correlations among attributes may exist more

frequently. Multicollinearity, which is caused by high correlation among the product or customer attributes assumed

to be independent, can cause unstable MLEs and inaccurate variances which may adversely affect the quality of the

generated model [138]. To minimize the bias that may result due to the multicollinearity issues experienced by the

Discrete Choice Analysis model, the attribute dimensions of the original vehicle data set were reduced to a more

manageable size. There are several proposed techniques to minimizing the effects of multicollinearity which include

the aggregation of highly correlated attributes into a newly defined attribute. One of the drawbacks of such an approach

is the ambiguity that results in trying to determine which attribute influences the class variable.

Like many classification based techniques in data mining, one of the fundamental assumptions of the C4.5 Deci-

sion Tree approach is that attributes within the data set are independent. This assumption enables the C4.5 algorithm

to sequentially test each attribute and determine its significance as it relates only to the class variable, overlooking the

interaction effects that may exist among attributes. Although this assumption may seem nave to some, vast empirical

data within the Data Mining community have validated the predictive accuracies of the C4.5 and other similar classi-

fication based approaches on their performance and predicative accuracy as it relates to traditional statistical methods

that do take into account higher order interactions amongst attributes [139, 140]. Therefore, the C4.5 Decision Tree

model is less affected by model scalability (in terms of high dimensionality attribute space) compared to the DCA

model and may be more suitable for product development efforts involving high dimensional customer attribute data.

.

Relation to Transportation Domain Research

In comparison to the research findings in the transportation domain, issues of multicollinearity were not reported,

one reason perhaps being the lower dimensionality attribute data used in that study in addition to the smaller choice

alternative set investigated (5 choice alternatives in the transportation domain research, compared to 22 choice alterna-

tive is the product development study presented in this work). In addition to this difference, the transportation domain

research focused only on customer demographic attributes (age, gender, household income, etc.) while the product

development comparative study presented in this work included both customer demographic attributes (age, gender,

99

Table 4.13: Summary of the DCA and C4.5 DT techniques

household income, etc.) as well as physical/performance product attributes (vehicle horsepower, MPG, vehicle body

type, etc). The inclusion of physical product attributes in this work enhanced the understanding of the difference

between the DCA and DT models in their predictive capabilities and model interpretation.

4.6.3 Summary and Conclusion

The overall research findings from the comparative study of the Discrete Choice Analysis (DCA) and C4.5 Decision

Tree (DT) Classification approaches are summarized in Table 4.13 above. Both of the techniques are quite efficient in

model generation (i.e., computation time). In terms of attribute dimensionality, several challenges due were encoun-

tered due to multicollinearity in the DCA model generation while the DT is constrained to the memory capabilities.

Both methods are quite straightforward to implement.

The DCA models used in this work were generated using the Stata§package while the DT model was generated

using Weka 3.5.1. The DCA generates a predictive model based on a given utility function that can be easily interpreted

by design engineers and embedded in an optimization model. DT however presents a visual model that is mainly

classification and qualitative in nature. The data set used in this case study can be considered small to medium

scale (205 instances with 10 attributes and one classifier variable). For large scale data, DCA may experience some

challenges with multicollinearity as discussed in section 5. The comparative study will be expanded to include a

more diverse set of product development data sets (stated VS revealed preference data, large VS small data sets, high

dimensional VS low dimensional attribute space, etc.) so as to present a more robust and generalized summary of the

relevance of DCA and DT in product development.

In summary, two well established choice modeling techniques were presented in order to investigate their ability

to quantify and classify customer choice behavior as it relates to product design and development. Real life vehicle

choice data (revealed preference data) was used to compare the two techniques and present recommendations relating

to product design. Each approach has its strengths and weaknesses ranging from computational complexity to model

interpretability. Overall, both the Discrete Choice Analysis and the C4.5 Decision Tree can be used to model customer

choice behavior in product design. However, the C4.5 Decision Tree may be better suited in predicting attribute

100

relevance in relation to classifying choice patterns while the Discrete Choice Analysis model is better suited to quantify

the choice share of each customer choice alternative. Because the decision tree provides a visual representation of the

classification process, it provides a useful tool for both quantitatively and qualitatively understanding how customers

of different demographic attributes select vehicles and how products are differentiated. The choice model does not

provide a visual representation, but provides an understanding of how both product and customer attributes influence

the choice process. It is hoped that the findings in this work will serve as a guide to enterprise decision makers and

engineers investigating efficient approaches to demand modeling and product design and development.

101

Chapter 5

Trend Mining for Predictive Product Design

5.1 Trend Mining Methodology

The ability to model emerging trends has broad applicability in product development, ranging from researching and

developing new product technologies to quantifying changes in consumer preferences in highly volatile markets. Tra-

ditional demand modeling techniques frequently employed in the product design community typically generate pre-

dictive models using data from a single snapshot in time (usually the most currently available data set) and hence

may not reflect the evolving nature of product trends. The absence of a temporal demand model for product design

presents a challenge to design engineers trying to determine the relevant product attributes to include/exclude in the

next generation of products.

The Preference Trend Mining (PTM) algorithm that is proposed in this chapter aims to address some fundamental

challenges of current demand modeling techniques being employed in the product design community. The first contri-

bution is a multistage predictive modeling approach that captures changes in consumer preferences (as they relate to

product design) over time, hereby enabling design engineers to anticipate next generation product features before they

become mainstream/unimportant. Because consumer preferences may exhibit monotonically increasing or decreasing,

seasonal or unobservable trends, a statistical trend detection technique is employed to help detect time series attribute

patterns. A time series exponential smoothing technique is then used to forecast future attribute trend patterns and

generate a demand model that reflects emerging product preferences over time.

The second contribution of this chapter is a novel classification scheme for attributes that have low predictive power

and hence may be omitted from a predictive model. Such attributes can be classified as either standard, nonstandard

or obsolete with the appropriate classification given, based on the time series entropy values that an attribute exhibits.

By modeling attribute irrelevance, design engineers can determine when to retire certain product features (deemed

obsolete) or incorporate others into the actual product architecture (standard) while developing modules for those

attributes exhibiting inconsistent patterns throughout time (nonstandard). Several time series data sets from the UC

Irvine machine learning repository are used to validate the proposed Preference Trend Mining model and compare it

to traditional demand modeling techniques for predictive accuracy and ease of model generation.

102

n- time stamped data sets

i=i+1
Calculate

No
IM(Attribute (i), Data Set (t))

Data set (t)=nt=t+1

Predict IM(Attribute (i)) for time step n+1
Yes i=i+1

Split Data Sets 1,…,n based on Max

No

p
Predicted IM (Attribute(1),…Attribute (k))

For Data subset (j),
homogeneous class distributiong

End TREE, Classify Irrelevant Attributes
(Obsolete, Standard or Nonstandard)

Yes

Figure 5.1: Overall Flow of Preference Trend Mining Methodology

Limitations of Current Demand Modeling Techniques

A recent comparative study in the product design community between the Discrete Choice Analysis and Decision Tree

Classification models reveals that both techniques are quite comparable in terms of model generation and predictive

accuracy. However the Decision Tree Classification model was found to be better suited for large scale data analysis

due to multicollinearity issues reported while employing DCA for high dimensional data [141]. Nevertheless both

demand modeling techniques are limited in their ability to characterize evolving product preference trends in the

market space due to the static nature of the models. Because the input of each model typically represents an instant

in time, design engineers are faced with the challenge of anticipating shifts in product preferences based on personal

experience, rather than quantitative customer feedback. To overcome these challenges the Preference Trend Mining

algorithm is introduced in the following section.

5.2 Methodology

Figure 5.1 presents the overall flow of the Preference Trend Mining algorithm, starting with the acquisition of n time-

stamped data sets. For each time step, the Interestingness Measure (IM) is calculated for each attribute. There have

been many proposed measures for evaluating attribute interestingness (relevance) such as the information gain metric,

gini index, Cosine measure, Support measure, Confidence measure, to name but a few [128, 142]. In this work, the

definition of attribute interestingness is limited to an attribute’s ability to reduce the non-homogeneity of the class

103

Attribute 1 Attribute 2 Class

Time Period 1
Attribute 1 Attribute 2 Class

Time Period 2
Attribute 1 Attribute 2 Class

Time Period 3
Attribute 1 Attribute 2 Class

Time Period 4
Attribute 1 Attribute 2 Class

Time Period 5
Attribute 1 Attribute 2 Class

a1,1 a2,2 C1
a1,1 a2,1 C1

1 2 2 1 C2

Attribute 1 Attribute 2 Class
a1,1 a2,2 C1
a1,1 a2,1 C1

1 1 2 2 C2

Attribute 1 Attribute 2 Class
a1,1 a2,1 C1
a1,1 a2,2 C1

1 1 2 2 C2

Attribute 1 Attribute 2 Class
a1,1 a2,2 C1
a1,1 a2,2 C1

1 1 2 2 C2

Attribute 1 Attribute 2 Class
a1,1 a2,1 C1
a1,1 a2,1 C1

1 1 2 2 C2a1,2 a2,1 C2
a1,2 a2,2 C2
a1,2 a2,1 C3

a1,1 a2,2 C2
a1,2 a2,2 C2
a1,2 a2,1 C3

a1,1 a2,2 C2
a1,1 a2,2 C2
a1,2 a2,2 C3

a1,1 a2,2 C2
a1,1 a2,2 C2
a1,1 a2,2 C3

a1,1 a2,2 C2
a1,1 a2,2 C2
a1,1 a2,2 C3

a1,2 a2,1 C3
a1,2 a2,2 C3
a1,2 a2,1 C4

a1,2 a2,1 C3
a1,2 a2,2 C3
a1,2 a2,1 C4

a1,2 a2,2 C3
a1,2 a2,2 C3
a1 2 a2 1 C4

a1,2 a2,2 C3
a1,2 a2,2 C3
a1 2 a2 1 C4

a1,1 a2,2 C3
a1,2 a2,2 C3
a1 2 a2 1 C4

a1,2 a2,2 C5
a1,2 a2,1 C5

a1,2 a2,2 C5
a1,2 a2,1 C5

a1,2 a2,1 C4
a1,2 a2,1 C5
a1,2 a2,1 C5

a1,2 a2,1 C4
a1,2 a2,1 C5
a1,2 a2,1 C5

a1,2 a2,1 C4
a1,2 a2,1 C5
a1,2 a2,1 C5

C2C2
C3C1 C1

C2
C2C2

C3

a2,2 C1 C1
a2,2 C2 a2,2 a2,2 a2,2C2 C3

a2,1
C1C1 a2,1 C1 a2,1 C1 a2,1 a2,1

C1C1

a1,1 a1,2 a1,1 a1,2 a1,1 a1,2 a1,1 a1,2 a1,1 a1,2

Figure 5.2: Attribute-class distributions over time (attribute a1,1 is highlighted although both attribute patterns change over time)

variable. In section 5.2.2, the inconsistencies that exist among different definitions of relevance are highlighted while

proposing an approach to mitigate these inconsistencies by evaluating attribute interestingness through time. That is,

an attribute that is truly relevant, will have consistently high relevance scores throughout time and vice versa.

For each time step in Figure 5.2, the IM for each attribute is calculated and a seasonal time series predictive model

is then employed to forecast the trend patterns (monotonically increasing, decreasing or seasonal trend patterns) for

each attribute. The attribute with the highest predicted IM is selected as the split attribute for the future (unseen) time

period and all time stamped data sets are partitioned based on the unique values of this attribute. The process continues

until a homogenous class value exists in the model. The flow diagram in Figure 5.1 ends with the classification of

attributes (as either obsolete, standard and nonstandard) that are omitted from the resulting model.

The following sections of the paper will expound on the steps of the flow diagram in Figure 5.1.

5.2.1 Discovering Emerging Trends For Product Design

Trends within a data set can be characterized as monotonically increasing or decreasing, seasonal (where data

exhibits some type of cyclical behavior) or both. There may also be instances where the time series data set exhibits no

type of discernable pattern suitable for statistical modeling. In the context of product design, each of these preference

trend scenarios are considered in the proposed methodology. The time series data set represented in Figure 5.2 will be

used to illustrate the notion of attribute trends within a raw data set. Figure 5.2 comprises of 5 time periods. Attribute

1 comprises of two unique values {a1,1, a1,2} and similarly for Attribute 2 {a2,1, a2,2}. The last column in Figure

5.2 represents the class (dependent) variable which has 5 mutually exclusive outcomes {c1,c2,c3,c4,c5}. As can be

observed from time periods t1 to t5, the number of instances of Attribute 1’s value a1,1 increases from 2 at time period

t1 to 6 at time period t5. Looking closer at the square graphs in Figure 5.2, it can be observed that at time period t1,

although Attribute 1’s a1,1 value only has a total count of 2, it represents a homogenous distribution of class value c1

104

Time Period 1 Time Period 2 Time Period 3 Time Period 4 Time Period 5Time Period 1 Time Period 2 Time Period 3 Time Period 4 Time Period 5
F F E t E t G iF F E t E t G iF F E t E t G iF F E t E t G iF F E t E t G i Freq
a1 1

Freq
a1 2

Ent
a1 1

Ent
a1 2

Gain
A1

Freq
a1 1

Freq
a1 2

Ent
a1 1

Ent
a1 2

Gain
A1

Freq
a1 1

Freq
a1 2

Ent
a1 1

Ent
a1 2

Gain
A1

Freq
a1 1

Freq
a1 2

Ent
a1 1

Ent
a1 2

Gain
A1

Freq
a1 1

Freq
a1 2

Ent
a1 1

Ent
a1 2

Gain
A1 a1,1 a1,2 a1,1 a1,2 A1

6 4 0 95 0 6 0 7

a1,1 a1,2 a1,1 a1,2 A1
5 5 0 76 0 76 0 72

a1,1 a1,2 a1,1 a1,2 A1
4 6 0 40 0 88 0 97

a1,1 a1,2 a1,1 a1,2 A1
3 7 0 28 1 37 0 68

a1,1 a1,2 a1,1 a1,2 A1
2 8 0 1 52 0 72 6 4 0.95 0.6 0.75 5 0.76 0.76 0.724 6 0.40 0.88 0.973 7 0.28 1.37 0.682 8 0 1.52 0.72

Attribute 1 Frequency Over Time Attribute 1 Entropy Over Time Attribute 1&2 Gain Over Time
8

q y

2

Attribute 1 Entropy Over Time
1.2

Attribute 1&2 Gain Over Time

6 1 5

2

0 9

1.2

6

nc
y 1.5

py

0.9

n

4qu
e

a1 1
1

nt
ro

p

a1 1
0.6

G
ai

n

Att ib t 1
2Fr

eq a1,1
a1 2 0 5

En a1,1
1 2 0 3

G Attribute 1

Attrib te 22 a1,2 0.5 a1,2 0.3 Attribute 2

0 0 0

0 2 4 6 0 2 4 6 0 2 4 6

Period Period Period

Figure 5.3: Characterizing Attribute Preference Trend Over Time

(lower left quadrant in time period t1). Moving through time to time step t5, it can be observed that the same attribute

value a1,1 has a count of 6 but with a non-homogeneous distribution of the class variable (the lower left quadrant in

time series t5 has a mixture of c1, c2 and c3). The change in the predictive power of each attribute can be quantified

by calculating the attribute Interestingness Measure (IM) over time which in this case is the Gain Ratio. Figure 5.3

presents a visual representation of each attribute Gain Ratio over time. In Figure 5.3, although Attribute 1 starts out

with a higher Gain Ratio (predictive power) than Attribute 2, by time period 4, Attribute 2 has over taken Attribute 1 in

relevance to the class variable. If a predictive model had been generated at time period 3, the emerging preference trend

of Attribute 2 would not have been realized. To overcome these challenges, the Holt Winters exponential smoothing

technique is employed which uses a weighted averaging technique, taking into account the local level, the trend, and

the seasonal components of the time series data [143, 144].

Holt-Winters Exponential Smoothing

The Holt-Winters Exponential Smoothing is a non-parametric model that can be used to forecast each attribute’s

predictive power for the kth step ahead so that emerging preference trends can be anticipated in the market space.

Non parametric statistical tests may be preferred in machine learning scenarios due to the relaxation of the normality

assumption that many parametric statistical trend tests require [145]. Since no prior knowledge of the distribution of

the incoming data is assumed, a relaxation of the data normality constraint is preferred. The (k) step-ahead forecasting

model is defined as:

ŷt(k) = Lt + kTt + It−s+k (5.1)

105

where

Level Lt (the level component):

Lt = α(yt − It−s)+(1−α)(Lt−1 +Tt−1) (5.2)

Trend Tt (the slope component):

Tt = γ(Lt −Lt−1)+(1− γ)Tt−1 (5.3)

Season It (the seasonal component):

It = δ(yt −Lt)+(1−δ)It−s (5.4)

Here,

• yt : Represents the data point at the most recent time period (t).

• ŷt(k): Represents the kth time step ahead forecasted value beyond yt (I.e.,ŷt(k)= yt+k).

• s: Represents the frequency of the seasonality (monthly, quarterly, yearly, etc.).

The smoothing parameters α,γ,δ are in the range {0,1} and are estimated by minimizing the sum of squared errors

for one time step ahead [143, 144].

Several well established statistical techniques (both parametric and nonparametric) exist for modeling time series

data including the Seasonal-Trend decomposition procedure based on Loess regression (STL), variations of the Box-

Jenkins models which include the AutoRegressive Moving Average (ARMA) and AutoRegressive Integrated Moving

Average (ARIMA), to name but a few [146, 147]. Research studies on the predictive accuracies of these models reveal

no conclusive evidence to suggest one model being superior for all data structures [147].

Based on the results in Figure 5.3, it can be observed that Attribute 2 would be selected as the relevant attribute

in time period 6 (since at each iteration, the attribute with the highest Gain Ratio is always selected). Under the Gain

Ratio definition of attribute relevance, Attribute 1 would now be considered irrelevant at iteration 1 of the decision tree

induction algorithm. Based on the irrelevance characterizations presented in section 5.2.2, Attribute 1 could either be

an obsolete attribute, a nonstandard attribute or a standard attribute. In order to determine the assignment of Attribute

1, the temporal behavior of each mutually exclusive value of Attribute 1 (a1,1 and a1,2) needs to be determined. The

following section details the proposed attribute quantification methodology.

106

Attribute 2
Iteration 1 a2,1 Data Subset a2,2 Data Subset

c1 c cc1 c2 c2

Attribute 5Iteration 2
a D t S b t Attribute 5a5,1 Data Subset a5,2 Data Subset

c1 c1
c2

Attribute 3Iteration 3

a3,1 Data Subset A3,2 Data Subset

c1
c2

Figure 5.4: Example Decision Tree Result for Product Design

5.2.2 Quantifying Attribute Relevance

One of the major challenges in predictive model generation is understanding the design implications of the resulting

model in terms of attribute relevance or irrelevance. To understand some of the challenges that arise in demand models,

the following example is presented.

A set of attributes {A1,..., A5} is defined, each with a set of mutually exclusive outcomes ai, j, where i corresponds

to the specific attribute Ai and j corresponds to the attribute value. For simplicity, it is assumed that j = 2 for all

attributes. A class variable is also defined that is conditionally dependent on one or several of the defined attributes.

The class variable is also binary with values {c1 , c2 }.

Figure 5.4 is a visual representation of a resulting data mining decision tree structure employing the Gain Ratio

metric described in section 4.1.2. The following decision rules can be obtained by traversing down each unique path

of the tree in Figure 5.4.

1. IF A2=a2,1 AND A5=a5,1 THEN Class=c1

2. IF A2=a2,1 AND A5=a5,2 AND A3=a3,1 THEN Class=c1

3. IF A2=a2,1 AND A5=a5,2 AND A3=a3,2 THEN Class=c2

4. IF A2=a2,2 THEN Class=c2

107

Looking at the four decision rules above, it can be observed that attributes A1 and A4 are not part of the model.

Some immediate questions arise based on these findings:

1. What does the absence of attributes A1 and A4 tell design engineers about their relevance to future product

designs?

2. How long into the future will the current decision rules be (i.e., maintain high predictive capability) valid?

3. Are there any emerging attribute trends that are not represented by the decision tree that may be useful to design

engineers?

Table 5.1: Attribute Characterization based on Attribute Definition
Attribute D 1 D 2 D 3 D 4 D 5

Attribute 1 x x
Attribute 2 x x x
Attribute 3 x x x
Attribute 4 x x
Attribute 5 x x x x

Before addressing the research questions regarding attribute relevance/ irrelevance, several well established defi-

nitions of attribute relevance that exist in the literature are introduced [148, 149].

• Definition 1: An attribute Ai is said to be relevant to a concept (decision rule) C if Ai appears in every Boolean

formula that represents C and irrelevant otherwise.

• Definition 2: Ai is relevant iff there exists some attribute value ai j and class value ci for which p(Ai=ai j)>0

such that p(Class=ci|Ai=ai j) 6=p(Class=ci).

• Definition 3: Ai is relevant if each unique value varies systematically with category (class) membership

• Definition 4: Ai is relevant iff there exists some ai j, ci, and si for which p(Ai=ai j)>0 such that

p(Class=ci,Si=si|Ai=ai j) 6=p(Class=ci,Si=si) , where Si represents the set of all attributes not including Ai.

• Definition 5 Ai is strongly relevant iff there exists some ai j, ci and si for which p(Ai=ai j,Si=si)>0 such that

p(Class=ci|Ai=ai j,Si=si) 6=p(Class=ci | Si=si).

108

Based on the results from Table 5.1, there exists the possibility that an attribute evaluation metric may omit relevant

attributes in the model due to inconsistencies in how attribute relevance is defined [148]. For design engineers, omitting

a key attribute due to an irrelevance characterization could mean the subsequent failure of a product as customer needs

may not be fully captured. These inconsistencies in attribute characterization are minimized by looking at the problem

from a time series perspective. That is, attributes that are truly relevant to a product design should consistently show

up in the predictive models through many time steps and attributes that are indeed irrelevant to a product design would

remain absent in the predictive model over time.

The next section relates the concepts of attribute relevance to product design where the definition of attribute

relevance/irrelevance is expanded to aid design engineers determine when to include or exclude certain attributes for

next generation product design.

5.2.3 Characterizing Attribute Irrelevance in Product Design

For design engineers, determining how attributes within a given data set influence future consumer purchasing de-

cisions is paramount and could mean the market success or failure of a new product. The definitions of attribute

relevance presented in the previous section may not capture all of the concepts relating to product design. For exam-

ple, the results in the decision tree in Figure 5.4 reveal that attributes A1 and A4 are not part of the decision tree and

are therefore considered irrelevant based on the pertaining definitions of attribute relevance presented in section 5.2.2.

That is, their inclusion/exclusion does not significantly influence the values of the class variable. Should attributes A1

and A4 therefore be omitted from future product designs and if so, what consequences would this have in the consumer

market space?

To address these issues in product design, several subcategories of attribute irrelevance are proposed, with the goal of

ensuring that vital attributes are not omitted from a product design simply based on an irrelevance characterization.

1. Obsolete Attribute (OA): An attribute Ai is defined as obsolete if it has been deemed irrelevant at iteration j

(given time periods t1,...,tn) and its inclusion/exclusion over time does not systematically influence the values

of a class variable. The measure of systematic influence is determined by the time series entropy trend of Ai.

If Ai exhibits a monotonically increasing entropy trend (determined by the Mann-Kendall trend detection test

introduced in Section 5.2.3), then this indicates that attribute Ai is consistently losing predictive power over

time. If an attribute falls under this classification at the end of a given time series, it can be omitted from the

next generation product designs as seen in Figure 5.5.

2. Standard Attribute (SA): An attribute Ai is defined as standard if it has been deemed irrelevant at iteration

j (given time periods t1,...,tn) and its inclusion/exclusion over time systematically influences the values of a

109

Product Architecture
(Standard Classification)

Obsolete Design
(Obsolete Classification)

Figure 5.5: Product Design Implications of Attribute Irrelevance Classification

class variable. As with the previous definition, the measure of systematic influence will be quantified based on

the time series entropy trend of Ai. If Ai exhibits a monotonically decreasing entropy trend (determined by the

Mann-Kendall trend detection test introduced in Section 5.2.3), then this indicates that attribute Ai is consistently

gaining predictive power over time (despite its initial irrelevant characterization). If an attribute falls under this

classification at the end of a given time series, it should be considered vital to a product design, despite its

seemingly irrelevant characterization as seen in Figure 5.5. An example of such an attribute would be an airbag

in an automobile. Since almost every vehicle is now equipped with an airbag, customers may not consider this

attribute while making a vehicle purchase because it is assumed to be a standard to the vehicle. If however the

airbag were removed from the vehicle design, this may significantly alter a customer’s purchasing decision.

3. Nonstandard Attribute (NA): An attribute Ai is defined as nonstandard if it has been deemed irrelevant at it-

eration j (given time periods t1,...,tn), and its inclusion/exclusion does not reveal a discernible relation to the

class variable. This is determined by the absence of a monotonically increasing or decreasing entropy trend as

determined by the Mann-Kendall trend detection test introduced in Section 5.2.3. Attributes that may exhibit

this type of behavior in product design may be novel attributes that consumers may not yet fully be aware of or

existing attributes that have variations within the market space. Such attributes should not be overlooked and

may either turn out to be a short term consumer hype or may eventually become standard expectations. Conse-

quently, modular components should be designed for attributes exhibiting this type of pattern (as seen in Figure

5.5) as these modules can be upgraded or eliminated all together based on future market demands.

110

Mann-Kendall Trend Detection

To detect trends for each Attribute Ai that has been deemed irrelevant at iteration j, the non parametric Mann-Kendall

statistic is employed [150, 151]. The Mann Kendall trend test does not provide the algorithm with the magnitude of

the trend, if one is detected. Rather, it simply quantifies the presence/absence of a trend which is all that is needed to

classify each attribute within the data set. The Mann Kendall test is based on the statistic S defined as [145]:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(x j− xi) (5.5)

Here

• n represents the total number of time series data points.

• x j represents the data point one time step ahead.

• xi represents the current data point.

sgn =


1 if (x j− xi) > 0

0 if (x j− xi) = 0

−1 if (x j− xi) < 0

(5.6)

The corresponding Kendall’s Tau is related to the S statistic as follows:

τ =
S

1
2 n(n−1)

(5.7)

The null hypothesis is that there is no trend within the data. Therefore, if the resulting p-value is less than the

significance level (α=0.05), the null hypothesis is rejected and a positive (positive τ) or negative (negative τ) trend is

assumed.

The characterization of attribute irrelevance (as either obsolete, nonstandard or standard) is determined by looking

beyond a single data set and generating models based on multiple time steps that quantify attribute relevance/irrelevance

over time. Given a time series data set t1 to tn as illustrated in Figure 5.6, each data set from t1 to tn is analyzed and

based on the Gain Ratio relevance definition, the test attribute Ai is characterized as either relevant or irrelevant at

iteration j. If an attribute is deemed irrelevant, the Mann Kendall test is then employed to analyze the histories of each

attribute entropy value from t1 to tn. An attribute value exhibiting increasing predictive power (lower entropy) over

111

Iteration 1

Attribute Ai

irrelevant

obsolete

nonstandardirrelevant

relevant

standard

nonstandard

{t1,t2,…,tn}

Iteration m

Attribute Ai

obsolete

d d

..

.

irrelevant

relevant

standard

nonstandard

{t1,t2,…,tn}

Figure 5.6: Attribute (Ai) characterization (relevant and irrelevant categorization) from iteration 1 to iteration m (each iteration
contains a total of n time series data sets).

time would be deemed potentially useful in future iterations. The resulting characterization of the predictive model

generated in time period tn+1 will therefore assign an attribute irrelevance characterization based on the trends of the

historical entropy data.

Each of the attribute irrelevance definitions will be represented as a binary variable; 1 implies that an attribute is

characterized as either Obsolete (OA), Nonstandard (NS) or Standard (SA) at a given iteration j and 0, otherwise. At

each iteration, an attribute deemed irrelevant can only assume one of the 3 possible irrelevant characterizations. The

final classification of an irrelevant attribute is assigned after the final iteration m. The final iteration m is reached after a

homogeneous class distribution is attained for one of the subsets of the data (a leaf node in the decision tree structure).

A variable is defined for each irrelevant characterization (OAt=1,...,n, NSt=1,...,n, SAt=1,...,n) and its value, determined

by summing across all iterations (j=1,...,m) as described below:

OAt=1,...,n =
m

∑
j=1

OA j ·
Tj

T
(5.8)

NSt=1,...,n =
m

∑
j=1

NS j ·
Tj

T
(5.9)

112

SAt=1,...,n =
m

∑
j=1

SA j ·
Tj

T
(5.10)

Here,

• Tj: represents the number of data instances used to calculate the Gain Ratio statistics at iteration j.

• T : represents the total number of data instances in the entire data set.

At iteration j, each attribute characterization is weighted based on the the proportion (Tj/T) of instances. Therefore

the initial characterization at iteration 1 (containing the entire data set) carries the most weight due to the presence of

all instances of the data. The classification of an attribute at time step tn+1 is determined by selecting the irrelevant

characterization with the highest variable value ((OAt=1,...,n, NSt=1,...,n, SAt=1,...,n)). Given time steps t1,...tn, the pseudo

code for the irrelevant attribute characterization for Attribute Ai is as follows:

1. Start: Iteration j=1

2. If predicted Gain Ratio of Attribute Ai is not the highest, Attribute Ai

is considered irrelevant

3. Employ Mann Kendall (MK) trend test for Attribute Ai

4. If MK τ is negative (with p-value < alpha), irrelevant classification=Standard

5. Else If MK τ is positive (with p-value < alpha), irrelevant classification=Obsolete

6. Else If MK τ is positive/negative (with p-value > alpha),

irrelevant classification=Nonstandard

7. While data set/subset does not contain a homogeneous class

8. Split the data set into subsets based on the number of mutually exclusive values of

the attribute with the highest Gain Ratio from Step 2

9. j=j+1 and revert to Step 2 for each data subset

10. End Tree, Classify Irrelevant Attribute Ai based on highest variable value

((OAt=1,...,n, NSt=1,...,n, SAt=1,...,n))

113

1.000

1.200
Attribute Gain Ratio Over Time

Holt‐Winters Forecast

0.600

0.800

n
Ra

ti
o

Hard Drive

TalkTime

0.200

0.400G
ai
n Camera

Interface

Connectivity

2 G Processor

0.000

1 2 3 4 5 6 7 8 9 10 11 12 13

Time

2010 Historical Gain Ratio Predicted Gain Ratio

Figure 5.7: Time Series Gain Ratio at iteration 1 (Period 1-12 with Period 13 predicted by employing the Holt Winters predictive
model)

Product Concept Demand Modeling

Once the time series decision tree model has been generated and irrelevant attributes characterized, a fundamental

question that still remains is how to estimate the demand for the resulting product concepts (unique attribute combi-

nations). For example, the resulting product concept {Hard Drive=16GB, Interface=Slider, Price=$179} in the left

branch of Figure 5.9, enterprise decision makers would want to know the overall market demand for this particular

product so that potential product launch decisions can be made. With a traditional decision tree model (using a static

data set for model generation), the demand for this particular product concept will be a subset of the original training

data set used to generate the model (Tm/T, where Tm denotes the number of supporting data instances after m itera-

tions/data partitions) [29]. This is analogous to a product’s choice share (Discrete Choice Analysis case) which has

been used extensively by researchers in the design community to estimate product demand [141, 152, 153]. Since

the proposed Trend Mining algorithm is making predictions about future product designs, the demand for a resulting

product concept is estimated based on the time series trend of the supporting instances Tm using the Holt-Winters

forecasting approach presented in section 5.2.1. This will enable design engineers to anticipate future product demand

for the predicted trend mining model.

114

5.3 Product Design Example

5.3.1 Cell Phone Design Study

To validate the proposed trend mining methodology, several well known data sets (from the UC Irvine machine learning

repository) are tested to compare the results of the proposed Preference Trend Mining algorithm with traditional

demand modeling techniques. For conciseness, a detailed explanation of the cell phone case study is presented while

only providing the results for the remaining data sets used in the evaluation. The original cell phone case study was

based on a University of Illinois online survey of cell phone attribute preferences originally created using the UIUC

webtools interface [55, 29]. To accommodate the time series nature of the proposed methodology, the product design

scenario is presented as follows:

Enterprise decision makers within a cell phone company are looking to launch their next generation cell phone

early in the first quarter of 2010. To guide their product design decisions, 12 data sets (representing monthly customer

preference data for fiscal year 2009) are available through online customer feedback. Based on the time series data,

design engineers want to integrate customer preferences directly into the next generation product design. The goal of

the new cell phone project is for the functionality of the next generation cell phone design to anticipate the preferences

of the customers at the time of product launch; preferences that are constantly evolving within the market space.

For each monthly data set, there are 6 product attributes and 1 dependent variable. There are a total of 12,000 in-

stances (customer response) for the entire 12 month time period, partitioned into 1000 instances of customer feedback

per month. The attributes, along with their corresponding values are as follows:

• Hard Drive: {8 GB, 16 GB, 32 GB}

• Talk Time: {3 Hours, 5 Hours, 7 Hours}

• Camera: {2.0 MP, 3.1 MP, 5.0 MP}

• Interface: {Flip Phone, Slider Phone, Touch Screen Phone}

• Connectivity: {Bluetooth, Wifi}

• 2G Processor: {Limited, Capable}

The class variable is the price category of the given cell phone design within the time series data: Price: {$99, $149,

$179, $199, $249}.

The structure of the data is similar to that presented in Figure 5.2 with the attribute names indicated by the first

row of each column (except for the last column which represents the class variable, price). In the time series data, the

distribution of the attributes as well as the class values associated with each attribute value changes over time.

115

Up until now, demand modeling in product design had focused on utilizing the most recent data set to generate

predictive models about future customer behavior. The research findings presented in section 5.4 reveal that such

techniques may not fully capture emerging consumer preference trends and may ultimately mislead future product

design decisions.

5.4 Results and Discussion

The results of the cell phone case study introduced in section 5.3 provide valuable insight into the challenges of

designing products for volatile consumer markets. To begin, the time series Gain Ratio statistics for each attribute

(at iteration 1) shown in Figure 5.7 is presented. In the proposed trend mining methodology the algorithm takes into

consideration all possible scenarios for the attribute Gain Ratio statistics over time. The algorithm captures attributes

that display a monotonically increasing or decreasing trend, a seasonal trend or no trend at all which is model using the

Holt Winters technique presented in section 5.2.1. Based on the level of seasonality or trend within the data, the one

time step ahead predictions (period 13) are modeled. At period 12 in Figure 5.7, it can be observed that the Interface

attribute has a higher Gain Ratio than the Hard Drive. However, based on the emerging trends of these two attributes,

it can be observed that the Hard Drive attribute will have a higher Gain Ratio in future time periods, which the Holt

Winters model predicts in time period 13.

Interface

Connectivity Camera$99

Touch ScreenSliderFlip Phone

Connectivity Camera$99

Bluetooth Wifi 5.0 MP 3.1 MP2.0 MP

$149 $179 $179 $249 $199

Figure 5.8: Decision Tree Model using Period 12, 2009 data set only for model generation(results attained using Weka 3.6.1 [2])

New design insights obtained by preference trend mining In order to understand the product design implications

of these findings, Figure 5.8 presents the predictive model results that are generated using the most recent data set

(period 12). In Figure 5.8, the only relevant attributes to the price variable are: Interface, Connectivity and Camera,

116

Hard Drive

16 GB 8 GB32 GB

Interface Talk Time$249

$179 $99$149

Touch ScreenSlider

Connectivity

3 Hours5 Hours

Connectivity

BluetoothWifi

$199$179

Tree Path
(right to left)

Relevant Attributes Price Demand Irrelevance Characterization
Standard Nonstandard Obsolete

1 Hard Drive Talk Time $99 180 Camera 2G Processor Connectivity Interface1 Hard Drive, Talk Time $99 180 Camera 2G Processor, Connectivity Interface

2 Hard Drive, Talk Time $149 362 2G Processor, Connectivity Interface,
Camera

3 Hard Drive $249 73 Talk Time Camera 2G Processor Connectivity Interface3 Hard Drive $249 73 Talk Time, Camera 2G Processor, Connectivity Interface

4 Hard Drive, Interface
Connectivity

$199 412 Talk Time, Camera 2G Processor

5 Hard Drive, Interface
Connectivity

$179 99 Talk Time, Camera 2G Processor

6 Hard Drive, Interface $179 208 Talk Time, Camera 2G Processor, Connectivity

Figure 5.9: Trend Mining Model using Periods 1-12, 2009 data for model generation (results attained using ESOL developed Java
Based PTM code compatible with Weka [2])

with the associated decision rules acquired by traversing down the appropriate paths of the decision tree. In contrast,

when the proposed time series Preference Trend Mining algorithm is employed using the data from periods 1-12,

there are noticeable differences in the resulting attributes that are considered relevant (Figure 5.9). From the resulting

decision trees in Figures 5.8 and 5.9, it can be observed that the common attributes between the two models are the

Interface and Connectivity attributes. However, even with the Interface attribute being common between the two

models, it can be observed that the Flip Phone interface design found in Figure 5.8 is not included in Figure 5.9,

providing engineers with the knowledge that this particular attribute value is not desired in future time periods. Given

the differences between these two decision tree structures, entirely different product design decisions may result to

address the needs of the market.

Furthermore, for those attributes that are considered irrelevant to the classification of price (and are therefore

omitted from the decision tree model in Figures 5.8 and 5.9), design engineers have no direct way of deciding whether

these attributes should be omitted from all future cell phone designs. As a reminder, an irrelevant attribute simply

117

1.50

y

Hard Drive Entropy
1.50

Talk Time Entropy
1.50

Camera Entropy

Tau P‐Value Tau P‐Value Tau P‐Value
Mann‐Kendall Mann‐Kendall Mann‐Kendall

0 00

0.50

1.00

En
tr
op

y

8 GB Hard Drive

16 GB Hard Drive

32 G d i

0.50

1.00

En
tr
op

y

3 Hours

5 Hours 0.50

1.00

En
tr
op

y

2.0 MP

3.1 MP

Tau P Value
‐.727 .001
‐.909 .000
1 00 000

Tau P Value
.091 .732
.424 .064
198 409

Tau P Value
.094 .729
‐.078 .782
110 6770.00

0 3 6 9 12

Time

32 GB Hard Drive 0.00

0 3 6 9 12

Time

7 Hours 0.00

0 3 6 9 12

Time

5.0 MP‐1.00 .000 ‐.198 .409 .110 .677

1.50

y

Interface Entropy
1.50

Connectivity Entropy

1.50

2G Processor Entropy

Tau P‐Value
Mann‐Kendall

Mann‐KendallMann‐Kendall

0 00

0.50

1.00

En
tr
op

y

Flip

Slide 0.50

1.00

En
tr
op

y

Bluetooth

Wifi
0.50

1.00

En
tr
op

y

Limited

Capable

Tau P Value
1.00 1.00
‐.264 .269
264 269

Tau P‐Value
.212 .373
‐.970 .000

Tau P‐Value
.970 .000
.970 .0000.00

0 3 6 9 12

Time

Touch 0.00

0 3 6 9 12

Time

0.00

0 3 6 9 12

Time

Capable.264 .269

Figure 5.10: Time Series Attribute Entropy values for irrelevance characterization

Table 5.2: Comparison of predictive accuracies between the PTM and DT models using Time Series Data
Predictive Model Model Validation Characteristics

Data set # Attributes #Instances/Period # Periods to Train # Periods to Test Higher % Accuracy P-Value
PTM Car Evaluation 7 1728 24 12 x 0.00507
DT

PTM Cylinder Bands 10 540 36 24 x 0.00007
DT

PTM Automobile Brand 9 205 24 12 x 0.00008
DT

means that at iteration j, an attribute does not have the highest Gain Ratio, not necessarily that it does not have any

predictive power whatsoever, as illustrated in Figure 5.7. At iteration 1, since the PTM algorithm predicts that the

Hard Drive attribute will have the highest Gain Ratio at time period 13 (see Figure 5.7), the remaining attributes

are characterized as either obsolete, nonstandard or standard. The entropy histories along with the results from the

Mann Kendall trend test in Figure 5.10 indicate that the 2G Processor is characterized as obsolete (positive τ values

and p value within tolerance limit) while the remaining attributes are characterized as Nonstandard (due to p values

exceeding the tolerance limit). After subsequent iterations of the PTM algorithm, the attributes that do not show up

in the tree are therefore classified as shown in Figure 5.9, with the accompanying demand (# supporting predicted

instances) accompanying each branch of the tree.

5.4.1 Model Validation

In addition to the structural differences of the resulting decision tree models, there are also noticeable differences

in the predictive accuracies. Figure 5.11 presents the predictive accuracy results between the proposed Preference

Trend Mining (PTM) model and the traditional Decision Tree (DT) classification model. The predictive accuracies

are calculated using 12 monthly data sets from 2010. For each instance in a given monthly data set, the attribute

combinations resulting in a class value are tested against the decision tree predictions by traversing down the path of

the decision trees in Figures 5.8 and 5.9. If the class value predicted by the decision tree model matches the actual

118

100.00%

Cell Phone Data Set Model Accuracy Comparisons

80.00%

90.00%

ac
y

60.00%

70.00%

%
 A
cc
ur
a

PTM

DT

40.00%

50.00%

DT

0 1 2 3 4 5 6 7 8 9 10 11 12

Future Time Periods (2010)

Figure 5.11: Comparison of predictive accuracies between the PTM and DT models (using 12 unseen time stamped data from
2010 [2])

class value in the monthly data set, a value is incremented in the correct predictions category, otherwise a value is

incremented in the incorrect predictions category. The summary predictive accuracies in Figure 5.11 reveal that the

PTM model attains a higher predictive accuracy for many of the time periods, compared to the DT model.

To obtain a statistically valid conclusion on the predictive accuracies of the two models, the Wilcoxon signed rank

test is employed which has been proposed in the data mining/machine learning literature as a suitable approach for

comparing two models against multiple data sets [154, 34]. The null hypothesis of the test is that the median difference

between the two model accuracies is zero. The alternate hypothesis is that the accuracy of the DT model is less than

that of the PTM model. Using a significance level of α=0.05, the null hypothesis (data in Figure 5.11) is rejected with

a p value of 0.0224, providing statistical evidence that the accuracy of the PTM algorithm exceeds that of the DT for

the Cell Phone data set. It can be seen that the predictive accuracy of both models diminishes over time with values

slightly above 50 % in period 12. The PTM accuracy may be enhanced in future time periods by changing the k value

of the k-ahead time predictions from 1 (in the cell phone model) to 12.

Additional data sets from the UC Irvine machine learning repository were generated and tested against the two

models for model accuracy with varying data set conditions (attribute space, number of instances, number of time

periods, etc.) with the results presented in Table 5.2. The results from Table 5.2 emphasize the robustness of the

proposed PTM algorithm in handling different types of time series data while still maintaining greater predictive

119

accuracies, compared to the traditional decision tree model. Due to the variation in data set structure, size, etc., it

is rare for an algorithm to outperform on every metric of performance [155]. Therefore, the proposed PTM model

is well suited for data sets that exhibit monotonically increasing/decreasing or seasonal trends similar to the test

data sets presented. In scenarios where no discernable trends exist in the data set, the PTM algorithm was found to

perform comparable to traditional demand modeling techniques which should not be surprising, given the underlying

formulation of the proposed PTM algorithm.

5.5 Conclusion and Path Forward

The major contribution of this research is to propose a machine learning model that captures emerging customer

preference trends within the market space. Using time series customer preference data, a time series exponential

smoothing technique is employed that is then used to forecast future attribute trend patterns and generate a demand

model that reflects emerging product preferences over time. The Mann Kendall statistical trend detection technique is

then used to test for attribute trends over time. An attribute irrelevance characterization technique is also introduced

to serve as a guide for design engineers trying to determine how the classified attributes are deemed irrelevant by the

predictive model. The insights gained from the preference trend mining model will enable engineers to anticipate

future product designs by more adequately satisfying customer needs. Future work in customer preference trend

mining will include expanding the current approach to handle the continuous attribute and class domain.

120

Chapter 6

Capturing Product Preference Trends Using
Publicly Available Customer Review Data

6.1 Introduction

A major challenge that has plagued the product design community has been the lack of large scale, realistic cus-

tomer data to validate proposed product design methodologies or solve complex design problems. More than often

researchers and design engineers resort to conducting customer surveys or focus group interviews that can be costly

and time consuming. Recent research studies have shown that a major online retail company can have as many as

10 million active product reviews while it has been reported that more than 50% of online customers indicated that

customer reviews played an important role in influencing their purchasing decisions. Based on these findings, the

authors of this work have developed a publicly available online interface (www.trendminingdesign.com) built upon an

automated computer exploration algorithm that captures and stores time series product preference data. The goal of

this research is to enhance the design creativity process by providing design engineers with direct access to large scale,

time series customer preference data that can be used to guide the product concept generation process.

The rapid expansion of internet usage, both domestically and globally, is helping fuel an increasing flow of infor-

mation across many barriers. Technological successes such as Wikipedia, Facebook R©, Twitter R©, etc., are giving users

a sense of empowerment in their ability to create and shape knowledge and information flow. These user-propelled net-

works have been referred to as digitized word of mouth networks that harness the true power of human communication

[156].

Online customer reviews are becoming a viable source of large scale product review data. A recent research study

found that Amazon.com had over 10 million active customer reviews on all product categories [157]. A study by

Forrester Research reported that 50% of customers who visited retailer sites with customer review feedback indicated

that customer reviews were important or extremely important in their purchasing decisions [157].

Many research domains such as Marketing and Advertising, Medical Research, Quality Assurance, Computer

Science [158, 159],etc., continue to investigate the potential of web based networks as a viable approach to data

collection. However, research into the acquisition and integration of online information in the product design domain

121

has been limited.

A few of the noticeable benefits of employing such approaches in customer data acquisition include the speed at

which large sets of customer review data can be accessed and stored for next generation product design purposes.

Another major benefit is that a significant portion of this data is based on customer revealed preferences; that is, the

feedback given after a customer has purchased and interacted with a product for a considerable amount of time. This

differs from stated preference data that typically involves a hypothetical purchasing scenario in the form of a survey

[29].

The methodology presented in this work (1) Searches through user specified customer review web sites for a

given product; (2) For each unique user review, a text mining and retrieval algorithm is employed to isolate and

store information specific to a given product review; (3) The stored text data for the entire review population is time

stamped and mined for frequent feature patterns; (4) A time series predictive model is generated based on a specific

time horizon; and (5) Design engineers can utilize the generated model to understand evolving consumer preference

trends for next generation product design ideas.

6.1.1 Traditional Customer Preference Acquisition Techniques

There are several well established methodologies in the product design community that have been employed in the

product design and development process. The Quality Function Deployment (QFD) is a product design methodology

that attempts to translate customer requirements (CR) (also known as the Voice of the Customer (VOC)) into functional

engineering targets in an effort to generate new design ideas and enhance quality[11] .

Another popular approach to customer preference quantification is the Discrete Choice Analysis (DCA) technique,

which includes the Probit Model and Logit Models (multinomial, mixed, nested, etc) to name but a few. By quantifying

product attribute levels, design engineers can estimate the demand of next generation products and also investigate

creative approaches to help address customer preferences [160].

A major challenge resulting in the aforementioned customer preference modeling techniques is that the quality of

the customer feedback is highly dependent on the framing of the survey questionnaires presented to current/potential

customers. Recent research investigating the validity of customer surveys have revealed that a phenomenon called

self-generated validity effects may adversely affect the quality of the customer response data [161]. Consequently,

the creativity of the engineering design solution may be adversely affected if customer needs are not fully under-

stood. For example, design engineers may be focused on developing creative approaches to enhancing the speed of

a product while the emerging needs of the customer are more aligned with environmental safety. In addition to these

complexities, the size of the survey data set is often quite limited due to the time and financial costs of generating

surveys.

122

To alleviate some of these challenges, a customer preference acquisition model is proposed that is based on large

scale online customer review data. The unstructured nature of online customer review data relieves respondents

from the traditional predefined structure of a survey type approach and enables respondents to provide an unbounded

assessment of their product preferences. The next section provides some background literature in the text mining

research domain.

6.1.2 Online Customer Preference Acquisition Techniques

Considerable research has been done in both document summarization and text classification relating to individual

words or group of words and their descriptive relations [162]. While many of the early text extraction and mining

algorithms focused on document summarization, there have been several works more closely related to feature ex-

traction as it relates to customer review data [163, 164]. Jinal and Lui investigate comparative sentence mining and

employ sequential rules to compare customer sentiments towards similar products[165]. Dave et al propose a feature

selection classification algorithm that analyzes customer review data and automatically partitions words into positive

and negative domains with relatively high accuracy [162]. A more recent contribution by Hu and Liu builds upon the

work by Dave et al by proposing a semantic classifier of product review sentences that does not need a set of training

texts to build the classifier [166]. It has been reported in the literature that attempting to mine customer review data in

order to separate positively and negatively associated words can be very challenging [167]. Although many method-

ologies have been proposed to try and address this issue in text mining, the proposed methodology overcomes these

inherent challenges of text approximation by focusing on customer review sites that have partitioned the reviews into

predefined categories of pros and cons.

Another related field of text mining is search query analysis. In a recent research finding, online search queries

were used to predict seasonal flu patterns within the same geographical region [158]. That is, there was a direct

correlation between the temporal frequency of certain key query words that describe a flu (for example, fever, aches,

sneezing, etc.) and the number of hospital visits for flu like symptoms [158].

The methodology presented in this work differs from the aforementioned product review based algorithms by

assessing individual customer reviews (in its entirety) and employing a text classification algorithm to determine the

most relevant product features being expressed by customers. Since each user review is time-stamped, the temporal

nature of certain positive and negative product features can be quantified, hereby enabling engineers to model product

feature preference trends.

123

Specify Product Design
Objective

Customer Review

Step 1

Access Customer
Review Website

Download
source code of
the webpage

Remove HTML
& Javascript

tags

Customer Review
Text Retrieval

p g

From Step 1: Exhaustive list of all
customer review paragraphs

Identify unique Customer
Reviews

Step 2

customer review paragraphs

()

i=i+1
Product Feature
Text Mining For Customer Review (i)

Employ Frequent Feature
Algorithm

Text Mining

Generate time‐varying
statistics for eachstatistics for each

frequent product feature

From Step 2: Temporal statistics for

Employ Seasonal
Vi liProduct Preference

Step 3
From Step 2: Temporal statistics for
each frequent product feature

M k P di ti
p y

Trend Model for
each product feature

Visualize
Trend Model

Product Preference
Trend Modeling

Make Predictions
for time step t

Figure 6.1: Overall flow of from Customer Review Text Retrieval to Product Preference Trend Modeling

6.2 Methodology

The proposed methodology enables design engineers to model product trends and identify emerging features that may

be popular in future product design models or identify obsolete features that should be excluded from future product

designs. By integrating free, publicly available customer review data, the proposed design methodology can have wide

applicability to many areas of product design. The flow diagram in Figure 6.1 presents the overall proposed framework

from customer review text retrieval to product preference trend modeling. The design creativity implications of each

step of the flow diagram in Figure 6.1 will be presented in the following section.

6.2.1 Step 1: Customer Review Text Retrieval

The process of acquiring text based data begins by specifying the source of the customer review data. Figure 6.2

presents a snapshot of a typical cell phone customer review with the accompanying html source code. To overcome

some of the text analysis challenges discussed in section 6.1.2, data is acquired through customer review websites

that have a predefined partition of the positive (pros) and negative (cons) customer reviews (ex:www.cnet.com). The

pre-partitioned format of the customer feedback platform greatly reduces the complexities that would have resulted

124

from trying to mine the raw data for negative and positive customer opinions.

Figure 6.2: Text Summarized Customer Review Data (Partitioned into Pros and Cons)

The authors of this work have developed a product design research website www.trendminingdesign.com that acquires

all of the raw customer review data (in html source code format) from multiple online sources.

Implications for product design creativity

The unconstrained nature of online customer review data is a departure from traditional survey type approaches and

has the potential to enhance the overall product design process by enabling design engineers to understand the entire

spectrum of customer needs. The formulation of a survey questionnaire, ironically assumes that the customer cares

about the the specific items presented within the survey. In addition to this bias, it has been reported in the literature

that an individual’s reported purchase intentions is biased towards a social norm whenever they are asked to make

predictions about their future behavior (ex: An individual may express preference towards a green product due to social

norms, despite whether or not this product will satisfy their needs) [161]. By extracting customer preferences through

an unguided web-based format, design engineers can acquire large scale unpredictable, honest customer feedback in

a timely and efficient manner. There are however some fundamental challenges of acquiring unstructured customer

review which are addressed in Step 2 of the product design process.

6.2.2 Step 2: Product Feature Text Mining

Customer review data in html format is stored on an SQL database on www.trendminingdesign.com. The next step is

to determine the product features being expressed by customers. This is a non-trivial problem as customer reviews are

presented in an unstructured, unpredictable style. The methodology beings by employing a PHP: Hypertext Prepro-

cessor (PHP) based version of the Brill Tagger for each customer review sentence [168]. This enables each customer

125

review sentence to be decomposed into their respective Part of Speech (POS), otherwise known as Part of Speech

Tagging. For example, the customer feedback ”Easy user interface” presented in Figure 6.2 would be transformed

into:

• [easy-JJ user-NN interface-NN]

where JJ is the Tag code for an adjective and NN is the Tag code for a noun, with similar syntax used for other

parts of speech. The results of the Tagger algorithm will therefore identify the product feature space within customer

reviews that are represented by nouns. For each time step, a frequent word algorithm searches through customer

reviews to identify the most frequently expressed customer product preferences. The sensitivity of the frequent words

search algorithm is dependent on the user specified minimum threshold (MinSup) for what is characterized as frequent.

Feature (i)

POS (Right)POS (Left)

No
Feature (i) +POS(Left)> MinSup End

No
Feature (i) +POS(Right)> MinSup End

Feature (i)=Feature(i)+POS(Right)

Yes

Feature (i)=Feature(i)+POS(Left)

Yes

Figure 6.3: Algorithm flow of product feature search aggregation

One major challenge in refining the accuracy of the frequent product feature algorithm is to efficiently analyze and

understand customer textual input. For example, the Tagger results above reveal that both the words user and interface

are nouns, representing candidate product features. However from observation, it is evident that the customer is

referring to a single product attribute user interface, rather than two separate attributes user and interface. An Apriori-

like algorithm is employed that satisfies the anti-monotone Apriori property: if any length k pattern is not frequent in

the database, its length (k+1) super-pattern can never be frequent[169, 127]. Figure 6.3 presents a visual flow of the

frequent product feature extraction algorithm that enables words like user and interface to be grouped as one product

feature user interface.

Once the frequent features have been identified for each time step, design engineers may want to know the sub-

jective and objective terms that customers use to describe them. An example of a subjective descriptive term would

be the word easy, used to describe the product feature user interface. An example of an objective description would

be 16 Gigabytes used to describe the product feature hard drive. A Bayesian Classification learner is employed to

126

determine the associated terms (objective or subjective) relating to the most frequent features. This is mathematically

represented as:

p(Wj|Fi) =
p(Fi|Wj) · p(Wj)

p(Fi)
(6.1)

where,

• Fi: represents a particular product feature.

• Wj: represents the particular word (adjective, adverb, etc.) describing feature Fi.

This allows engineers to classify a particular descriptive term (Wi) based on the probability estimates from equation

6.1 by assigning the objective/subjective term to the feature with the highest probability.

The association of customer sentiment with a given product feature allows engineers to transform the once unstruc-

tured customer review data into a high dimensional structured representation that can be used for traditional statistical

analysis and data mining in the subsequent product design process [55, 29].

Customers Feature 1 … Feature N
Customer 1 W1 ‐ ‐

. ‐ ‐ W7

. ‐ W9 W11

. W3 ‐ ‐

Customer M ‐ ‐ W8

Figure 6.4: Transformation of unstructured customer review text data to structured customer feature preference data

This structured format can be downloaded directly from the research website www.trendminingdesign.com where

engineers can search through and access their product of interest. It is important to note in Figure 6.4 that not all

feature words (Wi) are present for each customer, which is a more realistic representation of market conditions as

different customers would express varying preferences of product features.

Implications for product design creativity

The ability to identify the positive and negative product features (over time) most frequently expressed by customers

will serve as a valuable feedback tool in the product design process. Design engineers will be able to enhance the

technological features that customers respond positively towards and either substitute or eliminate product features

127

(+) Product Features

Figure 6.5: Plot of product preference trends with Holt-Winters forecasting

receiving significant negative reviews. Equally as important as the feedback is the magnitude and speed at which this

feedback can be acquired using the proposed online customer review process. Currently, there exists more than 17,000

customer reviews on the website www.trendminingdesign.com that spans more than 400 product models. Therefore

enterprise decision makers will not only be able to acquire reviews about their own products, but also benchmark their

electronic feedback to that of competitors also being discussed within the customer review platform. All of this insight

can be acquired in a few seconds which it takes to generate a set of time series frequent product feature results.

6.2.3 Step 3: Product Preference Trend Modeling

The Holt Winters exponential smoothing technique is employed to model the time series data due to its relatively

high predictive accuracy compared to other models such as the STL, Box-Jenkins, AutoRegressive Integrated Moving

Average (ARIMA), to name but a few [143, 147]. The model uses a weighted averaging technique that takes into

account the local level, the trend, and the seasonal components of the time series. The (k) step-ahead forecasting

model can therefore be represented as:

ŷt(k) = Lt + kTt + It−s+k (6.2)

where

128

Level Lt (the level component):

Lt = α(yt − It−s)+(1−α)(Lt−1 +Tt−1) (6.3)

Trend Tt (the slope component):

Tt = γ(Lt −Lt−1)+(1− γ)Tt−1 (6.4)

Season It (the seasonal component):

It = δ(yt −Lt)+(1−δ)It−s (6.5)

The smoothing parameters α, γ, δ are in the range {0,1} and are typically chosen to be anywhere from 0.02 to

0.2 as a default, although they can also be estimated by minimizing the sum of squared errors for one time step ahead

[143, 147]. The starting values L0, T0 and I0 also have to be initiated with conventional estimates [143].

Implications for product design creativity

By generating predictive models to forecast product feature trends, design engineers can observe which product design

features are becoming obsolete or popular over time and incorporate these findings in future product design decisions.

A visual representation of the trend mining model is presented in Figure 6.5 with the solid lines representing the

historical data acquired from customer reviews and the dashed lines representing the Holt-Winters forecasts beyond

the actual data. The graphical predictive model enables engineers to analyze the customer preference trends of the

entire product industry (ex: entire smart phone market in Figure 6.5) or isolate a particular product type for analysis.

Taking a closer look at Figure 6.5, it can be observed that in June, 2007, the product feature Keyboard has a relatively

low preference. Moving thought time however, it can be observed that the Keyboard feature becomes the 3rd most

popular feature expressed by customers.

Design Engineers also have the ability to benchmark their product to competitors by comparing the time series

product features to those of competitors. Figure 6.6 presents a scenario where the negative product preferences are

compared between two product brands, Apple and HTC. Figure 6.6 reveals that the negative product feature opinions

of the two brands begin to differ at the 3rd highest negative product feature camera (for Apple) and screen (for HTC).

Design engineers can incorporate this negative customer feedback into the design of next generation products by

developing creative solutions to help address product deficiencies and minimize the threat of competitors. One of

the major benefits of modeling customer preference trends using online, publicly available data is that models can be

129

(‐) Product FeaturesSmart Phone>Apple, all models

2007 2008 2009 2010

(‐) Product Features
Smart Phone>HTC, all models

2007 2008 2009 2010

Figure 6.6: Trend Comparison of negative product features between Apple and HTC

frequently updated as new customer reviews are accessed and mined. This data is readily available for download in a

structured .CSV format as seen from the option in the bottom left of Figure 6.5.

6.3 Conclusion

In this dissertation, the product design challenge of large scale customer data acquisition has been addressed by propos-

ing an online, publicly available customer product review methodology presented on the web site www.trendminingdesign.com.

A product design methodology is proposed that transforms unstructured customer preference data into a time series

representation of product feature preferences. Although the primary focus is on consumer electronics, the proposed

methodology can be extended to other engineering fields such as automotive design, aviation logistics, etc. The aim

to expand on the proposed online trend mining research by developing demand models for next generation products

based on the time series customer review data.

130

Chapter 7

Conclusion and Future Work

The advent of low cost data storage resources and multiprocessor computing machines has made the acquisition and

storage of data more accessible. However with the increase in data storage comes the non trivial challenge of extracting

useful, relevant knowledge. Machine learning techniques have been proposed to help address some of these emerging

data intensive problems.

The foundation of this research is to develop a Multidisciplinary Design Optimization (MDO) approach to product

design by creating a synergistic methodology that incorporates the objectives of each discipline (engineering design,

manufacturing, distribution, etc.) into the realization of an optimal product portfolio. With the incorporation of pre-

dictive data mining/machine learning techniques, this research merges customer preferences directly with engineering

design to achieve the most sustainable product portfolio. This process is an iterative approach that employs the de-

composition and integration techniques of multilevel optimization.

The focus of this research has been to explore how machine learning techniques can be used to solve complex

systems design problems in a timely and efficient manner with the main focus being product design problems. Tra-

ditional data acquisition techniques that have been employed in the product design community have relied primarily

on customer survey data or focus group feedback as a means of integrating the customer preference information into

the product design process. Direct customer interaction can be costly and time consuming and may therefore limit

the overall size and distribution of the customer preference data. Furthermore, since the survey data acquired typi-

cally represents stated customer preferences (customer responses for hypothetical product designs, rather than actual

product purchasing decisions made), design engineers may not know the true customer preferences for a new product

design.

The Preference Trend Mining (PTM) algorithm that is proposed in this work aims to address some fundamental

challenges of current engineering product modeling techniques by capturing changes in product preferences over time.

This enables design engineers to anticipate next generation product features before they become mainstream/unimportant.

Although this research has focused primarily on machine learning in the context of product design, research ex-

tensions can be made to other complex systems design problems involving large scale data generation.

131

7.1 Future Work

7.1.1 Capturing Emergent Behavior in Systems of Systems Modeling

A potential future expansion could be the application of the aforementioned machine learning approaches to Systems

of Systems research through collaborations with Sandia National Laboratories involving their Future Combat Systems

(FCS) analysis models. Systems of Systems research involves the integration of multiple large scale, complex systems

for enterprise level decision making. While there are several definitions of Systems of Systems, many share certain

similarities such as Operational Independence, Managerial Independence, Evolutionary Development, Emergent Be-

havior, and Geographical Distribution of each independent system. Simulations involving Systems of Systems models

often generate large scale data that can be difficult to analyze in a timely and efficient manner. The focus of this

research will be to propose efficient methodologies that help capture emergent behavior of systems of systems mod-

els and aid enterprise decision makers in the initial design and decision making strategies. Mechanical engineering

systems that exhibit systems of systems characteristics will serve as the basis for model validation.

7.1.2 Sustainable Product Portfolio Design

Future research aspirations aim to propose novel machine learning algorithms for sustainable systems design. As

engineers and researchers, the definition of product optimality should be expanded beyond the traditional objectives

of cost and performance to include measures that evaluate designs based on the long term environmental impact,

energy requirements or the ability to be reused or recycled. There are many facets of sustainable engineering that

not only include the discovery of breakthrough, low cost energy sources, but also the efficient design and disposal of

products. This research project will comprise of both simulation based design and prototype testing of revolutionary

clean technologies to help address the aforementioned global air quality challenges. Instead of designing separate

systems that can enhance the sustainability of an engineering artifact, this project will investigate the feasibility of

designing large scale manufacturing systems with sustainable modules/components such as air purification systems

that may increase the operating life of machinery, while reducing carbon footprint.

7.1.3 Cyberinfrastructure in Multidisciplinary Design Optimization

Cyberinfrastructure plays a significant role in addressing the complex challenges often faced in the engineering design

community. This research will investigate the benefits of Cyberinfrastructure as it relates to Multidisciplinary Design

Optimization. The role of parallel computing software and hardware architectures will be researched in relation to

managing large data sets and making both data mining algorithms and engineering design optimization models eas-

ier to solve. While traditional multilevel optimization algorithms have focused on efficiently solving decomposed

132

problems, this research will focus on proposing novel optimization techniques that can leverage the computational re-

sources of distributed computing. The computational resources provided at the San Diego Super Computing center and

the National Center for Supercomputing Applications (NCSA) will be used to address several of the key design prob-

lems (Example found in the Appendix). Researchers are provided with access to several Supercomputing resources

including the IBM Power4 Data Star, the IA-64 Linux Cluster, OnDemand (Rocks-131 Cluster) and Thor. Each of

these High Performance Computer systems can address a wide range of engineering design optimization problems and

will be investigated in future research projects.

133

Chapter 8

References

[1] J. McEntire. D2K Toolkit User Manual. National Center for Supercomputing Applications (NCSA), Office of
Technology Management 308 Ceramics Building, MC-243105 South Goodwin AvenueUrbana, Illinois 61801-
2901, 1 edition, April 2003.

[2] Ian H. Witten and Eibe Frank. Data mining: practical machine learning tools and techniques with java imple-
mentations. SIGMOD Rec., 31(1):76–77, 2002.

[3] S. K. Moon, S. R. T. Kumara, and T. W. Simpson. Data mining and fuzzy clustering to support product
family design. In Proceedings of DETC 06, 2006 ASME Design Engineering Technical Conferences, number
DETC2006/DAC-99287, Philadelphia, PA, September 2006.

[4] J. Jiao and Y. Zhang. Product portfolio identification based on association rule mining. Computer-Aided Design,
pages 149–172, May 2004.

[5] T. W. Simpson. Product platform design and optimization: Status and promise. In Proceedings of DETC
06, 2006 ASME Design Engineering Technical Conferences, number DETC2003/DAC-48717, Chicago, IL,
September 2003.

[6] S. Berry and A. Pakes. The pure characteristics demand model. Journal of Economics, December 2005.

[7] R. Farrell and T. Simpson. Product platform design to improve commonality in custom products. Journal of
Intelligent Manufacturing, 14:541–556, 2003.

[8] R. Fellini, M. Kokkolaras, and P. Papalambros. Quantitative platform selection in optimal design of product
families, with application to automotive engine design. Journal of Engineering Design, 17(5):429446, October
2006.

[9] S. Fixon. Product architecture assessment: a tool to link product, process, and supply chain design decisions.
Journal of Operations Management, page 345369, November 2004.

[10] M. J. Scott, J. Arenillas, T. W. Simpson, S. Valliyappan, and V. Allada. Towards a suite of problems for
comparison of product platform design methods: A proposed classification. In Proceedings of DETC 06,
2006 ASME Design Engineering Technical Conferences, number DETC2006/DAC-99289, Philadelphia, PA,
September 2006.

[11] M.E. Pullmana, W.L. Mooreb, and D.G. Wardellb. A comparison of quality function deployment and conjoint
analysis in new product design. The Journal of Product Innovation Management, 19(1):354–364, 2002.

[12] J.J. Cristiano, J.K. Liker, and C.W. White III. Customer-driven product development through quality function
deployment in the u.s. and japan. The Journal of Product Innovation Management, 17(1):286–308, 2000.

[13] A. Lowe, K. Ridgway, and H. Atkinson. Qfd in new production technology evaluation. Int. J. Production
Economics, 67:103–112, 2000.

[14] K. Ashihara and K. Ishii. Application of quality function deployment for new business r and d strategy develop-
ment. In 2005 ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida USA,
2005.

134

[15] P.E. Green, A.M. Krieger, and Y.J. Wind. Thirty years of conjoint analysis:reflections and prospects. Journal
of Interfaces, 31(3):56–73, May-June 2001.

[16] W.L. Moore, J.J. Louviere, and R. Verma. Using conjoint analysis to help design product platforms. Journal of
Innovation Management, 16:27–39, 1999.

[17] M.D. Grissom, A.D. Belegundu, A. Rangaswamy, and G.H. Koopmann. Conjoint-analysis-based multiattribute
optimization: application in acoustical design. Struct Multidisciplinary Optimization, 31:8–16, 2006.

[18] J. J. Michalek, F.M. Feinberg, and P.Y. Papalambros. Linking marketing and engineering product design deci-
sions via analytical target cascading. Journal of Product Innovation Management: Special Issue on Design and
Marketing in New Product Development, 22:42–62.

[19] A.T. Olewnik and K.E. Lewis. Conjoint-HOQ: A quantitative methodology for consumer-driven design. In
Proceedings of the ASME 2007 IDET Conferences and CIE Conference IDETC/CIE 2007. ASME, Septermber
2007.

[20] H. Li and S. Azarm. Product design selection under uncertainty and with competitive advantage. Transactions
of ASME: Journal of Mechanical Design, 122:411–418, December 2000.

[21] H. J. Wassenaar, W. Chen, J. Cheng, and A. Sudjianto. Enhancing discrete choice demand modeling for
decision-based design. Transactions of ASME: Journal of Mechanical Design, 127:514–523, July 2005.

[22] S. T. Berry. Estimating discrete-choice models for product differentiation. RAND Journal of Economics,
25(2):242–262, Summer 1994.

[23] D. Kumar. Demand Modeling for Enterprise-Driven Product Design. PhD thesis, Northwestern University,
December 2007.

[24] H. M. Kim, D. Kumar, and W. Chen. Target exploration for disconnected feasible regions in enterprise-driven
multilevel product design. AIAA Journal, 44:67–77, 2006.

[25] C. S. Tucker and H. M. Kim. Product family decision tree concept generation and validation through data
mining and multi-level optimization. In Proceedings of the 33rd ASME Design Automation Conference, Las
Vegas, NV, September 2007. ASME.

[26] M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysis:Theory and Application to Travel Demand. MIT
Press, December 1985.

[27] D. Braha. Data Mining for Design and Manufacturing. Kluwer Academic Publishers, P.O. Box 17, 3300 AA
Dordrecht, The Netherlands, 2001.

[28] A. Kusiak. Data mining: manufacturing and service applications. International Journal of Production Re-
search,, 44(18-19):41754191, October 2006.

[29] Conrad S. Tucker and Harrison M. Kim. Data-driven decision tree classification for product portfolio design
optimization. Journal of Computing and Information Science in Engineering, 9(4):041004, 2009.

[30] B. AGARD and A. KUSIAK. Data-mining-based methodology for the design of product families. International
Journal of Production Research, 42(15):2955–2969, August 2004.

[31] J. Nanda, T. Simpson, S.R.T. Kumara, and S.B. Shooter. A methodology for product family ontology develop-
ment using formal concept analysis and web ontology language. Journal of Computing and Information Science
in Engineering, 6(103), 2006.

[32] K. F. Tsang, H. C. W. Lau, and S.K. Kwok. Development of a data mining system for continual process quality
improvement. Institution of Mechanical Engineers, 221(179), October 2006.

[33] Chao-Ton Su, Yung-Hsin Chen, and D.Y. Sha. Linking innovative product development with customer knowl-
edge: a data-mining approach. Technovation, 26(7):784 – 795, 2006.

135

[34] Mirko Böttcher, Martin Spott, and Rudolf Kruse. Predicting future decision trees from evolving data. In
Proceedings of ICDM ’08, pages 33–42, 2008.

[35] C. W. Günther, S. B. Rinderle, M. U. Reichert, and W. M. P. van der Aalst. Change mining in adaptive process
management systems. In Proceedings of the 14th International Conference on Cooperative Information Systems
(CoopIS’06), Montpellier, France, volume 4275 of Lecture Notes in Computer Science, pages 309–326, Berlin,
Heidelberg, New York, November 2006. Springer Verlag.

[36] Peipei Li, Xuegang Hu, and Xindong Wu. Mining concept-drifting data streams with multiple semi-random
decision trees. pages 733–740. 2008.

[37] J. G. Wacker and M. Trelevan. Component part standardization: An analysis of commonality sources and
indices. Journal of Operations Management, 6(2):219–244, 1986.

[38] A. Messac, M. Martinez, and T.W. Simpson. Effective product family design using physical programming.
Engineering Optimization, 34:245–261, 2002.

[39] Fabrice Alizon, Kiran Khadke, Henri J. Thevenot, John K. Gershenson, Tucker J. Marion, Steven B. Shooter,
and Timothy W. Simpson. Frameworks for product family design and development. Concurrent Engineering:
R&A, 15(2):187–199, 2007.

[40] Z. Dai and M.J. Scott. Effective product family design using preference aggregation. Journal of Mechanical
Design, 128, July 2006.

[41] O. de Weck, E. Suh, and D. Chang. Product family and platform portfolio optimization. In Proceedings of
DETC03, 2003 ASME Design Engineering Technical Conferences, number DETC03/DAC-48721, Chicago, IL,
September 2003.

[42] J. P. Gonzales-Zugasti, K. N. Otto, and J. D. Baker. Assessing value in platformed product family design.
Research in Engineering Design, 13(1):30–41, August 2001.

[43] P. Desai, S. Kekre, S. Radhakrishnan, and K. Srinivasan. Product differentiation and commonalityin design:
Balancing revenue and cost drivers. Management Science, 47(1):37–51, January 2001.

[44] K. Kim and D. Chhajed. Commonality in product design: Cost saving, valuation change and cannibalization.
European Journal of Operational Research, (125):602–621, 2000.

[45] Henri J. Thevenot and Timothy W. Simpson. Commonality indices for product family design: a detailed com-
parison. Engineering Design, 17(2):99–119, 2006.

[46] D. Collier. The measurement and operating benefits of component part commonality. Decision Sciences,
12(1):85–96, 1981.

[47] H. Thevenot and T. Simpson. A comparison of commonality indices for product family design. Proceedings of
DETC04 ASME 2004 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, September 28-October 2, 2004.

[48] J. Jiao and M. M. Tseng. Understanding product family for mass customization by developing commonality
indices. Journal of Engineering Design,, 11(3):225–243, 2000.

[49] S. Kota, K. Sethuraman, and R. Miller. A metric for evaluating design commonality in product families. ASME
Journal of Mechanical Design, 122(4):403–410, 2000.

[50] Y. Nomaguchi and K. Fujita. Product architecture design process for model-based knowledge management. IN-
TERNATIONAL CONFERENCE ON ENGINEERING DESIGN,ICED 05 MELBOURNE,, August 15-18 2005.

[51] Z. Siddique, D. W. Rosen, and N. Wang. On the applicability of product variety design concepts to automotive
platform commonality. Design Theory and Methodology, Atlanta, GA, ASME, Paper No. DETC98/DTM-5661.,
September 13-16 1998.

136

[52] M. Martin and K. Ishii. Design for variety: A methodology for understanding the costs of product proliferation.
Design Theory and Methodology, August 18-22 1996.

[53] H. Thevenot and T. Simpson. A comprehensive metric for evaluating component commonality in a product
family. Proceedings of DETC06 ASME 2006 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, September 10-13 2006.

[54] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in databases. Amer-
ican Association for Artificial Intelligence, 1996.

[55] C. S. Tucker and H. M. Kim. Optimal product portfolio formulation by merging predictive data mining with
multilevel optimization. Transactions of ASME: Journal of Mechanical Design, 130:991–1000, 2008.

[56] J. Boulicaut, F. Esposito, F. Giannotti, and D. Pedreschi. Knowledge Discovery in Databases: PKDD 2004.
Springer, 2004.

[57] Thomas Haigh. ”a veritable bucket of facts” origins of the data base management system. SIGMOD Rec.,
35:33–49, June 2006.

[58] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The Complete Book. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 2 edition, 2008.

[59] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–387, 1970.

[60] Peter P. Chen. The entity-relationship model - toward a unified view of data. ACM Transactions on Database
Systems, 1(1):9–36, 1976.

[61] I. Bruha and F. Franek. Comparison of various routines for unknown attribute value processing: the covering
paradigm. International Journal of Pattern Recognition and Artificial Intelligence, 10(9):939–955, 1996.

[62] J. W. Grzymala-Busse and M. Hu. A comparison of several approaches to missing attribute values in data
mining. LNAI 2005, pages 378–385, 2001.

[63] J.M. Ling, J.M. Aughenbaugh, and C.J. Paredis. Managing the collection of information under uncertainty
using information economics. Transactions of ASME: Journal of Mechanical Design, 128(4):980–990, 2006.

[64] D.J. Hand. Data mining: Statistics and more? The American Statistician, 52(2):112–118, 1998.

[65] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas. Data preprocessing for supervised leaning. International
Journal of Computer Science, 1(2):111–117, February 2006.

[66] M. Campos, P. Stengard, and B. Milenova. Data-centric automated data mining. 4th International Conference
on Machine Learning and Applications, 2005.

[67] K.F. Hulme and C.L. Bloebaum. A simulation-based comparison of multidisciplinary design optimization
solution strategies using cascade. Struct Multidisc Optim, 19:17–35, 2000.

[68] C.D. McAllister, T.W Simpson, K. Hacker, K Lewis, and A. Messac. Integrating linear physical programming
within collaborative optimization formultiobjectivemultidisciplinary design optimization. Struct Multidisc Op-
tim, 29:178–189, 2005.

[69] R.D. Braun. Collaborative optimization: an architecture for large-scale distributed design. Ph.d. thesis, Stan-
ford University, 1996.

[70] Sobieszczanski-Sobieski J., Agte J.S., and Sandusky Jr R.R. Bilevel integrated system synthesis. AIAA,
38(1):164–172, 2000.

[71] R.T. Haftka and L.T. Watson. Multidisciplinary design optimization with quasiseparable subsystems. Optim
Eng, 6(1):9–20, 2005.

137

[72] H. M. Kim, D. G. Rideout, P. Y. Papalambros, and J. L. Stein. Analytical target cascading in automotive vehicle
design. Transactions of ASME: Journal of Mechanical Design, 125(3):481–489, 2003.

[73] H. M. Kim, W. Chen, and M. M. Wiecek. Lagrangian dual coordination for analytical target cascading. AIAA
Journal, 2006. In press. Also presented at 2005 IFORS Conference, Honolulu, HI.

[74] N. F. Michelena, H. Park, and P.Y. Papalambros. Convergence properties of analytical target cascading. vol-
ume 2, 2002. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, GA,
AIAA-2002-5506.

[75] H.M. Kim, N.F. Michelena, P.Y. Papalambros, and T. Jiang. Target cascading in optimal system design. Journal
of Mechanical Design, 123(1), June 2003.

[76] S. Tosserams, L.F.P. Etman, and J.E. Rooda. An augmented lagrangian decomposition method for quasi-
separable problems in mdo. Struct Multidisc Optim, 2006.

[77] H.M. Kim, M. Kokkolaras, L.S. Louca, G.J. Delagrammatikas, N.F. Michelena, Z.S. Filipi, P.L. Papalambros,
J.L. Stein, and D.N. Assanis. Target cascading in vehicle redesign: A class vi truck study. International Journal
of Vehicle Design, 3(3):199–225, 2002.

[78] M. Kokkolaras, R. Fellini, H.M. Kim, N.F. Michelena, and P.Y. Papalambros. Extension of the target cascading
formulation to the design of product families. Struct Multidisc Optim, 24:293–301, 2002.

[79] P. A. Flack and N. Lachiche. Naı̈ve bayes classification of structued data. Machine Learning, 57(3):233–269,
December 2004.

[80] I. Rish. An empirical study of the naive bayes classifier. IJCAI 2001 Workshop on Empirical Methods in
Artificial Intelligence, 2001.

[81] H. Zhang, C. Ling, and Z. Zhao. The learnability of naive bayes. Canadian AI2000, LNAI 1822, pages 432–441,
2000.

[82] D. Meretakis and B. Wuthrich. Extending naive bayes classifiers using long itemsets. 5th ACM SIGKDD
International Conference on Knowledge Discovery and data mining, pages 164–174, 1999.

[83] E. M. Kleinberg. Lecture Notes in Computer Science, volume 1857/2000. Springer Berlin/Heidelberg, 2000.

[84] M. Degroot. Optimal Statistical Decisions. McGraw-Hill, 1970.

[85] G. Sparacino, C. Tombolato, and C. Cobelli. Maximum-likelyhood versus maximum a posteriori parameter
estimation of physiological system models: The c-peptide impulse response case study. IEE Transactions on
Biomedial Engineering, 47(6), June 2000.

[86] K. Holmstrom, A. O. Goran, and M. M. Edvall. USERS GUIDE FOR TOMLAB /MINLP. Tomlab Optimization,
Tomlab Optimization Inc, 855 Beech St 121 San Diego CA USA, February 2006.

[87] A. B. Cooper, P. Georgiopoulos, H. M. Kim, and P. Y. Papalambros. Analytical target setting: An enterprise
context in optimal product design. ASME, 2006.

[88] D. Canback. Diseconomies of scale in large corpotations. Technical description, Canback Dangel Predictive
Analytics Advisors, 10 Derne Street, Boston, MA 02114, 2003.

[89] H. M. Kim, N. F. Michelena, P. Y. Papalambros, and T. Jiang. Target cascading in optimal system design.
Transactions of ASME: Journal of Mechanical Design, 125(3):474–480, 2003.

[90] CBW. Standby and talk times. Cell Phone Batteries, 2006.

[91] Y. Neuvo. Cellular phones as embedded systems. IEEE International Solid-State Circuits Conference, June
2004.

[92] The Math Works, Inc., Natick, MA. Optimization Toolbox for Use with MATLAB, version 2 edition, 1999.

138

[93] Kenji Kira and Larry A. Rendell. A practical approach to feature selection. In ML92: Proceedings of the
ninth international workshop on Machine learning, pages 249–256, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

[94] Igor Kononenko. Estimating attributes: analysis and extensions of relief. In ECML-94: Proceedings of the
European conference on machine learning on Machine Learning, pages 171–182, Secaucus, NJ, USA, 1994.
Springer-Verlag New York, Inc.

[95] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

[96] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient estimation of the number of
clusters. In ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, pages
727–734, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[97] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Applied Statistics,
28(1):100–108, 1979.

[98] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data (Prentice Hall Advanced Reference Series
: Computer Science). Prentice Hall College Div, March 1988.

[99] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean k-medians and
related problems. In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 106–113, New York, NY, USA, 1998. ACM.

[100] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.
Wu. An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach.
Intell., 24(7):881–892, 2002.

[101] Thaddeus Tarpey. A parametric k-means algorithm. Comput. Stat., 22(1):71–89, 2007.

[102] Robert E. Kass and Larry Wasserman. A reference bayesian test for nested hypotheses and its relationship to
the schwarz criterion. Journal of the American Statistical Association, 90(431):928–934, 1995.

[103] H. M. Kim. Target Cascading in Optimal System Design. PhD thesis, The University of Michigan, Ann Arbor,
MI, 2001.

[104] H. M. Kim, M. Kokkolaras, L. Louca, G. Delagrammatikas, N. F. Michelena, Z. Filipi, P. Y. Papalambros, and
D. Assanis. Target cascading in vehicle redesign: A class VI truck study. International Journal of Vehicle
Design, 29(3):199–225, 2002.

[105] M. Kokkolaras, L.S. Louca, G.J. Delagrammatikas, N.F. Michelena, Z.S. Filipi, P.Y. Papalambros, J.L. Stein,
and D.N. Assanis. Simulation-based optimal design of heavy trucks by model-based decomposition: An exten-
sive analytical target cascading case study. International Journal of Heavy Vehicle Systems, 11(3–4):402–432,
2004.

[106] J. Allison, D. Walsh, M. Kokkolaras, P. Y. Papalambros, and M. Cartmell. Analytical target cascading in aircraft
design. Reno, Nevada, January 2006. AIAA-2006-1325. 44th AIAA Aerospace Sciences Meeting and Exhibit.

[107] N. M. Alexandrov and R. M Lewis. Analytical and computational aspects of collaborative optimization for
multidisciplinary design. AIAA Journal, 40(2):301–309, 2002.

[108] Y. Zhang. Indoor air quality engineering. CRC Press, Boca Raton, FL, 2005.

[109] D. Barker. Development of an optimization design platform for aerodynamic particle separators. Ms, University
of Illinois at Urbana-Champaign, 2008.

[110] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[111] B. Hunt, J. Marin, and P. Stone. Experiments in Induction. Academic Press, New York, NY, 1966.

139

[112] N. Amor, S. Benferhat, and Z. Elouedi. Naive bayes vs decision trees in intrusion detection systems. 2004 ACM
Symposium on Applied Computing, 2004.

[113] J. Quinlan. C4.5: Programs for machine learning, volume 1. Morgan Kaufmann Publishers, 1993.

[114] S. Salzberg. Book review: C4.5:by j. ross quinlan.inc., 1993.programs for machine learning morgan kaufmann
publishers,. Machine Learning, 16:235–240, 1994.

[115] J.W. Grzymala-Busse and J. Stefanowsk. Three discretization methods for rule induction. International Journal
of Intelligent Systems, 16:29–38, 2001.

[116] P. Perner and S. Trautzsch. Multi-interval discretization methods for decision tree learning. Advances in Pattern
Recognition,, pages 475–482, 1998.

[117] J. Quinlan. Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research, 4:77–90,
1996.

[118] J. Quinlan. Learning with continuous classes. In Proceedings of Artificial Intelligence (Adams and Sterling,
Eds, pages 343–348, 1992.

[119] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks,
Monterey, CA, 1984.

[120] I. J. Hidalgo and H. M. Kim. System of systems optimization by pseudo-hierarchical multistage model. In
Proceedings of the 11th AIAA/MAO Conference, number AIAA-2006-6921, Portsmouth, VA, September 2006.

[121] C. Tucker and H.M. Kim. Cell phone customer survey: Online interactive user interface created using webtools.
https://webtools.uiuc.edu/survey/Secure?id=5617516 (accessed October, 2006).

[122] C.S. Tucker, H.M. Kim, D.E. Barker, and Y. Zhang. A relieff attribute weighting and x-means clustering
methodology for top-down product family optimization. Engineering Optimization, 42(7):593–616, September
2010.

[123] I.Guyon B. Boser and V. Vapnik. A training algorithm for optimal margin classifiers. In Fifth Annual Workshop
on Computational Learning Theory, pages 144–152, 1992.

[124] H. Zhang. Classification trees with multiple binary responses. Journal of the American Statistical Association,
93(441):180–193, 98.

[125] R. Siciliano and F. Mola. Multivariate data analysis and modeling through classification and regression trees.
Computational Statistics and Data Analysis, 32:285–301, 2000.

[126] S. Kim and K. B. Lee. Constructing decision trees with multiple response variables. International Journal of
Management and Decision Making, 4(4):337–353, 2003.

[127] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB’94,
Proceedings of 20th International Conference on Very Large Data Bases, September 12-15, 1994, Santiago de
Chile, Chile, pages 487–499. Morgan Kaufmann, 1994.

[128] Tianyi Wu, Yuguo Chen, and Jiawei Han. Association mining in large databases: A re-examination of its
measures. pages 621–628. 2007.

[129] et al. Wets, G. Identifying decision structures underlying activity patterns: An exploration of data mining
algorithms. Transportation Research Record, 1718:1–9, 2000.

[130] L. J. Xie, C. and E. Parkany. Work travel mode choice modeling with data mining decision trees and neural
networks. Journal of the Transportation Research Board, 1854, 2003.

[131] R. Kitamura Yamamoto, T. and J. Fujii. Drivers’ route choice behavior: Analysis by data mining algorithms.
Journal of the Transportation Research Board, 1807:59–66, 2002.

140

[132] S. Kurauchi Yamamoto, Y. and T. Morikawa. Comparison of non-compensatory models of driver’s choice on
dynamic park and ride. in intelligent transportation systems. In 9th World Congress Proceedings, 2002.

[133] A. Mohammadian and E.J. Miller. Nested logit models and artificial neural networks for predicting household
automobile choices: Comparison of performance. Journal of the Transportation Research Board, 1807:92–100,
2002.

[134] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[135] Geraldine E. Rosario, Elke A. Rundensteiner, David C. Brown, and Matthew O. Ward. Mapping nominal values
to numbers for effective visualization. In in Special issue of selected and extended InfoVis 03 paper, 2004.

[136] Wai Lam, Chi-Kin Keung, and Charles X. Ling. Learning good prototypes for classification using filtering and
abstraction of instances. Pattern Recognition, 35:1491–1506, 2001.

[137] Yong Wang. A new approach to fitting linear models in high dimensional spaces. Technical report, University
of Waikato: Waikato, 2000.

[138] Jianzhao Shen and Sujuan Gao. A Solution to Separation and Multicollinearity in Multiple Logistic Regression.
Journal of data science : JDS, 6(4):515–531, October 2008.

[139] Tjen-Sien Lim, Wei-Yin Loh, and Yu-Shan Shih. A Comparison of Prediction Accuracy, Complexity, and Train-
ing Time of Thirty-Three Old and New Classification Algorithms. Mach. Learn., 40(3):203–228, September
2000.

[140] S. B. Kotsiantis. Supervised Machine Learning: A Review of Classification Techniques. Informatica, 31(3),
2007.

[141] C.S. Tucker, C. Hoyle, H.M. Kim, and W. Chen. A comparative study of data-intensive demand modeling
techniques in relation to product design and development. In Proceedings of the ASME Design Engineering
Technical Conferences, San Diego, CA, 2009. DETC2009-87049.

[142] Liqiang Geng and Howard J. Hamilton. Interestingness measures for data mining: A survey. ACM Comput.
Surv., 38(3):9, 2006.

[143] C. Chatfield. The holt-winters forecasting procedure. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 27(3):264–279, 1978.

[144] H. Grubb and A. Mason. Long lead-time forecasting of uk air passengers by holt-winters methods with damped
trend. International Journal of Forecasting, 17(1):71 – 82, 2001.

[145] Sheng Yue, Paul Pilon, and George Cavadias. Power of the mann-kendall and spearman’s rho tests for detecting
monotonic trends in hydrological series. Journal of Hydrology, 259(1-4):254 – 271, 2002.

[146] R. B. Cleveland, W. S. Cleveland, J. E. Mcrae, and I. Terpenning. Stl: A seasonal-trend decomposition proce-
dure based on loess. Journal of Official Statistics, 6(1):3–73, 1990.

[147] B.L. Smith, B.M. Williams, and R.K. Oswald. Comparison of parametric and nonparametric models for traffic
flow forecasting. Transportation Research Part C: Emerging Technologies, 10(4):303 – 321, 2002.

[148] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset selection problem. In
International Conference on Machine Learning, pages 121–129, 1994. Journal version in AIJ, available at
http://citeseer.nj.nec.com/13663.html.

[149] Zheng Zhao and Huan Liu. Searching for interacting features in subset selection. Intell. Data Anal., 13(2):207–
228, 2009.

[150] Henry B. Mann. Nonparametric tests against trend. Econometrica, 13(3):245–259, 1945.

[151] Maurice Kendall and Jean D. Gibbons. Rank Correlation Methods. A Charles Griffin Title, 5 edition, September
1990.

141

[152] H.J. Wassenaar, W. Chen, J. Cheng, and A. Sudjianto. Enhancing discrete choice demand modeling for decision-
based design. Journal of Mechanical Design, 127(4):514–523, 2005.

[153] K.E. Lewis, W. Chen, and L.C. Schmidt, editors. Decision Making in Engineering Design. ASME, 2006.

[154] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning
Research, 7(1):1–30, 2006.

[155] P. Domingos and M. Pazzani. Beyond independence: Conditions for the optimiality of the simple bayesian
classifier. In Machine Learning, pages 105–112, 1996.

[156] Chrysanthos Dellarocas. The digitization of word of mouth: Promise and challenges of online feedback mech-
anisms. Management Science, 49(10):1407–1424, 2003.

[157] Y. Chen and J. Xie. Online consumer review: Word-of-mouth as a new element of marketing communication
mix. Management Science, 54(3):477–491, 2008.

[158] Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski, and Larry Bril-
liant. Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012–1014, November
2008.

[159] T. Ferguson. Online patient-helpers and physicians working together: a new partnership for high quality health
care. BMJ Journal, 321(7269):1129–1132, November 2000.

[160] H. J. Wassenaar and W. Chen. An approach to decision-based design with discrete choice analysis for demand
modeling. Transactions of ASME: Journal of Mechanical Design, 125:490–497, September 2003.

[161] P. Chandon, V.G. Morwitz, and W.J. Reinartz. Do intentions really predict behavior? self-generated validity
effects in survey research. Journal of Marketing, 69(2):1–14, 2005.

[162] Kushal Dave, Steve Lawrence, and David M. Pennock. Mining the peanut gallery: opinion extraction and
semantic classification of product reviews. In WWW ’03: Proceedings of the 12th international conference on
World Wide Web, pages 519–528, New York, NY, USA, 2003. ACM.

[163] Vasileios Hatzivassiloglou and Kathleen R. McKeown. Predicting the semantic orientation of adjectives. In
Proceedings of the eighth conference on European chapter of the Association for Computational Linguistics,
pages 174–181, Morristown, NJ, USA, 1997. Association for Computational Linguistics.

[164] Janyce Wiebe. Learning subjective adjectives from corpora. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,
pages 735–740. AAAI Press / The MIT Press, 2000.

[165] N. Jindal and B. Liu. Mining comparative sentences and relations. In Proceedings of AAAI, 2006.

[166] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In KDD ’04: Proceedings of the tenth
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 168–177, New York,
NY, USA, 2004. ACM.

[167] Xinghua Hu and Bin Wu. Classification and summarization of pros and cons for customer reviews. In WI-
IAT ’09: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and
Intelligent Agent Technology, pages 73–76, Washington, DC, USA, 2009. IEEE Computer Society.

[168] Eric Brill. A simple rule-based part of speech tagger. In Proceedings of the third conference on Applied natural
language processing, pages 152–155, Morristown, NJ, USA, 1992. Association for Computational Linguistics.

[169] J. Pei and J. Han. Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explor. Newsl.,
4(1):31–39, 2002.

[170] Sebastian Celis and David R. Musicant. Weka-parallel: Machine learning in parallel. Technical report, Carleton
College, CS TR, 2002.

142

[171] J. Quinlan. C4.5 Programming for Machine Learning. Morgan Kauffman, 1993.

[172] D. Parallel Shasha. C4.5 (pc4.5). cited 2008; Available from: http://www.cs.nyu.edu/ binli/pc4.5/., 1997.

[173] W. Liao. Parallel k-means data clustering. cited 2008; Available from: http://www.ece.northwestern.edu/ wk-
liao/Kmeans/index.html, 2005.

[174] S. Muller and H. Waller. Efficient integration of real-time hardware and web based services into matlab. In
ESS: 11th European Simulaiton Symposium and Exhibition. Erlangen-Nuremberg, October 1999.

[175] Inc. Interactive Supercomputing. Star-p programming guide for use with matlab release 2.6.2, 2008.

[176] Mathworks. Matlab parallel computing toolbox. cited 2008; http://www.mathworks.com/products/parallel-
computing, 2008.

[177] ILOG. Parallel cplex. cited 2008; Available from: http://www.ilog.com/products/cplex/product/parallel.cfm.,
2008.

143

Chapter 9

Appendix

9.1 Cyberinfrastructure in Product Design

The Data Driven Product Design Platform is a user friendly interface that integrates customer knowledge discovery

with engineering design. The Java based GUI was designed using the Eclipse Java Development Toolkit and the Jigloo

extension of Eclipse for GUI based code development. The overall layout of the GUI is presented in Figure 9.1. The

user can interact with both phases of the product design process. That is, 1) The Data mining Knowledge Discovery

process and 2) The Engineering Design Simulation process. The details of each phase will be presented next and the

benefits of high performance computing will be revealed for each of the phases.

KDD Toolkit: The KDD Toolkit allows the user to specify which data mining approach to utilize in the knowledge

discovery process. The KDD Toolkit is partitioned into Parallel Data mining and Serial Data Mining as represented

by Figure 9.2. Depending on the HPC resources available, parallel data mining can be used to reduce the computa-

tional time required to generate a set of product design targets. The parallel data mining applications that have been

investigated thus far are 1). Parallel Weka, Parallel C4.5 and Parallel K-means.

1. Parallel Weka [170]: Is an extension of the Weka Open source environment. Parallel Weka parallelizes the

n-fold cross validation stage of several well known classifications algorithms such as the J48 (Weka’s imple-

mentation of C4.5 by Quinlan [171]). Given a data training set T, individual models can be built by partitioning

the raw data set T into individual training sets and then later validated using the test set. Since each fold is inde-

pendent of each other, this can be considered a task parallel process. Therefore, if there are n-folds, each taking

t minutes, the parallelization theoretically reduces the computational complexity from n*t minutes to t*minutes.

Actual results may be slightly below linear speedup due to the time lost as a result of message passing between

processors.

144

Figure 9.1: Java based Graphical User Interface (GUI) of Data Driven Product Design Platform

Weka Parallel Initialization:

1. (a) Login to SDSC Cluster: thor.sdsc.edu

(b) Set class path: java –cp weak.jar weak.core.Distributed Server 1234

(c) Specify Weka Algorithm: weka.classifiers.j48.J48 –t weather.arff -a

1. Parallel C4.5 [172]: Parallel C4.5 is a classification based parallelization algorithm. The C4.5 is a decision tree

based induction algorithm based on iteratively partitioning the data set with each attribute test that maximizes

the information gain. PC4.5 runs on SunOS and Linux machines and is based on the Plinda distributed parallel

computing system developed at New York University [172].

Weka Parallel Initialization:

1. (a) Login to SDSC Cluster: tg-login

(b) Unzip PC4.5: gunzip.pc4.5.tar then enter tar xvfpc4.5.tar

(c) Compile PLinda using the make file make –f Linux

145

Figure 9.2: KDD Toolkit options allowing the user to choose between parallel and serial data mining

(d) Note: Currently, there is a compatibility issue with a missing .h file “pix.h” that is preventing

Plinda from successfully compiling on the tera-grid machines. A solution to this is currently being

investigated.

1. Parallel K-Means [173]: The K-means clustering algorithm is an unsupervised learning data mining algorithm.

Unlike supervised learning data mining algorithms such as classification based C4.5 decision trees, Naı̈ve Bayes

, etc., the K-means algorithm determines patterns among the data set rather than predicting a class (performance

variable). The goal is to parallelize the distance calculations at each iteration so as to minimize the time spent

on determining the newly defined cluster centroid. Although this particular algorithm was not the focus of

the research here, the final version of the Data Driven Product Design Platform will include a fully functional

K-means option.

Parallel K-means Initialization:

1. (a) Login to SDSC Cluster: dspoe.sdsc.edu

(b) Save file to home directory

(c) Compile MPI version: make mpi main

(d) Run: open main.h

146

(e) Note: The initial code was run using SDSC DataStar, however MPI compatibility issues are cur-

rently being investigated before any large scale use of this algorithm will be available through the

Data Driven Product Design Platform.

Serial Data Mining

The Data Driven Product Design Platform will enable the user to access serial versions of popular open source

as well as closed source data mining algorithms such as Weka, D2K, Matlab Classification Toolbox and the newly

developed Meandre by NSCA. Due to the focus of the CIEG program as it relates to high performance computing, the

explanation of the serial data mining programs will be minimized.

Phase 2: Engineering Design Simulation The DDPD provides users with a centralize location for the entire product

portfolio development process where the Matlab computational engine will be accessed behind the scenes directly from

the DDPD user interface. This is achieved by calling several Java routines, one being the JMatLink [174] that creates

an open channel for Matlab commands to be executed directly from the DDPD.

A snapshot of the Java based code is as follows:

private AbstractAction getRun optmodel() {

if(run optmodel == null) {

run optmodel = new AbstractAction(”Run”, null) { //access action “Run” button

public void actionPerformed(ActionEvent evt) {

JMatLink engine = new JMatLink(); //Define “engine” from JMatLink

System.out.println(”Linking Data Knowledge Discovery With Engineering Design”);

System.out.println(” ”);

engine.engOpen(); //function to open the Matlab computational engine

engine.engOutputBuffer();//initialization of output buffer

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

String input = ””;

input = jTextField1.getText(); //input from the user “ATC example”

if (!input.equals(”end”) && !input.equals(”exit”)) //test for termination

engine.engEvalString(input); //evaluates the string that the user inputs

System.out.println(engine.engGetOutputBuffer());

engine.engClose(); //end process

}

};

147

}

return run optmodel;

}

Here, the user will input the exact name of the script that will call the Matlab Computational Engine. In this ex-

ample, assuming that the script name is “ATC example”, the Matlab computational engine will then be accessed

(engine.engOpen()) and the optimization sequence will begin. (Note: In order for Matlab to recognize the script, the

folder which contains the script must be in the Matlab command path). If the user specifies the results file of the Data

Mining Knowledge Discovery Process, the Matlab optimization model can directly read from this data file and hence

avoid manual input of each product design target.

Optimization ToolKit:

The optimization toolkit interface allows the user to specify which optimization approach is most suitable for the

specific design problem. Depending on the number of sequential processes, the user may choose to solve the problem

using parallel data mining techniques. In the event where there are dependencies among different tasks or licensing

restrictions, parallel optimization may not be feasible and the user also has the option of evoking serial optimization

techniques.

Parallel Optimization: The 3 parallel optimization approaches investigated thus far are the StarP [175], Parallel

Matlab [176] and Parallel CPLEX [177]. The parallel optimization approach that is utilized in the product design

process relies heavily on the type of optimization problem being solved. The example engineering design problem

involves both task parallelization and data parallelization. Research efforts will initially focus on developing model

parallelization using the StarP client and then branching out to include C/C++ and Fortran based design models that

utilize parallel CPLEX.

Task Parallelization:

The results from the data mining knowledge discovery process generate an m x n matrix of product design specifi-

cations, where m represents the number of unique attribute combinations and n represents the values for each attribute.

As the size of the decision tree model increases, it often becomes computationally impractical for all product design

candidates to be investigated hereby limiting the effectiveness of the product design process. Task Parallelization us-

ing StarP client aims to address some of these challenges facing the product portfolio design process by enabling a

broadcast of independent tasks to different processors. We first begin by introducing the general form of the a specific

type of optimization problem and how it relates to data parallelization.

148

Data Parallelization:

Mixed Integer Nonlinear Program General Formulation:

minimize f(x, y)

(Nonlinear objective function)

subject to g(x, y) = 0, h(x,y)=0 (Nonlinear Constraints)

Ax=b (Linear Constraints)

x ł X (Continuous variable bounded by X)

y ł Y integer (Integer Variables bounded by Y)

Since many engineering design models are mixed integer nonlinear programming problems, the goal is to paral-

lelize each node of the branch (Gradient Information), Where S= Master Problem and Si=subproblem (i). Each Si

has optimal solution. Therefore S*=min(S1*, S2*,. . . Sk*), where k=number of sub problems. Currently, StarP has the

ability to parallelize nonlinear constraint optimization functions that use the in-built Matlab function fmincon. The

StarP equivalent to fmincon is ppfmincon and takes the form:

[x y] = ppfmincon(@sys fun, x0, extra args)

Where sys fun is the constrained nonlinear optimization problem to be solved with starting variable values at x0

and output x and y. ppfmincon parallelizes the gradient and function evaluations of a constrained nonlinear program-

ming problem.

The StarP user interface allows users to specify the number of processors required to solve their optimization

problem. In the case of the task parallel problem, we will set the number of processors n equal to the number of leaves

generated by the decision tree classification algorithm so that each optimization problem can run simultaneously on

the OnDemand cluster. If parallelization of the actual optimization algorithm is also occurring (fmincon), then the

number of processor may be altered to achieve maximum scale-up. The StarP Task Parallel function call is as follows:

[out1 out2 ... outN] = ppeval(’ATC example’, In1, In2, ..., InN);

Where outi and Ini are the outputs and inputs respectively to the user/matlab function (ATC example)

The level of code customization depends on the overall objective of the design problem. For example one may

choose to split or broadcast the inputs of the function using different StarP commands such as ppevalsplit or ppbcast.

Each task parallel problem is modeled based on the Analytical Target Cascading (ATC) decomposition approach.

149

The two-level model represents interaction with a system level that is system level is responsible for acquiring the

results from the data mining approach (vector of design targets) and a lower subsystem level that attempts to match

the higher level targets.

Evaluating Computational Time Savings (Serial VS Parallel)

The computational time savings between serial and parallel versions of the optimization model are highly depen-

dent on the type of problem being solved and the structure of the model. To evaluate differences in run time, simple

benchmarking commands can be used with the in-built Matlab functions tic and toc for the serial version and pptic

and pptoc for the StarP parallel version. An example of the parallel time evaluation wrapped around a constraint

optimization function call is given below (This is for the ATC example presented earlier):

pptic;

x sys= ppfmincon(@f sys, x sys, [], [], [], [], vlb, vub, @NONLCON sys, options);

pptoc;

The output from the Matlab command window allows the user to see how many messages were passed between

the client and server machines as well as the total time required to accomplish this. This vital piece of information can

then be used to benchmark the computational time savings with serial versions of the code.

Client/server communication report:

Sent by server: 162 messages, 1.263e+004 bytes

Received by server: 162 messages, 2.073e+004 bytes

Total communication time: 6.991e-003 seconds

Server processing report:

Duration of calculation on server (wall clock time): 3.330e+000s

#ppchangedist calls: 0

———————————————————————-

Total time: 2.972e+001 seconds

150

Figure 9.3: Enterprise Objective Function

7/12/07 1:07 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optimal Prod...\ent_FUN2_1.m 1 of 1

function [f_sys] = ent_FUN(ent_SYS2_1,Prob)

global response_SUBSYS;

%Stage 1: SMS Architecture Design

TFT=1;
T_Battery=3;
profit=ent_SYS2_1(1);
T_Display=TFT;

E_Battery=ent_SYS2_1(12);
E_Connection1=ent_SYS2_1(13); %Bluetooth
E_Connection2=ent_SYS2_1(14); %Wifi
E_Connection3=ent_SYS2_1(15); %Infrared
E_Design1=ent_SYS2_1(16); %Shell Phone
E_Design2=ent_SYS2_1(17); %Flip Phone
E_Display1=ent_SYS2_1(18); %TFT LCD
E_Display2=ent_SYS2_1(19); %OLED LCD

E_Cost=ent_SYS2_1(11);

f_sys = -profit+ 1e5*((T_Battery-ent_SYS2_1(3))^2+(T_Display-ent_SYS2_1(9))^2) ...
+1e3*E_Battery +1e3*E_Connection1+1e3*E_Connection2+1e3*E_Connection3...
+1e3*E_Design1+1e3*E_Design2+1e3*E_Display1+1e3*E_Display2+1e5*E_Cost;

151

Figure 9.4: Enterprise NONLINEAR Constraints

7/12/07 1:08 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optimal ...\ent_NONLCON2_1.m 1 of 1

function constr = NONLCON_sys(ent_SYS2_1,Prob)
load SMS_SUB2_1.mat SMS_SUB2_1 -ascii ;
global response_SUBSYS;

%Customer information predicted by Data Mining C4.5 DT
Demand=907;
MaxPrice=160;
Cost=SMS_SUB2_1(87);
profit=ent_SYS2_1(1);

%Stage 1: SMS Architecture Design

% Tolerance constraint
g(1) = 1e0*((ent_SYS2_1(2) - response_SUBSYS(1))^2) - ent_SYS2_1(11); %Cost
g(2) = 1e0*((ent_SYS2_1(3) - response_SUBSYS(2))^2) - ent_SYS2_1(12) ;%Talk Time
g(3) = 1e0*((ent_SYS2_1(4) - response_SUBSYS(3))^2) - ent_SYS2_1(13) ;%Bluetooth
g(4) = 1e0*((ent_SYS2_1(5) - response_SUBSYS(4))^2) - ent_SYS2_1(14);%Wifi
g(5) = 1e0*((ent_SYS2_1(6) - response_SUBSYS(5))^2) - ent_SYS2_1(15);%Infrared
g(6) = 1e0*((ent_SYS2_1(7) - response_SUBSYS(6))^2) - ent_SYS2_1(16);%Shell Phone
g(7) = 1e0*((ent_SYS2_1(8) - response_SUBSYS(7))^2) - ent_SYS2_1(17) ;%Flip Phone
g(8) = 1e0*((ent_SYS2_1(9) - response_SUBSYS(8))^2) - ent_SYS2_1(18);%TFT LCD
g(9) = 1e0*((ent_SYS2_1(10) - response_SUBSYS(9))^2) - ent_SYS2_1(19) ;%OLED

h(1)=profit-Demand*(MaxPrice-Cost);

C=[g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8) g(9)]';

Ceq=[h(1)]';

constr = [C;Ceq];

152

Figure 9.5: Enterprise variable bound definitions

7/12/07 1:09 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optimal Pro...\ent_OSYS2_1.m 1 of 2

% Cell Phone Design
% Target Cascading approach
% Two level problem: System-Subsystem

% System level problem

global response_SUBSYS, count;
% A=[]'; B=[]'; Aeq=[]'; Beq=[]'; % matrix/vectors for defining linear constraints (not
used)

load X_ALL2_1.mat X_ALL2_1 -ascii ;
load SMS_SUB2_1.mat SMS_SUB2_1 -ascii ;

ent_SYS2_1 =[200 X_ALL2_1(87) X_ALL2_1(45) X_ALL2_1(33) X_ALL2_1(47) X_ALL2_1(48)
X_ALL2_1(19) X_ALL2_1(25) X_ALL2_1(59) X_ALL2_1(66) 10 10 10 10 10 10 10 10 10]';

response_SUBSYS(1) = SMS_SUB2_1(87) ; % Actually, response from subsystem---Cost
response_SUBSYS(2) = SMS_SUB2_1(45) ; % Actually, response from subsystem---Talk Time
response_SUBSYS(3) = SMS_SUB2_1(46) ; % Actually, response from subsystem---Bluetooth
response_SUBSYS(4) = SMS_SUB2_1(47) ; % Actually, response from subsystem---Wifi
response_SUBSYS(5) = SMS_SUB2_1(48) ; % Actually, response from subsystem---Infrared
response_SUBSYS(6) = SMS_SUB2_1(19) ; % Actually, response from subsystem---Shell Phone
response_SUBSYS(7) = SMS_SUB2_1(25) ; % Actually, response from subsystem---Flip Phone
response_SUBSYS(8) = SMS_SUB2_1(59) ; % Actually, response from subsystem---TFT LCD
response_SUBSYS(9) = SMS_SUB2_1(66) ; % Actually, response from subsystem---OLED

xlb=[-1000000000 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]' ;
xub=[1000000000 300 7 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10]';
xstatus=[0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0]';

 c_L = [-inf -inf -inf -inf -inf -inf -inf -inf -inf 0]';
 c_U = [0 0 0 0 0 0 0 0 0 0]';
x_opt=[];

ConsPattern = []; % All elements of grad c(x) are nonzero
HessPattern = zeros(1,1); % Linear obj.function => zero Hessian
VarWeight = [];
fIP = []; % An upper bound on the IP value wanted.
xIP = []; % Makes it possible to cut branches

Prob = minlpAssign('ent_FUN2_1', [], [], [], xlb, xub, 'SMS Phone_1 Profit Calculation',
ent_SYS2_1, ...
 xstatus, VarWeight, [], [], ...
 [], [], [], 'ent_NONLCON2_1', [], [], ConsPattern, c_L, c_U,
x_opt);

153

Figure 9.6: Script file calling the optimization sequence

7/12/07 1:09 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optimal Pr...\overall_s2_1.m 1 of 2

% Cell Phone Product Architecture
% Target Cascading approach
% Three level problem: System-Subsystem-Component

% Overall Coordination Problem

clear all;
warning off;

global count ;

xm(1)=1; xm(11)=1; xm(21)=50; xm(31)=1; xm(40)=50; xm(50)=1; xm(60)=40;
xm(70)=18; xm(80)=0;
xm(2)=0; xm(12)=0; xm(22)=30; xm(32)=20; xm(41)=35; xm(51)=0; xm(61)=30;
xm(71)= 11; xm(81)=0;
xm(3)=0; xm(13)=0; xm(23)=40; xm(33)=50; xm(42)=11; xm(52)=0; xm(62)=25000;
xm(72)= 15; xm(82)=0;
xm(4)=0; xm(14)=0; xm(24)=20; xm(34)=40; xm(43)=35; xm(53)=0; xm(63)=18;
xm(73)=0; xm(83)=0;
xm(5)=0; xm(15)=0; xm(25)=0; xm(35)=12; xm(44)=1100; xm(54)=0; xm(64)=12;
xm(74)=0; xm(84)=0;
xm(6)=0; xm(16)=0; xm(26)=70; xm(36)=30; xm(45)=5; xm(55)=0; xm(65)=9;
xm(75)=0; xm(85)=0;
xm(7)=0; xm(17)=0; xm(27)=40; xm(37)=1200; xm(46)=0; xm(56)=0; xm(66)=0;
xm(76)=0; xm(86)=0;
xm(8)=0; xm(18)=1; xm(28)=25; xm(38)=0; xm(47)=1; xm(57)=0; xm(67) =35;
xm(77)=0; xm(87)=40;
xm(9)=0; xm(19)=0; xm(29)=20; xm(39)=15; xm(48)=0; xm(58)=0; xm(68) =25;
xm(78)=0; xm(88)=60;
xm(10)=0; xm(20)=90; xm(30)=15; xm(49)=0; xm(59)=1; xm(69)
=18000; xm(79)=0;

X_ALL2_1=[xm(1:88)]';

xms(1)=1; xms(11)=1; xms(21)=50; xms(31)=1; xms(40)=50; xms(50)=1; xms(60)=40;
xms(70)=18; xms(80)=0;
xms(2)=0; xms(12)=0; xms(22)=30; xms(32)=20; xms(41)=35; xms(51)=0; xms(61)
=30; xms(71)= 11; xms(81)=0;
xms(3)=0; xms(13)=0; xms(23)=40; xms(33)=50; xms(42)=11; xms(52)=0; xms(62)
=25000; xms(72)= 15; xms(82)=0;
xms(4)=0; xms(14)=0; xms(24)=20; xms(34)=40; xms(43)=35; xms(53)=0; xms(63)
=18; xms(73)=0; xms(83)=0;
xms(5)=0; xms(15)=0; xms(25)=0; xms(35)=12; xms(44)=1100; xms(54)=0; xms(64)
=12; xms(74)=0; xms(84)=0;
xms(6)=0; xms(16)=0; xms(26)=70; xms(36)=30; xms(45)=5; xms(55)=0; xms(65)
=9; xms(75)=0; xms(85)=0;
xms(7)=0; xms(17)=0; xms(27)=40; xms(37)=1200; xms(46)=0; xms(56)=0; xms(66)
=0; xms(76)=0; xms(86)=0;
xms(8)=0; xms(18)=1; xms(28)=25; xms(38)=0; xms(47)=1; xms(57)=0; xms
(67) =35; xms(77)=0; xms(87)=40;

154

Figure 9.7: Engineering Objective Function

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optimal Prod...\SMS_FUN2_1.m 1 of 1

function [f]=SMS_FUN(SMS_SUB,Prob)

global target_SUB;

%The objective fucntion of Matching System Level Target with response

Cost=SMS_SUB(87);
Weight=SMS_SUB(88);
R_Battery=SMS_SUB(45);
R_Connection=SMS_SUB(46);
R_Display=SMS_SUB(59);
% R_Design=SMS_SUB(19);

f=Cost+ 1e3*((target_SUB(2)-R_Battery)^2+(target_SUB(8)-R_Display)^2);

155

Figure 9.8: Engineering Design Constraints

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 1 of 14

 function constr=NONLCON(SMS_SUB)
global target_SUB;
%University of Illinois-Urbana, Champaign
%Enterprise Systems Optimization Laboratory
%Dr. Harrison Kim: ISIE Assistant Professor
%Conrad Tucker : ISIE Graduate Research Student

%Cell Phone Architecture Formulation
%*************************Variable Assignments***************************

%-----------------------STORAGE AND MOMORY ASSIGNMENT--------------%

% ^^^^^^^^^^^^^^^^^^^^^^^^^^^^RAM ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~32 MB RAM~~~~~~~~~~~~~~~~~~~~~~~~~~
% MANUFACTURER 1: 32 Megabyte RAM
 % 32 MB Capacity
Mbyte_32_1=SMS_SUB(1); %RAM Discrete Variable
Weight_32MB1=1.1; % 32 MB Component weight
Cost_32MB1=0.2; % Unit cost of 32 MB RAM
Power_32MB1=2; % Power Consumption per hour (Milliamps)

 % MANUFACTURER 2: 32 Megabyte RAM
 % 32 MB Capacity
 Mbyte_32_2=SMS_SUB(2); %RAM Discrete Variable
Weight_32MB2=2; % 32 MB Component weight
Cost_32MB2=0.35; % Unit cost of 32 MB RAM
Power_32MB2=2; % Power Consumption per hour (Milliamps)

 % MANUFACTURER 3: 32 Megabyte RAM
 % 32 MB Capacity
 Mbyte_32_3=SMS_SUB(3); %RAM Discrete Variable
Weight_32MB3=1.3; % 32 MB Component weight
Cost_32MB3=0.15; % Unit cost of 32 MB RAM
Power_32MB3=3; % Power Consumption per hour (Milliamps)

%---------------------------64 MB RAM-----------------------------------

%MANUFACTURER 1: 64 Megabyte RAM
% 64 MB Capacity
 Mbyte_64_1=SMS_SUB(4); %RAM Discrete Variable
Weight_64MB1=1.2; % 32 MB Component weight
Cost_64MB1=0.43; % Unit cost of 32 MB RAM
Power_64MB1=4; % Power Consumption per hour (Milliamps)

%MANUFACTURER 2: 64 Megabyte RAM
% 64 MB Capacity
 Mbyte_64_2=SMS_SUB(5); %RAM Discrete Variable
Weight_64MB2=2.5; % 32 MB Component weight
Cost_64MB2=0.51; % Unit cost of 32 MB RAM

156

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 2 of 14

Power_64MB2=1.5; % Power Consumption per hour (Milliamps)

%MANUFACTURER 3: 64 Megabyte RAM
% 64 MB Capacity
 Mbyte_64_3=SMS_SUB(6); %RAM Discrete Variable
Weight_64MB3=2.3; % 32 MB Component weight
Cost_64MB3=0.41; % Unit cost of 32 MB RAM
Power_64MB3=3; % Power Consumption per hour (Milliamps)
%~~~

%^^^^^^^^^^^^^^^^^^^^^EXTERNAL STORAGE DEVICE^^^^^^^^^^^^^^^^^^^^^^^^^^^

%-------------------------MS ProFlash Drive-----------------------------

%MANUFACTURER 1: MS Pro Flash Drive
MSP1=SMS_SUB(7); %EXTERNAL STORAGE Discrete Variable
Weight_MSP1=3.1;
Cost_MSP1=1.1; % Manufacturing cost of MS Pro slot
Power_MSP1=1; % Power Consumption per hour (Milliamps)

%MANUFACTURER 2: MS Pro Flash Drive
MSP2=SMS_SUB(8); %EXTERNAL STORAGE Discrete Variable
Weight_MSP2=3.2;
Cost_MSP2=1.3; % Manufacturing cost of MS Pro slot
Power_MSP2=1.1; % Power Consumption per hour (Milliamps)

%MANUFACTURER 3: MS Pro Flash Drive
MSP3=SMS_SUB(9);%EXTERNAL STORAGE Discrete Variable
Weight_MSP3=2.5;
Cost_MSP3=1.2; % Manufacturing cost of MS Pro slot
Power_MSP3=3; % Power Consumption per hour (Milliamps)

%-------------------------MS DUO Flash Drive------------------------------

%MANUFACTURER 1: MS DUO Flash Drive
MSD1=SMS_SUB(10); %EXTERNAL STORAGE Discrete Variable
Weight_MSD1=2.4;
Cost_MSD1=1.54; % Manufacturing cost of MS DUO slot
Power_MSD1=2; % Power Consumption per hour (Milliamps)

%MANUFACTURER 2: MS DUO Flash Drive
MSD2=SMS_SUB(11); %EXTERNAL STORAGE Discrete Variable
Weight_MSD2=2.5;
Cost_MSD2=1.65; % Manufacturing cost of MS DUO slot
Power_MSD2=1.5; % Power Consumption per hour (Milliamps)

%MANUFACTURER 3: MS DUO Flash Drive
MSD3=SMS_SUB(12);%EXTERNAL STORAGE Discrete Variable
Weight_MSD3=3.0;
Cost_MSD3=1.44; % Manufacturing cost of MS DUO slot
Power_MSD3=2.5; % Power Consumption per hour (Milliamps)

157

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 3 of 14

% ^^^^^^^^^^^^^^^^^^^^^^^^^^^HARD DRIVE STORAGE^^^^^^^^^^^^^^^^^^^^^^^^^^

%---------------------------1 Gigabyte HD Storage------------------------
% MANUFACTURER 1: 1 Gigabyte Storage
GB1HD_1=SMS_SUB(13);
Weight_GB1HD_1=17.2; % 1 GB Component weight
Cost_GB1HD_1=16.80; % Component cost of 1 GB storage device
Power_GB1HD_1=7; % Power Consumption per hour (Milliamps)

% MANUFACTURER 2: 1 Gigabyte Storage
GB1HD_2=SMS_SUB(14);
Weight_GB1HD_2=19.5; % 1 GB Component weight
Cost_GB1HD_2=15.63; % Component cost of 1 GB storage device
Power_GB1HD_2=7; % Power Consumption per hour (Milliamps)

% MANUFACTURER 3: 1 Gigabyte Storage
GB1HD_3=SMS_SUB(15);
Weight_GB1HD_3=22.7; % 1 GB Component weight
Cost_GB1HD_3=17.40; % Component cost of 1 GB storage device
Power_GB1HD_3=7; % Power Consumption per hour (Milliamps)

%---------------------------2 Gigabyte HD Storage-------------------------
% MANUFACTURER 1: 2 Gigabyte Storage
GB2HD_1=SMS_SUB(16);
Weight_GB2HD_1=27.8; % 2 GB Component weight
Cost_GB2HD_1=25.90; % Component cost of 2 GB storage device
Power_GB2HD_1=11; % Power Consumption per hour (Milliamps)

% MANUFACTURER 2: 2 Gigabyte Storage
GB2HD_2=SMS_SUB(17);
Weight_GB2HD_2=32.9; % 2 GB Component weight
Cost_GB2HD_2=24.83; % Component cost of 2 GB storage device
Power_GB2HD_2=12; % Power Consumption per hour (Milliamps)

% MANUFACTURER 3: 2 Gigabyte Storage
GB2HD_3=SMS_SUB(18);
Weight_GB2HD_3=28.77; % 2 GB Component weight
Cost_GB2HD_3=26.80; % Component cost of 2 GB storage device
Power_GB2HD_3=13; % Power Consumption per hour (Milliamps)

 %^^^^^^^^^^^^^^^^^^^^^EXTERIOR DESIGN OF CELL PHONE^^^^^^^^^^^^^^^^^^^^^

%------------------------------Shell Phone--------------------------------
SHELL=SMS_SUB(19); % Discrete choice variable: Shell Phone design
Length_SHELL=SMS_SUB(20); % Phone length
Width_SHELL=SMS_SUB(21); % Phone width
Thickness_SHELL=SMS_SUB(22);% Phone Thickness
Weight_SHELL=SMS_SUB(23);% Cell Phone Weight

158

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 4 of 14

Cost_SHELL=SMS_SUB(24);% Cell Phone Cost

%------------------------------Flip Phone----------------------------------

FLIP=SMS_SUB(25); % Discrete choice variable: Flipe Phone design
Length_FLIP=SMS_SUB(26); % Phone length
Width_FLIP=SMS_SUB(27); % Phone width
Thickness_FLIP=SMS_SUB(28);% Phone Thickness
Weight_FLIP=SMS_SUB(29);% Cell Phone Weight
Cost_FLIP=SMS_SUB(30);% Cell Phone Cost

%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^BATTERY TYPE^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

% -----------------Nickel Metal Hydride (NIMH)---------------------
NIMH=SMS_SUB(31); %NIMH Discrete Variable
Weight_NIMH=SMS_SUB(32); % Battery Weight
Length_NIMH =SMS_SUB(33); % Battery Length
Width_NIMH=SMS_SUB(34); %Battery Width
Thickness_NIMH=SMS_SUB(35); %Battery Thickness
Cost_NIMH=SMS_SUB(36); % Battery Cost
Capacity_NIMH=SMS_SUB(37); % Battery Capacity

% --------------------Lithium Ion (LI-ION)-----------------------------

LION=SMS_SUB(38); %LION Discrete Variable
Weight_LION=SMS_SUB(39); % Battery Weight
Length_LION =SMS_SUB(40); % Battery Length
Width_LION=SMS_SUB(41); %Battery Width
Thickness_LION=SMS_SUB(42); %Battery Thickness
Cost_LION=SMS_SUB(43); % Battery Cost
Capacity_LION=SMS_SUB(44); % Battery Capacity

TALK_TIME=SMS_SUB(45); % Battery Talk Time

%^^^^^^^^^^^^^^^^^^^^^^^^^^CONNECTIVITY^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

% -------------------------Bluetooth----------------------------

BT=SMS_SUB(46); % Bluetooth Discrete Variable
Weight_BT=8.9; % Weight of Bluetooth radio
Cost_BT=5.80; % Cost of Bluetooth radio
Power_BT=8; % Power consumption rate of radio

% ^^^^^^^^^^^^^^^^WiFi^^^^^^^^^^^^^^^^^^^

WF=SMS_SUB(47); % Wifi Discrete Variable
Weight_WF=12.8; % Weight of WiFi radio
Cost_WF=7.30; % Cost of Wifi radio
Power_WF=8; % Power consumption rate Wifi

159

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 5 of 14

% ^^^^^^^^^^^^^^^^Infra-red^^^^^^^^^^^^^^^^^^^

IR=SMS_SUB(48); % Infra-red Discrete Variable
Weight_IR=8.5; % Weight of Infra red
Cost_IR=3.73; % Cost of Infra red
Power_IR=6; % Power consumption rate of Infra-red

%-----------------------------Audio Codec-------------------------------%

% ^^^^^^^^^^^^^^^^^^^^^^^^^Microphone^^^^^^^^^^^^^^^^^^^^^^^^^

% MANUFACTURER 1: Microphone
MIC1=SMS_SUB(49); %Microphone Discrete Variable
Weight_MIC1=2.1; % Weight of Microphone
Cost_MIC1=0.81; % Cost of Microphone
Power_MIC1=.4; % Power consumption rate of Microphone

% MANUFACTURER 2: Microphone
MIC2=SMS_SUB(50); %Microphone Discrete Variable
Weight_MIC2=2.6; % Weight of Microphone
Cost_MIC2=0.84; % Cost of Microphone
Power_MIC2=.7; % Power consumption rate of Microphone

% ^^^^^^^^^^^^^^^^^^^^^^^^^^^Earpiece^^^^^^^^^^^^^^^^^^^^^^^^^

% MANUFACTURER 1: Earpiece
EP1=SMS_SUB(51); %Microphone Discrete Variable
Weight_EP1=2.7; % Weight of Earpiece
Cost_EP1=0.13; % Cost of Earpiece
Power_EP1=1.1; % Power consumption rate of Earpiece

% MANUFACTURER 2: Earpiece
EP2=SMS_SUB(52); %Microphone Discrete Variable
Weight_EP2=2.4; % Weight of Earpiece
Cost_EP2=0.14; % Cost of Earpiece
Power_EP2=1.3; % Power consumption rate of Earpiece

% MANUFACTURER 3: Earpiece
EP3=SMS_SUB(53); %Microphone Discrete Variable
Weight_EP3=3.1; % Weight of Earpiece
Cost_EP3=0.14; % Cost of Earpiece
Power_EP3=1.0; % Power consumption rate of Earpiece

% ^^^^^^^^^^^^^^^^^^^^^^^^^Audio Jack^^^^^^^^^^^^^^^^^^^^^^^^^

% MANUFACTURER 1: Audio Jack
AJ1=SMS_SUB(54); % Audio Jack Discrete Variable
Weight_AJ1=1.4; % Weight of Audio Jack
Cost_AJ1=0.8; % Cost of Audio Jack
Power_AJ1=0.5;

160

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 6 of 14

% MANUFACTURER 2: Audio Jack
AJ2=SMS_SUB(55); % Audio Jack Discrete Variable
Weight_AJ2=1.7; % Weight of Audio Jack
Cost_AJ2=0.6; % Cost of Audio Jack
Power_AJ2=0.9;
% ^^^^^^^^^^^^^^^^^^^^^^^^^External Speaker^^^^^^^^^^^^^^^^^^^^^^^^^

% MANUFACTURER 1: External Speaker
ES1=SMS_SUB(56); %External Speaker Discrete Variable
Weight_ES1=8.43; % Weight of External Speaker
Cost_ES1=2.9; % Cost of External Speaker
Power_ES1=1.8; % Power consumption rate of External Speaker

% MANUFACTURER 2: External Speaker
ES2=SMS_SUB(57); %External Speaker Discrete Variable
Weight_ES2=7.12; % Weight of External Speaker
Cost_ES2=3.7; % Cost of External Speaker
Power_ES2=1.3; % Power consumption rate of External Speaker

% MANUFACTURER 3: External Speaker
ES3=SMS_SUB(58); %External Speaker Discrete Variable
Weight_ES3=6.9; % Weight of External Speaker
Cost_ES3=1.7; % Cost of External Speaker
Power_ES3=1.5; % Power consumption rate of External Speaker

%---------------------------------LCD----------------------------------%

% ^^^^^^^^^^^^^^^^^^^^^^^^^TFT LCD^^^^^^^^^^^^^^^^^^^^^^^^^

LCD=SMS_SUB(59); % TFT LCD Discrete Choice variable
LCD_length= SMS_SUB(60); % Length of LCD
LCD_width= SMS_SUB(61); % Width of LCD
LCD_res= SMS_SUB(62); % Display Resolution
Cost_LCD= SMS_SUB(63); % LCD manufacturing cost
Weight_LCD= SMS_SUB(64); % LCD Unit weight
Power_LCD= SMS_SUB(65); % Battery Consumption;

% ^^^^^^^^^^^^^^^^^^^^^^^^^OLED^^^^^^^^^^^^^^^^^^^^^^^^^

OLED=SMS_SUB(66); % OLED Discrete Choice variable
OLED_length= SMS_SUB(67); % Length of OLED
OLED_width= SMS_SUB(68); % Width of OLED
OLED_res= SMS_SUB(69); % Display Resolution
Cost_OLED= SMS_SUB(70); % OLED manufacturing cost
Weight_OLED= SMS_SUB(71); % OLED Unit weight
Power_OLED= SMS_SUB(72); % Battery Consumption;

%***************************Digital Camera Modules*************************

161

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 7 of 14

% ^^^^^^^^^^^^^^^^^^^^^^^^^1 MegaPixel Camera^^^^^^^^^^^^^^^^^^^^^^^^

%MANUFACTURER 1: 1 MP Camera Module
One_MP1=SMS_SUB(73); %1 MP Discrete Choice variable
Cost_One_MP1=9.75; %1 MP Camera Component Cost
Weight_One_MP1=15.2; % 1 MP Camera Component Weight
Power_One_MP1=5.7; % 1 MP Camera Component Power consumption

%MANUFACTURER 2: 1 MP Camera Module
One_MP2=SMS_SUB(74); %1 MP Discrete Choice variable
Cost_One_MP2=7.75; %1 MP Camera Component Cost
Weight_One_MP2=15.15; % 1 MP Camera Component Weight
Power_One_MP2=5.4; % 1 MP Camera Component Power consumption

% ^^^^^^^^^^^^^^^^^^^^^^^^^2 MegaPixel Camera^^^^^^^^^^^^^^^^^^^^^^^^

%MANUFACTURER 1: 2 MP Camera Module
Two_MP1=SMS_SUB(75); %2 MP Discrete Choice variable
Cost_Two_MP1=11.75; %2 MP Camera Component Cost
Weight_Two_MP1=14.7; % 2 MP Camera Component Weight
Power_Two_MP1=5.9; % 2 MP Camera Component Power consumption

%MANUFACTURER 2: 2 MP Camera Module
Two_MP2=SMS_SUB(76); %2 MP Discrete Choice variable
Cost_Two_MP2=12.33; %2 MP Camera Component Cost
Weight_Two_MP2=15.1; % 2 MP Camera Component Weight
Power_Two_MP2=6.1; % 2 MP Camera Component Power consumption

%***************************MP3 Modules*************************

%MANUFACTURER 1: MP3 Module
MP3_1=SMS_SUB(77); % MP3 Discrete Choice variable
Cost_MP3_1=9.75; % MP3 Component Cost
Weight_MP3_1=8.43; %MP3 Component Weight
Power_MP3_1=5.7; % MP3 Component Power consumption

%MANUFACTURER 2: MP3 Module
MP3_2=SMS_SUB(78); % MP3 Discrete Choice variable
Cost_MP3_2=8.22; % MP3 Component Cost
Weight_MP3_2=7.22; %MP3 Component Weight
Power_MP3_2=5.9; % MP3 Component Power consumption

%MANUFACTURER 3: MP3 Module
MP3_3=SMS_SUB(79); % MP3 Discrete Choice variable
Cost_MP3_3=9.6; % MP3 Component Cost
Weight_MP3_3=9.93; %MP3 Component Weight
Power_MP3_3=5.5; % MP3 Component Power consumption

%MANUFACTURER 4: MP3 Module
MP3_4=SMS_SUB(80); % MP3 Discrete Choice variable
Cost_MP3_4=9.2; % MP3 Component Cost

162

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 8 of 14

Weight_MP3_4=1.3; %MP3 Component Weight
Power_MP3_4=4.3; % MP3 Component Power consumption

%**********************Module for Internet Capabilities******************

%MANUFACTURER 1: Internet Module
INT_1=SMS_SUB(81); % INT Discrete Choice variable
Cost_INT_1=4.2; % INT Component Cost
Weight_INT_1=10.8; %INT Component Weight
Power_INT_1=4.7; % INT Component Power consumption

%MANUFACTURER 2: Internet Module
INT_2=SMS_SUB(82); % INT Discrete Choice variable
Cost_INT_2=3.72; % INT Component Cost
Weight_INT_2=11.4; %INT Component Weight
Power_INT_2=5.1; % INT Component Power consumption

%********************Graphics Module for Games****************************
%MANUFACTURER 1: GAMES Module
GAMES1=SMS_SUB(83); % GAMES Discrete Choice variable
Cost_GAMES1=6.25; % GAMES Component Cost
Weight_GAMES1=11.8; % GAMES Component Weight
Power_GAMES1=9.3; % GAMES Component Power consumption

%MANUFACTURER 2: GAMES Module
GAMES2=SMS_SUB(84); % GAMES Discrete Choice variable
Cost_GAMES2=6.1; % GAMES Component Cost
Weight_GAMES2=9.6; % GAMES Component Weight
Power_GAMES2=8.2; % GAMES Component Power consumption

%MANUFACTURER 3: GAMES Module
GAMES3=SMS_SUB(85); % GAMES Discrete Choice variable
Cost_GAMES3=5.95; % GAMES Component Cost
Weight_GAMES3=11.5; % GAMES Component Weight
Power_GAMES3=8.5; % GAMES Component Power consumption

%************************SMS TEXT CAPABLE PHONE***************************
%MANUFACTURER 1: SMS Module
SMS=SMS_SUB(86); % SMS Discrete Choice variable
Cost_SMS=4.75; % SMS Component Cost
Weight_SMS=12.5; % SMS Component Weight
Power_SMS=2.1; % SMS Component Power consumption
SMS_Key_Tol=40;

%**************Overall Architecture Design Variables*********************
 Total_Cost=SMS_SUB(87); %Total Product Architecture Cost
 Total_Weight=SMS_SUB(88);

%----------------------------CONSTANTS---------------------------------%
 B1=18.21; %Assumed cost of components not included in the model

 A1=14.74; %Unit pixel/Area based on standard phone specs TFT LCD

163

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 9 of 14

 A2=5*10^-3; %TFT LCD manufacturing cost/unit volume
 A3=0.04; %TFT LCD Unit weight
 A4=0.01; %TFT battery consumption per unit resolution

 A5=19.62; %Unit pixel/Area based on standard phone specs OLED LCD
 A6=8*10^-3; %OLED LCD manufacturing cost/unit volume
 A7=0.03; %OLED LCD Unit weight
 A8=0.03; %OLED battery consumption per unit resolution

 NIMH_Const1=0.021374687; %BATTERY CONSTANTS
 NIMH_Const2=0.000379288; %NIMH Cost Constant
 NIMH_Const3=9.38e-4; %NIMH Weight Constant

 LION_Const1=0.043186444; %BATTERY CONSTANTS
 LION_Const2=0.000803447; %LION Cost Constant
 LION_Const3=8.83e-4; %LION Weight Constant

 SHELL_Const1=2.29e-4; %Shell phone unit Cost/volume
 SHELL_Const2=5.1e-4; %Shell phone unit Weight/volume

 FLIP_Const1=1.47e-4;%Flip phone unit Cost/volume
 FLIP_Const2=4.9e-4;%Flip phone unit Weight/volume

 %^^^^^^^^^^^^^^^^^^^^^^^^^^CONSTRAINTS^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 %***************************TFT LCD*************************************
 h1=(A1*LCD_length*LCD_width)-LCD_res; %LCD resolution
 h2=(A2*LCD_length*LCD_width)-Cost_LCD ; %LCD Manufacturing Cost
 h3=(A3*LCD_length*LCD_width)-Weight_LCD; %LCD component Weight
 g1=LCD_length-(0.60*SHELL*Length_SHELL+0.60*FLIP*Length_FLIP); %Length cannot
exceed a certain % of Phone length
 g2=(0.30*SHELL*Length_SHELL+0.30*FLIP*Length_FLIP)-LCD_length; %Length is >
certain % of Phone length
 g3=LCD_width-0.90*(SHELL*Width_SHELL+FLIP*Width_FLIP); %Width cannot
exceed a certain % of Phone length
 g4=0.7*(SHELL*Width_SHELL+FLIP*Width_FLIP)-LCD_width; %Width is >
certain % of Phone length
 h4=(A4*LCD_length*LCD_width)-Power_LCD; %TFT LCD battery
consumption based on size

 %***************************OLED LCD*************************************
 h5=(A5*OLED_length*OLED_width)-OLED_res; %OLED resolution
 h6=(A6*OLED_length*OLED_width)-Cost_OLED ; %OLED Manufacturing Cost
 h7=(A7*OLED_length*OLED_width)-Weight_OLED; %OLED component Weight
 g5=OLED_length-(0.60*SHELL*Length_SHELL+0.60*FLIP*Length_FLIP); %Length cannot
exceed a certain % of Phone length
 g6=(0.30*SHELL*Length_SHELL+0.30*FLIP*Length_FLIP)-OLED_length; %Length is >
certain % of Phone length
 g7=OLED_width-0.90*(SHELL*Width_SHELL+FLIP*Width_FLIP); %Width cannot
exceed a certain % of Phone length

164

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 10 of 14

 g8=0.7*(SHELL*Width_SHELL+FLIP*Width_FLIP)-OLED_width; %Width is >
certain % of Phone length
 h8=(A8*OLED_length*OLED_width)-Power_OLED; %OLED battery consumption based on size

%***********************NIMH BATTERY Capacity Caculation**********************
 h9=Capacity_NIMH-((NIMH_Const1*(Length_NIMH*Width_NIMH*Thickness_NIMH)));

 g9= (TALK_TIME*(Mbyte_32_1*Power_32MB1+Mbyte_32_2*Power_32MB2+Mbyte_32_3*Power_32MB3...
 +Mbyte_64_1*Power_64MB1+Mbyte_64_2*Power_64MB2+Mbyte_64_3*Power_64MB3...
 +MSP1*Power_MSP1+MSP2*Power_MSP2+MSP3*Power_MSP3+MSD1*Power_MSD1+MSD2*Power_MSD2...
 +MSD3*Power_MSD3+GB1HD_1*Power_GB1HD_1+GB1HD_2*Power_GB1HD_2+GB1HD_3*Power_GB1HD_3...

+GB2HD_1*Power_GB2HD_1+GB2HD_2*Power_GB2HD_2+GB2HD_3*Power_GB2HD_3+BT*Power_BT+WF*Power_WF
+IR*Power_IR...
 +MIC1*Power_MIC1+MIC2*Power_MIC2+EP1*Power_EP1+EP2*Power_EP2+EP3*Power_EP3...
 +AJ1*Power_AJ1+AJ2*Power_AJ2+ES1*Power_ES1+ES2*Power_ES2+ES3*Power_ES3...
 +LCD*Power_LCD+OLED*Power_OLED+One_MP1*Power_One_MP1+One_MP2*Power_One_MP2+
Two_MP1*Power_Two_MP1...
 +Two_MP2*Power_Two_MP2+ MP3_1*Power_MP3_1+MP3_2*Power_MP3_2+MP3_3*Power_MP3_3...
 +MP3_4*Power_MP3_4+INT_1*Power_INT_1+INT_2*Power_INT_2+GAMES1*Power_GAMES1...
 +GAMES2*Power_GAMES2+GAMES3*Power_GAMES3+SMS*Power_SMS))-Capacity_NIMH;

%***********************LION BATTERY Capacity Caculation**********************
 h10=Capacity_LION-((LION_Const1*(Length_LION*Width_LION*Thickness_LION)));

 g10=(TALK_TIME*(Mbyte_32_1*Power_32MB1+Mbyte_32_2*Power_32MB2+Mbyte_32_3*Power_32MB3...
 +Mbyte_64_1*Power_64MB1+Mbyte_64_2*Power_64MB2+Mbyte_64_3*Power_64MB3...
 +MSP1*Power_MSP1+MSP2*Power_MSP2+MSP3*Power_MSP3+MSD1*Power_MSD1+MSD2*Power_MSD2...
 +MSD3*Power_MSD3+GB1HD_1*Power_GB1HD_1+GB1HD_2*Power_GB1HD_2+GB1HD_3*Power_GB1HD_3...

+GB2HD_1*Power_GB2HD_1+GB2HD_2*Power_GB2HD_2+GB2HD_3*Power_GB2HD_3+BT*Power_BT+WF*Power_WF
+IR*Power_IR...
 +MIC1*Power_MIC1+MIC2*Power_MIC2+EP1*Power_EP1+EP2*Power_EP2+EP3*Power_EP3...
 +AJ1*Power_AJ1+AJ2*Power_AJ2+ES1*Power_ES1+ES2*Power_ES2+ES3*Power_ES3...
 +LCD*Power_LCD+OLED*Power_OLED+One_MP1*Power_One_MP1+One_MP2*Power_One_MP2+
Two_MP1*Power_Two_MP1...
 +Two_MP2*Power_Two_MP2+ MP3_1*Power_MP3_1+MP3_2*Power_MP3_2+MP3_3*Power_MP3_3...
 +MP3_4*Power_MP3_4+INT_1*Power_INT_1+INT_2*Power_INT_2+GAMES1*Power_GAMES1...
 +GAMES2*Power_GAMES2+GAMES3*Power_GAMES3+SMS*Power_SMS))-Capacity_LION;

 g11=(NIMH*Length_NIMH+LION*Length_LION)-0.60*(SHELL*Length_SHELL+FLIP*Length_SHELL); %
Battery Length must be less than a certain % of cell phone
 g12=(NIMH*Width_NIMH+LION*Width_LION)-0.95*(SHELL*Width_SHELL+FLIP*Width_FLIP);%Battery
Width must be less than a certain % of cell phone
 g13=(NIMH*Thickness_NIMH+LION*Thickness_LION)-0.45*
(SHELL*Thickness_SHELL+FLIP*Thickness_FLIP);% Battery thickness must be less than %

 %***********************BATTERY Talk Time Caculation*******************
 h11=TALK_TIME-(NIMH*((0.0053*(Capacity_NIMH))+0.0269)+ (LION*((0.0061*(Capacity_LION))
+0.1667)));

165

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 11 of 14

 %***********************BATTERY Cost Caculation*******************
 h12=((NIMH_Const2*(Length_NIMH*Width_NIMH*Thickness_NIMH))-Cost_NIMH);
 h13=((LION_Const2*(Length_LION*Width_LION*Thickness_LION))-Cost_LION);

 %***********************BATTERY Weight Caculation*******************
 h14=((NIMH_Const3*(Length_NIMH*Width_NIMH*Thickness_NIMH))-Weight_NIMH);
 h15=((LION_Const3*(Length_LION*Width_LION*Thickness_LION))-Weight_LION);

 %_______________________CELL PHONE DESIGN CONSTRAINTS__________________
 h16=(SHELL_Const1*Length_SHELL*Width_SHELL*Thickness_SHELL)-Cost_SHELL;
 h17=(FLIP_Const1*Length_FLIP*Width_FLIP*Thickness_FLIP)-Cost_FLIP;
 h18=(SHELL_Const2*Length_SHELL*Width_SHELL*Thickness_SHELL)-Weight_SHELL;
 h19=(FLIP_Const2*Length_FLIP*Width_FLIP*Thickness_FLIP)-Weight_FLIP;

 %****************Constraint for cost of Product Platform*****************
 h20=Total_Cost-(B1+Mbyte_32_1*Cost_32MB1+Mbyte_32_2*Cost_32MB2+Mbyte_32_3*Cost_32MB3...
 +Mbyte_64_1*Cost_64MB1+Mbyte_64_2*Cost_64MB2+Mbyte_64_3*Cost_64MB3...
 +MSP1*Cost_MSP1+MSP2*Cost_MSP2+MSP3*Cost_MSP3+MSD1*Cost_MSD1+MSD2*Cost_MSD2...
 +MSD3*Cost_MSD3+GB1HD_1*Cost_GB1HD_1+GB1HD_2*Cost_GB1HD_2+GB1HD_3*Cost_GB1HD_3...
 +GB2HD_1*Cost_GB2HD_1+GB2HD_2*Cost_GB2HD_2+GB2HD_3*Cost_GB2HD_3+SHELL*Cost_SHELL...
 +FLIP*Cost_FLIP+NIMH*Cost_NIMH+LION*Cost_LION+BT*Cost_BT+WF*Cost_WF+IR*Cost_IR...
 +MIC1*Cost_MIC1+MIC2*Cost_MIC2+EP1*Cost_EP1+EP2*Cost_EP2+EP3*Cost_EP3...
 +AJ1*Cost_AJ1+AJ2*Cost_AJ2+ES1*Cost_ES1+ES2*Cost_ES2+ES3*Cost_ES3...
 +LCD*Cost_LCD+OLED*Cost_OLED+One_MP1*Cost_One_MP1+One_MP2*Cost_One_MP2+
Two_MP1*Cost_Two_MP1...
 +Two_MP2*Cost_Two_MP2+ MP3_1*Cost_MP3_1+MP3_2*Cost_MP3_2+MP3_3*Cost_MP3_3...
 +MP3_4*Cost_MP3_4+INT_1*Cost_INT_1+INT_2*Cost_INT_2+GAMES1*Cost_GAMES1...
 +GAMES2*Cost_GAMES2+GAMES3*Cost_GAMES3+SMS*Cost_SMS);

 h21= Total_Weight-
(Mbyte_32_1*Weight_32MB1+Mbyte_32_2*Weight_32MB2+Mbyte_32_3*Weight_32MB3...
 +Mbyte_64_1*Weight_64MB1+Mbyte_64_2*Weight_64MB2+Mbyte_64_3*Weight_64MB3...

+MSP1*Weight_MSP1+MSP2*Weight_MSP2+MSP3*Weight_MSP3+MSD1*Weight_MSD1+MSD2*Weight_MSD2...

+MSD3*Weight_MSD3+GB1HD_1*Weight_GB1HD_1+GB1HD_2*Weight_GB1HD_2+GB1HD_3*Weight_GB1HD_3...

+GB2HD_1*Weight_GB2HD_1+GB2HD_2*Weight_GB2HD_2+GB2HD_3*Weight_GB2HD_3+SHELL*Weight_SHELL..
.

+FLIP*Weight_FLIP+NIMH*Weight_NIMH+LION*Weight_LION+BT*Weight_BT+WF*Weight_WF+IR*Weight_IR
...
 +MIC1*Weight_MIC1+MIC2*Weight_MIC2+EP1*Weight_EP1+EP2*Weight_EP2+EP3*Weight_EP3...
 +AJ1*Weight_AJ1+AJ2*Weight_AJ2+ES1*Weight_ES1+ES2*Weight_ES2+ES3*Weight_ES3...
 +LCD*Weight_LCD+OLED*Weight_OLED+One_MP1*Weight_One_MP1+One_MP2*Weight_One_MP2+
Two_MP1*Weight_Two_MP1...
 +Two_MP2*Weight_Two_MP2+MP3_1*Weight_MP3_1+MP3_2*Weight_MP3_2+MP3_3*Weight_MP3_3...
 +MP3_4*Weight_MP3_4+INT_1*Weight_INT_1+INT_2*Weight_INT_2+GAMES1*Weight_GAMES1...
 +GAMES2*Weight_GAMES2+GAMES3*Weight_GAMES3+SMS*Weight_SMS);

166

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 12 of 14

%~~~
SMS_SUB(1)=Mbyte_32_1;
SMS_SUB(2)=Mbyte_32_2;
SMS_SUB(3)=Mbyte_32_3;
SMS_SUB(4)=Mbyte_64_1;
SMS_SUB(5)=Mbyte_64_2;
SMS_SUB(6)=Mbyte_64_3;

SMS_SUB(7)=MSP1;
SMS_SUB(8)=MSP2;
SMS_SUB(9)=MSP3;
SMS_SUB(10)=MSD1;
SMS_SUB(11)=MSD2;
SMS_SUB(12)=MSD3;

SMS_SUB(13)=GB1HD_1;
SMS_SUB(14)=GB1HD_2;
SMS_SUB(15)=GB1HD_3;
SMS_SUB(16)=GB2HD_1;
SMS_SUB(17)=GB2HD_2;
SMS_SUB(18)=GB2HD_3;

SMS_SUB(19)=SHELL; % Discrete choice variable: Shell Phone design
SMS_SUB(20)=Length_SHELL; % Phone length
SMS_SUB(21)=Width_SHELL; % Phone width
SMS_SUB(22)=Thickness_SHELL;% Phone Thickness
SMS_SUB(23)=Weight_SHELL;% Cell Phone Weight
SMS_SUB(24)=Cost_SHELL;% Cell Phone Cost

SMS_SUB(25)=FLIP; % Discrete choice variable: Flipe Phone design
SMS_SUB(26)=Length_FLIP; % Phone length
SMS_SUB(27)=Width_FLIP; % Phone width
SMS_SUB(28)=Thickness_FLIP;% Phone Thickness
SMS_SUB(29)=Weight_FLIP;% Cell Phone Weight
SMS_SUB(30)=Cost_FLIP;% Cell Phone Cost

% -----------------Nickel Metal Hydride (NIMH)---------------------
SMS_SUB(31)=NIMH; %NIMH Discrete Variable
SMS_SUB(32)=Weight_NIMH; % Battery Weight
SMS_SUB(33)=Length_NIMH ; % Battery Length
SMS_SUB(34)=Width_NIMH; %Battery Width
SMS_SUB(35)=Thickness_NIMH; %Battery Thickness
SMS_SUB(36)=Cost_NIMH; % Battery Cost
SMS_SUB(37)=Capacity_NIMH; % Battery Capacity

% --------------------Lithium Ion (LI-ION)-----------------------------

SMS_SUB(38)=LION; %LION Discrete Variable
SMS_SUB(39)=Weight_LION; % Battery Weight
SMS_SUB(40)=Length_LION ; % Battery Length
SMS_SUB(41)=Width_LION; %Battery Width
SMS_SUB(42)=Thickness_LION; %Battery Thickness

167

Figure 9.8: Engineering Design Constraints (cont.)

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optima...\SMS_NONLCON2_1.m 13 of 14

SMS_SUB(43)=Cost_LION; % Battery Cost
SMS_SUB(44)=Capacity_LION; % Battery Capacity
SMS_SUB(45)=TALK_TIME; % Battery Talk Time

SMS_SUB(46)=BT;
SMS_SUB(47)=WF;
SMS_SUB(48)=IR;

SMS_SUB(49)=MIC1;
SMS_SUB(50)=MIC2;

SMS_SUB(51)=EP1;
SMS_SUB(52)=EP2;
SMS_SUB(53)=EP3;

SMS_SUB(54)=AJ1;
SMS_SUB(55)=AJ2;

SMS_SUB(56)=ES1;
SMS_SUB(57)=ES2;
SMS_SUB(58)=ES3;

SMS_SUB(59)=LCD; % TFT LCD Discrete Choice variable
SMS_SUB(60)=LCD_length; % Length of LCD
SMS_SUB(61)=LCD_width; % Width of LCD
SMS_SUB(62)=LCD_res; % Display Resolution
SMS_SUB(63)=Cost_LCD; % LCD manufacturing cost
SMS_SUB(64)=Weight_LCD; % LCD Unit weight
SMS_SUB(65)=Power_LCD; % Battery Consumption;

% ^^^^^^^^^^^^^^^^^^^^^^^^^OLED^^^^^^^^^^^^^^^^^^^^^^^^^

SMS_SUB(66)=OLED; % OLED Discrete Choice variable
SMS_SUB(67)=OLED_length; % Length of OLED
SMS_SUB(68)=OLED_width; % Width of OLED
SMS_SUB(69)=OLED_res; % Display Resolution
SMS_SUB(70)=Cost_OLED; % OLED manufacturing cost
SMS_SUB(71)=Weight_OLED; % OLED Unit weight
SMS_SUB(72)=Power_OLED; % Battery Consumption;

SMS_SUB(73)=One_MP1;
SMS_SUB(74)=One_MP2;

SMS_SUB(75)=Two_MP1;
SMS_SUB(76)=Two_MP2;

SMS_SUB(77)=MP3_1;
SMS_SUB(78)=MP3_2;
SMS_SUB(79)=MP3_3;
SMS_SUB(80)=MP3_4;

168

Figure 9.9: Engineering Variable bound definition

7/12/07 1:10 PM C:\MATLAB\work\ASME_matlab\ASME_DAC1\Optimal P...\SMS_SUBSYS2_1.m 1 of 3

load X_ALL2_1.mat X_ALL2_1 -ascii ;

global target_SUB,count;
%Starting Point
x0(1:88)=X_ALL2_1(1:88);

%Variable Lower Bounds
vl(1)=0; vl(11)=0; vl(21)=40; vl(31)=0; vl(40)=0; vl(50)=0; vl(60)=0;
vl(70)=0; vl(80)=0;
vl(2)=0; vl(12)=0; vl(22)=12; vl(32)=0; vl(41)=0; vl(51)=0; vl(61)=0;
vl(71)= 0; vl(81)=0;
vl(3)=0; vl(13)=0; vl(23)=0; vl(33)=0; vl(42)=0; vl(52)=0; vl(62)=5000;
vl(72)= 0; vl(82)=0;
vl(4)=0; vl(14)=0; vl(24)=0; vl(34)=0; vl(43)=0; vl(53)=0; vl(63)=0;
vl(73)=0; vl(83)=0;
vl(5)=0; vl(15)=0; vl(25)=0; vl(35)=0; vl(44)=200; vl(54)=0; vl(64)=0;
vl(74)=0; vl(84)=0;
vl(6)=0; vl(16)=0; vl(26)=100; vl(36)=0; vl(45)=0; vl(55)=0; vl(65)=0;
vl(75)=0; vl(85)=0;
vl(7)=0; vl(17)=0; vl(27)=45; vl(37)=300; vl(46)=0; vl(56)=0; vl(66)=0;
vl(76)=0; vl(86)=0;
vl(8)=0; vl(18)=0; vl(28)=12; vl(38)=0; vl(47)=0; vl(57)=0; vl(67) =0;
vl(77)=0; vl(87)=0;
vl(9)=0; vl(19)=0; vl(29)=0; vl(39)=0; vl(48)=0; vl(58)=0; vl(68) =0;
vl(78)=0; vl(88)=0;
vl(10)=0; vl(20)=80; vl(30)=0; vl(49)=0; vl(59)=0; vl(69) =5000;
vl(79)=0;

%Variable Upper Bounds
vu(1)=1; vu(11)=1; vu(21)=70; vu(31)=1; vu(40)=80; vu(50)=1; vu(60)=70;
vu(70)=60; vu(80)=1;
vu(2)=1; vu(12)=1; vu(22)=25; vu(32)=50; vu(41)=60; vu(51)=1; vu(61)=50;
vu(71)= 40; vu(81)=1;
vu(3)=1; vu(13)=1; vu(23)=40; vu(33)=80; vu(42)=30; vu(52)=1; vu(62)=30000;
vu(72)= 30; vu(82)=1;
vu(4)=1; vu(14)=1; vu(24)=35; vu(34)=60; vu(43)=100; vu(53)=1; vu(63)=60;
vu(73)=1; vu(83)=1;
vu(5)=1; vu(15)=1; vu(25)=1; vu(35)=30; vu(44)=3000; vu(54)=1; vu(64)=40;
vu(74)=1; vu(84)=1;
vu(6)=1; vu(16)=1; vu(26)=160; vu(36)=100; vu(45)=15; vu(55)=1; vu(65)=30;
vu(75)=1; vu(85)=1;
vu(7)=1; vu(17)=1; vu(27)=70; vu(37)=3000; vu(46)=1; vu(56)=1; vu(66)=1;
vu(76)=1; vu(86)=1;
vu(8)=1; vu(18)=1; vu(28)=25; vu(38)=1; vu(47)=1; vu(57)=1; vu(67) =70;
vu(77)=1; vu(87)=400;
vu(9)=1; vu(19)=1; vu(29)=40; vu(39)=50; vu(48)=1; vu(58)=1; vu(68) =50;
vu(78)=1; vu(88)=1000;
vu(10)=1; vu(20)=120; vu(30)=50; vu(49)=1; vu(59)=1; vu(69)
=30000; vu(79)=1;

169

