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ABSTRACT

Audio-visual event detection aims to identify semantically defined events that

reveal human activities. Most previous literature focusedon restricted high-

light events, and depended on highly ad-hoc detectors for these events. This

research emphasizes generalizable robust modeling of single-microphone audio

cues and/or single-camera visual cues for the detection of real-world events, re-

quiring no expensive annotation other than the known timestamps of the training

events.

To model the audio cues for event detection, we leverage statistical models

proven effective in speech recognition. First, a tandem connectionist-HMM

approach combines the sequence modeling capabilities of the hidden Markov

model (HMM) with the context-dependent discriminative capabilities of an arti-

ficial neural network. Second, an SVM-GMM-supervector approach uses noise-

robust kernels to approximate the KL divergence between feature distributions

in different audio segments. The proposed methods outperform our top-ranked

HMM-based acoustic event detection system in the CLEAR 2007 Evaluation,

which detects twelve general meeting room events such as keyboard typing,

cough and chair moving.

To model the visual cues, we propose the Gaussianized vectorrepresenta-

tion, constructed by adapting a set of Gaussian mixtures according to the set

of patch-based descriptors in an image or video clip, regularized by the global

Gaussian mixture model. The innovative visual modeling approach establishes

unsupervised correspondence between local descriptors indifferent images or

video clips, and achieves outstanding performance in a video event categoriza-
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tion task on ten LSCOM-defined events in the Trecvid broadcastnews data, such

as exiting car, running and people marching. Following an efficient branch-and-

bound search scheme, we further propose an object localization approach for the

Gaussianized vector representation.

We jointly model audio and visual cues for improved event detection using

multi-stream HMMs and coupled HMMs (CHMM). Spatial pyramid histograms

based on the optical flow are proposed as a generalizable visual representation

that does not require training on labeled video data. In a multimedia meeting

room non-speech event detection task, the proposed methodsoutperform pre-

viously reported systems leveraging ad-hoc visual object detectors and sound

localization information obtained from multiple microphones.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Audio and visual information is of significant importance tohuman perception

as well as machine intelligence. Detecting real world events based on such in-

formation finds various applications, including security surveillance [1], human

computer interaction, video annotation and multimedia retrieval [2]. In aging so-

cieties, assistance to dependent people, particularly elderly people, staying in an

unsupervised environment also requires such capability [3]. Varying situations

determine the availability of information in either or bothof the two modali-

ties. While other sensory data has also been studied, this dissertation focuses on

modeling audio and visual cues for real-world event detection.

Real-word events present a significant challenge for machineintelligence.

Even with predefined categories, the cues can be subtle. Moreover, it is not

always possible to pinpoint clear indicators for differentevent categories. For

example, a video clip of a “car exiting” event might not have acomplete profile

view of the vehicle. A “keyboard typing” event might have low-energy audio

footprint and barely visible visual cues from a bird-eye camera.

We study real-world event detection through a set of relatedproblems. First,

short-term acoustic event detection aims to reveal the timeand category of event

occurences in a relatively long audio stream. Second, videoevent detection

provides the event category for video shots, whose boundaries can be obtained

by a well-studied task called shot boundary detection. Third, audio-visual event

detection performs the same task as acoustic event detection, but with access to
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observations in both modalities.

1.2 Background

1.2.1 Acoustic event classification and detection

There is growing research interest in audio/acoustic eventdetection (AED). Al-

though speech is the most informative auditory informationsource, other kinds

of sounds may also carry useful information, such as in surveillance systems

[4]. In a meeting room environment, a rich variety of acoustic events, either

produced by the human body or by objects handled by humans, reflect various

human activities. Detection or classification of acoustic events may help to de-

tect and describe the human and social activity in the meeting room. Examples

include clapping or laughter inside a speech discourse, a strong yawn in the mid-

dle of a lecture, a chair moving or door noise when the meetinghas just started

[5]. Detection of the nonspeech sounds also helps improve speech recognition

performance [6, 7].

Much research in audio content analysis has typically addressed the problem

of segregating a few audio sources [8, 9] or segmenting an audio stream into a

small number of acoustically compact categories or scenes [10, 11]. Acoustic

event detection (AED), a subtask of audio content analysis,aims to detect spec-

ified acoustic events such as gunshots [4], explosions [12, 13], speech/music

transitions [10], cough events [14], and audience cheeringat a sports event

[15]. Such information is very helpful in applications suchas surveillance, mul-

timedia information retrieval and intelligent conferencerooms.

Acoustic events sometimes intervene between speech or overlap with back-

ground speech. Without explicit processing of such phenomena, it is possible to

implicitly deal with background speech as noise included inthe event observa-

tions [16]. Assuming limited overlapping, we can perform voice activity detec-

tion first and then identify acoustic events in the non-speech segments. Acoustic
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event detection could also be performed tightly coupled with the decoding pro-

cess of speech recognition. For example, the non-speech events can be included

in the language model used in Viterbi decoding, similar to the way silence and

noise are modeled in large vocabulary speech recognition. Another possibility

is to treat the acoustic event sequence (padded with silenceand background)

and speech as two separate processes which are decoded simultaneously: the

observed audio waveform is the summation of the two processes. Though this

approach has not been studied for this particular problem, it is successfully used

in multi-talker speech recognition where speech from mutliple speakers overlaps

in time [17].

1.2.2 Video event detection and object localization

Video based event recognition is an extremely challenging task due to all kinds

of within-event variations, such as unconstrained motions, cluttered backgrounds,

object occlusions, environmental illuminations and geometric deformations of

objects. While there exists work attempting to detect unusual or abnormal events

[18, 19] in video clips, the research on event recognition inthe real world is still

in its preliminary stage.

Many statistical models, e.g., hidden Markov model (HMM) [20], and cou-

pled HMM [21] were proposed to capture the spatial and temporal correlations

of video events, and then the learned models are utilized forpre-defined video

event classification or abnormal event detection. On the other hand, appearance-

based techniques were also widely used for video event detection and classifi-

cation. Ke et al. [22] applied the boosting procedure for choosing the volumet-

ric features based on optical flow representations. Niebleset al. [23] adopted

the spatio-temporal interest points [24] to extract the features, and other works

[24] extracted volumetric features from salient regions. There also exist works

that used bag-of-words model to tackle the problem of object/event recognition

[25, 26]. In addition, Bagdanov et al. [27] adopted bag-of-SIFTs to detect and
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recognize object appearances in videos. Xu and Chang [28] proposed to encode

a video clip as a bag of orderless descriptors obtained from mid-level semantic

concept classifiers extracted from all of the constituent frames, along with the

global features extracted within each video frame.

One problem related to video event detection is video shot boundary detection.

A video shot is a fundamental unit for structured video. Video shot boundary

detection is a non-trivial task, particularly given that the boundaries could be

either gradual or clear cut. The task has been extensively studied in Trecvid

2001-2007, as detailed in [29]. Many video event detection works, including the

experiments performed in this dissertation, start with given shot boundaries.

The object localization task involves finding the bounding boxes of an object

within an image, thereby leveraging spatially localized visual cues in an image.

Different from the image categorization problem that aims to assign one label for

the image, object localization needs to evaluate many possible bounding boxes

and identify one or several of them that contain the target objects. A natural

way to carry out localization is the sliding window approach[30]. However, an

exhaustive search in ann×n image needs to evaluateO(n4) candidate bounding

boxes. Heuristics about possible bounding box locations, widths and heights,

or local optimization methods are often used to reduce the search space. The

bounding box search speed can be further improved by coarse-to-fine search

schemes.

1.2.3 Audio-visual fusion

It has been shown that in many applications with both audio and visual infor-

mation, modeling of the two modalities improves performance compared with

either modality. Chu and Huang [31] and Hasegawa-Johnson et al. [32] both

used the coupled hidden Markov model for audio-visual speech recognition.

Hasegawa-Johnson et al. [32] also explored using a more general dynamic

Bayesian network to better model the coupling between audio and vision, based
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on articulatory phonology. Sadlier and O’Connor [33] studied detection of field

sports scoring events, using a support vector machine with various audio-visual

features informative across various sports types. Canton-Ferrer et al. [34] and

Butko et al. [35] both performed audio-visual event detection using not only

audio information, but also output from well trained specialized visual object

trackers, and fused the two modalities at score level and at feature level respec-

tively.

One way to classify audio-visual integration strategies [36] views them as

three categories. The first is early integration, which extracts feature vectors

from both audio and visual observations and concatenates them into one feature

vector sequence for use in one model with the same structure as for one modal-

ity. The second is late integration, which extracts featurevector sets separately

and uses two sets of models generating reliability weights to be combined across

modalities. This is also referred to as decision fusion or separate identification.

The third is intermediate integration, e.g., product hidden Markov model or cou-

pled hidden Markov model.

Besides audio-visual integration, the availability of audio-visual data also en-

ables multi-view learning, which leverages the relation between the different

modalities to improve the learning. Canonical correlation analysis (CCA) is

an unsupervised feature transform learning method that finds a subspace where

the audio and visual cues achieve maximum correlation. One modality can be

viewed as “soft labels” for the other, when finding the optimal projection onto

the CCA subspace. This has been shown to improve speaker recognition and

clustering, even when the visual cues are not available at testing, in [37] and

[38] respectively. When both audio and visual cues are available at testing, we

can apply CCA for both modalities to obtain two versions of the projected fea-

ture vectors. It is pointed out by [39] that these projected vectors can be further

decomposed into uncorrelated elements, so that an early integration strategy can

be applied to correlated corresponding audio-visual elements and a late integra-

tion strategy to the uncorrelated elements.
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1.2.4 Audio-visual pattern recognition in general and realistic
data

Real-word audio and visual data present much more variation than restricted lab

data. Many times, even for the same task, approaches that work on restricted

lab data are not necessarily suitable for realistic data. One example is from the

acoustic event detection literature. While most of the work in event detection fo-

cuses on a few highlight events, the 2006 and 2007 AED Evaluations sponsored

by the project “Classification of Events, Activities and Relationships (CLEAR)”

[5, 1] were mainly performed on a continuous audio database recorded in real

seminars [40]. Systems attempted to identify both the temporal boundaries and

labels of twelve acoustic events (door slam, paper wrapping, foot steps, knock-

ing, chair moving, phone ringing, spooncup jingle, key jingle, keyboard typing,

applause, cough, and laughter). Instead of being exclusively highlight events,

many of the events in CLEAR evaluations were either subtle (low SNR, e.g.

steps, paper wrapping, keyboard typing), or/and overlapping with speech, mak-

ing the task particularly challenging. The real environment factor added to the

variation of the events as well as the difficulty of segmenting the audio-visual

input stream. In the 2006 CLEAR AED Evaluation, the participants delivered

superb performance on acoustic event detection on clean audio with performed

events, while the same teams struggled with realistic seminar data [41].

In 2007 CLEAR AED Evaluation, with only audio information available to

the systems, although different system architectures and feature sets have been

explored [5, 1], even the top rated AED system, which was developed by the

author of this dissertation together with other members of our UIUC team, left

much space for improvement [42]. The evaluations highlighted the challenges in

the detection of a large set of general acoustic events in a real world environment.

With the significant challenge from audio-only event detection, the research

community has explored leveraging additional visual information to improve

AED performance [43, 12, 44]. Leveraging additional visualcues for audio
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signal analysis has also been explored for other applications, such as speech

recognition [45] and person identification [46]. In particular, the multi-stream

HMM and the couple HMM (CHMM) are two effective models for audio-visual

fusion.

Video event detection presents a major challenge, when the concerned data is

from real broadcast news video. Video event detection in this genre differs from

previous studies of more constrained video in various ways.First, the camera

is often in motion, introducing blur and movement of the views. Second, the

same event category may present itself in dramatically different visual content

or layout. Third, it is hard to pinpoint particular problem-specific audio-visual

characteristics in order to identify different categories. One way to deal with

the realistic video data is to leverage lower-level semantic concepts, with the

assumption that such concepts well summarize the visual cues and enable con-

venient comparison between different video clips [47].

1.3 Contributions

This dissertation tackles the problem of identifying both timestamps and types

of real world events, providing a comprehensive description of the real world

audio and/or visual stream. Moreover, this research emphasizes robust and gen-

eralizable modeling of audio cues and video cues, either separately or jointly,

with no use of highly ad-hoc detectors trained using separate labeled data. The

proposed framework for audio-visual event detection takesadvantage of known

timestamps of the training events and requires no expensivelocation annotation

of the visual cues.

Statistical models proven effective in the speech recognition literature are used

for audio cue modeling. First, a tandem connectionist-HMM approach combines

the sequence modeling capabilities of the HMM with the high-accuracy context-

dependent discriminative capabilities of an artificial neural network trained us-
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ing the minimum cross entropy criterion. Second, an SVM-GMM-supervector

approach uses noise-adaptive kernels approximating the KLdivergence between

feature distributions in different audio segments. These methods show that a bet-

ter temporal context modeling improves AED based on HMMs, and modeling

the audio segment via one distribution for all frame-based vectors provides use-

ful complimentary information for the task.

In this dissertation, visual cue modeling uses an innovative Gaussianized vec-

tor representation for images and video clips, applied in object categorization

and localization algorithms. The Gaussianized vector representation summa-

rizes an image or a video clip with the distribution of patch-based descriptors,

approximated by a Gaussian mixture model. This representation establishes un-

supervised correspondence between different images through the set of Gaussian

components adapted from a global set of Gaussian componentsaccording to the

maximum a posteriori (MAP) criterion. A linear kernel basedon this represen-

tation approximates the KL divergence between patch descriptor distributions

from different images or video clips, and can be used not onlyfor categorization

but also for localization in an efficient branch-and-bound search scheme. These

methods show that it is possible to effectively model real world image and video

data without developing supervised lower level semantic concept detectors, and

achieve state-of-the-art performances for broadcast newsvideo event detection.

I also study improving the detection and classification of the events using cues

from both audio and visual modalities requiring only labelsavailable for audio

training. Optical flow based spatial pyramid histograms areused as a general-

izable visual representation that does not require training on labeled video data.

Multi-stream HMMs or coupled HMMs (CHMM) are used for audio-visual joint

modeling. To allow the flexibility of audio-visual state asynchrony, I explore ef-

fective CHMM training via HMM state-space mapping, parameter tying and

different initialization schemes. The proposed methods successfully improve

acoustic event classification and detection on a multimediameeting room dataset

containing eleven types of general non-speech events without using extra data
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resource other than the video stream accompanying the audioobservations. The

audio-visual event classification and detection system outperforms a previously

reported system engaging multiple supervisedly-trained visual object detectors

and location estimators based on microphone array signal processing.

The rest of this dissertation is organized as follows. Chapter 2 presents the

work in acoustic event detection, which has been published in [48, 49]. Chap-

ter 3 details the Gaussianized vector representation and its applications in video

event detection and visual object localization, most of which have been pub-

lished in [50, 51]. Chapter 4 presents the work on improving acoustic event

detection using general visual cues, to be published in [52]. The dissertation

concludes with discussion and conclusion in Chapter 5.
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CHAPTER 2

AUDIO MODELING FOR ACOUSTIC
EVENT DETECTION

Acoustic event detection (AED) in realistic data differs from classification of

isolated events in a silent environment, calling for different statistical models.

While SVMs were shown to be optimal for the latter [53], the former saw most

leading CLEAR AED Evaluation participants using dynamic Bayesian networks

[5, 1]. In particular, our top-rated AED system in CLEAR Evaluation 2007 used

a set of left-to-right hidden Markov models (HMMs), each forone event. HMMs

owe their success to the Viterbi algorithm [54], which allows them to com-

pute simultaneously optimal segmentation and classification of the audio stream.

Noise in individual frames is alleviated by the HMM’s learned hysteresis, i.e.,

its typical learned preference for self-transitions rather than non-self-transitions

in the hidden finite state machine.

To take advantage of this proven approach, we leverage a framework in which

HMMs are used to achieve audio segmentation and event classification simulta-

neously. To alleviate HMM’s problem that each hidden state models only local

observations, we propose to use the tandem connectionist-HMM approach [55],

where an artificial neural network (ANN) outputs posterior probabilities of event

types based on very-long-duration, temporally overlapping observation vectors,

leading to better contextual modeling and event discrimination. To further refine

the event detection result, we propose using Gaussian mixture model (GMM)

supervectors [56] to abstract the noisy features in the training audio segments

and the hypothesized segments obtained by the tandem model.An SVM with

kernels built on these GMM supervectors, namely the SVM-GMM-supervector

classifier, is used to replace the labels proposed by the first-pass tandem model,
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when such replacement is desirable according to held-out development data.

We perform acoustic event detection experiments on the samesetup as the

AED evaluation in CLEAR 2007. It is demonstrated that the tandem connectionist-

HMM approach and the SVM-GMM-supervector approach for refining the re-

sult both contribute to performance improvement, and the proposed system sig-

nificantly outperforms our submission system in the CLEAR 2007 AED Eval-

uation, which was the best ranked in the challenging AED task, outperforming

other participating systems by 50% relative in detection accuracy. We also show

that the acoustic event detection methods, in particular the HMM-based AED

system and the complimentary SVM-GMM supervector rescoring can be effec-

tively applied in a human falling detection system using a single microphone as

the sensor.

2.1 Segmentation and Classification: HMM-Based
System

Audio event detection requires both segmentation of the audio stream, and clas-

sification of the segments. Following our experience in the AED task of CLEAR

2007, we perform simultaneous segmentation and classification using a Bayesian

inference procedure similar to state-of-the-art methods for continuous speech

recognition [57, 58].

We formulate the goal of acoustic event detection as follows: to find the event

sequence that maximizes the posterior probability of the event sequenceW =

(w1, w2, ..., wM ), given the observationsO = (o1, o2, ..., oT ):

Ŵ = argmax
W

P (W |O) = argmax
W

P (O|W )P (W ) (2.1)

The acoustic modelP (O|W ) is one HMM for each acoustic event, with three

emitting states connected using left-to-right and self-loop transitions. For back-

ground silence and speech, we use a HMM with additional transitions between

11



the first and third emitting states, to account for the increased internal complex-

ity. The structure of the HMMs can model some of the non-stationarity of acous-

tic events. The observation distributions of the states areincrementally-trained

Gaussian mixtures. The HMM for an acoustic event is trained to represent all

training data segments carrying the same event label.

In order to capture short-term soft constraints on the sequence of event la-

bels, the probability of an event label sequence(w1, . . . , wm) is represented by

a bigram language model:

P (w1w2 · · ·wm) = P (w1)
m
∏

i=2

P (wi|wi−1). (2.2)

A bigram “language model” in AED favors recognized acousticevent se-

quences with sequence statistics similar to those in the training data. Although

the language model here does not have the same linguistic implications as in

speech recognition, it does improve performance. One of thepossible reasons

is that it suppresses long sequences of identical event labels, thus forcing the

HMMs to better learn the internal temporal structure of the acoustic events.

2.2 Acoustic Context: Tandem Connectionist-HMM
Approach

The tandem connectionist-HMM approach is composed of two major compo-

nents, as shown in Figure 2.1: an artificial neural network (ANN) that observes

feature vectors in a context window and outputs posteriors of different acoustic

event types, and an HMM component that uses a transformed andnormalized

version of the output of the ANN, optionally together with the original features,

as input features. This approach has been shown to improve HMM-based au-

tomatic speech recognition [55]. We use the same framework to boost perfor-

mance of acoustic event detection by drawing evidence from awider time con-

text window and emphasizing the difference between confusable feature vectors

12



across acoustic events by discriminative training.

Two lessons from its application in speech recognition are particularly relevent

for using the approach in AED. First, the ANN improves recognition perfor-

mance in high noise conditions [59, 60]. The AED task is characterized by low

SNR, in particular with backgrounds that have high variation. Second, the ANN

benefits speech recognition when context independent models are used [60]. To

limit the complexity of the ANN, it is used to distinguish only between different

context-independent models. As pointed out by [60], if the generative (HMM)

part of the tandem system leverages context-dependent models, the ANN may

end up counterproductive by increasing overlap and confusion between differ-

ent context-dependent models that correspond to the same context-independent

model. Consistent with the above findings, we have used the tandem architec-

ture successfully for speech recognition from tract variables in an architecture

based on articulatory phonology [61, 62]. In this work, we use the HMMs to

model different acoustic events that are indeed context-independent.

Consecutive frames within the context window are concatenated to form the

input X to the ANN, each dimension corresponding to one input node. The

number of output nodes equals the number of acoustic event types. The ANN

is discriminatively trained, by back-propagating a minimum cross entropy crite-

rion, to targets that set the output node corresponding to the ground truth event as

one and all other output nodes as zero. During testing, for each context window,

the ANN presents estimated posterior probabilities acrossall acoustic events.

All context windows centered at every consecutive feature frame are evaluated

in the same way, resulting in a sequence of posterior probability vectors.

With these posterior probabilities, we could perform classification using two

different approaches. The first approach just directly usesthe ANN output: ei-

ther to assign to each frame its maximum a posteriori event label, or to generate

probabilities that will be smoothed by a Viterbi decoder. However, experiments

in automatic speech recognition suggest that better results may be obtained by

transforming the posteriors into a pseudo-observation, which is then used as the
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input to a Gaussian mixture HMM.

In order for ANN posterior probability vectors to be better modeled by the

Gaussian mixture likelihood model of an HMM, three transformation are ap-

plied as suggested by previous work in tandem speech recognition [55]. First,

we take thelog of each posterior probability to reduce the skewedness of the

distributions. Second, principal component analysis (PCA)is applied on the log

probabilities to decorrelate the HMM input, so that we may use diagonal co-

variance matrices in the Gaussian mixture models. Third, mean and variance

normalization is applied on each of the decorrelated dimensions, within each

audio session.

Figure 2.1: Classification using a tandem model (ANN+HMM).

2.3 Complimentary Rescoring:
SVM-GMM-Supervectors for Audio Segments

Researchers in automatic speaker identification have recently developed a set of

algorithms that boost classification performance by feeding the likelihood out-
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put of a generative model (usually an adapted Gaussian mixture model) to the

input of a discriminative classifier (usually an SVM) [56]. The SVM-GMM-

supervector approach is not practical as a first-pass segmenter for AED, because

it requires some type of hypothesized segment boundaries. Given the bound-

aries chosen by a connectionist-HMM first-pass system, the SVM-GMM is able

to efficiently compute confidence scores for each of the proposed segment la-

bels. The SVM-GMM is robust to background noise owing to the parametric

modeling of frame-level feature distribution. It discriminates between the can-

didate classes, with scores normalized by adaptation of a common multi-mode

Gaussian mixture distribution.

We refer to the audio observation between two adjacent boundaries as anau-

dio segment. The SVM-GMM-supervector approach approximates the jointdis-

tribution of all feature vectors ineach audio segmentwith a GMM, from which

a GMM supervector is constructed as a summary of the segment.The pairwise

Euclidean distances between these supervectors characterize the difference be-

tween the audio segments. Kernels derived from these distances are used in an

SVM for classification.

Figure 2.2 demonstrates that each audio segment is represented as an ensem-

ble of frame-based feature vectors, whose distribution is approximated by a set

of Gaussians adapted from the global Gaussian mixtures, or the universal back-

ground model.

2.3.1 Universal background model and segment-specific
Gaussian mixture models

We estimate a GMM for the distribution of all feature vectorsin each audio

segment. Instead of separately estimating a GMM for each audio segment, we

estimate a GMM for each audio segment by adapting, to each audio segment,

the parameters of a universal background model (UBM): a GMM that has been

previously trained to represent all types of audio. Adaptive training creates a
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Figure 2.2: GMMs (indicated by the ovals) summarize audio segments using
multiple unimodal Guassians (indicated by the circles).

regularized estimate of the true, underlying likelihood function governing each

audio segment. Regularization (adaptative training based on a UBM) reduces the

effects of outliers, e.g., noisy frames in an audio segment.Adaptive training also

provides a natural measure of the difference between any given audio segment

and the UBM, since each Gaussian component in the segment-specific likeli-

hood has been adapted from a particular component of the UBM. Conversely,

the use of a GMM allows arbitrarily precise representation of the acoustic fea-

ture likelihood, with large enough number of Gaussian components. Finally,

the GMM clusters similar frames, by assigning them to the same kernel in the

GMM.

We first estimate a UBM using feature vectors extracted from all training au-

dio segments, regardless of their event labels. Then the distribution model of the

feature vector for a certain audio segment is adapted from the UBM in order to

maximize the a posteriori probability of the adapted model [63].

Here we denotez ∈ R
d as a feature vector, whered is the dimension of the
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feature vector. The GMM distribution of variablez is

p(z; Θ) =
K
∑

k=1

wkN (z;µk,Σk), (2.3)

whereΘ = {w1, µ1,Σ1, · · · }, wk, µk andΣk are the weight, mean, and covari-

ance matrix of thekth Gaussian kernel, respectively, andK is the total number

of Gaussian kernels.

The density is a weighted linear combination ofK unimodal Gaussian densi-

ties, namely,

N (z;µk,Σk) =
1

(2π)
d
2 |Σk|

1

2

e−
1

2
(z−µk)

TΣ−1

k
(z−µk). (2.4)

We obtain maximum likelihood parameters for the UBM using expectation-

maximization (EM). For computational efficiency, the covariance matrices are

restricted to be diagonal, which proves to be effective and computationally eco-

nomical.

The UBM, learned from all training audio, specifies a feature domain, of

which each segment-specific GMM span a subset. The subset constraint can

be enforced by interpreting the UBM parameter set,Θ, as a set of conjugate-

prior PDFs governing the distribution of segment-specific GMM parameters,θ,

i.e., the segment-specific GMM has the a priori PDFp(θ; Θ). The a posteriori

probability of the segment-specific GMM parameters is obtained by multiplying

p(θ; Θ) by the data likelihood,p(Z|θ), whereZ = {z1, . . . , zH} are the frames

observed belonging to the segment of interest, and by then dividing by a nor-

malizing constant; the normalizing constant is irrelevantto computation of the

model parameters, and may be omitted. Thus, for example, MAPadaptation
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selects the segment-specific mean parametersµ̂k to maximize

ln p(θ̂, Z) =
K
∑

k=1

lnN (µ̂k;µk,Σk/r)

+
H
∑

i=1

ln
K
∑

k=1

wkN (zi; µ̂k,Σk), (2.5)

whereθ̂ = {µ̂1, . . . , µ̂K} is the set of segment-specific GMM parameters, and

Θ = {w1, µ1,Σ1, . . .} are the parameters of the global GMM.

The joint distribution functionp(θ̂, Z) has the same form as the likelihood

function p(Z|θ̂), and may therefore be optimized in the same way as a likeli-

hood function, i.e., using EM with the hidden variablePr(k|zi) as the posterior

probability of the Gaussian componentk for given feature vectorzi [64]. In the

E-step, we compute the posterior probability as

Pr(k|zi) =
wkN (zi;µk,Σk)

∑K
j=1 wjN (zi;µj,Σj)

, (2.6)

nk =
H
∑

i=1

Pr(k|zi), (2.7)

and then the M-step updates the mean vectors, namely,

Ek(Z) =
1

nk

H
∑

i=1

Pr(k|zi)zi, (2.8)

µ̂k = αkEk(z) + (1− αk)µk, (2.9)

whereαk = nk/(nk + r). MAP adaptation using conjugate priors is useful be-

cause it interpolates, smoothly, between the hyper-parametersµk and the max-

imum likelihood parametersEk(Z). In this work,r is adjusted empirically. If

a Gaussian component has a high probabilistic count,nk, thenαk approaches1

and the adapted parameters emphasize the new sufficient statistics; otherwise,

the adapted parameters are determined by the global model.
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2.3.2 Approximating Kullback-Leibler divergence

Two segment-specificGMMs adapted from the same UBM are denoted asga

andgb. A natural similarity measure between these two GMMs is the Kullback-

Leibler divergence,

D(ga||gb) =

∫

z

ga(z) log
ga(z)

gb(z)
dz .

The Kullback-Leibler divergence does not satisfy the conditions for a metric

function. Instead, we can use its upper bound obtained by thelog-sum inequality,

D(ga||gb) ≤
K
∑

k=1

wk D(N (z;µa
k,Σk)|| N (z;µb

k,Σk)) ,

whereµa
k andµb

k denote the adapted means of thekth component from the seg-

ment GMMsga andgb , respectively. Since the covariance matrices are shared

across all adapted GMMs and the UBM, the right-hand side is equal to

d(a, b)2 =
1

2

K
∑

k=1

wk(µ
a
k − µb

k)
TΣ−1

k (µa
k − µb

k) .

We can considerd(a, b) as the Euclidean distance between the normalized

GMM supervectors in a high-dimensional feature space [65],

d(a, b) = ‖φ(Za)− φ(Zb)‖ 2 , (2.10)

where

φ(a) = [

√

w1

2
Σ

− 1

2

1 µa
1 ; · · · ;

√

wK

2
Σ

− 1

2

K µa
K ] . (2.11)

2.3.3 Kernel for SVM

GMM supervectors are used in an SVM for acoustic event classification. This

multi-class classification task is implemented as binary classification problems
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via the one-vs.-one method using LibSVM [66]. The distance defined in (2.10)

can be evaluated using kernel functions, as

d(a, b) =
√

K(a, a)− 2K(a, b) +K(b, b) . (2.12)

It is straightforward that kernel functionK(a, b) = φ(a) • φ(b) satisfies (2.12),

whereφ(a) andφ(b) are defined as in (2.11).

2.4 Hybrid Architecture of the AED System

Both the HMM-based approach and the tandem HMM-connectionist approach

engage the maximum a posteriori (MAP) decoding for AED: the recognizer out-

puts a sequence of hypothesized acoustic events corresponding to the highest

sequence a posterior probability, as discussed in Section 2.1. However, the

best acoustic event sequence obtained by the MAP decoding isnot optimal ac-

cording to the performance measure for AED,AED − ACC, i.e. the acoustic

event F-score (harmonic mean of precision and recall). For example, Mangu,

Brill and Stolcke [67] proposed solving a similar problem using localized con-

fidence rescoring: the MAP decoder defines a reduced search space, within

which a new hypothesis is chosen explicitly to minimize the target performance

measure. Confidence scoring also allows us to apply methods such as SVM-

GMM-supervector classification, which are difficult to apply in a MAP decoding

paradigm because of computational complexity and model structure limitations.

In this work, our AED system uses a two-stage hybrid architecture (Figure

2.3). In [67] a rescoring paradigm aligns all of the edges in an event lattice to

the times marked in the MAP hypothesis. In the AED task, the number of labels

is small enough to obviate lattice rescoring; therefore, wecan take a route that

is straightforward, yet effective and computationally inexpensive. The MAP

decoding outputs a one-best result with boundaries of events and background,

as well as hypothesized event types. The SVM-GMM-supervector approach is
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Figure 2.3: Hybrid architecture of AED system.

used as the confidence rescoring module. It models feature frames within all

hypothesized audio segments, and proposes event types thatmight be different

from the hypothesis obtained through MAP decoding.

Both hypothesized event types, referred to as the MAP labels and the SVM la-

bels respectively, include the events of concern and a “background” label. There-

fore, event label substitutions, each defined by a MAP label and an SVM label,

may include substitutions between any pair of events, from an acoustic event to

background or from background to an acoustic event. On the held out develop-

ment data, the performance change is measured when only one particular type

of label substitution is allowed. Those label substitutiontypes that lead to the

most performance boost on the held out data are chosen as thevalid event label
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substitutions, to be applied in testing. All other types of label substitutions are

suppressed in testing, by retaining the MAP label.

We find in practice that the above valid event label substitutions are too spe-

cific and sometimes do not carry over well between different data. Therefore, in

the experiments we only define valid event label substitutions according to the

MAP labels. In fact, the most favorable approach turns out toallow the SVM-

GMM-supervector classifier to assign labels to the audio segments labeled as

background by the MAP decoding, recovering events that weremissed in the first

pass, but not to perform any substitutions among MAP-labeled non-background

events. Readers interested in more general methods to combine detection results

from multiple systems are refered to literature about the Recognition Output

Voting Error Reduction (ROVER) [68], particularly its votingsearch modules.

The hybrid architecture works for two reasons.

First, the SVM-GMM-supervector approach functions complementarily to the

MAP decoding as they operate in different hypothesis spaces. In particular, the

MAP decoding engages properties such as state transition, varying length and

N-gram event sequence statistics in the decision of boundaries and hypothe-

sized event labels. The MAP decoding might suppress proposing short events or

events similar to the background given the high variation inthe background. By

contrast, the SVM-GMM-supervector approach only considers feature distribu-

tion within an audio segment locally. The purely local approach of the rescoring

module has been shown to outperform HMMs in tasks with loose sequence con-

straints [69]. Besides, the SVM-GMM-supervector approach does not impose

explicit temporal structure within the audio segments, in contrast to left-to-right

HMMs.

Second, the objective of MAP decoding differs from that of AED. For the

maximum a posteriori hypothesis, each frame in the observation is considered.

The detection metric, AED-ACC, only considers the temporal relationship be-

tween the hypothesized event boundaries and the reference event boundaries.

Furthermore, neither MAP decoding nor the SVM-GMM-supervector classifier
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treat background and acoustic events differently, while the AED-ACC measures

only the F-score in detection of non-background events. SVM-GMM rescoring

aims at the target performance metric by constraining it to allow only label sub-

stitutions (changes from the MAP labels) that are believed to improve the AED

performance metric.

2.5 Seminar Room AED Experiments

2.5.1 Dataset and metric

The acoustic event detection experiments use the official data for CLEAR 2007

AED Evaluation [1]: about three hours for system development and two hours

for system evaluation. All data are realistic seminar style, having both speech

and acoustic events with possible overlap. The evaluation data has 1454 in-

stances of target events. The target events included in the AED performance

metric are door slam (ds), paper wrapping (pw), footsteps (st), phone ringing

(pr), spoon cup jingle (cl), keyboard typing (kt), applause(ap), coughing (co),

laughter (la), key jingle (kj), chair moving (cm), and knocking (kn). The counts

of these events in the evaluation data are as in Figure 2.4. Many of the events

are subtle and have low SNR compared to background noise or speech.

The performances are measured using AED-ACC [1], defined as the F-score

(the harmonic mean between precision and recall) comparingsystem output

acoustic event (AE) labels and reference AE labels. In particular, an event de-

tected by the system is correct when there exists at least onematching reference

event whose temporal center falls within the time boundaries of the detected

event or the temporal center of the detected event is within the boundaries of at

least one matching reference event. A reference event is considered correctly

detected if its temporal center is within at least one matching system output or

if there exist at least one matching system output whose temporal center falls

within the boundaries of the reference event. AED-ACC aims toscore detection
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Figure 2.4: Counts of the twelve acoustic events in the evaluation data.

and classification of all acoustic event instances, oriented for applications such

as real-time services for smart rooms and audio-based surveillance.

2.5.2 Experiment setup

The audio features used in these experiments are AED featurederived using a

modified AdaBoost approach we proposed in [42]. The feature pool consists

of two feature sets widely-used in speech recognition as well as other audio

applications. The first set consists of 26 MFCCs calculated in the 0 Hz - 11000

Hz band along with their first order regression (delta) coefficients and second

order regression (acceleration) coefficients. The second set consists of 26 log

frequency filter bank parameters, their delta and acceleration coefficients on the

same frequency range. The AED feature set is derived using a boosting approach

from the union of the two baseline feature sets. The AED feature set used has

78 feature components.

Two sets of experiments are carried out to demonstrate the performance of

the tandem connectionist-HMM approach and the SVM-GMM-supervector ap-
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proach for refining event label hypotheses.

The first experiment evaluates the tandem connectionist-HMM approach. The

contextual window size (number of input nodes divided by 78)is picked to be

five. The number of hidden nodes is chosen as 1200 empiricallyfor best perfor-

mance on a development dataset. The number of output nodes isset to 14, i.e.,

the number of acoustic events plus one for frames labeled as unknown sounds

and one for background frames. The transformed output of thebest-performing

ANN is concatenated with the derived AED feature set as the input to the HMM

component.

The second experiment presents performance of the SVM-GMM-supervector

approach discussed in Subsection 2.3, used in the hybrid architecture discussed

in Subsection 2.4. The number of Gaussian mixtures is set to be 128. Two sets

of results are reported, obtained by applying the approach on top of either the

HMM-based approach or the tandem connectionist-HMM approach.

When training the systems, we hold out one third of the three hour develop-

ment data to tune some system parameters. Once the parameters are determined,

the models are retrained with all the development data.

2.5.3 Results

In Table 2.1, we demonstrate the effectiveness of the tandemHMM-connectionist

approach and the SVM-GMM-supervector approach used in the hybrid archi-

tecture. We can observe that the average AED-ACC across all twelve events

improves from 34% to 35.3% by engaging the tandem approach (denoted as

“Tandem”). The SVM-GMM-supervector (denoted as “HMM+S”) boosts per-

formance from 34% to 37.5% by relabeling event segments proposed by the

HMM-based AED system (denoted as “HMM”), as described in Subsection 2.4.

Using this hybrid architecture of both tandem and SVM-GMM-supervector ap-

proaches yields the best AED-ACC of 41.2% (denoted as “Tandem+S”).

Performance on individual acoustic events is also presented for the different
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settings. It is shown that the number of individual acousticevents scoring the

highest is the largest for the best setting of “Tandem+S”. The single most dra-

matic performance boost on an individual event is that of “keyboard typing”

(kt), achieved by engaging the SVM-GMM-supervector approach. The MAP

decoding approaches, i.e., HMM or tandem approaches, couldnot well distin-

guish “keyboard typing” from background. In fact, many events that are eas-

ily confused with the background in the first pass, e.g., “keyboard typing” and

“steps”, are recovered for reasons discussed in Subsection2.4. This highlights

that the SVM-GMM-supervector in the hybrid architecture has capability com-

plementary to the MAP decoding approaches. The best settingof “Tandem+S”

performs significantly better than the baseline HMM-based system according to

the Friedman’s test (p = 0.02).

All results presented here are improved from our system in the 2007 CLEAR

Acoustic Event Detection Evaluation, where we achieved thebest performance,

similar to the performance of the baseline HMM system in Table 2.1.

2.6 Acoustic Fall Classification and Detection
Experiments

Assistance to dependent people, particularly to the elderly living alone at home,

has been attracting increasing attention in today’s aging societies [3]. Reliable

and speedy detection of falls by automatic monitoring of thehome is expected

to be of benefit to both elderly and caregivers.

We apply the AED methods to automatic fall detection using one unobtrusive

far-field microphone. The detection task identifies existence and approximate

occurrence time of falls. Segment boundaries of the acoustic input are found

by the Viterbi algorithm using single-state HMMs (GMMs) with self-transitions

for different falls and other noise events. A bigram model istrained on the

fall, noise and background sequences observed in the training data. Each audio
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Table 2.1: Effectiveness of different components in the AEDsystem.

AED-ACC (%) ap cl cm co ds kj kn kt la pr pw st Average

HMM 44.4 25.5 31.3 31.2 57.3 33.2 13.5 1.9 51.3 36.7 17.6 36.8 34.0
Tandem 52.6 21.9 37.2 51.3 63.0 29.6 11.5 0.0 54.2 42.7 25.8 34.6 35.3
HMM+S 44.4 25.0 33.7 31.2 56.6 33.2 20.9 35.5 51.3 36.7 19.2 41.3 37.5

Tandem+S 52.6 21.5 37.4 47.9 63.0 29.6 13.6 44.8 58.6 42.7 26.7 44.4 41.2
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Table 2.2: Sound classes for fall classification and detection.

FA sound resulting from the subject falling
ST noise when the subject sits down on the

chair, possibly leading to a bit of chair
movement

CL noise of clapping hands
GU noise when the subject gets up from the

floor
MP noise of moving, putting, or catching an

object
DO noise of dropping an object on the floor
DN noise of opening/closing doors
WK noise of walking steps
MO other noise, including speech and non-

speech human voices, telephone ringing
and other acoustically salient noise

BG background noise, usually not perceptu-
ally salient

segment is classified into fall or various types of noise, either directly using the

hypothesis labels obtained in the Viterbi algorithm or after being refined by the

SVM-GMM-supervector approach.

To better distinguish fall from all competing noise, we model falls and nine

classes of noise in the living environment. These classes, shown in Table 2.2, are

adopted with three considerations: Each class should have asufficient number

of instances in the training data. Each class is relatively distinguishable from

others. The classes are chosen to better distinguish falls from noise.

2.6.1 Dataset

Our experiments are carried out on the acoustic fall data collected in the Euro-

pean project Netcarity [3, 70]. The dataset1 is of about 7 hours in 32 sessions,

involving 13 different actors as subjects that might fall orperform other activi-

ties, and various other people that produce noise in the background. Figure 2.5

1We would like to thank the authors of [70] for the Netcarity dataset, and Vit Libal and Larry
Sansone for assistance with the dataset.
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provides a snapshot. This dataset well simulates an environment that elderly

people might encounter at home. We split the dataset into 20 training sessions, 7

testing sessions and 5 held out sessions for tuning the parameters. The subjects

in the training and held out sessions do not overlap with those in testing. We

map the labels in the Netcarity dataset to the ten classes detailed in Table 2.2 as

the ground truth.

Figure 2.5: Snapshot of Netcarity fall dataset (boundariesomitted for
simplicity).

2.6.2 Experiment setup

The first experiment is classification of audio segments whose ground-truth bound-

aries are provided. Classification accuracy of all the ten classes in Table 2.2

reflects the overall performance of the classifiers. F-scoreof the fall segments

reflects the capability to distinguish falls from all other noise. Both the GMM

approach and the SVM-GMM-supervector approach are implemented with 512

Gaussian components for each GMM in this experiment.

The second experiment is detection of falls in acoustic signal of whole ses-
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sions. We measure the detection performance using AED-ACC [1], the har-

monic mean between precision and recall. In the fall detection experiment, we

further require that all proposed fall segments not exceed amaximum length of

5 seconds so that the system output can be used for timely response to falls. Fall

segments that exceed 5 seconds, if any, are removed from the output before scor-

ing. We choose detection using the dynamic programming algorithm with the

GMM audio segment modeling as our baseline. The SVM-GMM-supervector

approach is adopted to re-classify the audio segments with perceptually confus-

able labels in the baseline output. In this dataset, the perceptually confusable

labels are chosen to be falls (FA), dropping objects (DO), getting up (GU) and

walking (WK).

The frame-based features are extracted from 25 ms Hamming windows with a

step size of 10 ms We calculate 12 perceptual linear predictive (PLP) coefficients

and the overall energy. On these 13 dimensions, utterance level cepstral mean

subtraction is applied.

2.6.3 Results

Figure 2.6 illustrates the classification accuracy of all the ten fall/noise classes,

and the F-score for fall segments. The results show that the SVM-GMM-supervector

approach improves from the GMM approach on classifying falland noise seg-

ments.

Figure 2.7 illustrates that using the SVM-GMM-supervectorapproach to re-

classify confusable segments improves AED-ACC measure of the baseline out-

put produced by the Viterbi algorithm using the GMMs.

In these results, we can see that in general the method that performs well in

the classification of falls and other noise categories also provides better measures

in which we only care about the falls, i.e. the F-score of falls in classification

and the AED-ACC in fall detection. This suggests that better modeling of the

alternative categories, including background, improves the capability to identify
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Figure 2.6: Classification of falls/noise.

Figure 2.7: Detection of falls.

the target category.
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CHAPTER 3

GENERAL IMAGE AND VIDEO
MODELING

Real world events present significant variation in the visualcues, even after var-

ious computer vision processing, such as motion detection,background subtrac-

tion and lighting normalization. Most previous research onvideo event analy-

sis is limited to video captured by fixed cameras in surveillance applications or

greatly constrained live video. Even more challenging is video event recognition

in unconstrained domains such as broadcast news, which contains rich informa-

tion about objects, people, activities, and events [47]. For example, events in

broadcast news video may involve small objects, large camera motion, and sig-

nificant object occlusion, and reliable object tracking becomes very challenging

under these scenarios.

Some recent research attempted to provide solutions for event analysis in news

video. Ebadollahi et al. [71] proposed to treat each frame ina video clip as an

observation and apply HMM to model the temporal patterns of event evolu-

tion in news video. Xu and Chang [28] proposed to encode a videoclip as a

bag of orderless descriptors obtained from mid-level semantic concept classi-

fiers extracted from all of the constituent frames, along with the global features

extracted within each video frame, and then apply the Earth Mover’s Distance

(EMD) [72] to integrate similarities among frames from two video clips. Multi-

level temporal pyramid structure was adopted to integrate the information from

different sub-clips with integer-value constrained EMD toexplicitly align the

sub-clips.

Specialized object or semantic concept detectors, such as those for faces,

hands, computer screens, books and human figures, have been successfully used
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to provide discriminative cues for event detection [34, 35,28]. Such lower level

detectors are believed to provide robust representation for realistic images and

video clips. We take an alternative approach, intending notto train ad-hoc and

specialized object detectors, which require expensive annotation for training im-

ages.

We propose Gaussianized vector representation for realistic image and video

modeling. Each image or video clip is expressed as a set of patch-based local

descriptors. Such descriptors can be extracted by a featurepoint detector, such

as the SIFT detector [73], or from a dense pixel grid. We use a Gaussian mixture

model (GMM) to approximate the distribution of these local descriptors ineach

image or video clip. These Gaussian components are adapted from a global

set of Gaussian components according to the maximum a posteriori criterion.

This establishes unsupervised correspondence between different images or video

clips, and suppresses noise in the distributions. The Gaussianized vector repre-

sentation is constructed from an image-specific or video-clip-specific GMM by

taking properly normalized mean vectors of all the Gaussiancomponents, thus

forming a corresponding and uniform-length representation for images or video

clips of different sizes and lengths. It is shown that the linear kernel based on

such representations approximates the KL divergence between local descriptor

distributions of different images or video clips.

Before the kernels are used for categorization or localization problems, a

Within-Class Covariance Normalization (WCCN) approach is utilized to de-

press the kernel components with high-variability for datalabeled as the same

category. The refined kernel is used as a similarity measurement in the nearest

neighbor or nearest centroid classification, as well as in a support vector machine

[74] for margin-based classification.

For video events in broadcast news, we successfully demonstrated that the

patch-based Gaussianized vector representation achievesthe best reported event

categorization accuracy, by effective modeling of whole images without anno-

tating the training images [50]. In particular, our resultsreported in [50] out-
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performed the then state-of-the-art [28] based on a set of specialized semantic

detectors trained on human-annotated images.

Different from classification or regression problems that work on the whole

images, an object localization task involves finding the rectangle bounding boxes

that scored the highest according to a particular video model, with varying loca-

tions, widths and heights. A natural way to carry out localization is the sliding

window approach [30]. However, an exhaustive search in ann× n image needs

to evaluateO(n4) candidate bounding boxes, and is not affordable for a com-

plicated representation such as the Gaussianized vector representation. Tricky

heuristics about possible bounding box locations, widths and heights, or local

optimization methods would have to be used, resulting in false estimates. This

intrinsic trade-off between performance and efficiency of the sliding window ap-

proach is not desirable. Lampert et al. introduced a branch-and-bound search

scheme [75], which finds the globally optimal bounding box efficiently without

the above problems.

I present an efficient object localization approach based onthe Gaussianized

vector representation. The branch-and-bound search scheme [75] is adopted to

perform a fast hierarchical search for the optimal boundingboxes, leveraging a

quality bound for rectangle sets. We demonstrate that the quality function based

on the Gaussianized vector representation can be written asthe sum of contribu-

tions from each feature vector in the bounding box. Moreover, a quality bound

can be obtained for any rectangle set in the image, with little computational cost,

in addition to calculating the Gaussianized vector representation for the whole

image. Experiments on a multi-scale car dataset show that the proposed object

localization approach based on the Gaussianized vector representation outper-

forms previous work using the histogram-of-keywords representation.
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3.1 Gaussianized Vector Representation

The Gaussian mixture model (GMM) is widely used in various pattern recog-

nition problems [76, 77]. We propose the Gaussianized vector representation,

which encodes an image as a bag of feature vectors, the distribution of which is

described by a GMM. Then a GMM supervector is constructed using the means

of the GMM, normalized by the covariance matrices and Gaussian component

priors. A GMM-supervector-based kernel is designed to approximate Kullback-

Leibler divergence between the GMMs for any two images, and is utilized for

supervised discriminative learning using an SVM, nearest neighbor or nearest

centroid methods.

The Gaussianized vector representation is closely connected to the classic his-

togram of keywords representation. In the traditional histogram representation,

the keywords are chosen by the k-means algorithm on all the features. Each fea-

ture is distributed to a particular bin based on its distanceto the cluster centroids.

The histogram representation obtains rough alignment between feature vectors

by assigning each to one of the histogram bins. Such a representation provides a

natural similarity measure between two images based on the difference between

the corresponding histograms. However, the histogram representation has some

intrinsic limitations. In particular, it is sensitive to feature outliers, the choice of

bins, and the noise level in the data. Besides, encoding high-dimensional feature

vectors by a relatively small codebook results in large quantization errors and

loss of discriminability.

Several approaches have been proposed in the literature to overcome these

limitations. Soft assignment, which allows each feature vector to belong to mul-

tiple histogram bins, has been suggested to capture partialsimilarity between

images [78, 79, 80, 81, 82, 83]. To enhance the discriminating capability of his-

tograms, Farquhar et al. [84] and Perronnin et al. [78] introduced several ways

to construct category-specific histograms. Larlus and Jurie [85] and Yang et al.

[79] suggested to integrate histogram construction with classifier training, and
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Moosmann et al. [86] proposed to use randomized forests to build discriminative

histograms.

Gaussianized vector representation enhances the histogram representation in

the following ways. First, k-means clustering leverages the Euclidean distance,

while the GMM leverages the Mahalanobis distance by means ofthe compo-

nent posteriors. Second, k-means clustering assigns one single keyword to each

feature vector, while the Guassinized vector representation allows each fea-

ture vector to contribute to multiple Gaussian components statistically. Third,

histogram-of-keywords only uses the number of feature vectors assigned to the

histogram bins, while the Gaussianized vector representation also engages the

weighted mean of the features in each component, leading to amore informative

representation.

3.1.1 GMM for feature vector distribution

We estimate a GMM for the distribution of all feature vectorsin an image. The

estimated GMM is a compact description of the single image, less prone to noise

compared with the feature vectors. Yet, with increasing number of Gaussian

components, the GMM can be arbitrarily accurate in describing the underlying

feature vector distribution. The Gaussian components impose an implicit multi-

mode structure of the feature vector distribution in the image. When the GMMs

for different images are adapted from the same global GMM, the corresponding

Gaussian components imply certain correspondence.

In particular, we obtain one GMM for each image in the following way.

First, a global GMM is estimated using feature vectors extracted from all

training images, regardless of their labels. Here we denotez as a feature vector,

whose distribution is modeled by a GMM, a weighted linear combination ofK
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unimodal Gaussian components,

p(z; Θ) =
K
∑

k=1

wkN (z;µglobal
k ,Σk).

Θ = {w1, µ
global
1 ,Σ1, · · · }, wk, µk andΣk are the weight, mean, and covariance

matrix of thekth Gaussian component,

N (z;µk,Σk) =
1

(2π)
d
2 |Σk|

1

2

e−
1

2
(z−µk)

TΣ−1

k
(z−µk). (3.1)

We restrict the covariance matricesΣk to be diagonal [87], which proves to be

effective and computationally economical.

Second, an image-specific GMM is adapted from the global GMM,using

the feature vectors in the particular image. This is preferred to direct separate

estimation of image-specific GMMs for the following reasons:

1. It improves robust parameter estimation of the image specialized GMM,

using the comparatively small number of feature vectors in the single im-

age.

2. The global GMM learned from all training images may provide useful

information for the image specialized GMM.

3. As mentioned earlier, it establishes correspondence between Gaussian com-

ponents in different images-specific GMMs.

For robust estimation, we only adapt the mean vectors of the global GMM

and retain the mixture weights and covariance matrices. In particular, we adapt

an image-specific GMM by the maximum a posteriori (MAP) criterion with the

weighting all on the adaptation data. The posterior probabilities and the updated

means are estimated as

Pr(k|zj) =
wkN (zj;µ

global
k ,Σk)

∑K
k=1 wkN (zj;µ

global
k ,Σk)

, (3.2)
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µk =
1

nk

H
∑

j=1

Pr(k|zj)zj, (3.3)

wherenk is a normalizing term,

nk =
H
∑

j=1

Pr(k|zj), (3.4)

andZ = {z1, . . . , zH} are the feature vectors extracted from the particular im-

age.

As shown in Equation 3.2, the image-specific GMMs leverage statistical mem-

bership of each feature vector among multiple Gaussian components. This sets

the Gaussianized vector representation apart from the histogram of keyword rep-

resentation which originally requires hard membership in one keyword for each

feature vector. In addition, Equation 3.3 shows that the Gaussianized vector rep-

resentation encodes additional information about the feature vectors statistically

assigned to each Gaussian component, via the means of the components.

Given the computational cost concern for many applications, another advan-

tage of using GMM to model feature vector distribution is that efficient approxi-

mation exists for GMM that does not significantly degrade itseffectiveness. For

example, we can prune out Gaussian components with very low weights in the

adapted image-specific GMMs. Another possibility is to eliminate the additions

in Equation 3.3 that involve very low priors in Equation 3.2.Neither of these ap-

proaches significantly degrades GMM’s capability to approximate a distribution

[76].

3.1.2 Kernel function based on Gaussianized vector
representation

Suppose we have two images whose ensembles of feature vectors,Za andZb, are

modeled by two adapted GMMs according to Section 3.1.1, denoted asga andgb.

A natural similarity measure is the approximated Kullback-Leibler divergence
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[56]

D(ga||gb) ≤
K
∑

k=1

wkD(N (z;µa
k,Σk)||N (z;µb

k,Σk)), (3.5)

whereµa
k denotes the adapted mean of thekth component from the image-

specific GMMga, and likewise forµb
k. The right side of the above inequality

is equal to

d(Za, Zb) =
1

2

K
∑

k=1

wk(µ
a
k − µb

k)
TΣ−1

k (µa
k − µb

k). (3.6)

The termd(Za, Zb)
1

2 can be considered as the Euclidean distance in another

high-dimensional feature space,

d(Za, Zb) = ‖φ(Za)− φ(Zb)‖
2

φ(Za) = [

√

w1

2
Σ

− 1

2

1 µa
1; · · · ;

√

wK

2
Σ

− 1

2

K µa
K ]. (3.7)

Thus, we obtain the corresponding kernel function

k(Za, Zb) = φ(Za) • φ(Zb). (3.8)

3.2 Robustness to Within-Class Variation

The variation of the object class and the background adds to the difficulty of

the localization problem. The Gaussianized vector representation is based on

Gaussian mixtures adapted from the global model. To furtherenhance the dis-

criminating power between objects and the background, we propose incorpo-

rating a normalization approach, which depresses the kernel components with

high-variation within each class. This method was first proposed in the speaker

recognition problem [88] as Within-Class Covariance Normalization (WCCN).

We assume the Gaussianized vector representation kernels in Equation 3.8 are

characterized by a subspace spanned by the projection matrix V all. The desired

normalization suppresses the subspace,V , that has the maximum inter-image
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distancedV for images (or image regions for the localization application) of the

same category (or either the object or the background):

dabV = ‖V Tφ(Za)− V Tφ(Zb)‖
2. (3.9)

SinceV identifies the subspace in which feature similarity and label similarity

are most out of sync, this subspace can be suppressed by calculating the kernel

function as in Equation 3.10, whereC is a diagonal matrix, indicating the extent

of such asynchrony for each dimension in the subspace.

k(Za, Zb) = φ(Za)
T (I − V CV T )φ(Zb). (3.10)

We can find the subspaceV by solving the following:

V = arg max
V TV=I

∑

a 6=b

dabV Wab, (3.11)

whereWab=1 whenZa andZb both belong to the object class or the background

class, otherwiseWab = 0.

DenoteẐ = [φ(Z1), φ(Z2), · · · , φ(ZN)], whereN is the total number of train-

ing images; it can be shown that the optimalV consists of the eigenvectors cor-

responding to the largest eigenvaluesΛ of the matrixẐ(D − W )ẐT , whereD

is a diagonal matrix withDii =
∑N

j=1Wij , ∀i.

The eigenvaluesΛ indicate the extent to which the corresponding dimensions

vary within the same class. In order to ensure the diagonal elements ofC remain

in the range of[0, 1], we apply a monotonic mappingC = 1−max(I,Λ)−1.
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3.3 Categorization with Gaussianized Vector
Representation

3.3.1 Nearest neighbor or nearest centroid

The video event recognition, as a categorization problem, can be conducted di-

rectly based on the kernel similarity and the nearest neighbor or nearest centroid

approach. Here we use the kernel similarity between a testing video clip and

the centroid of an event for similarity metric, where the centroid of an event is

defined in the Gaussianized vector space: namely, the centroid, Z̄s, of thes-th

event is

φ(Z̄s) =
1

N s

∑

i∈πs

φ(Zi), (3.12)

whereZi is the set of patch-based descriptors extracted from thei-th training

video clip,N s is the number of video clips belonging to thes-th event, andπs

denotes the index set of the samples belonging to thes-th event. Then, the final

video event recognition is based on normalized similarity vector as

C1(Z) = [
K(Z, Z̄1)

∑

s K(Z, Z̄s)
,

K(Z, Z̄2)
∑

s K(Z, Z̄s)
, · · · ,

K(Z, Z̄S)
∑

s K(Z, Z̄s)
],

whereS is the total number of predefined event categories, andZ is the set of

patch-based descriptors extracted from a test video clip.

3.3.2 Support vector machine

Alternatively, a support vector machine (SVM) is used with the above kernel to

distinguish between categories, or between objects and backgrounds. The binary

classification score for a test image can be formulated as

g(Z) =
∑

t

αtk(Z,Zt)− b, (3.13)
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whereαt is the learned weight of thetth training sampleZt andb is a threshold

parameter.k(Z,Zi) is the value of a kernel function for thetth training Gaus-

sianized vector representationZi and the test Gaussianized vector representation

Z.

Similarly, the multi-class SVM can also output a confidence vector, denoted

as

C2(Z) = [p1(Z), p2(Z), · · · , pS(Z)], (3.14)

whereps(Z) can be roughly considered as the probability of the video clip or

image belonging to thes-th category. Then, the classification can be conducted

based on the output values inC2(Z).

The support vectors and their corresponding weights are learned using the

standard quadratic programming optimization process. We use the SVM training

tools implemented in Libsvm [66] for both binary classification and multi-class

classification.

3.3.3 Combining different classifiers

The motivations of centroid-based video event recognitionand margin-based

video event recognition are essentially different. Our preliminary experiments

show that the outputs from these two classifiers are often complementary to each

other; therefore, we can optionally fuse the outputs from these two classifiers.

The vectorsC1(Z) andC2(Z) both roughly measure the probabilities that a test

video clip belongs to different video events, and hence we can average them for

a more robust output as

C(Z) =
C1(Z) + C2(Z)

2
. (3.15)

The classification can be done based on the averaged probability vectorC(Z).
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3.3.4 Visualizing the Gaussianized vector representation

We visualize the Gaussianized vector representation to demonstrate that soft cor-

respondence across different video clips is established and much more informa-

tion than the histogram-of-keywords is represented.

Each video clip is first represented as a set of patch-based local descriptors.

We project these local descriptors into a 2D feature space using a dimensionality

reduction technique, Locality Preserving Projection [89]. All the component

means of the global GMM are mapped to this 2D space. For local descriptor, its

coordinates in this 2-D space are the sums of the coordinatesof the component

means of the global GMM, weighted by the posteriors of the components for the

given descriptor.

Figure 3.1 shows the 2D distributions of the patch-based descriptors from

three video clips, two of which belong to the same video eventcategory ofElec-

tion Campaign Greeting, and the other to the video event ofRunning. We can

see that the distributions in the 2D space are characterizedby distribution near

different components of the global GMM, as indicated by the different colors in

Figure 3.1. These components implicitly establish the correspondence between

patch-based descriptors in different video clips, which shows that the Gaussian-

ized vector representation offers the capability to match the patches from two

video clips, similar in content yet different in spatial positions, scales, and tem-

poral positions. For the video clips from the same event category we can see

that the feature vector distributions near the corresponding components tend to

share a similar structure, while they are relatively more different for those from

different categories.
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Figure 3.1: Visualization of the Gaussianized vector representation and its
capability of matching local visual cues different in spatial positions, scales,
and temporal positions.

3.4 Localization with Gaussianized Vector
Representation

Object localization predicts the bounding box of a specific object class within the

image. Effective object localization relies on an efficientand effective searching

method, and robust image representation and learning method. The task remains

challenging due to within-class variations and the large search space for candi-

date bounding boxes.

Robust image representation and learning is critical to the success of various

computer vision applications. Some of the successful features are histogram

of oriented gradients [90] and Haar-like features [91]. Patch-based histogram-

of-keywords image representation methods represent an image as an ensemble
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of local features discretized into a set of keywords. These methods have been

successfully applied in object localization [75] and imagecategorization [92].

In this section, I present an object localization approach combining the effi-

cient branch-and-bound searching method with the robust Gaussianized vector

representation. The branch-and-bound search scheme [75] is adopted to perform

a fast hierarchical search for the optimal bounding boxes, leveraging a quality

bound for rectangle sets. We demonstrate that the quality function based on the

Gaussianized vector representation can be written as the sum of contributions

from each feature vector within the bounding box. Moreover,a quality bound

can be obtained for any rectangle set in the image, with little extra computa-

tional cost, in addition to calculating the Gaussianized vector representation for

the whole image.

To achieve improved robustness to variation within the object class and the

background, we propose incorporating the normalization approach in Section

3.2 that suppresses the within-class covariance of the Gaussianized vector rep-

resentation kernels in the binary support vector machine (SVM) and the branch-

and-bound searching scheme.

I first present the efficient search scheme based on branch-and-bound in Sub-

section 3.4.1. Then I detail the quality function and quality bound for the Gaus-

sianized vector representation in Subsections 3.4.2 and 3.4.3 respectively. In

Subsection 3.4.4, the variation-normalization approach is incorporated in the lo-

calization framework.

3.4.1 Branch-and-bound search

Localization of an object is essentially to find the subarea in the image on which

a quality functionf achieves its maximum, over all possible subareas. One way

to define these subareas is the bounding box, which encodes the location, width

and height of an object with four parameters, i.e., the top, bottom, left and right

coordinates(t, b, l, r).
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The sliding window approach is most widely used in object localization with

bounding boxes [30, 93]. To find the bounding box where the quality function

f reaches its global maximum, we need to evaluate the functionon all possible

rectangles in the image, whose number is on the order ofO(n4) for ann × n

image. To reduce the computational cost, usually only rectangles at a coarse lo-

cation grid and of a small number of possible widths and heights are considered.

On the other hand, different approaches can be adopted to usea local optimum to

approximate the global one, when the quality functionf has certain properties,

such as smoothness. All these approaches make detection tractable at the risk

of missing the global optimum, and with demand for well informed heuristics

about the possible location and sizes of the object.

In recent years, the most popular technique in the sliding window approach is

the cascade [91]. The cascade technique decomposes a strongobject/non-object

classifier into a series of simpler classifiers. These classifiers are arranged in

a cascade, so that the simpler and weaker classifiers will eliminate most of the

candidate bounding boxes, before the more powerful and complicated classifiers

will make finer selection. However, the cascade of classifiers is slow to train.

Moreover, it unfortunately involves many empirical decisions, e.g., choosing

the false alarm rate and missed-detection rate at each stageof the cascade. The

cascade technique always reduces the performance comparedwith the original

strong classifier.

The branch-and-bound search scheme was recently introduced [75] to find the

globally optimal bounding box without the heuristics and assumptions about the

property of the quality function. It hierarchically splitsthe parameter space of

all the rectangles in an image, and gives priority to the parts with higher quality

bounds.

For localization based on bounding boxes, a set of rectangles is encoded with

[T,B, L,R], each indicating a continual interval for the corresponding param-

eter in (t, b, l, r). The approach starts with a rectangle set containing all the

rectangles in the image, and terminates when one rectangle is found that has a
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quality function no worse than the boundsf̂ of any other rectangle set.

At every iteration, the parameter space[T,B, L,R] is split along the largest

of the four dimensions, resulting in two rectangle sets bothpushed into a queue

together with their upper bounds. The rectangle set with thehighest upper bound

is retrieved from the queue for the next iteration.

The steps of the branch-and-bound search scheme can be summarized as fol-

lows:

1. Initialize an empty queueQ of rectangle sets. Initialize a rectangle setR

to be all the rectangles:T andB are both set to be the complete span from

zero to the height of the image.L andR are both set to be the complete

span from zero to the width of the image.

2. Obtain two rectangle sets by splitting the parameter space [T,B, L,R]

along the dimension with the largest range.

3. Push the two rectangle sets in Step 2 into queueQ with their respective

quality bound.

4. UpdateR with the rectangle set with the highest quality bound inQ.

5. Stop and returnR if R contains only one rectangleR. Otherwise go to

Step 2.

The quality bound̂f for a rectangle setR should satisfy the following condi-

tions:

1. f̂(R) ≥ maxR∈Rf(R)

2. f̂(R) = f(R), if R is the only element inR

Critical for the branch-and-bound scheme is to find the quality boundf̂ . Given

the proven performance of the Gaussianized vector representation in classifica-

tion tasks shown in previous work [94, 50, 95, 96], we are motivated to design a

quality bound based on this representation for efficient localization.
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3.4.2 Quality function

For the Gaussianized vector representation, the binary classification score in

Equation 3.13 informs the confidence that the evaluated image subarea contains

the object instead of pure background. Therefore, we can usethis score as the

quality function for the Gaussianized vector representation.

In particular, according to Equation 3.8 and Equation 3.13,the quality func-

tion f can be defined as follows:

f(Z) = g(Z) =
∑

t

αtφ(Z) • φ(Zt)− b, (3.16)

which can be expanded using Equation 3.7,

f(Z) =
∑

t

αt

K
∑

k=1

√

wc

2
Σ

− 1

2

c µk

•

√

wk

2
Σ

− 1

2

c µt
k − b

=
∑

t

αt

K
∑

k=1

wk

2
Σ−1

k µk • µ
t
k − b.

(3.17)

According to Equation 3.3, the adapted mean of an image-specific GMM is the

sum of the feature vectors in the image, weighted by the corresponding posterior.

Therefore,

f(Z) =
∑

t

αt

K
∑

k=1

wk

2
Σ−1

k

1

nk

H
∑

j=1

Pr(k|zj)zj • µ
t
k − b.

=
H
∑

j=1

{

K
∑

k=1

1

nk

Pr(k|zj)zj •
wk

2
Σ−1

k

∑

t

αtµ
t
k

}

− b.

(3.18)
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3.4.3 Quality bound

We define the “per feature vector contribution” as the contribution of each fea-

ture vector in a subarea to the confidence that this subarea isthe concerned ob-

ject. In particular, the “per feature vector contribution”is defined as in Equation

3.19.

Wj =
K
∑

k=1

1

nk

Pr(k|zj)zj •
wk

2
Σ−1

k

∑

t

αtµ
t
k. (3.19)

Therefore, Equation 3.18 can be rewritten as Equation 3.20,showing that the

quality function can be viewed as the sum of contributions from all involved

feature vectors.

f(Z) =
∑

j

Wj − b. (3.20)

Given a test image, if we approximate the termsnk with their values calculated

on the whole image, the per feature vector contributionsWj, j ∈ 1, ..., H are

independent from the bounding box within the test image. This means that we

can precomputeWj and evaluate the quality function on different rectangles by

summing up thoseWj that fall into the concerned rectangle.

We design a quality bound for the Gaussianized vector representation in a way

similar to the quality bound for the histogram of keywords proposed in [75]. For

a set of rectangles, the quality bound is the sum of all positive contributions from

the feature vectors in the largest rectangle and all negative contributions from the

feature vectors in the smallest rectangle. This can be formulated as

f̂(R) =
∑

Wj1
∈Rmax

Wj1 × (Wj1 > 0)

+
∑

Wj2
∈Rmin

Wj2 × (Wj2 < 0). (3.21)

whereRmax andRmin are the largest and the smallest rectangles.
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We demonstrate that Equation 3.21 satisfies the conditions of a quality bound

for the branch-and-bound search scheme defined in Section 3.4.1.

First, the proposed̂f(R) is an upper bound for all rectangles in the setR. In

particular, the quality function evaluated on any rectangle R can be written as

the sum of postive contributions and negative contributions from feature vectors

in this rectangle,

f(R) =
∑

Wj1
∈R

Wj1 × (Wj1 > 0)

+
∑

Wj2
∈R

Wj2 × (Wj2 < 0). (3.22)

Obviously, given a rectangle setR, the first term in Equation 3.22 is maximized

by taking all the positive contributions from the largest rectangle in the set. The

second term in Equation 3.22 is negative and its absolute value can be minimized

by taking all the negative contributions in the smallest rectangle.

Second, when the rectangle setR contains only one rectangle,Rmin = Rmax =

R. Equation 3.21 equals Equation 3.22,

f̂(R) = f(R).

This quality bound defined by Equation 3.21 is used in the branch-and-bound

scheme discussed in Section 3.4.1 to achieve fast and effective detection and

localization. Note that since the bound is based on sum of perfeature vector

contributions, the approach can be repeated to find multiplebounding boxes in

an image, after removing those features claimed by the previously found boxes.

This avoids the problem of finding multiple non-optimal boxes near a previously

found box.

Note that estimatingWj in Equation 3.19 involves no more computation than

the calculation in a binary classifier using the Gaussianized vector representation

of the whole image. To further expedite the localization, wecan use two integral
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images [91] to speed up the two summations in Equation 3.21 respectively. This

makes the calculation of̂f(R) independent from the number of rectangles in the

setR.

3.4.4 Incorporating variation-normalization

To further improve the discriminating capability of the Gaussianized vector rep-

resentation in the localization problem, we incorporate the normalization ap-

proach in Section 3.2. In particular, this involves the following modifications of

the proposed efficient localization system.

First, the SVM is trained using kernels with normalization against within-

class variation. In particular, Equation 3.10 is used instead of Equation 3.8.

Second, Equation 3.16 is replaced by Equation 3.23 to suppress the subspace

that corresponds to the most within-class variation when evaluating the quality

of the candidate regions.

f(Z) = g(Z) =
∑

t

αtφ(Z)
T (I − V CV T )φ(Zt)− b. (3.23)

Third, the per feature vector contribution function in Equation 3.19 needs to

be revised accordingly.

Let us denote

P =











√

w1

2
Σ

−1/2
1

.. . 0
0 √

wK

2
Σ

−1/2
K











(3.24)

(3.25)

H t = [H t
1; · · · ;H

t
K ] (3.26)

= P (I − V CV T )φ(Zt), (3.27)

whereH t summarizes information from thetth training image.
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With Equations 3.20, 3.23 and 3.24, it can be shown that the per feature vector

contribution function can be written as in Equation 3.28.

Wj =
K
∑

k=1

∑

t

αtH
t
k •

1

nk

Pr(k|zj)zj. (3.28)

3.5 Video Categorization Experiments

Our video event detection experiments are conducted over the large TRECVID

2005 video corpus as in [47], with shot boundaries provided.

3.5.1 Dataset and metric

As in [28], the following ten events are chosen from the LSCOM lexicon [97,

98, 47, 99]:Car Crash, Demonstration Or Protest, Election Campaign Greeting,

Exiting Car, Ground Combat, People Marching, Riot, Running, Shooting, and

Walking. They are chosen because these events are relatively frequent in the

TRECVID data set [98] and are intuitively recognizable from visual cues. The

number of video clips for each event class ranges from 54 to 877. When training

the SVM for each event, we use the video clips from the other nine events as the

negative samples. We randomly choose 60% of the data for training and use the

remaining 40% for testing, with the same configurations as in[28, 47].

We use non-interpolated average precision (AP) [100, 2] as the performance

metric, which is the official performance metric in TRECVID. Itreflects the

performance on multiple average precision values along a precision-recall curve.

The effect of recall is also incorporated when AP is computedover the entire

classification result set. Mean average precision (MAP) is defined as the mean

of APs over all ten events.
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3.5.2 Results

Temporally Aligned Pyramid Matching (TAPM) is the best reported algorithm

for video event recognition in unconstrained news video [47]. We also got the

result by histogram-of-keywords representation with SVM classification. Ta-

ble 3.1 summarizes the experiment results for different algorithms. Note that:

1) TAPM-1 is the TAPM algorithm with same weights for all the three lev-

els; 2) TAPM-2 refers to the TAPM algorithm with different weights for the

three levels; 3) Hist+SVM refers to histogram-of-keywordsrepresentation with

SVM classification; 4) Kernel+NN is the algorithm based on the Gaussianized

vector and the nearest neighbor classifier; 5) Kernel+SVM means the Gaus-

sianized vector kernel with SVM classification; 6) Kernel+WCCNrefers to the

nearest centroid algorithm using the Gaussianized vector with WCCN; and 7)

WCCN&SVM refers to the algorithm based on the fusion of two classifiers

based on the Gaussianized vectors, as presented in Section 3.3.3. The last row,

referred to as mean AP, is the mean of APs over ten events. Fromall these

results, we can have a set of interesting observations:

1. The mean average precision is boosted from the best reported 38.2% in

[47] to 60.4% based on our new framework with straightforward classifier

fusion.

2. For the video event ofElection Campaign Greeting, the average precision

is dramatically increased from the 13.9% to 94.8%.

3. The fusion of the two classifiers can generally further improve the average

precision compared with the single classifier individually.

4. Our proposed framework is outperformed by the TAPM algorithm on de-

tecting the video event ofExiting Car. A possible explanation is that our

framework does not explicitly model temporal information,and the video

event ofExiting Carheavily depends on the temporal contextual informa-

tion.
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5. The components of the Gaussianized vector representation (compared with

histogram-of-keywords), suppressing within-class variance (WCCN), and

SVM all contribute to the whole system, and the best result isachieved

based on the integration of all.

6. The best setting of “GV+WCCN+SVM” performs significantly better than

either “TAPM-1” or “TAPM-2” according to the Friedman’s test (p =

0.01).

More details of the performance are presented using confusion matrices as in

Figure 3.2. The mean average precision and the overall recognition accuracy are

also presented in the titles in this figure.

From these confusion matrices, we observe that: 1) when evaluated by the

confusion matrices, the fusion of classifiers again improves the recognition accu-

racy; and 2) the better the overall recognition accuracy, the greater the possibility

that the video event ofShootingis mis-recognized; and a possible explanation is

that the event ofShootingis visually very similar to the event ofGround Combat,

and cannot benefit from the improved discriminating capability that dramatically

improves the accuracy of most other events.

For video event recognition, the boundaries of the video clip are often am-

biguous, and also the frame rate of the video clip may vary. A good algorithm

should be robust to these factors, and hence a set of experiments are presented to

evaluate the algorithmic robustness to these factors. In these experiments only

a random portion of the frames within each video clip are usedto construct the

Gaussianized vector, with other aspects of the video event recognition frame-

work unchanged.

The detailed experimental results are shown in Figure 3.3, with nine configu-

rations using percentages of frames as 20%, 30%, 40%, 50%, 60%, 70%, 80%,

90%, 100% respectively. From these results, we can see that our system is robust

to the variation of boundaries and the frame rates of video clips. In particular,

even when only 20% of the frames are used, our result (55.3%) still outperforms
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Table 3.1: Average precision (%) of video events by different algorithms.

Event Name TAPM-1 [47] TAPM-2 [47] Hist+SVM Kernel+NN Kernel+SVM Kernel+WCCN WCCN&SVM

Car Crash 51.1 51.0 33.0 33.5 39.7 46.5 53.3
Demonstration 23.6 23.6 38.2 38.3 49.3 48.5 50.1

Election Campaign 13.9 13.7 82.5 79.2 92.6 94.8 94.4
Exiting Car 50.7 50.1 22.1 31.5 35.2 33.9 38.1

Ground Combat 44.2 44.1 68.1 58.2 71.4 72.8 73.4
People Marching 25.8 25.8 70.0 67.7 75.8 76.9 78.7

Riot 22.7 22.9 16.9 30.9 24.9 25.4 27.7
Running 86.7 86.6 88.1 89.3 91.4 89.9 91.9
Shooting 10.4 9.9 18.0 20.0 21.9 22.7 23.1
Walking 52.4 52.8 52.6 59.3 73.3 66.5 73.8
Mean AP 38.2 38.1 49.0 50.8 57.6 57.8 60.4
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Figure 3.2: Confusion matrices for different methods based on the
Gaussianized vector kernel.
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the best result (38.2%) reported in [47]. We do point out thatthese frames are

randomly sampled.

Figure 3.3: Mean average precision by different algorithmsusing randomly
sampled subsets of the video frames.

3.6 Video Localization Experiments

We carry out object localization experiments using the proposed efficient object

localization approach based on the Gaussianized vector representation. We com-

pare the detection performance with a similar object localization system based

on the generic histogram of keywords. In addition, we demonstrate that the

proposed within-class variance normalizing approach can be effectively incor-

porated in object localization based on the Gaussianized vector representation.

3.6.1 Dataset

We use a multi-scale car dataset [101] for the localization experiment. There

are 1050 training images of fixed size100 × 40 pixels, half of which exactly

show a car while the other half show other scenes or objects. Since the proposed

localization approach has the benefit of requiring no heuristics about the possible

locations and sizes of the bounding boxes, we use a test set consisting of 107
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Figure 3.4: Sample images in the multi-scale car dataset.

images with varying resolution containing 139 cars in sizesbetween89 × 36

and212 × 85. This dataset also includes ground truth annotation for thetest

images in the form of bounding rectangles for all the cars. The training set and

the multi-scale test set are consistent with the setup used in [75].

A few sample test images of the dataset are shown in Figure 3.4. Note that

some test images contain multiple cars and partial occlusion may exist between

different cars as well as between a car and a “noise” object, such as a bicyclist,

a pedestrian or a tree.

3.6.2 Metric

The localization performance is measured by recall and precision, the same way

as in [101] and [75]. A hypothesized bounding box is counted as a correct

detection if its location coordinates and size lie within anellipsoid centered at
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the true coordinates and size. The axes of the ellipsoid are 25% of the true object

dimensions in each direction. For multiple detected bounding boxes satisfying

the above criteria for the same object, only one is counted ascorrect and the

others are counted as false detections.

3.6.3 Gaussianized vectors

The feature vectors for each image are extracted as follows.First, square patches

randomly sized between4 × 4 and12 × 12 are extracted on a dense pixel grid.

Second, an 128-dimensional SIFT vector is extracted from each of these square

patches. Third, each SIFT vector is reduced to 64 dimensionsby principal com-

ponent analysis. Therefore, each image is converted to a setof 64-dimensional

feature vectors.

These feature vectors are further transformed into Gaussianized vector repre-

sentations as described in Section 3.1. Each image is therefore represented as a

Gaussianized vector. In particular, we carry out the experiment with 32, 64, 128

Gaussian components in the GMMs respectively.

3.6.4 Robustness to within-class variation

We identify the subspace that contains the undesirable within-class variation us-

ing the eigen analysis method in Section 3.2. In particular,the subspace consists

of the top 100 dimensions, out of all the dimensions of the Gaussianized vectors,

that are to be suppressed in the calculation of the kernels.

3.6.5 Results

To keep the setting the same as in [75], we search each test image for the three

best bounding boxes, each affiliated with the quality function score. In par-

ticular, the branch-and-bound search scheme is applied to each test image three
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times. After each search, those features claimed by the found boxes are removed

as discussed in Section 3.4.1.

The precision-recall curves are obtained by changing the threshold on the

quality function score for the found boxes. The equal error rate (EER) equals

1 − F-measure when precision equals recall. As the threshold islowered, more

detections out of the top three bounding boxes in each image are accepted.

The precision-recall curves and the EER are presented in Figure 3.5 and Fig-

ure 3.6 respectively. “G-n” denotes the result using n components in the Gaus-

sianized vector representation. The suffix “N” means the within-class normal-

ization. “Histogram” denotes the performance using the generic histogram-of-

keywords approach by Lampert et al. We compare the results with a localization

system using the same banch-and-bound scheme, but based on the generic his-

togram of keywords with 1000 entry codebook generated from SURF descrip-

tors at different scales on a dense pixel grid [75].
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Figure 3.5: Precision-recall curves for multi-scale car detection.

We can see that the Gaussianized vector representation outperforms the his-

togram of keywords in this multi-scale object detection task. In particular, using

64 Gaussian components gives the best performance. In general, normalizing
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Figure 3.6: Equal error rates for multi-scale car detection.

against within-class variation further improves the system.

Figure 3.7 presents a few examples of correct detection and erroneous de-

tection using 64 Gaussian components. Each test image is accompanied by

a “per-feature-contribution” map. Negative and positive contributions are de-

noted by blue and red, with the color saturation reflecting absolute values. The

quality function evaluated on a bounding box is the sum of allthe per-feature-

contributions, as discussed in Section 3.4.

The examples of correct detection demonstrate that the system can effectively

localize one or multiple objects in complex backgrounds.

The three examples of erroneous detection probably occur for different rea-

sons: 1) The car is a bit atypical, resulting in fewer features with highly posi-

tive contributions. 2) The two cars and some ground texture form one rectangle

area with highly positive contributions, different from the two separate bounding

boxes in the ground truth. 3) The car is highly confusable with the background,

resulting in too many highly negative contributions everywhere, preventing any
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rectangle to yield a high value for the quality function.

Figure 3.7: Examples of good and bad localization based on the Gaussianized
vector representation. (The black and the white bounding boxes in the images
are the ground truth and the hypotheses respectively.)
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CHAPTER 4

IMPROVING ACOUSTIC EVENT
DETECTION USING VISUAL CUES

Various audio-visual integration strategies have been proposed. In particular,

[36] classifies them into three categories. The first is earlyintegration which ex-

tracts feature vectors from both audio and visual observations and concatenates

them into one feature vector sequence for use in one model with the same struc-

ture as for one modality. The second is late integration, which extracts feature

vector sets separately and uses two sets of models generating reliability weights

to be combined across modalities. This is also referred to asdecision fusion or

separate identification. The third is intermediate integration, e.g., product HMM,

coupled HMM.

Recently, incorporating both audio and visual information for AED has been

demonstrated as an effective approach to improve the performance and robust-

ness over the audio-only systems [43, 12, 44]. However, these works either

leverage on specific visual object detectors, usually requiring hand-labeled train-

ing data, or expect dominance or strong prior of the visual cues in the recorded

video, sometimes impossible for realistic applications.

Leveraging additional visual cues for audio signal analysis has been explored

in other applications, such as speech recognition [45] and person identification

[46]. In particular, the multi-stream HMM and the couple HMM(CHMM) are

two effective models for audio-visual fusion. While audio-visual event detec-

tion shares a lot of challenges with audio-visual speech recognition, they differ

in multiple ways: First, the visual cues for general acoustic event detection can

be much less constrained: there is no consistent visual region, such as the mouth

in audio-visual speech processing, in which all the event information is embed-
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ded. Second, the synchrony and asynchrony between the two modalities is not

governed by a well constrained mechanism, such as human speech articulation.

For example, key jingling presents mostly simultaneous audio and visual foot-

prints, but we can observe a person move before or after s/he makes the foot-step

sound, or a door start moving before making a slamming sound,the asynchrony

being more arbitrary than what is observed in audio-visual speech. It is not yet

studied whether the audio-visual models in speech processing can be effectively

applied in audio-visual event modeling to improve acousticevent detection.

In this chapter, we study using a generalizable visual representation to im-

prove acoustic event detection, via different audio-visual synchrony and asyn-

chrony modeling. In particular, a combination of optical flow and overlapping

spatial pyramid histograms characterizes the visual cues,which can be non-

dominant in the recorded video. Compared with more task-specific alternatives

[43], the proposed visual features have the merit of requiring minimum labeling

efforts: No extra labels are required other than the event onset/offset timestamps

used for audio-only modeling. We propose applying multi-stream HMMs for

synchronized audio-visual event modeling and coupled hidden Markov models

[21, 102] for more flexible modeling allowing asynchrony.

Acoustic event detection and classification experiments are performed on meet-

ing room data with eleven general non-speech acoustic events. With the pro-

posed visual representation and multi-modal modeling, thevisual cues, often

local and subtle in the images, are shown to consistently improve both classifi-

cation and detection accuracy of the concerned events. All the experiments use

the video associated with the audio as the only extra data resource, requiring no

additional labeling.

The organization of this chapter is as follows. Section 4.1 presents the gener-

alizable visual features adopted in this work, in particular the overlapping spatial

pyramid histograms based on optical flow. Section 4.2 discusses the audio-visual

modeling methods, in particular the multi-stream HMM and the coupled HMM.

Section 4.3 presents the experimental results on audio-visual event classification
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Figure 4.1: (Left) An example of “foot step” in the overhead camera; (Right)
the corresponding optical flow for each image, where hue and intensity indicate
direction and magnitude.

and detection.

4.1 Generalizable Visual Features for AED

Previous literature [43] reported using ad-hoc visual detectors to generate visual

features for the purpose of improving event detection. However, training these

detectors requires expensive labeling efforts, usually atleast bounding boxes

of the concerned objects. Moreover, these detectors are task-specific. Alterna-

tively, we explore using visual features that do not requiresuch training and data

labeling, and are not task-specific, i.e. generalizable.

In this work, we propose using a combination of optical flow and overlapping

spatial pyramid histograms to characterize the visual cuesin the acoustic events.

The visual cues of the non-speech audio-visual events are mostly related to
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Figure 4.2: Optical flow based overlapping spatial pyramid histograms for a
footstep event: (first row) spatial pyramid arrangement andoptical flow
magnitude; (second row) optical flow magnitude histogram ineach
corresponding block.

motion. We propose using visual features based on optical flow between consec-

utive frames to capture the movement information. We utilize a highly efficient

algorithm on variational methods utilizing a GPU [103] to calculate the optical

flow, i.e. the horizontal and vertical movement for each pixel. Fig. 4.1 illustrates

the extracted optical flow for a “foot step” event.

The visual cues of the acoustic events have their spatial correlates: the spatial

distribution sometimes, but not always, differs between the different events and

the background. Therefore, we define eight overlapping blocks from the whole

image, including both the complete image and seven spatially local regions. The

histograms of motion vector magnitude within all the blocksare employed as the

video features [104]. We refer to this representation as theoverlapping spatial

pyramid histograms. Similar representation was successfully used for kernel es-

timation in general image scene categorization [105], which shares the property

that the visual cues are highly variant and sometimes localized.

An example of the proposed visual representation for a “footstep” event is

illustrated in Fig. 4.2.
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4.2 Multi-Modality Fusion for AED

We propose using multi-stream HMMs for synchronized audio-visual event mod-

eling, and coupled hidden Markov models [21, 102] for more flexible modeling

allowing asynchrony.

Different fusion methods have been explored for the audio and visual modal-

ities [45]. First, feature fusion techniques include plainfeature concatenation

[106], feature weighting [107] and a data-to-data mapping of either one modal-

ity into the space of another or both modalities into a new common space [37].

Second, decision fusion provides a mechanism for capturingreliabilities of each

modality by classifier combination. Third, intermediate fusion performs multi-

modal integration at a level between decision fusion and feature fusion. Inter-

mediate integration strategies have been shown to outperform the early and late

integration strategies in various applications [36].

Multi-stream HMMs and coupled HMMs are used as two intermediate fusion

methods . The synchrony and asynchrony between the modalities are modeled

by the hidden state transitions. Though both models have been successfully

applied in audio-visual speech recognition [45], they havenot been applied in

improving general non-speech acoustic event detection.

4.2.1 Multi-stream hidden Markov models

In a two-stream HMM, the state-dependent emission of the audiovisual obser-

vationoav,t is governed byP (oav,t|St) = P (oa,t|St)
λa,St,tP (ov,t|St)

λv,St,t for all

HMM statesSt, whereλs,St,t denotes the nonnegative stream weights, which

models the stream reliabilities as a function of modalitys, HMM stateSt and

time t.

Multistream HMMs assume the state synchrony between audio cues and vi-

sual cues. Because of the simple topology, it is relatively easy to obtain robust

estimation of the parameters.
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Figure 4.3: Hidden Markov model encoded as a dynamic Bayesiannetwork.

Fig. 4.3 illustrates a two-stream HMM, where the transitionprobabilities

are referred to asP (St|St−1). State observation distributions are referred to

asP (oav,t|St). St is a multinomial random variable representing the state of the

CHMM system variable at timet. Note, both the streams progress in a syn-

chronous fashion.

4.2.2 Coupled hidden Markov models

The assumption of audio-visual state synchrony is not always satisfied. For ex-

ample, in an object dropping event, the acoustic sound may not exist when the

object is in motion, but only when the object stops dropping.Similarly, a door

slamming sound occurs at the end of the door movement. Thoughthe asyn-

chrony between modalities can be alleviated by a larger local time window for

each frame, a more flexible statistical model allowing asynchrony between the

hidden state sequences for the two modalities is desired. Inparticular, the cou-

pled HMM [21] has been introduced to address this issue for other applications.

This work uses coupled HMM to model modality asynchrony in audio-visual

events. We select the transition-only coupled hidden Markov model (CHMM),

in which different modalities are coupled through state transitions. The CHMM
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Figure 4.4: Audio-visual fusion using CHMM.

is capable of capturing both the synchronous and asynchronous inter-modality

dependencies. CHMM has been shown to be an effective method inaudio-visual

speech recognition [102].

A CHMM can be viewed as two parallel rolled-out HMM chains coupled

through cross-time and cross-chain conditional state transition probabilities. An

n-chain CHMM hasn hidden nodes in a time slice, each connected to itself and

its nearest neighbors in the next time slice. In our task, we use a 2-chain CHMM

for audio-visual modeling, as shown in Fig. 4.4, where circular nodes in each

slice are the multinomial state variables, square nodes in each slice represent the

observation variables, and the directed links represent conditional dependence

between nodes.

The state of the CHMM system in each time slice is jointly determined by the

two multinomial state variable, each depending on its two parent states in the

previous time slice. The configuration permits unsynchronized progression of

the two chains while keeping the Markov property that a future state variable is

conditionally independent of the past given the present state variables. Note that

CHMM can be seen as a generalized multi-stream HMM.

Following a transformation strategy based on state-space mapping and param-
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eter tying [102], we can convert a CHMM to an equivalent HMM, whose hidden

states each correspond to the state of the system described by the CHMM. The

number of hidden states in the equivalent HMM equals the number of possi-

ble combinations of states from both modalities. Fig. 4.5 illustrates a 2-chain

CHMM with Qa = 3 andQv = 2, whereQa andQv are the numbers of au-

dio and visual states respectively. For example, state 3 in the equivalent HMM

corresponds to the CHMM state defined by audio stateqa = 2 and visual state

qv = 1. The modality-dependent observation probabilities corresponding to the

same observation distribution in the original CHMM are tied and coded using the

same tag. For example, the output densities modeling the visual stream in states

1, 3, 5 are tied and tagged as “V1”, because they correspond toP (Ov|qv = 1) in

the CHMM.

In this work, we use a left-to-right non-skip HMM for each of the two modal-

ities in the CHMM. The allowed state transitions in the equivalent HMM are

derived from state space mapping. In particular, the audio and visual state pro-

gressions are allowed asynchrony of up to one state. For example, in the state

diagram in Fig. 4.5, given state 1 (qa = 1, qv = 1) at present, in next time slice,

qa can either transit toqa = 2 or stay inqa = 1, andqv can either transit toqv = 2

or stay inqv = 1. Hence, state 1 can either stay in itself or transit to CHMM

state 2 (qa = 1, qv = 2) or state 3 (qa = 2, qv = 1) ,or state 4 (qa = 2, qv = 2).

For robust estimation of the CHMMs, we perform the CHMM training in

two stages. In the first stage, the observation distributions for both modalities

are initialized using simpler models. The initial simpler models can be a two-

stream audio-visual HMM, which requires strict state synchrony between au-

dio and visual modalities, or one audio-only HMM and one video-only HMM,

which impose no explicit state correspondence between the two modalities. In

the second stage, the audio and visual observation distributions from the multi-

stream HMM or two single-modality HMMs are used to constructthe CHMM-

equivalent HMM. Additional parameter estimation iterations using the Balm-

Welch algorithm are performed with this equivalent HMM.
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Figure 4.5: Converting a CHMM to an equivalent HMM by state-space
mapping and parameter tying.

4.3 Audio-Visual Experiments

4.3.1 Dataset and setup

We use the audio-visual dataset collected by the Departmentof Signal Theory

and Communications and the TALP Research Center of the Universitat Politec-

nica de Catalunya [35]. The database contains multimodal recordings of acoustic

events (AEs) in a meeting room environment. The target events in this dataset

include: knock (door, table), door slam, steps, chair moving, spoon (cup jingle),

paper work (listing, warping), key jingle, keyboard typing, phone ringing/music,

applause and cough. There are approximately 90 instances per event class for

the whole dataset of six sessions (S01-S06). Among S01-S04,we use three ses-

sions for training, and one for testing. All reported measures are averaged from

four-fold cross validation. Additional two sessions (S05,S06) are used as the

development set. We use the observations from a far field microphone and an

overhead camera.

The audio in this dataset is quite clean. To make the task morerealistic we add

different levels of Gaussian white noise to the recorded audio, to illustrate the
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performance of the different approaches at different noiselevels. Perceptual lin-

ear prediction coding (PLP) coefficients are used as the audio features because

of their effectiveness demonstrated in [5]. In particular,PLP coefficients, in-

cluding 12 coefficients and the0th cepstral coefficient, are extracted from 30 ms

Hamming windows with a temporal step of 20 ms. The delta and acceleration

coefficients are computed and appended to the static PLP coefficients. Cepstral

mean normalization is performed on each recorded session.

The visual features are obtained according to Section 4.1 using 20 bins for

each histogram of optical flow magnitude. The concatenationof histograms

from all blocks is projected into 40 dimensions using principal component anal-

ysis, retaining 98% of the total energy. These visual features are interpolated to

match the 20 ms frame period of the audio features.

In this experiment, each multistream HMM or CHMM has 4 audio and 4 video

states with stream weights tuned on the development data using coarse-to-fine

grid search. For simplicity, the stream weights are time-invariant. The differ-

ent methods are evaluated using classification accuracy anddetection accuracy

AED-ACC [1, 35].

4.3.2 CHMM training schemes

Initialization of the observation distributions in the CHMMis important, because

of the high degree of freedom in the CHMM topology. As discussed in Section

4.2, we explore two different initialization schemes for CHMM, referred to as

CHMMm andCHMMs, in which the observation distributions of the CHMMs

are initialized using multistream HMMs, or pairs of audio-only and video-only

HMMs respectively.

The CHMMs parameters (the Gaussian means, covariance, mixtures weights,

and the state transition probabilities) are further estimated with a few iterations

using the Balm-Welch algorithm. We found in our pilot experiments that allow-

ing estimation of all the CHMM parameters above is better thanestimating any
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subset of parameters above and using the initialized parameters for the rest.

4.3.3 Results

Table 4.1 and Table 4.2 present the classification and detection results using

the proposed visual representation coupled with differentaudio-visual modeling

methods as well as the audio-only and video-only models. In both detection

and classification, the multistream HMM system consistently improves from

the audio-only system as well as the video-only system for all SNR conditions

studied in this work. Further, CHMM-based systems (CHMMs and CHMMm)

outperform the multistream HMM system in event detection for all SNR con-

ditions. “CHMMm” denotes the CHMM-based system initialized using multi-

stream HMMs, while “CHMMs” refers to the CHMM-based system initialized

using audio-only and video-only HMMs.

We also performed event detection using original clean audio, the same con-

dition studied in [35]. The proposed visual features and audio-visual modeling

perform favorably compared to the best systems reported in [35]. These refer-

ence systems [35] leverage a person tracker, a laptop detector, a face detector,

and a door activity estimator to capture the visual cues and optional localization

information obtained from multiple microphones (denoted as “AV” and “AVL”

in Table 4.2 respectively).

Table 4.1: Audio-visual event classification accuracy withdifferent audio SNRs
(% mean±standard error).

SNR Audio-only Video-only Multistream CHMMm CHMMs

10dB 28.05±4.40 61.57±3.18 64.35±4.35 67.22±3.76 65.76±4.36
20dB 51.54±5.21 61.57±3.18 72.33±6.15 76.40±5.87 76.92±5.09
30dB 77.45±6.96 61.57±3.18 89.07±4.13 89.12±3.51 87.10±4.36

Fig. 4.6 shows the confusion matrices of event classification using the audio-

only HMM, audio-visual multistream HMM, CHMMm and CHMMs systems,
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Table 4.2: Audio-visual event detection accuracy with different audio SNRs (%
mean± standard error).

SNR Audio Video Multistream CHMMm CHMMs

10dB 26.73±6.99 45.22±2.22 45.45±3.04 50.47±2.97 48.35±2.33
20dB 47.96±6.03 45.22±2.22 63.74±3.78 65.89±3.98 66.28±3.95
30dB 69.35±5.26 45.22±2.22 78.55±4.13 79.50±2.71 79.54±2.27
clean 87.54±2.99 45.22±2.22 90.57±2.07 91.85±2.11 90.79±2.97

clean “AV” [35] 85 “AVL” [35] 86

averaged across audio SNRs 10 dB, 20 dB and 30 dB. Using the proposed gen-

eralizable visual features with the multistream HMM or the CHMM boosts clas-

sification accuracy for most event classes compared to the audio-only system.

The more flexible CHMM-based systems (CHMMs and CHMMm) further im-

prove classification of some events, such as kn: knock (door,table) and co:

cough from the multistream HMM system.

To verify that the audio-visual state asynchrony allowed bythe CHMM sys-

tems is utilized, we examine the state sequences found by theViterbi decoding.

The percentages of observation frames claimed by the CHMM states defined

by an asynchronous pair of audio and video states are 65.9% for CHMMs, and

65.8% for CHMMm respectively. Note that the multistream HMM system as-

signs all frames to states that are defined by synchronous audio and visual states.

We do notice that the difference between the multistream HMMsystem and the

CHMM systems is not very large. We believe part of the reason isthat there is

much asynchrony between the two modalities that exists beyond the one state

asynchrony allowed in the current model. For example, for some asynchrony,

the audio-visual cues might not overlap temporally at all.

74



Figure 4.6: Confusion pattern for event classification basedon audio-only
HMM, audio-visual multistream HMM, CHMMm and CHMMs.
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CHAPTER 5

CONCLUSION AND DISCUSSION

This dissertation focuses on audio-visual modeling methods that can be easily

adapted to related tasks. It is shown that these methods can effectively model

less-constrained real-world data and deliver state-of-the-art results in acoustic

event detection using CLEAR 2007 AED Evaluation data and video event de-

tection using Trecvid video data.

Some related approaches not studied in this dissertation include: modeling

through lower-level semantic concept detectors, pinpointed problem-specific meth-

ods, explicit alignment modeling between different samples. While these unex-

plored methods have their merits, this dissertation shows that for some applica-

tions, it is possible to deliver comparable, even superior,performance using our

methods that usually require less training labeling efforts.

In this chapter, I summarize the studies in Chapters 2, 3 and 4 with discussion,

and present possible future work following this dissertation.

5.1 Audio Modeling

On acoustic event detection, I present system architectures improved from our

state-of-the-art HMM-based baseline system, designed forbetter acoustic event

detection. Inspired by advances in speech recognition, a tandem connectionist-

HMM approach for AED is proposed to combine the sequence modeling capa-

bilities of the HMM with the high-accuracy context-dependent discriminative

capabilities of an artificial neural network trained using the minimum cross en-

tropy criterion. An SVM-GMM-supervector approach is designed using noise-
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adaptive kernels to approximate the KL divergence between feature distributions

in different audio segments, providing complimentary information that helps re-

fine the Viterbi decoding output of the tandem models.

The interaction between speech and non-speech is an important topic not

studied in this dissertation. One application for effective non-speech acoustic

event detection is to improve speech recognition performance in realistic envi-

ronments. The acoustic event models can be used to improve the limited back-

ground/noise models used in most speech recognition systems. Particularly, with

more ubiquitous deployment of speech recognition systems,the capability of

identifying non-speech events as noise will be essential tothe effectiveness of

many processes involved in real-word speech recognition applications, including

speech transcription as well as speaker/channel/environment adaptation. On the

other hand, effective modeling of human speech, as a major kind of background

noise to acoustic event detection, can lead to more accuratedetection of non-

speech events. Future implementation of systems to study these issues will help

answer the question to what extent realistic applications,i.e. speech recognition

or non-speech event detection, can harness the benefit of explicit modeling of

their interaction.

5.2 Image and Video Modeling

On visual cue modeling, I present the Gaussianized vector representation that

works effectively for video event detection in realistic broadcast news data. Our

system outperforms the best system in the previous literature using lower-level

semantic concept detectors, which are not needed in this work. The Gaussian-

ized vector representation establishes unsupervised correspondence between im-

ages or video clips of varying sizes, lengths and layouts. A normalization ap-

proach suppresses the within-class variation, by de-emphasizing the undesirable

subspace in the Gaussianized vector representation kernels. An efficient object
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localization approach is also developed for the Gaussianized vector represen-

tation, where the quality bound used in a branch-and-bound search scheme re-

quires little extra computational cost, in addition to calculating the Gaussianized

vector representation for the whole image, as in the classification problem.

One motivation of the Gaussianized vector representation is to effectively

model realistic data that has hard-to-find and complicated correspondence be-

tween different samples. It is shown that for detecting video events in the broad-

cast news data, the approach in this dissertation outperforms the previous state-

of-the-art that uses a set of lower-level concept detectorsand explicitly temporal

alignment modeling. However, it is plausible that many of the methods explored

here can be combined with the above approaches for further improvement. In

fact, some of the particular implementations in the experiments in this disser-

tation can be viewed as simple examples of such combination.For example,

we can interpret the Gaussianized vector representation for video events based

on SIFT detector and descriptors as a naive semantic conceptdetector (SIFT)

combined with a robust video clip summarization approach (the Gaussianized

vector). The intended lack of more explicit alignment modeling in this repre-

sentation may also change to adapt to more structured image data. In particular,

hidden states can be used to partition subparts of face images, as in our extension

to the Gaussianized vector representation [95] in a face ageestimation problem,

beyond the scope of this dissertation. The Gaussianized vector representation

has also been used for image segmentation, where each coherent region is mod-

eled by this representation [108].

5.3 Audio-Visual Fusion

Given the challenges in acoustic event detection, I study using generalizable

visual features to improve event detection via audio-visual intermediate inte-

gration. Optical flow based spatial pyramid histograms are used to represent
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the highly variant visual cues for the acoustic events. Thisrepresentation is

demonstrated to significantly improve audio-only event classification and detec-

tion performance in systems based on multistream HMMs or coupled HMMs.

Our systems perform favorably compared to previously reported systems [35]

leveraging ad-hoc visual cue detectors and localization information obtained

from multiple microphones.

The multistream HMMs assume strict temporal synchrony between the two

modalities. The coupled HMMs allow hidden state asynchrony, but such asyn-

chrony is usually limited to a few adjacent states. There areother techniques that

have been used to integrate information from asynchronous data stream. In par-

ticular, canonical correlation analysis is an effective feature transform learning

method that can be used to project features in different modalities such that their

correlation is maximized in the projected spaces [109]. This learning method has

been used to estimate a uniform shift or delay between two modalities. The asyn-

chrony in the real-world events is however non-uniform. A recent extention to

the above method, called Weakly-paired Maximum Covariance Analysis [110],

introduces an explicit temporal alignment matrix that matches temporally local

features from one modality with those from the other modality. This method

iteratively updates this alignment matrix and the two projection matrices for

maximized covariance between the aligned projections for both modalities. The

Weakly-paired Maximum Covariance Analysis has been used to project single

modality data into a subspace where it has maximum covariance with originally

unaligned data from another modality only available in training. This method

can be directly applied to improve acoustic event detectionby projecting the

acoustic features to a subspace where the projection has maximized covariance

with the visual feature with learned alignment. We may further adapt the method

to learn the alignment matrix during testing without changing the projections,

and use both modalities that are projected and aligned in themultistream or

coupled HMMs. I expect this will better model the audio-visual asynchrony in

real-world events, and regard that as future work extended from this dissertation.
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5.4 Human Performance

Human performance is far superior to machine performance inmany pattern

recognition problems. Most notably, humans easily outperform machines in

speech recognition [111, 112], at different noise levels, vocabulary sizes, and

with various availability of high-level grammatical information [113]. A recent

paper [114] reviews the effective speech recognition by humans, particularly

when overlapping with other sounds. It is also known that forrecognition of

any sound in a natural environment, humans can perceive a number of separate

sound sources and identify their locations, pitch and timbre, even when they co-

occur with other sounds. There has been continuing contention whether speech

perception is special or shares the same mechanism as general sound perception

[114]. Similarly, computer vision tasks such as face detection and recognition

[115] find humans to excel in conditions most challenging to automatic algo-

rithms, including various kinds of degration such as blur and noise.

In the pursuit of designing automatic machines that performpattern recogni-

tion tasks, most researchers currently take the approach that machines are pure

thinking devices that interface with the world during learning only in a very

specific way: the machine is provided with data annotated by humans or an

automatic labeler, e.g., the audio and video recordings andthe corresponding

event labels with onset and offset timestamps used in this dissertation. One of

the human advantages, besides robust audio/visual signal processing, is the ca-

pability to actively interact with the world while comprehensively sensing the

environment and applying our previous knowledge. Such capability applies to

almost all kinds of human perception, particularly in tasksthat humans perform

regularly. Some artificial intelligence researchers believe that exploiting this in

machine learning is a more promising strategy to push the performance closer to

that of humans [116, 117].

These advantages exist in human perception of real-world audio-visual events

as well, however, to a lesser extent as the tasks are more arbitrary and less in-
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tegrated into human life. It is possible to train humans by presenting them ex-

amples of different recorded events. But that differs from the way humans learn

how to perform familiar tasks such as speech recognition andface recognition,

which we learn through interacting with the world. In practical applications

such as surveillance and information retrieval, the input information is captured

by specific sensors: should the task have never been exposed to a human being

in prior interactive experiences, the limitation of the specific sensors and the lack

of interaction might hinder the effectiveness of human learning.

Humans and machines differ in the way they tackle the patternrecognition

problems fundamentally. The human level of semantic understanding is not

achieved by even the state-of-the-art automatic pattern recognizers. Many au-

tomatic pattern recognition models either do not attempt tomodel the semantics

in the data other than what is provided in the annotation of the training data, or

do so to only a very limited extent. Even when some of them do try to harness the

intrinsic semantics of the sensory data, the performance isoften unsatisfactory,

sometimes even worse than statistical methods without explicit consideration

of such semantics. For example, lower-level visual semantic concept detectors

[118] have been developed, and simulated results show that there need to be

several thousand concept detectors for broadcast news video retrieval at a per-

formance level comparable to modern text retrieval systems, which is far from

human accuracy. Another example is the video event detection task studied in

Chapter 3, where better semantic understanding through concept detectors and

temporal alignment does not deliver superior performance.Between the sensory

data, e.g., the observed acoustic signal, and the target semantic pattern, e.g., the

events and their onsets and offsets, is the so-called semantic gap, which poses a

major challenge to automatic pattern recognizers because of their limited capa-

bility to model previous knowledge and to apply that to new observations. This

also relates to the question: for better pattern recognition performance, should

machines mimic the human perception process at all, given the capabilities that

we can currently build into the machines?
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Though this dissertation does not further the understanding of human perfor-

mance in real-world audio-visual event detection, relevant work in our research

group provides insight into the challenge of the task to humans, if they are pre-

sented information in the form of recorded audio from a single microphone and

video from a single camera. Particularly, two humans are asked to label the time

and types of non-speech events in the AMI meeting room corpus[119]. Either

with only audio recording available to them or with both audio and video avail-

able, each human transcriber disagrees on at least 50% of those events labeled

by the other transcriber.

Human cognition has been and will continue to be inspiring advances in ma-

chine pattern recognition. It is also important to understand the human advan-

tages and their applicability to different problems.

Besides, for real deployment of pattern recognition, there are practical con-

siderations, such as privacy concerns, long operation hours and high operational

cost, that make the “human” option less desirable. This addsto the utility of

the technology studied in this dissertation, or automatic pattern recognition in

general, even if they cannot match or surpass human performance.

5.5 Final Comments

With the emphasis on robust and generalizable modeling of realistic audio cues

and visual cues, this work focuses on methods that can be readily applicable to

other real-world audio visual modeling problems. There is much space for these

methods to be further tailored for new specific problems, butI hope this work

provides a good starting point, particularly when the following resources are

limited: the expensive detailed annotation for training data, such as those needed

to train ad-hoc lower-level detectors, the efforts of pinpointing specific cues for

different events, or the capability of effective explicit modeling of the alignment

between highly variant events in the spatial, temporal and feature domains.
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