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ABSTRACT

Audio-visual event detection aims to identify semanticalefined events that
reveal human activities. Most previous literature focusadrestricted high-
light events, and depended on highly ad-hoc detectors &setlevents. This
research emphasizes generalizable robust modeling désmigrophone audio
cues and/or single-camera visual cues for the detectiosabiworld events, re-
quiring no expensive annotation other than the known tiamaps of the training
events.

To model the audio cues for event detection, we leveragestitat models
proven effective in speech recognition. First, a tandenneotionist-HMM
approach combines the sequence modeling capabilitiesedfittden Markov
model (HMM) with the context-dependent discriminative abitities of an arti-
ficial neural network. Second, an SVM-GMM-supervector apph uses noise-
robust kernels to approximate the KL divergence betweetufealistributions
in different audio segments. The proposed methods outperdoir top-ranked
HMM-based acoustic event detection system in the CLEAR 20@au&tion,
which detects twelve general meeting room events such dsokey typing,
cough and chair moving.

To model the visual cues, we propose the Gaussianized vezpioesenta-
tion, constructed by adapting a set of Gaussian mixturesrdir to the set
of patch-based descriptors in an image or video clip, regad by the global
Gaussian mixture model. The innovative visual modeling-apph establishes
unsupervised correspondence between local descriptaliffénent images or

video clips, and achieves outstanding performance in aovident categoriza-



tion task on ten LSCOM-defined events in the Trecvid broadeass data, such
as exiting car, running and people marching. Following dicieht branch-and-
bound search scheme, we further propose an object lodahizgiproach for the
Gaussianized vector representation.

We jointly model audio and visual cues for improved evenedi&on using
multi-stream HMMs and coupled HMMs (CHMM). Spatial pyramidtbgrams
based on the optical flow are proposed as a generalizablal vegpresentation
that does not require training on labeled video data. In @imatlia meeting
room non-speech event detection task, the proposed mettupsrform pre-
viously reported systems leveraging ad-hoc visual objet¢ators and sound

localization information obtained from multiple micropies.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Audio and visual information is of significant importancehioman perception
as well as machine intelligence. Detecting real world evéxaised on such in-
formation finds various applications, including securitiyveillance [1], human
computer interaction, video annotation and multimediaeedl [2]. In aging so-
cieties, assistance to dependent people, particulargyrlgldeople, staying in an
unsupervised environment also requires such capabiljiyM@rying situations
determine the availability of information in either or baththe two modali-
ties. While other sensory data has also been studied, tisisrthsion focuses on
modeling audio and visual cues for real-world event dedecti

Real-word events present a significant challenge for macimiedligence.
Even with predefined categories, the cues can be subtle. dvereit is not
always possible to pinpoint clear indicators for differement categories. For
example, a video clip of a “car exiting” event might not haveoaplete profile
view of the vehicle. A “keyboard typing” event might have l@amergy audio
footprint and barely visible visual cues from a bird-eye eam

We study real-world event detection through a set of relptethlems. First,
short-term acoustic event detection aims to reveal the éintiecategory of event
occurences in a relatively long audio stream. Second, veemt detection
provides the event category for video shots, whose boueslaen be obtained
by a well-studied task called shot boundary detection.dl ldudio-visual event

detection performs the same task as acoustic event deteltibwith access to



observations in both modalities.

1.2 Background

1.2.1 Acoustic event classification and detection

There is growing research interest in audio/acoustic esdetgction (AED). Al-

though speech is the most informative auditory informasoarce, other kinds
of sounds may also carry useful information, such as in silamee systems
[4]. In a meeting room environment, a rich variety of acaugvents, either
produced by the human body or by objects handled by humaitectrearious

human activities. Detection or classification of acoustients may help to de-
tect and describe the human and social activity in the mgetiom. Examples
include clapping or laughter inside a speech discoursepagyawn in the mid-
dle of a lecture, a chair moving or door noise when the medtagjjust started
[5]. Detection of the nonspeech sounds also helps improgectprecognition
performance [6, 7].

Much research in audio content analysis has typically es$eethe problem
of segregating a few audio sources [8, 9] or segmenting aio afictam into a
small number of acoustically compact categories or sced@s 1J1]. Acoustic
event detection (AED), a subtask of audio content analgsiss to detect spec-
ified acoustic events such as gunshots [4], explosions [AR,speech/music
transitions [10], cough events [14], and audience cheeaing sports event
[15]. Such information is very helpful in applications suehsurveillance, mul-
timedia information retrieval and intelligent conferemoems.

Acoustic events sometimes intervene between speech dapwsith back-
ground speech. Without explicit processing of such phemamiéis possible to
implicitly deal with background speech as noise includethanevent observa-
tions [16]. Assuming limited overlapping, we can performoeoactivity detec-

tion first and then identify acoustic events in the non-spesgments. Acoustic

2



event detection could also be performed tightly couplethwite decoding pro-
cess of speech recognition. For example, the non-speealsasan be included
in the language model used in Viterbi decoding, similar ®way silence and
noise are modeled in large vocabulary speech recognitiorath®er possibility
is to treat the acoustic event sequence (padded with silendébackground)
and speech as two separate processes which are decodethiseausly: the
observed audio waveform is the summation of the two prosesBeough this
approach has not been studied for this particular probleisuccessfully used
in multi-talker speech recognition where speech from mlglspeakers overlaps
in time [17].

1.2.2 Video event detection and object localization

Video based event recognition is an extremely challengasg tue to all kinds
of within-event variations, such as unconstrained motiohstered backgrounds,
object occlusions, environmental illuminations and gewimeleformations of
objects. While there exists work attempting to detect un@musbnormal events
[18, 19] in video clips, the research on event recognitiothéreal world is still
in its preliminary stage.

Many statistical models, e.g., hidden Markov model (HMMQ]2and cou-
pled HMM [21] were proposed to capture the spatial and tealpmmrrelations
of video events, and then the learned models are utilizegriidefined video
event classification or abnormal event detection. On therdtand, appearance-
based techniques were also widely used for video eventti@teand classifi-
cation. Ke et al. [22] applied the boosting procedure forashag the volumet-
ric features based on optical flow representations. Nieftied. [23] adopted
the spatio-temporal interest points [24] to extract theuess, and other works
[24] extracted volumetric features from salient regionkefe also exist works
that used bag-of-words model to tackle the problem of olgeent recognition

[25, 26]. In addition, Bagdanov et al. [27] adopted bag-dF& to detect and



recognize object appearances in videos. Xu and Chang [2Bbpeal to encode
a video clip as a bag of orderless descriptors obtained frasreael semantic
concept classifiers extracted from all of the constitueatnies, along with the
global features extracted within each video frame.

One problem related to video event detection is video shahtary detection.
A video shot is a fundamental unit for structured video. dddot boundary
detection is a non-trivial task, particularly given thaé thoundaries could be
either gradual or clear cut. The task has been extensivetiest in Trecvid
2001-2007, as detailed in [29]. Many video event detectiorka, including the
experiments performed in this dissertation, start witlegighot boundaries.

The object localization task involves finding the boundiogds of an object
within an image, thereby leveraging spatially localizeslnal cues in an image.
Different from the image categorization problem that aimagsign one label for
the image, object localization needs to evaluate many plessounding boxes
and identify one or several of them that contain the targgtatd. A natural
way to carry out localization is the sliding window appro48]. However, an
exhaustive search in anx n image needs to evaluat&n*) candidate bounding
boxes. Heuristics about possible bounding box locationdths and heights,
or local optimization methods are often used to reduce thechespace. The
bounding box search speed can be further improved by coeufiee search

schemes.

1.2.3 Audio-visual fusion

It has been shown that in many applications with both audb\asual infor-
mation, modeling of the two modalities improves perform@aoompared with
either modality. Chu and Huang [31] and Hasegawa-Johnsoh 82 both
used the coupled hidden Markov model for audio-visual dpeecognition.
Hasegawa-Johnson et al. [32] also explored using a moreraetygnamic

Bayesian network to better model the coupling between audiosesion, based



on articulatory phonology. Sadlier and O’Connor [33] stuldiketection of field

sports scoring events, using a support vector machine \aitlows audio-visual

features informative across various sports types. Canéorefet al. [34] and

Butko et al. [35] both performed audio-visual event detettising not only

audio information, but also output from well trained spézed visual object

trackers, and fused the two modalities at score level anelaaitife level respec-
tively.

One way to classify audio-visual integration strategie®] Mews them as
three categories. The first is early integration, which aots feature vectors
from both audio and visual observations and concatenates ithto one feature
vector sequence for use in one model with the same strucsuice ane modal-
ity. The second is late integration, which extracts featigetor sets separately
and uses two sets of models generating reliability weighketcombined across
modalities. This is also referred to as decision fusion pasate identification.
The third is intermediate integration, e.g., product hidi¥arkov model or cou-
pled hidden Markov model.

Besides audio-visual integration, the availability of ausdisual data also en-
ables multi-view learning, which leverages the relatiotwaen the different
modalities to improve the learning. Canonical correlatiolgsis (CCA) is
an unsupervised feature transform learning method that Arglibspace where
the audio and visual cues achieve maximum correlation. Qoaality can be
viewed as “soft labels” for the other, when finding the opfiimjection onto
the CCA subspace. This has been shown to improve speaker rézognd
clustering, even when the visual cues are not availablestintg in [37] and
[38] respectively. When both audio and visual cues are dailat testing, we
can apply CCA for both modalities to obtain two versions of thgjgrted fea-
ture vectors. It is pointed out by [39] that these projectectors can be further
decomposed into uncorrelated elements, so that an eaglyration strategy can
be applied to correlated corresponding audio-visual etesnend a late integra-

tion strategy to the uncorrelated elements.
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1.2.4 Audio-visual pattern recognition in general and realistic
data

Real-word audio and visual data present much more varigt@mrestricted lab
data. Many times, even for the same task, approaches thatamorestricted
lab data are not necessarily suitable for realistic datae €@ample is from the
acoustic event detection literature. While most of the warévent detection fo-
cuses on a few highlight events, the 2006 and 2007 AED Evahssponsored
by the project “Classification of Events, Activities and Reaships (CLEAR)”
[5, 1] were mainly performed on a continuous audio databeserded in real
seminars [40]. Systems attempted to identify both the teaifimundaries and
labels of twelve acoustic events (door slam, paper wrappou steps, knock-
ing, chair moving, phone ringing, spooncup jingle, key @d&eyboard typing,
applause, cough, and laughter). Instead of being exclysivghlight events,
many of the events in CLEAR evaluations were either subtler BNR, e.g.
steps, paper wrapping, keyboard typing), or/and overftappiith speech, mak-
ing the task particularly challenging. The real environtfextor added to the
variation of the events as well as the difficulty of segmentime audio-visual
input stream. In the 2006 CLEAR AED Evaluation, the partiaiggsadelivered
superb performance on acoustic event detection on cleda itk performed
events, while the same teams struggled with realistic sentiata [41].

In 2007 CLEAR AED Evaluation, with only audio information aledole to
the systems, although different system architectures aatife sets have been
explored [5, 1], even the top rated AED system, which was ldgeel by the
author of this dissertation together with other membersunfldUC team, left
much space for improvement [42]. The evaluations highédlthe challenges in
the detection of a large set of general acoustic events ial ageld environment.

With the significant challenge from audio-only event detetctthe research
community has explored leveraging additional visual infation to improve

AED performance [43, 12, 44]. Leveraging additional visoaés for audio



signal analysis has also been explored for other applimstisuch as speech
recognition [45] and person identification [46]. In parteny the multi-stream
HMM and the couple HMM (CHMM) are two effective models for aadiisual
fusion.

Video event detection presents a major challenge, whenatheecned data is
from real broadcast news video. Video event detection migknre differs from
previous studies of more constrained video in various w&yrst, the camera
is often in motion, introducing blur and movement of the wewSecond, the
same event category may present itself in dramaticallesfit visual content
or layout. Third, it is hard to pinpoint particular problespecific audio-visual
characteristics in order to identify different categori€3ne way to deal with
the realistic video data is to leverage lower-level sencacdincepts, with the
assumption that such concepts well summarize the visual @@ enable con-

venient comparison between different video clips [47].

1.3 Contributions

This dissertation tackles the problem of identifying bathestamps and types
of real world events, providing a comprehensive descniptbthe real world
audio and/or visual stream. Moreover, this research engdgsmsbust and gen-
eralizable modeling of audio cues and video cues, eithearaggly or jointly,
with no use of highly ad-hoc detectors trained using sepdadieled data. The
proposed framework for audio-visual event detection takBsntage of known
timestamps of the training events and requires no expefwiation annotation
of the visual cues.

Statistical models proven effective in the speech recagniiterature are used
for audio cue modeling. First, a tandem connectionist-HMigraach combines
the sequence modeling capabilities of the HMM with the haglouracy context-

dependent discriminative capabilities of an artificial raunetwork trained us-



ing the minimum cross entropy criterion. Second, an SVM-Gidiyervector
approach uses noise-adaptive kernels approximating thdirgence between
feature distributions in different audio segments. Thesthods show that a bet-
ter temporal context modeling improves AED based on HMMsl modeling
the audio segment via one distribution for all frame-bassxtars provides use-
ful complimentary information for the task.

In this dissertation, visual cue modeling uses an innogdBaussianized vec-
tor representation for images and video clips, applied ilealcategorization
and localization algorithms. The Gaussianized vectoresgmtation summa-
rizes an image or a video clip with the distribution of pab&sed descriptors,
approximated by a Gaussian mixture model. This representastablishes un-
supervised correspondence between different imagesghtbe set of Gaussian
components adapted from a global set of Gaussian compasmesdsding to the
maximum a posteriori (MAP) criterion. A linear kernel baswdthis represen-
tation approximates the KL divergence between patch dascrdistributions
from different images or video clips, and can be used not forlgategorization
but also for localization in an efficient branch-and-bouedrsh scheme. These
methods show that it is possible to effectively model realldvonage and video
data without developing supervised lower level semanticept detectors, and
achieve state-of-the-art performances for broadcast niElegs event detection.

| also study improving the detection and classification efélients using cues
from both audio and visual modalities requiring only lab@lsilable for audio
training. Optical flow based spatial pyramid histogramsuwsed as a general-
izable visual representation that does not require trginomlabeled video data.
Multi-stream HMMs or coupled HMMs (CHMM) are used for audiswal joint
modeling. To allow the flexibility of audio-visual state asyrony, | explore ef-
fective CHMM training via HMM state-space mapping, paraméyeng and
different initialization schemes. The proposed methodxessfully improve
acoustic event classification and detection on a multim@eeting room dataset

containing eleven types of general non-speech events wtitging extra data
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resource other than the video stream accompanying the abdervations. The
audio-visual event classification and detection systerpeytdrms a previously
reported system engaging multiple supervisedly-trainsdal object detectors
and location estimators based on microphone array signaépsing.

The rest of this dissertation is organized as follows. Chapteresents the
work in acoustic event detection, which has been publishgd8, 49]. Chap-
ter 3 details the Gaussianized vector representation siagblications in video
event detection and visual object localization, most ofchhihave been pub-
lished in [50, 51]. Chapter 4 presents the work on improvinguatic event
detection using general visual cues, to be published in. [92je dissertation

concludes with discussion and conclusion in Chapter 5.



CHAPTER 2

AUDIO MODELING FOR ACOUSTIC
EVENT DETECTION

Acoustic event detection (AED) in realistic data differsrfr classification of
isolated events in a silent environment, calling for difietr statistical models.
While SVMs were shown to be optimal for the latter [53], thenfier saw most
leading CLEAR AED Evaluation participants using dynamic Baga networks
[5, 1]. In particular, our top-rated AED system in CLEAR E\atiion 2007 used
a set of left-to-right hidden Markov models (HMMs), eachdoe event. HMMs
owe their success to the Viterbi algorithm [54], which altoiihem to com-
pute simultaneously optimal segmentation and classificalti the audio stream.
Noise in individual frames is alleviated by the HMM'’s leadhleysteresis, i.e.,
its typical learned preference for self-transitions rathan non-self-transitions
in the hidden finite state machine.

To take advantage of this proven approach, we leverage @¥ark in which
HMMs are used to achieve audio segmentation and eventfatasigin simulta-
neously. To alleviate HMM'’s problem that each hidden statelehs only local
observations, we propose to use the tandem connectioM&t-ejpproach [55],
where an artificial neural network (ANN) outputs posteriarmbilities of event
types based on very-long-duration, temporally overlagmibservation vectors,
leading to better contextual modeling and event discritiona To further refine
the event detection result, we propose using Gaussian raixtwdel (GMM)
supervectors [56] to abstract the noisy features in thaitrgiaudio segments
and the hypothesized segments obtained by the tandem médeVM with
kernels built on these GMM supervectors, namely the SVM-GlsiNdervector

classifier, is used to replace the labels proposed by thepfisst tandem model,

10



when such replacement is desirable according to held-maialement data.
We perform acoustic event detection experiments on the satup as the
AED evaluation in CLEAR 2007. It is demonstrated that the eand¢onnectionist-
HMM approach and the SVM-GMM-supervector approach for mefjrithe re-
sult both contribute to performance improvement, and top@sed system sig-
nificantly outperforms our submission system in the CLEAR28&D Eval-
uation, which was the best ranked in the challenging AED,tagkperforming
other participating systems by 50% relative in detecticcueacy. We also show
that the acoustic event detection methods, in particuaNMM-based AED
system and the complimentary SVM-GMM supervector resgocem be effec-
tively applied in a human falling detection system usingrgk& microphone as

the sensor.

2.1 Segmentation and Classification: HMM-Based
System

Audio event detection requires both segmentation of théasitceam, and clas-
sification of the segments. Following our experience in tk#Aask of CLEAR
2007, we perform simultaneous segmentation and classificasing a Bayesian
inference procedure similar to state-of-the-art methadscontinuous speech
recognition [57, 58].

We formulate the goal of acoustic event detection as folildeéind the event
sequence that maximizes the posterior probability of tlenesequencél’ =
(w1, ws, ..., wyr), given the observation8 = (o4, 0y, ..., or):

A

W = arg max P(W|0O) = arg max P(O[W)P(WV) (2.1)

The acoustic modeP(O|1W) is one HMM for each acoustic event, with three
emitting states connected using left-to-right and sedpltransitions. For back-

ground silence and speech, we use a HMM with additional itians between
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the first and third emitting states, to account for the inseglanternal complex-
ity. The structure of the HMMs can model some of the non-tetiity of acous-
tic events. The observation distributions of the statesramementally-trained
Gaussian mixtures. The HMM for an acoustic event is traiecepresent all
training data segments carrying the same event label.

In order to capture short-term soft constraints on the sscpief event la-
bels, the probability of an event label sequefe, . . ., w,,) is represented by
a bigram language model:

m

Pwiwsy -+ wp) = P(w:) H P(wiw;—1). (2.2)

=2
A bigram “language model” in AED favors recognized acousient se-
guences with sequence statistics similar to those in th@ngadata. Although
the language model here does not have the same linguisticatipns as in
speech recognition, it does improve performance. One optissible reasons
is that it suppresses long sequences of identical evenis|attels forcing the

HMMs to better learn the internal temporal structure of tbeustic events.

2.2 Acoustic Context: Tandem Connectionist-HMM
Approach

The tandem connectionist-HMM approach is composed of twpmnm@mpo-
nents, as shown in Figure 2.1: an artificial neural network¥ that observes
feature vectors in a context window and outputs posteribdiflerent acoustic
event types, and an HMM component that uses a transformed@mnaalized
version of the output of the ANN, optionally together witketbriginal features,
as input features. This approach has been shown to improvel4ibsed au-
tomatic speech recognition [55]. We use the same frameveobobst perfor-
mance of acoustic event detection by drawing evidence frevidar time con-

text window and emphasizing the difference between cobfadaature vectors
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across acoustic events by discriminative training.

Two lessons from its application in speech recognition aréqularly relevent
for using the approach in AED. First, the ANN improves redtign perfor-
mance in high noise conditions [59, 60]. The AED task is ctiarézed by low
SNR, in particular with backgrounds that have high variati®econd, the ANN
benefits speech recognition when context independent madelused [60]. To
limit the complexity of the ANN, it is used to distinguish grbetween different
context-independent models. As pointed out by [60], if tbearative (HMM)
part of the tandem system leverages context-dependentisnoide ANN may
end up counterproductive by increasing overlap and coorfusetween differ-
ent context-dependent models that correspond to the samextindependent
model. Consistent with the above findings, we have used tltetararchitec-
ture successfully for speech recognition from tract vdeialin an architecture
based on articulatory phonology [61, 62]. In this work, we tise HMMs to
model different acoustic events that are indeed contalé¢pendent.

Consecutive frames within the context window are concageht form the
input X to the ANN, each dimension corresponding to one input nodee T
number of output nodes equals the number of acoustic evpastyThe ANN
is discriminatively trained, by back-propagating a minimaross entropy crite-
rion, to targets that set the output node correspondingetgribund truth event as
one and all other output nodes as zero. During testing, fdr eantext window,
the ANN presents estimated posterior probabilities acatisacoustic events.
All context windows centered at every consecutive feattaené are evaluated
in the same way, resulting in a sequence of posterior prbtyatéctors.

With these posterior probabilities, we could perform dfesstion using two
different approaches. The first approach just directly ddsesANN output: ei-
ther to assign to each frame its maximum a posteriori evéet |ar to generate
probabilities that will be smoothed by a Viterbi decoderwdoer, experiments
in automatic speech recognition suggest that better eemaly be obtained by

transforming the posteriors into a pseudo-observatiom;twis then used as the
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input to a Gaussian mixture HMM.

In order for ANN posterior probability vectors to be betteoaeled by the
Gaussian mixture likelihood model of an HMM, three transfation are ap-
plied as suggested by previous work in tandem speech rdayrb5]. First,
we take thelog of each posterior probability to reduce the skewednessef th
distributions. Second, principal component analysis (PiSApplied on the log
probabilities to decorrelate the HMM input, so that we mag dgégonal co-
variance matrices in the Gaussian mixture models. Thirdgmand variance
normalization is applied on each of the decorrelated dimess within each

audio session.

Contextual window

for Tandem hidden

/ Transformation
—
| o |
E = || lo D —»= PCA
H—" & 1+ O
—
e |
—
— ANN output
[— B(L|DY
=4
[

Current feature frame

Figure 2.1: Classification using a tandem model (ANN+HMM).

2.3 Complimentary Rescoring:
SVM-GMM-Supervectors for Audio Segments

Researchers in automatic speaker identification have flgaveloped a set of

algorithms that boost classification performance by fegde likelihood out-
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put of a generative model (usually an adapted Gaussian raixtodel) to the
input of a discriminative classifier (usually an SVM) [56].h& SVM-GMM-
supervector approach is not practical as a first-pass segnfenAED, because
it requires some type of hypothesized segment boundariesen@he bound-
aries chosen by a connectionist-HMM first-pass system, Yid-&EMM is able

to efficiently compute confidence scores for each of the pegsegment la-
bels. The SVM-GMM is robust to background noise owing to theametric
modeling of frame-level feature distribution. It discrimates between the can-
didate classes, with scores normalized by adaptation oframmn multi-mode
Gaussian mixture distribution.

We refer to the audio observation between two adjacent laneslas amu-
dio segmentThe SVM-GMM-supervector approach approximates the jisy
tribution of all feature vectors irach audio segmemtith a GMM, from which
a GMM supervector is constructed as a summary of the segrmbatpairwise
Euclidean distances between these supervectors chaadter difference be-
tween the audio segments. Kernels derived from these dietsaare used in an
SVM for classification.

Figure 2.2 demonstrates that each audio segment is reprdsenan ensem-
ble of frame-based feature vectors, whose distributiopm@imated by a set
of Gaussians adapted from the global Gaussian mixturebearriversal back-

ground model.

2.3.1 Universal background model and segment-specific
Gaussian mixture models

We estimate a GMM for the distribution of all feature vectarseach audio
segment. Instead of separately estimating a GMM for eacloasgment, we
estimate a GMM for each audio segment by adapting, to eacio aegment,
the parameters of a universal background model (UBM): a GMa ltlas been

previously trained to represent all types of audio. Adaptiaining creates a
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Figure 2.2: GMMs (indicated by the ovals) summarize audgmsnts using
multiple unimodal Guassians (indicated by the circles).

regularized estimate of the true, underlying likelihooddtion governing each
audio segment. Regularization (adaptative training based4BM) reduces the
effects of outliers, e.g., noisy frames in an audio segm&adaptive training also
provides a natural measure of the difference between amngudio segment
and the UBM, since each Gaussian component in the segmaerifisi&eli-
hood has been adapted from a particular component of the UBNiveZsely,
the use of a GMM allows arbitrarily precise representatibthe acoustic fea-
ture likelihood, with large enough number of Gaussian comepts. Finally,
the GMM clusters similar frames, by assigning them to thees&arnel in the
GMM.

We first estimate a UBM using feature vectors extracted frdrinahing au-
dio segments, regardless of their event labels. Then thrédison model of the
feature vector for a certain audio segment is adapted frentyBM in order to
maximize the a posteriori probability of the adapted mod@a] [

Here we denote € R? as a feature vector, whetkis the dimension of the

16



feature vector. The GMM distribution of variablas

K
p(z;0) = Zwk/\/'(z; s L), (2.3)
k=1
where® = {wy, pu1, %1, -+ }, wg, pp @and>, are the weight, mean, and covari-
ance matrix of théith Gaussian kernel, respectively, afdis the total number
of Gaussian kernels.
The density is a weighted linear combinationfofunimodal Gaussian densi-

ties, namely,

1

L )T (e
W e 2(Fhe) B () (2.4)
k

N (z; pw, X)) =

We obtain maximum likelihood parameters for the UBM usingestation-
maximization (EM). For computational efficiency, the cosace matrices are
restricted to be diagonal, which proves to be effective amndputationally eco-
nomical.

The UBM, learned from all training audio, specifies a featuoendin, of
which each segment-specific GMM span a subset. The subsstraiom can
be enforced by interpreting the UBM parameter $tas a set of conjugate-
prior PDFs governing the distribution of segment-specifidNG parametersd,
i.e., the segment-specific GMM has the a priori PR¥F; ©). The a posteriori
probability of the segment-specific GMM parameters is ot@diby multiplying
p(0; ©) by the data likelihoodp(Z|0), whereZ = {z,..., zy} are the frames
observed belonging to the segment of interest, and by thedimlj by a nor-
malizing constant; the normalizing constant is irrelevantomputation of the

model parameters, and may be omitted. Thus, for example, kiddptation
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selects the segment-specific mean paramgtets maximize

K
np(0,2) = Y N (fi; p, Sr/r)
k=1

H K
-I—Zanwk/\/'(zi;ﬂk,Zk), (2.5)
i=1 k=1

wheref = {fu, ..., ik} is the set of segment-specific GMM parameters, and
© = {wy, u1, X4, ...} are the parameters of the global GMM.

The joint distribution functiorp(d, Z) has the same form as the likelihood
function p(Z|é), and may therefore be optimized in the same way as a likeli-
hood function, i.e., using EM with the hidden variali?e(k|z;) as the posterior
probability of the Gaussian componéntor given feature vectot; [64]. In the

E-step, we compute the posterior probability as

wiN (235 pe, L)

Priki=) S wiN (25 5, 55) (20
ng = i Pr(k|z), (2.7)
=1
and then the M-step updates the mean vectors, namely,
1 H
E(Z) = - Z Pr(k|z)z, (2.8)
fe = arpBp(2) + (1 — ag)u, (2.9)

whereay, = ny/(ng + r). MAP adaptation using conjugate priors is useful be-
cause it interpolates, smoothly, between the hyper-pasBsye, and the max-
imum likelihood parameterg) (7). In this work,r is adjusted empirically. If

a Gaussian component has a high probabilistic coyntthena,, approaches
and the adapted parameters emphasize the new sufficiésticsatotherwise,

the adapted parameters are determined by the global model.
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2.3.2 Approximating Kullback-Leibler divergence

Two segment-specifiGMMs adapted from the same UBM are denotedjas
andg,. A natural similarity measure between these two GMMs is théiack-

Leibler divergence,

9a(2)
() dz .

D(gallgs) = / 4a(2) log

The Kullback-Leibler divergence does not satisfy the cbods for a metric

function. Instead, we can use its upper bound obtained Hg¢hsum inequality,

K
Digallgn) < 3w DIV (=5 i, Sl N (25 122, 53)
k=1

wherey¢ andy! denote the adapted means of #ie component from the seg-
ment GMMsg, andg,, respectively. Since the covariance matrices are shared
across all adapted GMMs and the UBM, the right-hand side ialdqu

d(a,b)* = wi (g — pp) S (g — ) -

DO |
gl

We can considet(a,b) as the Euclidean distance between the normalized

GMM supervectors in a high-dimensional feature space [65],

d(a,b) = [|0(Za) — d(Zb)]|2 , (2.10)

wy -1 , w -1 .
:[\/71212,“1;'-- ;\/TKEK2MK]- (2.11)

2.3.3 Kernel for SVM

where

GMM supervectors are used in an SVM for acoustic event ¢leggon. This

multi-class classification task is implemented as binaagsification problems
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via the one-vs.-one method using LibSVM [66]. The distaneingd in (2.10)

can be evaluated using kernel functions, as

d(a,b) = \/K(a,a) — 2K (a,b) + K(b,b) . (2.12)

It is straightforward that kernel functiofk (a, b) = ¢(a) e ¢(b) satisfies (2.12),
where¢(a) and¢(b) are defined as in (2.11).

2.4 Hybrid Architecture of the AED System

Both the HMM-based approach and the tandem HMM-connectiapigroach
engage the maximum a posteriori (MAP) decoding for AED: #eognizer out-
puts a sequence of hypothesized acoustic events corrasgaiadthe highest
sequence a posterior probability, as discussed in Section 2.1. Hewethe
best acoustic event sequence obtained by the MAP decodimg ptimal ac-
cording to the performance measure for AEDE D — ACC, i.e. the acoustic
event F-score (harmonic mean of precision and recall). kamgle, Mangu,
Brill and Stolcke [67] proposed solving a similar problemngglocalized con-
fidence rescoring: the MAP decoder defines a reduced seaad®,swithin
which a new hypothesis is chosen explicitly to minimize dugét performance
measure. Confidence scoring also allows us to apply methaisasiSVM-
GMM-supervector classification, which are difficult to appl a MAP decoding
paradigm because of computational complexity and modattre limitations.
In this work, our AED system uses a two-stage hybrid archurec(Figure
2.3). In [67] a rescoring paradigm aligns all of the edgesnregent lattice to
the times marked in the MAP hypothesis. In the AED task, thalmer of labels
is small enough to obviate lattice rescoring; therefore case take a route that
is straightforward, yet effective and computationallyxpensive. The MAP
decoding outputs a one-best result with boundaries of svami background,

as well as hypothesized event types. The SVM-GMM-supeovexgiproach is
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Figure 2.3: Hybrid architecture of AED system.

used as the confidence rescoring module. It models feataneef within all
hypothesized audio segments, and proposes event typasititatbe different
from the hypothesis obtained through MAP decoding.

Both hypothesized event types, referred to as the MAP labelsiee SVM la-
bels respectively, include the events of concern and a ‘tpacind” label. There-
fore, event label substitutions, each defined by a MAP labélaan SVM label,
may include substitutions between any pair of events, frara@ustic event to
background or from background to an acoustic event. On tlieche develop-
ment data, the performance change is measured when onlyastieufar type
of label substitution is allowed. Those label substitutippes that lead to the

most performance boost on the held out data are chosen aaliti@vent label

21



substitutionsto be applied in testing. All other types of label substitas are
suppressed in testing, by retaining the MAP label.

We find in practice that the above valid event label sub#bitistare too spe-
cific and sometimes do not carry over well between differatadTherefore, in
the experiments we only define valid event label substitstiaccording to the
MAP labels. In fact, the most favorable approach turns owltaw the SVM-
GMM-supervector classifier to assign labels to the audionsgtys labeled as
background by the MAP decoding, recovering events that wessed in the first
pass, but not to perform any substitutions among MAP-labets-background
events. Readers interested in more general methods to ceiection results
from multiple systems are refered to literature about theoBeition Output
Voting Error Reduction (ROVER) [68], particularly its votirsgarch modules.

The hybrid architecture works for two reasons.

First, the SVM-GMM-supervector approach functions competarily to the
MAP decoding as they operate in different hypothesis spdogzarticular, the
MAP decoding engages properties such as state transigoying length and
N-gram event sequence statistics in the decision of boigsland hypothe-
sized event labels. The MAP decoding might suppress progasiort events or
events similar to the background given the high variatiotheénbackground. By
contrast, the SVM-GMM-supervector approach only consideature distribu-
tion within an audio segment locally. The purely local agmto of the rescoring
module has been shown to outperform HMMs in tasks with loes@ence con-
straints [69]. Besides, the SVM-GMM-supervector approasésdnot impose
explicit temporal structure within the audio segments,antcast to left-to-right
HMMs.

Second, the objective of MAP decoding differs from that ofDAE-or the
maximum a posteriori hypothesis, each frame in the observa considered.
The detection metric, AED-ACC, only considers the temporkti@nship be-
tween the hypothesized event boundaries and the referaeoe lroundaries.

Furthermore, neither MAP decoding nor the SVM-GMM-supetwueclassifier
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treat background and acoustic events differently, whiseAED-ACC measures
only the F-score in detection of non-background events. S¥WMM rescoring
aims at the target performance metric by constraining itleweonly label sub-
stitutions (changes from the MAP labels) that are beliewedprove the AED

performance metric.

2.5 Seminar Room AED Experiments

2.5.1 Dataset and metric

The acoustic event detection experiments use the offictalfda CLEAR 2007
AED Evaluation [1]: about three hours for system developtnagia two hours
for system evaluation. All data are realistic seminar stigkeving both speech
and acoustic events with possible overlap. The evaluataia Has 1454 in-
stances of target events. The target events included in B2 performance
metric are door slam (ds), paper wrapping (pw), footsteps gtone ringing
(pr), spoon cup jingle (cl), keyboard typing (kt), appladap), coughing (co),
laughter (la), key jingle (kj), chair moving (cm), and knawd (kn). The counts
of these events in the evaluation data are as in Figure 2.4y Mhathe events
are subtle and have low SNR compared to background noiseeeckp

The performances are measured using AED-ACC [1], definedeas-tore
(the harmonic mean between precision and recall) compaystem output
acoustic event (AE) labels and reference AE labels. In @adr, an event de-
tected by the system is correct when there exists at leaghatehing reference
event whose temporal center falls within the time boundaokthe detected
event or the temporal center of the detected event is wittérbbundaries of at
least one matching reference event. A reference event sidemed correctly
detected if its temporal center is within at least one maiglsiystem output or
if there exist at least one matching system output whose deshpenter falls

within the boundaries of the reference event. AED-ACC ainsctire detection
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Figure 2.4: Counts of the twelve acoustic events in the etialudata.

and classification of all acoustic event instances, orcefde applications such

as real-time services for smart rooms and audio-basedibamee.

2.5.2 Experiment setup

The audio features used in these experiments are AED fedéuineed using a
modified AdaBoost approach we proposed in [42]. The featud ponsists
of two feature sets widely-used in speech recognition a$ agebther audio
applications. The first set consists of 26 MFCCs calculateder0tHz - 11000
Hz band along with their first order regression (delta) coigffits and second
order regression (acceleration) coefficients. The secehdmsists of 26 log
frequency filter bank parameters, their delta and accederavefficients on the
same frequency range. The AED feature set is derived usingsting approach
from the union of the two baseline feature sets. The AED feaset used has
78 feature components.

Two sets of experiments are carried out to demonstrate tHferpence of

the tandem connectionist-HMM approach and the SVM-GMMesugctor ap-
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proach for refining event label hypotheses.

The first experiment evaluates the tandem connectionist#dproach. The
contextual window size (number of input nodes divided by i8§)icked to be
five. The number of hidden nodes is chosen as 1200 empiricaillyest perfor-
mance on a development dataset. The number of output nodestis 14, i.e.,
the number of acoustic events plus one for frames labeledlasown sounds
and one for background frames. The transformed output dielse performing
ANN is concatenated with the derived AED feature set as thetito the HMM
component.

The second experiment presents performance of the SVM-GJpkrvector
approach discussed in Subsection 2.3, used in the hybhatecture discussed
in Subsection 2.4. The number of Gaussian mixtures is se¢ t?B. Two sets
of results are reported, obtained by applying the approactop of either the
HMM-based approach or the tandem connectionist-HMM apgroa

When training the systems, we hold out one third of the thrae develop-
ment data to tune some system parameters. Once the paraaretdetermined,

the models are retrained with all the development data.

2.5.3 Results

In Table 2.1, we demonstrate the effectiveness of the tamtMivi-connectionist
approach and the SVM-GMM-supervector approach used in ybadarchi-
tecture. We can observe that the average AED-ACC across alvévevents
improves from 34% to 35.3% by engaging the tandem approashofdd as
“Tandem”). The SVM-GMM-supervector (denoted as “HMM+S)dsts per-
formance from 34% to 37.5% by relabeling event segmentsgsex by the
HMM-based AED system (denoted as “HMM”), as described ins&ghion 2.4.
Using this hybrid architecture of both tandem and SVM-GMupsrvector ap-
proaches yields the best AED-ACC of 41.2% (denoted as “Tar@)n

Performance on individual acoustic events is also preddotethe different

25



settings. It is shown that the number of individual acoustients scoring the
highest is the largest for the best setting of “Tandem+S% $imgle most dra-
matic performance boost on an individual event is that ofytiaard typing”
(kt), achieved by engaging the SVM-GMM-supervector apphoaThe MAP
decoding approaches, i.e., HMM or tandem approaches, caildell distin-
guish “keyboard typing” from background. In fact, many egethat are eas-
ily confused with the background in the first pass, e.g., Baard typing” and
“steps”, are recovered for reasons discussed in Subse&tdorThis highlights
that the SVM-GMM-supervector in the hybrid architecturs lsapability com-
plementary to the MAP decoding approaches. The best settifitandem+S”
performs significantly better than the baseline HMM-basetiesn according to
the Friedman’s tesp(= 0.02).

All results presented here are improved from our systemear2007 CLEAR
Acoustic Event Detection Evaluation, where we achievedtst performance,

similar to the performance of the baseline HMM system in &&bll.

2.6 Acoustic Fall Classification and Detection
Experiments

Assistance to dependent people, particularly to the eldignhg alone at home,
has been attracting increasing attention in today’s agingesies [3]. Reliable
and speedy detection of falls by automatic monitoring ofttbene is expected
to be of benefit to both elderly and caregivers.

We apply the AED methods to automatic fall detection using emobtrusive
far-field microphone. The detection task identifies existeand approximate
occurrence time of falls. Segment boundaries of the acougtut are found
by the Viterbi algorithm using single-state HMMs (GMMSs) tvgelf-transitions
for different falls and other noise events. A bigram modetrégned on the

fall, noise and background sequences observed in thertgadtdta. Each audio
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Table 2.1: Effectiveness of different components in the AdyBtem.

AED-ACC (%) [ ap | cf [ em | co | ds [ ki [ kn [ kt [ la [ pr [ pw | st [ Average|

HMM 4441 255|31.3|31.2|57.3|33.2|135| 19 | 51.3| 36.7| 176 | 36.8 34.0
Tandem 526|219| 372|513 | 63.0| 29.6| 11.5| 0.0 | 54.2| 427 | 25.8 | 34.6 35.3
HMM+S 4441 25.0| 33.7| 31.2| 56.6| 33.2| 209 | 35.5| 51.3| 36.7| 19.2| 41.3 37.5

Tandem+S || 52.6 | 21.5| 374 | 47.9| 63.0 | 29.6 | 13.6 | 44.8 | 58.6 | 42.7 | 26.7 | 44.4 41.2




Table 2.2: Sound classes for fall classification and detecti

FA sound resulting from the subject falling

ST noise when the subject sits down on the
chair, possibly leading to a bit of chalir
movement

CL noise of clapping hands

GU noise when the subject gets up from the
floor

MP  noise of moving, putting, or catching an
object

DO noise of dropping an object on the floof

DN noise of opening/closing doors

WK noise of walking steps

MO other noise, including speech and nan-
speech human voices, telephone ringing
and other acoustically salient noise

BG background noise, usually not perceptu-
ally salient

segment is classified into fall or various types of noiséhegitlirectly using the
hypothesis labels obtained in the Viterbi algorithm or afteing refined by the
SVM-GMM-supervector approach.

To better distinguish fall from all competing noise, we mioiddls and nine
classes of noise in the living environment. These claskesyrsin Table 2.2, are
adopted with three considerations: Each class should hauffiaient number
of instances in the training data. Each class is relativedirdyuishable from

others. The classes are chosen to better distinguish faits ioise.

2.6.1 Dataset

Our experiments are carried out on the acoustic fall datecteld in the Euro-
pean project Netcarity [3, 70]. The datasés of about 7 hours in 32 sessions,
involving 13 different actors as subjects that might falperform other activi-

ties, and various other people that produce noise in thegoaokd. Figure 2.5

1We would like to thank the authors of [70] for the Netcarityatset, and Vit Libal and Larry
Sansone for assistance with the dataset.
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provides a snapshot. This dataset well simulates an emagonthat elderly
people might encounter at home. We split the dataset intca®ting sessions, 7
testing sessions and 5 held out sessions for tuning the paéeesn The subjects
in the training and held out sessions do not overlap withéhngesting. We
map the labels in the Netcarity dataset to the ten classagetkin Table 2.2 as

the ground truth.

FA  WK|MO MO WK MH MO DN MQ

MP FA ST WK

CL DO DO DN
hms‘ D::‘ZO i 0::10 : ‘E:b‘.’) i 1:'20 ' 1:30 ; 2:(')0

Figure 2.5: Snapshot of Netcarity fall dataset (boundarmegted for
simplicity).

2.6.2 Experiment setup

The first experiment is classification of audio segments wigosund-truth bound-
aries are provided. Classification accuracy of all the tessela in Table 2.2
reflects the overall performance of the classifiers. F-sobtbe fall segments
reflects the capability to distinguish falls from all otherise. Both the GMM
approach and the SVM-GMM-supervector approach are impisdevith 512
Gaussian components for each GMM in this experiment.

The second experiment is detection of falls in acousticaighwhole ses-
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sions. We measure the detection performance using AED-AQ,CHé& har-
monic mean between precision and recall. In the fall detaatxperiment, we
further require that all proposed fall segments not excem@@mum length of
5 seconds so that the system output can be used for timelgnespo falls. Fall
segments that exceed 5 seconds, if any, are removed frormtjat tbefore scor-
ing. We choose detection using the dynamic programmingrigigo with the
GMM audio segment modeling as our baseline. The SVM-GMMesugctor
approach is adopted to re-classify the audio segments witteptually confus-
able labels in the baseline output. In this dataset, theepémally confusable
labels are chosen to be falls (FA), dropping objects (DOjjrgeup (GU) and
walking (WK).

The frame-based features are extracted from 25 ms Hammimpwis with a
step size of 10 ms We calculate 12 perceptual linear predi@dLP) coefficients
and the overall energy. On these 13 dimensions, utteramekdepstral mean

subtraction is applied.

2.6.3 Results

Figure 2.6 illustrates the classification accuracy of al tin fall/noise classes,
and the F-score for fall segments. The results show thatWivk-GMM-supervector
approach improves from the GMM approach on classifyingdatl noise seg-
ments.

Figure 2.7 illustrates that using the SVM-GMM-superve&pproach to re-
classify confusable segments improves AED-ACC measureedbéiseline out-
put produced by the Viterbi algorithm using the GMMs.

In these results, we can see that in general the method tHatmpe well in
the classification of falls and other noise categories algaiges better measures
in which we only care about the falls, i.e. the F-score ofsfatl classification
and the AED-ACC in fall detection. This suggests that bettedeling of the

alternative categories, including background, improwescapability to identify
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Figure 2.6: Classification of falls/noise.
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Figure 2.7: Detection of falls.

the target category.
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CHAPTER 3

GENERAL IMAGE AND VIDEO
MODELING

Real world events present significant variation in the visu@is, even after var-
ious computer vision processing, such as motion detedierkground subtrac-
tion and lighting normalization. Most previous researchvateo event analy-
sis is limited to video captured by fixed cameras in survedéapplications or
greatly constrained live video. Even more challengingdieweievent recognition
in unconstrained domains such as broadcast news, whichinemich informa-
tion about objects, people, activities, and events [47]t é@mple, events in
broadcast news video may involve small objects, large cammertion, and sig-
nificant object occlusion, and reliable object trackingdmaes very challenging
under these scenarios.

Some recent research attempted to provide solutions fot analysis in news
video. Ebadollahi et al. [71] proposed to treat each frame wideo clip as an
observation and apply HMM to model the temporal patternsveie evolu-
tion in news video. Xu and Chang [28] proposed to encode a vitipaas a
bag of orderless descriptors obtained from mid-level séimaoncept classi-
fiers extracted from all of the constituent frames, alondnlie global features
extracted within each video frame, and then apply the Eamkdyls Distance
(EMD) [72] to integrate similarities among frames from twideo clips. Multi-
level temporal pyramid structure was adopted to integtagariformation from
different sub-clips with integer-value constrained EMDetplicitly align the
sub-clips.

Specialized object or semantic concept detectors, suchase tfor faces,

hands, computer screens, books and human figures, haveuseessfully used
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to provide discriminative cues for event detection [34,28, Such lower level
detectors are believed to provide robust representatiorefdistic images and
video clips. We take an alternative approach, intendingmatain ad-hoc and
specialized object detectors, which require expensivetation for training im-

ages.

We propose Gaussianized vector representation for rieahisage and video
modeling. Each image or video clip is expressed as a set ohyistsed local
descriptors. Such descriptors can be extracted by a feptime detector, such
as the SIFT detector [73], or from a dense pixel grid. We usaas&an mixture
model (GMM) to approximate the distribution of these locadriptors ireach
image or video clip. These Gaussian components are adajedal global
set of Gaussian components according to the maximum a pstaiterion.
This establishes unsupervised correspondence betwéeredifimages or video
clips, and suppresses noise in the distributions. The Gaized vector repre-
sentation is constructed from an image-specific or vidgospecific GMM by
taking properly normalized mean vectors of all the Gauss@nponents, thus
forming a corresponding and uniform-length represeméioo images or video
clips of different sizes and lengths. It is shown that thedinkernel based on
such representations approximates the KL divergence keetleeal descriptor
distributions of different images or video clips.

Before the kernels are used for categorization or locabmapiroblems, a
Within-Class Covariance Normalization (WCCN) approach is z€di to de-
press the kernel components with high-variability for dataeled as the same
category. The refined kernel is used as a similarity measemem the nearest
neighbor or nearest centroid classification, as well as upaart vector machine
[74] for margin-based classification.

For video events in broadcast news, we successfully dematedtthat the
patch-based Gaussianized vector representation achievbsst reported event
categorization accuracy, by effective modeling of wholag®as without anno-

tating the training images [50]. In particular, our resuéported in [50] out-
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performed the then state-of-the-art [28] based on a seteffialized semantic
detectors trained on human-annotated images.

Different from classification or regression problems thatkvon the whole
images, an object localization task involves finding théanegle bounding boxes
that scored the highest according to a particular video ol varying loca-
tions, widths and heights. A natural way to carry out locaiian is the sliding
window approach [30]. However, an exhaustive search in am image needs
to evaluateO(n*) candidate bounding boxes, and is not affordable for a com-
plicated representation such as the Gaussianized vegh@sentation. Tricky
heuristics about possible bounding box locations, widths laeights, or local
optimization methods would have to be used, resulting isefastimates. This
intrinsic trade-off between performance and efficiencyhefgliding window ap-
proach is not desirable. Lampert et al. introduced a bramthbound search
scheme [75], which finds the globally optimal bounding bdicedntly without
the above problems.

| present an efficient object localization approach basetherGaussianized
vector representation. The branch-and-bound search scpéshis adopted to
perform a fast hierarchical search for the optimal boundhoges, leveraging a
quality bound for rectangle sets. We demonstrate that taétgdunction based
on the Gaussianized vector representation can be writtdreasim of contribu-
tions from each feature vector in the bounding box. Morecaeuality bound
can be obtained for any rectangle set in the image, witk [tbimputational cost,
in addition to calculating the Gaussianized vector repreg®n for the whole
image. Experiments on a multi-scale car dataset show teatritposed object
localization approach based on the Gaussianized vectogseptation outper-

forms previous work using the histogram-of-keywords reprgation.
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3.1 Gaussianized Vector Representation

The Gaussian mixture model (GMM) is widely used in variouttgya recog-
nition problems [76, 77]. We propose the Gaussianized veefaresentation,
which encodes an image as a bag of feature vectors, thébdistn of which is
described by a GMM. Then a GMM supervector is constructedguie means
of the GMM, normalized by the covariance matrices and Ganssbmponent
priors. A GMM-supervector-based kernel is designed to @yaprate Kullback-
Leibler divergence between the GMMs for any two images, andtilized for
supervised discriminative learning using an SVM, nearegghbor or nearest
centroid methods.

The Gaussianized vector representation is closely coedéathe classic his-
togram of keywords representation. In the traditionaldgsam representation,
the keywords are chosen by the k-means algorithm on all ttaeres. Each fea-
ture is distributed to a particular bin based on its distaadke cluster centroids.
The histogram representation obtains rough alignmentdeivieature vectors
by assigning each to one of the histogram bins. Such a repegs® provides a
natural similarity measure between two images based onffieesthce between
the corresponding histograms. However, the histogranesemtation has some
intrinsic limitations. In particular, it is sensitive todture outliers, the choice of
bins, and the noise level in the data. Besides, encodingdiigkensional feature
vectors by a relatively small codebook results in large ¢jmation errors and
loss of discriminability.

Several approaches have been proposed in the literatuneetoome these
limitations. Soft assignment, which allows each featurgmeto belong to mul-
tiple histogram bins, has been suggested to capture paitidharity between
images [78, 79, 80, 81, 82, 83]. To enhance the discrimigatapability of his-
tograms, Farquhar et al. [84] and Perronnin et al. [78] thiceed several ways
to construct category-specific histograms. Larlus anceJ86] and Yang et al.

[79] suggested to integrate histogram construction wigtssifier training, and
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Moosmann et al. [86] proposed to use randomized forestsidigcriminative
histograms.

Gaussianized vector representation enhances the histog@esentation in
the following ways. First, k-means clustering leveragesEuclidean distance,
while the GMM leverages the Mahalanobis distance by meartkeotompo-
nent posteriors. Second, k-means clustering assigns ogle sieyword to each
feature vector, while the Guassinized vector represemadilows each fea-
ture vector to contribute to multiple Gaussian componetasssically. Third,
histogram-of-keywords only uses the number of featureorsassigned to the
histogram bins, while the Gaussianized vector representatso engages the
weighted mean of the features in each component, leadingitwrainformative

representation.

3.1.1 GMM for feature vector distribution

We estimate a GMM for the distribution of all feature vectoran image. The
estimated GMM is a compact description of the single imaggs prone to noise
compared with the feature vectors. Yet, with increasing loemof Gaussian
components, the GMM can be arbitrarily accurate in desugilthe underlying
feature vector distribution. The Gaussian components g®aam implicit multi-
mode structure of the feature vector distribution in thegmaVhen the GMMs
for different images are adapted from the same global GM#Ictirresponding
Gaussian components imply certain correspondence.

In particular, we obtain one GMM for each image in the follog/iway.

First, a global GMM is estimated using feature vectors exée from all
training images, regardless of their labels. Here we denatea feature vector,

whose distribution is modeled by a GMM, a weighted linear boration of K
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unimodal Gaussian components,
K

p(z;0) = Zwkj\/(z; A YR
k=1

O = {wy, p"" 2y, --- }, we, py andyy, are the weight, mean, and covariance

matrix of thekth Gaussian component,

1

Gl e ey
k

N (25 g, Bi) =
We restrict the covariance matricEs to be diagonal [87], which proves to be
effective and computationally economical.
Second, an image-specific GMM is adapted from the global GM&ing
the feature vectors in the particular image. This is preféto direct separate

estimation of image-specific GMMs for the following reasons

1. It improves robust parameter estimation of the imageiapjped GMM,
using the comparatively small number of feature vectorénsingle im-

age.

2. The global GMM learned from all training images may previgseful

information for the image specialized GMM.

3. As mentioned earlier, it establishes correspondeneedest Gaussian com-

ponents in different images-specific GMMs.

For robust estimation, we only adapt the mean vectors of kblea GMM
and retain the mixture weights and covariance matricesattiqular, we adapt
an image-specific GMM by the maximum a posteriori (MAP) ¢rde with the
weighting all on the adaptation data. The posterior prdhigsi and the updated

means are estimated as

u]k./\/'(zj7 Milobal’ Ek’)

— , (3.2)
S weN (25 1, 5

Pr(k|z;) =
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H
1
e = n—kZPr(sz)zj, (3.3)
j=1

wheren,, is a normalizing term,

H
ne = Y Pr(klz), (3.4)
j=1
andZ = {z,...,zg} are the feature vectors extracted from the particular im-

age.

As shown in Equation 3.2, the image-specific GMMs leveraggssical mem-
bership of each feature vector among multiple Gaussian oaergs. This sets
the Gaussianized vector representation apart from thegnest of keyword rep-
resentation which originally requires hard membershipria keyword for each
feature vector. In addition, Equation 3.3 shows that thesSiamnized vector rep-
resentation encodes additional information about theifeatectors statistically
assigned to each Gaussian component, via the means of tipoents.

Given the computational cost concern for many applicatiansther advan-
tage of using GMM to model feature vector distribution isttbificient approxi-
mation exists for GMM that does not significantly degradeftsctiveness. For
example, we can prune out Gaussian components with very leighis in the
adapted image-specific GMMs. Another possibility is to atiate the additions
in Equation 3.3 that involve very low priors in Equation 3N&ither of these ap-
proaches significantly degrades GMM’s capability to appr@ate a distribution
[76].

3.1.2 Kernel function based on Gaussianized vector
representation

Suppose we have two images whose ensembles of featuresjeftand~,, are
modeled by two adapted GMMs according to Section 3.1.1, téelrasy, andg,.

A natural similarity measure is the approximated Kullbd&&ibler divergence
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[56]
D(gallge) <D wiD(N (2 ity S|V (25 122, ), (3.5)

k=1
where i denotes the adapted mean of thid component from the image-
specific GMMg,, and likewise foru?. The right side of the above inequality

is equal to

wi(pg — pi) S (g — ). (3.6)

M| —
™)~

d(Za, Zp) = =

k=1
The termd(Z,, Zb)% can be considered as the Euclidean distance in another

high-dimensional feature space,

d(Za, Z) = ||0(Za) — &(Z)]]?

$(Z,) = \/“’712 s \/“’KEKZ ). (3.7)

Thus, we obtain the corresponding kernel function

k(Zaa Zb) = ¢(Za> o ¢(Zb) (38)

3.2 Robustness to Within-Class Variation

The variation of the object class and the background addsetdifficulty of
the localization problem. The Gaussianized vector reptasien is based on
Gaussian mixtures adapted from the global model. To fuehdéance the dis-
criminating power between objects and the background, wpqgse incorpo-
rating a normalization approach, which depresses the keomeponents with
high-variation within each class. This method was first psgdl in the speaker
recognition problem [88] as Within-Class Covariance Noraalon (WCCN).
We assume the Gaussianized vector representation kemrigdgiation 3.8 are
characterized by a subspace spanned by the projectiorxmvatti The desired

normalization suppresses the subspacethat has the maximum inter-image
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distancedy, for images (or image regions for the localization applmaYiof the

same category (or either the object or the background):
i = |VT6(Za) = VT o(Z)| (3.9)

SinceV identifies the subspace in which feature similarity andllaimeilarity
are most out of sync, this subspace can be suppressed bjatalgihe kernel
function as in Equation 3.10, whefeis a diagonal matrix, indicating the extent

of such asynchrony for each dimension in the subspace.
K(Zay Z) = 0(Za) " (I = VOV )$(Z). (3.10)
We can find the subspaééby solving the following:

V= AW, 3.11
arg Vrpgg; CWa (3.11)

whereW,,=1 whenZ, and Z, both belong to the object class or the background
class, otherwisé&/,;, = 0.

DenoteZ = [¢(Z1), (Z2),--- , #(Zy)], whereN is the total number of train-
ing images; it can be shown that the optinratonsists of the eigenvectors cor-
responding to the largest eigenvaluesf the matrixZ(D — W)Z”, whereD
is a diagonal matrix withD,; = Zj.vzl Wij, Vi.

The eigenvalued indicate the extent to which the corresponding dimensions
vary within the same class. In order to ensure the diagorai@hts of”' remain

in the range of0, 1], we apply a monotonic mapping = 1 — max(I, A)~.
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3.3 Categorization with Gaussianized Vector
Representation

3.3.1 Nearest neighbor or nearest centroid

The video event recognition, as a categorization problem,be conducted di-
rectly based on the kernel similarity and the nearest n@igbbnearest centroid
approach. Here we use the kernel similarity between a tesioteo clip and
the centroid of an event for similarity metric, where thetceid of an event is
defined in the Gaussianized vector space: namely, the agn#t of the s-th

eventis

0(2°) = — 3 6(2), (3.12)

where Z; is the set of patch-based descriptors extracted from-thetraining
video clip, N* is the number of video clips belonging to tkeh event, andr®
denotes the index set of the samples belonging ta-eevent. Then, the final

video event recognition is based on normalized similarggtor as

K(z2,7Y)  K(Z,7? K(Z,2°)

Ci(Z) = [ZSK(Z 7). K(Z,2%) o S K(Z,Z°)

]

whereS is the total number of predefined event categories, 4 the set of

patch-based descriptors extracted from a test video clip.

3.3.2 Support vector machine

Alternatively, a support vector machine (SVM) is used with eibove kernel to
distinguish between categories, or between objects arkdjbmonds. The binary

classification score for a test image can be formulated as

9(Z) = auk(Z, Z,) — b, (3.13)
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whereq is the learned weight of th&” training sampleZ, andb is a threshold
parameter.k(Z, Z;) is the value of a kernel function for thé&" training Gaus-
sianized vector representatignand the test Gaussianized vector representation
Z.

Similarly, the multi-class SVM can also output a confideneetwr, denoted

as

Co(Z) = [p1(Z),p2(Z),- -+, ps(Z)], (3.14)

wherep,(Z) can be roughly considered as the probability of the videp afi
image belonging to the-th category. Then, the classification can be conducted
based on the output values@i (7).

The support vectors and their corresponding weights amadeausing the
standard quadratic programming optimization process. $&d¢he SVM training
tools implemented in Libsvm [66] for both binary classificatand multi-class

classification.

3.3.3 Combining different classifiers

The motivations of centroid-based video event recognitiad margin-based
video event recognition are essentially different. Oulipr@ary experiments
show that the outputs from these two classifiers are ofterptamentary to each
other; therefore, we can optionally fuse the outputs froeséhtwo classifiers.
The vectors”,(Z) andC,(Z) both roughly measure the probabilities that a test
video clip belongs to different video events, and hence weavarage them for

a more robust output as

C(Z) = ¢(2) _g (%) (3.15)

The classification can be done based on the averaged pribpabdtor C'(Z).
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3.3.4 Visualizing the Gaussianized vector representation

We visualize the Gaussianized vector representation t@dstrate that soft cor-
respondence across different video clips is establishdadrarch more informa-
tion than the histogram-of-keywords is represented.

Each video clip is first represented as a set of patch-basadl descriptors.
We project these local descriptors into a 2D feature spaog asdimensionality
reduction technique, Locality Preserving Projection [8%ll the component
means of the global GMM are mapped to this 2D space. For lasariptor, its
coordinates in this 2-D space are the sums of the coordioatee component
means of the global GMM, weighted by the posteriors of thepaments for the
given descriptor.

Figure 3.1 shows the 2D distributions of the patch-basedrgders from
three video clips, two of which belong to the same video evatggory ofElec-
tion Campaign Greetingand the other to the video eventRtinning We can
see that the distributions in the 2D space are charactebyelistribution near
different components of the global GMM, as indicated by ttieent colors in
Figure 3.1. These components implicitly establish theespondence between
patch-based descriptors in different video clips, whicbvehthat the Gaussian-
ized vector representation offers the capability to matehpatches from two
video clips, similar in content yet different in spatial g@s, scales, and tem-
poral positions. For the video clips from the same eventgmatewe can see
that the feature vector distributions near the correspandomponents tend to
share a similar structure, while they are relatively mofeedent for those from

different categories.
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Figure 3.1: Visualization of the Gaussianized vector repn¢ation and its
capability of matching local visual cues different in sphpositions, scales,
and temporal positions.

3.4 Localization with Gaussianized Vector
Representation

Object localization predicts the bounding box of a specifieot class within the
image. Effective object localization relies on an efficiand effective searching
method, and robust image representation and learning oheiie task remains
challenging due to within-class variations and the largedespace for candi-
date bounding boxes.

Robust image representation and learning is critical to ticeesss of various
computer vision applications. Some of the successful featare histogram
of oriented gradients [90] and Haar-like features [91].cRdiased histogram-

of-keywords image representation methods represent ageiraa an ensemble
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of local features discretized into a set of keywords. Theséhods have been
successfully applied in object localization [75] and imagéesgorization [92].

In this section, | present an object localization approamhnfmning the effi-
cient branch-and-bound searching method with the robuss&anized vector
representation. The branch-and-bound search schemes[@&dpted to perform
a fast hierarchical search for the optimal bounding box@serhaging a quality
bound for rectangle sets. We demonstrate that the qualitstifan based on the
Gaussianized vector representation can be written as theo$weontributions
from each feature vector within the bounding box. Moreogequality bound
can be obtained for any rectangle set in the image, witle léiktra computa-
tional cost, in addition to calculating the Gaussianizettaerepresentation for
the whole image.

To achieve improved robustness to variation within the abpéass and the
background, we propose incorporating the normalizatigor@gch in Section
3.2 that suppresses the within-class covariance of theS&aized vector rep-
resentation kernels in the binary support vector machin)Sand the branch-
and-bound searching scheme.

| first present the efficient search scheme based on brartzbeamd in Sub-
section 3.4.1. Then | detail the quality function and qydivund for the Gaus-
sianized vector representation in Subsections 3.4.2 ah8 Bespectively. In
Subsection 3.4.4, the variation-normalization approadhdorporated in the lo-

calization framework.

3.4.1 Branch-and-bound search

Localization of an object is essentially to find the subanghé image on which
a quality functionf achieves its maximum, over all possible subareas. One way
to define these subareas is the bounding box, which encoelésctition, width
and height of an object with four parameters, i.e., the togtoln, left and right

coordinatest, b, [, ).
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The sliding window approach is most widely used in objecal@ation with
bounding boxes [30, 93]. To find the bounding box where thdityuainction
f reaches its global maximum, we need to evaluate the funoticail possible
rectangles in the image, whose number is on the ordé(ef') for ann x n
image. To reduce the computational cost, usually only negtés at a coarse lo-
cation grid and of a small number of possible widths and Hsigte considered.
On the other hand, different approaches can be adopted tolosal optimum to
approximate the global one, when the quality functfohas certain properties,
such as smoothness. All these approaches make deteciitabtenat the risk
of missing the global optimum, and with demand for well imh@d heuristics
about the possible location and sizes of the object.

In recent years, the most popular technique in the slidimgloiv approach is
the cascade [91]. The cascade technique decomposes aabjentjnon-object
classifier into a series of simpler classifiers. These dlassiare arranged in
a cascade, so that the simpler and weaker classifiers wiliredte most of the
candidate bounding boxes, before the more powerful and lbcauigd classifiers
will make finer selection. However, the cascade of classifigislow to train.
Moreover, it unfortunately involves many empirical degiss, e.g., choosing
the false alarm rate and missed-detection rate at each stdige cascade. The
cascade technique always reduces the performance compiineithe original
strong classifier.

The branch-and-bound search scheme was recently intraditisto find the
globally optimal bounding box without the heuristics anduamptions about the
property of the quality function. It hierarchically splitise parameter space of
all the rectangles in an image, and gives priority to thegparth higher quality
bounds.

For localization based on bounding boxes, a set of rectarngkencoded with
[T, B, L, R], each indicating a continual interval for the correspogdmaram-
eter in(¢,b,1,7). The approach starts with a rectangle set containing all the

rectangles in the image, and terminates when one rectagpemnd that has a
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guality function no worse than the bounﬂsf any other rectangle set.

At every iteration, the parameter spd@e B, L, R] is split along the largest
of the four dimensions, resulting in two rectangle sets Ipoatbhed into a queue
together with their upper bounds. The rectangle set withitjeest upper bound
is retrieved from the queue for the next iteration.

The steps of the branch-and-bound search scheme can be saetas fol-

lows:

1. Initialize an empty queu@ of rectangle sets. Initialize a rectangle Bet
to be all the rectangled§” and B are both set to be the complete span from
zero to the height of the imagé. and R are both set to be the complete

span from zero to the width of the image.

2. Obtain two rectangle sets by splitting the parameterespacB, L, R]

along the dimension with the largest range.

3. Push the two rectangle sets in Step 2 into qu@ueith their respective

guality bound.
4. UpdateR with the rectangle set with the highest quality bound)in

5. Stop and retur® if R contains only one rectangle. Otherwise go to
Step 2.

The quality boundf for a rectangle se should satisfy the following condi-

tions:

1. f(R) > mazger f(R)

2. f(R) = f(R),ifRis the only element ifR

Critical for the branch-and-bound scheme is to find the qulbéundy. Given
the proven performance of the Gaussianized vector repganin classifica-
tion tasks shown in previous work [94, 50, 95, 96], we are wadéid to design a

guality bound based on this representation for efficierdliaation.
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3.4.2 Quality function

For the Gaussianized vector representation, the binassifization score in
Equation 3.13 informs the confidence that the evaluatedénsabarea contains
the object instead of pure background. Therefore, we canhisacore as the
quality function for the Gaussianized vector represeoiati

In particular, according to Equation 3.8 and Equation 3tt8,quality func-

tion f can be defined as follows:
[(2)=g(Z) =) ud(Z) e §(Z) -, (3.16)

which can be expanded using Equation 3.7,

1) = Say st

t k=1

0\/%22%2—6

K
Wk -1 ¢
= «Q — ° —b.
; t; o “k Hi ® [,

(3.17)

According to Equation 3.3, the adapted mean of an imagefsp&MM is the

sum of the feature vectors in the image, weighted by the spaeding posterior.

Therefore,
K W i
ke
[(Z) = Zatz TEkl—ZPT(/{ﬂZ])Z] oy, — b
t k=1 Ll
H K
ke
- Z {Z n—kPr(k;|zj)zj o ! Z atui} —b
7j=1 k=1 t
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3.4.3 Quality bound

We define the “per feature vector contribution” as the cbation of each fea-
ture vector in a subarea to the confidence that this subatka ncerned ob-
ject. In particular, the “per feature vector contributiog'defined as in Equation
3.19.

K
2:3; (k|2)z; .-—z: E:amk (3.19)

N
k=1

Therefore, Equation 3.18 can be rewritten as Equation 31&flying that the
quality function can be viewed as the sum of contributiomsrfrall involved

feature vectors.
> W —b. (3.20)
j

Given a testimage, if we approximate the termpsvith their values calculated
on the whole image, the per feature vector contributidns; € 1, ..., H are
independent from the bounding box within the test image s Tieans that we
can precomputél’; and evaluate the quality function on different rectanghes b
summing up thosé&V; that fall into the concerned rectangle.

We design a quality bound for the Gaussianized vector reptagon in a way
similar to the quality bound for the histogram of keywordsgsed in [75]. For
a set of rectangles, the quality bound is the sum of all pas@ontributions from
the feature vectors in the largest rectangle and all negyatimtributions from the

feature vectors in the smallest rectangle. This can be fiated as

f(R) = Z W]lx VVJ1>O)
W;, € Rmas
+ Y Wy, x (W, <0). (3.21)
ngeR'min

whereR,,... andR,,;, are the largest and the smallest rectangles.
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We demonstrate that Equation 3.21 satisfies the conditibagjoality bound
for the branch-and-bound search scheme defined in Secidn 3.

First, the proposegf(R) is an upper bound for all rectangles in the Betln
particular, the quality function evaluated on any rectarnfglcan be written as
the sum of postive contributions and negative contribiimom feature vectors

in this rectangle,

F(R) = Y Wi x (W, >0)

Wj ER
+ > Wy, x (W, < 0). (3.22)
Wj,E€R
Obviously, given a rectangle sBt, the first term in Equation 3.22 is maximized
by taking all the positive contributions from the largestteagle in the set. The
second term in Equation 3.22 is negative and its absolute\en be minimized
by taking all the negative contributions in the smallestargle.
Second, when the rectangle Betontains only one rectangl®&,,.;, = Ra: =

R. Equation 3.21 equals Equation 3.22,

This quality bound defined by Equation 3.21 is used in thedraand-bound
scheme discussed in Section 3.4.1 to achieve fast and ieffet#tection and
localization. Note that since the bound is based on sum ofgadure vector
contributions, the approach can be repeated to find mubiplending boxes in
an image, after removing those features claimed by the queis found boxes.
This avoids the problem of finding multiple non-optimal bexear a previously
found box.

Note that estimatingl’; in Equation 3.19 involves no more computation than
the calculation in a binary classifier using the Gaussia@weetor representation

of the whole image. To further expedite the localization,caa use two integral
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images [91] to speed up the two summations in Equation 3{dectively. This
makes the calculation gf(R) independent from the number of rectangles in the
setR.

3.4.4 Incorporating variation-normalization

To further improve the discriminating capability of the Gaianized vector rep-
resentation in the localization problem, we incorporake tlormalization ap-
proach in Section 3.2. In particular, this involves thedaling modifications of
the proposed efficient localization system.

First, the SVM is trained using kernels with normalizatiayagnst within-
class variation. In particular, Equation 3.10 is used mdtef Equation 3.8.

Second, Equation 3.16 is replaced by Equation 3.23 to sappine subspace
that corresponds to the most within-class variation whexiuating the quality

of the candidate regions.
F(Z2)=9(Z) = ad(2)" (I = VCV")$(Z) —b. (3.23)

Third, the per feature vector contribution function in Etjor 3.19 needs to
be revised accordingly.

Let us denote

RV
P = 0 (3.24)
0 3 vl
(3.25)
H' = [Hj;- 5 Hy] (3.26)
= P(I-VvCVvhHe(Z,), (3.27)

whereH! summarizes information from thé" training image.
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With Equations 3.20, 3.23 and 3.24, it can be shown that theep&ure vector

contribution function can be written as in Equation 3.28.

K
1
W; = g E atH,ion—Pr(k\zj)zj. (3.28)
k
k=1t

3.5 Video Categorization Experiments

Our video event detection experiments are conducted oedatge TRECVID

2005 video corpus as in [47], with shot boundaries provided.

3.5.1 Dataset and metric

As in [28], the following ten events are chosen from the LSC@Mdon [97,
98, 47, 99]:Car Crash Demonstration Or ProtesElection Campaign Greeting
Exiting Car, Ground CombatPeople MarchingRiot, Running Shooting and
Walking They are chosen because these events are relatively fiteiguthe
TRECVID data set [98] and are intuitively recognizable froraual cues. The
number of video clips for each event class ranges from 5470 @/hen training
the SVM for each event, we use the video clips from the othes Bvents as the
negative samples. We randomly choose 60% of the data foirigpand use the
remaining 40% for testing, with the same configurations 428n47].

We use non-interpolated average precision (AP) [100, 2hagperformance
metric, which is the official performance metric in TRECVID.r#flects the
performance on multiple average precision values alongegon-recall curve.
The effect of recall is also incorporated when AP is computeelr the entire
classification result set. Mean average precision (MAPefmed as the mean

of APs over all ten events.
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3.5.2 Results

Temporally Aligned Pyramid Matching (TAPM) is the best rejed algorithm
for video event recognition in unconstrained news vided.[4¥e also got the
result by histogram-of-keywords representation with SVislssification. Ta-
ble 3.1 summarizes the experiment results for differenbréttyns. Note that:
1) TAPM-1 is the TAPM algorithm with same weights for all tHereée lev-
els; 2) TAPM-2 refers to the TAPM algorithm with different igats for the
three levels; 3) Hist+SVM refers to histogram-of-keywordpresentation with
SVM classification; 4) Kernel+NN is the algorithm based oe @aussianized
vector and the nearest neighbor classifier; 5) Kernel+SVMmeehe Gaus-
sianized vector kernel with SVM classification; 6) Kernel+WCE@HNers to the
nearest centroid algorithm using the Gaussianized vecatbrWCCN; and 7)
WCCN&SVM refers to the algorithm based on the fusion of two cfess
based on the Gaussianized vectors, as presented in Se@iB8n Bhe last row,
referred to as mean AP, is the mean of APs over ten events. Blothese

results, we can have a set of interesting observations:

1. The mean average precision is boosted from the best eep88.2% in
[47] to 60.4% based on our new framework with straightfodvelassifier

fusion.

2. For the video event dilection Campaign Greetinghe average precision

is dramatically increased from the 13.9% to 94.8%.

3. The fusion of the two classifiers can generally furtherrionp the average

precision compared with the single classifier individually

4. Our proposed framework is outperformed by the TAPM athanion de-
tecting the video event dExiting Car. A possible explanation is that our
framework does not explicitly model temporal informatiand the video
event ofExiting Carheavily depends on the temporal contextual informa-

tion.
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5. The components of the Gaussianized vector represematbmpared with
histogram-of-keywords), suppressing within-class vare&a(WCCN), and
SVM all contribute to the whole system, and the best resudiclseved

based on the integration of all.

6. The best setting of “GV+WCCN+SVM” performs significantly teztthan
either “TAPM-1" or “TAPM-2" according to the Friedman’s te§ =
0.01).

More details of the performance are presented using canfusatrices as in
Figure 3.2. The mean average precision and the overall nigtmgyaccuracy are
also presented in the titles in this figure.

From these confusion matrices, we observe that: 1) whemata by the
confusion matrices, the fusion of classifiers again impsdkie recognition accu-
racy; and 2) the better the overall recognition accuraeygtieater the possibility
that the video event @dhootings mis-recognized; and a possible explanation is
that the event oEhootings visually very similar to the event @round Combat
and cannot benefit from the improved discriminating cajggiitat dramatically
improves the accuracy of most other events.

For video event recognition, the boundaries of the videp ate often am-
biguous, and also the frame rate of the video clip may vary.o8dgalgorithm
should be robust to these factors, and hence a set of expesiare presented to
evaluate the algorithmic robustness to these factors. dsetlexperiments only
a random portion of the frames within each video clip are usembnstruct the
Gaussianized vector, with other aspects of the video ewsagnition frame-
work unchanged.

The detailed experimental results are shown in Figure 3tB,mne configu-
rations using percentages of frames as 20%, 30%, 40%, 50%, B0, 80%,
90%, 100% respectively. From these results, we can seeuhaystem is robust
to the variation of boundaries and the frame rates of vidgs.clin particular,

even when only 20% of the frames are used, our result (55.8/ggperforms
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Table 3.1: Average precision (%) of video events by difféadgorithms.

Event Name | TAPM-1[47] | TAPM-2 [47] | Hist+SVM | Kernel+NN | Kernel+SVM | Kernel+WCCN| WCCN&SVM |

GS

Car Crash 51.1 51.0 33.0 33.5 39.7 46.5 53.3
Demonstration 23.6 23.6 38.2 38.3 49.3 48.5 50.1
Election Campaign 13.9 13.7 82.5 79.2 92.6 94.8 94.4
Exiting Car 50.7 50.1 221 31.5 35.2 33.9 38.1
Ground Combat 44.2 441 68.1 58.2 71.4 72.8 73.4
People Marching 25.8 25.8 70.0 67.7 75.8 76.9 78.7
Riot 22.7 22.9 16.9 30.9 24.9 25.4 27.7
Running 86.7 86.6 88.1 89.3 91.4 89.9 91.9
Shooting 10.4 9.9 18.0 20.0 21.9 22.7 231
Walking 52.4 52.8 52.6 59.3 73.3 66.5 73.8

MeanAP | 382 | 381 | 490 | 508 | 576 | 57.8 \ 60.4 |
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Figure 3.2: Confusion matrices for d

Gaussianized vector kernel.
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the best result (38.2%) reported in [47]. We do point out thase frames are

randomly sampled.

[+1]
[=]

(%)}
q

-

r/"‘;’ G T —&— Kernel+NN

' ' ' ! ' Kernel+SWVM
—#%— Kernel+WCCN [ 7]
: —4&— WCCN & SVM
\....| ——— Best result inTAPM- -

o
(=)

IS
Elnl"l

Mean average precision (%)
I
[=]
T

I I I I I I
20 30 40 50 60 70 80 a0 100
Percentage of randomly sampled frames for recognition in each video clip (%)

Figure 3.3: Mean average precision by different algoritlusiag randomly
sampled subsets of the video frames.

3.6 Video Localization Experiments

We carry out object localization experiments using the psaal efficient object
localization approach based on the Gaussianized vect@aseptation. We com-
pare the detection performance with a similar object laedilon system based
on the generic histogram of keywords. In addition, we dertrates that the
proposed within-class variance normalizing approach @aeffectively incor-

porated in object localization based on the Gaussianizetvespresentation.

3.6.1 Dataset

We use a multi-scale car dataset [101] for the localizatigpeament. There
are 1050 training images of fixed siz80 x 40 pixels, half of which exactly
show a car while the other half show other scenes or objertse $he proposed
localization approach has the benefit of requiring no h&asiabout the possible

locations and sizes of the bounding boxes, we use a test gsisting of 107
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Figure 3.4: Sample images in the multi-scale car dataset.

images with varying resolution containing 139 cars in sizesveend9 x 36
and212 x 85. This dataset also includes ground truth annotation fortelse
images in the form of bounding rectangles for all the carse ffaining set and
the multi-scale test set are consistent with the setup usg®].

A few sample test images of the dataset are shown in FigureNbte that
some test images contain multiple cars and partial ocatusiay exist between
different cars as well as between a car and a “noise” objact) as a bicyclist,

a pedestrian or a tree.

3.6.2 Metric

The localization performance is measured by recall andgiceg the same way
as in [101] and [75]. A hypothesized bounding box is countsdhacorrect

detection if its location coordinates and size lie withinadlipsoid centered at
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the true coordinates and size. The axes of the ellipsoidZ&d the true object
dimensions in each direction. For multiple detected baugpdhioxes satisfying
the above criteria for the same object, only one is countecba®ct and the

others are counted as false detections.

3.6.3 Gaussianized vectors

The feature vectors for each image are extracted as folleinst, square patches
randomly sized betweehx 4 and12 x 12 are extracted on a dense pixel grid.
Second, an 128-dimensional SIFT vector is extracted froch eéthese square
patches. Third, each SIFT vector is reduced to 64 dimen&pmsincipal com-
ponent analysis. Therefore, each image is converted toa sdtdimensional
feature vectors.

These feature vectors are further transformed into Ganigsid vector repre-
sentations as described in Section 3.1. Each image is thernefpresented as a
Gaussianized vector. In particular, we carry out the expenit with 32, 64, 128

Gaussian components in the GMMs respectively.

3.6.4 Robustness to within-class variation

We identify the subspace that contains the undesirablensitlass variation us-
ing the eigen analysis method in Section 3.2. In partictit@ subspace consists
of the top 100 dimensions, out of all the dimensions of thesSeunized vectors,

that are to be suppressed in the calculation of the kernels.

3.6.5 Results

To keep the setting the same as in [75], we search each teg¢ifoathe three
best bounding boxes, each affiliated with the quality funrctscore. In par-

ticular, the branch-and-bound search scheme is applieaicto test image three
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times. After each search, those features claimed by theifbares are removed
as discussed in Section 3.4.1.

The precision-recall curves are obtained by changing thestiold on the
guality function score for the found boxes. The equal erave (EER) equals
1 — F-measure when precision equals recall. As the threshdddvisred, more
detections out of the top three bounding boxes in each imagaczepted.

The precision-recall curves and the EER are presented uré-8)5 and Fig-
ure 3.6 respectively. “G-n" denotes the result using n camepts in the Gaus-
sianized vector representation. The suffix “N” means thd&iwitlass normal-
ization. “Histogram” denotes the performance using theegerhistogram-of-
keywords approach by Lampert et al. We compare the resuttsaddcalization
system using the same banch-and-bound scheme, but baseel generic his-
togram of keywords with 1000 entry codebook generated fradRIS descrip-

tors at different scales on a dense pixel grid [75].
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Figure 3.5: Precision-recall curves for multi-scale caedgon.

We can see that the Gaussianized vector representatioarfartps the his-
togram of keywords in this multi-scale object detectiorktds particular, using

64 Gaussian components gives the best performance. Inajenermalizing
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Figure 3.6: Equal error rates for multi-scale car detection

against within-class variation further improves the syste

Figure 3.7 presents a few examples of correct detection eodedus de-
tection using 64 Gaussian components. Each test image @nganied by
a “per-feature-contribution” map. Negative and positiamtributions are de-
noted by blue and red, with the color saturation reflectingpalie values. The
quality function evaluated on a bounding box is the sum oftadl per-feature-
contributions, as discussed in Section 3.4.

The examples of correct detection demonstrate that thersystn effectively
localize one or multiple objects in complex backgrounds.

The three examples of erroneous detection probably occutifferent rea-
sons: 1) The car is a bit atypical, resulting in fewer featusgth highly posi-
tive contributions. 2) The two cars and some ground textomna fone rectangle
area with highly positive contributions, different fronettwo separate bounding
boxes in the ground truth. 3) The car is highly confusabléwie background,

resulting in too many highly negative contributions evelngne, preventing any

61



rectangle to yield a high value for the quality function.

image per-feature-contribution image per -feature-contribution

Correct detectmns Erroneousdetectlons / miss

Figure 3.7: Examples of good and bad localization based ®@@tussianized
vector representation. (The black and the white bounding$®e the images
are the ground truth and the hypotheses respectively.)
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CHAPTER 4

IMPROVING ACOUSTIC EVENT
DETECTION USING VISUAL CUES

Various audio-visual integration strategies have beepgsed. In particular,
[36] classifies them into three categories. The first is @atigration which ex-
tracts feature vectors from both audio and visual obsematand concatenates
them into one feature vector sequence for use in one modekkeétsame struc-
ture as for one modality. The second is late integrationciviextracts feature
vector sets separately and uses two sets of models gemgeraiability weights
to be combined across modalities. This is also referred teassion fusion or
separate identification. The third is intermediate intégrae.g., product HMM,
coupled HMM.

Recently, incorporating both audio and visual informationAED has been
demonstrated as an effective approach to improve the peaface and robust-
ness over the audio-only systems [43, 12, 44]. Howeverethexks either
leverage on specific visual object detectors, usually reguhand-labeled train-
ing data, or expect dominance or strong prior of the visuakan the recorded
video, sometimes impossible for realistic applications.

Leveraging additional visual cues for audio signal analysis been explored
in other applications, such as speech recognition [45] amglgm identification
[46]. In particular, the multi-stream HMM and the couple HMKIHMM) are
two effective models for audio-visual fusion. While audigual event detec-
tion shares a lot of challenges with audio-visual speecbgmeition, they differ
in multiple ways: First, the visual cues for general acaustient detection can
be much less constrained: there is no consistent visuanmeguch as the mouth

in audio-visual speech processing, in which all the eveiorimation is embed-
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ded. Second, the synchrony and asynchrony between the taalites is not
governed by a well constrained mechanism, such as humaatspdeulation.
For example, key jingling presents mostly simultaneousaadd visual foot-
prints, but we can observe a person move before or after sikesithe foot-step
sound, or a door start moving before making a slamming satedasynchrony
being more arbitrary than what is observed in audio-vispaksh. It is not yet
studied whether the audio-visual models in speech praugssin be effectively
applied in audio-visual event modeling to improve acoustient detection.

In this chapter, we study using a generalizable visual sr&@tion to im-
prove acoustic event detection, via different audio-visyachrony and asyn-
chrony modeling. In particular, a combination of opticalfland overlapping
spatial pyramid histograms characterizes the visual cwbgh can be non-
dominant in the recorded video. Compared with more taskispeadternatives
[43], the proposed visual features have the merit of regginminimum labeling
efforts: No extra labels are required other than the evesgtboffset timestamps
used for audio-only modeling. We propose applying mulesm HMMs for
synchronized audio-visual event modeling and coupleddrniddarkov models
[21, 102] for more flexible modeling allowing asynchrony.

Acoustic event detection and classification experimemparformed on meet-
ing room data with eleven general non-speech acoustic véfith the pro-
posed visual representation and multi-modal modeling,vikeal cues, often
local and subtle in the images, are shown to consistentlyaugpboth classifi-
cation and detection accuracy of the concerned eventshékxperiments use
the video associated with the audio as the only extra datares, requiring no
additional labeling.

The organization of this chapter is as follows. Section 4ekents the gener-
alizable visual features adopted in this work, in particthe overlapping spatial
pyramid histograms based on optical flow. Section 4.2 dsesithe audio-visual
modeling methods, in particular the multi-stream HMM anel toupled HMM.

Section 4.3 presents the experimental results on audiaMevent classification
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Figure 4.1: (Left) An example of “foot step” in the overheadreera; (Right)
the corresponding optical flow for each image, where hue atethsity indicate
direction and magnitude.

and detection.

4.1 Generalizable Visual Features for AED

Previous literature [43] reported using ad-hoc visual deis to generate visual
features for the purpose of improving event detection. H@wreraining these
detectors requires expensive labeling efforts, usuallle@ast bounding boxes
of the concerned objects. Moreover, these detectors etespesific. Alterna-
tively, we explore using visual features that do not regsireh training and data
labeling, and are not task-specific, i.e. generalizable.

In this work, we propose using a combination of optical flowl amerlapping
spatial pyramid histograms to characterize the visual cuttge acoustic events.

The visual cues of the non-speech audio-visual events astiyrrelated to
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Figure 4.2: Optical flow based overlapping spatial pyranstidgrams for a
footstep event: (first row) spatial pyramid arrangementa@utctal flow
magnitude; (second row) optical flow magnitude histogramaich
corresponding block.

motion. We propose using visual features based on opticald&iween consec-
utive frames to capture the movement information. We @tiizhighly efficient

algorithm on variational methods utilizing a GPU [103] tdocdate the optical

flow, i.e. the horizontal and vertical movement for each pikey. 4.1 illustrates

the extracted optical flow for a “foot step” event.

The visual cues of the acoustic events have their spatie¢ledes: the spatial
distribution sometimes, but not always, differs betweendtiferent events and
the background. Therefore, we define eight overlappingisiéom the whole
image, including both the complete image and seven spaliaial regions. The
histograms of motion vector magnitude within all the bloaks employed as the
video features [104]. We refer to this representation a®oteglapping spatial
pyramid histogramsSimilar representation was successfully used for kersel e
timation in general image scene categorization [105], tvkltares the property
that the visual cues are highly variant and sometimes oedli

An example of the proposed visual representation for a “&tep” event is

illustrated in Fig. 4.2.
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4.2 Multi-Modality Fusion for AED

We propose using multi-stream HMMs for synchronized awdsoral event mod-
eling, and coupled hidden Markov models [21, 102] for morgiliie modeling
allowing asynchrony.

Different fusion methods have been explored for the audibvésual modal-
ities [45]. First, feature fusion techniques include pléeature concatenation
[106], feature weighting [107] and a data-to-data mappingither one modal-
ity into the space of another or both modalities into a new roomm space [37].
Second, decision fusion provides a mechanism for captueinapilities of each
modality by classifier combination. Third, intermediatsitin performs multi-
modal integration at a level between decision fusion antufegusion. Inter-
mediate integration strategies have been shown to outpetfee early and late
integration strategies in various applications [36].

Multi-stream HMMs and coupled HMMs are used as two interratiusion
methods . The synchrony and asynchrony between the medadite modeled
by the hidden state transitions. Though both models hava baecessfully
applied in audio-visual speech recognition [45], they hawebeen applied in

improving general non-speech acoustic event detection.

4.2.1 Multi-stream hidden Markov models

In a two-stream HMM, the state-dependent emission of théoaistial obser-
vationo,, ; is governed by (04, ¢|S;) = P(04,|S;) 56t P(0,4]S¢) e for all
HMM statessS;, where ), s, ; denotes the nonnegative stream weights, which
models the stream reliabilities as a function of modaditfHMM state S; and
timet.

Multistream HMMs assume the state synchrony between augis and vi-
sual cues. Because of the simple topology, it is relativeyda obtain robust

estimation of the parameters.
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Figure 4.3: Hidden Markov model encoded as a dynamic Bayesimork.

Fig. 4.3 illustrates a two-stream HMM, where the transitmmobabilities
are referred to a$(S;|S;_1). State observation distributions are referred to
asP(04.¢|St). St is @ multinomial random variable representing the statéef t
CHMM system variable at timé. Note, both the streams progress in a syn-

chronous fashion.

4.2.2 Coupled hidden Markov models

The assumption of audio-visual state synchrony is not adveayisfied. For ex-
ample, in an object dropping event, the acoustic sound magxist when the
object is in motion, but only when the object stops droppi8gnilarly, a door
slamming sound occurs at the end of the door movement. Ththeghsyn-
chrony between modalities can be alleviated by a largeil looa window for
each frame, a more flexible statistical model allowing abyocy between the
hidden state sequences for the two modalities is desireparticular, the cou-
pled HMM [21] has been introduced to address this issue fograpplications.
This work uses coupled HMM to model modality asynchrony idiatvisual
events. We select the transition-only coupled hidden Markodel (CHMM),
in which different modalities are coupled through statesraons. The CHMM
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Figure 4.4: Audio-visual fusion using CHMM.

is capable of capturing both the synchronous and asynchsoimber-modality
dependencies. CHMM has been shown to be an effective metlandlio-visual
speech recognition [102].

A CHMM can be viewed as two parallel rolled-out HMM chains claap
through cross-time and cross-chain conditional statesiiian probabilities. An
n-chain CHMM has: hidden nodes in a time slice, each connected to itself and
its nearest neighbors in the next time slice. In our task, seea2-chain CHMM
for audio-visual modeling, as shown in Fig. 4.4, where dacmodes in each
slice are the multinomial state variables, square nodesadh slice represent the
observation variables, and the directed links represemdiional dependence
between nodes.

The state of the CHMM system in each time slice is jointly deieed by the
two multinomial state variable, each depending on its tm@piastates in the
previous time slice. The configuration permits unsynclrediprogression of
the two chains while keeping the Markov property that a feistate variable is
conditionally independent of the past given the preseie st&iables. Note that
CHMM can be seen as a generalized multi-stream HMM.

Following a transformation strategy based on state-spappimg and param-
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eter tying [102], we can convert a CHMM to an equivalent HMM 088 hidden
states each correspond to the state of the system descyilibd GHMM. The
number of hidden states in the equivalent HMM equals the munob possi-
ble combinations of states from both modalities. Fig. 4ifstlates a 2-chain
CHMM with @, = 3 and@, = 2, where@, and(@, are the numbers of au-
dio and visual states respectively. For example, state Bareguivalent HMM
corresponds to the CHMM state defined by audio sjate 2 and visual state
¢, = 1. The modality-dependent observation probabilities gpoading to the
same observation distribution in the original CHMM are tied aoded using the
same tag. For example, the output densities modeling th@hgtream in states
1, 3, 5 are tied and tagged &,", because they correspond ®{O,|q, = 1) in
the CHMM.

In this work, we use a left-to-right non-skip HMM for each b&ttwo modal-
ities in the CHMM. The allowed state transitions in the egléwa HMM are
derived from state space mapping. In particular, the audébvasual state pro-
gressions are allowed asynchrony of up to one state. Formrain the state
diagram in Fig. 4.5, given state 4,(= 1, ¢, = 1) at present, in next time slice,
¢. Ccan either transit tg, = 2 or stay ing, = 1, andg, can either transittg, = 2
or stay inq, = 1. Hence, state 1 can either stay in itself or transit to CHMM
state 2 {, = 1, ¢, = 2) or state 3¢, = 2,¢q, = 1) ,or state 44, = 2, q, = 2).

For robust estimation of the CHMMs, we perform the CHMM tragiim
two stages. In the first stage, the observation distribation both modalities
are initialized using simpler models. The initial simpleodels can be a two-
stream audio-visual HMM, which requires strict state syoalyg between au-
dio and visual modalities, or one audio-only HMM and one wiamly HMM,
which impose no explicit state correspondence betweenatbertodalities. In
the second stage, the audio and visual observation digtnitsufrom the multi-
stream HMM or two single-modality HMMs are used to constithet CHMM-
equivalent HMM. Additional parameter estimation iterasousing the Balm-

Welch algorithm are performed with this equivalent HMM.
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Equivalent HMM states (1 )

Audio states A1 A3 A3
Visual states Vz V2
Visual channel

Figure 4.5: Converting a CHMM to an equivalent HMM by stateespa
mapping and parameter tying.

4.3 Audio-Visual Experiments

4.3.1 Dataset and setup

We use the audio-visual dataset collected by the Departofe®ignal Theory
and Communications and the TALP Research Center of the UntaePlitec-
nica de Catalunya [35]. The database contains multimodaidets of acoustic
events (AES) in a meeting room environment. The target everthis dataset
include: knock (door, table), door slam, steps, chair mgyvapoon (cup jingle),
paper work (listing, warping), key jingle, keyboard typjmipnone ringing/music,
applause and cough. There are approximately 90 instancesvget class for
the whole dataset of six sessions (S01-S06). Among S01v&Odse three ses-
sions for training, and one for testing. All reported measiare averaged from
four-fold cross validation. Additional two sessions (S@®6) are used as the
development set. We use the observations from a far fieldopione and an
overhead camera.

The audio in this dataset is quite clean. To make the task reafistic we add

different levels of Gaussian white noise to the recordedmud illustrate the
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performance of the different approaches at different niessels. Perceptual lin-
ear prediction coding (PLP) coefficients are used as theodediures because
of their effectiveness demonstrated in [5]. In particuRLP coefficients, in-
cluding 12 coefficients and th®" cepstral coefficient, are extracted from 30 ms
Hamming windows with a temporal step of 20 ms. The delta aelacation
coefficients are computed and appended to the static PLRweefs. Cepstral
mean normalization is performed on each recorded session.

The visual features are obtained according to Section 4y &0 bins for
each histogram of optical flow magnitude. The concatenatiohistograms
from all blocks is projected into 40 dimensions using priaticomponent anal-
ysis, retaining 98% of the total energy. These visual festare interpolated to
match the 20 ms frame period of the audio features.

In this experiment, each multistream HMM or CHMM has 4 audid 4wideo
states with stream weights tuned on the development datg gsiarse-to-fine
grid search. For simplicity, the stream weights are timedirant. The differ-
ent methods are evaluated using classification accuracyetedtion accuracy
AED-ACC [1, 35].

4.3.2 CHMM training schemes

Initialization of the observation distributions in the CHMWimportant, because
of the high degree of freedom in the CHMM topology. As discdsseSection
4.2, we explore two different initialization schemes for CNIMreferred to as
CHMM,,, andCHMMq, in which the observation distributions of the CHMMs
are initialized using multistream HMMs, or pairs of audiohoand video-only
HMMs respectively.

The CHMMs parameters (the Gaussian means, covariance,resxtieights,
and the state transition probabilities) are further edidthavith a few iterations
using the Balm-Welch algorithm. We found in our pilot expezmis that allow-

ing estimation of all the CHMM parameters above is better #stimating any

72



subset of parameters above and using the initialized paeasfer the rest.

4.3.3 Results

Table 4.1 and Table 4.2 present the classification and dmtesults using
the proposed visual representation coupled with diffeaeidio-visual modeling
methods as well as the audio-only and video-only models. oth bietection
and classification, the multistream HMM system consisyeintiproves from
the audio-only system as well as the video-only system 1d8/dR conditions
studied in this work. Further, CHMM-based systems (CHM&hd CHMM,,)
outperform the multistream HMM system in event detectiondib SNR con-
ditions. “CHMM,,” denotes the CHMM-based system initialized using multi-
stream HMMs, while “CHMM” refers to the CHMM-based system initialized
using audio-only and video-only HMMs.

We also performed event detection using original clean@utle same con-
dition studied in [35]. The proposed visual features and@ausual modeling
perform favorably compared to the best systems reporte85h [These refer-
ence systems [35] leverage a person tracker, a laptop detadiace detector,
and a door activity estimator to capture the visual cues @tidrmal localization
information obtained from multiple microphones (denotedA/” and “AVL’

in Table 4.2 respectively).

Table 4.1: Audio-visual event classification accuracy wiifferent audio SNRs
(% meantstandard error).

| SNR | Audio-only | Video-only | Multistream| CHMM,, | CHMM, |

10dB
20dB
30dB

28.05+4.40
51.54+5.21
77.45£6.96

61.5A3.18
61.5743.18
61.573.18

64.35-4.35
72.33t6.15
89.044.13

67.22+3.76
76.40£5.87
89.12£3.51

65.76+4.36
76.92£5.09
87.10£4.36

Fig. 4.6 shows the confusion matrices of event classifinatging the audio-

only HMM, audio-visual multistream HMM, CHMM and CHMM, systems,
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Table 4.2: Audio-visual event detection accuracy witheteint audio SNRs (%
meant standard error).

[SNR]

Audio

|

Video

| Multistream| CHMM,, | CHMM, |

10dB
20dB
30dB
clean

26.73+6.99
47.96+:6.03
69.35+:5.26
87.54+2.99

45.22+2.22
45.22+2.22
45.224-2.22
45.22£2.22

45.45+3.04
63.74£3.78
78.55+4.13
90.5A2.07

50.4'A2.97
65.89£3.98
79.50£2.71
91.85+2.11

48.35+2.33
66.28£3.95
79.54£2.27
90.79+2.97

| clean|

“AV” [35]

|

85

[ “AVL'[35] |

86

|

|

averaged across audio SNRs 10 dB, 20 dB and 30 dB. Using the pabpes-

eralizable visual features with the multistream HMM or theNI¥ boosts clas-

sification accuracy for most event classes compared to thi®-anly system.

The more flexible CHMM-based systems (CHMIgind CHMM,,) further im-

prove classification of some events, such as kn: knock (dabte) and co:

cough from the multistream HMM system.

To verify that the audio-visual state asynchrony allowedhs/CHMM sys-

tems is utilized, we examine the state sequences found byitirdi decoding.

The percentages of observation frames claimed by the CHMMsstiefined

by an asynchronous pair of audio and video states are 65.0ZHMM , and

65.8% for CHMM,, respectively. Note that the multistream HMM system as-
signs all frames to states that are defined by synchronous and visual states.
We do notice that the difference between the multistream Hé¢stem and the
CHMM systems is not very large. We believe part of the reasanasthere is
much asynchrony between the two modalities that existsrimeyloe one state
asynchrony allowed in the current model. For example, fones@asynchrony,

the audio-visual cues might not overlap temporally at all.

74



Audio-only HMM Multistream

kn 02 05 17 05 04 .01 03 05 03 kn 0z .m 02 .18 14
ds 03 .03 04 01 02 02 de

st |01 |17 g 06 .03 7 04 11 09 o1 st

cm |02 06 .09 02 09 03 04 07 0z cm

cl 08 .06 .04 .m0y 07 o cl : 63 B 08 .08 .15 .01

P 07 05 03 04 0 07 .01 03 pw .02 .04 02

& s 1 2 ki

05 08 .M

ki |01 07 07 04

kt 22 12 M M 0421 A8 kt i
pr DB 12 03 06 17 04 10 l o pr 04 15
ap 0z 04 mu e o ap A
co |02 04 16 2B o7 03 04 02 0[5 co |0 03 07 05

B % ¥ G ¥ O F R % B D B % % S v G

CHMM_
kn 03 0g kn
ds ds
st st
cm cm
cl 16 .o el
e 04 .1 [
kj 10 ki
kt 24 kt
pro |08 O .03 .08 .02 .02 .02 pr
ap = o ap
co [.O7 .01 .02 .04 .04 03 12 .m co |13 .0
B %o G O O B O R G % %

Figure 4.6: Confusion pattern for event classification basedudio-only
HMM, audio-visual multistream HMM, CHMM, and CHMM..
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CHAPTER 5

CONCLUSION AND DISCUSSION

This dissertation focuses on audio-visual modeling methbdt can be easily
adapted to related tasks. It is shown that these methodsfiemtiveely model
less-constrained real-world data and deliver state-@fattt results in acoustic
event detection using CLEAR 2007 AED Evaluation data andovielent de-
tection using Trecvid video data.

Some related approaches not studied in this dissertatmuade: modeling
through lower-level semantic concept detectors, pingoiproblem-specific meth-
ods, explicit alignment modeling between different sarapWhile these unex-
plored methods have their merits, this dissertation shbatsfor some applica-
tions, it is possible to deliver comparable, even supeperformance using our
methods that usually require less training labeling effort

In this chapter, | summarize the studies in Chapters 2, 3 anith4ivgcussion,

and present possible future work following this disseotati

5.1 Audio Modeling

On acoustic event detection, | present system architectargroved from our
state-of-the-art HMM-based baseline system, designeldtier acoustic event
detection. Inspired by advances in speech recognitiomdeta connectionist-
HMM approach for AED is proposed to combine the sequence timopeapa-
bilities of the HMM with the high-accuracy context-depentdiscriminative
capabilities of an artificial neural network trained usihg tinimum cross en-

tropy criterion. An SVM-GMM-supervector approach is desd using noise-
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adaptive kernels to approximate the KL divergence betweatufe distributions
in different audio segments, providing complimentary mnfation that helps re-
fine the Viterbi decoding output of the tandem models.

The interaction between speech and non-speech is an impdofgic not
studied in this dissertation. One application for effegthon-speech acoustic
event detection is to improve speech recognition perfonaan realistic envi-
ronments. The acoustic event models can be used to impreuartibed back-
ground/noise models used in most speech recognition sgstéanticularly, with
more ubiquitous deployment of speech recognition systeénescapability of
identifying non-speech events as noise will be essentitidceffectiveness of
many processes involved in real-word speech recognitiphcgtions, including
speech transcription as well as speaker/channel/envenhadaptation. On the
other hand, effective modeling of human speech, as a majdrdéibackground
noise to acoustic event detection, can lead to more accdedéetion of non-
speech events. Future implementation of systems to stedg tissues will help
answer the question to what extent realistic applicatipesspeech recognition
or non-speech event detection, can harness the benefit ldierpdeling of

their interaction.

5.2 Image and Video Modeling

On visual cue modeling, | present the Gaussianized vecfoesentation that
works effectively for video event detection in realistiobdcast news data. Our
system outperforms the best system in the previous litexatsing lower-level
semantic concept detectors, which are not needed in thik. Widre Gaussian-
ized vector representation establishes unsupervisedsmmndence between im-
ages or video clips of varying sizes, lengths and layouts.ofmalization ap-
proach suppresses the within-class variation, by de-esmihg the undesirable

subspace in the Gaussianized vector representation gerelefficient object
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localization approach is also developed for the Gaussanector represen-
tation, where the quality bound used in a branch-and-boeadcch scheme re-
quires little extra computational cost, in addition to cédding the Gaussianized
vector representation for the whole image, as in the claasibn problem.

One motivation of the Gaussianized vector representasaio ieffectively
model realistic data that has hard-to-find and complicatedespondence be-
tween different samples. It is shown that for detecting @ideents in the broad-
cast news data, the approach in this dissertation outpesftite previous state-
of-the-art that uses a set of lower-level concept deteetiodsexplicitly temporal
alignment modeling. However, it is plausible that many @f thethods explored
here can be combined with the above approaches for furth@mowament. In
fact, some of the particular implementations in the expents in this disser-
tation can be viewed as simple examples of such combinafi@an.example,
we can interpret the Gaussianized vector representatiovideo events based
on SIFT detector and descriptors as a naive semantic codeggttor (SIFT)
combined with a robust video clip summarization approabk Gaussianized
vector). The intended lack of more explicit alignment mautglin this repre-
sentation may also change to adapt to more structured inggeld particular,
hidden states can be used to partition subparts of face spagé our extension
to the Gaussianized vector representation [95] in a facest®ation problem,
beyond the scope of this dissertation. The Gaussianizervegpresentation
has also been used for image segmentation, where each coteg®n is mod-

eled by this representation [108].

5.3 Audio-Visual Fusion

Given the challenges in acoustic event detection, | studlygugeneralizable
visual features to improve event detection via audio-Visti@rmediate inte-

gration. Optical flow based spatial pyramid histograms aeduo represent
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the highly variant visual cues for the acoustic events. Tamesentation is
demonstrated to significantly improve audio-only evenssiication and detec-
tion performance in systems based on multistream HMMs oplesuHMMs.
Our systems perform favorably compared to previously regosystems [35]
leveraging ad-hoc visual cue detectors and localizatidormmation obtained
from multiple microphones.

The multistream HMMs assume strict temporal synchrony betwthe two
modalities. The coupled HMMs allow hidden state asynchrboy such asyn-
chrony is usually limited to a few adjacent states. There#rer techniques that
have been used to integrate information from asynchronatassiream. In par-
ticular, canonical correlation analysis is an effectivatiee transform learning
method that can be used to project features in different himdasuch that their
correlation is maximized in the projected spaces [109]sTégarning method has
been used to estimate a uniform shift or delay between twalities. The asyn-
chrony in the real-world events is however non-uniform. Aeng extention to
the above method, called Weakly-paired Maximum Covariancalysis [110],
introduces an explicit temporal alignment matrix that rhagtemporally local
features from one modality with those from the other mogalithis method
iteratively updates this alignment matrix and the two pcbgn matrices for
maximized covariance between the aligned projectionsdit modalities. The
Weakly-paired Maximum Covariance Analysis has been useddjeg single
modality data into a subspace where it has maximum covagiaith originally
unaligned data from another modality only available inrtiragg. This method
can be directly applied to improve acoustic event detedbprprojecting the
acoustic features to a subspace where the projection hasimes covariance
with the visual feature with learned alignment. We may fartadapt the method
to learn the alignment matrix during testing without chawggihe projections,
and use both modalities that are projected and aligned inmiliéstream or
coupled HMMs. | expect this will better model the audio-dkasynchrony in

real-world events, and regard that as future work extenated this dissertation.
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5.4 Human Performance

Human performance is far superior to machine performanamany pattern
recognition problems. Most notably, humans easily outperfmachines in
speech recognition [111, 112], at different noise levetg;abulary sizes, and
with various availability of high-level grammatical infoation [113]. A recent
paper [114] reviews the effective speech recognition by dmsn particularly
when overlapping with other sounds. It is also known thatrémognition of
any sound in a natural environment, humans can perceive aerhseparate
sound sources and identify their locations, pitch and tanbven when they co-
occur with other sounds. There has been continuing cootemthether speech
perception is special or shares the same mechanism as lgsmeard perception
[114]. Similarly, computer vision tasks such as face detecand recognition
[115] find humans to excel in conditions most challenging utomatic algo-
rithms, including various kinds of degration such as blut aaise.

In the pursuit of designing automatic machines that perfpattern recogni-
tion tasks, most researchers currently take the approattmthchines are pure
thinking devices that interface with the world during leagionly in a very
specific way: the machine is provided with data annotated wopdns or an
automatic labeler, e.g., the audio and video recordingstlaadorresponding
event labels with onset and offset timestamps used in tesediation. One of
the human advantages, besides robust audio/visual sigmagsing, is the ca-
pability to actively interact with the world while compratsvely sensing the
environment and applying our previous knowledge. Suchloéipaapplies to
almost all kinds of human perception, particularly in talet humans perform
regularly. Some artificial intelligence researchers lvelihat exploiting this in
machine learning is a more promising strategy to push tHemeance closer to
that of humans [116, 117].

These advantages exist in human perception of real-wodobausual events

as well, however, to a lesser extent as the tasks are moteaayland less in-
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tegrated into human life. It is possible to train humans bspnting them ex-
amples of different recorded events. But that differs froenitay humans learn
how to perform familiar tasks such as speech recognitionface recognition,

which we learn through interacting with the world. In praati applications

such as surveillance and information retrieval, the inptdrimation is captured
by specific sensors: should the task have never been expmadtliman being

in prior interactive experiences, the limitation of theafie sensors and the lack
of interaction might hinder the effectiveness of humanreay.

Humans and machines differ in the way they tackle the pat&rognition
problems fundamentally. The human level of semantic unaeding is not
achieved by even the state-of-the-art automatic patterogrézers. Many au-
tomatic pattern recognition models either do not attemptoodel the semantics
in the data other than what is provided in the annotation etthining data, or
do so to only a very limited extent. Even when some of themyltwtharness the
intrinsic semantics of the sensory data, the performanofies unsatisfactory,
sometimes even worse than statistical methods withouiaixpbnsideration
of such semantics. For example, lower-level visual seroamtincept detectors
[118] have been developed, and simulated results show libe¢ heed to be
several thousand concept detectors for broadcast news retieeval at a per-
formance level comparable to modern text retrieval systevhgch is far from
human accuracy. Another example is the video event detetdgk studied in
Chapter 3, where better semantic understanding throughrepbdetectors and
temporal alignment does not deliver superior performaBeg¢ween the sensory
data, e.g., the observed acoustic signal, and the targetrgerpattern, e.g., the
events and their onsets and offsets, is the so-called sengam, which poses a
major challenge to automatic pattern recognizers becdubeio limited capa-
bility to model previous knowledge and to apply that to newetations. This
also relates to the question: for better pattern recognjperformance, should
machines mimic the human perception process at all, givedpabilities that

we can currently build into the machines?

81



Though this dissertation does not further the understgnaimuman perfor-
mance in real-world audio-visual event detection, relevark in our research
group provides insight into the challenge of the task to msnd they are pre-
sented information in the form of recorded audio from a sngicrophone and
video from a single camera. Particularly, two humans arecsklabel the time
and types of non-speech events in the AMI meeting room cdifil®. Either
with only audio recording available to them or with both audnd video avail-
able, each human transcriber disagrees on at least 50%s# #wents labeled
by the other transcriber.

Human cognition has been and will continue to be inspiringgades in ma-
chine pattern recognition. It is also important to underdtthe human advan-
tages and their applicability to different problems.

Besides, for real deployment of pattern recognition, theeepsactical con-
siderations, such as privacy concerns, long operatiorshema high operational
cost, that make the “human” option less desirable. This addbke utility of
the technology studied in this dissertation, or automagittepn recognition in

general, even if they cannot match or surpass human penf@ena

5.5 Final Comments

With the emphasis on robust and generalizable modelingatibtie audio cues
and visual cues, this work focuses on methods that can béyreaglicable to
other real-world audio visual modeling problems. There igmspace for these
methods to be further tailored for new specific problems,lhdpe this work
provides a good starting point, particularly when the fwilog resources are
limited: the expensive detailed annotation for trainintpgdauch as those needed
to train ad-hoc lower-level detectors, the efforts of pimpog specific cues for
different events, or the capability of effective explicibdeling of the alignment

between highly variant events in the spatial, temporal aatlire domains.
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