

SCHEDULING OF TRACK INSPECTION AND MAINTENANCE ACTIVITIES

IN RAILROAD NETWORKS

BY

FAN PENG

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Civil Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Doctoral Committee:

Assistant Professor Yanfeng Ouyang, Chair

Dharma Acharya, Ph.D., CSX Transportation

Professor Christopher P.L. Barkan

Professor Rahim F. Benekohal

 ii

ABSTRACT

The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in

order to ensure safety and operational efficiency of their railroad networks. Besides maintenance

costs, other costs such as train accident costs, train and shipment delay costs and rolling stock

maintenance costs are also closely related to track maintenance activities. Optimizing the track

maintenance process on the extensive railroad networks is a very complex problem with major

cost implications. Currently, the decision making process for track maintenance planning is

largely manual and primarily relies on the knowledge and judgment of experts. There is

considerable potential to improve the process by using operations research techniques to develop

solutions to the optimization problems on track maintenance. In this dissertation study, we

propose a range of mathematical models and solution algorithms for three network-level

scheduling problems on track maintenance: track inspection scheduling problem (TISP),

production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP).

TISP involves a set of inspection teams which travel over the railroad network to identify

track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to

be scheduled subject to many difficult side constraints such as periodicity constraints and

discrete working time constraints. A vehicle routing problem formulation was proposed for TISP,

and a customized heuristic algorithm was developed to solve the model. The algorithm

iteratively applies a constructive heuristic and a local search algorithm in an incremental

scheduling horizon framework. The proposed model and algorithm have been adopted by a Class

I railroad in its decision making process. Real-world case studies show the proposed approach

outperforms the manual approach in short-term scheduling and can be used to conduct long-term

what-if analyses to yield managerial insights.

 iii

PTSP schedules capital track maintenance projects, which are the largest track maintenance

activities and account for the majority of railroad capital spending. A time-space network model

was proposed to formulate PTSP. More than ten types of side constraints were considered in the

model, including very complex constraints such as mutual exclusion constraints and consecution

constraints. A multiple neighborhood search algorithm, including a decomposition and restriction

search and a block-interchange search, was developed to solve the model. Various performance

enhancement techniques, such as data reduction, augmented cost function and subproblem

prioritization, were developed to improve the algorithm. The proposed approach has been

adopted by a Class I railroad for two years. Our numerical results show the model solutions are

able to satisfy all hard constraints and most soft constraints. Compared with the existing manual

procedure, the proposed approach is able to bring significant cost savings and operational

efficiency improvement.

JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering

thousands of capital track maintenance jobs (based on the defects identified in track inspection)

into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based

model and a multiple-step heuristic algorithm were developed to solve this problem. Various side

constraints such as mutual exclusion constraints and rounding constraints were considered. The

proposed approach has been applied in practice and has shown good performance in both

solution quality and efficiency.

 iv

ACKNOWLEDGMENT

I owe my deepest gratitude to my advisor, Professor Yanfeng Ouyang. It was he who led me into

the field of operations research and helped me tremendously throughout my graduate study. He

has not only taught me the scientific knowledge, but also influenced me with his passion and

scientific rigor. I feel very fortunate to study under his guidance.

I would also like to thank the three other committee members, Dr. Dharma Acharya,

Professor Christopher P.L. Barkan and Professor Rahim F. Benekohal, for spending their time

reviewing this work and providing valuable comments and suggestions. I am grateful for the

great opportunity I had to conduct research in the field of railroad operations and engineering. I

would also like to express my thanks to all UIUC professors from whom I have taken courses

and learned knowledge.

I would like to thank the colleagues from CSX Transportation who have collaborated with

me on this dissertation research. I would like to particularly thank Kamalesh Somani. We worked

very closely on this research in the past two and half years. I have learned much railroad

engineering knowledge from him.

I would like to thank all my friends at the University of Illinois, including Xiaopeng Li,

Xiying Mi, Wei Xu, Yun Bai, Seyed Mohammad Nourbakhsh and Taesung Hwang, who have

helped me in both research and life. Special thanks go to Xiaopeng Li, who collaborated with me

on a number of research and course projects. I also appreciate the help for this research from

Seungmo Kang, who is now a faculty member at Korea University, and Seyed Mohammad

Nourbakhsh.

Finally, I would like to thank my grandparents and parents. They are my most important

people, and it is their love that supports me to finish my doctoral study.

 v

This work is financially supported by CSX Transportation, Inc. The Illinois Department of

Transportation and the National Science Foundation have also partially supported the first two

years of my graduate study at the University of Illinois.

 vi

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

CHAPTER 1 INTRODUCTION ... 1

1.1 Background ... 1
1.2 Objectives and Contributions .. 7
1.3 Outline... 10

CHAPTER 2 LITERATURE REVIEW ... 12

2.1 Track Maintenance Problem Review .. 12
2.1.1 Track Inspection Scheduling Problem .. 12

2.1.2 Production Team Scheduling Problem ... 13

2.2 Optimization Models and Algorithms .. 17
2.2.1 Vehicle Routing Problem Model .. 21
2.2.2 Time-Space Network Model... 26

2.2.3 Heuristic Algorithms .. 31
Glossary of Symbols ... 38

CHAPTER 3 TRACK INSPECTION SCHEDULING ... 39

3.1 Introduction ... 39
3.2 Model and Algorithm Selection .. 40

3.3 Model Formulation ... 41

3.3.1 Core Model ... 42
3.3.2 Periodicity Constraints.. 44
3.3.3 Non-Simultaneity Constraints .. 48

3.3.4 Time Window Constraints .. 51
3.3.5 Preference Constraints .. 53

3.3.6 Network Topology Constraints .. 55
3.3.7 Discrete Working Time Constraints ... 57

3.3.8 Travel Costs .. 59
3.4 Algorithm .. 60

3.4.1 Task Generation .. 61
3.4.2 Greedy Algorithm ... 62
3.4.3 Task Interchange ... 64

3.4.4 Incremental Horizon ... 69

3.5 Case Studies .. 70

Glossary of Symbols ... 77

CHAPTER 4 PRODUCTION TEAM SCHEDULING ... 79

4.1 Introduction ... 79
4.2 Model and Algorithm Selection .. 80
4.3 Model Formulation ... 81

4.3.1 Core Model ... 81

 vii

4.3.2 Travel Costs .. 84

4.3.3 Time Window and Preference Constraints ... 84
4.3.4 Mutual Exclusion Constraints .. 86
4.3.5 Precedence Constraints ... 90

4.3.6 Simultaneity and Non-Simultaneity Constraints .. 91
4.3.7 Consecution Constraints ... 95
4.3.8 Split Project Constraints ... 97
4.3.9 Limit Constraints .. 100
4.3.10 Relay Rail Constraints .. 101

4.3.11 “Blitz” Constraints .. 103
4.4 Algorithm .. 104

4.4.1 Project Splitting .. 106
4.4.2 Scheduling Model ... 108

4.4.3 Decomposition and Restriction... 109
4.4.4 Block Interchange ... 113

4.4.5 Data Reduction ... 117
4.5 Case Studies .. 121

Glossary of Symbols ... 129

CHAPTER 5 JOB-TO-PROJECT CLUSTERING ... 132

5.1 Introduction ... 132

5.2 Model Formulation ... 133
5.2.1 Core Model ... 133

5.2.2 Mutual Exclusion Constraint .. 136
5.2.3 Preference Constraints .. 138
5.2.4 Limit Constraints .. 138

5.2.5 Rounding Constraints ... 140

5.2.6 Minimum Duration Constraints .. 142
5.2.7 Project Duration Constraints... 143

5.3 Algorithm .. 144

5.3.1 Greedy Algorithm ... 145
5.3.2 Local Search ... 147

5.3.3 Feasibility Heuristic .. 150
5.4 Case Studies .. 151

Glossary of Symbols ... 154

CHAPTER 6 CONCLUSION AND FUTURE RESEARCH.. 156

6.1 Conclusion .. 156
6.2 Future Research .. 158

REFERENCES .. 161

 viii

LIST OF FIGURES

Figure 1. Optimization problems on track maintenance in a Class I railroad company. 3
Figure 2. Illustration of vehicle routing problem model. .. 21

Figure 3. Illustration of time-space network model. ... 27
Figure 4. Examples of node interchange. ... 35
Figure 5. Examples of edge interchange. .. 36
Figure 6. Periodicity constraint penalty cost in rail inspection scheduling. 48
Figure 7. Time window constraint penalty costs in track inspection scheduling. 53

Figure 8. Travel patterns of rail inspection teams. ... 56
Figure 9. Algorithm framework of track inspection scheduling. .. 61
Figure 10. Examples of task interchange within one team. .. 65

Figure 11. Examples of task interchange between two teams. ... 66
Figure 12. Examples of task add/drop. ... 67
Figure 13. Sensitivity analysis on incremental horizon length ... 73

Figure 14. What-if analysis for one-year scheduling horizon. ... 74
Figure 15. Total overdue percentages outside allowed interval of individual teams. 76

Figure 16. An example of a mutual exclusion constraint. .. 88
Figure 17. Algorithm framework of production team scheduling. ... 105
Figure 18. Two schemes of a 3-block interchange. .. 114

Figure 19. An example of tail block interchange. ... 115
Figure 20. Examples of removing unimportant vertices. .. 118

Figure 21. An example of a removable vertex with degree 4. .. 119
Figure 22. Cost reduction over running time (Year A data). .. 125

Figure 23. Cost reduction over running time (Year B data). .. 128
Figure 24. Algorithm framework of job-to-project clustering. ... 145

Figure 25. An example of job interchange. .. 149

 ix

LIST OF TABLES

Table 1. Solution comparison for track inspection scheduling. .. 71
Table 2. Input data statistics for production team scheduling (Year A data). 123

Table 3. Solution statistics for production team scheduling (Year A data). 124
Table 4. Input data statistics for production team scheduling (Year B data). 126
Table 5. Solution comparison for production team scheduling (Year B data). 127
Table 6. Solution statistics for job-to-project clustering (Year A data). 152
Table 7. Solution statistics for job-to-project clustering (Year B data). 153

 1

CHAPTER 1 INTRODUCTION

1.1 Background

According to the Association of American Railroads (AAR), the U.S. Class I railroads (i.e., the

freight railroad companies with 2009 operating revenue of $378.8 million or more) operated

160,781 miles of rail tracks in 2009 (AAR, 2010), including 62,067 miles of high-density “A”

tracks (i.e., tracks with a freight density of at least 20 million gross ton-miles per track mile per

year). The extensive railroad network carried 42.7% of the U.S. freight revenue ton-miles in

2007 (AAR, 2010). In order to ensure operational efficiency and safety, railroad companies

spend billions of dollars every year
1
 on track maintenance (Tolliver and Benson 2010) to (i)

recover the serviceability of tracks from defects and damages, (ii) prevent further wear-out, and

(iii) eliminate potential safety hazards.

Track maintenance has significant impacts on train accidents and train delay. Track defects,

if not identified and repaired in time, may damage railcars and locomotives (leading to higher

rolling stock maintenance costs) or even cause train accidents. According to Federal Railroad

Administration (FRA) Office of Safety Analysis (2010), track defects have become the leading

cause of train accidents in the United States. Among the 1,890 train accidents happened in 2009,

658 or 34.81% of them were caused by track defects, resulting in a total reportable damage of

$108.7 million. On the other hand, track maintenance activities may disturb train operations and

cause delays to both trains and shipments (or passengers). Schafer and Barkan (2008) and

Schlake et al. (2009) estimated that train delay costs alone can be as high as $200 to $300 per

hour per train, and shipment or passenger delay costs can make the actual costs even much

higher.

1
 In 2008, the Class I railroads alone spent 7.52 billion dollars on track maintenance.

 2

Given the huge costs related to track maintenance, even a small percentage of cost reduction

implies a large saving in absolute value. One way to achieve such savings is to optimize the track

maintenance decision-making process. Figure 1 illustrates some of the optimization problems on

track maintenance in one of the Class I railroads
2
, which fit into four categories: (i) the track

inspection scheduling problem (TISP), (ii) the capital track maintenance scheduling problem

(CTMSP), (iii) the routine track maintenance scheduling problem (RTMSP), and (iv) the track

maintenance logistics problem (TMLP).

2
 Other railroads may have slightly different procedures but the general framework should be similar.

 3

Figure 1. Optimization problems on track maintenance in a Class I railroad company.

Railroad tracks are inspected periodically to identify the defects in order to avoid train

damage or accidents. The first category of track maintenance problems, TISP, schedules such

track inspection activities (for simplicity, track inspection activities will be referred to as “tasks”

from now on). Track inspection includes rail inspection, tie inspection and geometry inspection,

which are performed by corresponding inspection teams. A team is usually composed of an

inspection vehicle and its crews (some inspections are conducted manually by inspectors walking

along the track; in this study we only focus on those automated inspections by inspection

Defect-to-Job

Clustering

Job-to-Project

Clustering

New Rail and

Tie Sourcing

Rail

Inspection

Scheduling

Tie

Inspection

Scheduling

Ballast

Sourcing

Geometry

Inspection

Scheduling

Relay Rail

Sourcing

Track

Inspection

Scheduling

Track Maintenance

Logistics

Routine Track

Maintenance

Scheduling

Surfacing

Scheduling

Production

Team

Scheduling

Rail

Grinding

Scheduling

Ballast

Cleaning

Scheduling

Work Train

Scheduling

Capital Track

Maintenance

Scheduling

 4

vehicles). Rail inspection teams examine rail tracks for both external and internal rail defects

(such as kidney defects, wheelburn defect, head checking and squats) by visual inspection and

technologies such as induction and ultrasonic devices (Cannon et al., 2003). Geometry inspection

teams measure geometric parameters of the track, such as gauge, curvature and alignment (FRA,

2002), by technologies such as laser measurement systems and accelerometers. Tie inspection

teams identify deteriorated ties using technologies such as the Gage Restraint Measurement

System, which is installed on a train and is able to find deteriorated ties while the train travels on

the track (FRA, 1999). For every inspection task, the TISP determines its start time and assigns

an inspection team to it, in a way that certain business requirements (e.g., track should be

inspected at certain inspection frequencies) are satisfied and the operating costs (e.g., for

inspection teams) are minimized.

Track maintenance activities can be divided into three categories: corrective maintenance,

capital maintenance and routine maintenance. Corrective maintenance activities are usually

performed by local maintenance teams to fix the most severe and urgent defects identified from

track inspection. Capital maintenance activities (i.e., “projects”) involve the replacement of large

quantities of components with large maintenance teams (i.e., production teams) and expensive

machines. They are normally charged to capital expenditures and accounted for the majority of

the total capital spending (e.g., 67% in 2002) in U.S. railroads (Grimes and Barkan, 2006).

Projects are carefully identified and planned every year with sophisticated decision making

process (Gorman and Kanet, 2010), partially based on recorded track inspection data (Acharya et

al., 1990; Simson et al., 1999). Projects are identified and scheduled in the capital track

maintenance scheduling problem (CTMSP) in three steps. First, maintenance jobs (referred to as

“jobs” from now on) need to be created based on the recorded track defects. Then, the job-to-

 5

project clustering problem (JTPCP) clusters jobs into projects such that the duration of every

project spans an integer number of weeks. Finally, the projects are scheduled by the production

team scheduling problem (PTSP). Production teams (also called production gangs in some

railroads) are composed of a large number of crews equipped with highly specialized machines

(such as ballast regulators, tampers, spike inserters, spike pullers, and tie extractors/inserters).

There are multiple categories of production teams which are specialized at different categories of

projects; e.g., rail teams repair and replace defected rail tracks, and timber and surfacing (T&S)

teams replace deteriorated ties and tamp the ballast.

Routine maintenance activities include ballast cleaning, surfacing and rail grinding, and are

performed by specialized routine maintenance teams (which are typically smaller than

production teams). These routine maintenance activities are scheduled in the routine track

maintenance scheduling problem (RTMSP). A ballast cleaning team uses a ballast cleaner to

replace worn and unusable ballast in order to improve track drainage and ballast load-bearing

elasticity. A surfacing team is equipped with machines such as ballast regulator and tamper to

correct the track alignment and make the track more durable. A rail grinding team uses a rail

grinder to restore the profile of worn rails and remove their irregularities. Different from projects,

routine maintenance activities are performed at regular frequencies, independent of track

inspection results. Note that different railroads may have different classifications of capital and

routine maintenance activities. For example, ballast cleaning activities are classified and

scheduled as capital maintenance projects in some railroad companies.

The track maintenance logistics problem (TMLP) decides where to obtain maintenance

supply materials and how to transport the materials and maintenance teams to maintenance sites

with work trains. The sources of materials, including new rail, relay rail (i.e., used rail that can

 6

be reused), ties and ballast, are determined so as to satisfy the demand from maintenance

activities. Then, the schedule of work trains is determined to transport the materials and

maintenance teams to maintenance sites. The work train scheduling problem covers the

scheduling of work trains’ locomotives, cars, crews and end-of-train devices.

The solutions to those track maintenance optimization problems have significant impacts on

railroad performance and safety. For example, if a segment of track is not inspected in time, its

potential defects will not be identified and train accident may occur. If the maintenance activities

are not well scheduled, they may incur high maintenance costs (e.g., if they are scheduled during

heavy snow), disturb train operations, and cause shipment delay.

However, track maintenance optimization problems are usually very large-scale and

complex. Hundreds or thousands of maintenance activities, tens of maintenance teams and

thousands of business constraints are usually involved in one single problem. Due to lack of

systematic solution techniques, current practice in the railroad industry mostly relies on the

knowledge, experience and judgment of experts. The solution process may take a long time but

the obtained solution may not be satisfying. For example, in one of the Class I railroads, JTPCP

and PTSP used to be solved manually. It took a team of experts at least one week to solve each

of these problems; yet, many constraints could not be accommodated in the solution (some may

even be overlooked). Whenever a tradeoff among conflicting constraints has to be made, it is

very difficult for an expert to judge which constraints are more important. Sometimes data errors

are overlooked by human, and they lead to incorrect results. It is also difficult to document the

experts’ experience and knowledge in a sustainable way so that the problems can be solved

across generations. An automated solution approach that is general, efficient, and practically

 7

implementable will help the railroad industry gain significant cost savings and operational

benefits in the long run.

As a final remark, we note that the flowchart in Figure 1 summarizes the current practice,

and hence it may not be the optimum procedure. Ideally, all optimization problems should be

solved in an integrated fashion, but that would make the problem too huge and too complex to

solve. Hence, we still solve the problems separately. However, we bear in mind that the

flowchart could possibly be improved, if better solution techniques are developed in the future.

For example, relay rail sourcing could be incorporated into PTSP, or ballast sourcing could be

solved with ballast work train scheduling.

1.2 Objectives and Contributions

This study addresses four major optimization problems on track maintenance, namely, the rail

inspection scheduling problem (RISP), the geometry inspection scheduling problem (GISP),

JTPCP and PTSP. These problems are highlighted in Figure 1. Since RISP and GISP are very

similar, we study them together as one generalized TISP.

This study formulates innovative mathematical models for these interrelated yet different

complex problems and develops customized algorithms to solve them. Few previous studies have

been conducted on similar topics, and even fewer have been implemented in practice. The

proposed models are complex and realistic enough to accurately reflect the business goals and

constraints of the railroad companies. Many difficult constraints are identified from the industry

practice and formulated for the first time. For example, in the conventional periodic vehicle

routing problems, the periodicity constraints are imposed through a set of given candidate

schedules. The TISP in this study, however, enforces the periodicity constraints via penalty costs

 8

associated with inspection interval lengths; as such, the inspection schedules could be much

more flexible. Other new formulations include the PTSP’s split project constraints, which require

two projects to be performed either consecutively by the same team or simultaneously by

multiple teams, and JTPCP’s core model, which minimizes the total project duration after

clustering jobs and rounding (up or down) the duration of each project.

A variety of innovative algorithms have been developed to solve the proposed models. The

models are quite complex, and the practical problem instances are all very large-scale. No

existing algorithms or solvers can be directly applied. Therefore, we developed customized

algorithms to take advantage of the characteristics of those problems. The TISP algorithm

includes two parts: (i) a constructive heuristic which tries to first schedule the most delayed tasks,

and (ii) a local search algorithm which incorporates various performance enhancement

techniques, such as prioritization and preliminary checks of local search moves, and elimination

of duplicated moves and excessive calculation. The algorithm dynamically generates variables

and constraints to improve the solution speed. The algorithm is implemented in an incremental

scheduling horizon framework, which utilizes the feature of the optimal solution (e.g., tasks

should generally be scheduled around their due times) to help the local search from being

trapped in local optima.

The PTSP algorithm first solves a simplified scheduling model to obtain an initial solution

which is able to satisfy a subset of side constraints. Then it applies a multiple neighborhood

search to improve the solution. Two types of neighborhood structures are explored. The first one

is decomposition and restriction. Restricted subproblems are solved by a mixed integer

programming (MIP) algorithm, while various embedded techniques such as MIP cuts,

augmented cost functions, subproblem tightening and subproblem prioritization, are used. The

 9

second neighborhood structure is block interchange, and the solution techniques include

elimination of excessive calculation, preliminary checks of moves, and parallel computing. The

iterative exploration of different neighborhood structures has been shown to be able to efficiently

improve the solution. Other solution enhancement methods, such as project splitting and data

reductions, are also incorporated into the algorithm.

The JTPCP algorithm utilizes features of the optimal solution to develop a constructive

heuristic that addresses some of the dominating costs and constraints. It then iteratively applies a

neighborhood search, which includes a job interchange and a project interchange, and a two-step

feasibility heuristic, to attack the problem from different directions. Solution techniques, such as

prioritization of moves, constraint relaxations, and solving subroutine problems, are embedded in

the proposed algorithm.

The proposed models and solution approaches are shown to be very effective, efficient, and

suitable for full-scale practical use. They have been adopted by a Class I railroad to help with its

track maintenance decision making process in the past two years. Comparisons between our

model solutions and previous manual solutions show that our models are able to obtain much

better solutions and could bring significant cost savings and efficiency improvements. Although

the studied problems are applied to only one Class I railroad, the proposed models and

algorithms can be easily adapted to address similar track maintenance problems in other railroad

companies. It shall also be possible to apply similar modeling and algorithm development

approaches to other problems in different network scheduling contexts, such as railroad

transportation scheduling, highway transportation scheduling and airline scheduling.

 10

1.3 Outline

The remainder of this dissertation is organized as follows.

Chapter 2 reviews previous studies on routing and scheduling problems related to TISP and

PTSP. Related general mathematical models, such as vehicle routing problem (VRP) and time-

space network (TSN) models, and suitable solution algorithms are also reviewed.

Chapter 3 presents a VRP-based model for TISP. Various types of side constraints, such as

periodicity constraints and discrete working time constraints, are addressed. A heuristic

algorithm is proposed for the model, where a constructive heuristic and a local search heuristic

are iteratively applied within an incremental horizon framework. The proposed approach is

applied to real-world TISP instances and shown to solve both short-term and long-term planning

instances efficiently.

Chapter 4 presents a TSN-based model for PTSP, including multiple types of side

constraints (such as mutual exclusion constraints and split project constraints). A scheduling

model is formulated to obtain an initial solution. An iterative multiple neighborhood search

algorithm is developed to improve the solution. The search algorithm explores two different

neighborhood structures: decomposition and restriction, where the MIP algorithms are applied,

and block interchange. Other solution techniques, such as project splitting and data reductions,

are used to improve the algorithm. Case studies have been conducted with real-world data and it

is shown that the proposed approach significantly outperforms the state-of-the-art process used

by the railroad.

Chapter 5 presents a VRP-based model for JTPCP. Side constraints such as limit constraints

and project duration constraints are included in the formulation. A multiple-step heuristic

algorithm is proposed to solve the model. The algorithm is composed of a constructive heuristic,

 11

a local search algorithm including two types of neighborhood structures, and a two-step

feasibility heuristic. Case studies with real-world data have shown that the proposed approach is

able to bring improvements to both solution quality and efficiency.

Chapter 6 summarizes this dissertation and discusses future research directions.

 12

CHAPTER 2 LITERATURE REVIEW

This chapter reviews a few existing studies on the track inspection scheduling problem (TISP)

and the production team scheduling problem (PTSP)
3
. The problem definition and solution

approaches will be briefly introduced. This chapter also reviews two most commonly-used

optimization models for network routing and scheduling problems: vehicle routing problem

(VRP) model and time-space network (TSN) model, and the algorithms that could be used to

solve these problems.

2.1 Track Maintenance Problem Review

2.1.1 Track Inspection Scheduling Problem

One important characteristic of TISP is the inspection frequency requirement. The railroad

network can be divided into many segments, each of which requires periodic inspection. If a

segment is not inspected for a long time, its risk of having track defects increases and accidents

may occur. Therefore, a railroad company usually has a fleet of inspection vehicles (teams) that

travel through the railroad network and inspect the track continuously.

Morales et al. (2008) studied a geometry inspection scheduling problem (GISP) which is one

of the TISPs. Besides the inspection frequency requirement, some constraints for rail-bound

inspection vehicles were also considered. These constraints include crew change point

constraints and track restrictions such as directionality, sharp-turn constraints and multiple tracks.

The inspection territories of vehicles were pre-determined as input data, and the model scheduled

3
 The job-to-project clustering problem (JTPCP) is a new problem with no prior research.

 13

one vehicle at a time. The model enumerated all possible day routes as decision variables, and

could usually be solved by a commercial integer programming solver within 12 hours. What-if

analysis was used to reassign territories among inspection teams in order to balance workload

and improve the solution.

Routine track maintenance scheduling, such as rail grinding scheduling, are subject to track

inspection frequency requirements (which is similar to TISP). Unlike PTSP, the routine track

maintenance scheduling problem (RTMSP) does not have a set of pre-planned one-time

maintenance activities (i.e., projects) as input. Instead, their input is a set of track segments

which require periodic maintenance. Therefore, RTMSP can usually be solved in a similar way

as TISP but not as PTSP. Derinkuyu et al. (2010) recently studied a rail grinding scheduling

problem in a Class I railroad and developed an optimization model whose objective was to

minimize the deviations of grinding activities from the given set of desired maintenance

frequencies. A heuristic algorithm was developed to solve the problem. Retharekar and

Mobasher (2010) studied a preventive maintenance scheduling problem. Constraints related to

various factors such as train schedules and desired maintenance frequencies are considered. They

also used a heuristic algorithm to solve the problem.

2.1.2 Production Team Scheduling Problem

Many studies have investigated the problems of highway infrastructure maintenance planning in

either long-term or short-term horizons (see a comprehensive review in Ng et al., 2009). The

impacts of maintenance activities on traffic operations are usually represented by traffic delay

and congestion. Long-term planning problems mostly focus on developing strategies to schedule

maintenance projects with or without traffic rerouting options such that the long-run operational

 14

cost is minimized under limited investment budget (e.g., Golabi and Pereira, 2003; Ouyang and

Madanat, 2004, 2006; Ouyang 2007; Durango-Cohen and Madanat, 2008; Unnikrishnan et al.,

2009; Li et al., 2010). Short-term planning mostly focuses on mitigating instant traffic delays

(Cheu et al., 2004; Ma et al., 2004; Jiang and Adeli, 2004). Studies have also been conducted on

the maintenance of other types of transportation networks, such as water pipe networks (Dridi et

al., 2008), where disruption of “traffic” should also be considered.

The maintenance scheduling problems of railroad track are usually very different from their

highway counterparts. For example, railroad maintenance projects normally involve the

transportation of large machinery over a large spatial area (e.g., the entire railroad network), so

the travel costs of the maintenance teams are no longer negligible. Another difference is that

trains are normally considered as discrete objects with very few rerouting options, and thus the

impacts of maintenance activities on traffic operations are usually addressed by specific business

constraints such as mutual exclusion constraints (e.g. no more than one maintenance activities in

neighboring track sections should be carried out simultaneously). The railroad companies usually

have many such rules which turn out to significantly increase the complexity and computational

difficulty of the problem. These unique properties postulate the need for different model

formulations and solution techniques.

Track maintenance scheduling problems (TMSP) have been studied only in recent years, and

most existing studies focused on project-level TMSP on a single railroad track segment. Higgins

(1998) and Higgins et al. (1999) developed a mathematical model to determine the assignment

and schedules of maintenance teams so as to minimize the disruption of train operations. The

model considered budget constraints, train schedules, crew travel times, and various

interrelations among maintenance activities. The model was applied to a short-term project-level

 15

scheduling problem (a project lasting for several days on a track segment) and was solved by

tabu search. Lake et al. (2001) modified the model to minimize the total maintenance costs,

while team set-up and take-down times are also incorporated. Cheung et al. (1999) solved a

resource-allocation problem for a railroad segment to optimize the assignment of maintenance

activity requests based on priorities. Budai et al. (2006) discussed a preventive maintenance

scheduling problem in which short-time routine activities and long-time unique projects are

formulated differently. Zante-de Fokkert et al. (2007) developed a model to improve workers’

safety by minimizing the number of night maintenance activities.

Very limited research has been done for TMSP in a large-scale railroad network. Network-

level problems often involve hundreds of projects and complex relationships among them, and

thus pose a much larger number of side constraints. For example, in order to reduce the impact

on traffic operations, different railroad subdivisions (i.e., a section of tracks defined by railroads)

incident to a junction (i.e., a place where multiple rail routes converge or diverge) or in a corridor

(i.e., a route with heavy traffic traversing multiple subdivisions) are not allowed to have ongoing

maintenance activities at the same time. PTSP is one of such network-level TMSP. The

prohibiting complexity associated with large-scale PTSP prevents existing mixed integer

programming (MIP) solvers, e.g. CPLEX (ILOG, 2006), from obtaining an optimal or even

feasible solution.

Li et al. (2009) studied a version of PTSP with three types of costs: fixed team costs, travel

costs and preference costs, and three types of side constraints: simultaneity, non-simultaneity and

precedence constraints. In their problem, the number of teams is not fixed and is endogenously

determined by the model. The problem was formulated into a TSN model. In order to solve the

large-scale problem instance with MIP solver efficiently, both network and side constraints were

 16

significantly consolidated to reduce the number of variables and constraints. After preprocessing,

the input data contained about 200 maintenance jobs, 300 side constraints, 9 network vertices

and 72 network edges. An incremental solution strategy was also applied and was reported to be

able to greatly reduce the solution time. However, the details about the algorithm have not been

disclosed so far.

Gorman and Kanet (2010) studied a similar version of PTSP as the one studied by Li et al.

(2009). In their problem, a production team is allowed to stay idle without doing any work, and

the duration of a project is related to its start time. Two different models, TSN model and job

scheduling model, were used to formulate the problem. The TSN formulation was solved with

MIP solver, and the job scheduling formulation was solved with both constraint programming

and genetic algorithm. Similar to Li et al. (2009), an approximation was applied to geographic

and time definitions of TSN formulation in order to reduce its scale. A small problem instance

with 16 projects and 7 side constraints was used to test and compare the three algorithms, and

TSN formulation with MIP algorithm was recommended for large-scale problems. They reported

that acceptable solutions to the real-world large-scale problems can be obtained in 6 hours by

commercial MIP solver, but did not disclose the exact problem instance scale.

Bog et al. (2010) studied a different version of PTSP from another Class I railroad. Mutual

exclusion, time window and precedence constraints were considered. A k-weekly incremental

algorithm with backtracking was developed to solve the problem. The formulated problem was

solved with MIP solver incrementally. Every time the problem was solved, only k weeks are

considered and projects are added to the schedule to fill the k weeks. If no side constraints are

violated, the model fixed the newly-added projects. Otherwise the model fixed a gradually

decreasing number of projects and re-solved the k weeks. Travel costs were only considered

 17

between the last fixed projects and the first unfixed projects. In that way, the number of variables

was greatly reduced at the cost of the loss of optimality. The model was applied to large-scale

problem instances. It was reported that the model was not able to satisfy all side constraints, but

the numbers of side constraints were not reported.

Nemani et al. (2010) studied the same version of PTSP as that of Bog et al. (2010). They

presented four solution approaches: TSN model, duty generation model (DGM), column

generation model and decomposition-based heuristics with DGM. In decomposed DGM, DGM

was first used to obtain an initial solution without considering travel costs. Then the problem was

decomposed week-wise, and subproblems were solved separately. All four approaches were

applied to the same problem instances used by Bog et al. (2010), and the results were compared

with those obtained by k-weekly progressive algorithm with backtracking proposed by Bog et al.

(2010). Only decomposed DGM was able to obtain better solution, but it was still not able to

satisfy all side constraints.

Peng et al. (2010) developed a TSN model for a PTSP which is similar to the one studied by

Nemani et al. (2010) and Bog et al. (2010). The difference was that the exact travel costs and one

more type of side constraint, preference constraints, were considered. A clustering model was

used to obtain an initial solution. Then multiple neighborhood search was used to improve the

solution. Two types of searches, decomposition and restriction, and project interchange, were

used. Their proposed model and algorithm were adopted by a Class I railroad company.

2.2 Optimization Models and Algorithms

Scheduling (or timetabling) problem is a very broad class of optimization problems (Leung,

2004), including shop scheduling problems (Pinedo, 1995; Lee et al., 1997) and staff scheduling

 18

problems (Tien and Kamiyama, 1982; Balakrishnan and Wong, 1990). Generally, a scheduling

problem takes the following input information: (i) a set of activities (or jobs, duties) which are to

be performed, (ii) a set of teams (or machines, employees) which are used to perform the

activities, and (iii) a scheduling time horizon. The output includes a schedule with two

dimensions: team dimension and time dimension. Every activity is assigned to a point in the

schedule with both team coordinate and time coordinate. In other words, every activity is

assigned to a team and scheduled with a start time. Scheduling problems usually have some side

constraints related to different activities and teams. Such side constraints may include (i) time

window constraints, which require an activity to be performed within certain time windows, (ii)

preference constraints, which require an activity to be performed by certain teams, and (iii) more

complex constraints interrelating multiple activities and/or teams, such as precedence constraints

which require an activity to be performed before another one. Those side constraints greatly

increase the difficulty of finding the optimal schedule (or even a feasible schedule). In practice,

because different scheduling problems may have different side constraints, different customized

algorithms are usually developed to solve them efficiently.

Both TISP and PTSP are scheduling problems. They take as input a set of activities

(inspection tasks or maintenance projects) and a set of teams (inspection teams or production

teams) to perform these activities. However, they are different from the conventional scheduling

problems because their activities are spatially-distributed in the railroad network. After finishing

an activity, the team cannot start working on the next activity immediately. It must first travel a

distance from the location of the finished activity to the location of the next activity. Such

traveling has two possible impacts on the problems: 1) the time spent traveling may need to be

considered, which postpones the start time of the next activity; and 2) the costs spent traveling

 19

may need to be considered, which add an additional term of travel costs to the objective function

of the model. Problems considering such travel time and/or travel costs between spatial points

are usually called routing problem, which is also a very broad class of optimization problems.

Typical routing problems include the traveling salesman problem (TSP), where there is only one

team, and the vehicle routing problem (VRP), where there are multiple teams (Dantzig and

Ramser, 1959; Toth and Vigo, 2001).

Scheduling problems and routing problems have some common features (i.e., a set of

activities and a set of teams), and there is no distinct boundary between them. Travel time/costs

in routing problems can be considered as transition time/costs between activities in scheduling

problems, and side constraints such as time window and precedence constraints in scheduling

problems can also be imposed on routing problems (Selensky, 2001; Beck et al., 2002).

Generally, if a problem mostly focuses on variables and constraints in the spatial dimension, i.e.,

those related to a pair of consecutively performed activities, then it is often classified as a routing

problem; on the other hand, if it focuses on the temporal dimension, e.g., precedence constraints,

then it is often classified as a scheduling problem. Due to such difference, routing problems and

scheduling problems are usually solved using different algorithms (Beck et al., 2003). Selensky

(2001) have tested scheduling algorithms on some benchmark routing problem instances, and

also routing algorithms on some benchmark scheduling problem instances. It was found that the

performances of algorithms were greatly degraded in both cases.

TISP and PTSP should be considered as both routing and scheduling problems, because

variables and constraints in both spatial and temporal dimensions are equally important. Such

problems in the literature are usually formulated as routing problems, where variables and

constraints in the temporal dimension are considered in side constraints (e.g., VRP with time

 20

windows; see Soloman, 1987; and more complex problems; see Li et al., 2009 and Bog et al.,

2010). In our research, TISP and PTSP are also formulated as routing problems with side

constraints. JTPCP does not involve the time dimension. Therefore, it can be naturally

formulated as a routing model with side constraints, and its core model (i.e., the routing problem

model) is similar to those of TISP and PTSP.

Ignoring the side constraints, the core part of a routing problem can be described as follows:

Let I  be a set of spatially-distributed activities representing tasks, projects, etc., each of which

corresponds to a spatial location. We use index i I to represent both an activity and its

location. Let K be a set of teams which are used to perform those activities. Let starti and endi be

respectively the start location and end location of all teams (they can be considered as “dummy”

activities). Let start end{ } { }I I i i   . The movement of team k K from location i I to

location j I incurs ijkc and ijkt , which respectively represent the cost and time needed to

complete activity i I and travel between ,i j I . For simplicity, we assume 0ijkt  when

starti i or endi i . The typical objective is to determine the schedule of activities so that all

activities are completed within a time horizon and the total costs are minimized.

The routing (or scheduling) problems are mostly solved with either a mixed integer

programming (MIP) algorithm or a heuristic algorithm. If an MIP algorithm is used, the problem

must be first formulated into an MIP model. In the following subsections, we will first review

two conventional MIP models for scheduling and routing problems (i.e., VRP model and TSN

model) and the corresponding MIP algorithms. Then we will review some well-known heuristic

algorithms.

 21

2.2.1 Vehicle Routing Problem Model

VRP model has been widely applied to real world problems; e.g., in the context of distribution

systems between depots and customers. Let { }ijkxx be a set of binary variables so that 1ijkx 

if team k K perform activity j I right after activity i I (i.e., team k K moves directly

from location i I to j I), and 0ijkx  otherwise. So x determines the routes of all teams.

Let decision variables { }iuu be the start time for activity i I to be performed by some team

(without losing generality, we can enforce
start

0iu ).

Figure 2. Illustration of vehicle routing problem model.

Figure 2 illustrates a simple problem instance formulated by the VRP model. A feasible

schedule is also shown. Circles represent activities (and locations). There are five locations

(including starti and endi), and three tasks at locations 1, 2 and 3. Suppose 2ijkt  for activity 3i  ,

and 1ijkt  for 1,2i  , ,j I k K   . There are two teams in the problem instance. Solid arrows

represent the route of team 1, and dashed arrows represent that of team 2. It can be seen that both

teams leave start location starti at time
start

0iu  . Then team 1 consecutively visits locations 1 and

1

starti

2

3

endi

Team 1

Team 2

1 1u 

3 1u 

2 2u 

start
0iu 

 22

2 respectively at time 1 1u  and 2 2u  , and finishes its travel at end location endi . Team 2 visits

location 3 at time 3 1u  , and then travels to endi .

The VRP model is formulated as:

(VRP) min ijk ijk

i I j I k K

c x
  

 , (2.1)

s.t.

start

1i jk

j I

x


 , k K  , (2.2)

 0jik ijk

j I j I

x x
 

   , ,i I k K   , (2.3)

 1ijk

j I k K

x
 

 , i I  , (2.4)

 (1)i ijk ijk ju t U x u    , , ,i j I k K   , (2.5)

  0,1ijkx  , , ,i j I k K   . (2.6)

Here U is a number no smaller than the maximum possible value of
endiu . Objective (2.1)

minimizes the total costs. Constraints (2.2) and (2.3) are flow conservation constraints, ensuring

a team starts from location starti , performs activities at a sequence of locations, and arrives at

location endi . Constraints (2.4) require each activity (except starti and endi) is performed exactly

once. Constraints (2.5) ensure that if any two activities are performed by a team consecutively,

the finish time of the preceding one must be earlier than the start time of the succeeding one.

These constraints are necessary even if the time dimension does not need to be considered in the

 23

problem (i.e., there is no costs or constraints related to the time dimension), because they also

eliminate subtours (i.e., some infeasible solutions). Constraints (2.6) are binary constraints.

Although the value of U does not impact the correctness of the model (as long as it is

sufficiently large), a small U is preferred because it could generally improve the solution speed

by MIP algorithms. A loose lower bound of U can be calculated as max max ijk
k K j I

i I

t
 



 , because

end
max maxi ijk

k K j I
i I

U u t
 



   . However, if the scheduling horizon length U is predetermined, a

constraint should be added to the model:

endiu U , (2.7)

which requires that all teams arrive at endi by time U . This constraint can also tighten the model.

Conventional VRP allows a team to wait after performing an activity, but in track

maintenance problems, a team may be required to immediately move to the next activity after

performing an activity. In that case, another set of constraints should be added to the model:

 (1)j ijk i ijku U x u t    , end, \{ },i j I i k K   . (2.8)

With these constraints, the start time of all activities are determined once the routes of teams are

determined, i.e., ()u u x .

In conventional VRP, an activity is generally assumed to be located at a single spatial point.

But in our context, an activity is usually defined continuously along a track segment; i.e., a team

starts from one endpoint of the segment, performs the activity while moving along the track, and

 24

finishes the activity at the other endpoint. Because such track segment may be as long as a few

hundred miles, it can hardly be assumed as a single point; otherwise the calculations of travel

costs and travel time will have large errors. Therefore, when we formulate the optimization

models for such track maintenance problems, the direction of working on an activity (i.e., which

endpoint of the segment the team starts from) will be addressed.

Various side constraints are usually added to the VRP model to describe additional practical

issues such as vehicle capacity constraints, route length constraints, pickup and delivery

constraints, and time window constraints (Toth and Vigo, 2001). The time window constraints

are the most relevant to railroad track maintenance problems. Typically, the time window

constraints require an activity i I is performed within a given time interval ,min ,max[,]i iu u

(Solomon, 1988), as follows:

,min ,maxi i iu u u  , i I  . (2.9)

Many algorithms have been developed to solve VRP with time windows (VRPTW), including

both MIP and heuristic algorithms (Laporte, 1992; Toth and Vigo, 2001; Kallehauge et al., 2005;

Kallehauge, 2008). Among them, MIP algorithms include column generation and Dantzig-Wolfe

decomposition (Desrochers, et al., 1991), Lagrangian decomposition (Halse, 1992), Lagrangian

relaxation (Kohl and Madsen, 1997) and other extensions, variants and hybrids.

De Jong et al. (1996) extended VRPTW to VRPMTW (i.e., VRP with multiple time

windows), where an activity is allowed to be performed within multiple time intervals. Ibaraki et

al. (2005) studied a more general version, vehicle routing problem with general time windows

(VRPGTW), where time window constraints are allowed to be violated at some penalty costs,

 25

and the penalty function of the start time of an activity can be of any piecewise linear form.

These more general time window constraints are non-convex, and are difficult to solve using

MIP algorithms. Therefore, heuristics such as local search algorithms were used to solve them

(De Jong et al., 1996; Ibaraki et al., 2005). In track maintenance problems, time window

constraints can be piecewise linear (similar to those in VRPGTW), and there are even more

difficult side constraints.

Periodic vehicle routing problem (PVRP) (Beltrami and Bodin, 1974; Christofides and

Beasley, 1984; Francis et al., 2008) is a variant of VRP. In PVRP, activities are performed

periodically at a spatial location, which is similar to the cases in TISP and RTMSP. In PVRP,

every location has a fixed frequency at which the activities are performed, and a set of candidate

schedules, which is defined as a set of time points when activities are performed. For example,

for a location that needs service three times a week, two possible schedules are MWF

(performing activities on Monday, Wednesday and Friday) and TRS (Tuesday, Thursday and

Saturday) (Beltrami and Bodin, 1974). Francis et al. (2006) extended the PVRP to PVRP with

service choice (PVRPSC), where the service frequency of a location is no longer fixed, and

candidate schedules with different frequencies for a location are allowed. The model was solved

using Lagrangian relaxation combined with branch and bound procedure. Other studies on PVRP

include Alonso et al. (2008) and Coene et al. (2010).

Despite some similarities with regard to periodic scheduling and routing, PVRP (including

PVRPSC) are fundamentally different from the track maintenance problems (such as TISP). First,

the inspection or maintenance periods in track maintenance problems are usually as long as one

month or one year, and the periods are required to be flexible. For example, suppose the

inspection frequency of a track segment is 60 days and the flexibility of schedule is +/-15 days.

 26

Assume the segment has been inspected on the 0th day, i.e., right before the beginning of the

scheduling horizon, then the first inspection activity in the scheduling horizon could be

scheduled on any days between the 45th day and the 75th day. Each of these 31 possible dates

for the first inspection satisfies the inspection requirement. Once the first inspection date is

determined, the date of the second inspection activity on this segment also has 31 choices. This

leads to 31 31 900  candidate schedules for the first two inspections. If the scheduling horizon

is one year, there will be about 6 inspection activities on this segment during the year, and the

total number of candidate schedules will be about 6 831 9 10  . It is obviously impractical to

formulate this problem into PVRP and enumerate all candidate schedules as the model input.

Furthermore, PVRP assumes that an activity is always performed within one day. In track

maintenance problems, however, it is very common that an activity is performed across multiple

days: an activity may be interrupted at the end of a day and be resumed at the beginning of the

next day, or its duration is longer than one day and must be performed on multiple days. This

makes the predetermination of all candidate schedules even more impractical. Therefore,

conventional PVRP cannot be applied to periodic track maintenance problems directly.

2.2.2 Time-Space Network Model

In the special case that the scheduling horizon can be discretized into a set of time points W (e.g.,

ijkt is an integer, or it can be approximated into integers by scaling the time unit), the routing and

scheduling problems can also be formulated into a time-space network (TSN) model. Let

{ }ijkwx x be a set of binary variables so that 1ijkwx  if team k K moves directly from

location i I to location j I at time point w W , and 0ijkwx  otherwise. So x determine

 27

the routes of all teams. Let startw W be the time when all teams leave location starti . Without

losing generality, we can assume start 0w  .

Figure 3. Illustration of time-space network model.

Figure 3 illustrates a feasible schedule for a simple problem instance in the form of a TSN

model. Both the problem instance and the schedule are exactly the same as those in Figure 2. The

only difference is that the formulation is changed from VRP model to TSN model. It can be seen

that the spatial locations (i.e., location 1, 2 and 3) are duplicated at every discrete time point. So

a circle now represents both a spatial location and a time point. The teams start from location

starti at time start 0w  , and then they respectively go to locations 1 and 3 at time 1. After visiting

location 1, team 1 continues its travel and arrives at location 2 at time 2. This figure illustrates

how variables iu are removed from the model by extending variables ijkx into multiple

duplicates ijkwx .

1

starti

2

3

endi

Team 1

Team 2

1 2

3

Time 0

Time 1

Time 2

 28

The TSN model can be formulated as:

(TSN) min ijk ijkw

w W k K i I j I

c x
   

 , (2.10)

s.t.

start start

1i jkw

j I

x


  , k K  , (2.11)

() 0

ijkjik w t ijkw

j I j I

x x

 

    , , ,i I k K w W    , (2.12)

\{ }

1ijkw

w W k K j I i

x
  

   , i I  , (2.13)

  0,1ijkwx  , , , ,i j I k K w W    . (2.14)

Objective (2.10) minimizes the total costs. Constraints (2.11) and (2.12) are the flow

conservation constraints, ensuring a team starts from location starti at time point startw , performs

activities at a sequence of locations, and arrives at location endi . Constraints (2.13) require each

activity (except starti and endi) are performed exactly once. Constraints (2.14) are binary

constraints. If there are no side constraints besides this core model, there is always an optimal

solution with binary flows even if (2.14) is removed. However, if there are additional side

constraints, the binary constraints (2.14) may impact the optimal objective value.

If the team must immediately move to the next activity after performing an activity, another

set of constraints should be added to the model:

 0iikwx  , , ,i I k K w W    . (2.15)

 29

VRP model and TSN model are similar but have a few differences. VRP model uses

continuous variables u to represent the start times of activities, while TSN model uses an

additional subscript w W . VRP model uses U as the scheduling horizon length, while TSN

model uses the largest element in W , i.e., max
w W

w U


 (“  ” is used because there may be

approximation during the discretization of scheduling horizon). TSN model can be viewed as an

approximation of VRP model: the discretization of the continuous scheduling horizon may cause

loss of accuracy, but a set of discrete points can always be found in a continuous horizon, which

means TSN model can always be translated into VRP model exactly, but the reverse is not true.

TSN model has been applied to many real-world problems with difficult side constraints,

such as railroad track maintenance scheduling (Li et al., 2009; Gorman and Kanet, 2010; Peng et

al., 2010), railroad transportation scheduling (Florian et al., 1976; Kwon et al., 1998; Ahuja et al.,

2005), airline scheduling (Jarrah et al., 1993; Hane et al., 1995; Thengvall et al., 2000), bus

scheduling (Kliewer et al., 2006; Steinzen et al., 2010) and military convoy scheduling

(Chardaire et al., 2005). These problems are usually solved using MIP algorithms. For example,

Hane et al. (1995), Ahuja et al. (2005), Kliewer et al. (2006), Li et al. (2009), Gorman and Kanet

(2010), Peng et al. (2010) and Steinzen et al. (2010) all used some MIP software in their

algorithms. Some customized MIP methods may also be applied, such as interior-point algorithm,

dual steepest edge simplex and cost perturbation (Hane et al., 1995), dynamically adding strong

inequalities (Li et al., 2009), and Lagrangian relaxation and column generation (Steinzen et al.,

2010).

Generally, VRP models are more focused on side constraints in the spatial dimension (i.e.,

more routing oriented), and TSN models are more focused on those in the temporal dimension

(i.e., more scheduling oriented). The performance of the VRP model or the TSN model largely

 30

depends on the specific problem structure. Clearly, TSN model cannot be used if the time

horizon cannot be discretized. For example, in the case that activities can be performed at any

time within the scheduling horizon, the horizon is usually discretized into equal intervals. The

unit of such interval should be small enough to represent the smallest ijkt in order to avoid losing

accuracy. Then the number of discrete time points, W , approximately equals to the scheduling

horizon length U divided by the length of discretized interval. If some ijkt is much smaller than

U , the interval length will be much smaller than U , and W will be very large. Because the

number of variables ijkwx is proportional to W , a large W will require many variables, making

the model very difficult to solve. In that case, the TSN model is not appropriate.

Some past research has focused on comparing the performances of the TSN model and the

VRP model. Steinzen et al. (2010) found that the TSN model outperformed the VRP model for

their bus scheduling problem. The reason is that the bus departure/arrival time is fixed in their

problem, so it is easy to discretize the time horizon without introducing a large number of

variables. Reversely, the multi-resource routing problem (MRRP) with flexible tasks is usually

formulated into VRP model but not TSN model, because the latter involves more intensive

computation (Francis et al., 2007). Peng et al. (2010) formulated a PTSP using both VRP model

and TSN model, and tested them on some moderate-scale problem instances using MIP solver

CPLEX. They found that CPLEX failed to solve VRP model within a reasonable time, but it was

able to solve the corresponding TSN model.

In general, scheduling and routing problems with conventional VRP-type side constraints,

such as vehicle capacity and route length constraints, are usually formulated into VRP model and

solved with VRP algorithms. For problems with other types of side constraints (e.g., the railroad

 31

scheduling and airline scheduling problems reviewed in this subsection), the TSN model is

usually more suitable when the temporal discretization is possible, and the model can often be

solved using MIP algorithms. Intuitively, the TSN model has an underlying flow network

structure and its constraint coefficient matrix is closer to being totally unimodular --- this feature

favors MIP algorithms. Reversely, the VRP model typically includes constraints (2.5), which

correlate binary variables x to real variables u using a large number U . Such constraints are

generally difficult to solve using general MIP algorithms.

2.2.3 Heuristic Algorithms

Practical routing and scheduling problems usually have a large number of variables and complex

side constraints. MIP algorithms, such as linear relaxation, Lagrangian relaxation (Fisher, 1981),

column generation (Ford and Fulkerson, 1958; Dantzig and Wolfe, 1960) and Benders’

decomposition (Benders, 1962), are usually not able to solve such large-scale problem instances

efficiently. For example, Nemani et al. (2010) found that column generation does not perform

well on a PTSP. Some other algorithms, such as direct tree search methods and dynamic

programming (Laporte, 1992), are also developed for routing and scheduling problems. But they

are not widely-used, because their solution time for large scale problems is usually prohibitive.

Gorman and Kanet (2010) found that constraint programming is very slow for a PTSP. Therefore,

most research has focused on developing various heuristic algorithms for large-scale routing and

scheduling problems. For heuristics algorithms, it is not necessary to formulate the problem into

a mathematical model, although a mathematical formulation may be helpful to describe the

problem.

 32

Heuristic methods can be divided into two categories: constructive heuristics and

improvement heuristics. Constructive heuristics build a solution from scratch, while

improvement heuristics improve an existing solution. In some implementations, constructive

heuristics are used as the first step to obtain an initial solution, and then improvement heuristics

are applied to make improvements. In some so-called “incremental algorithms”, constructive and

improvement heuristics are applied iteratively. Heuristics may also be combined with other

solution approaches. For example, constructive heuristic can provide an initial solution for MIP

algorithms (such as Lagrangian relaxation), or a relaxed MIP model can be solved to provide an

initial solution for improvement heuristics.

Constructive heuristics proposed for VRPTW includes “I1” by Solomon (1987), where

every route is initialized with a “seed” activity and the remaining unscheduled activities are

added to the route until its total duration reaches the scheduling horizon. A parallel version of I1

by Potvin and Rousseau (1993) initializes all routes at once and then adds the remaining

unscheduled activities one by one. Another I1-based algorithm by Ioannou et al. (2001) inserts

activities in a way that the impact on all customers is minimized. A comprehensive review can

be found in Braysy and Gendreau (2005). For large-scale routing and scheduling problems with

many side constraints, constructive heuristics may be more customized and complex. Examples

include the incremental algorithm with backtracking for a PTSP (Bog et al., 2010).

Improvement heuristics can be further divided into two categories: single-solution based

heuristics and population-based heuristics (Talbi, 2009). Single-solution based heuristics only

keep one “current solution” in memory. Examples include local search, simulated annealing, and

tabu search. Population-based heuristics keep a population of candidate solutions. Examples

include genetic algorithms and ant colony algorithms. A categorized bibliography of

 33

improvement heuristics applied in VRP-type problems can be found in Gendreau (2008). Most

studies on railroad routing and scheduling problems are based on single-solution based

improvement heuristics. Gorman and Kanet (2010) tried a genetic algorithm on a PTSP, but its

performance was not as good as MIP algorithm (with the TSN model). In this study we will

focus on the development and implementation of single-solution based improvement heuristics.

The most commonly-used single-solution based improvement heuristics are local search (or

neighborhood search) algorithms, which are often found to be the most efficient and effective

way to solve large-scale routing and scheduling problems (Funke et al., 2005). A local search

algorithm defines a neighborhood structure for the problem, so that every solution to the problem

has a set of neighbors in the solution space. Local search starts from an initial solution as the

current solution and searches among its neighbors. If a neighbor satisfies certain criteria (e.g., it

has lower costs than the current solution), the algorithm sets that neighbor as the current solution

and starts searching the neighborhood of this new solution. Such an update to the current solution

is called a “move”. Local search is also the most fundamental type of single-solution based

improvement heuristic. Many more complex heuristics, such as simulated annealing and tabu

search (Osman, 1993), are based on local search.

For routing and scheduling problems, there are two categories of most commonly-used

neighborhood structures: node interchange and edge interchange. Use kI to denote the locations

visited by team k K . Use
1 2, , ,

k
k k k I
i i i to denote the route of team k K , i.e., the team visits

locations
1 2, , ,

k
k k kk I
i i i I in the order of

1 2, , ,
k

k k k I
i i i . This route can be viewed as a path

composed of nodes and directed edges, respectively representing locations, i.e., koi , 1, , ko I ,

and travels between locations, i.e., (1)(,)ko k oi i  , 1, , 1ko I  . Define a “block” as a sequence of

 34

consecutive nodes on the route, i.e., (1) (1), , ,ko k o k a oi i i   , where a is the number of nodes in the

block. Define the “position” of block (1) (1), , ,ko k o k a oi i i   as ,k o  , i.e., both its team and its

position in the route. A block can contain 0 nodes. In that case it only represents a position

,k o  .

In a node interchange, n blocks (containing 1, , na a nodes, respectively) interchange their

positions. Let ,m mk o  be the position of block 1, ,m n . One possible interchange scheme

is to let block m take block (1)m ’s position 1 1,m mk o   for 1, , 1m n  , and block n take

block 1’s position 1 1,k o  . Ignoring the detailed interchange scheme, a node interchange can

be represented by n integer numbers 1(, ,)na a . Some special cases of node interchange are

widely used. For example, the (0, 1) interchange is also called “insertion” or “relocation”

(Savelsbergh, 1992), as illustrated in Figure 4(a). It moves a single node from one route to

another or some other position of the same route. The (1, 1) interchange is also called

“exchange” or “swap” (Savelsbergh, 1992), as illustrated in Figure 4(b). It swaps the positions of

two nodes. Figures 4(c) and (d) illustrate node interchanges with blocks containing more than

one node. For an 1 2(,)a a interchange, if both 1a and 2a are no larger than a constant  , it is

called an  -interchange (Osman, 1993). For example, Figures 4(a)-(d) are all 2-interchanges,

but only (a) and (b) are 1-interchanges. If both 1a and 2a are larger than 0, it is called CROSS-

exchange (Taillard et al., 1997). Figures 4(b) and (d) are CROSS-exchanges but (a) and (c) are

not. An (1, ,1) interchange with arbitrary n is called an ejection chain (Glover, 1992); an

example with 2n  is given in Figure 4(b).

 35

Figure 4. Examples of node interchange.

In an edge interchange, n edges in the current solution are replaced by another set of n

edges. If these edges are from different routes, such move is called n -opt* (Potvin and Rousseau,

1995). Figure 5(a) illustrates a 2-opt* exchange. If these edges are from the same route, such

move is called n -opt (Russell, 1977). Figure 5(b) illustrates a 2-opt interchange, and (c)

illustrates another possible 2-opt interchange when the start node and the end node of the route

are the same (i.e., the start and end locations of teams are the same). In n -opt, the direction of

(a) (0, 1) interchange (b) (1, 1) interchange

(c) (0, 2) interchange (d) (1, 2) interchange

 36

part of the route may be reversed, which will change the start time of activities dramatically and

is likely to cause violations to side constraints related to the time dimension. In 2-opt, such

reversion cannot be avoided. In 3-opt, there is only one possible move which does not cause

reversion on edges which are not exchanged, as illustrated in Figure 5(d). This 3-opt is also

called the Or-opt (Or, 1976).

Figure 5. Examples of edge interchange.

(a) 2-opt* interchange (b) 2-opt interchange

(d) Or-opt interchange (c) Another 2-opt interchange

 37

Besides the above-mentioned neighborhood structures, many other moves are also

developed, such as GENI-exchange (Gendreau et al., 1992) and cyclic transfers (Thompson and

Psaraftis, 1993). A comprehensive review can be found in Braysy and Gendreau (2005) and

Funke et al. (2005).

The implementation of a heuristic usually requires customized algorithm design based on

the characteristics of the specific problem, and its computational performance highly depends on

the problem structure and even the input data. Therefore, although the algorithms developed by

previous studies can serve as useful references, it is very important to adapt and further improve

them for the railroad track maintenance problems.

 38

Glossary of Symbols

ijkc : Costs for team k K to perform activity i I and to move from location

i I to location j I ,

I : Set of locations; start end{ } { }I I i i   ,

I  : Set of activities (or locations with an activity),

endi : End location of all teams,

kI : Set of locations visited by team k K ,

koi : The o th location visited by team k K ,

starti : Start location of all teams,

K : Set of teams,

ijkt : Time for team k K to perform activity i I and to move from location

i I to location j I ,

{ }iuu : Time when some team arrives at location i I ,

,maxiu : The latest time when activity i I can be performed,

,miniu : The earliest time when activity i I can be performed,

U : Scheduling horizon length,

W : Set of discrete time points,

startw : Time when all teams leave location starti ,

{ }ijkxx : Binary variables indicating if team k K moves directly from location i I

to location j I ,

{ }ijkwx x : Binary variables indicating if team k K moves directly from location i I

to location j I at time point w W .

 39

CHAPTER 3 TRACK INSPECTION SCHEDULING

3.1 Introduction

Railroads use a fleet of track inspection vehicles (and associated crews) to examine the status of

tracks all over the railroad network, so that the track defects can be identified and repaired in

time and potential train accidents can be avoided. This study considers two categories of track

inspection activities: rail inspection and geometry inspection. In rail inspection, rail tracks are

inspected for defects from bending and shear stresses, wheel/rail contact stresses, and thermal

stresses, etc. Geometry inspection inspects geometric parameters such as alignment, curvature,

crosslevel, gauge, and rail profile.

Rail inspection and geometry inspection are performed by rail inspection teams and

geometry inspection teams respectively. Railroad network is divided into hundreds of segments

in order to schedule the inspection activities (i.e., “tasks”). Each segment should be inspected

periodically at a certain frequency (which generally varies from once a month to once a year) to

ensure the safety of train operations. A track inspection schedule includes the assignment of the

tasks to teams as well as the start times of the tasks such that the required inspection frequencies

are satisfied for the segments. It should also satisfy a variety of other business constraints such as

geographic preference, non-simultaneity and time window constraints. The scheduling horizon is

normally in the short term (e.g., a few weeks long), while the schedule is updated more

frequently (sometimes on a daily basis) to address unexpected events (e.g., the delay of a task or

the breakdown of a vehicle). In additional to short-term scheduling, long-term planning is also

needed in order to determine the optimal number of inspection teams and to balance the

workload through the year.

 40

 Currently, track inspection scheduling is mostly manually performed in the railroad

companies. Since the rail inspection scheduling problem (RISP) and the geometry inspection

scheduling problem (GISP) share some similar features, this chapter proposes a mathematical

model for the general track inspection scheduling problems (TISP) and develops a customized

algorithm to efficiently solve the model. This general TISP model can be used to solve both

RISP and GISP.

3.2 Model and Algorithm Selection

TISP is a routing and scheduling problem. There are generally three approaches to solve such

problems: (i) vehicle routing problem (VRP) model with mixed integer programming (MIP)

algorithms, (ii) time-space network (TSN) model with MIP algorithms, and (iii) heuristic

algorithms. As discussed in Chapter 2, VRP model with MIP algorithm has been applied to many

routing and scheduling problems with certain side constraints, such as VRP with time windows

(VRPTW) and periodic vehicle routing problem (PVRP). However, the computational

performance of these algorithms is not generally good for large scale problems with difficult side

constraints. A typical TISP instance contains thousands of tasks and many difficult side

constraints such as periodicity constraints and non-simultaneity constraints. The problem scale

and complexity far exceed the capability of existing MIP algorithms for VRP models. Therefore,

VRP model with MIP algorithms is not suitable for TISP.

TSN model with MIP algorithms is able to handle larger and more complex problems, but it

requires the time horizon to be discretized into a set of time periods. This treatment is

unfortunately impractical for TISP. In TISP, the duration of a task varies from less than half an

hour to a few weeks. Therefore, the unit of time intervals should be no longer than one hour in

 41

order to ensure accuracy, as discussed in Chapter 2. Suppose that one-hour intervals are used.

Then a typical scheduling horizon of 8 weeks contains about 320 time periods (each week has 40

work hours), which means that the decision variables should be duplicated into 320 copies.

Because the number of decisions variables has already been large without duplication (e.g.,

thousands of tasks and tens of teams), the TSN formulation will be very large-scale and hence

unlikely to be solvable by MIP algorithm within a reasonable amount of computation time (e.g.,

less than one hour, considering the fact that the schedule may need update every day).

Furthermore, for long-term planning (e.g., with a time horizon of one year), the number of

variables will be extremely large and TSN model will be even less practical.

Heuristic algorithms are well-known to be suitable for complex and large-scale optimization

problems, and they often yield good near-optimum solution very quickly. Therefore, heuristics

are chosen to solve TISP. Although an explicit mathematical formulation is not necessary when

heuristic algorithms are used, we still present it to help describe the problem. The formulation

will be based on the VRP model in Chapter 2, because a continuous time dimension is more

precise for TISP.

3.3 Model Formulation

In this section, we will first present a VRP-based core model for TISP, and then different types

of side constraints and costs. As discussed later in this section, most side constraints are very

difficult to handle with MIP algorithms.

 42

3.3.1 Core Model

Let S be the set of track segments to be inspected periodically. Because a segment may be

inspected multiple times in the scheduling horizon, we define a task as a single inspection

activity on a segment. So each segment s S has a set of tasks, denoted as Seg,sI . Let

Seg,s
s S

I I


 be the set of tasks on all segments. Let task,it be the duration of task i I , i.e., the

time needed to inspect the segment.

A track segment has two endpoints, one called the low milepost and the other called the high

milepost. The inspection team starts to perform a task from one endpoint, and completes the task

at the other endpoint. Because a segment may be longer than 100 miles, the two endpoints

generally cannot be represented by the same spatial node, and we need to decide from which

endpoint the team starts a task (i.e., the direction for the team to perform a task). In the model,

the two possible directions of a task are represented by two directed arcs in opposite directions

between the low milepost and the high milepost. Let E be the set of all directed arcs, and iE be

the set of arcs representing the direction of task i I (a task only has two possible directions so

2iE ). Let
1 2travel,e et be the travel time from the head of arc 1e E (i.e., the finish point of the

corresponding task) to the tail of arc 2e E (i.e., the start point of the corresponding task).

Let K be the set of inspection teams. For each team k K , an extra start arc start,ke is added

to E to represent the initial location of a team at the beginning of the scheduling horizon. Both

of its endpoints are at the initial location of the team. In this way, the travel time from the initial

location of team k to any other arcs can be defined.

Let
1 2 1 2{ : , , }e e kx e e E k K  x be the set of binary decision variables for the movements of

teams; i.e.,
1 2

1e e kx  if team k K travels directly from the head of arc 1e E to the tail of arc

 43

2e E ; and 0 otherwise. Let { : }iu i I u be the set of real-valued start times of tasks; i.e., iu

represents the start time of task i I . Because the railroad requires a team immediately move to

the next task once it finishes the current task, u is determined once x is determined, i.e., u can

be written as ()u x . Without losing generality, let the scheduling horizon start at time 0. Let U

be the horizon length as well as the end time of the scheduling horizon.

Let cost item ()C x be the cost function for a certain cost item (e.g., travel costs or side

constraint penalty costs). Because u can be determined by x , cost item ()C x can be written as a

function of x only.

The core model (without side constraints) can be formulated as follows:

(TISP)
cost item

all cost items

min ()C x , (3.1)

s.t.

start,

1
ke ek

e E

x


 , k K  , (3.2)

1 2 2 1

2 2

0e e k e e k

e E e E

x x
 

   , 1 start,\{ },ke E e k K   , (3.3)

1 2 1 2task, travel, (1)i i e e e e k ju t t U x u     , 1 2, , , ,i je E e E i j I k K     , (3.4)

1 2 1 2task, travel,(1)j e e k i i e eu U x u t t     , 1 2, , , ,i je E e E i j I k K     , (3.5)

  
1 2

0,1e e kx  , 1 2, ,e e E k K   . (3.6)

Objective (3.1) minimizes the summation of all costs. Constraints (3.2) and (3.3) enforce flow

conservation. Constraints (3.4) establish the relationships between task start times and team

 44

routes, as well as eliminate subtours. Constraints (3.5) require a team to immediately move to the

next task once the current task is finished. Constraints (3.6) define binary variables.

There are a few differences between TISP (3.1)-(3.6) and VRP (2.1)-(2.6). In TISP each task

has two directions, while in the VRP model an activity is at a single spatial point. VRP

constraints (2.4) require that every activity be performed exactly once, while TISP does not

enforce that. Instead, TISP has periodicity constraints which will add a penalty cost to the

objective value if a task is not performed within the scheduling horizon, as introduced in the next

subsection.

The following subsections will introduce side constraints in more detail. These side

constraints could be implemented either as hard constraints (i.e., they must not be violated) or as

soft ones (i.e., they can be violated at a penalty cost).

3.3.2 Periodicity Constraints

Periodicity constraints require that all segments are inspected periodically at certain frequencies.

We use finish ,iu to denote the finish time of task i I . Let Seg, 0si represent the last task on segment

s S before the start of the scheduling horizon, and  
Seg,

Seg, Seg, 1 Seg,
, ,

s
s s s I

I i i be the tasks to be

scheduled within the scheduling horizon. For
Seg,1, , so I , always let task Seg, (1)s oi  be

performed before Seg,soi , and let
Seg,soiu be the difference between the finish times of tasks Seg,soi

and Seg, (1)s oi  , i.e., let
Seg, Seg, Seg, (1)finish, finish,so so s oi i iu u u


   . The railroad has a preferred inspection

interval Int ,it for every task i I , which means task i shall preferably be performed within time

Int ,it from the last inspection on the segment of i . In other words, for s S and
Seg,1, , so I ,

 45

Seg,soiu should not be significantly larger than
Seg,Int, soit . It shall be noted that the preferred interval

of a task is usually defined based on the segment of this task. For example, if segment s S has

a preferred inspection interval SegInt ,st , then Int , SegInt ,i st t for every task Seg,si I .

For s S and
Seg,1, , so I , because the start time of task Seg,soi ,

Seg,soiu , is a decision

variable in u , the finish time of task Seg,soi ,
Seg, Seg, Seg,finish, task,so so soi i iu u t  , shall also be determined.

For 0o  , however,
Seg, 0finish, siu , the finish time of task Seg, 0si , should be given as an input.

The periodicity constraints and corresponding penalty costs are formulated as follows:

Per Per,C () ()i i

i I

c u


 x , (3.7)

Seg, 1 Seg, 1 Seg, 1 Seg, 0task, finish,s s s si i i iu u t u    , s S  , (3.8)

Seg, Seg, Seg, Seg, (1) Seg, (1)task, task,so so so s o s oi i i i iu u t u t

 
     ,  Seg,2, , ,so I s S   , (3.9)

1 2

1 2

(1)
i

i e e k

e E e E k K

u U x
  

  , i I  , (3.10)

where PerC () is the total costs incurred by periodicity constraints, and Per, ()ic  is the penalty cost

function of task i I which is related to Int ,it . Generally, Per, ()i ic u should be increasing when

Int ,i iu t  , i.e. when the task is not performed within its preferred interval. Equation (3.7) defines

PerC () as the summation of Per, ()ic  of all tasks. Equations (3.8) and (3.9) define
Seg,soiu as the

interval between the finish times of Seg, (1)s oi  and Seg,soi . Constraints (3.10) ensure the start time of

a task is at least U (i.e., the end of scheduling horizon) if the task is not assigned to any team.

 46

If a periodicity constraint is hard, i.e., iu should never exceed Int ,it for task i I , then the

following constraints shall be added to the model:

Int ,i iu t  , i I  with hard constraints. (3.11)

There is an expression
1 2

1 2i

e e k

e E e E k K

x
  

  in (3.10). Let
1 2

1 2i

i e e k

e E e E k K

y x
  

  . Then 1iy  if

task i I is assigned to some team and performed within the scheduling horizon, or 0 otherwise.

In most VRP models, there are constraints associated with iy which require every activity to be

performed exactly once. If such constraints are soft, a cost item task,i ic y will be added to the

objective function; here, task,ic is the penalty cost if task i I is not assigned to any team (i.e.,

not performed within the scheduling horizon). If such constraints are hard, they can be written as:

 1iy  , i I  ,

which are equivalent to (2.4) in VRP.

In TISP, however, constraints (3.7)-(3.10) are used to ensure that the model tends to assign

tasks to teams. A task not assigned to any team has a start time of at least U , and a penalty cost

PER, ()ic  will be incurred if this task is due before U .

Figure 6 illustrates the form of Per, ()i ic u in RISP used by a railroad company. In this

particular RISP, Int , SegInt,soi st t , and SegInt ,st varies from one month to one year, depending on

various characteristics of the segment s S . For example, segments with heavy traffic should be

 47

inspected more frequently because the rail tracks deteriorate faster and the impact of potential

defects is also larger (i.e., higher accident risks, train delay costs and rolling stock maintenance

costs). Other factors include the volumes of hazard material traffic and passenger traffic. Besides

the preferred interval SegInt ,st , the company also has an “allowed interval” A

SegInt,st and a “required

interval” R

SegInt,st for every segment s S . As the names suggest, (i) an actual inspection interval


Seg,

A

SegInt, SegInt,,
soi s su t t    is allowed but not preferred, (ii) the case 

Seg,

A R

SegInt, SegInt,,
soi s su t t    should

be avoided, and (iii) the case
Seg,

R

SegInt,soi su t  may require overtime work if it happens, and incurs

very high penalty costs. The values of A

SegInt,st and R

SegInt,st also vary across segments. Usually they

equal SegInt ,st multiplied by some constants between 1.1 and 1.3. For very important segments, it

is possible to have A R

SegInt, SegInt, SegInt,s s st t t  , meaning that
soiu is prohibited from exceeding the

preferred interval. Based on the description from the company, a convex penalty cost function,

Per, ()i ic u , is developed as shown in Figure 6. Per, ()i ic u is the same for all tasks Seg,si I in

segment s S . The penalty cost is relatively low when iu is within SegInt ,st , but becomes

extremely high once iu exceeds R

SegInt,st . In this way, the model is able to prioritize the tasks

correctly according to the company’s requirement.

 48

Figure 6. Periodicity constraint penalty cost in rail inspection scheduling.

Because Per, ()i ic u is a non-linear function, it cannot be directly solved with MIP algorithms.

Although a piecewise linear function can be used to approximate Per, ()i ic u , such approximation

will introduce additional binary variables and side constraints, and will make the model very

difficult to solve. This is one of the reasons that MIP algorithms are not used for TISP.

3.3.3 Non-Simultaneity Constraints

Non-simultaneity constraints require certain pairs of tasks not to be performed simultaneously.

For example, two tasks in the same subdivision should not be performed simultaneously;

otherwise they may disturb each other and obstruct train traffic. Such constraints are called

subdivision non-simultaneity constraints. Inspection tasks must be helped by a certain railroad

employee such as division engineer or roadmaster. This railroad employee is usually in charge of

a set of segments. If the railroad employee is helping with some task, he or she cannot help with

other tasks in his or her territory. Hence, two tasks involving the same railroad employee should

not be performed simultaneously. Such constraints are called roadmaster non-simultaneity

Per, ()i ic u

iu

SegInt ,st A

SegInt,st R

SegInt,st

 49

constraints. In the case that more than two tasks shall not be performed simultaneously, a non-

simultaneity constraint is defined for each pair of them.

Let NS,i j  be a pair of tasks which should not be performed simultaneously, where

,i j I . Also we use NS,i j  to represent a single non-simultaneity constraint. The non-

simultaneity constraints and corresponding penalty costs are formulated as follows:

NS

NS NS, NS,

soft < ,

C () ij ij

i j

c t
 

 x , (3.12)

     

    
NS, task, task,

task, task, task, task, NS

min , max ,

min , , , for all soft < ,

ij i i j j i j

i j i i j j j i

t u t u t u u

t t t u u t u u i j



 

   

     ， ，
 (3.13)

  task, task, NSmin , for all hard < ,i i j j j it u u t u u i j     0， ， (3.14)

where NSC () is the total costs incurred by all soft non-simultaneity constraints, NS,ijc is the

penalty cost per unit time for soft constraint NS,i j  , and NS,ijt is the overlapping time of task i

and j . Expression () represents  max 0, . Clearly, tasks performed by the same team can

never violate any non-simultaneity constraints, and hence a non-simultaneity constraint always

involve two teams.

NSC () is part of the objective function (3.1). Soft non-simultaneity constraints (3.13)

involves another level of minimization when calculating NS,ijt . Additional binary variables will

be needed if such two-level minimization is formulated into an MIP form. In that case,

constraints (3.13) can be replaced by:

 50

NS, 1 NS, 2 NS, 3 2ij ij ij     , for all soft NS< ,i j  , (3.15)

  NS, task, task, NS, 1min , 1ij i j ijt t t  （ ）, for all soft NS< ,i j  , (3.16)

NS, task, task, NS, 2)ij i i j i ijt t u u U t     （ , for all soft NS< ,i j  , (3.17)

NS, task, task, NS, 3()ij j j i j ijt t u u U t      , for all soft NS< ,i j  , (3.18)

NS, 0ijt  , for all soft NS< ,i j  , (3.19)

NS, 1 NS, 2 NS, 3, , {0,1}ij ij ij    , for all soft NS< ,i j  , (3.20)

where NS, 1ij , NS, 2ij and NS, 3ij are auxiliary binary variables for soft non-simultaneity constraint

NS,i j  . Constraints (3.15) require that exactly 2 of the 3 auxiliary variables have value 1, and

thus 1 of them has value 0. NS, 1ij , NS, 2ij and NS, 3ij correspond to constraints (3.16), (3.17) and

(3.18) respectively. If an auxiliary variable equals 1, the corresponding constraint is always

satisfied. Otherwise, from the corresponding constraints NS,ijt must be at least as large as the

smallest among  task, task,min ,i jt t , task,()i i jt u u  and (task, j j it u u ). Because NS,ijc is always

positive and NSC () is minimized in the model, NS,ijt should be as small as possible. Therefore, in

the optimum solution, NS,ijt exactly equals the smallest among the three as long as the smallest

one is positive, or 0 otherwise.

In a similar way, hard non-simultaneity constraints (3.14) can also be written in an MIP

form, as follows:

task, NS, task,)i ij i i jU t t u u   （ , for all hard NS< ,i j  , (3.21)

 51

task, NS, task,()(1)j ij j j iU t t u u     , for all hard NS< ,i j  , (3.22)

NS, {0,1}ij  , for all hard NS< ,i j  , (3.23)

where NS,ij is an auxiliary binary variable for hard non-simultaneity constraint NS< ,i j  .

It shall be noted that the equivalent MIP forms of (3.13) and (3.14) introduce additional

binary variables and side constraints, which make the model difficult to solve using MIP

algorithms.

Non-simultaneity constraints are more relevant in short-term scheduling than in long-term

planning. In short-term scheduling, the railroad would like to know the schedule of every task in

order to arrange the teams accordingly. In long-term planning, however, the railroad does not

directly adopt the obtained schedule because of the existence of many future uncertainties (e.g.,

the actual task duration). Rather, the results from long-term planning are used to forecast

performance statistics (such as the number of overdue tasks) and conduct what-if analyses.

Hence, in long-term planning, it is not necessary to go into the detail of non-simultaneity

constraints. Furthermore, because the penalty costs of non-simultaneity constraints are calculated

based on the schedules of two teams, the accuracy are more susceptible to the uncertainties in

track inspection. Therefore, in our study, non-simultaneity constraints are only considered in

short-term scheduling but ignored in long-term planning.

3.3.4 Time Window Constraints

Time window constraints require a task to be performed at certain times. One possible reason is

to avoid certain exogenous conflicts, which may involve inspection activities by Federal

 52

Railroad Administration (FRA) geometry cars or maintenance projects by production teams.

Time window constraints share some similarities with non-simultaneity constraints, and they can

be formulated as follows:

TW

TW TW, TWO,

soft ,

C () ij ij

i j

c t
  

 x , (3.24)

     

    
TWO, task, TW, TW, TW,

task, TW, task, TW, TW, TW,

min , max ,

min , , , ,

ij i i j j i j

i j i i j j j i

t u t u t u u

t t t u u t u u



 

   

    

 for all soft TW,i j  , (3.25)

  task, TW, TW, TW,min ,i i j j j it u u t u u     0 , for all hard TW,i j  , (3.26)

where TWC ()x is the total costs incurred by all soft time window constraints, TW,i j  is a pair

of task i I and time window j from a time window constraint, TW,ijc is the penalty cost per

unit time for soft time window constraint TW,i j  , TW, ju is the start time of time window j ,

TW, jt is the duration of time window j , and TWO,ijt is the overlapping time of task i I and time

window j .

Because TW, ju and TW, jt are given as input, TWO,ijt is a piecewise linear function of iu , as

shown in Figure 7. Similar to non-simultaneity constraints, additional binary variables and

constraints would be needed if time window constraints were formulated in the MIP form.

 53

Figure 7. Time window constraint penalty costs in track inspection scheduling.

3.3.5 Preference Constraints

Preference constraints require that some tasks should be performed only by certain teams. There

are a few reasons for that. The railroad does not want to send an inspection team too far from

their homes, so that the crew members are able to go home during the weekend. The railroad also

wants to keep an inspection team working in its familiar territory so as to improve efficiency.

We let a task-team pair Pref,i k  represent a preference constraint, which requires task i

not to be performed by team k , where i I , k K . Preference constraints are formulated as

follows:

1 2

Pref 1 2

Pref Pref ,

soft ,

C ()
i

ik e e k

i k e E e E

c x
    

   x , (3.27)

1 2

0e e kx  , 1 2, ,ie E e E   for all hard Pref,i k  , (3.28)

TWO,ijt

task ,it

TW, ju

 TW, TW, TW, task,max ,j j j iu u t t 

TW, task,()j iu t
TW, TW,()j ju t

 task, TW,min ,i jt t

 54

where PrefC () is the total penalty costs incurred by all soft preference constraints, and Pref ,ikc is

the penalty cost if task i I is performed by team k K .
4
 Equation (3.27) sums up the penalty

costs of all soft preference constraints. Constraints (3.28) define hard constraints, enforcing that

task i I must not be performed by team k K .

Preference constraints introduce neither new variables nor new constraints. The cost term

PrefC () is directly added to objective function (3.1). Constraints (3.28) can be implicitly enforced

by removing all corresponding variables
1 2e e kx from the model. Therefore, hard preference

constraints actually help reduce the number of variables.

However, it should be noted that preference constraints are the only constraints which

introduce the distinction among teams. If there were no preference constraints, all teams would

be identical, and there would be no difference for a task to be performed by one team or another

(as long as the start time does not change). Only because of the preference constraints, subscript

k has to be introduced in  
1 2e e kx , making the number of variables k times of the case when

teams are not distinguished.

Therefore, the impact of the preference constraints on the solution speed could be either

positive or negative, depending on the number of hard preference constraints and the specific

algorithm used to solve the problem. As we will discuss in Section 3.4, preference constraints

generally do not cause extra difficulty if the problem is solved by heuristic algorithms, because

different teams are always processed separately. Therefore, as long as there are hard constraints,

the impact of preference constraints is always positive because they strictly eliminate variables

and reduce the solution space. For MIP algorithms, the impact of preference constraints is

4
 Note that

Pref ,ikc can be negative if team k is preferred to perform task i .

 55

positive only if the number of hard preference constraints is large (i.e., most
1 2e e kx variables are

eliminated).

3.3.6 Network Topology Constraints

Different from most routing and scheduling problems, where tasks are spatially distributed points

and teams are able to travel between tasks freely, TISP are constrained by railroad network

topology. One example is that every task is represented by two arcs instead of a single point, as

explained in Subsection 3.3.1. In addition, both RISP and GISP have topology constraints that

must be addressed.

Rail inspection teams use rail inspection vehicles to perform tasks. Rail inspection vehicles

are hi-rail (highway-rail) trucks that can travel both on highway and rail tracks. When

performing a task, the team drives on the rail track from one endpoint of the segment to the other.

When traveling between two consecutive tasks, the team may travel either on rail or on highway.

Generally, if the two tasks are connected by rail and the distance between them is small, the team

will travel on rail; otherwise, the team will first find a grade crossing to get onto the highway,

and then travel on the highway to the next task.

These rules usually apply to single track lines. When the tasks are on double track lines, the

movement of a team becomes more complex. Figure 8 illustrates a few possible travel patterns of

rail inspection teams on double track lines. If the task involves both tracks, as shown in Figure

8(a), the team may first work on track 1 from point A to B, then turn around, and work on track 2

from B to A. In this case, both endpoints of this task are at A. Similarly, the team could also start

from point B and go back to point B. Sometimes the task is on a partial double track line (i.e.,

parts of the line are double track and parts are single track). The team may use the same

 56

movement as in Figure 8(a) if the proportion of double track is large. Otherwise, the team may

only make one movement from A to B while inspecting the small pieces of track 2 along the way,

as shown in Figure 8(b). Note that two endpoints of the task are different in Figure 8(b). The

variety of possibilities associated with endpoints should be addressed based on the given

movement pattern and used as part of the model input.

Figure 8. Travel patterns of rail inspection teams.

Figure 8(c) gives an example when a partial double track line is split into three segments

respectively covering track SG (single), track 1 and track 2. Such split is very common because

the three tracks usually have different traffic volumes and thus require different inspection

intervals. Generally, track SG has more train traffic than track 1 or track 2, because traffic on

tracks 1 and 2 (double track) merges onto track SG (single track). Suppose a team makes a

movement from point A to B. It can either (i) perform one single task on one of the three

2

2

Work on rail Travel on rail

(a) Single task

on double track

(b) Single task on

partial double

track

A

B

A

B

(c) Three tasks on

partial double

track

A

2

2

SG

1

SG

1

SG

B

1 2

 57

segments, or (ii) perform one task on track SG and another on track 1 or 2, or (iii) inspect all

three segments. In Figure 8(c), the team uses alternative (ii) for tracks SG and 1, and then goes

back to inspect track 2 with alternative (i). In alternatives (ii) and (iii), two or more tasks are

combined into one. Such combinations are endogenously determined by the optimization model.

If they are formulated into mathematical constraints, the form will be very complex. Luckily,

such combinations can be addressed relatively easily if heuristic algorithms are used to solve the

problem. In our proposed model, alternatives (i) and (ii) are allowed while (iii) is relatively rare

and therefore not considered.

A significant difference between rail inspection and geometric inspection is that geometry

inspection teams use a different type of inspection vehicles, which are rail-bound and can only

travel on rail tracks. Therefore, GISP involves a different set of network topology constraints

from those for RISP. For example, geometry inspection vehicles can only turn around at certain

locations in the railroad network (e.g., wyes and sufficiently large turn tables). These vehicles

can occasionally make reverse movements along the track, but such movements are slow,

disruptive to the inspection operations, and therefore undesirable. In additional, geometry

inspection teams must return to certain locations (e.g., yards and terminals) at the end of the day

in order to store the inspection vehicles and to change the crews.

3.3.7 Discrete Working Time Constraints

In our problem there are some practical issues with regard to the time dimension. On one hand,

inspection teams do not work during weekends and holidays unless paid for overtime. So the

continuous time horizon used in the VRP model is not completely realistic. On the other hand,

 58

tracks do not stop deteriorating during weekends and holidays
5
, and a continuous time horizon is

thus needed.

One way to address this problem is to use the approximate formulation for TISP. It can be

assumed that a team works 7 days a week, but with only 5/7 efficiency. In this way, the

continuous time horizon can still be used. Because the efficiency of every team is reduced, this

method tends to bring the start times of tasks forward rather than postpone them. If there were

only 2 days during one weekend, the error in the calculation of inspection intervals would be at

most 2 days. For a task with preferred interval of 1 month or 31 days, the error would be 6.5%.

However, for longer holidays (e.g., as long as 1 week), such approximation will cause larger

errors. Furthermore, given the tight schedules of some inspection teams, even two days’ error

may not be acceptable. For a task with preferred inspection interval of 1 month, the periodicity

constraint penalty cost increases very fast when inspection interval is close to the required

interval. The cost may change dramatically if the start time of the task changes only one day, and

the prioritization of tasks will not be correct if the costs are calculated with such large errors.

An exact way to formulate weekends and holidays in the mathematical model is to use two

sets of time variables. One is continuous variables to calculate task durations and travel times

and to formulate side constraints such as periodicity constraints. The other one is discrete

variables to represent the workdays of teams and to ensure no teams work during weekends and

holidays. Additional constraints are also needed to create the relationship between these two sets

of variables. Such variables and constraints will greatly increase the complexity of the model.

For example, it is difficult to formulate the case when part of the task is done on Friday

afternoon and part is done on Monday morning. Such a model, even if formulated, is unlikely to

5
 Sometimes train traffic decreases during holidays, and the inspection frequencies can be reduced accordingly, but

that does not happen frequently.

 59

be tractable with MIP algorithms. Luckily, heuristic algorithms are able to handle these complex

relationships.

3.3.8 Travel Costs

We assume that travel costs are proportional to the travel time
1 2travel,e et , as follows:

1 2 1 2

1 2

travel travel travel,C ()
i

e e e e k

k K e E e E

c t x
  

 x , (3.29)

where travelC ()x is the total travel costs and travelc is the travel cost per unit time.

In most routing and scheduling problems, travel cost is one of the major cost items. For

example, in railroad transportation problems and highway transportation problems, fuel costs and

driver wages are normally dominating. However, in TISP, travel costs are not a major concern.

In practice, rail inspection teams are often contracted and paid at a fixed hourly rate. Longer

travels do not impose higher costs to the railroad company. In GISP, there are only a few

geometry inspection teams, and their fuel costs are relatively negligible compared to high

importance of side constraints (such as periodicity constraints). Furthermore, even if travel costs

are not explicitly considered, the model will still tend to minimize them indirectly. The reason is

that when a team spends more time on travel, it will spend less time performing tasks. Periodicity

constraints tend to schedule more tasks within the horizon, and thus tend to reduce the travel

time.

In the proposed model, we still consider travel costs. However, travelc is set to be a very low

value. So it affects the decision only when no other side constraints are dominating.

 60

3.4 Algorithm

As discussed earlier, TISP is very difficult if solved with MIP algorithms. We therefore propose

customized heuristics to handle this problem based on an “incremental horizon” approach. The

basic idea is as follows. Suppose the original problem has a total scheduling horizon ˆ[0,]U .

Instead of solving the whole problem at once, the algorithm solves a smaller version with a short

horizon [0,]U , where ˆU U . Once a solution is obtained for this smaller problem, we increase

U incrementally and solve the extended problems until ˆU U . It turns out that this solution

approach is able to improve the solution quality, as discussed in Subsection 3.4.4.

Figure 9 illustrates the proposed algorithm framework. The algorithm typically starts with a

short scheduling horizon (one to three weeks) and an empty set of tasks. It first generates a task

for every segment which does not have an unscheduled task (i.e., a task not assigned to any

team). A greedy algorithm and a task-interchange algorithm are then applied to add the newly

generated tasks to the schedule and optimize the schedule. The algorithm terminates if all

stopping criteria are met, i.e., (i) ˆU U , (ii) no new tasks are generated in the current iteration,

and (iii) the current solution is not improved in the current iteration; otherwise the algorithm

increases the scheduling horizon U by a certain value (one to three weeks) if ˆU U , and

repeats the process of generating tasks and applying heuristics.

 61

Figure 9. Algorithm framework of track inspection scheduling.

The following subsections discuss the key algorithm modules in more detail.

3.4.1 Task Generation

The optimum value of
Seg,sI , i.e., the number of tasks to be scheduled on each segment, is

unknown at the beginning of the algorithm. For example, suppose the preferred inspection

interval of a segment is 31 days and the scheduling horizon is 80 days. It is possible to schedule

2 tasks with an average interval of 35 days within the horizon, or 3 tasks with an average interval

of 25 days, or even more tasks with a shorter interval. One way to address this problem is to

generate many tasks at the beginning of the algorithm to ensure that they are sufficient for

scheduling throughout the solution process. For example, we may generate 5 tasks for the

segment mentioned above if we are confident that no more than 5 tasks should be considered in

Generate tasks

Greedy algorithm

Input

Y

Initialize horizon

Output

Task interchange

Are stopping

criteria met? N

Extend horizon if

necessary

 62

the optimal solution. However, that may incur many more variables than necessary and slow

down the solution speed. Determining the sufficient number of tasks also requires ad hoc trials.

In the proposed algorithm, tasks are generated for a segment only when necessary, i.e., when

the segment does not have any unscheduled tasks. Clearly, if a segment still has an unscheduled

task, there is no need to generate a new task. At the beginning of the algorithm, no segment has

any tasks, and a task is generated for each of them. Then greedy and task-interchange algorithms

are applied to schedule some of the tasks. After one iteration, the algorithm goes back to the task

generation step, and new tasks are generated for those segments without unscheduled tasks. In

this way, every segment has at least one unscheduled task, and greedy algorithm and task-

interchange algorithm can always find a task to schedule from each segment.

3.4.2 Greedy Algorithm

The proposed greedy algorithm constructs an initial solution which can then be improved by

local search.

Let  U : 0,iI i y i I   , i.e., the set of tasks which are not scheduled within the model

scheduling horizon. Let add, (,)ic k e  and addPer, (,)ic k e  be respectively the total costs and the

periodicity constraint penalty cost incurred by task Ui I if it is append to the end of the route of

team k K and performed in direction ie E . The algorithm is described as follows:

 Step 1: Terminate the algorithm if all teams have enough tasks to work until U .

 Step 2: Find the unscheduled task with the highest periodicity constraint penalty cost,

 63

U

*

addPer, add,
, ,

arg max arg min (,)
i

i i
i I k e K E

i c c k e
   

 
   

 
,

and the team and arc which minimize the total costs incurred by *i ,

*

*

* *

add,
, ,

, arg min (,)
i

i
k e K E

k e c k e
  

    .

 Step 3: Append task *i to the end of the route of team *k , and let *i follow direction *e

(i.e., set * *
last ,

1
ke e k

x  where last ,ke is the last arc which team k K currently

travels to, and update all related variables, such as *i
u , accordingly). Go to Step

1.

In Step 2, *i is appended to the end of the route of team *k in direction *e so that the

incremental total costs incurred by *i are minimized. The proposed greedy algorithm iteratively

selects such task *i and adds it to the schedule. This strategy is intuitive. Since *i incurs the

highest periodicity constraint penalty cost after being added to schedule, it should not be further

delayed otherwise even higher cost will be incurred
6
.

However, as most greedy algorithm, the proposed greedy algorithm is not able to find an

optimum solution in most cases. For example, suppose there are two tasks and one team. Task 1

has a preferred interval of 1 year and a duration of 2 weeks. Task 2 has a preferred interval of 1

month and a duration of 1 day. In the beginning of the horizon, task 1 is overdue for 1 day in

terms of the preferred interval if it is immediately performed, and task 2 is 1 day before overdue.

Therefore, the greedy algorithm will schedule task 1 first, and schedule task 2 after task 1.

However, since task 1 is 2 weeks long, after it is finished task 2 has been about 2 weeks overdue,

6
 Note that the current algorithm always adds the new task to the end of a route. A possible improvement is to insert

the new task to the best location along a route. More details will be discussed in Chapter 6.

 64

which is about 50% of its preferred interval and is generally prohibited. The optimum solution

should be scheduling task 2 before task 1. In that way task 2 is only delayed by 1 more day (i.e.,

the duration of task 2), and is overdue for a total of 2 days, which is less than 1% of its preferred

interval and is generally allowed. Because of such limitation of the greedy algorithm, we further

propose a task-interchange algorithm to improve the initial solution obtained from the greedy

algorithm.

3.4.3 Task Interchange

Task interchange is a local search heuristic that can be used to improve an existing solution. As

introduced in Section 2.2.3, local search algorithm checks the solutions within the neighborhood

of the current solution (i.e., “check the moves”). If the checked solution has lower costs than the

current one, the algorithm updates the current solution to the checked solution (i.e., “accept the

move”). We consider seven types of neighborhood structure in task interchange, as follows:

1) One-team-insertion: This move changes the order of a scheduled task within its team.

Figures 10(a) and (b) illustrate two possible one-team-insertions. In Figure 10(a), the start time

of a task is sent forward, and in Figure 10(b), the start time of a task is sent backward. Let teamI

be the average number of tasks assigned to a team
7
. Then the size of the one-team-insertion

neighborhood (i.e., the number of all possible moves) is  2

teamO K I .

2) One-team-swap: This move swaps the orders of two scheduled tasks within a team.

Figure 10(c) illustrates a one-team-swap. The size of one-team-swap neighborhood is also

 2

teamO K I .

7
 Because all teams have the same scheduling horizon length, the numbers of tasks assigned to them should be

similar as well.

 65

Figure 10. Examples of task interchange within one team.

3) Two-team-insertion: This move removes a task from one team, and inserts it into the

route of another team, as illustrated in Figure 11(a). The size of two-team-insertion

neighborhood is  2 2

teamO K I . However, if there are many hard preference constraints, only the

pairs of teams with overlapping territories (i.e., a set of segments which both teams can work on)

should be checked for this move. Suppose, on average, a team has overlapping territories with

NK other teams. The size of two-team-insertion neighborhood can then be tightened to

 2

N teamO K K I . In our RISP, NK is generally much smaller than K .

4) Two-team-swap: This move swaps the positions (i.e., both the assigned team and the

performed order) of two tasks between two teams, as illustrated in Figure 11(b). The size of two-

team-swap neighborhood is also  2

N teamO K K I .

(a) One-team-insertion

 (forward)

(b) One-team-insertion

 (backward)

(c) One-team-swap

 66

Figure 11. Examples of task interchange between two teams.

5) Add: This move inserts an unscheduled task into the route of a team, as illustrated in

Figure 12(a). If all unscheduled tasks are assigned to a dummy team, this move can be viewed as

a two-team-insertion between a real team and the dummy team (i.e., moving a task from the

dummy team to the real team). The size of add neighborhood is  UO K I . Because during the

interchange, we always keep (or generate) at least one unscheduled task for each segment,

UI S . So the size of add neighborhood can be written as  O K S .

6) Drop: This move removes a scheduled task from a team, as illustrated in Figure 12(b),

and set it as unscheduled (i.e., by making its start time no earlier than U). This move can also be

considered as a two-team-insertion between a real team and the dummy team, where a task is

moved from the real team to the dummy team. The size of drop neighborhood is  teamO K I .

7) Add-drop: This move is the combination of an add move and a drop move. A scheduled

task is removed from its team and an unscheduled task takes over its position, as illustrated in

Figure 12(c). This move can be viewed as a two-team-swap between a real team and the dummy

(a) Two-team-insertion (b) Two-team-swap

 67

team. The size of add-drop neighborhood is    U team teamO K I I O K S I . This move is

usually the most time-consuming in short-term scheduling. However, as scheduling horizon

length increases, TEAMI also increases, and the sizes of two-team-insertion and two-team-swap,

 2

N teamO K K I , become comparable with that of add-drop.

Figure 12. Examples of task add/drop.

Exhaustive search is used in the proposed algorithm, i.e., all possible moves in the current

solution should be enumerated before the algorithm terminates. The total size of task interchange

is  2

teamO K I +  2

N teamO K K I +  O K S +  teamO K I +  teamO K S I =

  team N teamO K I S K I , which is acceptable in practice.

A few approaches are used to improve the solution speed. First, excessive calculations of

costs are avoided. It can be seen that whenever a task is moved from one position to another, the

start times of all its original successors (i.e., tasks performed after it in the same route) and new

successors are affected. The schedules of other tasks, however, are not affected. Therefore, we

(c) Add-drop (b) Drop (a) Add

 68

trace the costs related to every task. Whenever a move is checked, the algorithm only visits the

tasks whose start times are affected, calculates the cost change for each of them, and then

calculates the total cost change to decide if the move should be accepted.

Second, duplicated moves are avoided. For example, swapping two consecutively performed

tasks is equivalent to inserting the successor before the predecessor or the predecessor after the

successor. Therefore, a task is not allowed to be inserted right before its predecessor or right after

its successor in one-team-insertion,

Finally, preliminary checks are used to quickly reject those moves which make the solution

infeasible or are unlikely to improve the solution. For example, the algorithm never allows a task

to be inserted somewhere which will lead the inspection interval to significantly exceed the

requirement. Also, for task Seg,soi , s S ,
Seg,1, , so I , the algorithm never tries to make it start

before Seg, (1)s oi  , or after Seg, (1)s oi  .

The sequence of checking moves is important. The algorithm always starts moving tasks

from the end of the route. There are two reasons for this. First, such a strategy tends to introduce

smaller disturbance to the solution. Second, such a strategy tends to bring forward the start time

of an overdue task instead of postponing the previous task in the same segment. This can be

illustrated by the following example. Suppose in segment s S there are two tasks, Seg, 1si and

Seg, 2si , both performed by the same team, and only Seg, 2si is overdue, i.e., the interval between the

finish times of Seg, 1si and Seg, 2si exceeds the preferred inspection interval. For simplicity, assume

no costs from other tasks are involved. If Seg, 2si is moved first, the algorithm will insert it forward

so that it will be performed within its preferred interval. However, if we move tasks from the

start of the route, Seg, 1si will be moved first. Because the periodicity constraint penalty cost

 69

function is convex, the algorithm will insert Seg, 1si backward, in a way that the periodicity

constraint penalty costs incurred by Seg, 1si and Seg, 2si are about the same. In that case, both tasks

may be overdue, although in the optimum solution neither of them should be overdue.

Because a move may change the start times of many tasks and dramatically affect the

current solution, the proposed task-interchange algorithm tends to be stuck at local optimal

solutions. Hence, the quality of the final solution depends heavily on the initial solution. That is

also why we propose the incremental horizon framework. In the hope to improve solution quality,

simulated annealing (Osman, 1993) has also been tested. However, it failed to yield a good

performance. The reason may probably be due to the fact that simulated annealing tends to

disrupt the possibly desirable structure of the initial solutions from the greedy heuristic.

3.4.4 Incremental Horizon

The task-interchange algorithm has difficulty moving tasks in the early part of a long scheduling

horizon, because such a move affects the start times of all tasks in the late part of the horizon and

tends to dramatically change the objective value. Therefore, an incremental horizon approach is

used. The algorithm starts with a decomposed problem with a short scheduling horizon, and

increases the horizon gradually until it reaches the total scheduling horizon Û . In this way, the

schedules of early tasks can be optimized when the model scheduling horizon is still short.

Although this approach would not work well if the schedules of early tasks were highly

dependent on the horizon length, fortunately, that is not the case in TISP. Because of the

periodicity constraints, tasks due earlier should generally be scheduled in the early part of the

horizon.

 70

The initial horizon length and the increment of horizon length should not be longer than the

minimum preferred inspection interval across all tasks. Otherwise a segment might require more

than one inspection within the initial or incremental horizon length. Because at most one task is

generated in each iteration, there may not be enough tasks to be scheduled in that iteration. We

shall note that the initial and increased horizon lengths do affect the solution speed and therefore

should be chosen carefully. Shorter initial or incremental horizon lengths require more algorithm

iterations. In our RISP applications, the length is usually set to be around 1 to 3 weeks, because

the minimum preferred inspection interval is normally one month and it is very unlikely that a

segment requires two inspections within 3 weeks.

3.5 Case Studies

The proposed model and algorithms are applied to a full-scale RISP in a Class I railroad

company. The algorithms are implemented in the Microsoft Visual C# environment on a

personal computer with 2.66GHz dual core CPU and 3 GB RAM.

The first case study is conducted for a weekly scheduling problem instance in some week of

a recent year (referred to as Year A from now on). This problem instance contains about 20

teams and more than 700 segments. The scheduling horizon is 8 weeks, and every segment has

from 1 to 4 tasks to be scheduled. Every task involves one periodicity constraint, at least one

preference constraint and at least two non-simultaneity constraints (one subdivision non-

simultaneity constraints and at least one roadmaster non-simultaneity constraints). Some

periodicity constraints and preference constraints are hard. Travel costs, discrete working time

constraints and some network topology constraints are also considered. The initial and

incremental horizon lengths are set to 3 weeks.

 71

The solution time of the algorithm is less than 1 minute. The model solution is compared

with the manual solution provided by experts from the company, as shown in Table 1. To protect

data confidentiality, the statistics of both manual solution and model solution are scaled by a

constant factor between 0.5 and 2. Such scaling does not affect the comparison of the results.

Table 1. Solution comparison for track inspection scheduling.

Statistics Manual solution Model solution Reduction (%)

Total overdue percentage outside the

required interval (%)
15.8 4.2 73.7

Total travel distance between tasks

(miles per team per week)
63.2 47.4 25.0

Total non-simultaneity constraint

overlapping duration (days per week)
0.66 0.42 37.5

The total overdue percentage outside the required interval is calculated as

 R

SegInt, SegInt,() / 100
i ii s s

i I

u t t



   , where is is the segment of task i I . It is generally the major

proportion of periodicity constraint penalty costs if the interval of any task exceeds the required

interval. Total travel distance is calculated as the average team travel speed multiplied by the

total travel time, i.e.,
1 2 1 2

1 2

travel,e e e e k

k K e E e E

t x
  

 . It is proportional to the travel costs. Although travel

costs are low compared to periodicity constraint penalty costs, total travel distance is still an

intuitive indicator of the solution quality, because less travel distance indicates more time to

perform tasks. Total non-simultaneity constraint overlapping duration is calculated as

NS

NS,

all < ,

ij

i j

t


 (the overlapping duration of two tasks may be counted more than once if they are

involved in multiple non-simultaneity constraints, e.g., a subdivision non-simultaneity constraint

and a roadmaster non-simultaneity constraint). Because all non-simultaneity constraints are

 72

assumed to have the same penalty cost per unit time, this total overlapping duration is

proportional to the non-simultaneity constraint penalty costs. It can be seen from Table 1 that the

model solution has a better performance in terms of all three major statistics.

Figure 13 shows the results of the sensitivity analysis on the incremental horizon length

(which is also used as the initial horizon length). The scenario with an incremental horizon

length of 3 weeks (i.e., 21 days) is used as the benchmark. The statistics of other scenarios are

compared to those of the benchmark scenario, and the percentage differences are shown in the

Figure. It can be seen that as the incremental horizon length increases, the objective value

generally increases while the solution time decreases (despite some fluctuations). When the

incremental horizon length exceeds 34 days, no statistics are shown because the solution

becomes infeasible (due to violations to hard constraints). Our observations imply the existence

of a general tradeoff between the objective value and the solution time. A shorter incremental

horizon length requires more algorithm iterations, but may better improve the solution. Also, the

incremental horizon should not exceed the minimum preferred inspection interval, which is 31

days in our case. Otherwise there may not be enough tasks generated in an algorithm iteration,

and the solution may incur high costs or even become infeasible.

 73

Figure 13. Sensitivity analysis on incremental horizon length

(benchmark scenario: incremental horizon length = 21 days).

The second case study is conducted for a long-term planning problem instance. The

scheduling horizon is one year, and it starts from the summer of Year A. The input data and

constraints are the same as those of the weekly scheduling, except that the horizon is extended

and non-simultaneity constraints are ignored to improve solution speed (as discussed in

Subsection 3.3.3). For such a long scheduling horizon, some segments may be inspected more

than 12 times within the horizon. Thus the number of variables is much larger. The model is run

for four different scenarios to perform what-if analyses: (a) using N (i.e., the current number of

teams used by the railroad) teams with geographic restrictions (i.e., preference constraints which

require a team to only work on certain segments), which is the current industry practice, and

using (b) N, (c) N-1 and (d) N-2 teams without geographic restrictions (except some segments

which have special policies and whose geographic restrictions are unlikely to be changed in the

future). The model is able to obtain the solution within one hour for each of the four scenarios.

The results are shown in Figure 14. The first month of the solutions has been removed in order to

eliminate the influence of the manual schedule implemented before the horizon.

Incremental horizon length (days)

-100%

0%

100%

200%

300%

400%

1 6 11 16 21 26 31
-4%

-2%

0%

2%

4%

6%

8%

1 6 11 16 21 26 31

C
h
an

g
e

in

o
b
je

ct
iv

e
 v

al
u
e

C
h
an

g
e

in

so
lu

ti
o
n
 t

im
e

Incremental horizon length (days)

 74

Figure 14. What-if analysis for one-year scheduling horizon.

The trends of the total overdue percentages outside the required and allowed inspection

intervals are plotted for each scenario. Total overdue percentage outside the allowed inspection

interval is defined in a similar way as that outside required inspection interval, i.e.,

 A

SegInt, SegInt,() / 100
i ii s s

i I

u t t



   . It can be seen that the model is able to eliminate almost all

Date

(a) N teams with

geographic restrictions

Date

(b) N teams without

geographic restrictions

Date

(c) N-1 teams without

geographic restrictions

Date

(d) N-2 teams without

geographic restrictions

 Total overdue percentage outside required interval

 Total overdue percentage outside allowed interval

0%

20%

40%

60%

80%

100%

120%

8/20 10/20 12/20 2/19 4/21 6/21

0%

20%

40%

60%

80%

100%

120%

8/20 10/20 12/20 2/19 4/21 6/21

0%

20%

40%

60%

80%

100%

120%

8/20 10/20 12/20 2/19 4/21 6/21

0%

20%

40%

60%

80%

100%

120%

8/20 10/20 12/20 2/19 4/21 6/21

P
er

ce
n
ta

g
e

P
er

ce
n
ta

g
e

P
er

ce
n
ta

g
e

P
er

ce
n
ta

g
e

 75

overdue percentage outside the required inspection intervals within the year. If the railroad keeps

N inspection teams but remove the geographic restriction of them, most overdue percentage

outside the allowed inspection interval can also be eliminated. If the railroad remove one or two

inspection teams from the workforce, the percent of overdue outside the allowed inspection

interval will increase, but there is still little overdue outside the required interval. So there is a

tradeoff between the number of inspection teams and the overdue percentage. If the costs of extra

teams in scenarios (a) and (b) can justify the reduced overdue percentage compared to (c) and (d),

the railroad should probably keep all teams; otherwise it can reduce the number of teams.

It can be seen that in all four scenarios the overdue percentages begin to increase

dramatically right after the long Christmas/New Year holiday which is indicated by vertical

dashed lines. When there are N teams, the backlogs can dissipate rather quickly. However, when

there are N-1 or N-2 teams, it will take a few months to clear the backlogs. This suggests a

possibility of improving the inspection performance. If the railroad is able to have a short

contract of a team only in the few weeks after Christmas/New Year vacation to catch up with the

backlogs, maybe it is able to use only N-1 or N-2 teams during most time of the year while still

be able to conduct most inspection tasks within the allowed inspection intervals.

 76

Figure 15. Total overdue percentages outside allowed interval of individual teams.

It can also be seen that overdue percentages decrease when the geographic restrictions are

removed. Without geographic restrictions, a team can help other teams perform tasks if no tasks

in its own territory are due. Figure 15 compares the workloads of two teams in scenario (a)

which are obviously not balanced. Team 1 has much less overdue percentage outside the allowed

inspection interval than team 2, indicating that team 1 has less workload than team 2, and it may

be beneficial to assign more segments to team 1 and fewer to team 2. This suggests that the

railroad may be able to improve the inspection performance by revising the preference

constraints.

Date

(a) Team 1

Date

(b) Team 2

P
er

ce
n
ta

g
e

P
er

ce
n
ta

g
e

0%

5%

10%

15%

20%

25%

8/20 10/20 12/20 2/19 4/21 6/21

0%

5%

10%

15%

20%

25%

8/20 10/20 12/20 2/19 4/21 6/21

 77

Glossary of Symbols

add, ()ic  : Total costs incurred by adding task i I to the end of the route of a team,

addPer, ()ic  : Periodicity constraint penalty costs incurred by adding task i I to the end of

the route of a team,

cost item ()C  : Total costs of a certain cost item,

NS,ijc : Non-simultaneity constraint penalty cost per unit time for NS,i j  ,

NSC () : Total non-simultaneity constraint penalty costs,

Per, ()ic  : Periodicity constraint penalty cost function for task i I ,

PerC () : Total periodicity constraint penalty costs,

Pref ,ikc : Preference constraint penalty cost for team k K to perform task i I

PrefC () : Total preference constraint penalty costs,

task,ic : Penalty cost when task i I is not scheduled within scheduling horizon,

travelc : Travel cost per unit time,

travelC () : Total travel costs,

TW,ijc : Time window constraint penalty cost per unit time for TW,i j  ,

TWC () : Total time window constraint costs,

E : Set of arcs representing the direction to perform a task,

iE : Set of arcs representing the direction to perform task i I ,

last ,ke : The last arc which team k K travels to,

start,ke : Initial location of team k K ,

I : Set of inspection tasks,

first,si : First task in segment s S ,

NS,i j  : Pair of tasks in a non-simultaneity constraint,

TW,i j  : Pair of a task and a time window in a time window constraint,

Pref,i k  : Pair of a task and a team in a preference constraint,

Seg,sI : Set of tasks on segment s S ,

Seg,soi : The o th performed task on segment s S ,

teamI : Average number of tasks assigned to a team,

UI : Set of unscheduled tasks,

K : Set of inspection teams,

 78

NK : Average number of teams which a team has overlapping territory with

(excluding itself),

N : Number of teams in the railroad’s current practice in the case study,

S : Set of track segments,

is : Segment of task i I ,

Int ,it Preferred interval of task i I ,

NS,ijt : Overlapping duration of tasks i and j ,

SegInt ,st : Preferred interval of segment s S ,

A

SegInt,st : Allowed interval of segment s S ,

R

SegInt,st : Required interval of segment s S ,

task,it : Duration of task i I ,

1 2travel,e et : Travel time from the head of arc 1e E to the tail of arc 2e E ,

TW, jt : Duration of time window j ,

TWO,ijt : Overlapping duration of task i and time window j ,

{ }iuu : Real variables for the start time of tasks,

U : End time of the scheduling horizon in each algorithm iteration,

Û : End time of the overall scheduling horizon,

finish ,iu Finish time of task i ,

iu : Inspection interval of task i I ,

TW, ju : Start time of time window j ,

1 2
{ }e e kxx : Binary variables for the movements of teams,

iy : Binary variables indicating if task i I is scheduled within scheduling

horizon.

 79

CHAPTER 4 PRODUCTION TEAM SCHEDULING

4.1 Introduction

Railroads usually identify capital track maintenance projects across the railroad network before

the beginning of each year, and send out production teams to perform the projects during the

year. The production team scheduling problem (PTSP) assigns every project to a team and

determines its start time.

Solving PTSP often becomes a significant challenge to railroads. Many business constraints

are imposed on PTSP due to various reasons such as railroad traffic operations, climate, and

interactions among different projects. Some of these constraints are soft (i.e. violations can be

tolerated at some costs if no better choice exists), and some are hard (i.e. violations should be

prohibited). Poorly designed maintenance schedules may incur high maintenance and operating

costs, or may not be even implementable due to violations to hard constraints. Furthermore, upon

completing a project, a team has to travel immediately to the next project. There are very high

costs associated with transporting the heavy machinery between consecutive project locations.

This mandates that the travel distance be minimized while all projects are performed by suitable

teams at suitable times.

Sometimes a project can be split into multiple parts, and each part can be scheduled

separately to yield more flexibility. From now on, such a project will be called a “split project”.

Unless specified, each part of a split project will be considered a separate project, and “project”

may represent either an unsplit project or one part of a split project. Multiple parts of a split

project may be performed by multiple teams simultaneously in order to reduce the impact on

railroad operation. Suppose a project would have a duration of 10 weeks for one team. If it is

 80

split into two equal parts and performed by two teams simultaneously, it will be finished in 5

weeks and consequently its impact on railroad operation will be reduced by half. We call such a

split project “folded”. Such practice makes the problem even more difficult.

Despite the high complexity of PTSP, current practice in the railroad industry mostly relies

on the experience and knowledge of experts. The scheduling process is largely manual. It usually

takes a group of experts more than one week, yet rarely provides a satisfying solution. This

chapter proposes mathematical models and corresponding algorithms to solve PTSP effectively

and efficiently.

4.2 Model and Algorithm Selection

Similar to TISP, PTSP is also a routing and scheduling problem with many side constraints.

However, they have a few differences which significantly affect the selection of the model

formulation and algorithm. First, TISP is solved very frequently, and its solution time should be

as short as possible, preferably within a few minutes. On the other hand, PTSP is solved only

once a year, and a solution time of a few hours (e.g., overnight) is acceptable. Second, the tasks

in TISP may have durations varying from less than an hour to a few weeks, and the travel time

between projects, which is variable in length, must be incorporated into the schedule. Hence it is

difficult to discretize the scheduling horizon. In PTSP, however, all project durations are integer

numbers of weeks. The travel time between projects normally occur during weekends and can be

neglected in the scheduling process. Hence it is natural to discretize the scheduling time horizon

into weeks. Finally, practical PTSP have many more hard side constraints than TISP. It is

difficult to obtain a satisfying or even feasible solution without applying MIP algorithms.

Because of all these reasons, a time-space network (TSN) model with MIP algorithm will be

 81

used to solve TISP in a discrete time horizon. Heuristic algorithms are also incorporated into the

solution framework to address the large number of variables and constraints.

4.3 Model Formulation

4.3.1 Core Model

Let P be the set of projects, and K be the set of teams. Both teams and projects can be divided

into multiple categories based on technical specialization, such as rail maintenance and T&S

(timber and surfacing) maintenance. A project of a certain category can only be performed by

teams from the same category. A category can be further divided into multiple types. For

example, the rail team category includes large rail and small rail teams, and the rail project

category includes curve patch and out-of-face projects. Each team can work on one or more

types of projects based on their specializations. For convenience, we let pK K be the subset of

teams that can perform project p P , and kP P be the subset of projects that can be

performed by team k K .

Let  1,2 ,W W denote the set of all weeks in the scheduling horizon (e.g., a year).

Noting that productivities may vary across teams, we define pkt as the duration (in terms of

number of weeks) of project p P if it is performed by team pk K . Define the set of start

weeks  start, start,1,2 ,k kW W and the set of end weeks  end, end, 1, ,k kW W W W   , such

that in the scheduling horizon, team k K is allowed to start its work in any week start ,kw W ,

and complete its work in any week end,kw W . The scheduling flexibility increases with the sizes

of start ,kW and end,kW . If they are both singletons (i.e. a set with exactly one element), team k K

 82

has to perform its work exactly in the designated weeks; on the other hand, if start ,kW and end,kW

are both equal to W , team k K can choose its start or end week freely if no other constraints

are present.

The spatial railroad network can be represented by an undirected graph with a set of vertices

(i.e., track milestones)  1,2, ,V V and a set of edges (i.e., railroad tracks) E . As discussed

in Section 2.2.2, the TSN model duplicates the spatial network into multiple layers, one for each

discrete time point. There are two types of flow (i.e., the routes of teams) in the time-space

network: (i) flow within a spatial network layer, which corresponds to the travel between

different projects; and (ii) flow across the layers, which corresponds to the movement of the team

while performing a project. Define
1 2 1 2{ , , , , }v v kwx v v V k K w W    x as the set of type-(i)

flow, where binary variable
1 2

1v v kwx  if team k K travels from vertex 1v V to vertex 2v V

in week w W ; or 0 otherwise. Define { , , , }pkw ky p P k K w W    y as the set of type-(ii)

flow, where binary variable 1pkwy  if team k K starts to work on project p P in week

w W ; or 0 otherwise. Because a project has two endpoints and a team may start to work at

either of them, we further define variables +

pkwy and
pkwy , s.t. +

pkw pkw pkwy y y  , to indicate the

direction the team follows. Suppose 1v V and 2v V are two endpoints of project p P and

1 2v v . Then + 1pkwy  and 0pkwy  if team k K starts project p from 1v and ends at 2v ; or

+ 0pkwy  and 1pkwy  otherwise. Define vk kP P  , k K  , v V as the subset of projects such

that project kp P belongs to vkP
 if (i) one of its endpoint is v and (ii) index v is equal to or

smaller than the other endpoint. Similarly, the counterpart vk kP P  contains those projects in kP

with endpoint index v larger than the other endpoint.

 83

The core model (without side constraints) can be formulated as follows:

(PTSP)
cost item

all cost items

min (,)C x y , (4.1)

s.t.

start ,

start ,

1
k

k

v vkw

w W v V

x
 

  , k K  , (4.2)

    () () 0
pk pk

vk vk

vv kw v vkw pkw pk w t pkw pk w t

v V v V p P p P

x x y y y y
 

   

   
    

         ,

start , end,\{ , }, ,k kv V v v k K w W    , (4.3)

end,

end,

1
k

k

vv kw

w W v V

x
 

  , k K  , (4.4)

pkw pkw pkwy y y   , , ,kp P k K w W    , (4.5)

 1
p

pkw

w W k K

y
 

  , p P  , (4.6)

  + , 0,1pkw pkwy y  , , ,kp P k K w W    . (4.7)

The objective function (4.1) minimizes the summation of all costs. Constraints (4.2)~(4.4) ensure

flow conservation: team k K starts to work at the beginning of the scheduling horizon, and

after finishing a project it moves to the next project immediately. Constraints (4.5) indicate the

direction the team follows when performing a project. Constraints (4.6) ensure every project is

performed exactly once. Constraints (4.7) define binary variables. Note that variables x do not

have to be binary. The reason is that when y are binary there is always an optimum solution

where x are integers, and such a solution can be easily found once y is determined.

 84

4.3.2 Travel Costs

In PTSP, the travel of maintenance large machinery constitutes an important cost component.

However, travel time is negligible because travel always occurs during weekends.
8
 Similar to

(3.29) in TISP, the travel cost can be calculated as follows:

1 2 1 2

1 2

travel travel,C () v v k v v kw

w W k K v V v V

c x
   

x , (4.8)

where travelC () is the total travel cost, and
1 2travel,v v kc is the cost for team k K to travel from

vertex 1v V to 2v V .

In this formula,
1 2travel,v v kc is assumed to be a simple linear function of the travel distance

between 1v and 2v . It is also assumed that the travel cost is incurred only when a team travels

between different projects, but not while they are performing a project from one endpoint to the

other. The reason is that the total distance of the latter type of movements is constant and

inevitable.

4.3.3 Time Window and Preference Constraints

Time window constraints require a project to be performed in certain weeks. Weather is the most

important factor behind such requirements. For example, it is generally not preferable to

schedule projects in the northern U.S. regions during the winter time due to low temperature and

heavy snowfall. There are also other reasons for time window constraints. For example, certain

8
 This is quite different from TISP, where travel time is important but travel cost is only a minor part of the total cost.

 85

projects may be preferred to be performed within (or outside of) some specific weeks due to

seasonal low (or high) railroad traffic volume (e.g., holiday season).

Define pkwy as follows:

1pk

w

pkw ptw

w w t

y y 

  

   , , ,kp P k K w W    . (4.9)

So 1pkwy  if team k K is working on project kp P in week w W , or 0 otherwise. Let

TW,p w  denote a time window constraint where project p P should not be performed in

week w W . Time window constraints can be formulated as follows:

TW

TW TW,

soft ,

C ()
p

pw pkw

p w k K

c y
   

  y , (4.10)

 0pkwy  , pk K  , for all hard TW,p w  , (4.11)

where TWC () is the total time window constraint penalty costs, and TW, pwc is the penalty cost for

soft time window constraint TW,p w  .

The formulation of time window constraints in PTSP is quite different from that in TISP,

mostly because of the treatment on discrete versus continuous time horizons. In TISP, the

overlapping duration of a task and a time window can be any real numbers, and the penalty cost

is a non-linear function of the task start time. In PTSP, however, the overlapping duration is

always an integer number of weeks, so a time window can be discretized into multiple weeks and

the total penalty cost from that time window can be explicitly specified as the summation of

 86

individual penalties in each week, as in (4.10). It shall be noted that time window constraints

introduce neither new variables nor new constraints to PTSP. Hard time window constraints

(4.11) can be implemented by simply eliminating some pkwy variables, which helps to reduce the

scale of the problem (while increasing the difficulty of finding a feasible solution).

Preference constraints require that a project be performed by certain teams; e.g., the crew in

a team prefers to work near their homes or in familiar territories. Let Pref,p k  denote a

preference constraint where project p P should not be performed by team k K . Preference

constraints can be formulated as follows:

Pref

Pref Pref ,

soft ,

C () pk pkw

p k

c y
  

 y , (4.12)

 0pkwy  , for all hard Pref,p k  , (4.13)

where PrefC () is the total preference constraint penalty costs, and Pref , pkc is the cost for constraint

Pref,p k  if it is soft.

Preference constraints in PTSP are similar to those in TISP. They introduce neither new

variables nor new constraints, but they introduce distinctions among teams and thus increase the

complexity of the problem.

4.3.4 Mutual Exclusion Constraints

Mutual exclusion (MX) constraints require certain projects not to be performed simultaneously

in order to avoid severe traffic blockage. Generally, such constraints can be divided into three

 87

types: yard-related, junction-related and corridor-related. In yard-related MX constraints, a yard

project and a non-yard project in the same subdivision should not be performed simultaneously,

so that passing trains can stay in the yard when the non-yard project is being performed, or go

through when the yard project is being performed. In junction-related MX constraints, no more

than a certain number of subdivisions near the same junction should have simultaneous ongoing

mainline projects, so that the traffic can use alternative routes when one subdivision is blocked.

In corridor MX constraints, no more than a certain number of subdivisions in one corridor should

have simultaneous ongoing single track projects, so that passing trains can wait at the endpoints

of the blocked subdivision and pass whenever the team is not working. If MX constraints are

violated, traffic will be significantly delayed and this is generally unacceptable to the railroads.

Although the MX constraints may be caused by various reasons, they can be formulated in a

similar way. We first define MXP P as a subset of projects that belong to the same network

element (e.g., subdivisions) over which the MX constraints are defined. We say that “project set”

MXP is “curfewed” in week w W if at least one project in MXP is being performed in that week.

We further define MXF as a set of MXP that are mutually exclusive to each other (i.e., the

maximum allowed number of simultaneous curfewed MXP in MXF should not exceed a certain

value,
MXMX,Fm). Then every MX constraint can be represented by an MXF . Usually

MXMX, 1Fm  ,

but in some cases
MXMX,Fm can be great than one.

In practice, MXP may be in very different forms for different MX constraints. For a yard MX

constraint, MXP may contain a single unsplit project (in this case, MXP is a singleton) or all parts

of a split project. For a junction MX constraint, MXP is defined for a subdivision and contains all

 88

mainline projects in that subdivision. For a corridor MX constraint, MXP is defined for a

subdivision and contains all single track projects in that subdivision.

Figure 16. An example of a mutual exclusion constraint.

Figure 16 further illustrates an example of an MX constraint in a certain week. This MX

constraint requires that the two projects sets from set  MX MX,1 MX,2,F P P cannot be curfewed at

the same time (i.e.,
MXMX, 1Fm ), where each MXP contains two projects (i.e.,  MX,1 11 12,P p p ,

 MX,2 21 22,P p p). Figure 16(a) shows a snapshot of a schedule that does not violate the MX

constraint. In this schedule, both 11p and 12p are being performed simultaneously in some week

(highlighted with gray color), and hence project set MX,1P is curfewed (also highlighted with gray

color). However, because project set MX,2P is not curfewed, the total number of curfewed project

sets is 1, and the MX constraint is not violated. Figure 16(b), on the other hand, shows a schedule

which violates the MX constraint. Both 11p and 21p are performed in that week, and they

respectively make project sets MX,1P and MX,2P curfewed. So the total number of curfewed

project sets is 2, and the MX constraint is violated.

22p 12p 11p 12p 11p

MX,1P MX,2P

21p 22p

MX,1P MX,2P

21p

(b) (a)

 89

An MX constraint may be violated multiple times. Let
MXMX,wF be the exceedance of the

total number of curfewed project sets over
MXMX,Fm in week w W . In Figure 16(b),

MX MXMX, MX,2 1wF Fm    . If the MX constraint is violated in more than one week, the number of

violations to that constraint will be the summation of
MXMX,wF over all weeks. We shall note too

that even in one week an MX constraint may be violated multiple times. For example, if there

were one more curfewed project set in Figure 16(b),
MXMX,wF would be 2.

The MX constraints can be formulated as follows:

MX MX

MX

MX MX, MX,

soft

C () F wF

F w W

c 
  

  y , (4.14)

MX

MX

MX,

MX

if 2

if 1

pkw

wP

pkw

y P

y P


 
 

 
 , MX, ,pk K w W p P    , for all MXP , (4.15)

MX MX MX

MX MX

MX, MX, MX,wP F wF

P F

m 


   , w W  , for all soft MXF , (4.16)

MX MX

MX MX

MX, MX,wP F

P F

m


  , w W  , for all hard MXF , (4.17)

MXMX, 0wP  , for all

MXMX,wP , (4.18)

MXMX, 0wF  , for all

MXMX,wF , (4.19)

where MXC () is the total MX constraint penalty costs,
MXMX,Fc is the unit penalty cost (i.e.,

penalty cost per violation) of soft constraint MXF , and
MXMX,wP is the auxiliary variable which

equals 1 if project set MXP is curfewed in week w , or 0 otherwise.

 90

Equation (4.14) calculates MXC () as the summation of the penalty costs caused by all soft

MX constraints. Constraints (4.15) create the relationship between projects and project sets, i.e.,

a project set is curfewed in a certain week if and only if at least one of its projects is performed

in that week. Constraints (4.16) calculate
MXMX,wF for a soft MX constraint. Constraints (4.17)

require the number of curfewed project sets in a hard MX constraint must be no larger than

MXMX,Fm in any week. Constraints (4.18) and (4.19) respectively define non-negative variables

MXMX,wP and
MXMX,wF .

It can be seen that MXP does not have subscript MXF , because a project set may be involved

in multiple MX constraints. In constraints (4.15), “” instead of “” is used if a project set is a

singleton. In that way, auxiliary variable
MXMX,wP is added to the model only if needed (i.e., a

project set contains more than one project), otherwise it is replaced by pkwy . Because the number

of singleton MXP in a problem instance is usually large, this treatment can eliminate many

unnecessary variables and constraints.

4.3.5 Precedence Constraints

The technical nature of certain projects requires them to be performed in a certain sequence. For

example, in a rail project, the rail team has to pull all spikes out of the ties, align or replace rails,

and then nail the spikes back. If a T&S team has already laid new ties under the rails, the rail

project will damage the new ties and shorten their lifetime. Hence, if a rail project and a T&S

project are performed on a same track section, the rail project should be performed first.

 91

Precedence constraints are used to ensure that all projects are performed in the right order.

Let Prec,p q  represent a precedence constraint which requires project p P to start at least

Prec, pqt weeks before project q P starts. Then the precedence constraints can be formulated as

follows:

Prec

Prec Prec, Prec,

soft ,

C () pq pq

p q

c 
  

 y , (4.20)

Prec,

Prec,

p pq q

W

pkw qkw pq

k K w w t k K

y y 

   

    ,
w W  , for all soft Prec,p q  , (4.21)

Prec,p pq q

W

pkw qkw

k K w w t k K

y y 

   

   ,
w W  , for all hard Prec,p q  , (4.22)

where PrecC () is the total precedence constraint penalty cost, Prec, pqc is the penalty cost for soft

constraint Prec,p q  , and Prec, pq indicates whether a soft precedence constraint Prec,p q  is

violated. Equation (4.20) calculates PrecC () as the summation of the penalty costs caused by all

soft precedence constraints. Constraints (4.21) and (4.22) respectively define soft and hard

precedence constraints.

4.3.6 Simultaneity and Non-Simultaneity Constraints

Simultaneity constraints require that two projects be performed simultaneously by two teams in

order to reduce technical difficulty or the impact on traffic operations. We define “overlapping

ratio” as the overlapping duration of two projects divided by their maximum possible

overlapping duration, for some given team assignments. In a hard simultaneity constraint, the

 92

overlapping ratio must be 1. In a soft simultaneity constraint, the penalty cost is proportional to

the difference between 1 and the overlapping ratio, i.e., the penalty cost increases as the

overlapping duration of two projects decreases. Suppose two projects in a simultaneity constraint

are assigned to two teams and have durations of t and t respectively. If their overlapping

duration is  min ,t t , which is the maximal value possible, then the overlapping ratio is 1 and

the penalty cost is zero.

Let pT be the set of all possible durations that p P could have, and Prod, pt pK K be the

set of teams which can perform project p P within exactly t weeks. We use a pair of projects

S,p q  to denote a simultaneity constraint. Suppose project p P is performed by some team

with duration pt T , and project q P is performed by some team with duration qt T . Define

auxiliary variable S, pqtt w 
 so that S, 1pqtt w 

  if either of the two projects is performed in week

w W , or 0 otherwise. Then S, pqtt w

w W

 



 is the number of weeks when at least one of the projects

is performed. The value of S, pqtt w

w W

 



 can be at most     max , min ,t t t t  , when the

overlapping ratio is 0, and at least  max ,t t , when the overlapping ratio is 1. Hence the

overlapping ratio can be calculated as

 

 

S, max ,

min ,
p q

pqtt w

w W

t T t T

t t

t t

 



 

 




 . Define auxiliary variables

S, pq = (1 – overlapping ratio) to indicate the number of violations to soft constraint S,p q  .

Simultaneity constraints can be formulated as follows:

S

S S, S,

soft ,

C () pq pq

p q

c 
  

 y , (4.23)

 93

  

 

S,

S,

max ,

min ,
p q

pqtt w

w W
pq

t T t T

t t

t t








 

 





 , for all soft S,p q  , (4.24)

  S, max ,pqtt w

w W

t t 



  , ,p qt T t T   , for all hard S,p q  , (4.25)

Prod,

S,

pt

pqtt w pkw

k K

y 



   , , ,p qt T t T w W    , for all S,p q  , (4.26)

Prod,

S,

qt

pqtt w pkw

k K

y






   , , ,p qt T t T w W    , for all S,p q  , (4.27)

S, () 1pq pkw qkw

w W

y y


   , p qk K K   , for all soft S,p q  , (4.28)

 () 1pkw qkw

w W

y y


  , p qk K K   , for all hard S,p q  , (4.29)

where SC () is the total simultaneity constraint penalty costs and S, pqc is the unit penalty cost of

soft constraint S,p q  . Equation (4.23) calculates SC () as the summation of all soft

simultaneity constraint penalties. Constraints (4.24) and (4.25) respectively define soft and hard

constraints. Constraints (4.26) and (4.27) define auxiliary variables. Constraints (4.28) and (4.29)

are cuts, which are redundant but can help tighten the model formulation. Note that S, pq can be

a fraction between 0 and 1, which incurs a partial penalty cost.

Non-simultaneity constraints, on the contrary, require two projects not to be performed

simultaneously. One possible reason is that these two projects are in the same subdivision and

that subdivision cannot accommodate both of them due to limited space or tight train schedules.

Opposite to simultaneity constraints, the overlapping ratio must be 0 in a hard non-simultaneity

constraint, and the penalty cost is proportional to the overlapping ratio in soft non-simultaneity

constraints.

 94

We use a pair of projects NS,p q  to denote a non-simultaneity constraint. Suppose project

p P is performed by some team with duration pt T , and project q P is performed by some

time with duration qt T . Define auxiliary variable NS, pqtt w 
 so that NS, 1pqtt w 

  if both projects

are performed in week w W , or 0 otherwise. Then NS, pqtt w

w W

 



 is the number of weeks when

both projects are performed, and the overlapping ratio can be calculated as
 

NS,

min ,
p q

pqtt w

w W

t T t T t t

 



 






 .

We define auxiliary variable NS, pq to denote the overlapping ratio, i.e., the number of violations

to soft constraint NS,p q  . The non-simultaneity constraints can be formulated as:

NS

NS NS, NS,

soft ,

C () pq pq

p q

c 
  

 y , (4.30)

 

NS,

NS,
min ,

p q

pqtt w

w W
pq

t T t T t t








 







 , for all soft NS,p q  , (4.31)

Prod, Prod,

NS, 1
pt qt

pqtt w pkw qkw

k K k K

y y




 

      ,

 , ,p qt T t T w W    , for all soft NS,p q  , (4.32)

Prod, Prod,

1
pt qt

pkw qkw

k K k K

y y
 

    ,

 , ,p qt T t T w W    , for all hard NS,p q  . (4.33)

where NSC () is the total non-simultaneity constraint penalty costs and NS, pqc is the unit penalty

cost of soft constraint NS,p q  . Equation (4.30) calculates NSC () as the summation of all soft

 95

non-simultaneity constraint penalty costs. Constraints (4.31) and (4.33) respectively define soft

and hard non-simultaneity constraints. Constraints (4.32) define auxiliary variables for soft non-

simultaneity constraints. The number of violations NS, pq to a non-simultaneity constraint can

also be a fraction between 0 and 1.

Although both simultaneity and non-simultaneity constraints use the overlapping ratio to

calculate the penalty costs, their overlapping ratios and the auxiliary variables are formulated in

quite different ways. The reason is that simultaneity constraints maximize the overlapping ratios

while non-simultaneity constraints minimize them. Therefore, different treatments are needed in

the MIP model.

We note that a non-simultaneity constraint is similar to a special case of an MX constraint

where
MX

2PF  ,
MX 1P  ,

MXMX PP F  and
MX

MX, 1
PFm  . Indeed, their hard versions are the

same. The only difference is that soft non-simultaneity constraints calculate the penalty costs

based on the overlapping ratio and those soft MX constraints calculate the costs based on the

overlapping duration. For a certain overlapping duration, the overlapping ratio may be different

due to varying project durations across teams.

4.3.7 Consecution Constraints

Consecution constraints require multiple projects to be performed consecutively by the same

team in order to improve efficiency. Although the duration of a project is always an integer

number of weeks, the actual time needed to perform the tasks is often more or less than the

integer number of weeks. Suppose there are two projects A and B with actual durations of 0.5

week and 1.5 weeks respectively. After rounding up, their integer durations are 1 and 2 weeks.

 96

Hence it may appear that 1 + 2 = 3 weeks are needed to finish both projects. However, if they are

spatially close to each other and are performed consecutively by the same team, the team may be

able to move to the next project in the middle of the week and finishes both of them in 1.5 + 0.5

= 2 weeks. This saves one week. Hence, we use consecution constraints to specify such possible

savings. It shall be noted that consecution constraints do not depend on the order of the projects.

In the above example, the team can perform project A either before or after B.

Let ConP denote a set of projects that are specified in a consecution constraint. We also use

ConP to represent a consecution constraint. Let
Con

Con

P p
p P

K K


 , i.e., the set of teams which can

perform at least one project in ConP . Let
Con

Con

Con,

\{ }\{ }k

P pqk p k

p P P p q

t t 

 

  , i.e., the total duration of all

projects except p and q in ConP for team
ConPk K . The consecution constraints can be

formulated as follows:

Con Con

Con

Con Con, Con,

soft

C () P P

P

c 


 y , (4.34)

 Con , Con

Con

Con , Con

Con,

pk P pqk

qk P pqk

w t t

P pkw qkw

w w t t

y y

 



  

   ,

Con

, Pw W k K   , Con, ,p q P p q   , for all soft ConP , (4.35)

 Con , Con

Con , Con

pk P pqk

qk P pqk

w t t

pkw qkw

w w t t

y y

 



  

  ,

Con

, Pw W k K   , Con, ,p q P p q   , for all hard ConP , (4.36)

ConCon,P pkw qkw

w W w W

y y
 

   ,
ConPk K  , Con, ,p q P p q   , for all soft ConP , (4.37)

 97

pkw qkw

w W w W

y y
 

  ,
ConPk K  , Con, ,p q P p q   , for all hard ConP , (4.38)

where ConC () is the total consecution constraint penalty costs,
ConCon,Pc is the penalty cost of soft

constraint ConP , and
ConCon,P is the number of violations to soft constraint ConP . Equation (4.34)

calculates ConC () as the summation of all soft consecution constraint penalty costs. Constraints

(4.35) and (4.36) require all projects in ConP to be performed consecutively. Constraints (4.37)

and (4.38) require all projects in ConP to be performed by the same team.

In constraints (4.35) and (4.36), if a project Conp P is performed in week w W , any other

project Conq P should be performed no earlier than week
ConCon,qk P pqkw t t  and no later than

week
ConCon,pk P pqkw t t  . This condition holds for all projects Conp P if and only if the projects

in ConP are performed consecutively. In consecution constraints, the number of violations to a

constraint can only be 1 or 0. Note that we define 0pkwy  when kp P . That is, if a project is

performed by a team which cannot perform all the projects in ConP , the consecution constraint

must be violated.

4.3.8 Split Project Constraints

In order to reduce the impact of track maintenance on train traffic operations, some projects are

split into multiple parts and performed simultaneously by multiple teams (i.e., the project is

“folded”). Such practice is helpful to reduce violations to MX constraints. However, sometimes

it may incur higher travel cost or cause violations to other side constraints. For example, a

project may be required by a preference constraint to be only performed by one team. If it is split

 98

and assigned to two teams, the preference constraint will be violated. Therefore, only a subset of

projects should be selected to fold.

Sometimes a project must be folded. In that case, it is split and simultaneity constraints are

applied to each pair of its parts. More often, the model needs to decide whether a split project

(which is split into two parts) should be folded or not. If not, the parts of the split project should

be performed consecutively by one team, which is equivalent to the case that the project is not

split and is still performed as a whole.

Split project constraints require two parts of a split project to be either performed

simultaneously by two teams, or consecutively by one team. Let SP,p q  represent a split

project constraint, where p P and q P are the two parts of a split project. Because p and q

are originally from one project, it can be seen that p qK K . Also, p and q should not be part

of any existing simultaneity constraint or consecution constraint. The split project constraints can

be considered as a special case of a disjunction (i.e., logical “or”) of a new simultaneity

constraint and a new consecution constraint, and they can be formulated as follows:

SP

SP SP, SP,

soft ,

C () pq pq

p q

c 
  

 y , (4.39)

Con, ()pkpq pkw qk w ty y   , , pw W k K   , for all SP,p q  , (4.40)

Con, pq pkw qkw

w W w W

y y
 

   ,
pk K  , for all SP,p q  , (4.41)

  

 

S,

S,

max ,

min ,
p q

pqtt w

w W
pq

t T t T

t t

t t








 

 





 , for all SP,p q  , (4.42)

Prod,

S,

pt

pqtt w pkw

k K

y 



   , , ,p qt T t T w W    , for all SP,p q  , (4.43)

 99

Prod,

S,

qt

pqtt w pkw

k K

y






   , , ,p qt T t T w W    , for all SP,p q  , (4.44)

SP, Con, S, 1pq pq pq     , for all soft SP,p q  , (4.45)

Con, S, 1pq pq   , for all hard SP,p q  , (4.46)

SP, 0pq  , for all soft SP,p q  , (4.47)

where SPC () is the total split project constraint penalty costs, SP, pqc is the penalty cost of soft

constraint SP,p q  , SP, pq is the number of violations to soft constraint SP,p q  , and Con, pq ,

S, pq , and S, pqtt w 
 are auxiliary variables. Equation (4.39) calculates SPC () as the summation of

all soft split project constraint penalty costs. Constraints (4.40) and (4.41) are similar to soft

consecution constraints, requiring that p P and q P are performed consecutively by the

same team, otherwise Con, pq will equals 1. Constraints (4.42)-(4.44) are equivalent to soft

simultaneity constraints, requiring that p P and q P are performed simultaneously by two

teams, otherwise Con, pq will be (1 - their overlapping ratio). Constraints (4.45) and (4.46) require

one of Con, pq and S, pq to be 0, which means either the consecution or simultaneity constraint

should be satisfied, respectively with the soft formulation and hard formulation. Constraints

(4.47) are cuts, which are redundant but can help tighten the model.

Constraints (4.40) are a simplified version of consecution constraints (4.35). In split project

constraints, the consecution constraint is a special case of general consecution constraints where

Con 2P  . Furthermore, if the consecution constraint is satisfied, p and q can be considered as

one unsplit project, and the sequence that they are performed is not important. So we can always

require p to be performed before q in the consecution constraint.

 100

4.3.9 Limit Constraints

Limit constraints limit the total duration of certain projects performed by each team. For example,

most projects are 4-day projects (i.e., requiring a team to work 4 days a week) but some are 5-

day projects (i.e., requiring a team to work 5 days a week) because of different train schedules at

project sites. When performing a 5-day project, the crew only has 2 days of off-work time in a

week. Such projects are unfavorable to the crew, and a team should not perform too many such

projects in the scheduling horizon.

We use pair Lim ,P k  to represent a limit constraint, where team k K should not

perform more than
LimLim,P km weeks of projects from set LimP P . Limit constraints can be

formulated as follows:

Lim Lim

Lim

Lim Lim, Lim,

soft ,

C () P k P k

P k

c 
  

 y , (4.48)

Lim Lim

Lim

Lim, Lim,P k pk pkw P k

p P w W

t y m
 

 
  

 
  ,

for all soft Lim ,P k  , (4.49)

LimLim, 0P k  , for all soft Lim ,P k  , (4.50)

Lim

Lim

Lim,pk pkw P k

p P w W

t y m
 

 
 

 
  ,

for all hard Lim ,P k  , (4.51)

where LimC () is the total limit constraint penalty costs,
LimLim,P kc is the penalty cost per week of

soft constraint Lim ,P k  , and
LimLim,P k is the number of violations to soft constraint Lim ,P k  .

Equation (4.48) calculates LimC () as the summation of all soft limit constraint penalty costs.

 101

Constraints (4.49) define
LimLim,P k as the exceedance of the total duration of projects in LimP

performed by team k K over
LimLim,P km . Constraints (4.50) define non-negative variables

LimLim,P k . Constraints (4.51) define hard limit constraints.

4.3.10 Relay Rail Constraints

In practice, “relay rail” is the recycled rail that is still in good condition for reuse. Using relay

rail helps reduce the purchase of costly new rails. Relay rail is usually supplied from track lines

with relatively heavy traffic and reused for lines with relatively light traffic (such as industrial

and spur tracks). A rail project may either supply or demand relay rail. Relay rail constraints

require the projects supplying relay rail to be scheduled before projects demanding relay rail for

a certain amount of processing and transporting time, so that the demand can be met. Our current

model does not address which supplying project serves which demanding project; this matching

problem is a part of the relay rail sourcing problem and will be studied in the future.

There are different types of relay rails in terms of weight and size. Let relayP be the set of

projects that either supply or demand a certain type of relay rail. We also use relayP to represent a

relay rail constraint. Let pr be the net output of relay rail from project relayp P , which is

positive for projects supplying relay rail, and negative for those demanding relay rail. Let relay, pt

be the number of weeks after the start of project relayp P when its supplied relay rail becomes

available (usually a few months in practice) or its demanded relay rail needs to be transported to

site (usually 0).

 102

Sometimes relay rail is also supplied from other sources than projects, such as relay rail

factories. Let other ,wr be the net output of relay rail from other sources in week w W . The net

quantity of available relay rail in week w W can be calculated as

relay,

relay

() other,

1
p

p

w

p pk w t w

w p P k K

r y r 
  

  
  

  
  

   . Define
relayrelay,P as the total shortage of relay rail during

the scheduling horizon, which equals the negative of the minimum net quantity of available relay

rail among all weeks.

Relay rail constraints can be formulated as:

relay relay

relay

relay relay, relay,

soft

C () P P

P

c 


 y , (4.52)

relay relay,

relay

relay, () other,

1
p

p

w

P p pk w t w

w p P k K

r y r  
  

  
    

  
  

   ,
w W  , for all soft relayP , (4.53)

relayrelay, 0P  , for all soft relayP , (4.54)

relay,

relay

() other,

1

0
p

p

w

p pk w t w

w p P k K

r y r 
  

  
   

  
  

   ,
w W  , for all hard relayP , (4.55)

where relayC () is the total relay rail constraint penalty costs and
relayrelay,Pc is the penalty cost per

unit of relay rail shortage of soft constraint relayP . Equation (4.52) calculates relayC () as the

summation of all soft relay rail constraint penalty costs. Constraints (4.53)-(4.55) defines soft

and hard relay rail constraints.

 103

4.3.11 “Blitz” Constraints

The “blitz” constraints involve a set of special projects (blitz projects) which can only be

performed during certain consecutive weeks (blitz weeks) in a year. During blitz weeks, many

teams (blitz teams) need to travel to blitz projects and work intensively on them (Burns and

Franke, 2005). Sometimes a team has to interrupt its current project to work on blitz, and

continue that project after coming back from blitz. In the studied PTSP, blitz projects are in

subdivisions close to coal mines and are performed during coal mine summer vacation. In

railroad business, coal traffic cannot be interrupted, and hence no maintenance projects shall be

performed in coal mine subdivisions when coal mines are in operation. However, coal mines

typically have a two-week vacation in the summer, providing the railroads with the only possible

time window to conduct maintenance on those subdivisions.

In order to implement such practice, the model forces all blitz teams to move to the vertex

representing blitz location during blitz weeks. For those projects interrupted by blitz, the model

extends their durations pkt by two weeks during blitz weeks. All constraints related to project

durations should be modified during blitz weeks accordingly. For example, formula (4.36)

should be replaced by the following formulas in hard consecution constraints:

 Con , Con
Con

Con , ConCon

Con , BCon

Con

Con , Con

C

B Con,

B Con,

B Con, B

min
,

or max ,

, min min ,

pk P pqk

qk P pqk

pk P pqk

qk P pqk

qk

w t t
pk P pqk

qkw

w w t t qk P pqk

w t t W

pkw qkw pk P pqk

w w t t

qkw

w w t t

w W t t
y

w W t t

y y W t t w W

y

 



  

  



  



  

  

  

    





Con , Con

Con

on , BCon

B B Con,, max max ,
pk P pqk

P pqk

w t t

qk P pqk

W

W w W t t

 











    





ConB B\ , Pw W W k K K    , Con, ,p q P p q   , for all hard ConP , (4.56)

 104

 Con , Con

Con , Con

pk P pqk

qk P pqk

w t t

pkw qkw

w w t t

y y

 



  

  ,

Con B, \Pw W k K K   , Con, ,p q P p q   , for all hard ConP , (4.57)

where BW is the set of blitz weeks and BK is the set of blitz teams. All other duration-related

constraints must be treated for the blitz weeks in a similar fashion. Note that blitz projects have

fixed schedules and are not included in P .

4.4 Algorithm

Again, large-scale routing and scheduling problems with many side constraints is well known to

be computationally intractable. Basic MIP algorithms such as linear relaxation and branch and

bound generally incur significant difficulty solving such problems. Therefore, we propose a

heuristic algorithm (combined with MIP algorithms) to solve PTSP.

The flowchart in Figure 17 illustrates the proposed algorithm framework. First, projects with

high probabilities of violating MX constraints are identified and split. Then projects (after

splitting) are tentatively scheduled by solving a scheduling model. Finally PTSP is solved

iteratively with two types of local search algorithms: (i) decomposition and restriction with MIP

algorithm, and (ii) block interchange. The solution process terminates when some stopping

criteria are met (e.g., a predetermined maximum solution time is reached).

 105

Figure 17. Algorithm framework of production team scheduling.

The key feature of the proposed algorithm is the iterative application of two types of local

search algorithms. While each of the two local search algorithms may get stuck in local optima,

the local optimum of one neighborhood structure may not be that of the other one. By exploring

different neighborhood structures, the two local search algorithms can effectively improve the

solution by helping each other leave local optima.

This section also introduces some other auxiliary algorithms that are developed to reduce the

input data of the model. The reduced data keeps the problem instance unchanged but reduces the

number of variables and constraints.

Scheduling model

Block interchange

Input

Y

Split projects

Output

Decomposition and

restriction

Are stopping

criteria met?
N

 106

4.4.1 Project Splitting

As explained before, some projects are split or folded in order to reduce the violations to side

constraints. Some projects are required to be split or folded by the railroad. In addition, the

algorithm needs to determine by itself which other projects should be folded in order to satisfy

MX constraints. Generally, the algorithm is only allowed to split a project into two parts. If the

project split by the algorithm is not folded, its two parts must be performed consecutively by one

team.

The number of projects to split is determined in an ad hoc way. Generally, there is a tradeoff

between travel costs and penalty costs for the number of split projects: splitting more projects

usually increases travel costs and decreases penalty costs, and vice versa. This is intuitive:

splitting projects can reduce the violations to side constraints, but teams have to travel more

distance because the total number of projects is increased after splitting. Also, splitting more

projects would reduce the solution speed, because more variables and constraints are required.

The following strategy is used to prioritize the projects for splitting. For a project p P ,

compute its expected duration
1

p

p pk

k Kp

t t
K 

  assuming it has equal probability to be assigned

to any team pk K . For each project set MXP for MX constraints, compute its minimum

curfewed duration
MXO,Pt as

MX

max p
p P

t


 (this duration is achieved when all projects in MXP are

performed simultaneously). Because
MXO,Pt is usually far smaller than W , assume that the

curfewed duration of MXP may start from any week of the scheduling horizon with equal

probabilities. Then for any two project set MXP and MXP in a MX constraint MXF with

 107

MXMX, 1Fm  (most MX constraints have
MXMX, 1Fm ), the expected penalty cost (a very high cost

can be used for hard MX constraints) incurred by MXP and MXP can be estimated as

MX MX MX MX MX MXMX, MX, O, O, /F P P F P Pc c t t W  .

The total expected penalty cost incurred by MXP from MX constraint MXF can be estimated as

MX MX MX MX MX MX MX MX

MX MX MX MX MX MX

MX, MX, MX, O, O,

\{ } \{ }

/F P F P P F P P

P F P P F P

c c c t t W 

  

   .

For a project MXp P , the expected penalty costs incurred by it from MXF can be estimated as

MX MX MX MX MX MX

MX MX MXMX

MX, MX, MX, O,

\{ }O,

/
p

F P p F P F p P

P F PP

t
c c c t t W

t


 

   .

If p is involved in multiple MX constraints, MX, pc , the total expected MX constraint penalty

costs incurred by it, can estimated as the summation of all
MX MXMX,F P pc :

MX MX

MX MX MX MX MX MX, MX

MX MX

MX MX MX MX MX MX, MX MX MXMX

MX, MX,

: : , 1

MX, O,

: : , 1 \{ }

.

F

F

p F P p

P p P F P F m

p

F P

P p P F P F m P F P

c c

t
c t

W

  



   



 
  

 

 

  

Excluding the unsplittable projects (e.g., projects with the duration of one week and those

required by the company not to be split) and the split projects (i.e., projects which have already

been split), the project with the highest MX, pc is selected to split. If it can be performed by teams

of different productivities, it will be temporarily assigned to the team with the highest

productivity in order to reduce its duration; otherwise it will be split into two parts. Either case,

MX, pc of all projects should be recalculated before the next project is selected to split.

 108

4.4.2 Scheduling Model

Our scheduling model is a relaxed variant of PTSP that we use to obtain an initial solution for

local search algorithms. In PTSP, it can be seen that x only appears in travel costs but not in side

constraints. If travel costs are ignored, x can be eliminated and PTSP becomes a pure scheduling

problem without the spatial dimension. Define sets  start, start,1,2 , 1k kW W   and

 end, end, 2, ,k kW W W W    . The simplified core model (without side constraints) can be

formulated as follows:

(PTSP2)
cost item

all cost items

min ()C y , (4.58)

s.t.

(1)

k k

pkw pk w

p P p P

y y 

 

  , start,k K w W    , (4.59)

 1
k

pkw

p P

y


 , start , end,, \ \k kk K w W W W    , (4.60)

(1)

k k

pkw pk w

p P p P

y y 

 

  , end,k K w W    , (4.61)

 (4.5)-(4.7).

PTSP2 is equivalent to PTSP with
1 2travel, 1 20, , ,v v kc v v V k K    . Because the elimination of x ,

PTSP2 has much fewer variables than PTSP. All side constraints and costs except travel costs

(4.8) can be included in PTSP2, because they are only related to y . By solving PTSP2 with some

of the side constraints, an initial solution can be obtained.

 109

In practice, PTSP2 is solved using commercial MIP solver. We reduce the time needed to

find an initial solution, by considering only time window and preference constraints in PTSP2,

since these constraints do not add any new variables or constraints to the model. If other side

constraints (such as MX constraints) were added, PTSP2 generally cannot be solved within a

reasonable time., In our experiments, the exact optimum solution for PTSP2 can usually be

obtained within 5 minutes for real-world problem instances (as discussed in more detail in

Section 4.5).

4.4.3 Decomposition and Restriction

In practice, PTSP is often very large-scale and difficult to solve. However, the original problem

may be decomposed into restricted subproblems, which can be solved separately using MIP

algorithms. In our work, a team-wise decomposition scheme is used. Each subproblem only

contains the decision variables related to a small subset of the teams and the projects assigned to

these teams (in the current solution). Other decision variables are temporarily fixed. In this sense,

every subproblem is a restriction version of the original problem. As such, a subproblem has

much fewer variables and constraints and can be solved relatively quickly with MIP algorithms.

By iteratively formulating and solving such subproblems, the overall solution is continuously

improved. To ensure a fast solution speed, we restrict the maximum number of teams in a

subproblem to two.

This decomposition and restriction (D&R) method is essentially a local search algorithm

where a move is defined as the update of decision variables related to a subproblem. For a given

problem, we can define K subproblems each containing one team, and (1) / 2K K 

subproblems each containing two teams. Hence, the size of the neighborhood is

 110

(1) / 2K K K  (1) / 2K K  , which is not a very large number. However, it is still

impractical to exhaustively enumerate all possible moves, because testing a move (i.e., solving a

subproblem) is relatively time-consuming compared to ordinary local search algorithms (to

ensure solution speed and quality, the solution time limit for one subproblem is usually set to be

a few minutes). Therefore, we use non-exhaustive search which allows the algorithm to

terminate before all possible moves are enumerated.

Local search algorithm requires the objective value of a given solution to be always

quantifiable. Therefore, all hard side constraints are relaxed into soft constraints (but with very

high penalty costs) at the beginning of the algorithm, while they are set back to hard constraints

(which often reduces the number of variables) once they become satisfied during the algorithm

iterations.

A few approaches are applied to help improve the efficiency of the D&R search. They

include (i) adding cuts to the MIP model, (ii) adding augmented cost function to the MIP model,

(iii) tightening the MIP model for subproblems, and (iv) using a heuristic strategy to prioritize

subproblems in local search.

When solving a subproblem with the MIP algorithm, linear programming (LP) relaxation, is

applied to the MIP model. In LP relaxation, integer constraints such as (4.7) are relaxed. Cuts are

the constraints redundant in the MIP model but not in the LP relaxation. For example, cuts (4.47)

are added to the split project constraints, which require SP, pq to be always non-negative. Clearly,

it always holds in a feasible solution: projects p P and q P can never satisfy both

simultaneity constraint and consecution constraint, hence Con, pq and S, pq cannot be both zero.

However, SP, pq may be negative in an LP relaxation solution. Such cuts can help reduce the

integrality gap of LP relaxation (i.e., the minimum known upper bound of the difference between

 111

the optimum objective values of the MIP model and its LP relaxation), and hence improve the

efficiency of MIP algorithms. Constraints (4.28) and (4.29) are also cuts, which are added to the

simultaneity constraints. They enforce a simultaneity constraint to be fully violated (i.e.

overlapping ratio equals 0) when two projects are performed by the same team.

Augmented cost function is used to penalize some features of the local optimal solution and

help the algorithm leave a local optimum. For example, in a hard MX constraint
MXPF , if there

are more than one project set MXP containing more than one project,
MXPF is called a difficult

MX constraint, in the sense that it is difficult to be satisfied in D&R search. Still use the example

in Figure 16. Suppose in the current solution the four projects are assigned to four different

teams and have some common overlapping weeks. In order to satisfy this MX constraint, the

only possible way in D&R search is to move both 11p and 12p out of the overlapping weeks, or

to move both 21p and 22p out. Such move can only be achieved by solving the subproblem

containing both 11p and 12p , or that containing both 21p and 22p . Because there are totally

(1) / 2K K  subproblems, those two subproblems may not be solved frequently, or even

solved during the algorithm. Even if they are solved, the algorithm may not be able to reschedule

both 11p and 12p or both 21p and 22p at one time because of other side constraints. In order to

address this problem, a penalty is added to each of the four projects when they are overlapping.

As such, the algorithm is able to move them out one by one. Another example is consecution

constraints, where an additional penalty is added if two projects within ConP is not performed by

the same team. In this way, the algorithm tends to first assign them to the same team, and then

schedule them to be consecutively performed.

 112

The proposed MIP model can be directly applied to the subproblems. However, because

many variables are fixed in the restricted subproblems, the model for subproblems can be further

tightened in order to improve the solution speed. For example, suppose there are two projects in

a consecution constraint. If only one project is in the subproblem, the consecution constraint

must be violated, because it is impossible to assign both projects to one team by solving this

subproblem. Hence a fixed penalty cost can be added to the objective function and this

consecution constraint can be eliminated from the subproblem. In another example, suppose 1p

and 2p are two projects in a project set MXP and only 1p is in the subproblem. Then we can

define
MXMX, 1wP  for the weeks when 2p is performed, and

MX 1MX,wP p kwy  for the weeks when

2p is not performed. In this way,
MXMX,wP can be represented by existing variables and no

additional variable is needed.

In D&R search, a heuristic strategy is used to quickly prioritize subproblems to determine

the order of solving them. Generally, it is desirable to first solve the subproblems that are more

promising for improvements. A subproblem is considered promising if it has a large initial

integrality gap. However, the integrality gap is unknown until its LP relaxation is solved (which

can usually be done quickly). In the proposed search strategy, if the gap of a subproblem is

unknown, the algorithm estimates it with the costs incurred by that subproblem multiplied by an

ad hoc coefficient. Such estimation is most effective when a few constraint violations are

dominating (i.e., a large proportion of the total cost is caused by them). In that case, the strategy

is able to identify the subproblems involved with those violations relatively easily. However,

when all hard constraints and high cost soft constraints become satisfied, it becomes difficult to

estimate the gap accurately because of the complex tradeoffs among side constraints. Besides

using the integrality gap as a criterion for prioritization, the algorithm also keeps a tabu list; i.e.,

 113

giving low priority to a subproblem which has been solved recently, because it is unlikely to

improve the solution by solving the same subproblem a second time. However, the algorithm

will again consider that subproblem as new after a certain number of changes have been made on

the schedules of its projects (e.g., after solving other subproblems or performing the block-

interchange search).

Although the D&R search is enhanced in a few ways, it may still get stuck in local optima.

Therefore, another type of local search, i.e., block interchange, is implemented to help the D&R

search leave the local optima.

4.4.4 Block Interchange

In the block-interchange search, a “block” is a sequence of consecutively performed projects by

a team. The duration of a block is the summation of the project durations, and the category of a

block is just the category of the projects in this block. In a block-interchange move, multiple

blocks with the same duration and category exchange their positions (i.e., start times and

assigned teams). Figure 18(a) illustrates a block interchange, where three blocks, one containing

project 1, one containing project 6, and one containing projects 10 and 11, are interchanged.

 114

Figure 18. Two schemes of a 3-block interchange.

We define an n -block interchange as the move associated with n blocks all changing

positions. Suppose two blocks are initially in positions A and B (represented by A-B) in the

current solution, after a 2-block interchange their positions will become B-A. When 2n  , an n -

block interchange includes multiple interchange schemes. In a 3-block interchange, A-B-C may

become B-C-A or C-A-B. Figure 18(a) and (b) illustrate two different 3-block interchange

schemes. Note that A-C-B is not a valid 3-block interchange, because the first block is still in its

initial position A after the move. Such a move can be performed with a 2-block interchange, and

is not considered as a 3-block interchange in order to avoid duplication. In a 4-block interchange,

there are totally 9 interchange schemes, i.e., A-B-C-D may become B-A-D-C, C-A-D-B, D-A-B-

C, B-D-A-C, C-D-A-B, D-C-A-B, B-C-D-A, C-D-B-A or D-C-B-A.

In our implementation, we use 4n  . The reason is that the schedule is restricted by many

side constraints, and a block interchange with 4n  is very unlikely to improve the solution.

 Team 1 Team 2 Team 3

Week 1 Project 10 Project 2

Project 3
Week 2 Project 11

Project 1
Week 3 Project 4

Week 4

Project 5

Project 7

Week 5 Project 8
Project 6

Week 6 Project 9

 Team 1 Team 2 Team 3

Week 1
Project 6

Project 2

Project 3
Week 2 Project 10

Week 3 Project 4 Project 11

Week 4

Project 5

Project 7

Week 5 Project 8
Project 1

Week 6 Project 9

 Team 1 Team 2 Team 3

Week 1
Project 1

Project 2

Project 3
Week 2

Project 6
Week 3 Project 4

Week 4

Project 5

Project 7

Week 5 Project 8 Project 10

Week 6 Project 9 Project 11

 Team 1 Team 2 Team 3

Week 1
Project 1

Project 2

Project 3
Week 2

Project 6
Week 3 Project 4

Week 4

Project 5

Project 7

Week 5 Project 8 Project 10

Week 6 Project 9 Project 11

(a) (b)

 115

This is verified by the observation from numerical studies on the real-world problem instances.

For the same reason, the duration of a block is also restricted to be no more than 10 weeks.

Teams may have different total durations of their assigned projects. If only the blocks with

the same duration are interchanged, the total project duration of a team will never change. To

make the search more powerful, the interchange of “tail blocks” is allowed. A tail block is a

block at the end of the schedule plus some empty weeks. Figure 19 illustrates a tail block

interchange. In this example, one tail block contains a single project 3, and the other contains

projects 6 and 7, and an empty week highlighted by the cell filled with diagonal lines. After the

move, project 3 is assigned to team 2, and projects 6 and 7 are assigned to team 1. The total

project durations of team 1 and team 2 are also interchanged.

Figure 19. An example of tail block interchange.

On the scale of a practical problem, the size of the neighborhood is very large. Exhaustive

local search would be impractical. Hence we use randomized local search strategy, where moves

are randomly selected from the neighborhood to test. The algorithm first stores all blocks of the

current schedule in multiple pools, which are defined based on team categories, team

productivities, block durations and block types (i.e., whether a block is a tail block), so that only

the blocks from the same pool can be interchanged with one another. Suppose a pool contains m

 Team 1 Team 2

Week 1
Project 1

Project 4

Week 2
Project 5

Week 3 Project 2

Week 4

Project 3

Project 6

Week 5 Project 7

Week 6

 Team 1 Team 2

Week 1
Project 1

Project 4

Week 2
Project 5

Week 3 Project 2

Week 4 Project 6

Project 3 Week 5 Project 7

Week 6

 116

blocks. Then there are
m

n

 
 
 

 different n -block combinations within that pool. By calculating the

total number of block combinations across all pools and all possible values of n , the algorithm is

able to randomly select block combinations with equal probabilities. After a set of blocks is

selected, all possible interchange schemes are enumerated. Randomized local search terminates

when the solution is not improved after a certain number of trials.

Similar to the local search implementation in TISP, the costs related to every project are

tracked. In order to improve the solution speed, the algorithm only calculates the cost changes

associated with the interchanged blocks when a move is made.

Different from node interchange in VRP and task interchange in TISP, block interchange

does not interchange blocks with different durations. For example, it does not allow insertion of

a block into a schedule. The reason is that such a move will change the start times of all

following projects, and with many side constraints in the problem instance, it tends to cause

many unacceptable violations. Furthermore, such a move requires the recalculation of costs

associated with many following projects, and will greatly reduce the solution speed.

Compared with D&R search, block-interchange search is much faster and is able to

interchange projects among more than two teams. On the other hand, D&R search is able to

optimize the schedules of all projects in one or two teams which block-interchange search may

not be able to achieve. Therefore, the two types of searches can complement each other. The

algorithm applies the block-interchange search whenever a subproblem is solved in the D&R

search. Such alternations between the two searches are found to be able to improve the solution

much more efficiently and effectively than any one of them alone.

In practice, we also implemented a parallel version of block interchange. Multiple threads

are used to search the neighborhood of the current solution parallelly. Once a thread finds a

 117

better solution, the current solution is updated for all threads. Such parallel search is able to

utilize the multiple cores of modern computers.

4.4.5 Data Reduction

Before solving the model, we first consolidate the input data in order to reduce the problem

instance scale. There are two reasons that the data shall be reduced: (i) the raw data are provided

by the railroad and may not be the most efficient way to formulate the problem; (ii) during local

search we only care about the variables and constraints related to the subproblems or blocks, and

the entire data set for the whole problem may not be efficient to formulate the subproblems or to

calculate the costs related to blocks. Data reduction can reduce the number of variables and

constraints in the model and hence improve the solution speed. Note that the data reduction

mentioned here should not cause any loss of accuracy. Some data reductions can be

automatically performed by MIP software when the subproblems are solved. Others need to be

implemented using customized algorithm.

The spatial railroad network data can generally be reduced by removing unnecessary

vertices and edges. A vertex is called “important” if it is an endpoint of a project. The goal of

network reduction is to keep all important vertices in the network, preserve the shortest path

distances among them, and reduce the number of “unimportant” vertices and edges. Assuming a

vertex and an edge could cause the same computational complexity, the objective is to minimize

the sum of the numbers of vertices and edges.

First, unimportant vertices and their incidental edges can be removed by adding new edges

between each pair of its neighbors. If an unimportant vertex has degree one, the only edge

incident to it can be simply removed. If it has degree two, its two incident edges can be removed

 118

while a new edge should be added to connect its two neighboring vertices. If it has degree three,

the three incident edges can be removed but three new edges must be added to connect the three

neighboring vertices. For vertices with four degrees, four edges can be removed but six has to be

added. The examples for degree 1, 2, 3 and 4 are shown in Figure 20 (n and m are

respectively the change of vertex number and the change of edge number). Therefore, unless n

is given more than twice weight as that of m , only unimportant vertices with degree no larger

than three are removed. The algorithm repeatedly removes such vertices until there is none left.

Figure 20. Examples of removing unimportant vertices.

Degree = 1
1, 1 0 1n m        

Unchanged Vertex

Removed Vertex

Added Edge

Removed Edge

Degree = 2
1, 2 1 1n m        

Degree = 3
1, 3 3 0n m       

Degree = 4
1, 4 6 2n m       

 119

Figure 21. An example of a removable vertex with degree 4.

After the above process, removable vertices may still exist. An example is shown in Figure

21. Suppose A, B, C, D are important vertices and E is an unimportant one. The lengths of edges

are shown in the figure. Though E’s degree is four, it can still be removed by adding only three

new edges AD, BC and BD with length 1.4. These three new edges are necessary, because

without them the shortest distances between AD, BC, and BD will become 2, 2 and 3, instead of

1.4 as in the original network. However, it is not necessary to add a new edge between AB. The

original shortest path between A and B is edge AB, which does not pass through E, so the

removal of E does not change the shortest distance between A and B. For the same reason, it is

also not necessary to add any new edge between AC or CD.

Generally, let ()N v be the set of neighbors of an unimportant vertex v . Let ()S v be the set

of unordered pairs 1 2(,)u u such that 1 2, ()u u N v and path 1 2- -u v u is a subgraph (i.e. part) of

some shortest path between two important vertices. It is easy to see that if degree(v) ()S v ,

vertex v and all its incident edges can be replaced by new edges between every vertex pair in

()S v , and the number of edges in the network is reduced or remains unchanged. The algorithm

repeatedly removes such vertices until there is none left.

A B

C D

E

A B

C D

Unchanged Important

Vertex

Removed Unimportant

Vertex

Added Edge

Removed Edge

Unchanged Edge

1.4

1

1

1

0.7

0.7 0.7

0.7

1.4
1.4

1

1

1

 120

Let n be the number of vertices in the original network. In each iteration, Floyd-Warshall

algorithm (Floyd, 1962) is used to find the shortest path between every two vertices, and has

time complexity 3()O n . Two n n matrices, Dist, which is used to store the shortest distances,

and Prev, which is used to store the predecessor vertices of the shortest paths, are generated by

Floyd-Warshall algorithm. To find a removable vertex, the algorithm needs to go through Prev to

calculate the number of times that a vertex is used in a shortest path, so the time complexity is

2()O n . To remove a vertex, the algorithm also needs to go through Prev to both remove and add

edges, so the time complexity is also 2()O n . Only one vertex is removed per iteration, so the

total time complexity of the algorithm is 3 2 2 4(()) ()O n n n n O n   . Currently it has not been

proved that if this algorithm can guarantee an optimum solution, i.e., a network with fewest

vertices and edges. However, it is easy to implement and has good performance for the practical

problem instance scale.

MX set reduction is another way to reduce the scale of the problem instance. In the raw data

provided by the railroad, most MX sets only contains two project sets, i.e.,
MX

2PF  . The reason

is that the experts from the railroad review pairs of project sets (e.g., subdivisions) and identify

those where two project sets are mutually exclusive. Multiple MX pairs can often be

consolidated into a single MX set. For example, for project sets 1, 2 and 3, suppose {1, 2}, {2, 3}

and {1, 3} are three MX pairs with the same penalty cost. If the raw data is used as the input,

there will be three MX constraints. However, if they are consolidated into a single MX set {1, 2,

3}, only one constraint is needed.

The goal of MX set reduction is to obtain a minimum number of MX sets from the provided

MX pairs. Because MX pairs with different penalty costs cannot be consolidated, we can first

divide MX pairs into multiple groups based on their penalty costs, and perform data reduction on

 121

each group separately. For a certain group, we can construct an undirected graph with project

sets as vertices and MX pairs as edges. The MX set reduction problem is equivalent to the

minimum clique cover problem on the graph, where a clique (a subset of vertices where every

two vertices are connected by an edge) represents a MX set. Minimum clique cover problem is

NP-complete (Karp, 1972). In PTSP, we use a simple constructive heuristic algorithm to solve

the minimum clique cover problem. The algorithm is as follows:

 Step 1: Terminate the algorithm if there is no edge in the graph.

 Step 2: Select an arbitrary edge, set its two endpoints as the current clique, and

remove that edge from the graph.

 Step 3: Try to find an arbitrary vertex which is adjoining to all vertices in the current

clique. If such vertex exists, remove all edges between it and the current

clique, add it to the current clique, and repeat Step 3; otherwise go to Step 4.

 Step 4: Record the current clique. Go to Step 1.

The above algorithm may not always yield the optimal solution. However, because the railroad

network is a planar network and most MX sets are composed by spatially adjoining project sets,

it can generally obtain a good solution.

4.5 Case Studies

The proposed model and algorithm are implemented in the Microsoft Visual C++ environment

on a personal computer with 2.66GHz dual core CPU and 3 GB RAM. Commercial MIP solver

 122

CPLEX (version 1.12, multi-thread) is used to solve subproblems. The time limit of solving a

restricted subproblem is set to 3 minutes.

In the first study, the proposed approach is applied to the PTSP in a Class I railroad

company for a recent year, Year A
9
. About 300 projects need to be assigned to about 20 teams

and scheduled in about 50 weeks of the year (after reserving some weeks for vacation). The

detailed statistics of the input data regarding teams, projects, etc., are summarized in Table 2.

The numbers of MX constraints are before data reduction. Note that not every type of side

constraints proposed in the model is used in this problem instance due to limited data availability.

The penalty costs of all soft constraints are provided by the company based on the impacts of the

violations on its business operations. The number of projects to split is determined in an ad hoc

way.

9
 This year may be different from the one mentioned in previous case studies.

 123

Table 2. Input data statistics for production team scheduling (Year A data).

Team # of teams About 20

of team categories 2

of team productivities 2

of team types 5

Project # of projects About 300

of project types 7

of weeks About 50

of side constraints

(hard/soft)
Yard MX 32/0

Junction MX 275/189

Corridor MX 0/10

Time window 2,423/628

 Preference 667/608

 Precedence 25/0

 Simultaneity 6/6

 Consecution 2/0

 Split Project 0/32

Table 3 shows the statistics of the model solution (after 6 hours of computation time). The

unit of all cost entries in the table is the average cost needed for moving one team by one mile

between projects. To protect data confidentiality, the cost entries are scaled by a constant factor

between 0.5 and 2. In the statistics of “number of violations”, one side constraint may be violated

multiple times as introduced in Section 4.3. It can be seen that the model solution is able to

satisfy all hard constraints and most soft constraints. Such a solution would be very difficult to

obtain if manual procedure were used.

 124

Table 3. Solution statistics for production team scheduling (Year A data).

Travel costs 104,458

Soft side constraints

(penalty costs /

of violations)

Junction MX 4,086 / 61

Corridor MX 13,599 / 58

Time window 11,589 / 34

Preference 14,068 / 130

Simultaneity 0 / 0

Split Project 0 / 0

Total costs (travel + penalty) 147,801

Total hard constraint violations 0

Figure 22 plots how the total costs (the sum of the travel costs and penalty costs, including

the penalty costs of hard constraints internally set in the algorithm) converge over time. The

running time of the scheduling model (less than 5 minutes) is not included. After an initial

solution was obtained by the scheduling model, block-interchange search was applied and it

reduced total costs rapidly within about 10 minutes. Then the model iteratively used D&R search

and block-interchange search to continuously reduce the costs.

 125

Figure 22. Cost reduction over running time (Year A data).

In this solution, the number of split projects is 32, which is predetermined based on the

experience from previous years. We have also tried to split 20 or 40 projects, and there is still

one hard constraint violation after 6 hours of running time for both cases. The reason is as

explained in Subsection 4.4.1: splitting too few projects will impose difficulty regarding the MX

constraints, while splitting too many will increase the complexity of the problem and reduce the

solution speed.

The algorithm for PTSP is non-deterministic, because block interchange uses a randomized

search strategy, and the parallel computing used in both block interchange and CPLEX is non-

deterministic. Therefore, different runs of algorithms may provide different solutions. In order to

test the average performance of the algorithm, we ran the algorithm 9 more times with the same

input. The average total costs of all 10 runs are 149,507, and the sample standard deviation is

6,140. In light of the Central Limit Theorem, we assume that the mean of the total costs of a

solution approximately follows the normal distribution. Then the confidence interval for the

mean of the total costs can be calculated as /2, 1n

s
X t

n
  , where X is the average costs, s is

 126

the sample standard deviation, n is the sample size (i.e., the number of runs),  is the desired

significance level, and /2, 1nt  is the upper critical value of the Student’s t-distribution with n -1

degrees of freedom. We use 0.05  , and the confidence interval for the mean of the total costs

is 149,507 (1 3.5%)  = (144,294, 154,721). We did not perform more runs because 3.5% has

been small enough for the purpose of testing the performance of the algorithm.

In the second study, the proposed model and algorithm are applied to the PTSP in a Class I

railroad company for another recent year, Year B, when a manual solution obtained by experts is

also available for comparison. In this data set, about 300 projects need to be assigned to about 20

teams and scheduled in about 50 weeks of the year. The detailed statistics of the input data

regarding teams, projects, etc., are summarized in Table 4.

Table 4. Input data statistics for production team scheduling (Year B data).

Team # of teams About 20

of team categories 2

of team productivities 2

of team types 5

Project # of projects About 300

of project types 7

of weeks About 50

of side constraints

(hard/soft)
Junction MX 0/273

Corridor MX 0/12

Time window 2,305/2,334

Precedence 24/45

An approach proposed by Peng et al. (2010) was also implemented in the same hardware

and software environment to solve the Year B data. There are two major differences between the

approaches proposed in this dissertation study and Peng et al. (2010). First, in the block-

interchange search used by Peng et al. (2010), a block can have only one project, and a set of

 127

blocks has only one interchange scheme. Hence their block interchange is much less powerful

than the proposed one. Second, Peng et al. (2010) used a clustering model instead of the

scheduling model to obtain an initial solution. The clustering model is not able to address as

many side constraints as the scheduling model.

Table 5 shows the comparison of the model solutions by the approaches proposed by Peng et

al. (2010) and this dissertation study (after 6 hours of computation time), and the benchmark

solution manually developed by the experienced planning experts from the railroad (based on the

same input data). To protect data confidentiality, the cost entries are scaled by a constant factor

between 0.5 and 2. The scaling operation does not impact the comparison between different

solutions. It can be seen the proposed approach reduces the total costs by 66.7% compared to the

manual solution. It also satisfies all hard constraints while the manual solution has 23 violations.

Compared to Peng et al. (2010) approach, the proposed approach reduced the total costs by

18.8%.

Table 5. Solution comparison for production team scheduling (Year B data).

Costs and violations
Manual

procedure

Peng et al.(2010)

approach

Proposed

approach

Travel costs 161,944 158,598 139,921

Soft side constraints

(penalty costs /

of violations)

Junction MX 24,117 / 72 8,709 / 26 2,345 / 7

Corridor MX 12,661 / 54 5,158 / 22 3,751 / 16

Time window 257,965 / 95 14,664 / 41 6,062 / 36

Precedence 670 / 20 603 / 18 435 / 13

Total costs (travel + penalty) 457,357 187,733 152,647

Hard side constraints

(# of violations)

Time window 15 0 0

Precedence 8 0 0

Total hard constraint violations 23 0 0

 128

Figure 23 plots how the total costs converge over time. The time to obtain an initial solution

is less than 5 minutes for both approaches and is not included. By comparing the total costs at

time 0, it can be seen the scheduling model in the proposed approach can obtain a much better

initial solution than the clustering model in Peng et al. (2010) approach. The total costs from

both approaches were reduced dramatically in the first hour and became lower than the manual

solution. However, those from the proposed approach dropped much faster because of the

improved block interchange. In fact, the proposed approach is able to obtain in 3 minutes a

solution as good as that by Peng et al. (2010) approach in 6 hours.

Figure 23. Cost reduction over running time (Year B data).

Total costs of manual solution

(with 23 hard constraint

violations)

 129

Glossary of Symbols

ConC () : Total consecution constraint penalty costs,

ConCon,Pc : Consecution constraint penalty cost when projects in ConP are not performed

consecutively by the same team,

cost item ()C  : Total costs of a certain cost item,

LimC () : Total limit constraint penalty costs,

LimLim, ,P kc   : Limit constraint penalty cost per week when more than
LimLim,P km weeks of

projects from LimP are performed by team k K ,

MXC () : Total mutual exclusion constraint penalty costs,

MXMX,Fc : Mutual exclusion constraint penalty cost per project per week for constraint

MXF ,

NSC () : Total non-simultaneity constraint penalty costs,

NS, pqc : Non-simultaneity constraint penalty cost when projects ,p q P are

performed simultaneously,

PrecC () : Total precedence constraint penalty costs,

Prec, pqc : Precedence constraint penalty cost when project q P is not started after at

least Prec, pqt weeks after the start of project p P ,

PrefC () : Total preference constraint penalty costs,

Pref , pkc : Preference constraint penalty cost when project p P is performed by team

k K ,

relayC () : Total relay rail constraint penalty costs,

relayrelay,Pc : Relay rail constraint penalty cost per unit of relay rail shortage in constraint

relayP ,

SC () : Total simultaneity constraint penalty costs,

S, pqc : Simultaneity constraint penalty cost when projects ,p q P are not

performed simultaneously,

SPC () : Total split project constraint penalty costs,

SP, pqc : Split project penalty cost when projects ,p q P are performed neither

simultaneously by different teams nor consecutively by the same team,

travelC () : Total travel costs,

1 2travel,v v kc : Cost for team k K to travel from vertex 1v V to 2v V ,

TWC () : Total time window constraint penalty costs,

TW, pwc : Time window constraint penalty cost when project p P is performed in

week w W ,

 130

MXF : Set of project sets in an mutual exclusion constraint,

K : Set of teams,

BK : Set of blitz teams,

pK : Set of teams which can perform project p P ,

ConPK : Set of teams which can perform at least one project in ConP ,

Prod, ptK : Set of teams which can perform project p P with duration pt T ,

LimLim,P km : Maximum allowed weeks of projects from LimP performed by team k K in

a limit constraint,

MXMX,Fm : Maximum allowed simultaneous curfewed project sets from
MXPF in a mutual

exclusion constraint,

P : Set of projects,

ConP : Set of projects in a consecution constraint,

kP : Set of projects which can be performed by team k K ,

LimP : Set of projects used in limit constraints,

MXP : Project set used in mutual exclusion constraints,

relayP : Set of projects in a relay rail constraints,

vkP
: Set of projects which can be performed by team k K and whose endpoints

v , v satisfy v v ,

vkP
: Set of projects which can be performed by team k K and whose endpoints

v , v satisfy v v ,

Pref,p k  : Pair of project p P and team k K in a preference constraint,

Lim ,P k  : Pair of a set of projects LimP and team k K in a limit constraint,

NS,p q  : Pair of projects ,p q P in a non-simultaneity constraint,

Prec,p q  : Pair of projects ,p q P in a precedence constraint,

S,p q  : Pair of projects ,p q P in a simultaneity constraint,

SP,p q  : Pair of projects ,p q P in a split project constraint,

TW,p w  : Pair of project p P and week w W in a time window constraint,

other ,wr : Net relay rail output from other sources in week w W ,

pr : Net relay rail output from project relayp P ,

ConCon,P pqkt : Total duration of all projects except p and q in ConP for team
ConPk K ,

pT : Set of possible durations of project p P ,

pkt : Duration of project p P for team k K ,

 131

Prec, pqt : Number of weeks after the start of project p P when project q P can be

started in a precedence constraint,

relay, pt : Number of weeks after the start of project relayp P when its supplied relay

rail becomes available or its demanded relay rail should be available on site,

V : Set of vertices,

W : Set of weeks,

BW : Set of blitz weeks,

end,kW : Set of end weeks for team k K ,

start ,kW : Set of start weeks for team k K ,

1 2
{ }v v kwxx : Binary variables indicating if team k K travels from vertex 1v V to

vertex 2v V in week w W ,

{ }pkwyy : Binary variables indicating if team k K starts to perform project p P in

week w W ,
+

pkwy ,
pkwy : Binary variables indicating the direction the team follows when performing a

project,

pkwy : Binary variables indicating if team k K is performing project p P in

week w W .

 132

CHAPTER 5 JOB-TO-PROJECT CLUSTERING

5.1 Introduction

Maintenance jobs are the smallest unit of a capital track maintenance activity. Thousands of

them are created every year based on the defects identified during track inspection. A typical rail

job covers from a few hundred to over a hundred thousand feet of rail track, and a typical timber

and surfacing (T&S) job involves the replacement of from a few hundred to tens of thousands of

ties. The duration of a job varies from less than one day to a few weeks. It is difficult to directly

schedule these maintenance jobs in production team scheduling problem (PTSP), because that

would induce a prohibitive number of decision variables and side constraints.

Fortunately, a few nice characteristics of PTSP make it possible to cluster the jobs into

fewer projects and address a portion of the side constraints during the clustering process. First,

production teams can only make long-distance travels during weekends. Jobs performed between

long-distance travels must be spatially close to each other, and their total duration should be

close to an integer number of weeks. Second, jobs performed within one week need to have some

common properties, such as being in the same subdivision or track line, so that train operations

can be rescheduled easily. These requirements make it natural to first cluster the jobs into

projects with durations of integer numbers of weeks, i.e., by solving a job-to-project clustering

problem (JTPCP), and then use the projects as the basic scheduling units in PTSP. Such a two-

step procedure is much more practical than directly scheduling jobs in PTSP.

Typically, the railroad would like to minimize the total duration of projects in order to

reduce the costs. In the studied JTPCP, each production team is contracted at a flat payment rate

of about tens of thousands of dollars per week. For a certain clustered project, for example, if it

 133

takes 0.6 week to finish all jobs in this project, the billable project duration will still be one week

because the team generally cannot travel to the next project in the middle of the week. The

railroad will have to pay for one full week, while 40% of the cost could otherwise be reduced or

avoided. Hence, minimizing the total duration of projects is generally achieved by reducing the

rounding errors of individual project durations.

While minimizing the total duration of all projects, the railroad has to consider many side

constraints which make the problem very complex. For example, certain jobs from different

subdivisions should not be clustered into one project; otherwise it will be difficult to reschedule

train traffic through those subdivisions. In the current practice, JTPCP is solved manually. The

procedure usually takes about one week, yet the solution quality may still not be satisfying. In

this chapter, we will develop mathematical models and solution algorithms to effectively solve

the clustering problem for large-scale real-world instances.

5.2 Model Formulation

5.2.1 Core Model

Let I be the set of jobs. Because every job has two endpoints, we use two directed arcs to

represent the possible direction to carry out a job. Let E be the set of all arcs, and iE be the set

of arcs representing the directions of job i I , where 2iE  . Let
1 2travel,e et be the travel time

from the head of arc 1e E (i.e., the finishing point of one job) to the tail of arc 2e E (i.e., the

start point of another job), and travelT be the maximum allowed travel time.

 134

Similar to the definitions in Subsection 4.3.1, we divide production teams into multiple

types. Let K be the set of team types
10

. For k K , let kT be the total number of available work

weeks of all type-k teams in the planning horizon (i.e., one year in this study), and team,kc be the

cost for a type-k team to work for one week (referred to as “working cost” from now on). Let

job,ikt be the duration of job i I when it is performed by a type-k team.

Let P be the set of projects, and kP be the projects which are assigned to team type-k, for

all k K . In JTPCP, a project is only assigned to one team type
11

, and hence kP is disjoint

across k. Let pt be the duration of project p P in the unit of weeks. For each project p P , a

virtual arc start,pe is created and added to E . The travel time from arc start,pe to any arcs is 0, i.e.,

start,travel, 0
pe et  , e E  . Every project p P is composed of a sequence of arcs, starting with the

virtual arc start,pe . When a maintenance team performs a project, it traverses these arcs and

performs the corresponding jobs. Let  
1 2 1 2: , ,e e px e e E p P  x be the set of decision variables,

such that
1 2

1e e px  if arc 1e is scheduled right after arc 2e in project p , or 0 otherwise.

Let cost item ()C  be the cost function of side constraints. The core model of JTPCP (without

side constraints) can be formulated in the form of a vehicle routing problem (VRP) as follows:

(JTPCP) team, cost item

other cost items

min ()
k

k p

k K p P

c t C
 

 
 

 
   x , (5.1)

s.t.

10

 Note that in Chapter 4 K denotes the actual teams, while here K denotes the team types (each type may include

one or more teams).
11

 This is different from PTSP, where a project may be reassigned to another team type.

 135

start,

1
pe ep

e E

x


 , p P  , (5.2)

1 2 2 1

2 2

0e e p e e p

e E e E

x x
 

   , 1 start,\{ },pe E e p P   , (5.3)

1 2

1 (1)i e e p ju U x u    , 1 2, , , ,i je E e E i j I p P     , (5.4)

1 2

1 2

1
i

e e p

e E e E p P

x
  

  , i I  , (5.5)

1 2 1 2

1 2

job, travel,()
i

p ik e e e e p

i I e E e E

t t t x
  

   , ,kp P k K   , (5.6)

k

p k

p P

t T


 , k K  , (5.7)

1 2

0e e px  ,  
1 2

2

1 2 1 2 travel, travel(,) (,) : ,e ee e e e E t T p P     , (5.8)

  
1 2

0,1e e px  , 1 2, ,e e E p P   , (5.9)

0pt  , p P  . (5.10)

Here parameter U is a large constant number that should not be smaller than the maximum

number of jobs in a project.
12

 Auxiliary variables  :iu i I u help eliminate subtours, whereas

iu indicates the relative sequence in which job i I is performed in a project. Specifically, let

1 2, , ,
p

p p p I
i i i be the sequence of jobs in project p P , where pI is the set of jobs in project p .

Then we have
2 1

1
p pi iu u  ,

3 1
2

p pi iu u  ,…,
1

1
pp I p

i i pu u I   .

Objective (5.1) minimizes the total costs. Constraints (5.2) and (5.3) ensure flow

conservations. Constraints (5.4) eliminate subtours using auxiliary variables u . Constraints (5.5)

12

 Obviously, I is a choice for the value of U , because no project can contain more than I jobs.

 136

require every job to be assigned to a project. Constraints (5.6) calculate the duration of a project

as the ceiling of the total time needed for the team to perform all jobs in the project and to travel

between the jobs. Constraints (5.7) require that the total project duration assigned to a team type

should not exceed the total available weeks of that team type in the planning horizon. Constraints

(5.8) prohibit any travel longer than the pre-determined limit travelT . Constraints (5.9) and (5.10)

define the binary and integer variables respectively.

Besides the core model, multiple types of side constraints should also be considered in

JTPCP to ensure practicality and relevance. These side constraints could be either soft or hard.

The following subsections introduce these side constraints.

5.2.2 Mutual Exclusion Constraint

Mutual exclusion (MX) constraints require certain jobs not to be assigned to the same project.

Usually jobs from different subdivisions should not be assigned to one project, otherwise train

operations in multiple subdivisions will be affected when the project is performed. Sometimes a

job can only be performed by certain teams (not team types) because of the preference

constraints in PTSP (i.e., the crews of those teams have their homes near that job or are familiar

with the track section of that job; see Subsection 4.3.3). If two such jobs must be performed by

two different teams, obviously they should not be assigned to one project. Note that the MX

constraints in JTPCP are applied to the project dimension (i.e. the team dimension in traditional

VRP models) of the schedule, while the MX constraints in PTSP are applied to the time

dimension of the schedule.

Define ipy as follows:

 137

1 2

1 2i

ip e e p

e E e E

y x
 

   , ,i I p P   . (5.11)

So 1ipy  if job i I is assigned to project p P , or 0 otherwise. Let  
MX

,i j be a pair of jobs

which should not be assigned to the same project, so  
MX

,i j can also be used to denote an MX

constraint. If a project violates multiple soft MX constraints, i.e., the project contains multiple

pairs of jobs which are in a soft MX constraint, only the highest penalty cost among those

constraints will be incurred. Let MX, p be the penalty cost incurred by project p P . MX

constraints can be formulated as follows:

MX MX,C () p

p P




x , (5.12)

MX, MX,(1)ij ip jp pc y y    , p P  , for all soft  

MX
,i j , (5.13)

 1ip jpy y  , p P  , for all hard  
MX

,i j , (5.14)

MX, 0p  , p P  , (5.15)

where MXC () is the total MX constraint penalty costs, and MX,ijc is the penalty cost of soft

constraint  
MX

,i j . Equation (5.12) calculates MXC () as the summation of all soft MX constraint

penalty costs. Constraints (5.13) and (5.14) respectively define soft and hard MX constraints.

Constraints (5.15) define non-negative variables MX, p .

 138

5.2.3 Preference Constraints

Jobs can be divided into multiple types. Preference constraints require a certain type of jobs to be

assigned to certain types of teams, usually because either only those teams have the capability of

performing those jobs, or they are more efficient at those jobs. The preference constraints in

JTPCP are similar to those in TISP and PTSP. Let H denote the set of job types, and hI I

denote the subset of jobs with type h H . Let Pref,h k  denote a preference constraint where

type- h jobs should not be assigned to type- k teams. Preference constraints can be formulated as

follows:

Pref

Pref Pref ,

soft ,

C ()
h k

hk ip

h k i I p P

c y
    

 
  

 
 x , (5.16)

 0ipy  , ,h ki I p P   , for all hard Pref,h k  , (5.17)

where PrefC () is the total preference constraint penalty costs, and Pref ,hkc is the cost for soft

preference constraint Pref,h k  .

5.2.4 Limit Constraints

Limit constraints restrict the total quantity of a certain job attribute assigned to one project. For

example, the average number of railroad crossings per mile in all non-yard T&S jobs in a project

performed by a small T&S team should be bounded from above, because small T&S teams often

do not have the proper equipment for crossing maintenance.

 139

Let Lim ()pf y be the total quantity of a certain attribute in project p P , where variables

 :p ipy i I y indicate which jobs in I are assigned to project p P . For example, suppose

crossing,im equals the number of crossings in job i I if the job is a non-yard T&S job, or 0

otherwise. miles,im equals the length of job i I (in terms of miles) if the job is a non-yard T&S

job, or 0 otherwise. Then the average number of crossings per mile of non-yard T&S jobs in

project p P can be written as:

crossing, miles, miles,

Lim

/ , if 0,
()

0, otherwise.

i ip i ip i ip

i I i I i I
p

m y m y m y
f   

 


 


  
y (5.18)

Suppose the quantity of an attribute from Lim ()pf y should not exceed
LimLim, f km units for a project

performed by team type k K . We use Lim ,f k  to represent a limit constraint, which can be

formulated as follows:

Lim Lim

Lim

Lim Lim, Lim,

soft ,

C ()
k

f k f p

f k p P

c 
   

 
   

 
 x ,

(5.19)

Lim LimLim, Lim Lim,()f p p f kf m  y , kp P  , for all soft Lim ,f k  , (5.20)

LimLim, 0f p  , kp P  , for all soft Lim ,f k  , (5.21)

LimLim Lim,()p f kf my , kp P  , for all hard Lim ,f k  , (5.22)

 140

where LimC () is the total penalty costs associated with limit constraints,
LimLim, f kc is the penalty

cost of soft limit constraint Lim ,f k  , and
LimLim, f p is the number of violations in project kp P .

Equation (5.19) defines LimC () as the summation of all soft limit constraint penalty costs.

Constraints (5.20) define
LimLim, f p as the exceedance of Lim ()pf y in project kp P over

LimLim, f km .

Constraints (5.21) define non-negative variables
LimLim, f p for soft limit constraints and

constraints (5.22) define hard limit constraints.

Note that the limit constraints here in fact generalize those in PTSP. For the limit constraints

of PTSP, Lim ()f  just equals the total duration of 5-day projects performed by a team.

5.2.5 Rounding Constraints

Rounding constraints allow the total job duration in a project to be rounded down rather than

rounded up in certain conditions. Teams are able to work overtime for a certain percentage in

sections where train schedules permit that. Although overtime working incurs extra costs per unit

time, it may still save the overall costs because we may be able to round down the total job

duration. For example, suppose the total job duration is 5.1 weeks in a project. It will be

preferable to have the team work 5 weeks (including 0.1 week of overtime) rather than 6 weeks,

as long as the overtime cost for 0.1 week is lower than the regular working cost for 1 week. Such

rounding may also help satisfy some constraints such as (5.7).

Suppose the overtime cost (including the overtime payment and the penalty cost due to

crew’s unwillingness towards overtime) is overtimer times as large as the regular working cost. For

each job, there is a maximum overtime percentage JOVT,ir , which means the maximum allowed

 141

overtime duration at the track section of that job is the total job duration multiplied by JOVT,ir . If a

project p P contains jobs with different JOVT,ir , the maximum overtime percentage of that

project, POVT, pr , will be defined as the minimum JOVT,ir among all its jobs. Define TJ, pt as the

total job duration (including travel time) in project p P :

1 2 1 2

1 2

TJ, job, travel,()
i

p ik e e e e p

i I e E e E

t t t x
  

   , ,kp P k K   . (5.23)

The rounding constraints can be formulated as:

overtime overtime team, overtime,C ()
k

k p

k K p P

r c t
 

 
   

 
 x ,

 (5.24)

  POVT, JOVT, JOVT,max (1)p i ip j ip
j I

r r y r y


   , ,i I p P   , (5.25)

TJ,

POVT,

1

1
p p

p

t t
r




,
p P  , (5.26)

overtime, TJ,p p pt t t  , p P  , (5.27)

overtime, 0pt  , p P  , (5.28)

where overtimeC () is the total overtime costs, and overtime, pt is the overtime working duration of

project p P . Equation (5.24) defines overtimeC () as the summation of overtime costs of all

projects. Constraints (5.25)-(5.27) respectively calculate POVT, pr , pt and overtime, pt . Constraints

(5.28) define non-negative variables overtime, pt . Note that constraints (5.6) in the core model should

 142

be replaced by constraints (5.26). These rounding constraints, especially the non-linear ones,

(5.26), are difficult to solve.

5.2.6 Minimum Duration Constraints

Minimum duration constraints require that the total duration of all jobs in a project must be at

least jobT , where job 1T  week. If a project cannot meet such a requirement, its jobs will instead

be performed by local maintenance teams (which are often less costly than regular production

teams). However, because of the lower efficiency and limited availability of local maintenance

teams, the railroad would rather like to avoid such transfers from happening. Hence, the

minimum duration constraints can be formulated as:

transferred transferred,C () 1i ip

i I p P

c y
 

  
   

   
 x ,

 (5.29)

start, start,TJ, job(1)

p pp e e pt T x  , p P  , (5.30)

 1ip

p P

y


 , i I  , (5.31)

where transferredC () is the total cost incurred by transferring jobs to local teams, and transferred,ic is

the cost of transferring job i I . Hence, Equation (5.29) calculates transferredC () as the summation

of the costs incurred by all transferred jobs. Constraints (5.30) require a project with at least one

job to have at least jobT week of total job duration. By the definition of
start, start,p pe e px in the core

model,
start, start,

1
p pe e px  if a project does not contain any jobs, or 0 otherwise. Constraints (5.31)

 143

require a job to be performed at most once. During implementation, constraints (5.31) should

replace constraints (5.5) in the core model, because now with some penalty we allow a job not to

be assigned to any projects.

5.2.7 Project Duration Constraints

Project duration constraints require the duration of a project to be within a certain range;

otherwise the jobs in that project should be assigned to other team types to improve efficiency.

There are a few major differences between minimum duration constraints and project duration

constraints. First, a minimum duration constraint is applied to the total duration of jobs in a

project (including travel time), while a project duration constraint is applied to the project

duration, which may either be the ceiling or the floor of the total job duration (which is

endogenously decided by the model as described in Subsection 5.2.5). More importantly, the

duration limits in minimum duration constraints are given values, while those in project duration

constraints depend on the project composition. These differences make the project duration

constraints much more complex than the minimum duration constraints.

Let pH be the subset of job types involved in project p P . Let min,H kT  be the minimum

duration of a project which contains job types H H  and is performed by team type k K .

Similarly, let max,H kT  be the maximum duration of such a project. Project duration constraints are

all hard and can be formulated as follows:

min, max,p pH k p H kT t T  , ,kp P k K   . (5.32)

 144

The difficulty of solving these constraints is that pH is unknown until the composition of project

p P is determined. If the MIP algorithms were used, the constraints would have to be

formulated in a much more complex way. For example, a decision variable may be needed for

every possible composition (i.e. the combination of job types) of a project, resulting in an

exponential number of integer decision variables.

5.3 Algorithm

A practical problem instance of JTPCP involves thousands of jobs and hundreds of projects. The

presence of side constraints significantly increases the complexity of the problem. Fortunately,

real-world problem instances have some good characteristics that allow us to develop heuristic

algorithms to obtain a near-optimal solution.

Similar to PTSP, the jobs and team types in JTPCP can be divided into categories, such as

rail and T&S. Jobs in a category can only be performed by team types in the same category.

Unlike PTSP, in JTPCP there are no constraints imposed on jobs or teams across different

categories. Therefore, the problem can be decomposed into subproblems by categories, and each

subproblem can be solved separately.

Figure 24 illustrates the proposed algorithm framework. A greedy algorithm is first applied

to obtain an initial solution. Then a local search algorithm and a feasibility heuristic algorithm

are iteratively applied to improve the solution. The algorithm terminates when some stopping

criteria are met, e.g., the current solution remains unchanged since the last iteration, or a certain

number of iterations have been finished. The details of the algorithms will be discussed in the

following subsections.

 145

Figure 24. Algorithm framework of job-to-project clustering.

5.3.1 Greedy Algorithm

The proposed greedy algorithm obtains an initial solution. The optimum solution of JTPCP has

some characteristics regarding the three most important constraints or costs: travel time, MX

constraints and preference constraints. First, it is intuitive that the optimal solution tends to

minimize the travel time between jobs, in order to satisfy constraints (5.8), and to minimize the

total working costs which are closely related to the travel time. Second, the optimal solution

should avoid assigning jobs from different subdivisions to a project, because most MX

constraints are associated with jobs in different subdivisions. Third, the optimal solution tends to

assign a job to its most preferred team type, i.e., the team type with the lowest preference

constraint penalty cost. These characteristics allow us to obtain a good initial solution with

constructive heuristic algorithm.

Greedy algorithm

Local search

Input

Y

Output

Feasibility

heuristic

Are stopping

criteria met?

N

 146

We divide the jobs into pools so that jobs in each pool have the same type and subdivision.

For each pool, the cheapest-insertion algorithm (Rosenkrantz, et al., 1977) is used to assign jobs

to projects, as follows:

 Step 1: Let I  be the jobs in the current pool. Let P be the set of projects for the

current pool. Set : { }P p  , where p is a new project without any jobs.

 Step 2: Find an unassigned job *i I  and a project *p P with the lowest increased

travel time after job *i is assigned to *p :

* *

add
, ,

, arg min (,)
i p I P

i p c i p
   

    ,

where add (,)c i p  is the increased travel time after job i is assigned to

project p . Define add (,)c i p    if constraints (5.8) are violated after the

assignment.

 Step 3: If
* *

add (,)c i p    , create a new project, assign job *i to it and add the new

project to P ; otherwise assign job *i to
*p .

 Step 4: *\{ }I I i  . Go to Step 2 if I  .

 Step 5: P P P  , i.e., record the projects for the current pool.

The basic idea of the greedy algorithm is as follows: Every project p P represents a

sequence (or route) of jobs: 1 2, , ,
p

p p p I
i i i for the maintenance team to follow. During the

algorithm, whenever we assign a job to a project, we insert it into a place along the sequence so

that the marginal increase of the travel time is minimized.

 147

For jobs distributed over a general network or a continuous plane, the cheapest-insertion

algorithm may not be able to obtain a solution with the minimum number of projects and

minimum travel time. However, in JTPCP, the jobs in a subdivision are usually distributed along

the one-dimensional track line. In those cases, the cheapest-insertion algorithm is able to obtain

the optimal solution. This is intuitive. Jobs along a track can be considered as a path where each

job is connected to its neighbors from both directions. In an optimal solution, the path is divided

into multiple parts by breaking all links longer than travelT , and each part represents a project. The

cheapest-insertion algorithm starts from a job as a new project, and keeps adding its adjacent

jobs to it, until both its endpoints reach a link longer than travelT or the end of the track. Such

procedure can obtain exactly the optimal solution described above.

From the greedy algorithm, we obtain a set of projects. The jobs in each project have the

same job type and subdivision. Therefore, the initial solution has very few violations on MX

constraints and preference constraints. However, the solution may violate other constraints and

may have high working costs. So a local search algorithm and a feasibility algorithm are

iteratively applied to improve the solution.

5.3.2 Local Search

The local search algorithm is primarily used to reduce (i) working costs and (ii) violations to

limit and project duration constraints. It contains two types of neighborhood structures: (i) job

interchange, which removes a job from one project and adds it to another; and (ii) project

interchange, which removes a project from a team type and assigns it to another.

In job interchange, a prioritization strategy is used to prioritize the moves in order to

improve the solution quality. The algorithm starts removing jobs from the projects whose total

 148

job duration contains a small fractional number (in the unit of weeks
13

). Intuitively, removing a

job from such projects is more likely to improve the solution. For each project where jobs are to

be removed, denoted as p , all other projects are sorted according to their similarities and

closeness to p . That is, the algorithm first tries to add the removed jobs to those projects which

have the same subdivisions and job types as p , and are spatially close to p . In this way, the

algorithm can avoid violating MX and preference constraints or increasing the travel time after

the move.

Given p and a project where jobs are to be added, denoted by q , the job interchange

algorithm starts removing jobs from one endpoint of p (since a project represents a route of jobs

it has two endpoints). If no further improvement can be made, it starts removing jobs from the

other endpoint. It always starts from the endpoints, because the maintenance team generally does

not want to skip any jobs on the way when it is moving along the track to perform the project. To

the contrary, when the algorithm inserts a job into q , it always tries to find the insertion point to

minimize the travel time. Figure 25 illustrates an example of job interchange, where a job at the

finishing point of project 1 is inserted into project 2.

13

 For example, if the total job duration is 2.7 weeks, 0.7 is the fraction number.

 149

Figure 25. An example of job interchange.

In both job interchange and project interchange, constraints (5.7) are relaxed to explore the

neighborhood more extensively. Otherwise, if the total project duration of a team type k K

reaches kT , the algorithm will no longer assign more projects to k or insert jobs to projects

performed by k --- this is not desirable in the search procedure. Minimum duration constraints

are also relaxed for the same reason.

The local search algorithm determines whether the total job duration of a project is rounded

up or down based on its value. Let fraction, (0,1)pt  be the fractional part of the total job duration

in a project. If fraction, POVT, TJ, fraction,()p p p pt r t t  , rounding down the total job duration will be

possible. The cost for working on the fractional part is fraction, overtime team,p kt r c if the total job duration

is rounded down, or team,1 kc otherwise. Therefore, the algorithm will round down the total job

duration if fraction, overtime 1pt r  , i.e., fraction, overtime1/pt r . Such strategy is usually optimal because

most of the benefits of overtime working come from the reduced total project durations.

Project 1 Project 2 Project 1 Project 2

 150

5.3.3 Feasibility Heuristic

The feasibility heuristic algorithm is used to satisfy constraints (5.7) and minimum duration

constraints (5.29)-(5.31), which are relaxed and may be violated during local search. There are

two steps in the feasibility heuristic, each for one type of constraints.

The first step is to satisfy constraints (5.7). It iterates on the team types whose total project

durations exceed kT , and tries to assign their projects to other team types whose total project

durations are below kT . Suppose team type k K violates constraints (5.7), and the algorithm

tries to assign its projects to team type k K . Generally, kT  is large enough to accept the

excessive project duration from k in our problem instances. Let pb be the increased costs caused

by reassigning project kp P from k to k  , or in other words, pb can be considered as the

benefit to keep p in team type k . Note that pb is always non-negative because otherwise p

should have already been reassigned to other team types in the local search.

Then we are facing a 0-1 knapsack problem. In the problem we have a set of projects kP ,

each with a benefit pb and a duration pt . The objective is to select some projects with maximum

total benefit, while the total duration of them do not exceed kT . This 0-1 knapsack problem is

known to be NP-complete (Karp, 1972). It cannot be solved in pseudo-polynomial time using the

conventional dynamic programming algorithm which requires the benefits of projects to be

integers (Martello and Toth, 1990). However, an exact optimal solution is not necessary in our

context, since solving this problem is just a subroutine of the entire heuristic algorithm. So a

heuristic method is used to obtain a near-optimal solution. We keep removing the projects from

k starting from the ones with the lowest benefit-cost ratio /p pb t , until the total project duration

in k becomes no larger than kT .

 151

The second step is to satisfy minimum duration constraints. For a project with a total job

duration less than jobT , the algorithm first tries to insert all its jobs into another project as long as

the cost is reduced. If such an insertion is impossible, the algorithm dismisses the project, and its

jobs will be performed by local maintenance teams. Here we do not try to separately insert these

jobs into multiple projects, because such an insertion will usually have already been done in the

job-interchange algorithm should it be able to reduce costs.

5.4 Case Studies

The proposed model and algorithm are implemented in the Microsoft Visual C++ environment

on a personal computer with 2.66GHz dual core CPU and 3 GB RAM. They are applied to solve

JTPCP for a Class I railroad company for a recent year, Year A. In the problem instance, more

than 2,300 jobs from 2 categories are to be assigned to 5 team types. The number of MX

constraints exceeds 94,000.

Even for such a large-scale problem instance, the solution time is less than 10 seconds. All

hard constraints are satisfied. Table 6 shows the statistics of the model solution. The first statistic

is the percentage of the total duration of jobs assigned to a less preferred team type (i.e., not a

team type with the minimum preference constraint penalty cost) in the total job duration. It is

related to the total preference constraint penalty costs, PrefC () . The second statistic is

proportional to the total costs incurred by transferred jobs, overtimeC () . The third and fourth are

related to the total working costs and overtime working costs. The last is related to the total MX

constraint penalty costs, MXC () . Small values of these statistics indicate low costs and therefore

a good solution.

 152

Table 6. Solution statistics for job-to-project clustering (Year A data).

Percentage in the total job

duration (%)

Total duration of jobs assigned to a less

preferred team type
6.0

Total duration of jobs transferred to local

teams
0.8

 Total rounded-up fractions 11.2

 Total rounded-down fractions 0.4

Percentage in the number of

projects (%)

Number of projects violating MX

constraints
7.1

The proposed approach is also used to solve JTPCP for a Class I railroad company for a

recent year, Year B, when a manual solution obtained by experts is available for comparison. In

that problem instance, more than 2,200 jobs from 2 categories are to be assigned to 5 team types.

The number of MX constraints exceeds 89,000. The proposed approach solves this instance in

less than 10 seconds. The comparison between the model solution and the manual solution is

shown in Table 7.

 153

Table 7. Solution statistics for job-to-project clustering (Year B data).

Statistics
Manual

procedure

Proposed

approach

Reduction

(%)

Total project duration (weeks) -* -* 11.0

Number of hard constraint violations 437 0 100.0

Percentage in the total

job duration (%)

Total duration of jobs assigned

to a less preferred team type
16.5 6.9 58.2

Total duration of jobs

transferred to local teams
0.0 1.4 -

 Total rounded-up fractions 11.9 9.7 18.5

 Total rounded-down fractions 0.6 0.4 33.3

Percentage in the

number of projects (%)

Number of projects violating

MX constraints
13.7 5.9 56.9

*The values are not shown to protect data confidentiality.

It can be seen that the model solution is significantly superior with regard to almost all

statistics. In particular, all hard constraints are satisfied. The manual procedure does not have

transferred jobs because the data of those jobs are not provided. The model solution involves

some transferred jobs, but the penalty costs from them are compensated by the improvements in

hard constraints and other penalty costs. The railroad estimates that our model is able to save

tens of thousands of dollars in working costs per year. The model also greatly expedites the

decision-making procedure (which used to take an expert at least one week).

 154

Glossary of Symbols

cost item ()C  : Total costs of a certain cost item,

LimC () : Total limit constraint penalty costs,

LimLim, f kc : Limit constraint penalty cost for Lim ,f k  ,

MXC () : Total mutual exclusion constraint penalty costs,

MX,ijc : Mutual exclusion constraint penalty cost for  
MX

,i j ,

overtimeC () : Total overtime penalty costs,

PrefC () : Total preference constraint penalty cost,

Pref ,hkc : Preference constraint penalty cost for Pref,h k  ,

team,kc : Costs for a type k K team to work for one week,

transferredC () : Total transferred job costs,

transferred,ic : Cost incurred by job i I if it is transferred,

E : Set of arcs,

iE : Set of arcs representing the direction to perform job i I ,

start,pe : Virtual start arc for project p P ,

Lim ()f  : Function to calculate the quantity of a certain attribute of jobs in a limit

constraint,

Lim ,f k  : Pair of function Lim ()f  and team type k K in a limit constraint,

H : Set of job types,

Pref,h k  : Pair of job type h H and team type k K in a preference constraint,

pH : Set of job types in project p P ,

I : Set of jobs,

hI : Set of type h H jobs,

 
MX

,i j : Set of jobs in a mutual exclusion constraint,

pI : Set of jobs in project p P ,

poi : The o th performed job in project p P ,

K : Set of team types,

LimLim, f km : Maximum allowed quantity of a certain attribute of jobs in limit constraint

Lim ,f k  ,

P : Set of projects,

 155

kP : Set of projects assigned to team type k K ,

JOVT,ir : Maximum overtime percentage for job i I ,

overtimer : Ratio between overtime penalty cost and regular working cost,

POVT, pr : Maximum overtime percentage for project p P ,

fraction , pt : Fractional part of the total job duration in project p P ,

jobT : Minimum total job duration in a project,

job,ikt : Duration of job i I when it is performed by a type k K team,

kT : Maximum total number of work weeks for type k K teams,

min,H kT  : Minimum project duration for team type k K and job types H H  ,

max,H kT  : Maximum project duration for team type k K and job types H H  ,

overtime, pt : Overtime working duration for project p P ,

pt : Duration of project p P ,

TJ, pt : Total job duration in project p P ,

travelT : Maximum allowed travel time,

1 2travel,e et : Travel time from the head of arc 1e E to the tail of arc 2e E ,

 iuu : Variables for the relative sequence in which a job is performed in a project,

 
1 2e e pxx : Binary variables for the route of a project,

ipy : Binary variables indicating if job i I is assigned to project p P .

 156

CHAPTER 6 CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

This Ph.D. research focuses on three interrelated optimization problems on railroad track

maintenance: track inspection scheduling problem (TISP), production team scheduling problem

(PTSP), and job-to-project clustering problem (JTPCP). All these problems have difficult side

constraints and have very large-scale problem instances in practice. However, little research has

been conducted on these problems, and the railroad companies mostly solve them manually

solely based on the experience and knowledge of experts.

We first proposed a vehicle routing problem (VRP) model for TISP, and addressed many

side constraints (some of which had never been studied before), such as the periodicity

constraints, network topology constraints and discrete working time constraints. We developed a

customized heuristic algorithm to solve the model by iteratively applying a constructive heuristic

and a local search in an incremental scheduling horizon framework. The proposed modeling and

solution approaches have been applied to real-world problem instances for both short-term

scheduling and long-term planning. For the short-term scheduling problem, our numerical case

study has shown that the proposed approach is able to obtain a much better solution than the

manual procedure in a very short time. For the long-term planning problem (which cannot be

solved manually), we conducted what-if analyses to draw managerial insights that could possibly

help the railroad improve its operational efficiency.

Then we addressed the PTSP problem by formulating it as a time-space network (TSN)

model with many types of side constraints (such as mutual exclusion constraints, consecution

constraints and relay rail constraints). A simplified scheduling model was used to obtain an

initial solution while two local search algorithms (decomposition and restriction (D&R), and

 157

block interchange) were used to iteratively improve the solution. Many additional solution

techniques, such as data reduction, augmented cost function and subproblem prioritization, were

developed to improve the computational performance of the proposed algorithm. The proposed

approach has been applied to real-world problem instances and the solutions were able to satisfy

all hard constraints and most soft constraints. The comparison with previous results has further

indicated how our model significantly outperforms not only the manual solution practice in the

industry, but also the earlier approach proposed by Peng et al. (2010).

We have also developed a mathematical model and solution algorithm for JTPCP. The

formulated VRP-based model includes very difficult side constraints such as limit constraints

and project duration constraints. A customized heuristic algorithm has been proposed to solve the

model efficiently. The algorithm includes a constructive heuristic, a local search and a feasibility

heuristic. Application of our model to real-world problem instances has shown that the proposed

approach outperforms manual solution approach in terms of both solution quality and solution

speed.

In the past few years, the proposed models and algorithms for all three problems have been

adopted by a Class I railroad to help their practical operations. Our efforts have been shown to

bring large cost savings and efficiency improvements. We are optimistic, therefore, that the ideas

and methods developed in this dissertation shall also be useful to routing and scheduling

problems in other contexts, such as railroad train scheduling, highway transportation scheduling

and airline scheduling.

 158

6.2 Future Research

The proposed approach for TISP has been implemented in practice to solve a real-world rail

inspection scheduling problem (RISP). We plan to also apply it to a geometry inspection

scheduling problem (GISP), which, despite some similar features, has very different input data

and network topology constraints. We will continue working with the railroad industry to ensure

that the proposed methods are suitable for GISP in practice.

We will work on improving the existing models and solution algorithms for TISP, PTSP and

JTPCP. More side constraints will be incorporated into the models in order to better meet

industry needs. There are many uncertainties associated with track inspection and maintenance

activities (e.g., travel delay, equipment break-downs). Currently such uncertainties are addressed

by re-solving the model with a new planning horizon whenever events deviate from the original

plan. However, a more systematic approach (e.g., stochastic programming models with recourse)

could be developed to better address the uncertainties.

There are also potential improvements on the algorithm side. Because of the large scale and

high complexity of the studied problems, local search algorithms are applied to all of them.

There are two possible ways to improve the local search algorithms. First, more neighborhood

structures shall be explored. For example, the development of the PTSP algorithm has

experienced four stages: (i) only D&R was used but no project could be exchanged between

different teams in a subproblem; (ii) projects were allowed to be exchanged between different

teams in D&R search; (iii) an additional search, block interchange, was added to the algorithm,

but a block could contain only one project; (iv) a block was allowed to contain multiple projects

in block interchange. In every stage we explored new neighborhood structure and observed

significant improvements in solution quality. There are potentially more neighborhood structures

 159

which can improve the algorithm. For example, in the task-interchange search for TISP, an

interchanged block contains at most one task. We may possibly improve the algorithm by

allowing blocks with more than one task. In the D&R search for PTSP, subproblems are created

based on team-wise decomposition. We could possibly improve the algorithm by allowing week-

wise decomposed subproblems.

Furthermore, it might be worthwhile to develop more effective strategies to prioritize the

moves in local search. In the D&R algorithm for PTSP, the prioritization of the subproblems

relies on some ad-hoc parameters which may not be effective. One possible way to improve the

algorithm is to develop a self-adaptive learning strategy. In such strategy, the values of

parameters can be initially calculated based on the algorithm history logs from previous data sets,

and then they are updated systematically and endogenously during the algorithm based on the log

from the current data set. Such strategy could possibly identify more promising moves. The

prioritization strategy can also be applied to improve task interchanges in TISP (where

exhaustive local search is currently used) and block interchange in PTSP (where randomized

local search is currently used).

In studied problems, the quality of the initial solution is important, because local search

tends to be stuck at local optima for large problem instances with many side constraints. Hence

the improvement of constructive heuristics may be beneficial. In TISP, the greedy algorithm can

be improved by allowing inserting a new task anywhere in the current schedule, but not always

at the end of a route.
14

 It is also possible to develop better criteria to select new tasks to add. For

example, currently the algorithm ranks the tasks based on periodicity constraint penalty cost,

which is generally related to the overdue percentage. A possible improvement is to also take the

14

 In the VRP literature, similar ideas have led to the nearest-insertion, farthest-insertion, and cheapest-insertion

heuristics (Rosenkrantz, et al., 1977).

 160

preferred interval and task duration into consideration. For tasks with similar overdue

percentages, those with shorter preferred intervals should be performed first, because their

periodicity constraint penalty costs increase very fast. Those with shorter task durations should

also have higher priorities, because they are less likely to delay other tasks. In PTSP, the initial

solution is obtained by a scheduling model which only considers time window and preference

constraints. A possible improvement is to decompose the problem so that more difficult

constraints such as mutual exclusion and simultaneity constraints can also be considered.

The mixed integer programming (MIP) algorithm (used as a subroutine in PTSP) may be

further improved by utilizing more advanced MIP solution techniques, such as row

generation/Benders decomposition, column generation/Dantzig-Wolfe decomposition and

Lagrange relaxation.

Besides the three optimization problems studied in this dissertation research, other problems

on railroad track maintenance, such as relay rail sourcing problem and rail grinding scheduling

problem, are all interesting and relevant topics for future research. It may be beneficial to further

establish an integrated decision-making framework for both track maintenance and train

operations. For example, with such a framework, the train schedules and the maintenance

schedules would be better coordinated to enhance the overall system operational efficiency.

 161

REFERENCES

1. Ahuja, R.K., Cunha, C.B. and Sahin, G. (2005). Network models in railroad planning and scheduling,

Tutorials in Operations Research, 1, 54–101.

2. Alonso, F., Alvarez, M.J. and Beasley, J.E. (2008). A tabu search algorithm for the periodic vehicle

routing problem with multiple vehicle trips and accessibility restrictions. Journal of the Operational

Research Society, 59, 963–976.

3. Acharya, D., Sussman, J. and Martland, C. (1990). Application of expert systems and network

optimization techniques in rail relay scheduling. Journal of Transportation Research Forum, 31(1),

1–16.

4. Association of American Railroads. (2010). Railroad Statistics. Available online at

http://www.aar.org/~/media/aar/Industry%20Info/AAR%20Stats%202010%201123.ashx. Accessed

on December 5, 2010.

5. Balakrishnan, N. and Wong, R.T. (1990). A network model for the rotating workforce scheduling

problem. Networks, 20, 25–42.

6. Beck, J.C., Prosser, P. and Selensky, E. (2002). On the reformulation of vehicle routing probelms and

scheduling problems. In LNAI 2371, Proceedings of the Symposium on Abstraction, Reformulation

and Approximation (SARA 2002), 282–289.

7. Beck, J.C., Prosser, P. and Selensky, E. (2003). Vehicle routing and job shop scheduling: What’s the

difference. Proceedings of the 13th International Conference on Artificial Intelligence Planning and

Scheduling.

8. Beltrami, E.J. and Bodin, L.D. (1974). Networks and vehicle routing for municipal waste collection.

Networks, 4(1), 65–94.

9. Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems.

http://www.aar.org/~/media/aar/Industry%20Info/AAR%20Stats%202010%201123.ashx

 162

Numerische Mathematik, 4, 238–252.

10. Bog, S., Nemani, A.K. and Ahuja, R.K. (2010). Iterative algorithms for the curfew planning problem.

Journal of the Operational Research Society, online, 1–15.

11. Braysy, O. and Gendreau, M. (2005). Vehicle Routing Problem with Time Windows, Part I: Route

Construction and Local Search Algorithms. Transportation Science, 39(1), 104-118.

12. Budai, G., Huisman, D. and Dekker, R. (2006). Scheduling preventive railway maintenance activities.

Journal of Operational Research Society, 57, 1035–1044.

13. Burns, D. and Franke, M. (2005). Analyzing the blitz approach to m/w. Railway Track and Structures,

101(10), 33-38.

14. Cannon, D.F., Edel, K.-O., Grassie, S.L. and Sawley, K. (2003). Rail defects: An overview. Fracture

& Fatigue of Engineering Material & Structures, 26(10), 865–886.

15. Chardaire, P., McKeown, G.P., Verity-Harrison, S.A. and Richardson, S.B. (2005). Solving a time-

space network formulation for the convoy movement problem. Operations Research, 53(2), 219–230.

16. Cheu, R.L., Wang, Y. and Fwa, T.F. (2004). Genetic algorithm-simulation methodology for pavement

maintenance scheduling. Computer-Aided Civil and Infrastructure Engineering. 19(6), 446–55.

17. Cheung, B.S.N., Chow, K.P., Hui, L.C.K. and Yong, A.M.K. (1999). Railway track possession

assignment using constraint satisfaction. Engineering Applications of Artificial Intelligence, 12(5),

599–611.

18. Christofides, N. and Beasley, J.E. (1984). The period routing problem. Networks, 14(2), 237–256.

19. Coene, S., Arnout, A. and Spieksma, F.C.R. (2010). On a periodic vehicle routing problem. Journal

of the Operational Research Society, 61, 1719–1728.

20. Dantzig, G.B. and Ramser, J.H. (1959). The truck dispatching problem. Management Science, 6(1),

80–91.

 163

21. Dantzig, G.B. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations

Research, 8, 101-111.

22. De Jong, C., Kant, G. and Van Vliet, A. (1996). On finding minimal route duration in the vehicle

routing problem with multiple time windows. Manuscript, Department of Computer Science, Utrecht

University, The Netherlands. (Available online at

http://www.cs.uu.nl/research/projects/alcom/wp4.3.html. Accessed on January 18, 2011.)

23. Derinkuyu, K., Balakrishnan, A. and Morales J. (2010). Scheduling rail grinding operations.

Presented in INFORMS Annual Meeting 2010, Austin, TX.

24. Desrochers, M., Desrosiers, J. and Solomon, M. (1992). A new optimization algorithm for the vehicle

routing problem with time windows. Operations Research, 40(2), 342–354.

25. Dridi, L., Parizeau, M., Mailhot, A. and Villeneuve, J.P. (2008). Using Evolutionary Optimization

Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-

Aided Civil and Infrastructure Engineering, 23(8), 625–635.

26. Durango-Cohen, P. and Madanat, S. (2008). Optimization of inspection and maintenance decisions

for infrastructure facilities under performance model uncertainty: A Quasi-Bayes approach,

Transportation Research Part A. 42, 1074–1085.

27. Federal Railroad Administration. (1999). Improving railroad safety and rail passenger technology

through targeted research and demonstrations 1992-1997. Technical report, DOT/FRA/ORD-99/02,

Washington, D.C.

28. Federal Railroad Administration. (2002). Track safety standards compliance manual. Available

online at http://www.fra.dot.gov/Pages/460.shtml. Accessed on January 18, 2011.

29. Federal Railroad Administration Office of Safety Analysis. (2010). Available online at

http://safetydata.fra.dot.gov/officeofsafety/. Accessed on December 5, 2010.

http://www.cs.uu.nl/research/projects/alcom/wp4.3.html
http://www.fra.dot.gov/Pages/460.shtml
http://safetydata.fra.dot.gov/officeofsafety/

 164

30. Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer programming problems.

Management Science, 27, 1–18.

31. Florian, M., Bushell, G. and Ferland, J. (1976). The engine scheduling problem in a rail network.

INFOR, 14, 121–138.

32. Floyd, R.W. (1962). Algorithm 97: Shortest Path. Communications of the ACM, 5(6), 345.

33. Ford, L.R. and Fulkerson, D.R. (1958). A suggested computation for maximal multicommodity

network flows. Management Science, 5, 97-101.

34. Francis, P.M., Smilowitz, K.R. and Tzur, M. (2006). The period vehicle routing problem with service

choice. Transportation Science, 40(4), 439–454.

35. Francis, P., Zhang, G. and Smilowitz, K. (2007). Improved modeling and solution methods for the

multi-resource routing problem. European Journal of Operational Research, 180, 1045–1059.

36. Francis, P.M., Smilowitz, K.R. and Tzur, M. (2008). The period vehicle routing problem and its

extensions. In Golden, B. et al. (eds.), The vehicle routing problem: Latest advances and new

challenges, Springer.

37. Funke, B., Grunert, T. and Irnich, S. (2005). Local search for vehicle routing and scheduling

problems: Review and conceptual integration. Journal of Heuristics, 11, 267-306.

38. Gendreau, M., Hertz, A. and Laporte, G. (1992). A new insertion and postoptimization procedures for

the traveling salesman problem. Operations Research, 40, 1086−1093.

39. Gendreau, M., Potvin, J.-Y., Braysy, O., Hasle, G. and Lokketangen, A. (2008). Metaheuristics for the

vehicle routing problem and its extensions: A categorized bibliography. In Golden, B. et al. (eds.),

The vehicle routing problem: Latest advances and new challenges, Springer.

40. Glover, F. (1992). New ejection chain and alternating path methods for traveling salesman problems.

In: Balci, O., Sharda, R., and Zenios, S. (eds), Computer Science and Operations Research: New

 165

Developments in Their Interfaces, 449−509, Pergamon Press, Oxford.

41. Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer, Norwell, MA.

42. Golabi, K. and Pereira, P. (2003). An innovative pavement management and planning system for the

road network of Portugal. ASCE Journal of Infrastructure Systems, 9(2), 75–80.

43. Gorman, M.F. and Kanet, J.J. (2010). Formulation and solution approaches to the rail maintenance

production gang scheduling problem. Journal of Transportation Engineering, 136(8), 701–708.

44. Grimes G.A. and Barkan, C.P.L. (2006). Cost-effectiveness of railway infrastructure renewal

maintenance. Journal of Transportation Engineering, 132(8), 601–608.

45. Halse, K. (1992). Modeling and solving complex vehicle routing problems. Ph.D. Thesis, Technical

University of Denmark.

46. Hane, C., Barnhart, C., Johnson, E.L., Marsten, R.E., Nemhauser, G.L. and Sigismondi, G. (1995).

The fleet assignment problem: Solving a large integer program. Mathematical Programming, 70(2),

211–232.

47. Hansen, P. and Mladenovic, N. (2005). Variable neighborhood search. In: Search methodologies:

Introductory tutorials in optimization and decision. Springer.

48. Higgins, A. (1998). Scheduling of railway track maintenance activities and crews. Journal of

Operational Research Society, 49, 1026–1033.

49. Higgins, A., Ferreira, L. and Lake, M. (1999). Scheduling rail track maintenance to minimise overall

delays. In Proceedings of the 14th International Symposium on Transportation and Traffic Theroy,

Jerusalem, Israel.

50. Hochbaum D.S. (1982). Heuristics for the fixed cost median problem. Mathematical Programming,

22, 148-162.

51. Ibaraki, T., Imahori, S., Kubo, M., Masuda, T., Uno, T. and Yagiura, M. (2005). Effective local search

 166

algorithms for routing and scheduling problems with general time-window constraints.

Transportation Science, 39(2), 206-232.

52. ILOG. (2006). ILOG CPLEX 10.0 User’s Manual.

53. Ioannou, G., Kritikos, M. and Prastacos, G. (2001). A greedy look-ahead heuristic for the vehicle

routing problem with time windows. Journal of the Operational Research Society, 52, 523−537.

54. Jarrah, A.I.Z., Yu, G., Krishnamurthy, N. and Rakshit, A. (1993). A decision support framework for

airline flight cancellations and delays. Transportation Science, 27(3), 266-280.

55. Jiang, X. and Adeli, H. (2004). Object-oriented model for freeway work zone capacity and queue

delay estimation. Computer-Aided Civil and Infrastructure Engineering, 19(2), 144-56.

56. Kallehauge, B., Larsen, J., Madsen, O.B.G. and Solomon, M.M. (2005) Vehicle routing problem with

time windows. In: Desaulniers, G., Desrosiers, J. and Solomon, M.M. (eds.), Column Generation,

Springer, NY.

57. Kallehauge, B. (2008). Formulations and exact algorithms for the vehicle routing problem with time

windows. Computers and Operations Research, 35, 2307-2330.

58. Karp, R. (1972). Reducibility among combinatorial problems. In Proceedings of a Symposium on the

Complexity of Computer Computations, Plenum Press.

59. Kliewer, N., Mellouli, T., and Suhl, L. (2006). A time-space network based exact optimization model

for multi-depot bus scheduling. European Journal of Operational Research, 175, 1616-1627.

60. Kohl, N. and Madsen, O.B.G. (1997). An optimization algorithm for the vehicle routing problem with

time windows based on Lagrangian relaxation. Operations Research, 45, 395-403.

61. Kwon, O.K., Martland, C.D. and Sussman, J.M. (1998). Routing and scheduling temporal and

heterogeneous freightcar traffic on rail networks. Transportation Research Part E, 34(2) 101–115.

62. Lake, M., Ferreira, L. and Kozan, E. (2001). Heuristic techniques for scheduling railway track

 167

maintenance. In: Kozan and Ohuchi (eds.), Operations Research, Management Science at Work:

Applying Theory in the Area Pacific Region, The International Series in Operations Research &

Management Science, Kluwer Academic Publishers.

63. Laporte, G. (1992). The Vehicle Routing Problem: An overview of exact and approximate algorithms.

European Journal of Operational Research, 59(3), 345-358.

64. Lee, C.Y., Lei, L. and Pinedo, M. (1997). Current trends in deterministic scheduling. Annals of

Operations Research, 70, 1-41.

65. Leung, J.Y-T. (Ed.). (2004). Handbook of Scheduling: Algorithms, Models, and Performance

Analysis. CRC Press, Boca Raton, FL.

66. Li, G., Balakrishnan, A. and Roth, B. (2009). Effectively solving production gang scheduling

problem for railway track maintenance projects. Presented in INFORMS Annual Meeting 2009, San

Diego.

67. Li, Z., Madanu, S., Abbas, M. and Zhou, B. (2010). A Heuristic Approach for Selecting Highway

Investment Alternatives. Computer-Aided Civil and Infrastructure Engineering, 25(6), 1-13.

68. Ma, W., Cheu, R.L. and Lee, D.H. (2004). Scheduling of lane closures using genetic algorithms with

traffic assignments and distributed simulations. Journal of Transportation Engineering. 130(3), 322–

329.

69. Martello, S. and Toth, P. (1990). Knapsack Problems: Algorithms and Computer Implementations.

Wiley, Chichester, UK.

70. Morales, J., Balakrishnan, A. and Li, G. (2008). Optimal Routing of Geometry Cars. Presented in

INFORMS Annual Meeting 2008, Washington, D.C.

71. Nemani, A.K., Bog, S. and Ahuja, R.K. (2010). Solving the Curfew Planning Problem.

Transportation Science, 44(4), 506-523.

 168

72. Ng, M., Lin, D.Y. and Waller, S.T. (2009). Optimal Long-Term Infrastructure Maintenance Planning

Accounting for Traffic Dynamics. Computer-Aided Civil and Infrastructure Engineering, 24, 459–

469.

73. Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the logistics of

regional blood banking. Ph.D. thesis, Northwestern University, Evanston, Illinois.

74. Osman, I.H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle

routing problems. Annals of Operations Research, 41, 421−452.

75. Ouyang, Y. (2007). Pavement resurfacing planning for highway networks: A parametric policy

iteration approach. Journal of Infrastructure Systems (ASCE), 13(1), 65-71.

76. Ouyang, Y., Li, X., Lai, Y.C., Barkan, C. and Kawprasert, A. (2009). Optimal locations of railroad

wayside defect detection installations. Computer-aided Civil and Infrastructure Engineering, 24,

309-319.

77. Ouyang, Y. and Madanat, S. (2006). An analytical solution for the finite-horizon pavement

resurfacing planning problem. Transportation Research Part B, 40(9), 767-778.

78. Ouyang, Y. and Madanat, S. (2004). Optimal scheduling of rehabilitation activities for multiple

pavement facilities: exact and approximate solutions. Transportation Research Part A, 38(5), 347–65.

79. Peng, F., Kang, S., Li, X., Ouyang, Y., Somani, K. and Acharya, D. (2010). A heuristic approach to

railroad track maintenance scheduling problem. Computer-Aided Civil and Infrastructure

Engineering. In press.

80. Pinedo, M. (1995). Scheduling: Theory, Algorithms and Systems. PrenticeHall.

81. Potvin, J.-Y. and Rousseau, J.-M. (1993). A parallel route building algorithm for the vehicle routing

and scheduling problem with time windows. European Journal of Operational Research, 66,

331−340.

 169

82. Potvin, J.-Y. and Rousseau, J.-M. (1995). An exchange heuristic for routing problems with time

windows, Journal of the Operational Research Society, 46, 1433−1446.

83. Retharekar, A. and Mobasher, A. (2010). Routing and scheduling preventive railway maintenance

with predetermined desired reliability. Presented in INFORMS Annual Meeting 2010, Austin, TX.

84. Rosenkrantz, D., Sterns, R. and Lewis, P. (1977). An analysis of several heuristics for the travelling

salesman problem, SIAM Journal on Computing, 6, 563–581.

85. Russell, R. (1977). An effective heuristic for the M-tour traveling salesman problem with some side

conditions. Operations Research, 25, 517−524.

86. Savelsbergh, M.W.P. (1992). The vehicle routing problem with time windows: Minimizing route

duration. Journal on Computing, 4, 146−154.

87. Schafer, D. and Barkan, C.P.L. (2008). A prediction model for broken rails and an analysis of their

economic impact, In Proceedings of the 2008 AREMA Conference, Salt Lake City, Utah.

88. Schlake, B.W., Barkan, C.P.L. and Edwards, J.R. (2010). Impact of automated inspection technology

on unit train performance. In Proceedings of the 2010 Joint Rail Conference, Urbana, Illinois.

89. Schlake, B.W., Edwards, J.R., Hart, J.M., Barkan, C.P.L, Todorovic, S., and Ahuja, N. (2009).

Automated Inspection of Railcar Underbody Structural Components Using Machine Vision

Technology. In Proceedings of the TRB 88th Annual Meeting, Washington, DC.

90. Schmid, V., Doerner, K.F., Hartl, R.F. and Salazar-González, J.J. (2010). Hybridization of very large

neighborhood search for ready-mixed concrete delivery problems. Computers & Operations

Research, 37, 559-574.

91. Selensky, E. (2001). On mutual reformulation of shop scheduling and vehicle routing. In

Proceedings of the 20th UKPLANSIG, 282–291.

92. Simson, S., Ferreira, L. and Murray, M. (1999). Modeling rail track maintenance planning using

 170

simulation. In Proceedings of the 15th National Conference of the Australian Society for Operations

Research, Australian Society for Operations Research, Gold Coast, Brisbane, 1159–1172.

93. Solomon, M.M. (1987). Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research, 35, 254-265.

94. Steinzen, I., Gintner, V., Suhl, L. and Kliewer, N. (2010). A time-space network approach for the

integrated vehicle- and crew-scheduling problem with multiple depots. Transportation Science,

44(3), 367-382.

95. Taillard, E., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y. (1997). A tabu search heuristic

for the vehicle routing problem with soft time windows. Transportation Science, 31, 170−186.

96. Talbi, E.-G. (2009). Metaheuristics: from design to implementation. Wiley.

97. Thengvall, B.G., Bard, J.F. and Yu, G. (2000). Balancing user preferences for aircraft schedule

recovery during irregular operations. IIE Transportations, 32(3), 181-193.

98. Thompson, P.M. and Psaraftis, H.N. (1993). Cyclic transfer algorithms for multivehicle routing and

scheduling problems. Operations Research, 41, 935−946.

99. Tien, J.M. and Kamiyama, A. (1982). On manpower scheduling algorithms. SIAM Review, 24, 275-

287.

100. Tolliver, D. and Benson, D. (2010). Freight railway track maintenance cost model. Technical report,

MPC-357, Federal Highway Administration, Washington, D.C.

101. Toth, P. and Vigo, D. (eds.). (2001). The Vehicle Routing Problem. SIAM, Philadelphia, PA.

102. Unnikrishnan, A., Valsaraj, V., Damnjanovic, I. and Waller, S.T. (2009). Design and Management

Strategies for Mixed Public Private Transportation Networks: A Meta-Heuristic approach. Computer-

Aided Civil and Infrastructure Engineering, 24(4), 266-279.

103. Yan, S., Lai, W. and Chen, M. (2008). Production scheduling and truck dispatching of ready mixed

 171

concrete. Transportation Research Part E, 44, 164-179.

104. Zante-de Fokkert, J.I. van, Hertog, D. den, Berg, F.J. van den, and Verhoeven, J.H.M. (2007). The

Netherlands schedules track maintenance to improve track workers' safety. Interfaces, 37(2), 133-

142.

