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THRESHOLD C U R R E N T A N D MODULATION RE SPONSE OF 
S E M I C O N D U C T O R LASERS 

Gregory Alexander Kosinovsky, Ph.D. 
Department of Electrical and Computer Engineering 

University of Illinois at Urbana-Champaign, 1995 
Karl Hess, Advisor 

The possibility of carrier charge imbalance in the active region of quantum well lasers 

is demonstrated (in contrast to the usual presumption of charge neutrality in the region), 

and the resulting effect on the threshold current is examined. The investigations are 

performed with a simple rate equation simulator, as well as with a self-consistent laser 

simulator MINILASE. The models predict similar qualitative trends in threshold current 

dependencies. 

A novel model is developed for the lasing threshold analysis of Vertical Cavity Sur­

face Emitting Lasers based on the first principles analysis of resonant cavity E-M field 

enhancement by L.F. Register. The validity of the model is confirmed by comparison 

with the standard Fabry-Perot model for conventional edge emitting lasers. The utility 

of the new model in special cases of the Vertical Cavity Laser analysis is discussed. 

A theoretical investigation of the effect of longitudinal-optic phonon imbalance on 

the modulation response of semiconductor lasers was performed using the MINILASE 

simulator. A novel formalism is developed for the inclusion of phonon-assisted capture 

into the self-consistent simulation. As a result, a new perspective on the role of hot 

phonons, which hitherto was thought to be strictly detrimental to the high frequency 

modulation response, was developed. Our simulations show that, depending on the value 
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of the carrier capture coefficient, nonequilibrium phonons may either improve or worsen 

the modulation bandwidth. 
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CHAPTER 1 

INTRODUCTION 

Threshold current and modulation response are two of the most crucial characteristics 

of semiconductor lasers. As outlined in the classic texts [1, 2], the threshold current in 

lasers is the lowest bias current that allows the optical gain in one of the states of the 

system to reach a value equal to the sum of all optical losses. Since the gain and the 

optical losses are all nonexplicit system-dependent functions of bias current, the problem 

of the minimization of threshold current involves the maximization of optical gain and/or 

minimization of optical loss. The most straightforward way to minimize the distributed 

loss is to increase the mirror reflectivity. This, however, presents a problem in the cost of 

the process (growing reflective coating on a cleaved transverse edge of a crystal wafer), 

as well as in the available optical output (the more light that is reflected back, the less 

is transmitted out). Therefore, the most basic approach was to optimize the gain. An 

early important contribution towards that end was the separate light confinement [3], 

which allowed a high resonant optical field to be maintained in the ever shrinking active 

region - the region of the device where most electron-hole recombination takes place. The 

shrinkage of this region was prompted by the desire to decrease the number of electrons 

excited or "pumped" by the bias current, thus allowing for the decrease of the latter. 
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The drive for more efficient pumping also turned to reducing the density of lower lying 

carrier states, thus minimizing the wastful pumping of states not involved in lasing. This 

led to the research into lasers with lower dimensional carrier gas active regions - beyond 

the two-dimensional (quantum wells, or QW [4, 5]), to one-dimensional (quantum wires), 

and zero-dimensional (quantum dots)[6]-[8]. The research into quantum wires and dots 

is still highly experimental, and is hampered by complicated technological processes and 

the inability to reduce excessive optical losses. 

One of the key impediments to efficient pumping is the large asymmetry in the dis­

persion relations of the conduction and valence bands of most lattice-matched HIV 

semiconductors, which leads to very uneven densities of states, and, consequently, pump­

ing efficiency of the conduction and valence bands. This problem was highlighted in the 

paper by Yablonovich and Kane [9], who proposed that the best way of circumventing 

it was the use of strained layer quantum well laser technology [10], which allows for the 

reduction of the valence band effective mass [11]. 

Our proposal in Chapter 2 addresses the possibility of exploiting the band struc­

ture disparity of unstrained semiconductor lasers such as GaAs/AlGaAs to reduce the 

threshold current by effective modulation doping. 

Chapter 3 deals with the threshold current analysis of an entirely different class of 

lasers - the Vertical Cavity Surface Emitting Lasers (VCSELs). These lasers present a 

relatively new development in technology [12]. These structures, as the name suggests, 

have their optical cavities oriented transversely to the plain of the interface, i.e., along 

the growth direction. This fundamentally planar technology holds great promise for 
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easier growth and interfacing, as well as 2-D laser array fabrication. It also, however, 

presents many challenges, not the least of these is the minuteness of the laser cavity, 

which greatly magnifies the distributed mirror loss and requires the mirror reflectivities 

to be above 0.99. The completely new features of VCSELs require a reevaluation of the 

entire approach in the basic threshold current analysis. The development and validation 

of such an approach are the bases of Chapter 3. 

Finally, Chapter 4 deals with the problem of the high frequency laser modulation 

response. As the detailed review by Lau [13] indicates, the location of the resonant peak in 

the modulation response is primarily determined by the rate of interband recombination. 

However, as our earlier work demonstrates [14], the rates of intraband carrier transfers, 

such as those between the quantum well and three-dimensional regions greatly influence 

the shape of the modulation response characteristic. The carrier capture process has long 

been a subject of investigations, using both classical [15, 16] and quantum mechanical 

[17] - [20] approaches. Concurrently, many different groups reported direct experimental 

evidence of nonequilibrium longitudinal-optic (LO) phonons resulting from intraband 

relaxation of the excited carriers and the subsequent effect on phonon-carrier dynamics 

[21]-[29]. Consequently, researchers began to consider the effect of nonequilibrium (hot) 

phonons on carrier dynamics and the high speed performance of semiconductor QW lasers 

[30, 31]. A particularly direct approach to this problem was taken by Tsai et al. [31], 

in which a system of macroscopic rate equations, including that for the nonequilibrium 

longitudinal-optic (LO) phonon occupation number, was solved. The authors of this 

work reported finding a definitive "bottleneck effect" of the hot LO phonons on the laser 
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modulation response. We set out to solve a similar problem, but with the use of a self-

consistent microscopic laser simulator MINILASE, which will be described in more detail 

in Chapter 2. 
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CHAPTER 2 

EFFECT OF CARRIER CHARGE IMBALANCE ON THE 
THRESHOLD CURRENT IN DIODE LASERS 

Macroscopic 1-D studies of threshold currents in QW lasers, based on the gain thresh­

old condition and radiative rate equations, have frequently been done [32]-[35]. With 

increasing computer power, efforts have also been made to formulate self-consistent 2-

D simulators for diode lasers [36]—[38]. These simulators are more precise for studying 

semiconductor lasers and, on occasion, necessary to quantitatively describe the combined 

physics of the carrier transport and the optical field. Here we describe a particular aspect 

of the physics of threshold current in ideal lasers. 

In macroscopic 1-D investigations of the threshold current dependences [33]-[35], the 

balance of mobile charge (n=p), i.e., local charge neutrality, has been used as one of 

the constraints in the quantum well regions of PIN diodes. This is an accurate assump­

tion for any sizable active region, since in normal device operation, Poisson's equation 

does not permit a large buildup of net charge. However, for the dimensions of quantum 

wells, this constraint loses its strict validity, since local charge neutrality is not neces­

sarily preserved. It is difficult to see how such a charge imbalance can be incorporated 

without ad hoc assumptions into rate-equation-based simulators. We show here that the 

deviation from charge neutrality follows naturally in the solution of our self-consistent 
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simulator MINILASE, developed by Song, Grupen, and Hess [37,39] (with 2-D Helmholtz 

eigenvalue solver developed by Kosinovsky [40]). We also show that this has important 

consequences for laser threshold currents. 

2.1 Theoretical Investigations of Carrier Charge Imbalance 
Based on Rate Equations Model 

Here we show the effect on the predicted threshold current that is obtained from a 

simple rate equation simulator when the n/p ratio, which is ordinarily assumed equal to 

1, is varied. We ran a simulation based on solving the laser gain equation and used the 

fact. that spontaneous emission dominates the diode laser current value at the onset of 

stimulated emission [33]—[35]. The following system of equations was solved: 

rll = g B(Ec°'\ K°'{) • 9(2?' ~ 6%"') • (/=(ff, E?*) + h{K\ ^ r ) ~ 1) (2-1) 
t 

„ ( j f ) = Axp(fjA) (2.2) 

Here B is the Einstein coefficient, g is the reduced density of states (assuming no line 

broadening), /«., //, are the Fermi functions for electrons and holes respectively, and ££°'', 

££»•« are the conduction and valence band levels (with respect to minimum of the i-tb. 

subband) contributing to lasing mode u0; F£h, F£h are the electron and hole Fermi levels 

at threshold; n and p are electron and hole concentrations in the well, respectively. The 

multiplicative factor k denoting the ratio between electrons and holes in the quantum well 

is explicitly set to 1 in most rate equation models. The stimulated emission at threshold 
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rfh is related to the total loss a by 

a • v = T • rfh (2.3) 

Here v is velocity of light in the medium and T is the optical confinement factor. 

Equations (2.1) and (2.2) are solved for F*h and F*h, and the latter are used to 

calculate the total spontaneous emission rate at threshold RsPitk- Assuming that most 

of the radiative current at threshold comes from spontaneous emission, we then have for 

nominal threshold current density: 

Jtk = Rsp,th -e-L (2.4) 

where e is the elementary charge and L is the QW width. 

In the investigation, we used a particular structure with the quantum well width 

of 50 A, and the distributed loss factor of 5200m-1, which was determined to be the 

total of distributed mirror loss, waveguide loss, and free carrier absorption loss for the 

structures investigated using the MINILASE simulation (to be described in more detail). 

By varying the k factor in 0.1 increments, we obtained the relation between this ratio 

and the laser threshold current shown on Fig. 2.1. We see that for this QW structure, a 

monotonic rise in the nominal threshold current density is predicted with the increase in 

the n/p ratio. 

The reason for the variation of threshold current with the k=n/p ratio follows logically 

from the underlying physical model. Consider the Eq. (2.1) for the rate of stimulated 
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Figure 2.1 Nominal current density at threshold vs. k=n/p factor for the 1-D model. 

8 



emission (r$) at threshold. Our calculations for a 50 A well show that (for the given 

range of k) i/0 is always the lowest allowable optical mode. Therefore, g is constant and 

has nonzero value only for i= l , B is constant, and fe, fk are functions of f^ and F*h 

only. Hence Eq. (2.1) reduces to the following: 

r^ = A.(A(^) + A ( 0 - l ) (2.5) 

where A is a known factor. Since r$ is fully determined by the gain threshold value 

Gth = 5200m"1 (see discussion above), fe(F^) and fh(Ff,h) must vary by equal and 

opposite amounts as k varies. Because of the effective mass disparity in GaAs (and most 

other materials), the slope of fe(Fc) at F*h is usually small, while the slope of fh(Fv) at 

F* is large. For example, £fe « 3.7 • $fr for k=.6, and $& w 44 • •§/& for k=1.5. 

Therefore, as t = n / p increases, the increase in Fc
</l is much greater than the decrease 

in F*h. Since the calculation of the threshold current involves the summation of terms 

including fe(Flh,E^) x fh{F^h,E^') over all optical modes v and subbands i (see Hess 

et al. [32]), it is clear that the large increase in F£k outweighs the much smaller decrease 

in F$h, and the threshold current will increase with k. 

2.2 Application of the Self-Consistent Simulation 

In order to determine whether the n-p imbalance and its consequences on threshold 

current are physically meaningful, we have employed the self-consistent 2-0 simulator 

MINILASE, originally described in a previous paper [37]. It consists primarily of the 
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coupled discretized solution of Poisson's equation and the electron and hole current con­

tinuity equations: 

-V-eVi/> + q(n-p-N£ + NZ) = 0 (2.6) 

^ + V • j e + Ustrad + % + UHSR + UAug = 0 (2.7) 

^ + V • j h + Ustrad + UZd + UHSR + UAug = 0 (2.8) 

Here e is the permittivity of the material, %j> is the electrostatic potential, Np,N^ are 

the concentrations of ionized donors and acceptors respectively, je,jk are the particle 

currents of electrons and holes respectively, and U*d,U%d, UffSR^Aug are the electron 

and hole loss rates due to stimulated emission, spontaneous emission, Hall-Shockley-Reed 

recombination, and Auger recombination, respectively. 

The above system is solved by the Newton iteration on its Jacobian. The solution 

variables of this system are the electrostatic potential and the electron and hole quasi-

Fermi levels. In this formalism, the electron and hole quasi-Fermi levels are only loosely 

coupled. They are each primarily determined by their respective continuity equations. 

This point is crucial, because it allows the local charge imbalance that we report here. 

Note that the actual physical charge neutrality constraint is globally enforced through 

Poisson's equation. The n=p constraint that directly linked the electron and hole quasi-

Fermi levels in most of the previous studies is not rigorously required by any physical 

law. Since the date of the aforementioned publication [37], one of the key changes has 

been [39] the addition of the Schroedinger Equation for the QW active region, solved 

10 



iteratively with the continuity-Poisson Newton system: 

Hfr = Eifr (2.9) 

Here H is the Hamiltonian, and <&, Ei are the envelope wavefunctions and energy levels 

of the respective carrier subbands. 

Considering the true quantum nature of the active region, this addition was critical in 

being able to investigate any physical effects related to the electronic properties of the ac­

tive region, notably in our case, the charge distribution and the radiative recombination. 

More details on the quantum model of the well region and its coupling to the classical 

transport model in the 3-D regions of the device are given in a more recent publication 

[14], as well as in Chapter 4. 

The electronic system is then solve iteratively with the photon rate equations: 

^ r = G„s, + a ? ' - - (2.io) 
at T„ 

Here Sv is the photon mode population, Gv is the gain, R'f is the spontaneous emission 

into the mode, and T„ is the photon lifetime. The mode index v is over the range of 

possible lasing modes. 

The 2-D Helmholtz eigenvalue equation is also solved to obtain the transverse optical 

field profile [40]. 
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Rl R4 

R2 R3 
Q 

Figure 2.2 Idealized conduction band diagram of the laser cross-section. Doping con­
centrations corresponding to the labeled regions are given in the text. 

2.2.1 Setup of the simulation experiment 

The structure considered for our example is the quasi-one dimensional buried Separate 

Confinement Heterostructure (SCH) laser. Figure 2.2 illustrates the idealized conduction 

band structure cross-section of this device. 

The doping profiles were varied in order to achieve the n-p imbalance and to in­

vestigate the resulting effects. The device has a total width of 3 /am and symmetric 

material structure. There is a 50A GaAs QW active region Q in the middle, then 975A 

Al0AGa0.6As light guiding regions R2, R3 to each side, followed by 1.4/un Al0.esGa0.3SAs 

regions R l , R4 bounded by electrodes. 
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We investigated three structures, which had different dopings in the regions R l , 

R2, R3 , and R4 on Fig. 2.2. In structure A, R l was p-doped at 5.0xl018cm-3, R4 

was n-doped at 5.0xl018cm~3, and the rest of the device was undoped. In structure 

B, R l and R2 were p-doped at 3.0xl018cm~3, R4 was n-doped at 2.0xl018cm~3, and 

the rest was undoped. Finally, in structure C, R l was p-doped at 3.0xl018cm~3, R 3 

and R4 were n-doped at 3.0xl018cm~3, and other regions were undoped. The doping 

concentrations were chosen not only to optimize the n-p imbalance in structures B and 

C, but also to achieve approximate equality of the gain threshold (loss factor) among the 

three structures. 

2.3 Results and Discussion 

Table 2.1 shows the results of the simulation. The first important result is that the 

n=p condition, often used as a constraint, is strongly violated in the asymmetrically 

doped structures (giving values of k=0.66 and k=1.47 for B and C structures, respec­

tively). It is reassuring that the threshold current versus k=n/p ratio dependence for 

these structures follows qualitatively the trend suggested by the simplified calculation 

that led to Fig. 2.1. Quantitatively, there is about a 25% difference between the thresh­

old current values obtained from MINILASE and listed in Table 2.1 and the corresponding 

points of Fig. 2.1. This difference is acceptable, considering the simplicity of the rate 

equation model and, in fact, underscores the importance of the self-consistent simulators 

for accurate quantitative analysis. 
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Table 2.1 Summary of simulation results for structures A, B, and C. 

Structure 

A 

B 

C 

k=n/p 

1.05 

0.66 

1.47 

Jth(A/m2) 

3.38xl06 

2.78xl06 

4.16xl06 
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Comparing the MINILASE data of Table 2.1 for different structures, we note that 

the lasing threshold current difference between structure B (k=0.66) and structure C 

(k=1.47) is a very considerable 49.4%. More important than the difference between the 

two asymmetrically doped structures, however, is the difference between structure A, 

representing a "conventional" PIN laser with n-p neutrality preserved, and structure B, 

where the heavy p-doping up to the quantum well results in a much higher concentration 

of holes than electrons in the well. We can see that decreasing the n/p ratio from 1 

to 0.66 results in a 15.6% lowering of the threshold current value, which is a significant 

improvement. 

2.4 Conclusion 

It is important to emphasize, that the threshold current dependence on the n/p ratio 

is entirely due to the difference between the effective masses of electrons and holes. In 

a model simulation where the masses are equalized, the threshold current is completely 

independent of the carrier concentration ratio. 

Finally, let us note that if the idea presented here for lowering threshold current 

is approached experimentally, better methods of modulation doping may be found. In 

particular, instead of heavy doping of the entire waveguide region on the p side (which 

raises the free carrier absorption, and thus the lasing threshold), 6-doping may be used, 

i.e. a thin heavily doped layer may be implanted near the quantum well. We did not take 

this approach in our simulation, because it would have required major changes in the 

15 



simulator, whereas the present approach was sufficient in demonstrating the postulated 

effect. 
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CHAPTER 3 

N E W MODEL FOR CURRENT THRESHOLD ANALYSIS 
OF THE VERTICAL CAVITY SURFACE EMITTING 

LASERS 

3.1 Introduction and Background 

In recent years there have been a number of investigations of Vertical Cavity Sur­

face Emitting Lasers (VCSELs), both experimental [12. 41] and theoretical [42]-[46]. In 

theoretical studies of VCSELs, some of the authors [45, 46] employed the traditional 

Fabry-Perot model for laser cavities, while others considered the microcavity effects on 

both the spontaneous emission [43, 44] and gain [42]. In the traditional theory, radiation 

is first modeled via the emission (and absorption) of photons into the "quasimodes" of 

the laser cavity. Subsequent radiation from the cavity is then modeled, typically via a 

lifetime term, as leakage from the quasimodes of the cavity to external "free-space" modes 

through partially transmitting boundaries. However, the questions raised by the latter 

group of authors [42]-[44] suggest a new approach may be required to model VCSELs. 
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3.2 New Model for Laser Threshold 

To study lasing in general resonant cavities including both conventional and VCSEL 

structures, L.F. Register considered radiation directly into the electromagnetic modes of 

the coupled resonant-cavity-free-space system. Using this approach, a general expression 

for the steady-state photon emission into such a system was derived (see Register et al. 

[47])-

[(a) 
i - i 

5 oc | ( — J - Gnet4is (3.1) 

Here S is the rate of photon emission. Gnet,dis is the distributed net gain (per unit energy) 

inside the resonant cavity, and contains the effects of optical field resonances/antiresonances 

within the cavity both as a function of frequency and position. These resonance effects 

are calculated by Register and R. Baca via both eigenstate calculations and a Green's 

function approach for Maxwell's equations. The pole in the photon emission rate as 

distributed gain approaches the value ^ is suggestive, since, in the steady-state lasing 

regime, the ideal photon emission rate may grow indefinitely with increase in current 

bias, while gain remains constant. 

To establish the relationship between Eq. (3.1) and the conventional threshold analy­

sis, G.A. Kosinovsky and L.F. Register applied the conventional lasing threshold analysis 

to the large cavity of length L in Fig. 3.1. 

Gnet,md = - (3.2) 
T 
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resonant cavity 

V 

< > 

l 

< > 

L 

Figure 3.1 A schematic diagram of "outer cavity" region of free space of length L with 
a small resonant cavity of length 1 in the middle. 

Here Gntt,md is the net gain per mode, and r is the cavity photon lifetime of the given 

mode. Clearly, Gnet,md is the integral of Gnet,dis over the mode width Ahu, where Ahu 

is the period of the resonant spectrum for a cavity of length L. Figure 3.2 illustrates the 

relationship between the distributed gain formalism, shown by the continuous spectrum 

and the small cavity net gain formalism, shown by the discrete spectrum. Necessarily, 

the periods of both spectra have the same period Ahui determined by the inner cavity 1 

of Fig. 3.1. 

Since the "end mirrors" of the large cavity are fully transmitting, the large cavity 

lifetime of a photon originating inside the small resonant cavity is r = r0 + r1? where r0 

is the photon lifetime of the resonant cavity, and TX = 4 ^ £• is the time it takes for 

a photon to travel from just outside the resonant cavity to the edge of the large cavity. 

Here, c is the free-space velocity of light, and KM is the ratio of the photon wavevector 

19 



Energy 
> 

Figure 3.2 A schematic diagram of the continuous (distributed) and discrete (modal) 
gain spectra. 

to its component in the resonant direction in free space. Thus we have 

J L 6 - * - ; ^ (33) 

Now let's examine the above equation in two extreme limits of L. As L becomes very 

large compared to /, T —> £ \T-\ and Shu = *¥• %• becomes so small that only a 

single value of the integrand in Eq. (3.3) is selected. Since the mode with the most gain 

is the one that defines threshold, Eq. (3.3) becomes 

1 2 0.4) nct,dis r M w ^ 
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so we can see explicitly how the value ^ defines threshold. 

If we take the other extreme limit L —> /, then r —» r0, and Eq. (3.3) goes to 

/ Gnet,dis = — (3.5) 
J Shu TQ 

Here 

irtif lr 
(3.6) Shw = —— 

nl mate 

is the resonance period of the laser structure of length / in the ^-direction. Here sub­

script mate refers to the material the laser is made of, and n is the refractive index of 

this material. Thus fSJUi/ Gnet,di, is the conventional modal gain of a laser structure and 

Eq. (3.5) is the conventional laser threshold equation. Since Eqs. (3.4) and (3.5) are 

just different limiting cases of Eq. (3.3), we expect Eq. (3.4) to give the same result for 

conventional laser structures as the conventional theory (Eq. (3.5)), which the compu­

tational results to be presented will confirm. For VCSELs, the relationship between the 

results of Eqs. (3.4) and (3.5) is not so clear, mainly because the definition of the photon 

mode lifetime to of a VCSE cavity is ambiguous. For a conventional Fabry-Perot cavity 

with length / and mirror reflectivities Rt, R2, 

nl 
To = 

I K Imale 

t [ (R1 + R2 + 2R1R2) 

1 - R^R2 

(3.7) 

However, consider the typical VCSEL structure shown in Fig. 3.3. One can see that 

the "waveguide" region is as small as 1 wavelength of light, whereas the mirrors are many 
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wavelengths thick. Hence, what is the length I of a VCSE structure? Does it include any 

of the Bragg reflector mirror layers? More generally, does it make sense to talk about 

a Fabry-Perot cavity one wavelength long? These are clearly some of the questions to 

be addressed. Note that Eq. (3.4) does not contain any ambiguous quantities for either 

VCSE or conventional structure analysis. 

3.3 Adaptation of the Conventional Threshold Gain Equation 
to the Distributed Gain Formalism 

We now consider the gain Gl^ettTnd of a single longitudinal mode of a large cavity of 

length L (which has a small resonant gain cavity of length / in the middle). Using the con­

ventional discrete single-mode gain approach (and ignoring losses other than stimulated 

emission for now), we would have, if the gain medium were invariant in the z-direction, 

GL,md = /< f r2fr«,(/„ - /,)|AjLm% M 

Here gred is the reduced density of states of electrons and holes for interband transition, 

fci fv are the Fermi occupation probabilities for electrons and holes, |<AzylLrm is the square 

of the transverse electric field profile of the optical mode, normalized to unity, and B is 

the Einstein B-coefficient for the gain medium, 

B = ~BJs (3.9) 

Here Bja is the free-space value of the Einstein B-coefficient. 
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If it is the case (as we certainly have here) that the electrical field profile undergoes 

significant change along the z-direction inside the length L, then the B factor in Eq. 

(3.8) must be replaced with 

I <?* I norm 
Bnew = BJs*^f^ (3.10) 

Here |&|£orm is the average value of the square of the longitudinal electric field profile, 

and is equal to the free space value if L is large enough. Therefore, from Eqs. (3.8), 

(3.9), and (3.10) 

O L , w = Y [JdxdyBgred(fc ~ / , ) W L m ] / ^ J T I N (3-n> 
norm 

Here the quantity in brackets can be integrated separately under the assumption that it 

is constant inside the small resonant cavity and 0 outside. The fact that this quantity 

vanishes outside the resonant cavity is the reason for / being the region of integration 

over the z-direction. We also assumed that the longitudinal resonant electric field profile 

is not a function of transverse coordinates. Now, the bracketed quantity in the above 

equation is the single mode gain G'^et%md of the small resonant cavity. Thus 

OL,w = Y % m d / d z # ^ (S-^) 
\4>. z1 norm 

Taking the above expression for Gjfetm(i and recalling that A%w = ^ m > w e c a n 

finally write 

nlc _2 
n — net,md _ % GZt,md / * = = = (313) 

fs Jl l ^ l n o r m 
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Figure 3.4 Superposition of a net large cavity spectrum on the distributed gain spec­
trum. 

The justification for Eq. (3.13) is easy to see by examining Fig. 3.4, which superimposes 

the discrete spectrum of the large cavity of period Afiw, determined by the arbitrarily 

large length L on the continuous distributed gain spectrum of period 8huj, determined 

by the resonant cavity length 1. We can take L large enough to make sure that the 

continuous spectrum is nearly constant on the scale of Aku. 

In deriving Eq. (3.5) we assumed that 

G^ net,md = / ' 
JShw 

G net,dis (3.14) 
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Thus, from Eqs. (3.13) and (3.14), 

rise _ rise " 
^ne t .md — ^nc(,md ^ 

fs 
/ / 
J Shu J l 

dz 
z I norm 

(3.15) 

We can take the average of rHjfrT" over / and 6h~u> and rewrite the above as 

%md = G: , ,wWM 
xhc 

(\<f>Alorm\ 

Js \ | < k l „ o r m / z I norm / avg. over /, 6 Aw 

(3.16) 

Finally, substituting Eq. (3.6) into Eq. (3.16), we obtain 

/ l < k l n o r m \ 

V l ^ l n o r m A > lyzlnorm / avg. over /, Shui Js mate 

(3.17) 

The above has to hold if the trivial relationship 

rise _ rise 
wne(,ra(i — "ne t .md 

(3.18) 

is to hold. The numerical calculations performed by R. Baca for a resonant enhancement 

profile of a particular conventional diode laser structure agreed with Eq. (3.17) to four 

significant digits. 
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3.4 Verifying the Equivalence of Conventional and New Thresh­
old Equations for Conventional Structures 

The preceding section provided the analytical expression (Eq. (3.13)) for the dis­

tributed gain formalism. We can now use it to verify the equivalence of Eqs. (3.4) and 

(3.5) for conventional diode laser structures. From Eqs. (3.4) and (3.13) we obtain 

n2 

rtmax _ " %,w/dz(&{s) =A (3.19) 
J' \ l & l n o r m / max. over Shu ™ 

Therefore, 

rise / K I L m \ _ 2C_ 
net'md\Uli / ~ n2/ 

\ I Vz I norm / max. over Shu, avg. over / 

(3.20) 

We now have Eq. (3.16) derived from Eq. (3.5), and Eq. (3.20) derived from Eq. (3.4). 

We substitute Eq. (3.20) into Eq. (3.16), (using also Eqs. (3.5), (3.6) and (3.14)). 

[Ma] 
\ l^i | norm / max. over Shu, avg. over I _ T0 /n n-,\ 

\ '** \norm ) a v g . OVer I, Shu 
2 c I &i I mate 

If the above relation holds, then the threshold criteria of Eqs. (3.4) and (3.5) are equiva­

lent for conventional diode lasers. Simulation results obtained by Baca showed Eq. (3.21) 

to hold to 4 significant digits. 
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3.5 Comparing the Results of Conventional and New Thresh­
old Equations for VCSEL Structures 

Let us now repeat the analysis of the previous section for VCSE lasers. As previously 

mentioned, there is an ambiguity in applying Eqs. (3.5) and (3.7) to the VCSE lasers 

because the definition of / is ambiguous. Assume, for now, that / is the length of the 

middle portion of the VCSE laser, excluding the quarter-wave Bragg superlattices (which 

make up the larger length of the device). Thus, / is a small integral number of wavelengths 

of light (usually 1). In that case, the only difference between VCSELs and conventional 

structures is that the active region is confined to a tiny region of / (we designate its 

location z = 0), whereas in conventional structures the active region spans the length 

/ (or, in some variations, a large part of it), Thus we can apply the Eq. (3.21) to the 

present analysis, as long as we replace "averaging over /" by "evaluation at z = 0": 

\ I W n o r m / m a x , o v e r g&W a t 2 = 0 ?Q / « o O \ 

TS^j = 7 ^ ~ (322) 

In this case too, numerical analysis shows complete agreement of the two theories! 

3.6 Discussion 

What conclusions can we draw from the results of the previous section? One, it shows 

that applying conventional theory to VCSE lasers is numerically meaningful, as long as 

one defines the cavity length to exclude all of the superlattice. Is the usefulness of the new 

theory, then, confined to simply verifying the validity of the old one for VCSE structures? 
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Figure 3.5 Superposition of the electron energy spectrum and the resonant gain spec­
trum, which peak at different energies. 

The answer is no, if one looks at the previous analysis more closely. In writing Eq. (3.19) 

we assumed that the local peaks of the distributed gain and the resonant enhancement 

spectra occur at the same place. This, of course, is true if the resonant enhancement 

peaks are very narrow, as is the case for conventional diode lasers. Register and Baca's 

calculations show, however, that the resonant enhancement factor for a VCSE cavity 

retains about 90% of its peak value over a range of about 28 meV. This means that the 

peak of distributed gain may be determined by the peak of carrier energy distribution, 

and may occur at different energy than the resonant enhancement peak (see Fig. 3.5). 

Since in the degenerate carrier concentration regime Fermi levels are very sensitive 

to small gain variations, a difference of several percent in gain calculations can result 

in significant difference in threshold current. Therefore, one should be able to account 

more accurately for the threshold current dependencies of the VCSE laser structures (as 
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well as for the exact lasing frequency calculations) by employing the distributed gain 

formalism (Eq. (3.4)) for the analysis and simulation. Register and Baca are currently 

implementing the distributed gain formalism into a 1-D version of the self-consistent laser 

simulator MINILASE, developed by R. Baca from the 2-0 versions of Song et al. [37] 

and Grupen and Hess [39]. 
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CHAPTER 4 

HOT PHONON EFFECTS ON HIGH FREQUENCY 
MODULATION OF SEMICONDUCTOR LASERS 

In Chapter 2 the numerical and physical approach to laser simulation in MINILASE 

was described. In the early version of the simulator, however, the carrier transport be­

tween the bulk waveguide region and the quantum well active region was accomplished 

via thermionic emission. While this model, which assumes instantaneous carrier cap­

ture and emission, is sufficient for steady-state calculations, it has serious deficiencies in 

transient simulation applications. 

4.1 Simulating High Speed Performance 

To simulate the high frequency modulation response correctly, a better model for 

carrier capture into the quantum wells has to be introduced, instead of the thermionic 

emission approach originally in place. The introduction of this model, which we summa­

rize here, led to the first successful high-speed laser modulation analysis using a physical 

self-consistent simulator [14]. 

In the new approach, the carriers in the vicinity of the well were classified into two 

categories: the free particles and the bound particles. The two populations were assumed 

31 



to be in thermal equilibrium with themselves, but not with each other. Then the capture 

and emission rates Reap, Rem can be represented as follows: 

Reap = / dEc / dEwMgcgwfc{\ - fw) (4.1) 
JE? JE?„ 

Rem= dEc dEwMgc9w(l - fc)fweE«-E< (4.2) 
JE° JE°, 

where subscripts c and w represent free and captured (conduction and well) particles 

respectively, E is energy, M is the transition matrix element, g is density of states, / is 

Fermi distribution function, and F is the Fermi energy. The eEw~Ec factor approximates 

the cumulative Bose factor for the emission process. E° and JB° refer to the top and 

bottom of the quantum well respectively. Figure 4.1 illustrates this process. Note that 

the energies are given in units of kT (Boltzmann factor times the temperature). 

Given this model we can perform the following analytical manipulation: 

/^-*d-/.) = ps^hr^-psi+i ) 
e"w

 _R_ e 
-e -Ec. 

QEV-FV _J_ I eEc-Fc _|_ i 

eE»-Fw + I eEc-Fc + 1 

= eF"-F*(l-fw)fe (4.3) 

Therefore, it follows from Eqs. (4.1) and (4.2) that 

Rem = e^-^R^ (4.4) 
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Figure 4.1 Diagram of the emission and capture processes of electrons into QW. 

This resultant formula is physically consistent, since it predicts that in the case of com­

plete thermal equilibrium between free and captured electrons (or holes), i.e., if Fw = Fc, 

the capture and emission rates are equal. 

4.2 Model for Studying the Nonequilibrium Phonon Effects 

The nonequilibrium phonon effects have been considered for a long time [21, 22]. In 

recent publications [30, 31], the effects of nonequilibrium phonon density on the modu­

lation response of diode lasers had been investigated using the rate equation model and 

considering the effect of hot phonons on the nonlinear gain effects due to carrier heating. 

Here we propose a model for investigating in the self-consistent framework the effect 
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of phonon imbalance on the capture and emission rates of carriers in the well, and the 

subsequent effects on the modulation response. 

We modify the capture/emission model described in the previous subsection using 

the common assumption [13] that the capture and emission processes are dominated by 

the LO phonon scattering. The inclusion of LO phonons leads to the following changes 

in the rates. 

The Bose statistical factor used in Eq. (4.1) for Reap is 1. A better approximation is 

to use the factor (l+nph), where np„ is the Bose occupation number for the LO phonons, 

which, at equilibrium, has the value nph,eq = ewL
1

0_1^ where %LOLO is the energy of LO 

phonons relative to kT. 

The Bose statistical factor used in Eq. (4.2) for Rem is eEw~Ec. We want to separate 

from it the part associated with the emission of high energy bound carriers into the free 

carrier population and to account for the nonequilibrium phonon effects. Thus the new 

Bose occupation number for emission is eEw~Ec+Hu,LOnph, where e~huLO approximates the 

equilibrium phonon occupation number. The last approximation is necessary to assure 

the model's consistency when free and bound carriers are at or near mutual thermal 

equilibrium, as will be shown below. 

Therefore, in place of Eqs. (4.1) and (4.2), we have 

Reap = r dEc j c dEwMgcgwfc(l - /w)(l + nph) (4.5) 
JE° JE% 

Rem = r dEc fE° dEwMgcgw(l - fc)fweE--Ec+hui-0nph (4.6) 
JE° JE% 
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Using Eqs. (4.5) and (4.6) instead of (4.1) and (4.2) in the analysis which led to Eqs. 

(4.3) and (4.4), we get the following result: 

(1 + nph)Rem = eF"--Fc+fiwionp/lJRcap (4.7) 

In the case of overall thermal equilibrium (Fw = Fc), the above equation assures that 

there is no unphysical net capture or emission (Rem = Rcap)-

We now follow the formal derivation of the net capture rate Ucap = Reap ~ Rem given 

in a previously cited paper [14], but with inclusion of nonequilibrium phonons. Assuming 

that the matrix element M is constant (or averaged over the relevant energy range), we 

obtain (for electrons) from Eqs. (4.5), (4.6), and (4.7) the equality 

x^l + n^-n^-^^o] (4.8) 

where the concentration of bound electrons is n2o — SE° 9wfwdEw, and the concentration 

of free electrons is ri3D = f^gcfcdEc. In the paper [14], the carrier capture coefficient 

Cn = M fEo gwdEw is defined and estimated from an earlier publication [16] to be in the 

range of 1 x 10125_1 to 2 x 1013s-1. Given this definition, Eq. (4.8) becomes 

%., = c. L , - J T % 1 x [(1 + n,„) - n , . , * - ^ " ] (4.9) 
V jEigwdEwJ 

A similar expression follows for holes. 

Ueap = M .£' gwdEw nzD — «2£>«30 
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Now we have to define a relationship between Ucap and npk, which would allow a 

self-consistent solution for both the phonons and carriers. Let DPH be the density of 

phonons in the active region. Then, in a small time step At, the change in LO phonon 

density due to carrier capture is A£>p„ = UcapAt x a where a is the average number of 

LO phonons emitted in the complete downward transition from a free to a bound state 

(or the average number absorbed in the reverse process), and a is at least one and is on 

the order of unity. It may be different for the electron and hole capture processes, and 

the electron and hole contributions add to the total of ADph- We must consider also the 

loss of LO phonons to acoustic modes, which gives the final expression 

ADph = (Ucap,el x ota + UcapM x ahl - Dph ~ Dpk™ ) At (4.10) 

Here Dph,eq is the equilibrium phonon density and r/0JS is the time constant associated 

with the LO phonon loss to acoustic modes (see Hess et al. [22]). We assign to r/oss the 

early experimental value of 5 x 10~12s, obtained from the literature [21]. A more recent 

experimental paper reports a nearly identical LO phonon lifetime value of 4 ps at 300 K 

[25]. 

To formally complete the self-consistent carrier-phonon problem, we now have only 

to relate Dph and np„. Clearly, this is given by the relation 

nph-nphteq = Dph-Dph'e" (4.11) 
9ph 

Here gph is the density of states of LO phonons in the relevant range of k-space. 
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Hence, to calculate the nonequilibrium phonon occupation number, a good estimate 

of- gph is needed. Using the Einstein model for optical phonons [48], we can write an 

energy-dependent phonon density of states function 

4 = / ^ ( 2 - A w " ) (4-12) 

Here q spans the First Brillouin Zone (FBZ). Since hiout does not have a strong q 

dependence, the delta function may be taken out of the integral, and we can treat it as 

a part of the energy conservation constraint separately from the function 

* » - / $ & ( 4 - 1 3 ) 

Now, the limits of integration in the expression above are much smaller than the 

actual FBZ boundaries - , where a is the lattice constant ( « 5.5A for GaAs). In practice, 

since the wavevector of electrons in the valleys is generally less than 0.1( J) , this is also 

the upper limit on the relevant q range (by conservation of momentum). This upper limit 

is confirmed by the plots of the phonon spectra presented in the previously cited papers 

[22,26]. We can include the uncertainty of this range by taking it to be /3 x 0.1(~), where 

/? is close to and may be less than unity. Given these considerations, we obtain from Eq. 

(4.13) the following result: 

gph = fi x 1024m"3 (4.14) 

This completes the derivation of the model. 
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4.3 Simulation and Results 

To study the effect of including the nonequilibrium phonon occupation, we ran the 

MINILASE simulations for a quasi-one-dimensional GaAs/AlGaAs laser structure with 

100 A GaAs quantum well. We varied the carrier capture coefficient in the range pre­

viously indicated. Three different values were used, and for simplicity of analysis, the 

electron and hole coefficients d and Cp were made to equal each other in all three cases, 

although this is generally not true. Also, the uncertainty factors a in Eq. (4.10) and /? 

in Eq. (4.14) were assigned the value of one. 

The values for (c%, Cp) that were used were the extreme values of 2 x 1013 (Case A) and 

1 x 1012 (case B), as well as an intermediate value of 4 x 1012 (case C). In each of the three 

cases, the time-dependent simulations were performed and modulation response curves 

obtained for two different models - one which kept the phonon occupation number fixed 

at its thermal equilibrium value, and one which allowed it to vary self-consistently with 

transient simulation according to the method described above. 

The results obtained for the three cases are shown in Figs. 4.2 a), b), and c). We 

observe that in case B (lower estimate for capture coefficient) the results were as predicted 

by Tsai et al. [31]; however, in the opposite limit (case A) the reverse was observed - the 

inclusion of hot phonons actually improved the predicted modulation response. For the 

intermediate capture coefficient value (case C), the modulation curves are nearly equal. 

For a closer look at the physics behind the results of Fig. 4.2, we look at the plot 

(Fig. 4.3) of the difference between the net capture rate with hot phonons included and 
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modulation frequency, Hz 

Figure 4.2a) Modulation response of the laser structure with hot phonon (solid line) and 
equilibrium phonon (dash-dotted line) models considered. Case A (c„ = 2 x 1013s—1). 
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Figure 4.2b) Modulation response of the laser structure with hot phonon (solid line) and 
equilibrium phonon (dash-dotted line) models considered. Case B (c„ = 1 x 10l2s—1). 
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Figure 4.2c) Modulation response of the laser structure with hot phonon (solid line) and 
equilibrium ohonon (dash-dotted line) models considered. Case C (c„ = 4 x 1012s—1). 

41 



time (10^ s) 

Figure 4.3 The difference in the net capture rate between the hot phonon and equilib­
rium phonon model step response calculations for Case A (dashed line), Case B (dash-
dotted line) and Case C (solid line). 
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the one without, plotted on the time scale of the transient step response simulation. We 

see that in the simulation corresponding to case C the net capture rate in the thermal 

equilibrium phonon simulation is very close to that of the hot phonon simulation. In 

case B, the hot phonon rate is consistently below the equilibrium phonon rate, while in 

case A the hot phonon rate exceeds the equilibrium phonon rates for significant time 

intervals. Of course, this merely confirms the well-known [13, 31] and logically consistent 

positive correlation between the increase in the net capture rate and the improvement of 

modulation bandwidth. (The physical explanation for this correlation is still, however, 

a subject of discussion. See, for example, Grupen's study of the effect of diffusion ca­

pacitance related to wasted current on the modulation response [49]). The results shown 

in Fig. 4.3, however, are not easy to explain (or predict) analytically. Indeed, it is the 

very complicated relationship between the carrier, phonon, and capture rate dynamics 

which necessitate the detailed self-consistent simulation. As expected from Eq. (4.9), 

both rates - capture and emission - are enhanced as the result of nonequilibrium phonon 

inclusion in all three cases. However, the relative rate increases in the two models differ 

from case to case, making- the net capture rates in the hot phonon model greater or 

less than the corresponding equilibrium phonon rates, depending on the carrier capture 

coefficient used. 

4.4 Conclusion 

Depending on the carrier capture coefficient in the quantum wells, we have found that 

the LO optical phonon scattering may either enhance or hurt the QW laser modulation 
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bandwidth. Since there are methods (such as the QW doping) which can affect the hot -

phonon population, it is important to know what the effect of hot phonons is in any 

particular case. For the purpose of simulation, this underscores the importance of better 

models for determining more precisely the carrier capture coefficient. 
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C H A P T E R 5 

CONCLUSIONS 

The assumption of overall charge neutrality is so natural that using it as a fundamental 

assumption in laser threshold modeling was never challenged. We showed, however, that 

for very thin QW active regions, this constraint is no longer valid. The n/p ratios, much 

different from unity, were obtained for intrinsic quantum wells by modulation doping. It 

was further shown that while the increase of n over p caused the threshold current to 

rise, the increase of p over n resulted in the lowering of threshold current. Finally, the 

effect of threshold current dependence on the n/p ratio has been explained entirely in 

terms of the asymmetry in the conduction and valence band effective masses. 

We developed a theoretical model for threshold current analysis of lasers that did not 

depend on parameters such as the cavity length, which are ill-defined for the Vertical 

Cavity Surface Emitting Lasers (VCSELs). We have shown the equivalence of this model 

with the Fabry-Perot model in the case of conventional edge-emitting semiconductor 

lasers, and in the particular case of VCSEL lasing. In a general analysis of VCSELs, 

however, when the lasing at the resonant peak frequency is not assumed, our model is 

shown to be better suited for analysis and simulation. 
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Finally, we investigated the effect of nonequilibrium phonons on the high frequency 

modulation response of semiconductor lasers in the context of self-consistent microscopic 

device simulation. It was shown that, unlike previously believed, it may be possible for 

nonequilibrium phonons to improve the net carrier capture into the quantum well, and 

thus increase the modulation bandwidth. 
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