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ABSTRACT 

FPGAs (field programmable gate arrays) are attractive alternatives compared to ASICs 

(application-specific integrated circuits) for significantly lowering amortized manufacturing costs 

and dramatically improving design productivity. The architecture of an FPGA is very regular. It is 

relatively easy to design a highly optimized tile, with consideration of various manufacturing 

related issues, and then to replicate it many times across the chip. The configurability of FPGAs 

also enables yield improvement and defect tolerance. However, FPGAs are still facing serious 

challenges in terms of delay, power consumption, and logic density compared to ASICs. FPGA is 

estimated to be over twenty times less efficient in logic density, over three times worse in delay, 

and over ten times higher in power consumption compared to a functionally equivalent ASIC.  

One promising way to improve FPGA performance is to incorporate three-dimensional 

(3D) integration, which increases the number of active layers and optimizes the interconnect 

network vertically. Another solution is to apply novel nanoelectronic materials (nanomaterials) 

and devices. This dissertation introduces three novel reconfigurable architectures, named 3D 

nFPGA, FPCNA (field programmable carbon nanotube array), and NEM FPGA 

(nanoelectromechanical FPGA), which utilize 3D integration techniques and new nanoscale 

materials synergistically. Customized CAD flows that consider process variation have been 

developed for different architectures to evaluate their potential performances. Also described is a 

3D variation aware routing flow, which is an essential tool for future 3D FPGA architecture 

exploration.  

3D nFPGA is based on CMOS (complementary metal-oxide-semiconductor) and nano 

hybrid techniques that incorporate nanomaterials such as nanowire crossbars and carbon 

nanotube bundles into the CMOS fabrication process. Using unique features of FPGAs and a 

novel 3D stacking method enabled by the application of nanomaterials, 3D nFPGA obtains a 4× 

footprint reduction comparing to the traditional CMOS-based 2D FPGAs. The performance and 
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power of 3D nFPGA driven by the 20 largest MCNC (microelectronics center of North Carolina) 

benchmarks have been evaluated. Results demonstrate that 3D nFPGA is able to provide a 

performance gain of 2.6× with a small power overhead compared to the traditional 2D FPGA. 

FPCNA includes lookup tables created entirely from continuous carbon nanotube (CNT) 

ribbons. To determine the performance of the building blocks, variation aware physical design 

tools are used, with statistical static timing analysis (SSTA) that can handle both Gaussian and 

non-Gaussian random variables. A 2.75× performance improvement is seen over an equivalent 

CMOS FPGA at a 95% yield. In addition, FPCNA offers a 5× footprint reduction compared to a 

baseline FPGA. 

3D NEM FPGA is the architecture that utilizes nanoelectromechanical (NEM) relays and 

3D integration techniques synergistically. This proposed architecture has unique features 

including a hybrid CMOS-NEM FPGA lookup table (LUT) and configurable logic block (CLB), 

NEM-based switch block (SB) and connection block (CB), and face-to-face 3D stacking. This 

architecture also has a built-in feature called direct link, which takes advantage of the short 

vertical wire length provided by 3D stacking to further enhance performance. An overall 46.3% 

critical path delay reduction has been observed compared to its CMOS counterpart. 

To maximize the potential performance gain of 3D integrated circuit architectures, an 

SSTA engine was developed to deal with both uncorrelated and correlated variations in 3D 

FPGAs. The effects of intra-die and inter-die variation are considered. Using the 3D physical 

design tool TPR as a base, a new 3D routing algorithm is developed, which improves the average 

performance of two-layer designs by over 22% and three-layer designs by over 27%. 
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CHAPTER 1  

INTRODUCTION 

Historically, CMOS scaling has provided the means to realize higher performance with 

every technology node, as predicted by Moore’s law. Ever since the 90 nm node, the gate length 

of MOSFETs (metal–oxide–semiconductor field-effect transistors) has entered the nano regime. 

Nowadays, the 45 nm technology has become the mainstream since 2008, and 32 nm technology 

was announced in 2009.  

As CMOS continues to scale deeper into the nanoscale, quantum physical effects cause 

the IV characteristics to be substantially different from well-studied MOSFETs. Ballistic 

mobility and saturation velocity play an important role in limiting MOSFET performance. 

Degraded drain-induced barrier lowering (DIBL) increases the off-state current (Ioff). Decreased 

Tox provides better channel control but comes with a penalty of increased gate leakage current 

(Igate). In the meantime, the traditional design and fabrication approach needs to be modified to 

cope with various non-idealities such as increased process variation and optical lithography 

difficulties. It becomes more and more difficult to further improve device and circuit 

performance by reducing the physical gate length.  

The Overall Roadmap Technology Characteristics (ORTC) published by the 

International Technology Roadmap for Semiconductors (ITRS) gives a detailed summary of the 

key parameters for future technology nodes [1]. The scaling trend of final physical gate length 

was set at a two-year cycle (0.5×/4 years; 0.71×/2 years) from 1999/90 nm through the 2005/32 

nm point, and then the scaling trend slows down to a three-year cycle (0.5×/6 years; 0.71×/3 

years) through the end of the roadmap due to the aforementioned scaling difficulties. A good 

question to ask is: Is there a way to extend the silicon roadmap? 
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One promising way to continue Moore’s law is to incorporate 3D integration [2]-[4], 

which increases the number of active layers and optimizes the interconnect network vertically. 

The main advantage of 3D IC technology is that it significantly enhances interconnect resources 

and increases logic density. If used correctly, 3D IC provides improved bandwidth and 

throughput, as well as reduced wire length. For Nlayers stacking, in the best scenario, if the 

inter-layer vias are ignored, average wire length would be expected to drop by a factor of 

(Nlayers)
1/2. Both wire resistance and wire (RC) delay would drop by a factor of (Nlayers). Hence, for 

interconnect-dominated architectures such as FPGAs, a significant reduction in chip delay and 

energy can be expected.  

Another promising long-term solution is the use of nanoelectronic materials 

(nanomaterials) and devices. Carbon-based devices and interconnects have shown strong 

promise. The Emerging Research Devices and Emerging Research Materials working groups of 

the ITRS have selected carbon-based nanoelectronics as their recommended “Beyond CMOS” 

technology [1]. A metallic single-walled carbon nanotube (SWCNT) has a mean free path of 

several micrometers. Within this length, ballistic transport is observed in SWCNT [5]-[7]. Thus, 

its resistance is a constant without scattering effects. A rope or bundle of SWCNTs conduct 

current in parallel and significantly reduce the resistance value [8]-[10]. Thus, the SWCNT 

bundle interconnect can outperform copper interconnect for propagation delay, especially for 

intermediate and long interconnects [9]-[10]. In addition, SWCNT bundle vias offer high 

performance and high thermal conductivity. This thermal property of SWCNT bundles is 

specifically useful for 3D ICs to combat thermal penalty. Large bundles of SWCNTs can be used 

as thermal vias to directly connect to the heat sink and efficiently dissipate the excessive heat 

[10]-[11]. 

Semiconducting SWCNTs have been actively explored to construct carbon nanotube 

field effect transistors (CNFETs) [12]-[17]. One of the promises of SWCNTs for transistors is the 

high carrier mobility [18]-[20] because electrical transport in nanotubes can be ballistic. 

Therefore, CNFETs are promising candidates as extensions to CMOS due to excellent CV/I 
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device performance. It has been reported that a single CNFET device can be 13× and 6× faster 

than pMOS and nMOS with a similar gate length based on the intrinsic CV/I gate delay metric 

when local interconnect capacitances and CNT imperfections are not considered [21].  

Instead of completely replacing the CMOS technology, future chips with nanotechnology 

can be built as a hybrid using both CMOS and nanomaterials, thus taking advantage of both 

mature CMOS technology and novel advances in nanotechnology [22]-[24]. In the meantime, 3D 

integration will definitely be a viable solution for ultimate logic density.  

However, exiting fabrication techniques of nanodevices offer less control over individual 

device location. Integrating and interfacing nano components and CMOS components will be 

another challenge. Taking these limitations into consideration, tile-based structures such as 

FPGA become the preferred platform in which single tiles can be optimized and replicated many 

times across the chip. In addition, the programmability of FPGAs allows reconfiguration around 

the large number of fabrication defects inherent in nanoscale processes, which helps to provide 

the high level of fault tolerance needed for correct nanocircuit operation. Besides the architecture 

exploration, a complete 3D-nano-centric CAD flow is essential in designing such hybrid 

architecture. With this design automation flow, performance, power, and logic density can be 

evaluated considering issues such as process variation and reliability. 

This dissertation presents research conducted since 2005. The following chapters are 

arranged as follows. Chapter 2 provides related background knowledge including carbon-based 

devices, logic circuits, interconnects and memory, molecular programmable switches, and 

baseline CMOS island FPGA architecture. In Chapter 3, a novel reconfigurable architecture, 

named 3D nFPGA, which utilizes 3D integration techniques and new nanoscale materials 

synergistically, is introduced. Chapter 4 presents a CNT-based FPGA solution called FPCNA 

(field programmable carbon nanotube array). A 3D FPGA variation aware routing flow is 

discussed in Chapter 5. Chapter 6 discusses nanoelectromechanical relay (NEM) based 3D FPGA 

architecture and related 3D CAD, and Chapter 7 concludes this dissertation.  
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CHAPTER 2  

BACKGROUND 

2.1 Carbon Nanomaterials 

Carbon nanomaterials have received significant interest and investment from the research 

community due to their unique electrical and physical characteristics. This chapter explores the 

structure and properties of these devices and shows why they can offer such high performance. 

2.1.1 Atomic Composition 

Carbon nanomaterials are composed primarily of benzene-like hexagonal rings of carbon 

atoms. Each edge of the hexagon is composed of a single or double carbon-carbon bond with a 

bond length of roughly 0.14 nm. These bonded carbon rings can be connected together in a 

number of ways that exhibit different properties. If the rings reside on a single plane in a 

repeating honeycomb-like structure, it makes crystalline monolayer graphene. If the hexagonal 

graphitic pattern is rolled to form a cylindrical tube, it forms the allotropes known as carbon 

nanotubes. If sheets of graphene are stacked on top of one another, they form bilayer graphene, 

trilayer graphene, multi-layer graphene (4+ layers), and eventually graphite (10+ layers). The 

relationships between these allotropes can be seen in Figure 2.1 [25].  

 

Figure 2.1 Relationships between graphene, buckminsterfullerenes, carbon nanotubes, and 

graphite 
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Figure 2.2 Multi-walled carbon nanotubes discovered in 1991 

Carbon nanotubes can be categorized into two groups: single-walled carbon nanotubes 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs) (Figure 2.2) [26]. SWCNTs are 

hollow cylinders with a diameter of roughly 1 nm, and can be thought of as a rolled sheet of 

monolayer graphene. MWCNTs are composed of a number of SWCNTs nested inside one 

another in order of diameter and can be thought of as a rolled sheet of multi-layer graphene. 

MWCNTs have dimensions greater than SWCNTs and are typically several tens of nanometers in 

diameter. Carbon nanotubes vary in length and have been produced in lengths of up to 1 mm. 

With diameters of less than 10 nm, this allows for exceptionally high aspect ratios, making 

nanotubes an essentially one-dimensional material. 

Due to cylinder symmetry, there is a discrete set of directions that a graphene sheet can 

be rolled in to form a SWCNT. To characterize each direction, two atoms in the graphene sheet 

are chosen, one of which serves the role as the origin. The sheet is rolled until the two atoms 

coincide. The vector pointing from the first atom towards the other is called the chiral vector and 

its length is equal to the circumference of the nanotube [27]. The direction of the nanotube axis is 

perpendicular to the chiral vector. 

A given SWCNT can be characterized by its chiral vector (n, m) or, in other words, the 

direction that the graphene sheet has been rolled. A SWCNT with a chiral vector (n, m) indicates 

that during rolling, the carbon atom at the origin is superimposed with the carbon atom at the 

lattice location (n, m). Figure 2.3 (a) illustrates possible chiral vectors. Depending on the rolling 
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method, three different types of SWCNT can be synthesized: the armchair nanotube with m = n, 

the zigzag nanotube with m = 0, and chiral nanotubes with n ≠ m ≠ 0 (Figure 2.3(b)-(d)). More 

interestingly, if n = m, the SWCNT is metallic; if n�m is a multiple of 3, then the SWCNT is 

semiconducting with a very small band gap; otherwise, the SWCNT is a moderate semiconductor. 

Thus all armchair (n = m) nanotubes are metallic. MWCNTs are not characterized in this way 

because they are almost always composed of nanotubes with varying chirality. 

  

                   (a)                      (b)           (c)            (d) 

Figure 2.3 (a) Chiral vectors of SWCNTs; (b) armchair SWCNT; (c) zigzag SWCN; and (d) 

chiral SWCNT 

2.1.2 Electrical Properties 

While advances in silicon technology will continue for the foreseeable future, a highly 

scaled classical MOSFET will face significant problems in terms of reduced drive current and 

increased short channel effects, such as drain-induced barrier lowering (DIBL). Carbon 

nanomaterials have unique electrical properties that allow them to overcome these challenges and 

achieve strong performance at the sub-10 nm scale. 

The high quality of the crystal lattice in carbon nanomaterials gives them a great mean 

free path, on the order of micrometers, which results in near-ballistic transport of charge carriers. 

More importantly, this mean free path is achieved at room temperatures, allowing for very high 

mobilities. Under ideal conditions, room temperature electron mobility can reach about 
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100,000 cm2/ V·s in carbon nanotubes, and about 200,000 cm2/ V·s in graphene, making them 

significantly more attractive than silicon at 1,400 cm2/ V·s, and comparable to undoped InSb at 

77,000 cm2/ V·s [28].  

In addition to their high mobilities, carbon nanomaterials are more robust to short 

channel effects. Structures such as double gated graphene and all-around gated SWCNTs offer 

nearly ideal control of the carbon channel electrostatics, minimizing effects such as DIBL. These 

properties have a direct impact on power. With larger mobilities and longer mean free paths, 

carbon nanomaterial channels consume less power and dissipate less heat than their silicon 

counterparts. Much like the switch from bipolar transistors to silicon CMOS, this would allow for 

a greater number of devices to be integrated for a given power density. 

2.2 Carbon Nanotube FETs (CNFETs) 

As mentioned before, single-walled carbon nanotube with m� n� 3� integer are 

categorized into semiconducting nanotubes. The conductance of semiconducting nanotubes 

strongly depends on gate bias. More importantly, due to the nanoscale dimensions, 

semiconducting nanotubes demonstrate ballistic electronic conduction and insensitivity to 

electromigration. The aforementioned advantages make carbon nanotube transistors promising 

candidates for future building blocks of nano electronics. In the past decade, many works have 

concentrated on fabrication, modeling, and integration of carbon nanotube transistors. This 

section will discuss some of the most representative device structure and their modes.  

2.2.1 Transistor Types 

The first reported room-temperature operation of CNT field effect transistors (CNFETs), 

were from IBM [29] and Delft University of Technology [30] in 1998. The structures of these 

two CNFETs are shown in Figure 2.4 [29]-[30]. These two designs have very similar 

architectures: a single nanotube (either single-walled or multi-walled) behaves as the channel 

region and connecting source-drain electrodes. The IV G transfer characteristic of the CNFETs 



 

8 
 

developed in [29]-[30] is shown in Figure 2.5 for different source-drain voltages. As gate voltage 

swept from +6 V to �4 V, the source-drain current increases strongly, which indicates the device 

is operated as a FET. The increment of current at negative gate voltages is evidence that the holes 

carry most of the current. This behavior is identical to that of a p-channel MOSFET. The 

saturated current value corresponds to a resistance of approximately 1.1 MΩ, which is mainly 

contributed by metal CNT contact. A conductance difference of five orders of magnitude has 

been observed.  

  

(a)                       (b) 

Figure 2.4 (a) Schematic cross section of Si back gated CNFET with Au S/D contact (a) and Pt 

S/D contact (b) 

   

(a)                                        (b) 

Figure 2.5 IV curve of back gated CNFET: (a) IVG; and (b) IVBias 

The pioneer works successfully demonstrated CNFET as a promising switch for future 

integrated circuit design. However, it is difficult to integrate multiple devices as a circuit based 

on the device layout from [29]-[30]. The Si substrate is used as a back gate, which means the 

same gate voltage is applied across the entire chip. In 2001, the group from Delft University of 

Technology enhanced their previous CNFET design by using aluminum local gates to control 

individual transistors as shown in Figure 2.6 (a-b) [13]. This design consists of narrow Al wire as 

a gate insulated by thin native Al2O3. Al gate patterns have been defined by e-beam lithography 

on silicon oxide, and gate insulation has been grown by exposing the Al gate into air. 
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Single-walled nanotubes have been deposited onto the wafer and situated on top of the 

predefined gates. Finally, source-drain contacts have again been created by e-beam lithography. 

The device transfer characteristics plotted in Figure 2.6 (c) show that this new CNFET works as 

an enhancement-mode p-type device. 

  

             (a)                      (b)                              (c) 

Figure 2.6 (a) Atomic force microscope image of a single-nanotube transistor; (b) CNFET with 

individual Al back gate; and (c) device characteristics 

  

    (a)                             (b) 

Figure 2.7 (a) Top gated CNFET; and (b) IV characteristics of top and bottom gated devices 

A major improvement of carbon nanotube devices was made in 2002 by creating a gate 

electrode on top of the nanotube channel separated by a thin layer of SiO2 dielectric [15], which 

is the same as that of silicon MOSFET. The structure of this top gated design is shown in Figure 

2.7 (a). Top gated structure has several important improvements compared to the back gated 

device. First of all, back gated devices normally consist of a relatively thick oxidation layer 

(~100 nm), which requires a high gate voltage to switch the device on. Top gated CNFETs have 

thin gate insulation 15 ~ 20nm and allow low operation voltage. Secondly, a top gate 

dramatically reduces the gate source-drain overlap capacitance, which is critical to 

high-frequency operation. Compared to back gated devices, which have carbon nanotubes 



 

10 
 

exposed to air, a top gated device encapsulates carbon nanotubes into the gate oxide and avoids 

this electrostatic instability problem, hence, improving the reliability of CNFETs.   

This top gated CNFET can be fabricated on a single-crystal silicon wafer with 120 nm 

thermal SiO2. CNTs have been deposited and titanium source-drain electrodes are patterned by 

e-beam lithography with spacing of 200 nm ~ 300 nm. A thin layer of gate oxide is then 

deposited, and finally the titanium gate electrodes are patterned by e-beam lithography. Figure 

2.7 (b) compares this top gated device with previous back gated devices. The IV characteristics 

of the two structures have the same shape; however, the operation voltages for top gated devices 

are much lower (�0.5 ~ �0.1 V over threshold voltage) than bottom gated counterparts (�15.5 ~ 

�3.5 V over threshold voltage).   

     

    (a)                      (b)                        (c) 

Figure 2.8 (a) Cross section, (b) scanning electron microscope image; and (c) IV characteristics 

of CNFET with multiple parallel tubes as channel region 

Single-nanotube devices reveal great performance improvement over existing Si-based 

devices. However, integration of a single tube into existing integrated circuits is still a great 

challenge. Due to limited fabrication control of single nanotube properties, a CNT device is 

susceptible to high electrical performance fluctuation. One feasible solution is to add densely 

packed, perfectly aligned horizontal arrays of non-overlapping SWCNTs as an effective channel, 

as shown in Figure 2.8 (a) [17]. This parallel conducting channel can provide a large amount of 

current and statistically averages device-to-device variation. Multiple carbon nanotubes in a 

channel region also increase the reliability.  

Two major challenges have been solved in [17] to successfully fabricate and test the 
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aforementioned multiple carbon nanotube device. First, large-scale, high-density, perfectly 

aligned nanotube arrays need to be created. This is achieved by using a photolithography defined 

parallel pattern on quartz surface. Carbon nanotubes are grown in CVD (chemical vapor 

deposition) along these predefined patterns. The fabrication technique can successfully fabricate 

nanotube arrays with average diameter ~1 nm and length over 300 µm with 99.9% alignment 

(Figure 2.8 (b)). As mentioned previous, intrinsically, one third of fabricated carbon nanotubes 

are metallic. Those metallic carbon nanotubes cannot be controlled by gate voltage and are 

always conducting, which harms device on-off ratio. Metallic nanotubes can be removed by 

techniques such as electrical breakdown [31]. Figure 2.8 (c) demonstrates that after the electrical 

breakdown process, the device on-off ratio can be improved by four orders of magnitude. It is 

worth mentioning that the aforementioned fabrication processes can also be applied on unusual 

substrates such as flexible plastics. 

2.2.2 CNFET Modeling 

To maximize ease of use, models should be compatible with SPICE, the 

industrial-standard circuit simulator. The most comprehensive and well-known SPICE 

compatible CNFET model (Figure 2.9) was created by Stanford University and presented in 

[32]-[33].   

 

(a)                                    (b) 

Figure 2.9 (a) Relationship between the three levels of the CNFET model; and (b) equivalent 

circuit of the CNFET intrinsic channel region  
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This CNFET ballistic model covers MOSFET-like structures, and is implemented in 

three levels, as shown in Figure 2.9 (a). Level 1 models the transportation in the intrinsic channel 

region under the metal gate. This level does not include any parasitic capacitance and resistance. 

The equivalent circuit for the intrinsic channel region including the trans-capacitance network is 

shown in Figure 2.9 (b). Like traditional silicon MOSFET SPICE models, the core part of the 

equivalent circuit is the voltage-controlled current sources. The three voltage-controlled current 

sources represent the thermionic current contributed by the semiconduting sub-bands (Isemi), the 

current contributed by the metallic sub-bands (Imetal), and the leakage current (Ibtbt) caused by 

band-to-band tunneling. Note that Imetal is equivalently modeled as a voltage-dependent 

conductance.  

The level 2 model [33] is an extension of the level 1 model and considers the device 

non-idealities such as elastic scattering within the channel region, resistance and capacitance of 

the doped source-drain regions, and Schottky barriers formed by the metal contacts. The level 3 

model [33] can be applied for a channel region containing an array of multiple nanotubes. The n 

nanotubes in the channel can be categorized into two groups: the two carbon nanotubes on the 

edges and n � 2 nanotubes in the middle. All of the CNTs within the same group are treated 

identically and each group considers different charge screening effects. The nanotubes in these 

two groups are connected in parallel for increased drive strength and reliability. 

2.3 CNT Logic 

As CNFETs have demonstrated promise as future electronic devices, the research 

community is making a significant effort to integrate simple CNFET devcies into complex logic 

circuits. The first CNFET logic gates were demonstrated in [13]. A range of digital logic 

operations was demonstrated, including an inverter, a logic NOR, a static random-access memory 

cell, and an ac ring oscillator containing one-, two-, and three-transistor circuits. This first work, 

however, was implemented using resistor-transistor logic, in which the CNFETs were connected 

to large off-chip resistors. The ring oscillator was implemented by connecting three inverters in 
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series (Figure 2.10 (a)) and achieved a frequency of 5 Hz. This low frequency was determined by 

the gigaohm resistance and a 100 pF parasitic capacitance from the wires connecting to the 

off-chip bias resistors.  

Recently, a multi-stage top gated complementary CNFET ring oscillator has been built 

on a single 18 µm-long SWCNT (Figure 2.10 (b)) [34]. This ring oscillator consists of 12 

individual CNFETs, 6 p-type FETs (purple) with Pd metal gates and 6 n-type FETs (blue) with Al 

gates. Five inverters were used for oscillation and another inverter was used for reading. A 

frequency response up to 52 MHz was measured. This measured frequency was still limited by 

the parasitics rather than by the intrinsic nanotube speed.  

 

Figure 2.10 (a) Three stage ring oscillator consists of p-type CNFETs and resistors; and (b) 

scanning electron microscope image of a SWCNT ring oscillator 

2.4 NRAM 

NRAM is a nonvolatile NEMS memory device formed by the suspension of metallic 

CNTs over a trench that contains a base electrode (Figure 2.11). Bistable on-off states at the 

crosspoints are related to the two minimum energy points observed on the total energy curve, 

which is given by [35]-[36] in Equation (2.1):  

T vdw elas elecE E E E= + +                   (2.1) 

where ET is the total energy of the memory element, Evdw is the van der Waals energy (vdW), Eelas is 

the elastic energy, and Eelec is the electrostatic energy.  
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Figure 2.11 Architecture of NRAM memory cell 

 When the nanotubes are freely suspended (a finite separation between bottom electrode), 

the elastic energy is minimized, producing the first minimum total energy location. This 

represents the off state, when the junction resistance between separated nanotubes and electrode 

is very high. When the suspended nanotubes are deflected into contact with the lower base 

electrode, the attractive van der Waals force is maximized and a second minimum total energy 

location is created. This second location represents the on state, where the junction resistance will 

be orders of magnitude lower. Since these interactions are purely molecular, no power is 

consumed when the memory is at rest. Programming is accomplished by applying either 

attractive or repulsive voltages at the CNT and base electrode. This creates an 

electro-mechanically switchable, bistable memory device with well-defined off and on states 

[35]-[36]. 

2.5 CNT Bundle Interconnect 

As integrated circuit dimensions scale down, the resistivity of copper (Cu) interconnect 

increases due to electron surface scattering and grain-boundary scattering, leading to a 

communication bottleneck. Metallic CNTs are a promising replacement because they offer 

superior conductivity and current carrying capabilities [37]-[39]. Since individual SWCNTs can 

have a large contact resistance and an intrinsic resistance that is independent of wire length, a 

rope or bundle of SWCNTs is used to transfer current in parallel.  

The performance improvement of SWCNT bundle interconnect over copper interconnect 
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is shown in Figure 2.12, assuming the SWCNT bundle consists of densely packed SWCNTs with 

diameters of 1nm. It has been concluded in [37] that 

� The best application for a SWCNT bundle is for long interconnects with small dimensions. 

This is because for a long SWCNT bundle ohmic resistance is dominant and the contact 

resistance is insignificant. In the meantime, copper suffers from increasing resistivity as it 

scales down. For a SWCNT bundle width of approximately 22 nm at length of 5000 µm, the 

improvement in resistance is 82 %. 

� For long bundles with large widths, the contact resistance of the bundle is still insignificant, 

but copper has low resistivity close to its bulk value. The overall improvement of SWCNT 

bundle interconnects is therefore decreased to 61 % over copper. 

� For short bundle lengths, although a SWCNT bundle has large contact resistance, it can still 

outperform copper because copper has exponentially increased resistivity due to scattering at 

narrow widths. 

� SWCNT bundles are at a disadvantage for short interconnect lengths and large widths. The 

contact resistance is dominant compared to the ohmic resistance and the resistivity of the 

copper interconnect is low.  

 

Figure 2.12 CNT bundle interconnect resistance 
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Besides horizontal wires, SWCNT bundle vias (Figure 2.13 (a)) also offer high 

performance and high thermal conductivity (more than 15 times higher than copper [40]). In 

nanoscale circuits, vias are prone to material deterioration, such as void formation and 

subsequent breakdown, caused by high current densities in small holes and current crowding 

effects at the edges. An SWCNT bundle would be much less susceptible to damage compared to 

metal due to its high current carrying capability (more than 100 times of that of copper). In 

addition, as shown in Figure 2.13 (b) [10], by integrating SWCNT bundle vias with copper 

interconnects, the temperature rise of the interconnect layers is much lower. This thermal 

property of SWCNT bundles is specifically useful for 3D ICs to combat thermal penalty. Large 

bundles of SWCNTs can be used as thermal vias to directly connect to the heat sink and 

efficiently dissipate the excessive heat [10]-[11]. 

          

(a)                                     (b) 

Figure 2.13 (a) Structure of SWCNT bundle vias; and (b) maximum temperature rise for Cu and 

SWCNT bundle vias  

A recent advancement for CNT bundle fabrication is the integration of its fabrication into 

the CMOS fabrication process. In November 2006, a CMOS-compatible process was announced 

by Fujitzu, Japan [41]-[42]. It is essentially a two-step process consisting of a catalyst preparation 

step followed by the actual synthesis of the nanotube. This CMOS-compatible process will 

enable the practical applications of CNT bundle-based interconnects and vias into CMOS ICs. 

2.6 Nano-Switches for Routing 

Solid-electrolyte switches are a new type of nanoscale switch developed [43]. A 

solid-electrolyte switch is created by sandwiching a layer of Cu2S between two metals, a top 
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electrode (Ti, Pt, or Au) and bottom layer of Cu (Figure 2.14 (a)). 

When a negative voltage is applied at the top electrode, Cu ions in the Cu2S are 

electrochemically neutralized by the electrons coming from that electrode, and a conductive 

bridge between the two electrodes is created, turning the switch on. An on-state resistance of as 

low as 50 Ω can be achieved by continually applying negative voltage to make the nano-bridge 

thicker. Similarly, the bridge can be ionized and dissolved by applying a positive voltage to the 

top electrode, turning the switch off. 

 

                   

(a)                       (b)                             (c) 

Figure 2.14 Programmable solid-electrolyte switch: (a) single solid-electrolyte switch; (b) 
implementation in metal interconnect; and (c) SEM image of a 4 � 4 crossbar switch array  

Because this design does not depend on a substrate, the switches can be manufactured 

between the higher layers of metal interconnect that are used for routing, as shown in Figure 2.14 

(b). This figure shows how a Cu interconnect line can serve as the bottom layer in the electrolyte 

switch. In addition to individual devices, crossbars can be made from switch arrays. An SEM 

image of a prototype 4 � 4 crossbar is shown in Figure 2.14 (c), from [43]. 

Another radical post-silicon switch is based on nanowire crossbars which have hysteretic 

resistors formed at the points where two nanowire arrays cross each other (Figure 2.15). 

Similarly to solid-electrolyte switches, the hysteretic resistors can be configured into different 

resistances by applying programming voltage. Various research groups [44] have fabricated and 

tested crossbar memories using metal nanowires and organic molecular switches. Using 

nanoimprint lithography, parallel 2D nanowires of 5 nm width and 14 nm pitch have been 
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fabricated [45].  

 

Figure 2.15 Nanowire crossbar 

2.7 Island-Style Baseline FPGA 

 
Figure 2.16 Schematic of a baseline 2D FPGA 

Figure 2.16 shows a traditional 2D FPGA architecture (baseline). It consists of a number 

of tiles and each tile consists of one switch block, two connect blocks, and one configurable logic 

block (CLB). Each CLB or cluster (Figure 2.17) contains some local routing structures to route 

input signals to several basic logic elements (BLEs) and also connect BLEs together. In this 

figure, I represents the number of inputs the CLB has, and N represents the number of BLEs the 

CLB contains. K represents the size of a BLE. Each BLE consists of one K-input lookup table (K 

LUT) and one flip-flop. A K LUT can implement any logic function with up to K variables.  
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Figure 2.17 Schematic of a logic cluster or CLB 

 

 

(a)        (b)                   (c) 

Figure 2.18 (a) Pass transistor-based CB design; (b) MUX-based CB design; and (c) SB 

connections 

The CLBs connect to the routing channels through connection blocks (CB). The global 

routing structure consists of two-dimensional segmented interconnect channels connected by 

programmable switch blocks (SB). Typical designs of CB and SB are shown in Figure 2.18. 

There are two ways of connecting routing wires to the CLB: one is through the pass transistor 

(Figure 2.18 (a)) and one is through the multiplexer (MUX) (Figure 2.18 (b)). Figure 2.18 (c) 

shows that wires from four directions (each wire represents one track in the horizontal or vertical 

routing channels) are connected through bi-directional tri-state buffers. Each wire can potentially 

drive three other wires. 

  

I inputs for 
each cluster
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CHAPTER 3  

3D NFPGA: A 3D CMOS/NANO HYBRID 

RECONFIGURABLE ARCHITECTURE 

The major performance and power bottleneck of the field programmable gate array 

(FPGA) is the programmable interconnects and routing elements inside the FPGA, which have 

been found to account for up to 80% of the total delay [46] and up to 85% of the total power 

consumption [47] when both local and global interconnects are considered.  

Three-dimensional (3D) integration [2]-[4] increases the number of active layers and 

optimizes the interconnect network vertically. Both wire resistance and capacitance would drop 

proportionately; that is, power would drop by a factor of (Nlayers)
1/2 and wire (RC) delay would 

drop by a factor of (Nlayers).  

The application of the novel nanoelectronic materials (nanomaterials) and devices to 

establish FPGAs sheds new light on building future programmable devices. As mentioned in 

Chapter 2, carbon nanotubes (CNTs), nanowires, and other molecular electronic devices have 

shown strong promise in the literature.  

Motivated towards integrating the two aforementioned leading technologies, a 3D FPGA 

structure, namely, 3D nFPGA, is presented, in this chapter. The novelty of this 3D nFPGA lies in 

the combination of 3D FPGA architecture design and nanotechnology, which will significantly 

advance future large-scale programmable devices. Furthermore, an efficient CMOS-nano hybrid 

method is used, so that the advantages of CMOS devices, nanotube interconnects and vias and 

nanowire crossbar programmable elements are utilized. 

3.1 Existing Works 

Several CMOS-based 3D FPGA structures have been proposed by stacking together a 
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number of 2D FPGA bare dies. The architecture in [49] implements inter-cluster routing in one 

layer and clusters (logic blocks or CLBs) and intra-cluster routing in another layer. The 

architecture in [50] spreads LUTs into different active layers and routes through 3D switch boxes. 

Recently, a three-layer 3D FPGA was proposed in [4], which is a monolithically stacked 

CMOS-based 3D FPGA. It follows the 2D FPGA architecture and efficiently divides it into three 

layers for configuration memory, switching, and logic. The main advantage of such an approach 

is that, in principle, it can achieve comparable vertical via density and scale at the same rate as 

the baseline CMOS technology. It shows a 1.7� performance gain on average compared to the 

2D FPGA. None of aforementioned works considers nanomaterials or CMOS-nano hybrid 

systems. 

Recently, several 2D FPGA structures built purely with nanomaterials have been 

proposed. An array architecture for nanoscale devices was suggested in [51]. This design is an 

island-style architecture in which clusters of nanoblocks and switch blocks are interconnected in 

an array structure. Each nanoblock is a grid of nanowires that can be configured to implement a 

three-bit input to three-bit output Boolean function and its complement. There are routing 

channels between the clusters to provide low-latency communication over longer distances. A 

programmable logic array (PLA)-based architecture, namely, nanoPLA, was presented in [52]. 

This architecture uses crossed sets of parallel semiconducting nanowires. Decoders which 

address each individual nanowire, can program nanowire crossbar arrays into logic-OR planes by 

applying a voltage differential across a pair of crossed nanowires. Nanowire field effect transistor 

restoring units are attached at the output of the 3D programmable logic-OR place to restore the 

output signals. The restoring unit is able to invert its input so that the logic-NOR plane can be 

provided.  

There are some 2D CMOS-nano FPGA architectures. Reference [53] uses nanowires of 

different widths and materials as interconnects and replaces pass transistor switches with 

programmable molecular switches. The clusters are still implemented with CMOS. It is shown 

that this new architecture could reduce chip area by up to 70% compared to the traditional CMOS 
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FPGA architecture (scaled to 22 nm). Reference [54], in contrast to [53], presents a 

nanowire-cluster-based FPGA, and the inter-cluster routing remains at CMOS scale. It shows up 

to 75% area reduction (when LUT inputs = 7) with comparable performance to traditional 

FPGAs. In [24], a promising cell-based architecture called CMOL (CMOS nanodevice hybrids) 

was proposed. It utilizes an interface scheme by using special doped silicon pins implemented on 

the surface of the substrate to provide the contacts between nanowires and the CMOS layer. 

Therefore, logic functions are implemented by CMOS inverter arrays and 

nanowire-molecular-switch based OR logics. Signals are routed through nanowires and 

selectively configured crosspoints.  

A generalized CMOL architecture, named FPNI (field programmable nanowire 

interconnect), was proposed in [55]. Different from the CMOL’s inverter array architecture, the 

logics of FPNI are implemented with logic gate arrays (n-input NAND/AND together with 

buffers and flip-flops) in the CMOS layer, and nanowires are used for routing purpose only. This 

architecture allows simpler fabrication compared with CMOL because it requires less alignment 

accuracy between the CMOS and nanowire layers, and offers greater flexibility for creating 

nanodevices. Compared with traditional FPGA design, FPNI significantly reduces the chip area, 

but suffers from lower clock speed. Note that all these nano-FPGA structures mainly use 

nanowire crossbars and molecular switches. Researchers also attempted to use CNT-based 

memories (i.e., NRAM [56]) to be embedded into FPGAs to store bit configuration data [57].  

It is noted that none of these nano-FPGA works utilizes 3D integration techniques. Only 

very recently, reference [58] has proposed a 3D programmable logic structure, solely based on 

nanowires. Compared with that work, the 3D nFPGA introduced in this chapter utilizes both 

CMOS and nanotube and nanowire building materials and takes advantages of both mature 

CMOS technology and advanced nanotechnology. 

3.2 CMOS-Nano 3D nFPGA 

Instead of completely replacing the CMOS technology, future chips for nanotechnology 
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should be built as a hybrid using both CMOS (non-conventional CMOS such as strained silicon) 

and nanomaterials (such as CNT bundle interconnects and nanotube and nanowire crossbar 

memories), thus taking advantages of both mature CMOS technology and novel advances in 

nanotechnology.  

As shown in Figure 3.1 the large 2D footprint of the FPGA is efficiently distributed into 

three layers in the 3D nFPGA. A 3D nFPGA consists of a 3½-layer structure, which can integrate 

the CMOS-based logic devices, nanowire-based memory and routing elements, post-silicon block 

memories, and CNT-based vias in three dimensions: (1) layer 1: the CMOS-based enhanced 

clusters of BLEs; (2) crossbar layer: integration of CLB local routing, connection blocks, and 

distributed memory blocks built by crossbars (this layer has no substrate and is considered as a 

half layer); (3) layer 2: CMOS-based enhanced switch blocks and local interconnects; and (4) 

layer 3: NRAM-based block memories and local interconnects (Figure 3.1 (a) does not show the 

block memories of the baseline FPGA). Layers 1 and 2 are bonded face-to-face with the crossbar 

layer in the middle. Layers 3 and 2 are bonded in a face-to-back manner. Communication 

between the layers is based on CNT bundle via networks.  

The following items summarize the unique features of this architecture.  

� A novel combination of logic, crossbar, and switch layer designs 

 

(a)                                (b) 

Figure 3.1 Components distributions of a 2D FPGA into the 3D nFPGA. (a) 2D baseline FPGA;  

and (b) 3½ layer 3D nFPGA 
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� Layers 1 and 2 are face-to-face for efficient via communication  

� Crossbar layer is a novel incorporation of connection blocks, CLB local routing, and 

distributed memories 

� Dramatic reduction of interconnects and FPGA footprint  

� Vertical communication and thermal alleviation through CNT bundles 

� Combination of both distributed memories and block memories to satisfy specific memory 

needs for control-intensive and data-intensive FPGA applications 

� The 3½–layer structure or the bottom 2½–layer structure can be stacked multiple times on 

top of one another, enabling multi-stack 3D nFPGAs 

3.2.1 Layer 1 – Reduced Logic Block (RLB)  

A standard CLB comprises buffers, local wires, multiplexers (MUXs) and BLEs. The 

inputs of a CLB are routed to different BLEs through local routing elements such as MUXs. If 

the routing is fully connected or fully populated, that is, any BLE input can be connected to any 

CLB input, the local routing area is significant (for example, 65% of a CLB). This is the 

motivation to replace the CMOS-based routing elements with nanowire-molecular crossbars. By 

programming the molecular switches on or off at the crosspoints of a nanowire array, a CLB 

input can be routed to any BLE. This crossbar is implemented in the crossbar layer. As a result, 

the CLB footprint in layer 1 can be significantly reduced.  

As shown in Figure 3.2, layer 1 consists of tightly packed BLEs from the original CLBs 

and the programming and addressing unit (PAU). The PAU is used for addressing the 

crossbar-based BLE routing in the crossbar layer. One layer 1 tile (named RLB) corresponds to 

the logic contained in the original CLB. Note that size-4 CLB (each CLB contains four BLEs) 

and four-input BLEs are used in this section simply for illustration purposes. This architecture 

can handle any reasonable CLB and BLE sizes for this transformation. Figure 3.2 shows four 

tiles for layer 1 as an example. 
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Figure 3.2 Two-and-a-half layer structure of nFPGA: layer 1 (reduced logic block), crossbar layer, 

and layer 2 (reduced switch block) 

3.2.2 Layer 2 – Reduced Switch Block (RSB)  

In baseline FPGAs, the global routing consists of connection blocks and switch blocks, 

which together take up a significant amount of the baseline FPGA footprint. For instance, if CLB 

size N (N BLEs per CLB) is 10 and BLE size K (each BLE has 4 inputs) is 4 (popular parameters 

for commercial FPGA products), the global routing area is 57.4%, and the total CLB area is 42.6% 

in the baseline FPGA [46]. Global routing area is thus very critical for FPGA footprint reduction 

for this 3D chip. Two techniques are applied to aggressively reduce the routing area. First, the 

majority of connection blocks are moved to the crossbar layer because they are multiplexer-based 

designs like the case in CLB local routing. Second, all the programming SRAM (static random 

access memory) cells of the switch blocks are moved to the crossbar layer as well and 

implemented by the nanowire crossbar memories. Therefore, one layer 2 tile (named RSB) is a 

switch block without SRAM cells plus the driving buffers which connect to the wire tracks and 
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drive the routing part (MUX in 2D, but replaced with nanowire crossbar in 3D nFPGA) of the 

connection blocks. 

Taking a CLB size N = 10 and a BLE size K = 4 with a fixed routing channel width = 

100 as an example, the routing area of one tile can be partitioned as shown in Figure 3.3, where 

47.8% of the area (SRAM cells area) of the switch block can be moved down and efficiently 

implemented at the crossbar layer. Only buffers driving the routing of the connection block 

remain in the switch layer, which takes only 17.5% of the connection block area. Combining the 

global routing area percentage with the detailed routing area partition, and by balancing routing 

resource into the switch layer and crossbar layer, a tile footprint that is only 22.4% of the 2D 

baseline footprint can be achieved  a more than 4� circuit area reduction.   

3.2.3 Crossbar Layer (Layer 1½) – Hybrid Communication Block (HCB)  

One crossbar layer tile (named HCB) consists of one BLE routing block, two connection 

blocks, SRAMs for one RSB, and a distributed crossbar memory (Figure 3.2). All these 

functionalities can be realized because the crossbar layer is built by high-density nanowire (1011 

T/cm2), much higher than the corresponding CMOS implementation (2 × 109 T/cm2 [1]). The 

connection blocks connect to the RSBs using up vias. They also connect to the BLE routing 

blocks on the same layer. The BLE routing blocks connect to the BLEs on layer 1 using the down 

vias.  

Figure 3.4 shows how a BLE routing block works by an example. A BLE routing block 

receives inputs from adjacent connection blocks (Figure 3.2) and routes them to the 

 
 

Figure 3.3 Global routing area partition 
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corresponding BLEs in layer 1 using CNT short vias. Note that these same inputs can be routed 

to multiple BLEs. In this example, the input signal A from CB1 (connection block 1) is routed to 

BLEs along a dotted line through down vias (vias is used to indicate that a group of vias connects 

individual inputs). The black dots at the crosspoints indicate the molecular switches that have 

been programmed as on state. The outputs of BLEs indicated by a dashed line can either feed 

back to the crossbar to connect to the inputs of other BLEs or output to adjacent connection 

blocks. In order to apply a programming voltage to an individual nanowire in the HCB, the PAU 

is required, consisting of address controllers and voltage terminals. This unit is included in layer 

1 because these transistors can be efficiently implemented using CMOS. The dark blue bar in the 

left side of Figure 3.4 represents voltage sources for programming, which are about two times 

higher than the operation voltage. To control n wires, nlog2n p-type transistors are required. 

These p-type transistors can address each nanowire and set the molecular switch at a crosspoint 

as either on or off state. The crossbar layer is an efficient interface between layer 1 and layer 2. 

The CNT short vias have metal contacts, which can establish a reliable connection to the local 

interconnects of layers 1 and 2. 

 

Figure 3.4 Detailed diagrams of BLE routing and PAU 
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3.2.4 Layer 3 – Block Memory Layer 

I use NRAM (described in Section 2.4) in layer 3 as block memories for this architecture. 

They are able to store large amount of data suitable for data-intensive applications such as DSP 

(digital signal processor) and multimedia applications. In order to connect layer 3 (facing down) 

with layer 2, a face-to-back 3D IC bonding is applied and special vias called through vias are 

used to make the connections (Figure 3.1(b)). Because the through vias penetrate the substrate of 

layer 2, the density of these vias is ten times sparser than that of CNT short vias. This density is 

sufficient for buses and communication channels to serve the block memory. In order to obtain 

better via performance and thermal dissipation, the through vias are made with CNT bundles. 

3.2.5 Hybrid Horizontal Interconnects 

In the proposed structure, local horizontal interconnects are required inside layers 1, 2 

and 3. CNTs are preferred over copper as interconnects. However, vertical CNT bundles are 

difficult to connect to horizontal CNT bundles. To overcome this difficulty, copper contacts and 

short copper horizontal interconnects can be used to set up the connections between vertical and 

horizontal CNT bundles. This hybrid approach considers both fabrication capability and 

performance optimization. The mixture of copper and CNT interconnects is applied for 

horizontal connections. For example, in layer 2, there can be short interconnects (e.g., single lines 

or double lines) that connect adjacent or neighboring RSBs and long interconnects (e.g., hex lines) 

that connect distance RSBs. This mixture of interconnects of different lengths is a common 

practice in modern FPGAs. Copper is used for short interconnects and CNT bundles for hex lines 

(or similar longer lines) to reduce interconnect delay. Note that the horizontal interconnect is 

much shorter than that in the baseline FPGA because of the dramatic footprint reduction in 3D 

nFPGA.  

3.2.6 3D Stacks  

The 3½-layer architecture or the bottom 2½-layer architecture (without the NRAM layer) 
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can be stacked, enabling multi-stack 3D nFPGAs. An example using 2½-layer stacking provides 

an excellent stacking architecture. The 2½-layer architecture is ideal for control-intensive 

applications. The distributed memories available on the crossbar layer can provide fine-grained 

register-file capabilities. As shown in Figure 3.5, two RSB layers are placed back-to-back. The 

RSBs on the two layers communicate using CNT through vias, which enable short and 

high-speed connections. In 2D FPGA, connecting distance cells can be very expensive in terms 

of delay and power. In 3D nFPGA, by utilizing the vertical dimension, the RSBs on the bottom 

stack not only can connect to other RSBs on the same layer but also can directly connect to those 

on the layer above. This provides a much more efficient interconnecting network and significant 

performance and power improvements.  

The 3½-layer architecture can also be stacked. Note, for 3½-layer architecture, the RSBs 

of the two stacks cannot be stacked directly. Instead, longer through vias penetrating the block 

memory layer are required. When the stack number increases, the performance difference 

between multiple 2½-layer stacking and multiple 3½ stacking diminishes because multiple 

2½-layer stacking will incur longer through vias as well, starting from the third stack.  

 

 

Figure 3.5 Two-stack (each stack is 2½ layers) 3D nFPGA architecture with two stacks connected 

back-to-back and thermal vias are inserted and linked to heat sink  
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3.2.7 Thermal Vias and Defect Tolerance 

The additional features of 3D nFPGA include its emphasis on thermal optimization and 

defect tolerance. A major concern of the 3D IC is its thermal penalty. The 3D stacks will increase 

heat density, leading to degraded performance. It has been demonstrated in [59] that doubling the 

heat density without any improvement in cooling capacity will lead to more than 30% 

degradation in performance. The CNT bundles for short vias in this structure are thermal-efficient. 

In addition, large CNT bundles are used as thermal vias (Figure 3.5). The thermal conductivity of 

CNT bundles can be up to 5800 W/mK [60]. In addition, this conduction is in the direction along 

the length of the nanotubes because thermal conductivity in CNT bundles is anisotropic [60]. 

Therefore, CNT bundle vias will serve as more effective heat conductors compared to copper 

vias and can reduce the temperature gradient dramatically. As a result, the whole chip can cool 

down quickly. The size and the density of these thermal vias can be further optimized by taking 

into account other architectural parameters such as stack number, BLE size, short via and through 

via density, and so forth. 

The proposed 3D nFPGA has excellent fault tolerance capabilities. The BLE and 

switching layers are based on CMOS technology, which offers very low defect rates. However, 

nanoelectronic circuits, such as the crossbar structure, always have a small percentage of 

defective components due to the statistical nature of the self-assembly fabrication process 

[51]-[52]. Errors and faults in a system could be either permanent (hard errors) or transient (soft 

errors). Reconfiguration, done either statistically or dynamically, is an effective solution to fix the 

hard errors, which is an intrinsic advantage of FPGA chips. For static reconfiguration, off-line 

self-test and self-diagnosis will be sufficient. To support dynamic reconfiguration, the design 

must have on-line self-test and self-diagnosis capabilities to detect and identify failures when a 

system is operating. Some existing techniques can be used to support these crucial features, such 

as probabilistic model checking and self-checking circuit design [53]. In addition, redundancy 

can be added into the crossbar layer with redundant rows and columns [61]. There will also be 

redundant vias and redundant molecular switches. The right amount of redundancy has to be 
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modeled and studied. 

3.3 3D nFPGA Characterization and Evaluation 

This dissertation evaluates performance and power of a 3D nFPGA architecture 

compared to the baseline 2D FPGA architecture. In order to have accurate evaluation, detailed 

delay and power characterization for both interconnects and devices are necessary. The 

interconnect characterization will be for copper wires used in the baseline FPGA and CNT bundle 

interconnects used in the 3D nFPGA. The device characterization is for CMOS-based MUXs 

used in the baseline case and nanowire-based crossbars used in the 3D nFPGA case. Also needed 

is a CAD flow that is able to use a set of well-accepted benchmarks and go through various 

design stages to report the final delay after circuit layout. The CAD flow for baseline 2D FPGAs 

is well studied [62]. This flow is adopted and made workable for the 3D nFPGA architecture. The 

following first presents the CAD flow and then introduces the delay and power characterization 

methods and related results. 

3.3.1 CAD Flow 

A timing-driven CAD flow shown in Figure 3.6 is used. Each benchmark circuit goes 

through technology independent logic optimization using SIS (system for sequential circuit 

synthesis) [63] and is technology-mapped to LUTs with size K using DAOmap [64], which is a 

popular performance-driven mapper working on area minimization as well. The mapped netlist 

then feeds into FPGA physical design tools, T-VPACK and VPR-LP, which perform 

timing-driven packing (i.e., clustering LUTs into the CLBs), placement, and routing [62] and 

further generate a BC-netlist for the power simulator fpgaEva_LP2 [47][48]. Afterwards, the 

critical path delay of the design and power consumption is obtained. This CAD flow is flexible: 

various parameters for LUT size K, CLB size N, routing architectures, and interconnect buffer 

sizes can be chosen. In this study, K = 4, N = 10, and route channel width = 100. In FPGAs, 

interconnects are segmented and driven by buffers. A mixture of interconnects with different 
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lengths provides better performance [62]. This study uses a mixture of length-4 and length-8 wire 

segments (wires crossing either four CLBs or eight CLBs in the baseline FPGA) in equal 

numbers to route the signals, which is reported as one of the best combinations [62]. All these 

parameters can be supplied through the architecture specification file. 

 

Figure 3.6 Evaluation framework for 3D nFPGA 

3.3.2 Interconnect Characterization  

The interconnect length scaling due to 3D stacking is the main reason for system 

performance and system dynamic power enhancement. To better understand the impact of 3D, 

the delay of length-4 and length-8 wire segments for both baseline FPGA and 3D nFPGA using 

HSPICE simulation is estimated. To obtain the actual lengths of these interconnects, the tile area 

based on the area model presented in Section 3.2.2 is first estimated. The baseline and the 3D 

cases are considered separately. 

When estimating the lengths of wire segments for the baseline architecture, both the CLB 

area and the routing area are considered. Wire segmentation crosses a baseline tile with an area of 

1561.5 µm2. Therefore, length-1 interconnect for baseline would have a length of 39.52 µm. 
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Table 3.1 Interconnect delay characterization 
Wire Segments Items Copper Wire in Baseline Copper Wire in 3D nFPGA CNT Bundle Wire in 3D nFPGA 

Length 4 

L (µm) 158.06 74.859 74.859 

R (Ω) 1697.91 804.159 271.35 

C (fF) 11.555 5.472 8.653 

D (ps) 22.09 9.83 7.63 

Length 8 

L (µm) 316.127 149.719 149.719 

R (Ω) 2863.87 1608.318 542.703 

C (fF) 19.489 10.945 17.306 

D (ps) 87.25 39.02 28.99 

 

Next, I will examine the wire length for 3D nFPGA. Because 3D nFPGA distributes the 

switch blocks, connection blocks, and CLBs into three different layers, the situation is 

dramatically changed. A routing wire segment now only spans RSBs (Figure 3.2). RSB area is 

the area of the baseline switch block excluding SRAM cells (Section 3.2.2). The RSB area is 

estimated as 350.25 µm2. Therefore, length-1 interconnect for 3D would have a length of 18.71 

µm, which represents a 52.64 % length reduction compared to the baseline case. Table 3.1 shows 

detailed comparison data of the wire segments for both the baseline and the 3D nFPGA. 

In Table 3.1, L, R, C, and D represent wire length, wire resistance, wire capacitance, and 

wire delay, respectively. The calculation of L, R, and C values of copper is well known. CNTs 

can be considered as quantum wires. Thus, CNT bundles will need to consider additional 

quantum resistance, quantum capacitance, and kinetic inductance [8],[10],[65]-[67]. In briefly 

describing the models used to derive the resistance and capacitance of CNT bundles, it is 

assumed that a CNT bundle interconnect is composed of hexagonally packed identical metallic 

single-walled CNTs [10]. The CNT bundle resistance is given by Equation (3.1)  

Single Contact
Bundle

CNT

R R
R

n

+
=                                                (3.1) 

where Rsingle is the resistance of a single CNT wire and nCNT is the total number of CNTs forming 

the bundle. In considering the intrinsic capacitance and quantum capacitance of CNT bundles, the 

effective capacitance (CTotal) of a CNT bundle is a series combination of quantum and intrinsic 

capacitance.  
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Using these parameters, RC wire delay is then obtained through HSPICE. CNT bundle 

wire provides the best performance among the three cases examined  copper wire used in 

baseline 2D FPGA, copper wire used in 3D nFPGA (a fictitious case to show how copper 

interconnects in 3D nFPGA can help in terms of wire length and delay reduction), and CNT 

bundle wire used in 3D nFPGA (the architecture proposed in this dissertation). Note that this 

section only models interconnect delay in the routing architecture. The next section will model 

circuit path delay, including vias and nanowire-based devices. The capacitance of different length 

segmentation is also used for power estimation. 

3.3.3 RC-Equivalent Circuits Extraction for Device Delay 

Replacing the CMOS-based MUXs with nanowire crossbars not only significantly 

reduces the footprint of the chip but also enhances circuit performance. In this project, routing 

channel width W = 100 is set for all the benchmarks. This is often used in academic research to 

imitate the real FPGA routing architecture since modern FPGA chips usually provide sufficient 

routing resources, and a single FPGA device will have a fixed channel width. Fc is set at 0.5, 

which is also commonly used and provides connections between the CLB input and half of the 

routing tracks in the channel. The number of inputs I is 22 for the CLB [46]. For baseline 

architecture, this implies that thirty-two 50:1 MUXs (the MUXs marked with “Fc,in” in Figure 

2.17) will be required in the connection block. In addition, another ten 32:1 local routing MUXs 

(22 CLB inputs plus 10 feedback wires from the 10 BLE outputs  the MUXs marked with 

“N+I” in Figure 2.17) are also necessary to route the cluster inputs and feedback wires to 

individual BLEs. 

As explained earlier, MUX can be easily and efficiently implemented by nanowire 

crossbar. A 50:1 MUX can be constructed as 50 vertical wires crossed by 1 horizontal wire. A 

second MUX is simply one additional horizontal wire. A 50 ×  32 crossbar array can serve the 

same functionality as the connection block in the baseline FPGA. These crossbars are especially 

suitable for defect tolerant designs. Considering the defects, redundant wires can be used, 
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requiring a larger crossbar. Even this larger crossbar is efficient due to the high-density property 

of the nanowires crossbar. For example, a square crossbar array with 50 ×  50 nanowires only 

requires a 5.6 µm ×  5.6 µm dimensional array at 32 nm technology. 

The CAD flow shown in Figure 3.6 is ideal for the baseline FPGA. To make it work for 

the 3D nFPGA, various circuit models to capture the specific characteristics of 3D nFPGA 

architecture must be built. The architecture specification file of VPR (versatile packing, 

placement and routing for FPGAs) supplies delay values for various combinational circuit paths 

to enable accurate timing analysis. For example, in Figure 2.17, there are paths A�B, B�C, and 

D�C. Corresponding equivalent circuits are needed to implement these paths in 3D nFPGA. The 

difference now is that part of the path may go through a CNT bundle via or a nanodevice and 

may also go vertically instead of horizontally compared to the baseline case. These different 

paths are extracted for 3D nFPGA and HSPICE simulation is performed to compute their delays. 

As shown in Figure 2.17, the wire track to CLB input path A�B of baseline FPGA 

consists of a buffer and a MUX in a connection block. For 3D nFPGA, the corresponding path 

consists of a CNT via between the switch layer and the crossbar layer, nanowire segments, and a 

programmable switch. This path is represented by resistors and capacitors in an equivalent circuit, 

illustrated in Figure 3.7 (a). Another example in Figure 3.7 (d) shows the equivalent circuit of 

local feedback path D�C in nFPGA. It can be modeled as a conducting path consists of an up 

via to the BLE routing box (Figure 3.4), nanowire crossbar, and a down via to the destination 

BLE. Other paths are illustrated in Figure 3.7 as well. 

In this study, NiSi nanowire and molecular programmable switches are used. The cross 

section of nanowire is assumed as square; the distance between adjacent nanowires is assumed to 

be equal to the wire width. The insulation material around the nanowires is set to have a dielectric 

constant of 3.9. Applying the above configurations, provides the following equations for 

nanowire: 

   

nanowire
nanowireR L

Area

ρ
= ×                                              (3.2) 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 3.7 Extracted equivalent circuits of 3D nFPGA. (a) Wire track to CLB input; (b) CLB 

input to BLE input; (c) local feedback; and (d) CLB output 

 

 
oxC LWnanowire d

ε
=

                                              (3.3) 

where L is the nanowire length, and d is the thickness of the insulator. Resistivity ρ of nanowire 

is obtained based on the work of [68]. A unit resistance R0 = 143 Ω/µm and a unit capacitance C0 

= 300 aF/µm is derived. The programmable switch has an on resistance plus a contact resistance 

(to nanowire) below 1 KΩ. CNT vias are extracted by using the same models of CNT 

interconnects assuming an interconnect length of 0.02 µm. Based on these parameters, the 

equivalent circuits are simulated in HSPICE. The performance comparisons are listed in Table 

3.2. A 44.79% performance enhancement is achieved on average. The D→out delay in baseline 

FPGA is better than that in 3D nFPGA. The reason is as follows. D→out models the delay from 

BLE output to the output of CLB.  It consists of one tri-state buffer (size 10�) to drive output 
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wires in the routing channel. Besides the output buffer, 3D nFPGA has an additional via delay, 

which occurs during the signal propagation from the BLE layer to the switch layer. This 

contributes extra delay for the 3D nFPGA case. 

 

Table 3.2 Performance comparison of baseline and 3D nFPGA 

Paths CMOS-BasedDelay (ps)  Nano-BasedDelay (ps) Enhancement 

A → B 141.66 36.126 74.49% 
B → C 107.59 35.429 67.07% 

D → C 107.59 48.575 54.85% 

D → Out 28.481 33.367 �17.16% 
Ave.   44.79% 

3.3.4 Macro Power Models   

The gate-level FPGA power estimator fpgaEva_LP2 [47] requires both switch level 

models and macro models for power estimation. The switch level model uses extracted 

capacitance to model the power consumed during signal transition. A macro model predefines a 

circuit component using HSPICE simulation. Both dynamic and static power of size-4 LUT and 

various sized buffers based on the BSIM 32 nm model were studied. Randomly generated input 

vectors with equal occurrence probability are used to obtain the average power consumption per 

access to the LUT. In this chapter, only a size-4 LUT was studied. However, it is easy to extend 

to other LUT architectures by listing power data into a user-defined library of fpgaEva_LP2.  

To correctly model the crossbar based BLE routing; a nanowire crossbar array was also 

simulated with HSPICE. Shown in Figure 3.4, comparing to MUX based 2D baseline design, 

CLB input capacitance of nFPGA now is replaced with capacitance of electrically connected 

nanowires (A to A` in Figure 3.4) plus crosspoint switch capacitances and necessary via 

capacitances. 2D intra-cluster local feedback capacitance, which was molded as length-1 wire 

segment capacitance plus buffer input capacitance, is replaced by nanowire capacitance and via 

capacitance in 3D as well. Consider N = 10 and K = 4; Table 3.3 lists some of the extracted 

capacitance values of different architectures. Leakage power of the crossbar array is captured by 

modeling each crosspoint as a diode with an on or off resistance. The equivalent circuit is shown 
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in Figure 3.8 [24]. For N = 10 and K = 4 architecture, crossbar of one tile has a leakage power 

1.53E�06 watt.  

 

Table 3.3 Capacitance extracted from fpgaEva_LP2 (unit: fF) 

 

 2D Baseline 3D nFPGA Copper Wire 3D nFPGA 

CLB Input 2.84 3.61 3.61 

BLE Output without feedback 1.47 3.61 3.61 

BLE Output with feedback 14 5.60 5.60 

 

 
 

Figure 3.8 Equivalent circuit for nanowire crossbar leakage power simulation 

 

3.4 Experimental Results 

In this section, the overall performance improvement of the 3D nFPGA over the baseline 

counterpart is quantified. The performance improvement is achieved from a combination of 3D 

architecture, CNT bundle interconnects, and nanowire-based crossbar array. The experiment is 

based on a 32 nm technology platform. The 20 largest MCNC benchmarks are mapped and fit to 

both baseline and 3D nFPGA using the CAD flow and the detailed delay characterization data 

presented in the previous section.  

Figure 3.9 shows the view graph of different critical path delays for each benchmark 
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collected for three different architectures  the baseline FPGA, 3D nFPGA with copper 

interconnect for routing (a fictitious case to show how copper interconnects for 3D nFPGA 

perform in terms of delay), and real 3D nFPGA. Table 3.4 shows the detailed delay values for the 

same three architectures and also the comparison results. On average, 3D nFPGA with copper 

interconnects provides a 2.05� performance gain (in terms of Fmax) compared to the baseline, 

and real 3D nFPGA provides a 2.65� gain compared to the baseline. It should be stressed that 

the only difference between 3D nFPGA with copper interconnects and the real 3D nFPGA is that 

real 3D nFPGA uses CNT bundles for the routing interconnects and vias. Overall, by using 

nanowire-based crossbars to shrink the MUX area and by 3D stacking, the performance gain of 

3D nFPGA is very significant. Moreover, CNT bundle wires can offer an additional 0.6� for 

overall performance improvement. 

D
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y
 (
n
s
)

 
Figure 3.9 Critical path delay comparison for three architectures (1st bar in each group is critical 

path delays of nFPGA, 2nd bar in each group is critical path delays of nFPGA with copper global 

interconnect, and 3rd bar in each group is critical path delays of baseline FPGA) 

 

Power consumptions of different architectures are shown in Figure 3.10. Table 3.5 lists 

and compares the detailed power consumption. At the 32 nm node, the static power is dominant 

and both 3D nFPGA designs have slightly higher total power consumption due to larger static 
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power from the crossbar array. Results in Table 3.6 show that with a smaller footprint, the 

dynamic power of nFPGA is reduced because of shorter wire length. However, this reduction 

margin is reduced by a relatively larger dynamic power from the larger CLB input and BLE 

output capacitance that is introduced by the crossbar array (Table 3.3). Compared with 3D 

nFPGA with copper interconnects, 3D nFPGA with CNT bundle interconnects can provide better 

performance but consumes 17.5% more dynamic power mainly because of high capacitance 

values of CNT bundles.  

Table 3.4 Critical path delay and comparison 

 

 
Baseline 

FPGA 
3D nFPGA with Copper Wire 3D nFPGA 

 
Critical 

Path(s) 
Critical Path (s) 

Performance (Fmax) 

Gain of 3D stacking 

Critical Path 

(s) 

Performance (Fmax) Gain 

of 3D nFPGA 

alu4 7.13E�09 3.64E�09 1.96 2.82E�09 2.53 

apex2 8.60E�09 4.38E�09 1.97 3.31E�09 2.60 

apex4 7.30E�09 3.74E�09 1.95 2.79E�09 2.61 

bigkey 4.21E�09 1.82E�09 2.32 1.39E�09 3.04 

clma 1.71E�08 8.62E�09 1.98 6.05E�09 2.82 

des 7.40E�09 3.46E�09 2.14 2.64E�09 2.81 

diffeq 5.56E�09 3.24E�09 1.71 2.99E�09 1.86 

dsip 4.23E�09 1.95E�09 2.17 1.50E�09 2.83 

elliptic 1.07E�08 5.95E�09 1.79 4.91E�09 2.18 

ex1010 1.46E�08 5.94E�09 2.46 4.44E�09 3.29 

ex5p 7.83E�09 3.94E�09 1.99 2.85E�09 2.75 

frisc 1.33E�08 6.95E�09 1.91 6.32E�09 2.10 

misex3 7.42E�09 3.37E�09 2.20 2.60E�09 2.85 

pdc 1.68E�08 7.69E�09 2.18 5.00E�09 3.36 

s298 1.13E�08 6.10E�09 1.85 5.01E�09 2.25 

s38417 8.82E�09 4.10E�09 2.15 3.48E�09 2.54 

s38584.1 7.21E�09 4.04E�09 1.78 2.78E�09 2.60 

seq 8.40E�09 3.74E�09 2.25 2.92E�09 2.88 

spla 1.33E�08 5.67E�09 2.34 3.88E�09 3.41 

tseng 6.96E�09 3.54E�09 1.97 3.24E�09 2.15 

Ave. 9.40E�09 4.59E�09 2.05 3.55E�09 2.65 

 



 

41 
 

 

 
Figure 3.10 Power consumption comparison for three architectures 1st bar in each group is critical 

path delays of nFPGA, 2nd bar in each group is critical path delays of nFPGA with copper global 

interconnect, and 3rd bar in each group is critical path delays of baseline FPGA 

 

This section concludes with a comparison of 3D nFPGA and FPNI [55]. FPNI is a 2D 

hybrid FPGA architecture. It is fair to compare FPNI and 3D nFPGA because both offer 

experimental results using the same set of benchmarks, compared to the baseline 2D FPGAs (30 

nm CMOS-based FPGA for FPNI and 32 nm CMOS-based FPGA for 3D nFPGA). 3D nFPGA is 

2.65� faster than the baseline architecture, and FPNI is 30% slower than the baseline. This 

indicates that nFPGA can outperform FPNI by 3.8� in terms of execution frequency. In terms of 

area, FPNI could achieve a 7.5� footprint reduction, and nFPGA on the other hand has a 4.5� 

reduction. The main reason behind this is that FPNI replaces all the routing elements with 

nanowire crossbars, which significantly reduces the routing area. However, large crossbar arrays 

will degrade the system performance as well. FPNI also considers power consumption, but it 

only reports the dynamic power consumed by nanowire arrays. The switching activity is assumed 

to be 0.1 for simplicity. There is no consideration of clock power and glitch power. In addition, 

the clock frequency considered in FPNI is 3.8� slower than 3D nFPGA. After normalization 

with the above factors, 3D nFPGA consumes about the same amount of dynamic power 

compared to FPNI on average. However, the static power of 3D nFPGA can be much less 
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compared to FPNI because FPNI uses a large number of crossbar arrays, which introduces a large 

amount of leakage power due to leaky crosspoints. 

Table 3.5 Power consumption and comparison 

 32nm Baseline 3D nFPGA Copper Wire 3D nFPGA 

 
Total Power 

(W) 

% Static 

Power 

Total Power 

(W) 

% Static 

Power 

Total Power 

(W) 

% Static 

Power 

alu4 0.062 46.20% 0.0562 58.38% 0.0592 55.38% 

apex2 0.067 50.13% 0.0621 62.69% 0.0658 59.19% 

apex4 0.042 56.61% 0.0403 68.96% 0.0429 64.82% 

Bigkey 0.22 66.19% 0.213 70.12% 0.2262 66.08% 

Clma 0.20 73.52% 0.208 80.38% 0.2120 79.03% 

Des 0.27 73.36% 0.264 77.69% 0.281 73.10% 

Diffeq 0.024 83.11% 0.0252 92.69% 0.0275 85.00% 

Dsip 0.21 67.89% 0.205 72.37% 0.2131 69.58% 

Elliptic 0.069 73.96% 0.0702 83.48% 0.0696 84.29% 

ex1010 0.113 77.10% 0.116 86.76% 0.1171 86.33% 

ex5p 0.0314 63.11% 0.0305 75.66% 0.0326 70.81% 

Frisc 0.0627 81.08% 0.0672 88.02% 0.0668 88.50% 

misex3 0.0513 46.72% 0.0499 55.91% 0.0514 54.27% 

Pdc 0.101 78.72% 0.107 87.59% 0.1073 86.41% 

s298 0.042 80.07% 0.0461 85.39% 0.0473 83.32% 

s38417 0.124 84.45% 0.142 85.03% 0.1466 82.41% 

s38584.1 0.136 70.53% 0.141 79.02% 0.1543 72.25% 

Seq 0.065 51.10% 0.0620 61.67% 0.0656 58.29% 

Spla 0.087 82.62% 0.0954 87.06% 0.0961 86.39% 

Tseng 0.029 83.23% 0.0301 87.86% 0.030 88.20% 

Ave. 0.100 69.5% 0.102 77.3% 0.106 74.7% 

 

 

Table 3.6 Dynamic power reduction of nFPGA architecture 

 

 
32nm Baseline 

(W) 

3D nFPGA 

Copper Wire 

(W) 

3D nFPGA 

(W) 

Baseline / 

3D nFPGA 

Copper Wire 

Baseline / 

3D 

nFPGA 

Ave. Dynamic Power 0.0295 0.0228 0.0268 1.294 1.10 
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CHAPTER 4  

FPCNA：CARBON NANOTUBE-BASED 

PROGRAMMABLE ARCHITECTURE 

This chapter proposes a new CNT-based FPGA architecture called FPCNA (field 

programmable carbon nanotube array). The building blocks of FPCNA have been described in 

detail, including the carbon nanotube lookup table, which makes up its programmable logic. Also 

described is a high-density routing architecture using a recently proposed nanoswitch device. 

Special considerations are made to mitigate the negative effects of nano-specific process 

variations. These components are described considering these variations, as well as circuit-level 

delay variations. 

The performance of the proposed architecture is evaluated by adopting a typical FPGA 

design flow and developing variation-aware placement and routing algorithms. These algorithms 

are enhanced from the popular physical design tool VPR [62], and use statistical timing analysis 

(SSTA) to improve the performance yield. SSTA with both normal and non-Gaussian variation 

models is performed. The results show that FPCNA offers significant performance and density 

gains compared to the conventional CMOS FPGA, demonstrating potential for the use of CNT 

devices in next-generation FPGA circuits. 

4.1 FPCNA Architecture 

In this section the FPCNA architecture is described in detail, beginning with the 

introduction of the LUT design, which is based on CNT devices. Then a Basic Logic Element 

(BLE) that can be created using this LUT design is presented. Finally, I discuss FPCNA’s high 

level architecture, including the design of local and global routing. 
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4.1.1 CNT-Based LUT 

A K-input lookup table (K LUT) is the basic unit of programmable logic in modern 

FPGAs. For FPCNA, a novel K-LUT design is used that is based entirely on CNT devices. 

Profile and overhead views of this device are shown in Figure 4.1(a)-(b). This design uses 

parallel ribbons of SWCNTs held in place by metal electrodes and crossed by metal gates. PMOS 

CNFET devices are formed at the crossing points of the CNT ribbons and the metal gates, 

creating a CNFET decoder. At points where the CNT ribbons pass over a trench in the substrate, 

NRAM memory devices are formed. This CNT memory is used to store the truth table of the 

BLE’s logic function. By applying K inputs to the decoder, a reading voltage will be sent to the 

corresponding memory bit whose output can then be read from the base electrode.  

One of the key innovations of this LUT design is that it builds the decoding and memory 

on the same continuous CNT ribbons. This structure allows for high logic density and simplifies 

the manufacturing process. For comparison, the work in [69] uses an LUT memory based on 

individually-crossed nanotubes that is addressed by a CMOS multiplexor tree. In addition to 

being more costly in area, this design suffers from fabrication issues because it requires the 

alignment and interfacing of individual nanotubes in two dimensions.  

 

       (a)                                         (b) 

Figure 4.1 (a) Cross section of CNT-based LUT; (b) top view of CNT-based LUT 
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By using CNT ribbons, each device will contain multiple tubes. This adds fault tolerance 

from the high defect rates of nanotube fabrication, and increases the chance that a CNFET or 

NRAM device will contain functioning nanotubes. Thus, the design is more reliable than in [69] 

where a device will fail if either of the two nanotubes is defective. 

4.1.2 BLE Design 

In Figure 4.1, a 2-to-4 (2 input, 4 NRAM cell) LUT was shown for illustration purposes. 

In modern FPGAs, each basic logic element (BLE) typically contains a 4-to-16 LUT, as well as a 

flip-flop (FF) and multiplexor (MUX) to allow registered output. When scaled to K inputs, the 

LUT will contain 2K CNT ribbons. The BLE design used for FPCNA is shown in Figure 4.2. In 

this figure, the LUT is expanded to four inputs and supporting CMOS logic for voltage control, 

address line inversion, and registered output are added. 

In the decoder, Gray address decoding is used to minimize the number of gate-to-metal-1 

transitions. Compared to binary decoding, this reduces the number of vias by 46% (from 48 to 

26). Since the LUT depends on both normal and complemented inputs, inverters are added for 

each of the address line inputs. A buffer is used to restore the output signal before it passes to the 

flip-flop and MUX. 

 

Figure 4.2 FPCNA BLE with a 4-to-16 CNT-based LUT 
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Table 4.1 NRAM operating modes 

 

Mode RE WE EE Ribbon Voltage Base Electrode 
Reading High Low Low VREAD (1 V) Output 

Writing Low High Low Ground (0 V) VWRITE (1.6 V) 

Erasing Low Low High VERASE (+2.5 V) VERASE (+2.5 V) 

 

To read and program NRAM, three different voltage configurations are needed. CMOS 

pass transistors are used to configure the three modes. Table 4.1 shows the pass transistor enable 

signals and voltages during each mode. Most often, the circuit will be in the reading mode with 

the RE (read enable) signal set. This allows VREAD to pass through the decoder and select the 

appropriate NRAM bit. If the NRAM bit is set, the signal will pass through the relatively low 

resistance of the nanotubes contacting the base electrode (logical 1). If the NRAM bit is not set, a 

multiple GΩ resistance will prevent transmission (logical 0). 

To program a value, RE is deactivated, and either WE (write enable) or EE (erase enable) 

is activated. When WE is set, the selected CNT ribbon is grounded, and VWRITE is applied to the 

base electrode. The difference in potential creates an attractive force, which pulls the ribbon 

down into the trench. In [36], Nantero measured a threshold voltage of 1.4 V +/� 0.2 V, so a 

VWRITE of 1.6 V is assumed. When erasing, the same voltage (VERASE) is applied to both the 

ribbon and the base electrode. The like voltages repel each other, releasing the ribbon from the 

trench floor and allowing it to return to an unbent state. VERASE must be somewhat larger than 

VWRITE [35]-[36], so a value of +2.5 V is assumed. There is a risk that this voltage applied to the 

base electrode could attract an unselected ribbon, causing an unintentional write. This can be 

avoided by erasing all of the NRAM bits. As each bit is erased, its ribbon will be temporarily 

charged to +2.5 V, repelling it from the electrode during the erasure of the remaining bits. Then 

the individual bits that need to be set as logic 1 can be written to realize the new configuration. 

4.1.3 Logic Block Design 

For FPCNA, a cluster-based configurable logic block design is used. Each configurable 

logic block (CLB) contains N of the BLEs described in the previous section (where N is the 
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cluster size), as well as the local routing used to connect the BLEs together. In conventional 

CMOS FPGA designs, the routing is often multiplexor-based. While the same approach could be 

adopted, using CMOS for the MUXs and NRAM to store multiplexor configuration bits, a 

greater logic density can be achieved by using solid-electrolyte switch crossbars. 

Figure 4.3 shows a simplified CLB design to illustrate this technique. The CLB in this 

figure contains four BLEs made from CNT-based LUTs. The local routing is created with 

solid-electrolyte switches created at the crosspoints of the vertical and horizontal routing wires. 

By programming the nanoswitch points, a BLE output can be routed to any BLE input. In Figure 

4.3, one of the input signals to BLE 1 is identified with a dashed line labeled “Input to BLE”. The 

black dots at crosspoints indicate that solid-electrolyte switches at those locations are turned on. 

By using more switches, the same signal can be routed to multiple BLE inputs. Output from a 

BLE can connect to the inputs of other BLEs or be outputs from the CLB. Note that Figure 4.3 

shows the local routing positioned between BLEs for clarity. In an actual implementation, the 

local routing and routing switches can be made above the BLEs, and the area calculations reflect 

this. 

 

Figure 4.3 CNT-based CLB with nanoswitch local routing 
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4.1.4 High-Level Architecture and Global Routing 

A conventional island-based FPGA architecture is adopted for the high-level organization 

of FPCNA. The basic structural unit is a tile, consisting of one programmable switch block (SB), 

two connection blocks (CB), and one configurable logic block (CLB). This tile is replicated to 

create the FPGA fabric, as shown in Figure 4.4. 

The global routing structure consists of 2D segmented interconnects connected through 

programmable SBs and CBs. The CLBs are given access to these channels through connections 

in the CBs. The parameter I represents the number of inputs to a CLB, and Fc defines the number 

of routing tracks a CLB input can connect to. CNT bundle interconnects are used for global 

routing because they have been shown to be superior to copper in terms of current density and 

delay [37]. 

In a traditional CMOS-based FPGA, the SBs and CBs take up the majority of the overall 

area [46]. For example, if the CLB size is 10 and the BLE size is 4 (popular parameters for 

commercial FPGA products), the global routing takes 57.4% of the area, with the CLBs 

occupying the remaining 42.6% [46]. To reduce the size of the global routing in FPCNA, the 

traditional CB is replaced with a solid-electrolyte switch crossbar, and a new nanoswitch-based 

SB design is used.  

 

Figure 4.4 High-level layout of FPCNA 
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The new SB design is shown in Figure 4.5. Instead of using six SRAM-controlled pass 

transistors for each switch point as in conventional CMOS designs (Figure 4.5 (a) [62]), six 

perpendicular wire segments are used with solid-electrolyte nanoswitches at the crosspoints. In 

this design, the driving buffers and input control pass transistors are kept in CMOS, as shown in 

Figure 4.5 (b). By programming nanoswitches at the crosspoints of the wire segment array, a 

signal coming from one side of the block can be routed to any or all of the other three sides. To 

demonstrate how routing connections can be made, four switching scenarios are illustrated in 

Figure 4.5 (c). In the figure, arrows represent signal directions and black dots indicate the 

activated switches. The upper left scenario shows how signals A and B are connected using a 

single switch. A multipath connection is demonstrated in the lower right scenario, where a signal 

from C is driving both A and B. By turning on the appropriate nanoswitches, any connection of 

signals can be made. Using these switch points, larger switch blocks can be constructed. For 

example, the 3 × 3 universal-style switch block in Figure 4.5 (d) is made from three 

nanoswitch-based switch points. This design can be scaled to any routing channel width, and 

significantly reduces the SB area. In a conventional CMOS switch point (Figure 4.5 (a), center), 

six 10× pass transistors are controlled by six SRAM cells, which normally requires an area of 

88.2T (where T is the area of a minimum-size transistor). When using nanoswitch-based switch 

points, the same routing function can be achieved in approximately 9T. 

 

Figure 4.5 (a) CMOS switch point; (b) nanoswitch-based switch point with CMOS driving 

buffers; (c) example switching scenarios; and (d) 3 × 3 switch block (driving buffers not shown) 

    

(a) (b) (c) (d) 
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4.2 Nanotube Lookup Table Fabrication 

Recent progress in the fabrication of CNTs has enabled the use of CNT-based structures 

in FPCNA’s LUT design. To demonstrate the feasibility of this design at the 32 nm technology 

node, some of the fabrication issues involved are addressed. 

The first step in manufacturing the LUT is to define the NRAM trench in the silicon 

wafer using a process similar to the one described in [36]. Then the nanotubes are grown on 

separate quartz wafers using chemical vapor deposition. Since the desired CNT ribbons are all 

aligned in the same direction, an array-based CNT growth process can be used. In [17], 

researchers report a technique for fabricating dense, perfectly aligned arrays of CNTs using 

photolithographically defined catalytic seeds, which achieves an alignment of up to 99.9%. The 

aligned nanotubes can then be transferred to a silicon wafer using a stamping process like the one 

developed in [70]. These techniques create nanotubes that are suitable for the transistors and 

NEMS devices used in the LUT. In addition, it is possible to improve nanotube density on the 

silicon wafer by performing multiple consecutive transfers. This analysis assumes a multiple 

transfer process is used that provides a CNT pitch of 4 nm. 

After the nanotubes have been transferred to the substrate, parallel ribbons are then made 

from the continuous nanotube array by using an etching process similar to the one used in [71]. 

The distance between ribbons is set to 96 nm to allow spacing for contacts, and this resolution is 

assumed to be achievable in the target process technology. By using etching to define the ribbons, 

there is an added advantage of making the ribbons immune to misalignment. This is because any 

nanotubes crossing the border of a ribbon will be removed during the etching process. Figure 4.6 

demonstrates this concept, where (a) shows a misaligned tube, (b) shows the etched area, and (c) 

shows the resulting CNT ribbons. 

The next major step in fabrication is to disable the metallic nanotubes inside the decoder 

region. Since metallic CNTs act as a short between source and drain, they need to be removed to 

create CNFET transistors with desirable on-off current ratios. Electrical burning [72] is an 

effective method to selectively disable the metallic CNTs. In this technique, a large voltage is 
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applied across the array which heats the conducting metallic nanotubes to a breakdown 

temperature of ~600ºC and causes irreversible oxidization. Because this is done when the CNTs 

are still exposed to air, a minimum power dissipation of 0.05 mW is needed to achieve 

breakdown [72]. 

 

(a)                        (b)                      (c) 

Figure 4.7 Process of metallic CNT removal: (a) CNT ribbons before processing; (b) metallic 

CNTs are removed through electrical burning; and (c) contacts are defined by lithography 

 

Since metallic tubes are used for NRAM operation, the burning must only be done in the 

decoder region. One way to remove the metallic CNTs from the decoder but keep them for the 

NRAM devices is shown in Figure 4.7. In this figure, (a) shows vertical ribbons of mixed 

metallic and semiconducting CNTs held in place by horizontal metal electrodes. The middle and 

bottom electrodes are used to hold the ribbons in place during NRAM operation. In (b), a thermal 

 

Figure 4.6 CNT ribbon etching: (a) original CNT array with misaligned CNT; (b) defined 

etching region; and (c) CNT array with misaligned CNT removed 
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breakdown voltage, VBURN, is applied between the top and middle electrodes. This burns away the 

metallic tubes in the decoder region but leaves them in the NRAM region. Because the NRAM 

memory devices need to be individually addressable, the electrode is segmented to provide 

electrical isolation (c). 

After the CNT ribbons are defined and processed, the gate and source/drain formation is 

similar to a regular CMOS process. Based on these techniques and the existing CNT fabrication 

work [17], [71], [73], the proposed nanotube-based LUT design is believed to be implementable. 

4.3 Circuit Characterization 

4.3.1 CNFET and CNT-Based LUT Variation 

As mentioned in Chapter 2, CNFETs have many properties that make them attractive for 

use in future electrical circuits. Ideally, the channel region of these CNFETs would consist of 

identical, well-aligned semiconducting CNTs with the same source/drain doping levels. However, 

it is difficult to synthesize nanotubes with exactly controlled chirality using known fabrication 

techniques. HiPco synthesis techniques yield around 50% ± 10% metallic CNTs [74]. This means 

the number of semiconducting CNTs per device is stochastic, causing drive current variations 

even after the metallic CNTs are burned away. Meanwhile, CNFETs are also susceptible to 

variations in diameter and source/drain region doping [21]. 

In a traditional MOSFET, Gaussian distributions are often assumed when modeling 

variation sources such as channel length and gate width. These models are then used in the delay 

or power characterization of the MOSFET. A similar approach can be used to characterize 

CNFETs. To quantify the effects of CNFET variations, a Monte Carlo simulation of CNFET 

devices with 2,000 runs is performed. The sources of variation that are considered are listed in 

Table 4.2, with two scenarios for the number of CNTs in a channel: 8 ± 3, and 6 ± 2, both 

normally distributed. The diameter range, doping level range, and CNFET model are suggested in 

[21].  
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Table 4.2 Sources of CNFET variation 

 

Parameter Mean Variation 
(3σ) CNTs per channel case 

1 
8 ± 3 

CNTs per channel case 
2 

6 ± 2 

CNT diameter 1.5 nm ± 0.3 nm 

Doping level 0.6 ev ± 0.03 ev 

 

The results of the simulation show that the delay distribution of a CNFET device under 

these variations fits the Gaussian distribution. Figure 4.8 illustrates this distribution for a CNFET 

with 8 ± 3 semiconducting nanotubes in its channel. 

Using the CNFET model, the performance of the CNT-based LUT design can also be 

evaluated. The LUT decoder consists of multiple stages of p-type CNFETs, simulated under the 

variations mentioned in Table 4.2. The contact resistance between an electrode and a single 

nanotube is assumed to be 20 kΩ based on [37]. In a ribbon, multiple CNTs are operating in 

parallel, so the ribbon contact resistance is considered to be inversely proportional to the number 

of semiconducting nanotubes. For NRAM devices, a contact resistance between a bending 

nanotube and the base electrode of 20 kΩ is assumed, based on the measurements in [75]. Since 

these CNTs also operate in parallel, the total ribbon NRAM contact resistance is treated as 

inversely proportional to the number of metallic nanotubes in the ribbon. The resulting LUT 

delay distribution generated by Monte Carlo simulation in HSPICE is shown in Figure 4.9. 

 

Figure 4.8 Delay distribution of a CNFET under process variation 
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The average delay is 60.94 ps, which is 41% faster than a traditional 32 nm CMOS LUT, 

which has a delay of 103.8 ps. Unlike the CMOS LUT, the delay of the nanotube-based LUT has 

a distribution similar to log-normal. 

4.3.2 Crossbar Characterization 

As described earlier, the routing in FPCNA is implemented using crossbars. The delay 

and variation of these crossbars is captured using HSPICE. CNT bundle interconnect is assumed 

to be 32 nm in width, with an aspect ratio of 2. The dielectric constant of the insulation material 

around the crossbar is set at 2.5, and a unit resistance of 10.742 Ω/µm and capacitance of 359.078 

aF/µm for the carbon nanotube bundles is derived. The interconnects are evaluated for 10% 

geometrical variation of wire width, wire thickness, and spacing according to [76]. CNT bundle 

interconnect variation also considers a 40% ~ 60% range on percentage of metallic nanotubes 

inside a bundle. The solid-electrolyte switches between interconnect layers are considered with a 

100 Ω on resistance [43] and 10% variation to capture via contact resistance. 

 

Figure 4.9 CNT-based LUT delay considering variation 
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Table 4.3 Delay comparison between baseline CMOS and FPCNA 
 CMOS-Baseline FPCNA 

Paths µ (ps) σ (ps) µ (ps) σ (ps) 

A�B 141.66 7.13 42.24 2.48 
B �C 107.59 5.37 30.45 2.21 

D �C 107.59 5.37 49.96 2.92 

D �Out 28.48 1.22 29.91 2.28 

4.3.3 Timing Block Evaluation 

To support the evaluation CAD flow, various circuit models are needed to capture 

characteristics of the FPCNA architecture as in the previous chapter. The delay and variation of 

these paths in FPCNA are computed by performing a Monte Carlo simulation of 1,000 runs, 

varying the CNFET parameters and CNT contact resistance for each run. Figure 4.10 illustrates 

the resulting delay distributions of wire track to CLB inpin connections (A�B) and subblock 

opin to subblock inpin connections (D�C). 

Based on these results, the timing blocks follow a normal distribution. Therefore, the 

mean (µ) and variation (σ) of each delay path can be calculated, as shown in Table 4.3. An 

equivalent design in CMOS is measured as a baseline for comparison, assuming 12% channel 

width variation, 8% gate dielectric thickness variation, and 10% doping variation (values from [1] 

for 32 nm CMOS), and these values are also shown in the table. 

 

 
Figure 4.10 Delay distribution of wire track to CLB inpin (left) and sub-block opin to sub-block 

inpin (right) 
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4.4 CAD Flow 

In the Previous sections showed that both deep sub-micron CMOS and nanoscale devices 

are susceptible to variation. In traditional static timing analysis, it is assumed that all circuit 

elements have deterministic delay. This approach cannot correctly capture the variability of the 

fabrication process. The worst-case analysis commonly used by industrial designs satisfies yield 

but is overly pessimistic. On the other hand, the nominal case produces low yield due to 

variation-based timing failures. To maximize yield without sacrificing performance, it is 

necessary for CAD tools to consider the statistical information of circuit elements during timing 

analysis. 

In this work, a timing-driven, variation-aware CAD flow is used, as shown in Figure 4.11. 

Each benchmark circuit goes through technology-independent logic optimization using SIS [63] 

and is technology-mapped to LUT with size 4 using DAOmap [64]. The mapped netlist then 

feeds into T-VPACK and VPR [62], which perform timing-driven packing (i.e., clustering LUTs 

into the CLBs), placement, and routing. To take variation into consideration, the VPR tool [62] is 

enhanced to make it variation-aware. 

 

 

Figure 4.11 FPCNA evaluation flow 
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Existing works have shown that statistical optimization techniques are useful during the 

physical design stage. Variation aware placement is implemented in [77] and variation aware 

routing is developed in [78]. Based on the ideas presented in these works, a complete variation 

aware physical design flow is implemented. In this holistic solution, the placer calls the variation 

aware router to generate delay estimates for its timing cost calculations. 

The Monte Carlo simulation results in Section 4.3.2 show that the CNT-based LUT delay 

follows a non-Gaussian distribution. Reference [37] also reports a non-Gaussian distribution for 

CNT bundle interconnect. However, all of the existing CAD work targeting CMOS assumes 

normally distributed random variables [77]-[79]. The Gaussian-based SSTA algorithms that these 

works use to evaluate CMOS are not suitable for modeling the non-normal variables of 

molecular-based architectures. Therefore, a statistical timing analyzer is utilized that can handle 

an arbitrary distribution, based on discretization techniques adapted from [80]-[81]. 

One such technique is the probabilistic event propagation developed in [80], in which 

discretized random variables of cell delays are used for timing analysis. As illustrated in Figure 

4.12, a non-Gaussian probability density function can be represented as a set of delay-probability 

pairs that contain the time t and the probability a signal will arrive at time t. In [81], ADD and 

MIN operations are developed for propagating multiple event groups. These operations are used, 

and a MAX operation is defined for use in the statistical timing analyzer. Figure 4.13 shows how 

the discretized MAX operation is performed using an example point. 
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Figure 4.12 Discretization process of a log-normal probability density function 

 

During the MAX operation, all possible timing points at the output are evaluated, 
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computing their probability based on the input sets of delay-probability pairs. For each timing 

point t, the probability that both inputs arrive is defined as P(t). P(t) can be derived using 

conditional probability as the sum of : 

1. The probability that both A and B arrive at t 

2. The probability that A arrives at t and B arrived before t 

3. The probability that B arrives at t and A arrived before t 

The accuracy of this technique is dependent on the number of points used for piecewise 

linear approximation. It is shown in [80] that 7 points are sufficient to obtain an accuracy of less 

than 1% error compared to Monte Carlo. Therefore, a 7-point sampling is used throughout the 

discretized SSTA. 

 

Figure 4.13 The discretized MAX operation 

 

Figure 4.14 shows the pseudo-code of the variation aware router. The routing is iterative. 

During the first iteration, the criticality of each pin in every net is set to 1 (highest criticality) to 

minimize the delay of each pin. For the CMOS architecture, the Gaussian delay mean (µ) and 

standard deviation (σ) of each path are computed during the routing of each net. For FPCNA, the 

discretized delay distribution of each path is computed. If congestion exists, more routing 

iterations are performed until all of the overused routing resources are resolved. At the end of 

each routing iteration, criticality and congestion information are updated before the next iteration 

starts. 

To consider variation, new formulas to capture the criticality of sink j of net i are derived. 

For the CMOS architecture with a Gaussian distribution, the arrival time of pin j in net i is 

expressed as ( , ) ( , )a aarr i j t σ=  and the required time as ( , ) ( , )r rreq i j t σ= . The mean and 
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standard deviation of slack ( , ) ( , )s sslack i j t σ=  can be derived as 

s r at t t= −                                                          (4.1) 

22
ras σσσ +=                                                      (4.2) 

The criticality of pin j in net i can then be computed by taking both slack and slack 

variation into consideration:  

3 ( , )
( , ) 1

3

s s

crit crit

t i j
Crit i j

t

σ
σ

−= −
+                                              

(4.3)
  

 

Figure 4.14 Pseudo-code of the modified VPR router 

 

The original VPR cost function is modified this way so that when two slacks have similar 

means but different variations, the 3 ( , )s st i jσ− term assigns a larger criticality to the path with 

the greater variation to weight it more heavily in the next routing iteration. This is illustrated in 

Figure 4.15, where the distribution with slack variation σ1 will be assigned a higher criticality 

than the distribution with slack variation σ2, even though they have the same mean. This cost 

function also considers the critical path variation with the 3crit critt σ+ term. 

In the discretized routing, the expected values of the slack and critical path discretized 
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points are computed and used in the following criticality function:  

[ _ ( , )]
_ ( , ) 1

[ _ ]crit

E disc slack i j
Disc Crit i j

E disc t
= −                                   (4.4) 

 

 

Figure 4.15 Criticality estimation 

After each routing iteration, SSTA is executed by traversing the updated timing graph to 

calculate the new slack and critical path delay. The variation-aware placer also uses these 

criticality functions to calculate the timing cost of each move during simulated annealing. In the 

placement cost function, the critically value is raised by the exponent β. The optimal value of β is 

determined to be six for this design. This differs from the original VPR method of incrementing β 

from 1 to 8, and from [77] where a β value of 0.3 was used. As in [77], the variation is calculated 

during the delta array creation, and these pre-calculated values are also stored in the delta arrays 

for use in placement. The main difference is that a variation aware router is used to generate the 

delay and store sets of discretized delay-probability points for each delay value in addition to the 

mean and variation. 

4.5 Experimental Results 

4.5.1 Experimental Setup 

Because this CAD flow is flexible, one can experiment with various architecture 

parameters and determine their impact. To evaluate FPCNA, a fixed LUT input size K = 4 was 

used, and logic cluster sizes of N = 4, 10, and 20 were explored, as well as the difference between 

using an average of 16 CNTs per ribbon and 12 CNTs per ribbon, to see the effect on area. The 
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number of CLB inputs is set based on the cluster size so that it equals 2N + 2. Fc is kept at 0.5, a 

typical value which connects the CLB input to half of the routing tracks in the channel. 

It is shown in [62] that a mixture of different length interconnects can provide improved 

performance. Two popular wire length mixtures are evaluated: an equal mixture of length-4 and 

length-8 wire segments (wires crossing either four CLBs or eight CLBs), and a mix of 30% 

length-1, 40% length-2, and 30% length-4 wire segments. 

For each configuration of the above parameters, a binary search is performed to 

determine the routing channel width needed to successfully route the largest benchmark, and then 

that width is used to evaluate all of the benchmarks.  

4.5.2 Area Reduction 

Due to the high-density CNT-based logic and solid-electrolyte switch-based routing, the 

footprint of FPCNA is significantly smaller than the equivalent CMOS FPGA. To calculate the 

area, the architecture parameters defined above are used, and a transistor feature size of 32 nm 

(2λ) is assumed for both CNT- and CMOS-based transistors. The area of the CNT-based LUT, is 

determined by the size and spacing of the CNT-ribbons and addressing lines. Since an average 

CNT pitch of 4 nm is assumed, the CNT ribbons are 64 nm wide for the 16-tube-per-ribbon 

experiments and 48 nm wide for the 12-tube-per-ribbon experiments.  

To accommodate vias between the gate layer and the metal-1 layer, the nanotube ribbons 

are spaced 96 nm (6λ) apart. LUT addressing gate metal is 32 nm (2λ), with a spacing of 80 nm 

(5λ) between adjacent lines. Gate-to-metal-1 via size is assumed to be 64nm (4λ) square. The 

nanotube memory, NRAM, offers a much smaller area than an SRAM cell. The NRAM trench is 

assumed to be 180 nm in width and 18 nm in height. These dimensions are conservative 

estimates based on fabrication results in [35]. Trench-to-electrode spacing is set to 90 nm for 

each side. All of the LUT electrodes are assumed to be 64 nm wide. The area of the 32 nm 

CMOS components in the BLE are calculated using a technique from [62] by counting 

minimum-width transistor area. In the FPCNA design, each BLE contains CMOS components 
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including four size-2 buffers, one multiplexer, and one Flip-flop, as shown in Figure 4.3. The 

total BLE logic area is the sum of both the CMOS logic area and CNT-based LUT area. Figure 

4.16 shows design details for both CMOS and FPCNA LUT cells. For simplicity, only a 2-input 

LUT is shown. 
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(a) (b) 

Figure 4.16 Design details for the LUT cells: (a) CMOS LUT; and (b) FPCNA LUT (for the 

16-tube-per-ribbon case) 

Local CLB interconnect crossbars are assumed to have a line thickness of 64 nm (4λ), 

and spacing of 64 nm (4λ). The routing crossbars are created on the metal layers above the CLB 

logic, so they do not add to the overall CLB area (assuming the crossbar area is smaller than the 

logic area, which was true in all of the experiments). Since the routing path is controlled by 

non-volatile solid-electrolyte switches, the SRAM cells used in the baseline CMOS FPGA can be 

eliminated in FPCNA. By replacing the MUX-based routing with crossbars and switching to 

CNT-based LUTs, a large overall area reduction is seen. For an architecture with a cluster size of 

10 and wire segmentation of length 4 and 8, the footprint of a baseline CMOS FPGA tile is 

estimated to be 34,623 T. Using a minimum width transistor area of T = 0.0451 µm2 for a 32 nm 

transistor gives us a tile area of 1561.5 µm2. When calculating the area for an equivalent FPCNA 

tile under the area assumptions above, only 307.99µm2 is used. These calculations show that 

FPCNA can achieve an area reduction of roughly 5� over CMOS. 

The area breakdowns for a single LUT and an architecture tile are shown in Table 4.4. In 

this table the CB area is the sum of both connection blocks. Table 4.5 shows the area breakdowns 
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of various FPCNA architectures. The first row gives data for global routing with 30% length-1, 

40% length-2, and 30% length-4 wire segments. The second row is for 50% length-4, and 50% 

length-8 interconnects. As seen in the table, routing occupies the majority of FPCNA’s overall 

area. Due to the size of the SB area, wire segmentation has a significant impact on the overall 

area. Shorter wire segments have better flexibility during routing, but require a larger number of 

switch points in each SB, which greatly increases the tile size. 

Table 4.4 Area reduction of FPCNA 
 CMOS 

FPGA 
FPCNA Reduction 

Single LUT Area 10.88 µm2 2.15 µm2 5.06× 

LUT Addressing Area 5.68 µm2 1.52 µm2 3.73× 

LUT Memory Area 5.20 µm2 0.63 µm2 8.24× 

Tile Area 1561.5 µm2 307.99 µm2 5.07× 

CLB Area 665.2 µm2 63.290 µm2 10.51× 

CB Area 337.7 µm2 82.5 µm2 4.1× 

SB Area 558.6 µm2 162.2 µm2 3.4× 

 

Table 4.5 Area of various FPCNA architectures 

  Cluster 4 Cluster 10 Cluster 20 

  16 tubes 12 tubes 16 tubes 12 tubes 16 tubes 12 tubes 

1-2-4 Wire Segments 

CLB Area (µm2) 25.316 23.784 63.29 59.46 126.58 118.921 

CB Area (µm2) 23.46 23.46 75.01 75.01 203.438 203.438 

SB Area (µm2) 205.06 205.06 444.49 444.49 829.437 829.437 

Total Tile Area (µm2) 253.84 252.31 582.79 578.96 1159.46 1151.8 

Tile Edge Length (µm) 15.932 15.884 24.141 24.062 34.051 33.938 

4-8 Wire Segments 

CLB Area (µm2) 25.316 23.784 63.29 59.46 126.58 118.921 

CB Area (µm2) 27.07 27.07 82.5 82.5 435.94 435.94 

SB Area (µm2) 83.94 83.94 162.2 162.2 1087.86 1087.86 

Total Tile Area (µm2) 136.33 134.8 307.99 304.16 1650.38 1642.72 

Tile Edge Length (µm) 11.676 11.61 17.55 17.44 40.625 40.531 

 

4.5.3 Performance Gain 

In this section, the experimental CAD flow presented in Section 4.4 is evaluated, 

quantifying the overall performance improvement of FPCNA from the baseline CMOS 

counterpart. When considering variation, performance evaluation becomes complicated. The 
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critical path delay can no longer serve as the absolute measure of performance. Due to variations, 

near-critical paths may actually be statistically critical. This is illustrated by PO3 (primary output 

3) in Figure 4.17. In addition, setting a clock period based only on the most statistically critical 

path is not appropriate. Consider the case in Figure 4.17, where the target clock period is set to a 

95% guard-band of PO3. This means that for 95% of chips made, PO3 will not generate a timing 

failure. However, at this clock period, the other POs may also fail due to variation, making the 

overall yield less than 95%. Because of this phenomenon, it is necessary to consider the statistical 

delay of every path in yield analysis. The performance yield is expressed as a delay-probability 

pair (t, p), so that by setting the clock period t, one can evaluate the system yield p. This allows 

one to compare the performance of the statistical information generated by the experiments. 

 

Figure 4.17 The effect of variation on critical path and yield 

 

The performance yield for both Gaussian and non-Gaussian distributions is calculated 

using the flow in Figure 4.18. After selecting a target clock period Tc, the yield of each of the 

POs is computed. For a Gaussian distribution, the yield is calculated by computing the inverse 

cumulative distribution function (CDF) of the delay random variable. In a non-Gaussian delay 

distribution, the delay is represented by a group of points, so the yield is computed by converting 

the piecewise linear PDF into a piecewise linear CDF (Figure 4.19). The overall system yield is 

determined by multiplying all of the path yields. If the system yield is not satisfied, the Tc is 

increased and the process repeated until the desired yield is obtained. The final clock period is 

reported, which guarantees the targeted yield. 



 

65 
 

 

Figure 4.18 Performance yield estimation 

 

Using the variation aware CAD flow, the achievable clock period of 20 MCNC 

benchmarks is evaluated, and the results are reported in Table 4.6. For a rough comparison to a 

deterministic solution, the CMOS design is evaluated using VPR [62], with a worst-case delay 

guard-band of 3σ added to each component in the VPR’s architecture file. This equates to a 

component yield of roughly 99%. 

The table shows the deterministic CMOS results, variation aware CMOS results, and two 

versions of variation aware FPCNA results: one with 16 nanotubes per CNT ribbon, and the other 

with 12 nanotubes per ribbon. For each variation aware flow, the clock period for performance 

yield is calculated at both 95% and 99%. Also generated is the performance gain of the FPCNA 

architectures over the baseline CMOS. In the table, both CMOS and FPCNA are configured with 

a cluster size of 10 and interconnect wire segmentation of 50% length-4 and 50% length-8. 

Average delays are calculated using the geometric mean. At a 95% performance yield, the 

FPCNA designs have an average gain of 2.75� and 2.65� over the CMOS counterpart, for 16 

and 12 ribbons, respectively. This significant improvement in performance is achieved by the 
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synergistic combination of CNT logic, CNT interconnects, and routing crossbar in FPCNA. 

As shown in Table 4.5, reducing number of tubes inside a nanotube ribbon can reduce 

tile footprint, which will reduce the length of global interconnects and should therefore enhance 

performance. However, as seen in Table 4.6, the overall performance is actually degraded. This is 

because with fewer tubes, each CNFET has less driving capability, which increases the LUT 

delay enough to overcome any global interconnect savings. To develop a better understanding of 

how the FPCNA architecture affects performance, different architecture combinations of wire 

segmentation, cluster size, and nanotube ribbon size were evaluated for the 20 benchmarks. The 

average results, again using the geometric mean, are plotted in Figure 4.20. 

As seen in Figure 4.20 (a), for small and medium cluster sizes (4 and 10), long 

interconnects are preferable because they can make connections to CLBs which are distant. For 

the larger cluster size of 20, shorter wire segments are preferred (Figure 4.20 (b)). Note that in 

Figure 4.20 (a), the performance degrades rapidly at cluster size 20 because there are an 

increased number of connections between neighboring CLBs, and a limited number of short wire 

segments. The experiments also show that medium-sized clusters with longer interconnects have 

the best performance for FPCNA because a medium-sized cluster will take advantage of both 

CNT bundle interconnect and local routing. 

 

Figure 4.19 Piecewise linear CDF in discretized timing analysis 



 

 

                    (a)                                        (b)
Figure 4.20 Average delay for different architecture parameters at 95% and 99% yield

wire segmentation
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(a)                                        (b) 
Average delay for different architecture parameters at 95% and 99% yield

segmentation; and (b) 1-2-4 wire segmentation 
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Average delay for different architecture parameters at 95% and 99% yield: (a) 4-8 
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Table 4.6 System clock period needed to achieve target performance yield 

MCNC 

Benchmark 

CMOS with Deterministic 

CAD Flow 

CMOS with 

Variation-Aware CAD Flow 

FPCNA with Variation-Aware 

 CAD Flow (16 CNTs Per Ribbon) 

FPCNA with Variation-Aware 

CAD Flow (12 CNTs Per Ribbon) 

99% Component Yield (ns) 
95% Performance 

Yield (ns) 

99% Performance 

Yield (ns) 

95% Performance 

Yield (ns) 

99% Performance 

Yield (ns) 

Perf. Gain over 

CMOS at 95% Yield 

95% Performance 

Yield (ns) 

99% Performance 

Yield (ns) 

Perf. Gain over 

CMOS at 95% Yield 

alu4 9.262 7.338 7.469 2.559 2.698 2.87� 2.678 2.812 2.74� 

apex2 10.51 8.444 8.587 3.235 3.313 2.61� 3.263 3.307 2.59� 

apex4 9.796 7.602 7.726 3.666 3.706 2.07� 3.460 3.756 2.2� 

bigkey 4.580 4.336 4.416 1.480 1.502 2.93� 1.474 1.495 2.94� 

clma 20.55 18.98 19.18 5.666 5.720 3.35� 6.790 6.818 2.8� 

des 8.900 8.853 8.994 2.884 2.921 3.07� 3.027 3.058 2.92� 

diffeq 7.241 6.351 6.448 2.736 2.978 2.32� 2.827 3.070 2.25� 

dsip 4.790 4.856 4.954 1.643 1.647 2.96� 1.668 1.682 2.91� 

elliptic 14.87 11.26 11.39 3.342 3.483 3.37� 3.810 3.967 2.96� 

ex1010 16.39 12.99 13.15 5.215 5.363 2.49� 4.801 5.046 2.71� 

ex5p 9.885 8.693 8.847 3.760 3.812 2.31� 4.500 4.554 1.93� 

frisc 16.11 14.99 15.15 3.908 4.367 3.84� 5.114 5.316 2.93� 

misex3 8.284 6.543 6.649 3.092 3.284 2.12� 2.709 2.899 2.42� 

pdc 17.25 16.13 16.32 4.637 4.863 3.48� 4.770 4.957 3.38� 

s298 15.14 14.10 14.25 3.822 3.857 3.69� 4.029 4.134 3.5� 

s38417 10.97 10.62 10.74 4.314 4.370 2.46� 3.463 3.590 3.07� 

s38584.1 8.456 7.024 7.140 2.816 2.894 2.49� 2.884 3.019 2.44� 

seq 10.78 7.859 7.987 3.203 3.344 2.45� 3.634 3.757 2.16� 

spla 15.20 12.04 12.20 4.643 4.730 2.59� 4.826 4.864 2.49� 

tseng 8.851 6.700 6.804 2.692 2.785 2.49� 2.835 2.917 2.36� 

Average 10.59 9.070 9.203 3.293 3.404 2.75� 3.417 3.536 2.65� 
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CHAPTER 5  

VARIATION AWARE ROUTING FOR 

THREE-DIMENSIONAL FPGAS 

In modern field programmable gate arrays (FPGAs), most of the chip area is devoted to 

the programmable interconnect used for the local and global routing of signals. As design 

complexities increase, signal paths become longer and have to connect across greater distances 

and through more programmable switches. The task of driving this capacitive interconnection 

fabric increases the critical path delay and power consumption of FPGA designs. One recognized 

solution to this problem is to move to a 3D architecture, where layers of logic are stacked on top 

of each other instead of being spread across a 2D plane. Devices on each layer connect to devices 

on adjacent layers through the use of vias, increasing logic density, and minimizing the average 

connection length. 

This chapter develops a new SSTA engine designed to deal with the uncorrelated and 

correlated variations in 3D FPGAs. The effects of intra-die and inter-die variations are considered 

to develop accurate timing models. Using the 3D placement and routing framework of TPR 

(three-dimensional FPGA placement and routing) [82], a new 3D routing algorithm is developed 

which uses this engine as the basis for improving performance yield. As far as is known, this is 

the first physical design tool to consider variation in the routing and timing analysis of 3D 

FPGAs. 

Variation aware routing is addressed instead of variation aware placement and/or 

technology mapping because the most detailed timing and variation information is available 

during the routing phase. For instance, correlated variation between lookup tables is only known 

after the placement phase, when their locations have been fixed. 
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5.1 Related Work 

5.1.1 3D Stacking  

There are three main strategies for manufacturing 3D integrated circuits: monolithic 

stacking, wafer-based stacking, and die-based stacking. In monolithic stacking, layers of logic are 

fabricated on top of existing layers of logic and interconnect. This is an ideal solution that allows 

layers to connect using minimally sized metal vias, but it is difficult to achieve in practice 

because the heat required to manufacture transistors has the potential to destroy the metal routing 

in the layers below. 

Another solution is wafer-based stacking, in which layers of transistors and wiring are 

fabricated on separate wafers. These wafers are bonded together to form a multilayer wafer, and 

then diced into 3D ICs. The problem with this scenario is that the yield decreases as the number 

of layers grows, since the failure of a die on any layer will render the final IC inoperable. 

In die-based stacking, wafers are diced before bonding, allowing defective dies to be 

discarded. By using only known good dies, the 3D device yield can be maximized. Die-based 

stacking is especially attractive for homogeneous FPGA architectures, where logic tiles are 

replicated identically in each layer, allowing a single set of masks to be used. 

5.1.2 3D FPGAs 

A number of 3D FPGA architectures and CAD tools have been proposed in the literature. 

One of the first works to address the 3D FPGA placement and routing problem was [83], in 

which Alexander et al. extended an iterated KMB (Kou, Markowsky, and Berman) algorithm into 

three dimensions. In another early work, Karro and Cohoon presented a simultaneous placement 

and global routing algorithm for 3D based on partitioning [84]. More recently, 3D routing tools 

were developed to characterize the performance of monolithically stacked 3D FPGAs by Lin et al. 

in [4]. 

A 3D physical design engine called TPR was presented by Ababei et al. in [82]. This 
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engine is an extension of the popular VPR tool [62] into three dimensions, and the source code is 

freely available for academic use. Three placement algorithms were considered: a global min-cut 

partition to assign a netlist into layers, a timing-driven, intra-layer placement based on hMetis 

partitioning, and a 3D simulated annealing engine. The TPR routing tool is a 

Pathfinder-negotiated congestion algorithm with added penalties to avoid vias [82]. 

Recently, Gayasen et al. addressed a number of 3D FPGA design issues in [85]. Area and 

critical path were compared for different combinations of layer number, bonding strategy, and via 

density. The routing resource utilization of a five-layer stack was compared to an equivalent 2D 

stack and shown to be more efficient, assuming a 3 µm via pitch. In addition, six potential 3D 

switchbox designs were evaluated. To analyze these designs, a timing-driven placement and 

routing CAD flow was developed by extending VPR and adding a vertical channel congestion 

parameter into the VPR cost function. 

While the progression of these works demonstrates a considerable evolution in the 

sophistication of 3D FPGA CAD, none of these tools addressed the significant impact of process 

variations on circuit performance. 

5.1.3 Variation Aware Routing 

On the 2D front, the statistical optimization of FPGA design tools has been receiving 

increasing attention. Previous works have demonstrated the particular effectiveness of such 

optimization during the physical design stage. 

Sivaswamy and Bazargan presented a variation aware routing algorithm in [78] that 

treats all sources of variation as spatially correlated, but ignores the effects of uncorrelated 

random variation. They conclude that while statistical optimizations are not currently as critical 

for FPGAs as they are for ASICs, process variations will become increasingly significant in 

future technologies, and statistical FPGA optimization techniques need to be explored. 

In [86], Lin et al. create a complete variation aware physical synthesis flow that 

incorporates statistical clustering, statistical placement, and statistical routing. Since detailed 
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routing information is not known during clustering, interconnect uncertainty is modeled as a 

random variable and used to characterize performance. For placement and routing, process 

variation is considered. When the effects of variation are considered during all three stages of 

physical synthesis, average yield improvements of 9.1% at a 95% yield, and 12.6% at a 90% 

yield are shown. 

5.2 3D FPGA Architecture 

Like their 2D counterparts, 3D FPGAs can adopt a traditional island-style FPGA 

architecture. This architecture contains a fabric of repeated tiles that consist of one switch block 

(SB), two connection blocks (CBs), and one configurable logic block (CLB). Figure 5.1  

illustrates two such tiles in a 3D stack. Connections are made between the layers using 

through-silicon vias (TSVs). The architectures in this study only allowed TSVs to connect in the 

SBs, as shown by the vertical lines in the figure. 

 

Figure 5.1 3D island-based FPGA tiles 

The 3D switch box is an important component in the 3D FPGA architecture, which 

provides normal routing connections between the x and y horizontal routing channels, as well as 

vias to connect those channels vertically to additional layers in the 3D stack. Figure 5.2 shows a 

possible 3D switch box design that demonstrates 3D switch point connections. For simplicity, 

switch points that only connect to the horizontal channels are not shown. The vertical vias are 

segmented to achieve electrical isolation between layers. This means that each switch box must 

contain independent connections for vias connecting to the upper and lower layers. This allows a 
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signal from a horizontal wire to be directed to a specific layer instead of being sent both upwards 

and downwards. The pattern can be extended for any channel width by adding the appropriate 

number of switch points. 

SwitchPoint

.

 

Figure 5.2 3D subset switch box layout 

In 3D circuit design, the vertical interconnects require special consideration. When two 

logic layers are connected in a face-to-face bonding process [87], their metallization layers are 

joined, and the size of the connecting vias is limited by the accuracy of the layer alignment 

technique used. For designs with more than two layers, face-to-back bonding is needed, which 

requires connections through the substrate. The properties of the connecting vias are determined 

by the substrate thickness. In a traditional bulk silicon process with a wafer thickness of 

50–300 µm, through-silicon vias (TSVs) can be made with diameters as small as 10 µm. 

However, if a silicon-on-insulator (SOI) process is used, the substrate is reduced to a thickness of 

1–50 µm and vias can be made with diameters as low as 1 µm [88].  

In addition to via diameter, the fabrication method may also affect the via density. The 

following calculations assume a 32 nm process where the via pitch is only constrained by the 

switch point area. However, manufacturing limitations such as the substrate thickness and 

bonding technique will not scale in the same ratio as lithography-driven feature sizes, so it is 

possible that these limitations will dictate the via pitch below the 32 nm technology node. This is 

especially true for a face-to-back bulk silicon process which requires larger vias than SOI. 

To study the relationship between switch block area, vias density, and horizontal 

interconnection length, the parameter Zfrac is defined according to Equation (5.1): 
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Zfrac = Zwidth / max(Xwidth, Ywidth)                                         (5.1) 

 

Table 5.1 Via density vs. interconnect length 

Via Density Tile Size Length 1 Wire 

Zfrac = 20% 244.58 µm2 15.64 µm 

Zfrac = 30% 267.32 µm2 16.35 µm 

Zfrac represents the number of vertical routing vias (Zwidth) compared to the maximum 

horizontal channel width, and can be thought of as the percentage of switch points in a switch 

box that have vertical connections. In this study, architectures with Zfrac = 20% and Zfrac = 30% 

are evaluated.  

Based on the routing switch design in [89], each switch point takes an estimated 150.4 T, 

where T is the minimum-width transistor area. With a 0.0451 µm2 transistor area at the 32 nm 

technology node [1], this gives us a switch point area of 6.783 µm2. Assuming a via diameter in 

the range of 1.5 µm [88], the area of a via-containing switch point is estimated as 1.5� larger 

than a horizontal-only switch point. 

By adding the CLB area to the area of the switch blocks and connection blocks, the 

estimated size of an FPGA tile for Zfrac = 20% and Zfrac = 30%. Table 5.1 presents the trade-off 

between via density and routing delay. The results show that while increasing the number of vias 

in a switch box gives the physical design tools greater routing flexibility, it increases the tile size 

and requires longer horizontal interconnections. 

5.3 Variation Modeling 

Developing an accurate statistical timing analysis engine requires first characterizing the 

variation model of 3D FPGAs, considering both correlated and uncorrelated variation sources. 

Uncorrelated random variations can be approximated as normally distributed random variables 

with mean µ and standard deviation σ. Sources of uncorrelated variation include the random 

concentration of doping atoms in transistor source and drain, and the irregularities in interconnect 

width, thickness, and spacing.  

Correlated variations are used to represent the trend of certain process parameters to vary 
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according to their location on the chip. To characterize spatial correlation, the overall containing 

area can be divided into grids where every device in a grid square is assumed to be perfectly 

correlated. The variation relationships between the resulting n grid squares can then be 

represented by an n � n correlation matrix. Such a matrix is needed for performing principal 

component analysis, as described in [90]. 

5.3.1 Interconnect Delay 

Interconnection delay is random based on the geometrical variation of wire width, wire 

thickness, and spacing [76]. This study assumes interconnect variation is an independent random 

variable and models it for wires and vias based the Equation (5.2) from [91]. 

σ = 0.3836 × exp(-0.1537h) × µ0                                         (5.2) 

In the above equation, σ is the standard deviation, h is the size of the driving buffer, and 

µ0 is the nominal wire delay. For the size-10 and size-5 buffers in this study’s architecture, this 

gives the standard deviations of 8.2% and 17.8% of µ0, respectively. 

5.3.2 Logic Delay 

For logic devices, both random and spatially correlated variations and express delay are 

considered according to Equation (5.3): 

D = Dnom + ∆Dintra_spatial + ∆Dintra_rand + ∆Dinter                                   (5.3) 

In this equation, Dnom is the nominal delay value and is adjusted based on the variation 

from intra-die (Dintra_spatial, Dintra_rand) and inter-die (Dinter) sources. 

5.3.3 Intra-Die Variation 

Intra-die variation is the variation that causes device performance to vary across a single 

die. Depending on the source of the variation, intra-die variation can be correlated or 

uncorrelated. To model the correlated intra-die variation, both gate length and oxide thickness are 

considered. These contributing process parameters are considered independent and separate 
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correlation matrices are created for each. Additional process parameters could be modeled with 

additional matrices. Unlike 2D chips, which need only one correlation matrix per parameter, 3D 

FPGAs are made from a number of separate dies and need a correlation matrix on each layer for 

each parameter. This study considers intra-die variation with a 10% random component and a 10% 

spatially correlated component, with a correlation distance of 1 mm [91]. The size of each 

correlation matrix is set by dividing the dies into grids such that each grid square contains a 

certain number of FPGA architecture tiles. 

Since published variation information from device manufactures is lacking, example data 

to fill the correlation matrices are generated using a method from Xiong et al. in [92]. This 

method ensures that the correlation matrices are positive-semi definite, a requirement for the 

principal component analysis. In an actual production flow, measured correlation data could be 

used. 

5.3.4 Inter-Die Variation 

Inter-die variation is the variation correlated between dies. The stacking process used 

determines if there will be any inter-die correlation. In a homogenous die-based stacking process 

where each die in the stack comes from the same wafer, inter-die variation can be considered. 

One way to do this is to create large correlation matrices for each parameter that define 

relationships between the grid squares on all of the layers. The size of these matrices can be 

calculated by Equation (5.4). 

Msize = (ngrid_squares × nlayers)
2                                               (5.4) 

where ngrid_squares is the number of grid squares in each layer and nlayers is the number of layers in 

the device. 

If wafer-based stacking is used instead of die-based stacking, the 3D devices will be 

made up of dies from different wafers, so inter-die correlation will be zero and should not be 

considered. However, wafer-to-wafer variation can be considered in its place to account for 

manufacturing processes that vary in the same way across each wafer. 
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The present experiments assume a homogenous die-based stacking process and a grid 

size of one tile. Since there are a large number of tiles in the benchmarks, this gives us a large 

ngrid_squares. Considering correlated inter-die variations under these conditions would require a 

large Msize. Since operations performed on such matrices would be prohibitively expensive, a 

simpler model is used that treats inter-die variation as normally distributed with a standard 

deviation of 10% of the mean. This corresponds to the 11% random inter-die variation seen in 

[93]. 

5.4 CAD Tools 

5.4.1 3D SSTA 

Efficient timing analysis generally requires the use of independent random variables. The 

present 3D SSTA follows the work of Chang and Sapatnekar in [90]. This method leverages 

principal component analysis (PCA) to determine circuit behavior under correlated variations, 

and is widely used in 2D SSTA. PCA is a statistical technique that allows the transformation of a 

set of correlated random variables into a new set of uncorrelated random variables known as 

principal components. PCA is used to transform each process parameter’s correlation matrix into 

a set of principal components (PCs) at the start of the CAD flow. 

To perform 3D SSTA, each node in the timing graph must be made to store variation in 

addition to nominal delay. In this study’s timing graphs, normally distributed random variation 

and n × p sets of PCs are added into each node, where n is the number of layers in the stack and p 

is the number of independently correlated process parameters. If each die is divided into m grid 

squares, there will be m PCs in each set. The maximum number of PCs is therefore n × p × m. 

Since many of these PCs will remain empty, memory is allocated for a set of PCs only when a 

non-zero value is stored. 

Within a layer, statistical operations such as ADD and MAX are carried out by operating 

on the PCs for that layer. For example, consider two timing nodes: n1 and n2, such that each 

contains a set of PCs for each layer: pc1 for layer 1 and pc2 for layer 2. If both n1 and n2 belong 
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to layer 1, only pc1 is used during statistical operations. If n1 and n2 belong to layer 2, only the 

PCs in pc2 are used. When nodes n1 and n2 are located in two different layers, the PCs from both 

layers have to be considered. 

This is illustrated by the inter-layer MAX operation shown in Figure 5.3, in which node 

n1 is on layer 1, and nodes n2 and n3 are on layer 2. Node n1 only has values for pc1, the 

spatially correlated variation within layer 1. Correspondingly, n2 only has PCs from layer 2. 

Therefore, the MAX operation of these two nodes must consider PCs representing intra-die 

correlations from both layers. To do this, each set of PCs in a node is statistically maxed with its 

counterpart in the other node. For example, pc1 set from n1 is maxed with the 0 from n2. 

Similarly, pc2 from n2 is maxed with the 0 in n1. The result then consists of PCs related to 

parameters on both layers. Using the same process, this result can then be maxed with additional 

nodes, such as n3. Note that this only accounts for intra-layer variation. Inter-layer variation ia 

modeled as an additional 10% random variation when performing inter-layer operations. 

 

Figure 5.3 Inter-layer MAX operation 

In a 3D architecture, nets can connect across multiple layers, spanning multiple spatially 

correlated variation domains. Using the techniques outlined above, the delay and slack 

calculations of the present SSTA tool account for this by accumulating and combining sets of PCs 

for each of the correlated variation sources. 

5.4.2 Variation Aware 3D Router 

To perform variation aware routing, the 3D FPGA placement and routing tool TPR [82] 

is modified. TPR uses a routability-driven cost function focused on minimizing congestion. A 

routability-driven router is useful because the vertical connections of a 3D architecture increase 
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the complexity and difficulty of achieving a legal routing solution. However, to achieve 

competitive performance, timing information must also be considered. The TPR router only uses 

static timing analysis to calculate the final critical path delay. This baseline is improved upon by 

adding a variation aware SSTA engine and incorporating timing information into the router’s cost 

function. The pseudo-code for this new router is shown in Figure 5.4. 

 

Figure 5.4 Pseudo-code of the modified TPR router 

The first step in this algorithm is to capture spatial correlations in the form of correlation 

matrices. No correlation between layers is assumed, so each layer has its own correlation matrix 

for each correlated process parameter. PCA is then used to generate the uncorrelated PCs for each 

node. 

The rest of the routing is iterative. During the first iteration, the criticality of each pin in 

every net is set to 1 (the highest criticality) to minimize the wire length of each pin. After all of 

the nets are routed, SSTA is performed by traversing the updated timing graph to calculate the 

new slack and critical path delays. The criticality of pin j in net i is then computed, considering 

variation in the slack and critical path according to Equation (5.5). 
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The criticality function is derived in this way so that when two slacks have a similar 

mean but different variations, the ( , ) 3 ( , )sslack i j i jσ− term assigns larger criticality to the path 

with the greatest variation, weighting it more heavily in the next iteration. It is possible that some 

nets have positive slack but a large enough variation that the slack � 3σs term becomes zero or 

even negative. All of these nets are considered critical and will be assigned the maximum 

criticality. 

Using this new criticality, the cost function used in TPR is updated during maze routing.  

This function is used to select between multiple paths during breadth-first wave-front expansion. 

The function TPR used to calculate the total cost, Ctotal, is shown in Equation (5.6). 

Ctotal = Cpath + b(c)h(c)p(c)                                               (5.6) 

In this equation, Cpath is the path cost at the current routing node in the maze expansion 

wave front and b(c)h(c)p(c) is the congestion cost of the routing resource. The congestion cost 

consists of a base cost b(c), which is 1, 0.95, or 0, depending on the routing resource type, a 

historic congestion cost h(c), reflecting the overuse of this routing resource in the past, and a 

present congestion cost p(c), representing its current use. 

The new criticality function is used to update this cost function by replacing the 

congestion cost by a timing and variation aware routing resource cost, as shown in Equation 

(5.7). 

Ctotal = Cpath + b(c) + ( ) ( ) ( )i1 crit h c p c−
                                 

(5.7)  

This differs from the original TPR cost function in that the base cost is separated from 

the congestion cost, and the congestion cost is scaled by ( )1- icrit . Adding the net criticality, 

crit i into Equation (5.7) allows nets with higher criticality to be less affected by congestion 

during maze expansion. The square root is used to preserve more of the congestion cost for lower 

criticality nets so that timing closure can also be achieved quickly. In this way, the impact of 

congestion on the critical path is greatly reduced, but the base cost remains the same. 

In variation-aware routing, several nets are likely to be critical under statistical analysis. 
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If each of these nets completely ignores congestion with a crit i = 1, overused resources could 

persist indefinitely, resulting in an unroutable situation. Therefore, the maximum net criticality 

value is set to be slightly less than 1 instead of using 1. This allows the congestion component to 

resolve such situations. 

To further enhance the routing results, b(c) is set according to the statistical delay of the 

routing resources instead of using the base cost values suggested in [62] that do not consider 

timing information. This is shown in following equation, where the delay of the routing resource 

node in question is rr_nodemean and rr_nodevar. 

b(c) = rr_nodemean + 3 × rr_nodevar                                    (5.8) 

By considering timing in the base cost, b(c), and considering the base cost separately 

from the historic costs, a routing resource with a larger propagation delay will now have an 

appropriately larger cost. This differentiation of routing resources allows the new 

routability-driven router to select routing resources with lower propagation delay during maze 

expansion. As a result, the router achieves a large performance gain over the baseline 

routability-driven router used in TPR. 

5.5 Experimental Results 

5.5.1 Experiment Setup 

This experiment runs simulations for 2-layer and 3-layer FPGA designs, using a standard 

set of 12 MCNC benchmarks. For each configuration, via densities of Zfrac = 20% and Zfrac = 30% 

are calculated to compare the impact of via density on routing results. Note that these techniques 

could also be scaled to a larger number of layers. 

Traditional island-style FPGA architecture is used, with size 4 lookup tables and a cluster 

size of 1. Delays of components such as LUTs and buffers are characterized in HSPICE using 

PTM 32 nm models. A fixed routing channel width is set at 30 with buffered drivers. A mixture 

of length 1-, length 2-, and length-6 wires are used (wires spanning 1, 2, or 6 CLBs). Vias of both 

length 1 and 2 (crossing 1 or 2 layers) are used in the 3-layer case. 
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Before place and route, T-VPACK [62] is used for timing-driven packing of these 

benchmarks. The packed netlists are placed using the partition-based placement algorithm in TPR 

[82]. The same placement files are used to evaluate both variation aware and baseline TPR 

routing. TPR baseline results are generated by the original TPR deterministic router. An SSTA is 

then performed on the routed circuits to estimate the resulting mean and variation. Variation 

aware routing is based on the algorithm described in Section 5.4 and nets are routed using 

dynamically updated criticality. 

5.5.2 Results and Discussion 

Table 5.2 details the performance of the baseline TPR and variation aware routing results 

for 2- and 3-layer FPGAs. Due to space limitations, only the average values for the 3-layer 

experiments are shown. This table shows that for both 30% and 20% via density, the new 

variation aware router improves the guard-banded µ+3σ performance of a 2-layer FPGA by over 

22%, and a 3-layer FPGA by over 27%. Note that using a higher via density (30%) will increase 

the routability of the architecture, but comes at a performance penalty. This is due to the 

corresponding increase in horizontal wire length and variation, as described in Section 5.2. 

If only nominal values are considered in the baseline TPR routing, increasing the 3D 

stacking to 3 layers shows a 13% and 9.1% reduction in the critical path delay for 20% and 30% 

via densities, respectively. However, once the variation of the resulting 3D architectures is 

considered, this advantage is degraded to 7.0% and 4.4%, respectively. This is because the 

stacking of an additional layer increases the amount of inter-die variation. 
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Table 5.2 Performance of two- and three-layer FPGA routing (ns) 

  

Benchmark 

Circuit 

(2 Layer) 

Via Density 20% Via Density 30% 

TPR Baseline Variation Aware 
µ+3σ 

Reduction 
TPR Baseline Variation Aware 

µ+3σ 

Reduction 

µ σ µ+3σ µ σ µ+3σ  µ σ µ+3σ µ σ µ+3σ  

tseng 10.1 1.47 14.5 7.21 0.68 9.24 36.3% 10.5 1.52 15.1 7.13 0.71 9.25 38.8% 

 ex5p  7.09 0.99 10.1 5.75 0.47 7.15 29.0% 7.88 1.10 11.2 6.11 0.56 7.79 30.3% 

diffeq 7.43 0.91 10.2 6.36 0.76 8.65 14.8% 6.66 1.07 9.86 6.26 0.75 8.51 13.7% 

 misex3  8.48 0.73 10.7 6.60 0.20 7.21 32.4% 8.51 0.84 11.0 7.38 0.42 8.65 21.6% 

apex4  8.02 0.71 10.2 7.37 0.31 8.29 18.4% 8.23 0.71 10.3 7.25 0.43 8.55 17.4% 

alu4  7.93 0.67 9.93 7.17 0.35 8.21 17.3% 8.75 0.77 11.1 7.11 0.40 8.32 24.8% 

seq  7.96 0.77 10.3 7.31 0.40 8.51 17.1% 7.40 0.70 9.50 7.18 0.53 8.76 7.72% 

apex2  9.48 1.28 13.3 6.94 0.24 7.66 42.5% 10.3 1.41 14.5 7.79 0.34 8.82 39.2% 

dsip  4.65 0.51 6.17 4.55 0.47 5.97 3.29% 4.44 0.51 5.97 4.22 0.43 5.50 7.91% 

des  7.22 0.82 9.67 6.14 0.66 8.12 16.0% 6.78 0.97 9.69 5.47 0.61 7.31 24.6% 

s298  22.0 2.28 28.8 15.9 2.09 22.1 23.3% 24.3 2.74 32.5 16.3 2.01 22.3 31.4% 

bigkey 4.77 0.45 6.12 3.45 0.44 4.76 22.2% 4.83 0.51 6.35 4.59 0.44 5.91 7.01% 

2-Layer Average 8.07 0.87 10.7 6.62 0.48 8.21 22.7% 8.19 0.95 11.1 6.81 0.56 8.56 22.0% 

3-Layer Average 7.02 0.96 9.97 5.45 0.48 6.92 28.5% 7.44 1.02 10.6 5.75 0.55 7.45 27.4% 
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CHAPTER 6  

3D NANOELECTROMECHANICAL RELAY-BASED 

RECONFIGURABLE ARCHITECTURE 

Nanoelectromechanical relay (NEM) [94] devices, which are electrostatically-actuated 

switches with zero leakage at off state and low resistance at on state, show promising electrical 

characteristics comparing to CMOS pass transistors. Another advantage of NEM relays is that it 

is possible to encapsulate them into metal layers and, therefore, to integrate them on top of 

CMOS. Motivated by this leading technology, this chapter presents a 3D hybrid CMOS-NEM 

FPGA architecture, namely, 3D CMOS-NEM FPGA. The novelty of this 3D CMOS-NEM FPGA 

lies in the combination of 3D FPGA architecture design and NEM technology, which will 

significantly advance future large-scale programmable devices.  

To maximize the benefit of this new architecture, a 3D placement and routing flow has 

been developed based on the state-of-art FPGA placement routing tool VPR5.0 [95]. This 3D 

flow is flexible; it takes 3D architecture file as input and dynamically generates the 3D 

architecture to be evaluated. The placement and routing algorithms in VPR are tuned and 

enhanced for 3D purposes.    

This chapter is organized as follows: Section 6.1 introduces the principle of operation 

and advantages of NEM devices. NEM-based LUTs and routing switch designs are provided in 

Section 6.2. In Section 6.3, the overall 3D CMOS-NEM FPGA architecture is presented. Section 

6.4 describes in detail the 3D CAD flow. Experimental results showing the advantages of 3D 

NEM FPGA over a conventional CMOS and 2D counterpart are presented in Section 6.5, and 

Section 6.6 concludes this chapter. 
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6.1 NEM Devices 

Nanoelectromechanical relays are electrostatically-actuated switches that have zero 

leakage at off state and are promising to achieve relatively low on-resistance compared to CMOS 

pass transistors. Figure 6.1 (a) shows the structure of a three-terminal (3T) NEM relay, which 

consists of 1) a deflecting beam (connected to the source electrode), which forms the channel for 

current flow; 2) a gate electrode with a gap to the beam, which can control the state of the switch 

through electrostatic force; and 3) a drain electrode, which connects to the beam when the NEM 

relay is in its on state. When gate voltage (VGS) is applied, electrostatic force attracts the beam 

towards the gate, while the elastic force in the beam resists the beam from deflecting. Beyond a 

certain VGS, defined as pull-in voltage (Vpi), the elastic force can no longer balance the 

electrostatic force, and the beam collapses toward the gate until contact is made at the drain. 

Since pull-in is achieved through electromechanical instability, the voltage at which the beam 

disconnects from the drain (pull-out voltage, Vpo) is smaller than Vpi. This leads to hysteresis in 

the current-voltage characteristics of NEM relays (Figure 6.1 (a)). Figure 6.1 (b) shows the IV 

characteristics of a fabricated 3T NEM relay, where zero leakage in the off state is confirmed, 

and an on-resistance of 2 kΩ is demonstrated [96]. 

 

(a)                                    (b) 

Figure 6.1 (a) Structure of a three-terminal (3T) NEM relay and its IDS-VGS curve; and (b) 

measured IV characteristics of a fabricated NEM relay with 2 kΩ on-resistance 

 

All structural materials to fabricate NEM relays could be typical materials in standard 

CMOS back-end-of-line (BEOL) processes [97]. Due to the low processing temperatures of these 

materials, it is promising that the fabrication of NEM relays could be BEOL compatible. In 
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addition, encapsulating NEM relays between metal layers after fabrication [97]-[98] could enable 

monolithic 3D integration of NEM relays on top of CMOS to reduce area, as indicated in Figure 

6.2 . 

 

Figure 6.2 Encapsulated NEM relays between metal layers to enable monolithic 3D integration  

6.2 NEM-Based FPGA Tiles 

6.2.1 NEM Relays as LUT Memory Element 

In CMOS SRAM-based FPGA, the major component is the lookup tables (LUT). 

Consisting of CMOS SRAM cells (Figure 6.3 (a)) and an NMOS pass-transistor-based 

multiplexer, they are used to provide programmable logic functions. Inside each LUT, 

pre-programmed SRAM cells provide corresponding values to the output, which could be either 

logic high (Vdd) or logic low (Gnd). 

 
(a)                         (b) 

Figure 6.3 (a) CMOS 6-transistor SRAM cell; and (b) NEM Memory cell 

 

Hysteresis characteristics of NEM relays enable the use of NEM relays as memory 

components, which makes it possible to replace CMOS SRAM cells inside CMOS LUTs. As 

shown in Figure 6.4 (a), after being pulled in by applying a VGS greater than Vpi, applying VGS 

inside the hysteresis window (Vpo<VGS<Vpi) will keep the NEM relay in the pull-in (closed) 

state (Figure 6.4 (b)). However, if the NEM relay is in the pull-out (open) state, applying VGS 

inside (Vpo<VGS<Vpi), the relay will remain in the pull-out (open) state (Figure 6.4(c)). As NEM 

CMOS Layer

Metal layers

NEM Relays

Word

Bit Bit

Data

Vdd

Gnd

Bit

Bit

Data



 

87 
 

relays have zero leakage in their off state and can be placed on top of CMOS, replacing CMOS 

SRAM cells with NEM relays will help reduce LUT leakage and reduce LUT layout area. Figure 

6.5 shows the reduction in area, delay, and leakage power comparing CMOS-NEM 4-input LUT 

with traditional CMOS-only LUT. As shown in Figure 6.5, stacking NEM relays on top of 

CMOS can lead to 53.12% reduction in LUT layout area. In the meantime, 55% leakage 

reduction, and 9.3% delay reduction can be achieved due to zero leakage and low on-resistance 

of the NEM relay. 

 
(a)                        (b)                        (c) 

Figure 6.4 Different states of NEM relay based on its hysteresis property: (a) hysteresis ring; (b) 

pull-in process; and (c) pull-out process 

 

 

Figure 6.5 Reduction of area, delay, and leakage comparing CMOS-NEM 4-input LUT with 

traditional CMOS-only 4-input LUT 

 

In CMOS SRAM-based LUT, each CMOS SRAM can be programmed to have its output 

voltage to be either Vdd or Gnd, driving the LUT output to either Vdd or Gnd. Although each 

NEM relay has two stable states, i.e., open or closed, an NEM relay in open state cannot generate 

a specific output voltage. In order to provide both Vdd and Gnd output, two NEM relays are 

needed to replace one CMOS SRAM cell, as shown in Figure 6.3 (b). For convenience, this 
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design is called an NEM memory cell. In each NEM memory cell, only one NEM relay will be 

programmed to the closed state, connecting either Vdd or Gnd to the output (Data). Each NEM 

relay can be programmed individually through a half-select programming scheme, as described in 

[94]. Figure 6.6 shows the idea of replacing CMOS SRAM cells in CMOS-LUT with NEM 

memory cells. For convenience, the hybrid LUT is called a CMOS-NEM LUT. In this new type 

of LUT, pre-configured NEM memory cells are used to store corresponding logic values; an 

NMOS pass-transistor-based multiplexer is used to select the desired output based on input 

values. As described in Section 6.2, it is possible to stack NEM relays on top of CMOS layers. To 

achieve this, two fabrication processes are needed: 1) a back-end-of-line (BEOL) process is 

needed for NEM relays; 2) encapsulation of NEM among metal interconnect layers [97].  

 

 
(a)                                 (b) 

Figure 6.6 (a) Traditional CMOS SRAM-based 4-input LUT; and (b) CMOS-NEM 4-LUT, 

where NEM memory elements are stacked on top of CMOS  

  

6.2.2 NEM Relay as FPGA Routing Switch 

Traditional CMOS SRAM-based FPGA uses SRAM controlled NMOS pass-transistors 

to implement programmable routing switches. As described in [94], both the controlling SRAM 

cell and the NMOS pass-transistor can be replaced at the same time using just a single NEM relay, 
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as shown in Figure 6.6, Figure 6.7, and Figure 6.8. This is because the hysteresis properties 

enable each NEM relay to be used as one memory element. Unlike replacing SRAM cells in LUT, 

only one NEM relay is needed to replace one NMOS pass-transistor and the corresponding 

controlling SRAM cell. The NEM relay will be programmed using a half-select programming 

scheme. 

 

Figure 6.7 CMOS SRAM and corresponding NEM switch 

 

 

Figure 6.8 NEM relay based FPGA connection block (CB) and switch block (SB) 

 

6.2.3 Area Estimation 

CMOS baseline FPGA tile area is estimated using the minimum-transistor-width area 

model [62]. For NEM-CMOS FPGA, tile area is estimated using a similar method. For the 3T 

NEM relay layout, the same dimension is used as described in [94], which will lead to a pull-in 

voltage around 0.8 V at the 22 nm technology node (λ = 11nm) (see Figure 6.9). Based on the 3T 

NEM relay layout, the minimum NEM relay layout area can be estimated. Using the minimum 

NEM relay layout area model and the minimum CMOS transistor area model, the area for the 

required NEM relays on top of CMOS and the area for the remaining CMOS circuitry were 

estimated separately. Since NEM relays are stacked on top of CMOS, the final layout area will be 

determined by the larger area between the CMOS layer and the NEM layer. 
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Figure 6.9 Layout for a 3T NEM relay (22 nm technology λ = 11nm) 

 

6.3 3D NEM FPGA Architecture 

Similarly to its 2D counterparts, 3D NEM FPGA adopts the traditional island-style FPGA 

architecture. Each layer contains a fabric of repeated tiles where each tile consists of one switch 

block (SB), two connection blocks (CB), and one configurable logic block (CLB).  

   

Figure 6.10 Two-layer face-to-face stacking 

 

In this study, the face-to-face bonding process [87] has been adopted to study the benefit 

of the 3D NEM FPGA. During the face-to-face bonding, metallization layers are joined, and the 

size of the connecting vias is limited by the accuracy of the layer alignment technique used. 

Compared to other bonding solutions which use TSVs (through silicon vias) to provide 

connections between layers, a face-to-face bonding solution can provide relatively high via 

density and is also relatively easier to fabricate [59], [99]. Figure 6.10 demonstrates the concept 

of such a face-to-face bonding solution used in this study. As described in Section 6.2, the top 

and bottom CMOS consists of an addressing circuit, flip-flop, and buffers in the LUT. SRAM 

cells, SBs, and CBs are implemented by NEM switches and encapsulated within the metal layers 

as shown in Figure 6.2 . The NEM device does not require a substrate, and therefore, does not 

occupy the footprint. Vertical connections have been added among SBs as well as among CBs 
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between the two layers and bonded face-to-face. Details will be described in following sections.  

6.3.1 Face-to-Face Stacking and Via Density 

Face-to-face bonding is a process where two active device layers have been fabricated 

individually and then aligned and connected in a face-to-face fashion through mechanical and 

electrical techniques. Compared to TSVs used in face-to-back bonding and multilayer stacking 

[99]-[100], face-to-face bonding enables high via density. Vias used as vertical interconnects in 

the face-to-face stacking (named 3D vias) have dimensions similar to the regular vias in the top 

metal layers in a 2D chip. This high 3D via density enables great layer-to-layer communication 

bandwidth in the 3D design with the benefits of easier fabrication and less thermal stress 

compared to the case of 3D stacking of multiple layers [99]-[100]. Therefore, this study is limited 

to a two-layer face-to-face stacking 3D architecture design with a novel combination of NEM 

relay and CMOS for higher logic density and performance.  

 

Table 6.1 3D via dimensions and electrical parameters 

 Face-to-Face (projected) 

Size (��) 1.7 � 1.7 (0.75 � 0.75) 

Minimum Pitch (��) 2.4 (1.46) 

Feed-Through Capacitance (fF) 0.74 

Series Resistance (Ω) 116 

 

Table 6.1 collected from [1], [101] illustrates various 3D via dimensions and electrical 

properties. A 3D via in the face-to-face integration can be projected as small as 0.75 µm �

  0.75 µm with a pitch of 1.5 µm and unit RC value as shown in Table 6.1.  

As described in [94], the layout of a CMOS based FPGA tile occupies an area of 

3300 λ �  2200 λ, which is equal to 36.3 µm �  24.2 µm at 22 nm technology. Within each tile 

of the CMOS-based FPGA, the SBs and CBs take up most of the overall area [46]. For example, 

if the CLB size is 10 and the BLE size is 4, the global routing (CB + SB) takes 57.4% of the tile 

area, with the CLB occupying the remaining 42.6% [46]. Therefore, the CLB area can be 

estimated as 374.2 µm�, corresponding to a 19.3 µm dimension. Note that, differently from 
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using TSV, the 3D via in face-to-face bonding does not go through the silicon layer. Therefore, no 

area overhead has been added in the CMOS layers compared to the result in [102]. Connection 

between any devices to the 3D via can be made through regular interconnections. The density of 

the 3D vias being inserted through the bonding layer is determined by the bonding layer area 

(equal to the CLB area) and 3D via pitch. Comparing the CLB dimension with the 3D via 

dimension, the upper bound of via density accommodated within each CLB for vertical 

communication can be estimated. Figure 6.11 shows an example which has 25 3D vias in each 

tile. The 5  � 5 via array takes an area of 6.75 µm �  6.75 µm. Figure 6.11 also shows 10 extra 

3D vias used for direct links for faster and dedicated layer-to-layer communication, which will be 

discussed in the next section.  

 

Figure 6.11 CLB area and 3D via density 

6.3.2 3D Switch Block  

The 3D switch block is a critical component in the 3D FPGA architecture, which 

provides not only normal routing connections between the horizontal routing channels but also 

connections between the two device layers vertically.  

Figure 6.12 shows two vertically stacked tiles and the SB and CB designs sandwiched in 

between. Each CMOS layer has its own metal layers (upper metal layers and lower metal layers 

in Figure 6.10). The top metal layers of the two face-to-face stacks are connected through NEM 

3D switch blocks incorporating 3D vias. The 3D switch block is an MUX-based design, which is 

widely used in modern FPGA architectures. Each wire in the routing channel is unidirectional 



 

93 
 

and driven by an MUX. Inputs of a driver MUX come from different channels of different 

directions. In the 3D case, the MUX also contains inputs from the vertical direction.  

Figure 6.12 shows the path from an output of CLB 3 to a CLB 2 input, assuming the 

single-driver architecture as used in VPR 5.0 [95]. The output of CLB 3 is connected to a switch 

point underneath. By configuring the MUX accordingly, the signal can be routed through the 

MUX a to the connection block of CLB 2, then to the CLB input MUX. Routing on the same 

layer can be carried out in the same way by configuring MUX connections.  

 

 
Figure 6.12 3D Stacking with switch block and connection block 

 

Note that in Figure 6.12, only one possible 3D connection is demonstrated. In reality, 

each outgoing wire in a switch block will be driven by an MUX and each incoming wire will be 

connected to the inputs of several MUXes.  

 

6.3.3 Direct Links  

As observed in Figure 6.13 (a), if two vertically stacked CLBs need to communicate with 

each other, a routing path would go through switch block MUXes and connection block MUXes. 

Given the face-to-face bonding with short layer-to-layer distance, going through several MUXes 

is costly. This is the motivation to provide another architectural enhancement by including direct 

connections between two layers.  

As shown in Figure 6.13 (b), a direct connection between an output of CLB 1 and the CB 

of CLB 2 is created. This connection bypasses the switch block and saves an MUX delay as well 



 

94 
 

as the wire RC load from the routing track. Figure 6.14 (a) shows the equivalent topology in 2D 

FPGA. In this example, the MUX in Figure 6.14 (a) has four inputs: one from CLB 1 output and 

the other three from routing channels respectively. Figure 6.14 (b), on the other hand, shows the 

proposed direct connection scenario between the two CLBs. The output pin of CLB 1 is 

connected to the connection block of CLB 2 directly. To have a better utilization rate of these 

direct links, the idea is extended so that each CLB can talk to five neighbors in the other layer as 

illustrated in Figure 6.15. The direct links are inserted in a balanced way on four sides of each 

CLB. Figure 6.15 shows the case when the cluster size is 10. Two extra links are inserted in 

between the CLB pair, where one is directly on top of the other. The overhead of direct link is the 

slight increase of the size of the CLB input MUX slightly. For example, if an architecture with 

channel width 100 and Fc = 0.5 (50% of wires in wire channel are connected to a CB input), a 

50-to-1 MUX is required at each CLB input pin. By adding 10 direct links as shown in Figure 

6.15, 2 or 3 (1 from right above or below and 2 from the CLB with 1 grid offset in different layer) 

more inputs need to be added on each side of the CLB, which increases the MUX size to 52 or 53, 

respectively. 

      
(a)                        (b) 

Figure 6.13 Connection of two vertically stacked CLBs: (a) without direct link; and (b) with 

direct link 
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(a)                    (b) 

Figure 6.14 (a) Regular length-1 connection; and (b) direct link 
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Figure 6.15 Direct links between neighboring CLBs 

6.4 CAD Flow 

In this work, a timing-driven CAD flow has been developed (Figure 6.16). Each 

benchmark circuit goes through technology independent logic optimization using SIS [63] and is 

technology-mapped to K-LUTs using DAOmap [64], which is a popular performance-driven 

mapper working on area minimization as well. The mapped netlist then feeds into T-VPACK, 

which performs timing-driven packing (i.e., clustering LUTs into CLBs). The major contribution 

in this work is the final step, which performs placement and routing for the design targeting this 

3D architecture. The new placement and routing engine is adopted from and developed in VPR 

5.0 [95].   

 

Figure 6.16 CAD evaluation flow 
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6.4.1 3D Architecture Generation 

VPR is a famous FPGA placement and routing tool and has been widely used within the 

research community. One of VPR’s advantages is that it supports flexible FPGA architecture 

exploration, and users can easily redefine the architecture in the architecture file. This study 

enhanced the existing architecture by introducing additional 3D-related options to guide the 3D 

FPGA architecture generation. Four new options have been added: 

� max_3d_vias_ per_ tile 

This parameter sets an upper limit of the number of the 3D vias that could be inserted 

within each tile. A 3D via has a relatively large pitch. This value needs to be extracted based on a 

detailed area model to make sure that there would be enough space to accommodate all 3D vias 

in a tile.   

� 3d_via_percentage 

This parameter defines the number of wires in a wire channel that are 3D capable. For 

example, considering the architecture with a channel width 100, setting 3d_via_percentage to 

0.25 will create 25 3D vias within each tile. The detailed process of 3D via creation will be 

discussed below. Note that this value will be overwritten by max_3d_vias_per_tile if it exceeds 

the max value. 

� 3d_via_parameter  

This option defines the resistance and capacitance value of a 3D via. These values should 

be derived from the via RC model and the 3D FPGA architecture information, i.e., the distance 

between two layers and the bonding process of 3D stacking. 

� direct_link 

This Boolean option indicates whether direct links will be inserted or not. 

Figure 6.17 is an example showing how 3D connections have been made. In the VPR 5.0 

single-driver architecture, each outgoing wire in SB is driven by an MUX and each incoming 

wire will be connected to a set of MUXes based on the SB model. For example, for regular VPR, 

input in_1 will connect to three other MUXes on the other three sides, respectively. In this 3D 



 

97 
 

architecture, in_1 can also connect to all the four sides on the top layer. Similarly, the upper layer 

wire in_2 can also connect to four outgoing wires on the bottom layer.  

 

Figure 6.17 3D via creation 

 

The wires which have 3D capability are evenly distributed across the wire channel. If one 

takes channel width 100 and 3d_via_percentage 0.25 as an example again, 25 3D vias in total 

will be generated: 12 out of the 25 vias have the direction from the bottom to the top layer and 

the other 13 have the direction from the top to the bottom layer. The 12 or 13 vertical connections 

will be evenly assigned into wire channels. For example, if wires with odd wire ID (e.g. 1, 3, 5, 

7…49) are incoming wires to a SB, then the 12 3D vias will be added to wire 1, 5, 9…49, 

respectively. Figure 6.17 demonstrates a simple example with four wires in the channel numbered 

from 1 to 4 clockwise. Incoming wire in_1 with wire ID 1 in the bottom layer is connected to 

outgoing wires with wire ID 2 on each side on the top layer. Similarly, incoming wire in_2 with 

wire ID 3 in the top layer is connected to outgoing wires with wire ID 4 on each side on the 

bottom layer. The percentage of switch points that have 3D capability is an architecture input 

defined in the architecture file. In the meantime, the maximum number of 3D vias which is 

determined by the bonding layer area has to be considered as well. Therefore, in most situations, 

the percentage 3D switch point has an upper limit.   
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If the option direct link is enabled, extra 3D vias as direck links are added from CLB 

output to CLB input as shown in Figure 6.13. 

6.4.2 3D Placement and Routing 

To carry out 3D placement and routing, the first step is the construction of the 3D routing 

graph. In VPR, each component is represented as a routing node, and possible connections 

between components are represented as routing edges. 3D routing graph construction is the 

process of linking appropriate routing nodes in different layers and change values, such as 

outgoing edge array, resistance and capacitance. The detailed algorithm is shown in Figure 6.18. 

 

Figure 6.18 Process of 3D routing graph construction 

 

A 3D routing graph is generated based on two individual 2D routing graphs, which 

represent two stacking layers, respectively. However, each routing node in these two planar 

graphs has a unique node ID. The amount and location of 3D vias are then calculated based on 

the flow described in previous sections. Since each wire segment has a unique routing node ID, 
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routing edges then can be added to represent 3D vias. The resistance and capacitance values of 

the destination routing node can then be updated to incorporate 3D via resistance and capacitance 

values from Table 6.1 for accurate timing analysis. 

VPR placement is based on simulated annealing algorithm. During simulated annealing, 

random swaps of logic blocks are accepted or rejected based on a cost function and an annealing 

temperature.  

3D placement takes a similar approach, but the random swaps are carried out both within 

a layer and between layers. To speed up the process of placement, VPR pre-calculates a delay 

matrix for net delay lookup. 

NetDelay � DelayMatrix�ΔX, ΔY $                                         (6.1) 

where %& and %' are the Manhattan distances between two pins of the net.  

In the 3D case, the pre-calculated delay matrix is expanded into three dimensions.  

    NetDelay() � DelayMatrix�ΔX, ΔY, ΔZ$                                    (6.2) 

If [ ΔX, ΔY] is [0, 0], [1, 0] or [0, 1] and ΔZ is not 0, it means these two pins can be 

connected by a direct link as shown in Figure 6.15. When a direct link is used, 

DelayMatrix�ΔX, ΔY, ΔZ$ is computed based on the RC delay of the direct link via. Otherwise 

DelayMatrix�ΔX, ΔY, ΔZ$ is computed through the 3D switch block routing.   

During placement, VPR uses the value Δnet_delay to evaluate each swap,  

               Δnet_delay � ∑ net_delay//                                              (6.3) 

where i is the nets being affected by this swap and Δnet_delay/ is computed based on ΔX and ΔY 

before and after swap.  

In 3D placement with direct links, Δnet_delay/  is looked up in 3D 

DelayMatrix�ΔX, ΔY, ΔZ$.  If two locations are directly linked, the smaller net delay will be 

loaded. For example, the case �ΔX, ΔY, ΔZ$ = �1, 0, 0$ before swap and [0, 0, 1] after swap 

indicates a placement where two connected CLB are placed side by side in the same layer before 

swap, and moved and stacked vertically after swap. Directly linked [0, 0, 1] placement will have 

a smaller delay value. Therefore, solution [0, 0, 1] will be preferred and this swap will be 
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accepted. 

VPR has a very good annealing schedule, where the window of random swapping is 

dynamically adjusted based on success rate. At high temperature, random swap can be made 

across the chip area, and at lower temperature, swap will be made in a small region only. The 

overall range of swap is guided by the Equation (6.4) [62]: 

rlim �  rlim 1  21. � 0.44 3  success_rat7                                 (6.4) 

In this experiment, It was found that for 3D placement the optimal value of rlim is 

changed as follows: 

rlim �  rlim 1  21. � 0.25 3  success_rat7                                 (6.5) 

This means 3D placement achieves better results at a lower rate of shrinking the window 

where two blocks are picked and swapped as compared to 2D placement. 

VPR routing is based on the Pathfinder negotiated congestion algorithm [62]. The 

routing process is iterative. During the first iteration, the criticality of each pin in every net is set 

to 1 (highest criticality) to minimize the delay of each pin. If congestion exists, more routing 

iterations are performed until all of the overused routing resources are resolved. At the end of 

each routing iteration, criticality and congestion information are updated before the next iteration 

starts. 3D routing takes the same approach but operates on a completely new 3D routing graph 

generated from the 3D architecture file, as described in Section 6.4.1.  

 

6.5 Experimental Results 

6.5.1 Experiment Setup 

To evaluate the 3D NEM FPGA, a fixed LUT input size K = 4 and a logic cluster size of 

N = 10 were used. It is shown in [62] that a mixture of interconnects with different lengths can 

provide improved performance. This study evaluated the architecture with the following wire 

segment mixture: 30% length-1 wires, 40% length-2 wires, and 30% length-4 wires. The CAD 

flow shown in Figure 6.16 was run for different FPGA architectures using the standard set of 20 
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MCNC benchmarks as well as 5 big benchmarks from VPR 5.0. Note that the flow developed in 

this study is flexible and capable of supporting different architecture settings.  

6.5.2 Results and Discussions 

This section quantifies the overall performance improvements of the 3D NEM FPGA 

over the baseline 2D CMOS FPGA and the 2D NEM FPGA. Table 6.2 details the performance 

comparison results. The performance improvement of 3D NEM FPGA is achieved from a 

combination of NEM-based LUT, NEM-based routing design, and the 3D architecture.  

On average, 2D NEM FPGA provides a 19.51% delay reduction comparing to the 

baseline. This delay reduction is achieved by the reduced tile area using the NEM design, which 

reduces the global wire length. Replacing the SRAM-based LUT with the NEM-based LUT also 

contributes to delay reduction.  

3D NEM FPGA provides a 37.63% delay reduction comparing to the baseline. The 

performance gain comes from the 3D stacking, which dramatically reduces the FPGA footprint. 

By adding direct link into the scope, an additional 9% delay reduction can be achieved (a 46.34% 

reduction comparing to the baseline). 

Overall, using NEM devices and 3D stacking produces very significant performance 

gains for 3D NEM FPGA. In addition, vertical direct links can offer an additional performance 

improvement. 
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Table 6.2 Performance comparison of CMOS and NEM FPGA (unit: ns) 

 
CMOS 2D NEM 3D NEM without direct link 3D NEM with direct link 

 
Crit.Path Crit.Path % reduction Crit.Path % reduction Crit.Path % reduction 

alu4 2.81E�09 2.09E�09 25.49% 1.64E�09 41.52% 1.40E�09 50.15% 

apex2 3.16E�09 2.49E�09 21.34% 1.98E�09 37.39% 1.71E�09 45.86% 

apex4 3.15E�09 2.70E�09 14.51% 1.88E�09 40.31% 1.61E�09 49.10% 

bigkey 1.59E�09 1.24E�09 21.70% 9.16E�10 42.27% 8.01E�10 49.54% 

clma 5.85E�09 5.06E�09 13.40% 3.64E�09 37.73% 3.34E�09 42.91% 

des 2.84E�09 2.28E�09 19.82% 1.75E�09 38.54% 1.58E�09 44.47% 

diffeq 3.97E�09 3.25E�09 18.02% 2.31E�09 41.71% 2.02E�09 49.04% 

dsip 1.42E�09 1.27E�09 10.85% 8.88E�10 37.51% 8.00E�10 43.69% 

elliptic 5.95E�09 4.54E�09 23.78% 3.60E�09 39.53% 3.13E�09 47.48% 

ex1010 4.13E�09 3.44E�09 16.54% 2.69E�09 34.71% 2.33E�09 43.57% 

ex5p 3.44E�09 2.83E�09 17.70% 2.41E�09 30.11% 2.01E�09 41.49% 

frisk 7.17E�09 6.21E�09 13.43% 5.08E�09 29.09% 3.70E�09 48.38% 

misex3 2.65E�09 2.07E�09 21.85% 1.59E�09 39.87% 1.36E�09 48.66% 

pdc 5.61E�09 4.45E�09 20.65% 3.59E�09 36.11% 3.19E�09 43.20% 

s298 5.90E�09 4.76E�09 19.41% 3.34E�09 43.48% 3.03E�09 48.67% 

s38417 4.15E�09 3.25E�09 21.57% 2.74E�09 34.06% 2.33E�09 43.79% 

s38584.1 3.35E�09 2.39E�09 28.74% 2.03E�09 39.36% 1.64E�09 51.03% 

seq 2.97E�09 2.54E�09 14.79% 1.97E�09 33.64% 1.68E�09 43.38% 

spla 3.91E�09 3.01E�09 22.88% 2.35E�09 39.93% 2.11E�09 45.90% 

tseng 3.92E�09 3.30E�09 15.82% 2.64E�09 32.60% 2.03E�09 48.26% 

rs 3.71E�09 2.83E�09 23.94% 2.14E�09 42.38% 1.84E�09 50.57% 

paj_top_hierarchy_n

o_mem 
3.07E�08 2.45E�08 20.23% 1.97E�08 35.87% 1.75E�08 42.96% 

mac2 1.55E�08 1.21E�08 21.94% 9.44E�09 38.99% 8.11E�09 47.64% 

cf_cordic_v_18_18_

18 
2.74E�09 2.16E�09 21.11% 1.70E�09 38.03% 1.50E�09 45.15% 

des_perf 1.88E�09 1.54E�09 18.23% 1.21E�09 35.88% 1.06E�09 43.72% 

Ave. 5.30E�09 4.25E�09 19.51% 3.33E�09 37.63% 2.87E�09 46.34% 
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CHAPTER 7  

CONCLUSION 

This dissertation has introduced and discussed three novel reconfigurable architectures, 

3D nFPGA, FPCNA, and NEM FPGA. 3D nFPGA architecture utilizes 3D integration techniques 

and new nanoscale materials. The combination of these two leading technologies shows a great 

potential for innovation and technology breakthroughs. The evaluation result demonstrates that 

the proposed 3D nFPGA is able to provide a 2.65� Fmax advantage over the traditional CMOS 

baseline 2D FPGA with a small total power overhead.  

FPCNA is a CNT-based design including novel LUTs and switching boxes. An effective 

variation aware CAD flow was developed, which handles arbitrary delay distributions using 

variation aware placement and routing. Experimental results show that FPCNA offers a 5� 

footprint reduction and a 2.75� performance gain (targeting a 95% yield) compared to a baseline 

CMOS FPGA at the same technology node. These first results of nano 3D reconfigurable 

architectures are very encouraging and provide motivation for further study, including thermal 

behavior and architectural reliability. 

NEM FPGA architecture is a hybrid architecture of nanoelectromechanical relays and 

CMOS devices. Taking advantage of NEM relay, which can be encapsulated into metal layers, 

face-to-face stacking is applied to this architecture to pursue high performance. In addition, a 

new concept called direct link has been evaluated to further enhance the benefits of this new 

architecture. Compared to the CMOS baseline, 2D NEM FPGA provides a 19.51% performance 

enhancement due to the new NEM LUT design. 3D NEM FPGA is able to achieve a 37.63% 

delay reduction compared to the baseline. This performance gain comes from the NEM device as 

well as the 3D architecture, which dramatically reduces the FPGA footprint. Direct link is able to 

provide an additional 9% delay reduction, which is a 46.34% total reduction compared to the 

baseline. 
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Customized design automation flows—including a comprehensive SSTA engine, 

variation aware placement and routing, and 3D placement and routing—have been developed to 

evaluate different architectures. The SSTA engine is designed to consider both intra-die and 

inter-die variation, 2D and 3D spatial correlated and random variation, and variation with 

Gaussian and non-Gaussian distribution. Using this SSTA engine, 2D and 3D SSTA aware 

placement and routing algorithms have been developed for improving performance yield.  

In summary, this dissertation presents research on nano FPGA architecture and CAD. 

The results offer insights on FPGA architecture exploration including CMOS nano hybrids and 

3D stacking. Key architectural parameters have been discovered to improve overall chip 

performance in terms of delay, power, yield, and reliability. CAD tools are developed to support 

and validate different concepts. A concrete step in nano FPGA research, this dissertation provides 

guidance for the development of emerging nanotechnologies.  
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