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ABSTRACT 

 

In humans, the brain continues to develop over the course of adolescence. One 

implication is that drugs of abuse are likely to impact adolescents differently than adults. Rodent 

literature has added credibility to this idea. Following administration of an equivalent dose of 

psychostimulant (e.g. cocaine, amphetamine, methamphetamine), adolescent rodents are 

commonly observed to locomotor stimulate to a lesser magnitude than that of adults. However, 

recently conflicting reports have been published showing adolescents to stimulate equally or 

greater than adults. The cause for variability in the literature is unclear, but may be a result of 

genetic differences between subjects or other dissimilarities in experimental design. Therefore, in 

Chapter 2 adolescent (postnatal day 30) and adult (postnatal day 65) mice of both sexes from 

four different inbred strains (C57BL/6J, BALB/cByJ, DBA/2J, FVB/NJ) were screened for 

differences in locomotor stimulation following cocaine. The greatest difference in stimulation 

between age groups was observed in C57BL/6J, but BALB/cByJ and female FVB/NJ mice also 

showed attenuated stimulation in adolescents as compared to adults. Since locomotor stimulation 

differences were greatest in C57BL/6J mice, they were used in all subsequent chapters. Chapter 

3 tests the hypothesis that attenuated stimulation in adolescents may be caused by lower 

concentrations of drug in the brain as compared to adults. Concentrations of cocaine and 

methamphetamine were measured in blood and brain samples of each age group at varying time 

points following administration. Overall, the pattern of drug concentration levels over time was 

similar between age groups, suggesting alternative explanations for behavioral differences. 

Chapter 4 investigates the possibility that developmental changes in the brain may contribute to 

behavioral differences by examining neural activity as measured by Fos induced from cocaine in 

16 different brain areas. Results showed that for a given level of locomotor activity, adolescents 

had greater levels of Fos expression in the dorsal caudate as compared to adults. This posed the 

question of how greater Fos expression could relate to relatively lower locomotor stimulation in 

adolescents. Chapter 5 attempts to answer this question by examining the hypothesis that 

adolescents experience greater activation of a negative feedback circuit within the caudate called 

the striosomal pathway. Fos expression was localized using a striosomal marker, MOR1 

antibody stain, following cocaine administration. No differences were observed between age 

groups, suggesting the striosomal pathway is not differentially activated between adolescents and 
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adults. Overall, the mechanism underlying the phenomenon of attenuated stimulation in 

adolescents as compared to adults following psychostimulant administration remains unknown, 

but the dorsal caudate remains an area of interest. 
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CHAPTER I 
 
 
 
 
 
 
 
 

Review of the adolescent rodent brain and behavior literature: validity of the model, behavioral 
response to psychostimulants, and brain development 
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The adolescent animal 

The brain continues to develop over the course of adolescence and is not considered to be 

fully developed until around 20 years of age (Giedd, 2004). Continuing patterns of neural 

development are concurrent with other developmental changes, such as puberty, and likely affect 

behavior (Lange et al., 1997, Galvan et al., 2006). Indeed, several studies have shown 

adolescents tend to behave in a manner that is qualitatively distinct from adults (for review see 

Spear, 2000). Some of these behaviors, such as elevated levels of risk taking as compared to 

adults, can have negative consequences. However, how changes in the nervous system over the 

course of adolescence relate to behavior is largely unknown. Further research is needed to 

discover how characteristic behavioral responses in adolescents are associated with 

developmental changes in the brain.  

 

 Animal models can be utilized to study adolescence because the developmental changes 

and characteristic behaviors that occur in humans during adolescences have analogs in rodents 

(Spear, 2000). For example, adolescent rodents display many of the same types of behaviors that 

adolescent humans display. As in humans, adolescent rodents spend more time than adults in 

social interactions and play behaviors. While both adolescents and adults display social 

interactions, conditioned place preference for social interactions has been shown to be stronger in 

adolescents than adults, suggesting an increased emphasis on social behaviors during 

adolescence (Douglas et al., 2004). Another behavior that is conserved across humans and 

rodents is an increase in novelty seeking and risk taking behaviors. One way to measure risk 

taking and novelty seeking is to measure ambulation in an open field chamber. Adolescent rats 

have been shown to be hyperactive compared to adults in a novel environment (Masur et al., 

1980). Additionally, adolescents show greater preference than adults for novel environments 

(Adriani et al., 1998).  

 

Neurologically, adolescent rodents follow a similar developmental sequence as humans. 

This is observed at both the macro (structural) level and micro (molecular) level. For example, 

the prefrontal cortex is known to undergo massive remodeling during both rat and human 

adolescence (Giedd et al., 1999, Spear, 2000). The volume of the prefrontal cortex decreases 

during adolescence while dopaminergic input increases (Kalsbeek et al., 1988, Lewis, 1997). 
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Developmental changes in dopamine signaling have also been observed in the striatum. For 

example, the number of dopamine receptors in the striatum is greater during adolescence than 

during adulthood in both humans and rats (Seeman et al., 1987, Teicher et al., 1995, Tarazi et al., 

1998, Tarazi et al., 1999). Collectively, the number of homologies between human and rodent 

development during adolescence suggests that rodents are useful to model aspects of the 

adolescent time period in humans. 

 

In rodents, adolescence occurs from postnatal day (PN) 28 until adulthood at day 60, with 

the onset of puberty occurring about 40 days of age (Laviola et al., 2003, Smith, 2003). In order 

to better understand the changes that occur over this time range, adolescence in rodents is 

commonly divided into three time periods: early adolescence (PN 21-34), middle adolescence 

(PN 34-46), and late adolescence (PN 46-59) (Laviola et al., 2003). While this framework is 

useful, it is important to note that age divisions often vary slightly in the literature (Spear and 

Brake, 1983, Spear, 2000, Laviola et al., 2003, Smith, 2003).  

 

Psychostimulants and adolescence 

Drug use in humans is commonly initiated during adolescence (Chen and Kandel, 1995, 

Nelson et al., 1995, Mathias, 1996). Given that the brain continues to develop during the course 

of adolescence (see above), it is possible that drugs of abuse may impact adolescents differently 

than adults. While most drug research is constrained in adolescence for obvious ethical reasons, 

limited evidence suggests this may be true for psychostimulants such as cocaine, amphetamine, 

and methamphetamine. For example, juveniles reported lower feelings of euphoria and had 

greater decreases in motor activity as compared to adults following dextroamphetamine 

administration (Rapoport et al., 1980). Furthermore, escalation of cocaine use is more rapid in 

adolescents than adults and adolescents have been suggested to be at a greater risk for addiction 

than adults (Estroff et al., 1989, O'Brien and Anthony, 2005). Despite these observations, the 

extent to which psychostimulants impact adolescents differently from adults and the mechanisms 

underlying those differences are largely unknown. 

 

 Animal models have proven useful in examining behavioral differences to 

psychostimulants between adolescents and adults. One of the earliest reported differences was 
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that adolescent rats are less sensitive to the locomotor stimulating properties of amphetamine 

than adults (Lanier and Isaacson, 1977). Since that time, the phenomenon of attenuated 

locomotor stimulation in adolescents has been observed for cocaine and methamphetamine as 

well (Spear and Brake, 1983, Laviola et al., 1995, Maldonado and Kirstein, 2005, Zakharova et 

al., 2009), although conflicting observations have been reported for cocaine (Catlow and 

Kirstein, 2005, Caster et al., 2007, Camarini et al., 2008) (see chapter 2 page 16 for a review of 

adolescent versus adult locomotor stimulation). The reason why this phenomenon occurs is not 

known.  

 

Mechanisms of locomotor stimulation to psychostimulants 

 Differential locomotor stimulation between adolescents and adults is a good model for 

exploring differences to the effects of psychostimulants between age groups because locomotor 

stimulation is well studied in adults. A major component of locomotor activation from stimulants 

is increased dopamine signaling in the striatum (Rebec, 2006). The striatum is part of the basal 

ganglia circuit, which is a network of brain regions involved in the control of movement 

(Graybiel et al., 1994). Cocaine increases dopamine signaling in the striatum by acting as an 

antagonist at the dopamine transporter (amphetamine and methamphetamine have similar modes 

of action) (Sulzer et al., 2005). Knowledge of this system, and other mechanisms of 

psychostimulant induced locomotor activity, can be leveraged to formulate hypotheses for why 

age differences exist (See chapters 4 & 5 for a more complete review of the basal ganglia circuit 

and how this information was used to create specific hypotheses).  

 

Fos 

Immediate early genes, such as c-Fos, are genes that can initiate cascades to induce other 

gene expression (Herrera and Robertson, 1996). They encode for one of two broad categories: 

transcription factors or direct effector proteins (Clayton, 2000). c-Fos is a transcription factor in 

the Fos family. It binds with other members of the Fos and Jun family to create the activator 

protein-1 complex which promotes the expression of downstream genes (Glover and Harrison, 

1995, Hughes and Dragunow, 1995). This has led researchers to consider immediate early genes 

such as c-Fos to play an important role in the processing of information on the cellular level. 
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 c-Fos has been shown to be a good marker of cellular activity. Basal levels of c-Fos 

expression are relatively low, making increases in expression relatively easy to detect (Morgan 

and Curran, 1991). Increases in c-Fos expression have been shown following a wide variety of 

paradigms including behavioral paradigms, primary sensory stimuli, and pharmacological 

administration (Clayton, 2000). It is thought that increased expression represents increased 

neural activity. In vitro studies have shown that depolarization of a neuron increases Fos 

expression (Greenberg et al., 1986, Morgan and Curran, 1986). However, Fos is not a perfect 

correlate to electrophysiological or metabolic activity. Areas of the brain which are known to be 

electrophysiologically and/or metabolic active based on knowledge of neural circuits and 2-

deoxyglucose maps, do not always show correlated c-Fos activation (Sagar et al., 1988, 

Kaczmarek and Chaudhuri, 1997). However, disconnects between neural activation and c-Fos 

are primarily observed in regions of high basal activity and c-Fos is generally considered to 

reflect the functional activity of neurons in most novel contexts (Kovacs, 1998).  

 

Examining Fos immunoreactivity has been useful in correlating patterns of expression in 

the brain to experimental treatments. For example, Zombeck et al. (2008) examined patterns of 

Fos activation in the brain between mice placed in an environment previously paired with food 

versus mice placed in an environment previously paired with cocaine. Researchers successfully 

identified the paraventricular hypothalamic nucleus as an area which showed context specific 

activation for food but not cocaine. One of the advantages of examining Fos in this study was 

that a large number (17) of brain regions could be surveyed and that the number of Fos positive 

cells could be correlated with behavioral measures. Similar techniques are employed in chapters 

4 & 5 of this dissertation (see respective chapters for details). 

 

Potential relevance for humans 

 In humans, initial subjective experience is predictive of later use. Positive subjective 

experiences with drugs have been associated with increased use later in life (Davidson et al., 

1993, Fergusson et al., 2003), while negative experiences are associated with decreased later use 

(Volkow et al., 2002). Discovering the mechanisms involved in variation in initial responding to 

a drug is of great interest for understanding why some people struggle with drug abuse while 

others do not.  
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The relevance for how acute locomotor stimulation to psychostimulants in rodents relates 

to subjective experience is controversial. Some have argued that locomotor stimulation is 

positively correlated with dopamine release in the accumbens and therefore can be thought of as 

a proxy for relative pleasure from the drug. Conversely, others have shown that low levels of 

locomotor responding are predictive of behavioral demonstrations of high rewarding effects of 

the drug. Specifically, low levels of initial locomotor response are correlated with increased 

place preference and increased self administration to cocaine (Allen et al., 2007, Mandt et al., 

2008). Furthermore, genetic approaches have suggested that there may be an association between 

locomotor stimulation in rodents and subjective experience in humans. Variation in a gene 

associated with high or low acute locomotor stimulation to methamphetamine in mice, Csnk1e, 

was discovered to influence subjective sensitivity (i.e. self report of drug effects) to 

amphetamine in humans (Veenstra-VanderWeele et al., 2006). More evidence is needed before 

definitive claims on how locomotor stimulation in rodents relates to subjective experience can be 

made. However, collectively the current evidence suggests using animal models of acute 

locomotor stimulation can be useful for discovering mechanisms underlying behavioral variation 

in response to psychostimulants.  

 

Approach to understanding age differences in locomotor stimulation 

The focus of this dissertation was the phenomenon of attenuated locomotor stimulation to 

psychostimulants in adolescents versus adults. The aim was to extend the understanding of the 

biological basis for this phenomenon. Put another way, the goal of this dissertation is to develop 

a foundation for answering the question of “why adolescents locomotor stimulate less than adults 

following psychostimulant administration?” Therefore, the chapters presented herein should be 

viewed as introductory studies toward discovering the mechanism with the purpose of providing 

evidence for or against plausible causes for age differences in stimulation.  

 

My approach was to start as broadly as possible, then refine and narrow my hypotheses 

based on the results in a top-down manner. It was unclear from the literature how broadly the 

phenomenon of attenuated locomotor stimulation in adolescents as compared to adults extends 

across genotype. Therefore, chapter 2 examines the locomotor response to cocaine between 
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adolescent and adult mice in multiple inbred strains. The purpose was to discover possible 

genetic variation in the trait and to identify in which strains age differences are greatest. After 

discovering C57BL/6J as a strain that demonstrates robust age differences in stimulation, the 

question shifted to potential underlying mechanisms.  

 

One possible explanation for why adolescents stimulate less than adults is that 

adolescents experience lower concentrations of drug in the brain than adults. Few studies have 

examined the hypothesis that pharmacokinetics could be different between age groups 

(McCarthy et al., 2004, Caster et al., 2005, Frantz et al., 2007). Of those that have, none have 

correlated concentrations of drug in the brain with locomotor behavior. Therefore, in chapter 3 I 

measured concentrations of cocaine and methamphetamine in the brains of adolescent and adult 

mice following behavioral analysis of locomotor stimulation. The aim was to determine the 

extent to which pharmacokinetic differences between adolescents and adult C57BL/6J mice 

could account for differential acute locomotor stimulation to methamphetamine and cocaine 

between the age groups.  

 

An alternative possibility for attenuated stimulation in adolescents is that the continued 

development of the adolescent brain influences the behavioral response to psychostimulant 

administration. However, the number of changes occurring in the brain over the course of 

adolescence makes it difficult to assess which differences influence behavioral differences and 

which do not. Evidence supporting regional differences is desirable so that the list of candidate 

mechanisms can be narrowed. One technique to screen where in the brain functional differences 

may exist is to examine regional Fos expression. By using Fos as a marker of neural activity, a 

number of brain regions can be examined for differential Fos activation between age groups. The 

assumption is that Fos will correlate with behavior and therefore areas of the brain that are 

involved in differential locomotor stimulation will also show differential Fos expression. 

Therefore in chapter 4 I measured patterns of Fos expression in 16 different brain regions 

between adolescent and adult mice following drug (cocaine or methamphetamine) or saline. The 

aim was identify key brain regions associated with differential locomotor stimulation between 

age groups. 
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The advantage of identifying a candidate brain region or regions is that information about 

the distribution of cell types, receptor signaling systems, and principle afferent and efferent 

connections in the regions becomes available from the literature. This knowledge is valuable in 

postulating hypotheses on which biological substrates are involved in differences in locomotor 

responding between age groups. In chapter 5, I hypothesize that adolescents display increased 

inhibitory feedback from the striatum to dopaminergic neurons in the substantia nigra via the 

striosomal pathway based on results from chapter 4. The aim was to identify if the striosomal 

pathway from the striatum is differentially activated from cocaine between adolescents and 

adults.  

 

8



 

  

References 
 
Adriani, W., Chiarotti, F. and Laviola, G., 1998. Elevated novelty seeking and peculiar d-

amphetamine sensitization in periadolescent mice compared with adult mice. Behav 

Neurosci. 112, 1152-1166. 

Allen, R. M., Everett, C. V., Nelson, A. M., Gulley, J. M. and Zahniser, N. R., 2007. Low and 

high locomotor responsiveness to cocaine predicts intravenous cocaine conditioned place 

preference in male Sprague-Dawley rats. Pharmacol Biochem Behav. 86, 37-44. 

Camarini, R., Griffin, W. C., Yanke, A. B., dos Santos, B. R. and Olive, M. F., 2008. Effects of 

adolescent exposure to cocaine on locomotor activity and extracellular dopamine and 

glutamate levels in nucleus accumbens of DBA/2J mice. Brain Research. 1193, 34-42. 

Caster, J. M., Walker, Q. D. and Kuhn, C. M., 2005. Enhanced behavioral response to repeated-

dose cocaine in adolescent rats. Psychopharmacology (Berl). 183, 218-225. 

Caster, J. M., Walker, Q. D. and Kuhn, C. M., 2007. A single high dose of cocaine induces 

differential sensitization to specific behaviors across adolescence. Psychopharmacology 

(Berl). 193, 247-260. 

Catlow, B. J. and Kirstein, C. L., 2005. Heightened cocaine-induced locomotor activity in 

adolescent compared to adult female rats. J Psychopharmacol. 19, 443-447. 

Chen, K. and Kandel, D. B., 1995. The natural history of drug use from adolescence to the mid-

thirties in a general population sample. Am J Public Health. 85, 41-47. 

Clayton, D. F., 2000. The genomic action potential. Neurobiol Learn Mem. 74, 185-216. 

Davidson, E. S., Finch, J. F. and Schenk, S., 1993. Variability in Subjective Responses to 

Cocaine - Initial Experiences of College-Students. Addictive Behaviors. 18, 445-453. 

Douglas, L. A., Varlinskaya, E. I. and Spear, L. P., 2004. Rewarding properties of social 

interactions in adolescent and adult male and female rats: impact of social versus isolate 

housing of subjects and partners. Dev Psychobiol. 45, 153-162. 

Estroff, T. W., Schwartz, R. H. and Hoffmann, N. G., 1989. Adolescent cocaine abuse. Addictive 

potential, behavioral and psychiatric effects. Clin Pediatr (Phila). 28, 550-555. 

Fergusson, D. M., Horwood, L. J., Lynskey, M. T. and Madden, P. A. F., 2003. Early reactions 

to cannabis predict later dependence. Archives of General Psychiatry. 60, 1033-1039. 

Frantz, K. J., O'Dell, L. E. and Parsons, L. H., 2007. Behavioral and neurochemical responses to 

cocaine in periadolescent and adult rats. Neuropsychopharmacology. 32, 625-637. 

9



 

  

Galvan, A., Hare, T. A., Parra, C. E., Penn, J., Voss, H., Glover, G. and Casey, B. J., 2006. 

Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-

taking behavior in adolescents. J Neurosci. 26, 6885-6892. 

Giedd, J. N., 2004. Structural magnetic resonance imaging of the adolescent brain. Ann N Y 

Acad Sci. 1021, 77-85. 

Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., 

Evans, A. C. and Rapoport, J. L., 1999. Brain development during childhood and 

adolescence: a longitudinal MRI study. Nat Neurosci. 2, 861-863. 

Glover, J. N. and Harrison, S. C., 1995. Crystal structure of the heterodimeric bZIP transcription 

factor c-Fos-c-Jun bound to DNA. Nature. 373, 257-261. 

Graybiel, A. M., Aosaki, T., Flaherty, A. W. and Kimura, M., 1994. The basal ganglia and 

adaptive motor control. Science. 265, 1826-1831. 

Greenberg, M. E., Ziff, E. B. and Greene, L. A., 1986. Stimulation of neuronal acetylcholine 

receptors induces rapid gene transcription. Science. 234, 80-83. 

Herrera, D. G. and Robertson, H. A., 1996. Activation of c-fos in the brain. Prog Neurobiol. 50, 

83-107. 

Hughes, P. and Dragunow, M., 1995. Induction of immediate-early genes and the control of 

neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev. 

47, 133-178. 

Kaczmarek, L. and Chaudhuri, A., 1997. Sensory regulation of immediate-early gene expression 

in mammalian visual cortex: implications for functional mapping and neural plasticity. 

Brain Res Brain Res Rev. 23, 237-256. 

Kalsbeek, A., Voorn, P., Buijs, R. M., Pool, C. W. and Uylings, H. B., 1988. Development of the 

dopaminergic innervation in the prefrontal cortex of the rat. J Comp Neurol. 269, 58-72. 

Kovacs, K. J., 1998. c-Fos as a transcription factor: a stressful (re)view from a functional map. 

Neurochem Int. 33, 287-297. 

Lange, N., Giedd, J. N., Castellanos, F. X., Vaituzis, A. C. and Rapoport, J. L., 1997. Variability 

of human brain structure size: ages 4-20 years. Psychiatry Res. 74, 1-12. 

Lanier, L. P. and Isaacson, R. L., 1977. Early developmental changes in the locomotor response 

to amphetamine and their relation to hippocampal function. Brain Res. 126, 567-575. 

10



 

  

Laviola, G., Macrái, S., Morley-Fletcher, S. and Adriani, W., 2003. Risk-taking behavior in 

adolescent mice: psychobiological determinants and early epigenetic influence. 

Neuroscience and biobehavioral reviews. 27, 19-31. 

Laviola, G., Wood, R. D., Kuhn, C., Francis, R. and Spear, L. P., 1995. Cocaine sensitization in 

periadolescent and adult rats. J Pharmacol Exp Ther. 275, 345-357. 

Lewis, D. A., 1997. Development of the prefrontal cortex during adolescence: insights into 

vulnerable neural circuits in schizophrenia. Neuropsychopharmacology. 16, 385-398. 

Maldonado, A. M. and Kirstein, C. L., 2005. Cocaine-induced locomotor activity is increased by 

prior handling in adolescent but not adult female rats. Physiol Behav. 86, 568-572. 

Mandt, B. H., Schenk, S., Zahniser, N. R. and Allen, R. M., 2008. Individual differences in 

cocaine-induced locomotor activity in male Sprague-Dawley rats and their acquisition of 

and motivation to self-administer cocaine. Psychopharmacology (Berl). 201, 195-202. 

Masur, J., Schutz, M. T. and Boerngen, R., 1980. Gender differences in open-field behavior as a 

function of age. Dev Psychobiol. 13, 107-110. 

Mathias, R., 1996. Students' use of marijuana, other illicit drugs, and cigarettes continued to rise 

in 1995. NIDA Notes. 11, 8-9. 

McCarthy, L. E., Mannelli, P., Niculescu, M., Gingrich, K., Unterwald, E. M. and Ehrlich, M. E., 

2004. The distribution of cocaine in mice differs by age and strain. Neurotoxicol Teratol. 

26, 839-848. 

Morgan, J. I. and Curran, T., 1986. Role of ion flux in the control of c-fos expression. Nature. 

322, 552-555. 

Morgan, J. I. and Curran, T., 1991. Stimulus-transcription coupling in the nervous system: 

involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 14, 421-

451. 

Nelson, D. E., Giovino, G. A., Shopland, D. R., Mowery, P. D., Mills, S. L. and Eriksen, M. P., 

1995. Trends in cigarette smoking among US adolescents, 1974 through 1991. Am J 

Public Health. 85, 34-40. 

O'Brien, M. S. and Anthony, J. C., 2005. Risk of becoming cocaine dependent: epidemiological 

estimates for the United States, 2000-2001. Neuropsychopharmacology. 30, 1006-1018. 

11



 

  

Rapoport, J. L., Buchsbaum, M. S., Weingartner, H., Zahn, T. P., Ludlow, C. and Mikkelsen, E. 

J., 1980. Dextroamphetamine. Its cognitive and behavioral effects in normal and 

hyperactive boys and normal men. Arch Gen Psychiatry. 37, 933-943. 

Rebec, G. V., 2006. Behavioral electrophysiology of psychostimulants. 

Neuropsychopharmacology. 31, 2341-2348. 

Sagar, S. M., Sharp, F. R. and Curran, T., 1988. Expression of c-fos protein in brain: metabolic 

mapping at the cellular level. Science. 240, 1328-1331. 

Seeman, P., Bzowej, N. H., Guan, H. C., Bergeron, C., Becker, L. E., Reynolds, G. P., Bird, E. 

D., Riederer, P., Jellinger, K., Watanabe, S. and et al., 1987. Human brain dopamine 

receptors in children and aging adults. Synapse. 1, 399-404. 

Smith, R. F., 2003. Animal models of periadolescent substance abuse. Neurotoxicol Teratol. 25, 

291-301. 

Spear, L. P., 2000. The adolescent brain and age-related behavioral manifestations. Neurosci 

Biobehav Rev. 24, 417-463. 

Spear, L. P. and Brake, S. C., 1983. Periadolescence: age-dependent behavior and 

psychopharmacological responsivity in rats. Dev Psychobiol. 16, 83-109. 

Sulzer, D., Sonders, M. S., Poulsen, N. W. and Galli, A., 2005. Mechanisms of neurotransmitter 

release by amphetamines: a review. Prog Neurobiol. 75, 406-433. 

Tarazi, F. I., Tomasini, E. C. and Baldessarini, R. J., 1998. Postnatal development of dopamine 

D-4-like receptors in rat forebrain regions: comparison with D-2-like receptors. 

Developmental Brain Research. 110, 227-233. 

Tarazi, F. I., Tomasini, E. C. and Baldessarini, R. J., 1999. Postnatal development of dopamine 

D1-like receptors in rat cortical and striatolimbic brain regions: An autoradiographic 

study. Dev Neurosci. 21, 43-49. 

Teicher, M. H., Andersen, S. L. and Hostetter, J. C., 1995. Evidence for Dopamine-Receptor 

Pruning between Adolescence and Adulthood in Striatum but Not Nucleus-Accumbens. 

Developmental Brain Research. 89, 167-172. 

Veenstra-VanderWeele, J., Qaadir, A., Palmer, A. A., Cook, E. H. and de Wit, H., 2006. 

Association between the casein kinase 1 epsilon gene region and subjective response to 

D-amphetamine. Neuropsychopharmacology. 31, 1056-1063. 

12



 

  

Volkow, N. D., Wang, G. J., Fowler, J. S., Thanos, P. P., Logan, J., Gatley, S. J., Gifford, A., 

Ding, Y. S., Wong, C. and Pappas, N., 2002. Brain DA D2 receptors predict reinforcing 

effects of stimulants in humans: replication study. Synapse. 46, 79-82. 

Zakharova, E., Leoni, G., Kichko, I. and Izenwasser, S., 2009. Differential effects of 

methamphetamine and cocaine on conditioned place preference and locomotor activity in 

adult and adolescent male rats. Behav Brain Res. 198, 45-50. 

Zombeck, J. A., Chen, G. T., Johnson, Z. V., Rosenberg, D. M., Craig, A. B. and Rhodes, J. S., 

2008. Neuroanatomical specificity of conditioned responses to cocaine versus food in 

mice. Physiol Behav. 93, 637-650. 

 

13



 

  

 
 
 
 
 
 
 
 
 
 

CHAPTER II 
 
 
 
 
 
 
 
 

Acute locomotor responses to cocaine in adolescents versus adults from 4 divergent inbred 
mouse strains 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Published in Genes Brain and Behavior, 2010, in press) 

14



 

  

Abstract 
Growing evidence suggests that adolescent mice display differential sensitivity to the acute 

locomotor activating effects of cocaine as compared to adults, but the direction of the difference 

varies across studies and the reasons are not clear.  Few studies have directly examined genetic 

contributions to age differences in locomotor stimulation from cocaine.  The goal of this study 

was to determine the extent to which reduced stimulation in C57BL/6J adolescents as compared 

to adults generalizes to other strains. Therefore, we examined male and female mice from four 

genetically divergent inbred stains (BALB/cByJ, C57BL/6J, DBA/2J, FVB/NJ) at two ages, 

postnatal day 30 and postnatal day 65.  Mice received either saline or cocaine (15 or 30 mg/kg), 

and then immediately were placed back into their home cages.  Locomotor activity was recorded 

continuously in the home cage by video tracking.  Adolescents displayed reduced stimulation as 

compared to adults for C57BL/6J, BALB/cByJ, and female FVB/NJ mice. No age differences 

were observed for DBA/2J or male FVB/NJ. No main effects of sex were observed.  Strain 

differences in pharmacokinetics, neural development or physiology could contribute to the 

observed differences between ages across strains. Future comparative studies could discover 

biological differences between strains that explain age differences in cocaine sensitivity. 
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Introduction 

Drug use in humans is commonly initiated during adolescence (Chen & Kandel 1995; 

Mathias 1996; Nelson et al. 1995).  The brain is still undergoing substantial development during 

this time (e.g., prefrontal cortex (Giedd et al. 1999; Spear 2000), dopamine neurotransmitter 

system, (Seeman et al. 1987; Tarazi et al. 1998, 1999; Teicher et al. 1995)).  Differences in brain 

morphology and physiology likely contribute to differential behavioral responses to drugs in 

adolescents as compared to adults (Zombeck et al. 2009).  This is concerning because initial drug 

responses can predict future patterns of use (Davidson et al. 1993; Haertzen et al. 1983; Lambert 

et al. 2006).  

 

In rodent models, distinct behavioral responses to drugs in adolescents as compared to 

adults have been observed using a variety of experimental paradigms (Belluzzi et al. 2004; 

Hollstedt et al. 1980; Levin et al. 2003; Shram et al. 2006; Silveri & Spear 2001; Torres et al. 

2008; Vastola et al. 2002; Zakharova et al. 2009b).  One clear example is locomotor activity 

following acute psychostimulant administration.  Adolescent rodents typically display reduced 

sensitivity to the locomotor activating effects of cocaine (Laviola et al. 1995; Maldonado & 

Kirstein 2005a; Spear & Brake 1983; Zombeck et al. 2009; Zombeck et al. 2010), amphetamine 

(Adriani & Laviola 2000; Bolanos et al. 1998; Lanier & Isaacson 1977; Mathews & McCormick 

2007; Mathews et al. 2009; Spear & Brake 1983), and methamphetamine (Zakharova et al. 

2009a; Zombeck et al. 2009; Zombeck et al. 2010), using a wide range of doses and 

experimental paradigms. However, conflicting findings, particularly for cocaine, have been 

reported. For example, some studies have observed no differences between age groups (Adriani 

et al. 1998; Camarini et al. 2008; Collins & Izenwasser 2002; Niculescu et al. 2005; Parylak et 

al. 2008), while others have observed greater stimulation in adolescents as compared to adults in 

response to psychostimulants (Badanich et al. 2008; Caster et al. 2007; Catlow & Kirstein 2005). 

The explanation for this variability is not known, but probably involves both environmental 

sources, including differences in handling (Maldonado & Kirstein 2005a, b) and testing 

environment (Masur et al. 1980), as well as genetic, including species and strain differences 

between studies. 
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Genetic contributions to psychostimulant-induced locomotor activity among adult mice is 

well established (e.g., Bryant et al. 2009; Marley et al. 1998; Phillips et al. 2008).  However, 

genetic contributions to variability between adolescent and adult sensitivity to psychostimulants 

are not well understood.  Balda et al. (2008) demonstrated that the nNOS gene is involved in 

behavioral sensitization to cocaine in adult, but not adolescent, mice. This suggests that genes 

influencing behavioral effects of psychostimulants in adolescents may not be the same as adults. 

Further research is needed to determine the extent to which environmental and genetic 

background influence age differences in psychostimulant induced locomotor activity. 

 

Comparing inbred mouse strains is one method for discovering genetic influences on 

behavior. Of the studies in mice, age differences in locomotor activity following psychostimulant 

administration have been examined in only a few different strains. Adolescent C57BL/6J mice 

consistently display reduced stimulation to cocaine and methamphetamine as compared to adults 

(McCarthy et al. 2004; Zombeck et al. 2009). Outbred CD1 mice commonly show no age 

differences in stimulation to cocaine or amphetamine (Adriani et al. 1998; McCarthy et al. 2004; 

Niculescu et al. 2005), but see Adriani & Laviola (2000) who found reduced stimulation in 

adolescents as compared to adults following 2 mg/kg amphetamine. Inbred DBA/2J mice also 

apparently show no age differences (Camarini et al. 2008). However, these data do not include 

information on females for either the C57BL/6J or DBA/2J strains. Information on many of the 

other inbred strains (e.g., as represented it the Mouse Phenome Database) is also lacking.  

  

The goal of this study was to determine the extent to which the phenomenon of 

attenuated stimulation in adolescents as compared to adults in C57BL/6J mice extends to other 

inbred strains.  We hypothesized that adolescents would stimulate less than adults across strains, 

but that the magnitude of this difference would depend significantly on genotype.  

 
Methods 

Subjects 

A total of 192 animals were used in this study from 4 different inbred stains: C57BL/6J, 

FVB/NJ, BALB/cByJ, and DBA/2J.  All 4 strains are listed as Tier 1 priority in the Mouse 
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Phenome Database and were chosen because they each represent different branches of the 

phylogenetic tree for inbred mouse strains, as represented in Rhodes et al. (2007).  

 

Male and female mice (n=4/sex/age/strain/dose) arrived from Jackson Laboratory (Bar 

Harbor, ME, USA) in two different age groups: postnatal day 21 and 56. Mice were initially 

housed in groups of 3-4 for 5 days before being transferred to custom-made acrylic home cages 

conducive for video tracking (Fig. 2.1) where they remained for 4 additional days (see Zombeck 

et al. 2009; Zombeck et al. 2010). All mice were housed on a 12:12 reverse light/dark cycle 

(lights off at 7 AM and on at 7 PM) with the room temperature maintained at 21± ۫1C. Mice had 

ad libitum access to food and water at all time. Adolescent mice were tested at postnatal day 30 

and adults at day 65. This is a commonly accepted period for adolescents and adults in rodents 

(Spear 2000; Spear & Brake 1983). All procedures were approved by the University of Illinois 

Institutional Animal Care and Use Committee and adhered to NIH guidelines. The Beckman 

Institute Animal Facility where the mice were held is AAALAC approved. 

 

Behavioral testing 

All behavioral testing was conducted in the animal’s home cage using custom-made 

home cages with clear plastic lids and food and water delivered from the side (Zombeck et al. 

2009).  Two different types of bedding were used depending on whether the mouse had a white 

or a dark coat color.  Corncob bedding (Harlan 7097) was used for dark mice, whereas Sheppard 

Paperchip® bedding was used for white mice (see Fig. 2.1).  Following Zombeck et al. (2009; 

2010), horizontal distance traveled in the home cage was recorded continuously using TopScan 

(Clever Sys, Vienna, VA, USA) video tracking software.  Behavioral testing began at the onset 

of the dark cycle.  Red lights were placed in various positions in the room overhead to illuminate 

the cages during the dark phase for continuous video tracking (mice cannot see red light).  All 

mice were tracked under baseline conditions without being disturbed for 1 hr.  Following the 1 hr 

baseline, all mice received an intraperitoneal injection of saline and then immediately returned to 

their home cage to monitor the response to injection. After 1 hr, mice were administered another 

saline injection or cocaine (15 or 30 mg/kg) and locomotor activity was recorded for an 

additional 1 hr. Doses were chosen based previous studies that have shown reliable behavioral 

differences between age groups in C57BL/6J males (Zombeck et al. 2009; Zombeck et al. 2010).  
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Statistics 

Statistical analysis was preformed using SAS version 9.1 (SAS Institute, Cary, NC, 

USA). ANOVAs were performed separately for each strain with age, sex, and dose as factors, 

and across strains with strain, age, and dose as factors. Pair-wise differences were evaluated 

using Tukey post hoc tests. Heritability was estimated by one-way ANOVA for each age and 

dose with strain as the factor (Belknap et al. 1993; Crabbe et al. 1990; Rhodes et al. 2007). For 

all tests, a P value of <0.05 was considered significant. 

 

Results 

Saline 

The response to a saline injection was measured 1 hr following onset of the dark cycle, 

prior to cocaine administration. Total distance traveled was summed over the 1 hr following 

injection.  Adolescent and adult mice displayed similar levels of locomotor activity in all strains 

except BALB/cByJ.  This was reflected in a significant Age x Strain interaction in the 3-way 

ANOVA with age, strain and sex as factors (F3,174=4.1, P=0.007).  Posthoc analysis showed that 

BALB/cByJ adolescent mice traveled less far than adults (main effect of age, F1,44=15.2, 

P=0.0003). No significant age effects were observed in the other strains.  No significant strain or 

sex differences were observed collapsed across age (P>0.05). 

 

Cocaine 

The magnitude and direction of the difference in locomotor stimulation between 

adolescents and adults differed depending on genotype (Fig. 2.2). All main effects and 

interactions were significant in the overall 3-way ANOVA including the Age x Strain interaction 

(F3,166=8.8, P<0.0001) and the Age x Dose x Strain interaction (F6,166=2.4, P=0.03). C57BL/6J 

and BALB/cByJ adolescents showed the predicted pattern of reduced locomotor stimulation as 

compared to adults (C57BL/6J main effect of age, F1,36=19.7, P<0.0001; BALB/cByJ main 

effect of age, F1,36=15.5, P=0.0004).  Within BALB/cByJ mice, the Age x Sex interaction was 

marginally non-significant (F1,36=3.5, P=0.07).  This is because for the high dose, 30 mg/kg, 

adolescents displayed attenuated stimulation only in females (P=0.01), not in males (P=0.46) 

(Fig. 2.3).  However, this difference was not large enough to produce a significant Age x Dose x 
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Sex interaction (F2,36=1.5, P=0.23).  Age differences were significantly sex dependant within 

FVB/NJ mice (Age x Sex interaction, F1,36=10.4, P=0.003). Female FVB/NJ mice showed the 

typical attenuated response in adolescents compared to adults (P=0.0002), but no age difference 

was observed in males (Fig. 2.4). No significant age or sex differences in locomotor stimulation 

from cocaine were observed in DBA/2J mice (all P>0.05). 

 

Magnitude of locomotor stimulation varied greatly between strains (main effect of strain, 

F3,166=43.0, P<0.0001) (Fig. 2.2). C57BL/6J displayed the greatest increase in locomotor activity 

in response to cocaine administration (all pair-wise comparisons with C57BL/6J were P<0.01), 

followed by DBA/2J (DBA/2J > FVB/NJ and BALB/cByJ, both P<0.0001).  FVB/NJ and 

BALB/cByJ stimulated the least and were not statistically different from each other (P>0.05). 

Heritability estimates were conducted separately for each age group because the Age x Strain 

interaction was significant (above).  Strain accounted for 48-74% of the variation in locomotor 

stimulation in adults and 30-65% in adolescents (Table 2.1). Smaller and non-significant 

heritability estimates were observed following a saline injection. 

 

Discussion  

The purpose of this study was to determine the extent to which attenuated locomotor 

stimulation to cocaine in adolescent versus adult male C57BL/6J mice (Zombeck et al. 2009; 

Zombeck et al. 2010) could be generalized to other genotypes. The major finding is that the 

phenomenon extends to BALB/cByJ, but DBA/2J and FVB/NJ showed a qualitatively different 

result (Fig. 2.2). This is consistent with a previous study that found no age differences in 

stimulation from cocaine in DBA/2J (Camarini et al. 2008). To the best of our knowledge, this is 

the first comparison of locomotor stimulation between adolescents and adults for FVB/NJ, 

though this strain is related to the outbred CD-1 strain that has been tested (Adriani et al. 1998; 

Adriani & Laviola 2000; McCarthy et al. 2004; Niculescu et al. 2005). 

 

The finding that age differences varied among strains is interesting and implies that there 

are tractable biological differences between strains that underlie the age differences in behavior.  

By tractable, we mean that it should be possible to identify common biological features 

consistently altered in the strains showing the age differences but not in the others, though the 
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features could have disparate biological explanations.  For example, in certain strains, 

adolescents might experience lower concentrations of cocaine in their brains as compared to 

adults for reasons related to distribution of the cocaine in the whole animal (i.e., the 

pharmacokinetic hypothesis) (Zombeck et al. 2009).  Alternatively, the differences could be 

related to developmental, biochemical or molecular changes in the brain associated with the 

transition in age (pharmacodynamic) (Zombeck et al. 2010).  A third possibility is that the 

ontogeny for reduced sensitivity to cocaine could vary depending on genotype.  For example, it 

is possible that had we compared slightly younger or older adolescents, we might have observed 

reduced sensitivity in FVB/NJ males and DBA/2J males and females.  Previous studies have 

found age differences to change over the course of adolescence in rats (Badanich et al. 2008; 

Lanier & Isaacson 1977).  

 

With respect to the pharmacokinetic hypothesis, the literature suggests that it may 

contribute to some of the differences shown in Figure 2.2, but probably is not a major factor.  In 

C57BL/6J, an extensive analysis suggested that large differences in stimulation occur between 

adults and adolescents at equivalent doses of cocaine in the brain (Zombeck et al. 2009).  With 

respect to strain differences among adult mice, slightly lower concentrations of cocaine were 

observed in BALB/cByJ mice compared to C57BL/6ByJ which is consistent with reduced 

stimulation in BALB/cByJ versus C57BL/6J (Fig. 2.2) (Wiener & Reith 1990).  On the other 

hand, C57BL/6J displayed much greater stimulation than DBA/2J in our study, particularly at the 

15 mg/kg dose (Fig. 2.2) even though cocaine concentrations in the brains of C57BL/6J and 

DBA/2J are reported to be similar (Ruth et al. 1988; Tolliver et al. 1994).  

 

The reduced locomotor stimulation in adolescents as compared to adults in C57BL/6J, 

BALB/cByJ, and FVB/NJ females, most likely reflects reduced sensitivity to the drug rather than 

increased sensitivity or transition into stereotypy (i.e., repetitive behaviors that would compete 

with horizontal movement).  First, higher doses are needed to produce stereotypy in mice (Atkins 

et al. 2001; Schlussman et al. 2003; Tilley & Gu 2008; Tolliver & Carney 1994a, b). Second, 30 

mg/kg cocaine produced greater locomotor activity than the 15 mg/kg dose in all strains except 

FVB/NJ, suggesting that both age groups were on the ascending limb of the inverted U-shape 

dose response curve. Stereotypy contributes more to the descending limb of the curve (Shuster et 
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al. 1977; Tolliver & Carney 1994a). It is important to note that since FVB/NJ did not show a 

difference in locomotor response between the two doses of cocaine, it is not clear if mice are on 

the ascending or descending limb of the dose response curve. Further research is needed to make 

definitive conclusions about sensitivity to cocaine in adolescent and adult FVB/NJ mice. 

 

Sex differences 

It was surprising to observe age differences in female but not male FVB/NJ mice (Fig. 

2.4). None of the other strains showed sex-dependant effects across both doses. BALB/cByJ 

demonstrated a trend for sex differences at 30 mg/kg, but not 15 mg/kg cocaine, suggesting 

subtle differences in sensitivity between the two sexes (Fig. 2.3). Previous studies report mixed 

results as to whether age differences in sensitivity to psychostimulants is sex dependant. Parylak 

et al. (2008) and Mathews et al. (2007) have both reported attenuated locomotor stimulation in 

females adolescents as compared to adult at doses that do not produce similar age differences in 

males for cocaine and amphetamine respectively. However, these findings have not been 

replicated in other studies of age differences to cocaine and amphetamine in male and female 

rodents (Adriani & Laviola 2000; Laviola et al. 1995; Mathews et al. 2009). The cause for 

inconsistencies among the findings is unclear, however differences in handling procedures may 

contribute. Maldonado et al. (2005a; 2005b) discovered that the direction of age differences (i.e., 

whether adolescents show more, less, or no differences compared to adults) in locomotor 

stimulation to cocaine varies depending on both sex and whether or not the rats were habituated 

to handling prior to the experiment. 

 

The lack of an overall main effect for sex is consistent with other mouse studies that have 

observed no difference in locomotor activity between males and females following cocaine 

administration (Kikusui et al. 2005; Wahlsten et al. 2003). But see Morse et al. (1993) who 

found male C57BL/6J and DBA/2J mice to travel greater distances than females following 

cocaine.  It is interesting that in rat studies, females are often found to stimulate more than males 

to cocaine (Craft & Stratmann 1996; Heyser et al. 1994; Laviola et al. 1995; Parylak et al. 2008; 

van Haaren & Meyer 1991). Variability in sex differences among rats and mice have been 

reported before (Jonasson 2005) and highlight the importance of accounting for species when 

considering sex differences. 
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Heritability  

Many previous studies have established significant genetic influences on locomotor 

responses to cocaine in adult mice.  These include selective breeding experiments (Marley et al. 

1998) and comparisons across inbred strains (Reith & Selmeci 1992; Ruth et al. 1988; Wiener & 

Reith 1990).  Consistent with previous reports, BALB/cByJ adults displayed lower levels of 

locomotor stimulation in comparison to adult C57BL/6J and DBA/2J related strains (Reith & 

Selmeci 1992; Ruth et al. 1988; Wiener & Reith 1990). However, unlike previous studies (Cook 

et al. 1998; Rocha et al. 1998; Tolliver & Carney 1994a, 1995), C57BL/6J displayed greater 

stimulation than DBA/2J (Fig. 2.2), but see Kalkafi et al. (2003) who also found greater 

stimulation in C57BL/6J than DBA/2J.  Two major differences between our study and many 

previous studies could explain discrepancies.  The first is that we tested our mice at night during 

their normal active period whereas a majority of previous studies tested animals during the light 

cycle.  Another major difference is that we measured locomotor activity in the animal’s home 

cage using continuous video tracking.  To the best of our knowledge, all previous studies placed 

animals into a new cage or arena during measurement of locomotor activity.  Placing animals 

into a new environment or one that is different from home induces a state of arousal and 

increases locomotor activity on its own.  Moreover, the response is strongly strain dependent 

(Lad et al.; Orsini et al. 2004).  Therefore, testing in the home cage may reduce noise in the data 

from reaction to novelty, and explain discrepancies in heritability estimates reported for adults in 

Table 2.1, as compared to previous studies.  

 

The heritability estimates in Table 2.1 must be interpreted with caution.  They are equal 

to R-square values from a 1-way ANOVA with strain as the factor.  The common assumption 

when using a panel of inbred strains to estimate heritability is that all animals experienced the 

same environment (Crabbe et al. 1990; Hegmann & Possidente 1981).  However, this 

assumption is blatantly false.  Most studies, including this one, did not transfer embryos or cross 

foster pups.  In most cases including the current study, all C57BL/6J mice were raised by 

C57BL/6J dams and reared around other C57BL/6J mice whereas all BALB/cByJ mice were 

raised by BALB/cByJ dams and reared around their own kind.  If social environment matters for 

cocaine responses, then the heritability estimates in Table 2.1 and many others of the same kind 
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(Rhodes et al. 2007; Turner et al. 2005) will be inflated.  Another note of caution is that 

heritability as measured from R-square using a panel of inbred strains does not represent a 

narrow-sense or a broad-sense estimate.  The estimate is not narrow-sense because it includes 

genetic variance from epistasis, but it is not broad-sense either because it excludes genetic 

variance from dominance.  Finally, the higher estimates of heritability in adults as compared to 

adolescents (Table 2.1), is a direct result of greater stimulation in adults.  The proportion of 

variation attributed to strain is magnified when the range in phenotypes is increased and 

individual variance within strains is relatively uniform (see Fig. 2.2).   

 

Summary 

The main finding was that differential locomotor stimulation from cocaine between 

adolescents and adults is strongly dependent on genetic background.  Certain strains including 

C57BL/6J and BALB/cByJ, showed the typical pattern of reduced stimulation in adolescents as 

compared to adults.  However, others such as DBA/2J and male FVB/NJ, showed no differences 

between ages.  Sex differences were only apparent as interactions with age for BALB/cByJ and 

FVB/NJ strains, suggesting a minor contribution of sex in explaining the age or strain 

differences. Disparate biological explanations could contribute to the strain differences including 

developmental differences in brain physiology, morphology, or pharmacokinetics.  Future 

studies testing these specific hypotheses as well as examining more strains at multiple time 

points during adolescence are needed to develop a richer understanding of the phenomenon of 

age differences in cocaine-induced stimulation. 
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Tables 
 
Table 2.1. Heritability estimates of locomotor activity following saline or cocaine administration 

Note: Bold font represents R2 values were significant at P<0.05 level.

Saline 15 mg/kg 30 mg/kg
Adults 0.05 0.48 0.74
Adolescents 0.30 0.30 0.65
Note: Bold font represents R2 values were significant at P<0.05 level.

Saline 15 mg/kg 30 mg/kg
Adults 0.05 0.48 0.74
Adolescents 0.30 0.30 0.65
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Figures 
 

 
 
Figure 2.1.  Photograph of the custom-made home cages where animals were tested for cocaine-

induced locomotor stimulation by continuous overhead video tracking.  Note that FVB/NJ and 

BALB/cByJ were tested in cages with dark type bedding (Shepherd Paperchip®) whereas 

C57BL/6J and DBA/2J were tested with light colored bedding (Harlan Corncob) to facilitate 

video tracking (dark object on light background or light object on dark background).  Red light 

was used to illuminate the cages during the dark cycle when locomotor activity testing occurred.  
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Figure 2.2. Average (± SE) distance traveled summed over 60 min following acute i.p. injection 

of saline or cocaine. Each bar represents the average of 8 individuals (collapsed across sex; 4 

males, 4 females).  Adults are shown as solid bars and adolescents open bars.  
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Figure 2.3. Comparison of female and male BALB/cByJ mice following 30 mg/kg cocaine. 

Average distance traveled in 5 min bins (± SE) is plotted against time for adults (filled symbols) 

and adolescents (open symbols). Animals were given a saline injection at 60 min, and 30 mg/kg 

cocaine injection at 120 min. Each data point represents the average of 4 individuals. Both 

graphs share the same y-axis. 
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Figure 2.4. Comparison of female and male FBV/NJ mice following cocaine injection. Average 
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average of 4 individuals. Both graphs share the same y-axis. 
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Abstract 

Adolescent mice display reduced locomotor stimulation to cocaine and amphetamine as 

compared to adults, but the mechanisms are not known. The primary aim of the current study is 

to test a possible pharmacokinetic explanation for the attenuated locomotor stimulation seen in 

adolescents. A secondary aim is to extend the current literature for acute methamphetamine in 

adolescents. Male, adolescent (PN 30-35) and adult (PN 69-74) C57BL/6J mice were 

administered an intraperitoneal injection of cocaine (5, 15, 30 mg/kg) or methamphetamine (1, 2, 

4 mg/kg) and euthanized 5, 10, 15, 30, 60, 120, or 240 minutes later. Home cage locomotor 

activity was recorded by video tracking and drug concentration levels in brain and blood from 

the infraorbital sinus were measured using liquid chromatography combined with mass 

spectroscopy. Both methamphetamine and cocaine increased locomotor activity in a dose 

response fashion, but the magnitude of the increase was less in adolescents than adults. 

Concentration of methamphetamine in the brain was similar between ages across time points.  

Concentration of cocaine in the brain was significantly higher in adolescents than adults at 5 

minutes, but similar at all other time points. Results suggest pharmacokinetics may make a small 

contribution to differential stimulation between adolescents and adult mice, but are unlikely the 

only factor. Developmental differences within the brain that effect pharmacodynamic properties 

of psychostimulants (e.g., number of receptor or transporters) represent alternatives. 
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Introduction 

Human adolescents are prone to engage in risky behaviors such as taking drugs. This is 

disturbing since adolescents may be at a greater risk for addiction to drugs of abuse than adults 

(Estroff et al. 1989). Differential behavioral responses to psychostimulant drugs in adolescents 

versus adults have also been observed in rodents.  For example, adolescent rodents display 

greatly reduced locomotor stimulation than adults after amphetamine or cocaine administration 

(Bolanos et al. 1998; Collins and Izenwasser 2002; Frantz et al. 2006; Lanier and Isaacson 1977; 

Laviola et al. 1999; Laviola et al. 1995; Spear and Brake 1983)but see (Parylak et al. 2008). 

Although neural adaptations associated with progressive increases in locomotor stimulation (i.e., 

sensitization) are widely regarded relevant for addiction, the contribution of individual 

differences to the first acute locomotor response is not known and has been debated (Kalivas et 

al. 1998; Robinson and Berridge 2001).  In any case, the differential behavioral response 

between adult and adolescent rodents is robust and for that reason it provides a useful model to 

explore potential mechanisms for differential behavioral responses to drugs between age groups.  

 

One possible explanation for differential locomotor stimulation in adolescent versus adult 

rodents is that the two ages experience different levels of drug in their brain.  Even though 

animals are given the same dose per kg body weight, cocaine and methamphetamine 

pharmacokinetics might change with age. In fact, concentrations of amphetamine in adolescent 

rats have been found to be lower than adults up to 60 minutes after administration (Spear and 

Brake 1983). However, researchers concluded that attenuated stimulation in adolescents were not 

related to brain concentration levels based on the finding that younger rats had even lower 

concentrations in the brain, but no behavioral differences than adults.  

 

Similar data are not available for methamphetamine. To the best of our knowledge, 

locomotor stimulation to methamphetamine between adolescents and adults has not been studied.  

Moreover, only one study has examined methamphetamine levels in the brains of adolescent 

versus adults and that was after four 10 mg/kg subcutaneous (s.c.) injections in Sprague–Dawley 

rats (Kokoshka et al. 2000). Using these data to generalize about possible pharmacokinetic 

contributions to differential locomotor stimulation is problematic, given that only 1 high dose 

was investigated, and that the route of administration was different than the intraperitoneal (i.p.) 
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route used in most other studies. Additionally, in Kokoshka et al. (2000), locomotor behavior of 

the rats was not examined making brain drug concentration and behavior correlations impossible.  

 

Although more information is available about pharmacokinetics of cocaine in adolescents 

versus adult rodents, the data are still incomplete (see Table 3.1). First, no study has examined 

early time points (less than 10 min) when rapid changes are taking place.  Second, the effect of 

different i.p. doses has not been examined within a single study. Third, only one study has 

looked at the time course of cocaine concentrations in the brain between age groups. In this 

study, dialysate levels of cocaine from the striatum after 20 mg/kg i.p. cocaine were compared 

between adolescents and adults and no differences found (Frantz et al. 2006). However, this 

conflicts with other studies showing lower cocaine levels in adolescents when whole brains are 

examined, but only for singular time points (Caster et al. 2005; McCarthy et al. 2004). Forth, 

only one study has been preformed in mice (McCarthy et al. 2004). Given that strain and species 

differences in metabolism can occur (Azar et al. 1998; McCarthy et al. 2004), caution must be 

taken before generalizing the above findings for mice. Finally, to the best of our knowledge, no 

study has measured adolescent behavior and brain drug concentrations within the same animal. 

Therefore within subject correlations have not been possible, only between subjects. 

 

The aim of this study was to determine the extent to which pharmacokinetic differences 

between adolescents and adult C57BL/6J mice could account for differential acute locomotor 

stimulation to methamphetamine and cocaine between the age groups. Based on generalizations 

of past studies in mice and rats (see Table 3.1), we predicted adolescents would have lower drug 

concentrations relative to adults and that these lower concentrations would coincide with lower 

locomotor stimulation to cocaine and methamphetamine in adolescents versus adults. 

 

Methods 

Subjects 

Male, C57BL/6J mice (The Jackson Laboratory, Bar Harbor, ME) were used. Adolescent 

mice were 21 days old at arrival and tested at 30-35 days of age. Adult mice were 60 days old at 

arrival and tested at 69-74 days of age. These are accepted time periods for adolescent and adult 

mice and rats (Spear and Brake 1983). Mice were housed in groups of 4 for 6 days after arrival 

and then housed singly for 5 days prior to the experiment. Single housing was necessary for 
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video tracking (see below). Mice were not handled prior to the test day except for routine cage 

changes. Food and water were available at all times. All mice were housed on a 12 hr reverse 

light dark cycle (lights off at 10AM and on at 10PM).  All testing was done at the onset of the 

dark cycle when animals are typically active.  Room temperature was maintained at 21 ± 1 ۫C. All 

procedures were approved by the University of Illinois Institutional Animal Care and Use 

Committee and adhered to NIH guidelines.  The University of Illinois is AALAC approved. 

 

Drugs 

Both cocaine hydrochloride and methamphetamine hydrochloride were obtained from 

Sigma Aldrich (St. Louis, MO). Injection solutions were prepared according to the salt, not the 

base form. Drugs were dissolved in 0.9% saline and administered in a volume of 5 ml/kg.  Doses 

and time points were chosen based on the literature (Azar et al. 1998; Benuck et al. 1987; Brien 

et al. 1978). 

 

Equipment 

Mice were housed in custom made home cages. Cages (18.5 cm x 33.5 cm x 16 cm) were 

constructed out of clear plastic with food and water access mounted on the side. Horizontal 

distance traveled in the home cage was recorded using TopScan (Clever Sys Inc, Vienna, VA) 

video tracking software. TopScan software was run on a Dell Precision 380 workstation (Dell 

Computer Corp., Round Rock, TX) which was connected to a Nuvico digital color quad interface 

(Nuvico, Englewood, NJ) and an Osprey-2000 (Viewcast Corp., Dallas, TX) or WinTV 

(Hauppauge Computer Works, Hauppauge, NY) capture card. Four Panasonic WV-CP244 

cameras (Panasonic Corp., Secaucus, NJ) mounted 152 cm above the cages were used to capture 

the video used for analysis.  

 

Experiment 1 – time course 

Previous studies have not established the time course for cocaine or methamphetamine 

concentrations in brain or blood in adolescents as compared to adult mice.  Therefore, one of the 

goals was to obtain these data for C57BL/6J. The purpose of these data was to identify time 

points when adolescent and adults display peak concentrations of drug in the brain, as well as 

time points when brain drug levels are similar between age groups.  
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Methamphetamine 

Mice were given a 2 mg/kg i.p. injection of methamphetamine and sampled at 5, 30, 60, 

120, and 240 minutes post injection (n = 5, 3, 7, 4, 3 adults and 5, 4, 8, 4, 3 adolescents per time 

point, respectively). In each case, samples were taken from the infraorbital sinus and brain. 

Infraorbital sinus blood samples were collected using 44.7 µl heparinized capillary tubes and 

placed in microcentrifuge tubes containing 50 µl ZnSO4 (5% in H2O) and 50 µl Ba(OH)2 (0.3 N). 

Immediately after taking the blood sample, mice were decapitated and each hemisphere of the 

brain was collected and placed in microcentrifuge tubes containing 150 µl ZnSO4 and 150 µl 

Ba(OH)2. The ZnSO4 and Ba(OH)2 were added to precipitate out proteins and lyse cells. All 

tubes were kept on wet ice until processed. 

 

Cocaine 

Mice were given a 30 mg/kg i.p. injection of cocaine and sampled at 5, 15, 30, or 60 

minutes post injection (n = 6, 5, 6, 5, adults and 6, 6, 6, 6 adolescents per time point, 

respectively). Brain and blood samples were collected as before except 45 µl sodium fluoride 

(1% in H2O) was added to each tube. Sodium fluoride was added to reduce molecular 

degradation of cocaine (Caster et al. 2005).  

 

Experiment 2 – locomotor activity 

Separate groups of animals (n=8 adolescents and 8 adults) were used to measure the time 

course of locomotor stimulation to methamphetamine and cocaine. For this TopScan was used to 

continuously record the home cage activity of animals before and after a series of two i.p. 

injections of saline or drug.  The test began when TopScan was turned on at the beginning of the 

dark cycle.  After 30 minutes of recording animals undisturbed, animals were given an i.p. 

injection of saline (0.9%) and immediately returned to home cages.  After 60 minutes, animals 

were given another injection, either 2 mg/kg methamphetamine or 30 mg/kg cocaine (n=4 adults 

and 4 adolescents per group).  

 

Experiment  3 – dose response 

The 10 minute time point for cocaine and 15 minute time point for methamphetamine 

were chosen for further analysis of drug concentrations in brain and blood for different doses 

because the pharmacokinetic data indicated concentration of drug in the brain would be close to 
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the peak at these times in both age groups. A total of 96 additional animals were given 5, 15, or 

30 mg/kg cocaine or 1, 2, or 4 mg/kg methamphetamine (n = 8 / dose / age) and sampled after 10 

or 15 minutes, respectively.  In addition to collecting the drug concentration data, we also 

collected locomotor activity in the home cage up until the time of sampling.  

 

Liquid Chromatography/Mass Spectrometry 

Preparation of stock solutions and standards 

Stock cocaine and methamphetamine solutions were prepared in MilliQ water (Millipore 

Milli-Q Biocel water purification system, Billerica, MA) to create 250 and 100 µg/mL solutions 

respectively. Stock solutions were used to prepare standard solutions of concentrations 0.01, 

0.05, 0.1, 0.25, 0.5, 1, 2, 3, 5, and 7 µg/mL for cocaine and 0.1, 0.5, 1, 5, 10, and 15 µg/ml for 

methamphetamine. All solutions were kept at 4 ۫C and prepared fresh before each LC/MS run. 

Standard solutions were run in tandem with samples. 

 

Sample preparation 

Blood samples were centrifuged using an Eppendorf 5417R centrifuge (Hamburg, 

Germany) at 20,000 x g for 10 minutes and the supernatant transferred to a LC/MS vial (Agilent, 

Santa Clara, CA). Brain samples were first homogenized for approximately 10 seconds with a 

motorized pestle (Kontes, Vineland, NJ). 300 uL MilliQ water was added to brain cocaine 

samples before centrifuging in order to increase the volume of fluid for sampling. In order to aid 

in detecting low concentrations, water was not added to brains of mice that received 

methamphetamine. Brain samples were centrifuged at 20,000 x g for 15 minutes. 

 

Instrumentation and Chromatographic Conditions  

General LC/MS procedures followed Concheiro et al. (2006). An Agilent 1100 series LC 

system (Santa Clara, CA) was used for sample separation and introduction to mass spectrometry. 

Samples were placed in a cooled sample tray (4 ºC) and injected (5 μL) into the Agilent column 

ZORBAX Eclipse XDB-C8 (4.6 × 150 mm, 5-micro) (Santa Clara, CA, USA) for cocaine and a 

Phenomenex Onyx Monolithic C18 column (100 × 4.6 mm) (Torrance, CA, USA) for 

methamphetamine. The column was equilibrated with 95% solvent A (0.1% formic acid in H2O) 

and 5% solvent B (ACN), and eluted at ambient temperature with a 300 μL/minute flow rate.  

The linear gradient for cocaine is as follows: 1 minute, 5% B; 8 minutes, 50% B; 13 minutes, 5% 
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B. The linear gradient for methamphetamine was: 1 minute, 5% B; 8 minutes, 100% B; 13 

minutes, 5% B. A clean run of 100% ACN for 5 minutes, and then 5% ACN for 5 minutes was 

preformed after every 10 samples followed by a blank run to ensure optimum column 

performance. 

 

Positive ion mass spectra were acquired using an Agilent MSD Trap XCT Plus mass 

spectrometer equipped with an ESI source (Santa Clara, CA, USA).  For best sensitivity, positive 

ESI signals from standard cocaine and methamphetamine solutions were tuned with the use of a 

Kd Scientific 789100A model syringe pump (Holliston, MA, USA) connected directly to ion 

source via PEEK tubing.  Nitrogen was used as nebulizer gas (30 psi) and drying gas (9 

l/minute).  The capillary voltage was set to 4.5 kV.  The heated capillary of ESI source was kept 

at 350 ºC during the analysis.  Software Chemstation for LC 3D system Rev B.01.03 (Agilent 

Technologies, Santa Clara, CA) was used for LC/MS system control and data acquisition. 

 

Data Analysis 

Statistical analysis was preformed with SAS 9.1 (SAS Institute Inc., Cary, NC). 

Adolescents and adults were compared for body mass and baseline locomotor activity using un-

paired t-tests.  The correlation between body mass and brain mass was analyzed using simple 

linear regression and polynomial regression. Distance traveled within 10 or 15 minute periods 

following injections and drug concentrations in the brain and the blood were analyzed using 2-

way analysis of variance with age and dose or age and time as factors.  Pair-wise differences 

were evaluated using Tukey or Scheffe post hoc tests.  The relationship between locomotor 

stimulation and brain drug concentration was analyzed by analysis of covariance. In this model, 

locomotor activity was analyzed as the response, brain concentration as the continuous predictor 

(covariate), and age as the factor. For all tests, a p-value of <.05 was considered significant. 

 

Results 

Body mass 

Adolescent body mass was 74% of adult body mass [16.4 ± 0.20 g SEM versus 22.3 ± 

0.16, t (198)= 23.1, P<0.0001]. Adolescent brain mass was 95% of adult brain mass [404.4 mg ± 

2.45 SEM versus 425.0 ± 2.31 mg, t(205)=6.1, P<0.0001]. Brain mass was significantly 

correlated with body mass within each age group [adolescents: R2=0.20, t(103)=1.1, P<0.0001) 
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adults: R2=0.06, t(100)=2.4, P=0.017] and among all individuals R2=0.26, [t(205)=8.44, 

P<0.0001]. The second order coefficient of the polynomial regression was significant [t(204)=-

1.99, P=0.048] suggesting a curve or plateau in brain mass after approximately 20 g of body 

mass (Fig. 3.1). 

 

Methamphetamine 

Experiment 1 – time course 

Methamphetamine levels in the brain peaked slightly earlier and were slightly lower at 30 

or 60 minutes post injection in adolescent relative to adult animals though these effects were not 

significant (Fig. 3.2a).  The effect of time was highly significant [F(5,54)=4.23, P=0.003], but 

there was no main effect of age [F(1,54)=1.98, P=0.17] or interaction.  

 

Experiment 2 – locomotor activity 

Under baseline conditions in home cages, in the absence of any injections, animals 

moved negligible distances as compared to after injections of cocaine or methamphetamine (see 

Fig 3.3).  After a saline injection, there was a small increase in activity that returned to baseline 

within approximately 20 min.  Baseline differences before or after saline between adolescents 

and adults were small but nonetheless statistically significant (adolescents slightly lower than 

adults, all P<0.0001).  Note that because of the difference in the magnitude for locomotor 

activity after the drug doses, these small baseline differences have negligible quantitative effects 

on drug-induced locomotor activity (i.e., locomotor activity after drug minus after saline). 

 

The distance traveled within a 90 minute period after 2 mg/kg methamphetamine 

injection was significantly less in adolescents compared to adults [F(2,18)=116.72, P<0.0001] 

(Fig. 3.2d).  The result was the same after subtracting distance traveled after saline within 

subjects. 

  

Experiment 3 – dose response 

Concentrations of methamphetamine in both brain and blood samples at the 15 minute 

time point increased as a function of dose [brain, F(2,42)=13.43, P<0.0001; blood, 

F(2,36)=12.63, P<0.0001], however no age differences were observed at any dose [brain, 

F(1,43=0.07, P>0.05; blood F(1,36)=0.96, P>0.05] (Fig. 3.2b,c).  
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Locomotor activity at the 15 minute time point significantly increased with dose for both 

age groups [F(3,38)=66.34, P<0.0001] (Fig. 3.2e).  The main effect of age was significant 

[F(1,38)=9.34, P=0.004] (Fig. 3.2e).  Although the interaction between age and dose was not 

significant, Scheffe post hoc analysis indicated that adults differed from adolescents at 2 mg/kg 

(P=0.002), and there was a trend for 1 mg/kg (P=0.09) but not at 4 mg/kg (P=0.29), where the 

greatest amount of stimulation occurred.   

 

Locomotor activity was significantly correlated with concentration of methamphetamine 

in the brain at the 15 minute time point across all individuals and all doses [R2=0.25, P= 0.005]. 

Results of linear regression show a trend for lower activity for a given concentration of 

methamphetamine in the brain in adolescents as compared to adults [F(1,44)=2.64, P=0.11] (Fig. 

3.2f). Results were similar when locomotor activity was adjusted by subtracting distance traveled 

after saline within subjects. 

 

Cocaine 

Experiment 1 – time course 

Concentration of cocaine in the brain reached a higher peak and the peak occurred earlier 

in adolescents as compared to adults after 30 mg/kg i.p. injection (Fig. 3.4a). Because of the 

potential importance for the result at 5 minutes, that time-point was repeated on three separate 

occasions. On each occasion, mean concentration was higher in adolescents than adults [overall 

t-statistic for 5 minute time point was t(22)=3.08, P = 0.005].  In the analysis with all other time 

points, where adolescents and adults did not differ (Fig. 3.4a), the interaction between age and 

time was non-significant [F(4,66)=2.02, P=0.10] but the Tukey or Scheffe post hoc difference 

between adolescent and adult at the 5 minute time point was significant [P<0.05]. The main 

effect of time was significant [F(4,66)=14.20, P<0.0001] and age non-significant [F(1,66)=1.48, 

P=0.07]. 

 

Experiment 2 – locomotor activity 

The distance traveled within a 90 minute period after 30 mg/kg cocaine injection was 

significantly less in adolescents compared to adults [F(1,18)=12.67, P=0.002] (Fig. 3.4b).  The 

result was the same after subtracting distance traveled after saline within subjects. 
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Experiment 3 – dose response 

Concentrations of cocaine in both brain and blood samples at the 10 minute time point 

increased as a function of dose [brain, F(2,42)=39.32, P<0.0001; blood, F(2,42)=37.89, 

P<0.0001], however no age differences were observed at any dose [brain, F(1,42)=0.04, P>0.05; 

blood F(1,42)=0.83, P>0.05] (Fig. 3.4b,c). 

 

Locomotor activity significantly increased with dose for both age groups [F(3,42)=34.39, 

P<0.0001] (Fig. 3.4e).  Adults showed significantly greater locomotor stimulation from 

increasing doses than adolescents as evidenced by a significant main effect of age 

[F(1,42)=10.55, P=0.002] and interaction between age and dose [F(3,42)=3.61, P=0.021].  

Scheffe post hoc analysis indicated that adults differed from adolescents at 15 mg/kg (P=0.006) 

and 30 mg/kg (P=0.001). 

 

Locomotor activity in response to cocaine was significantly correlated with concentration 

of cocaine in the brain across individuals [F(1,46)=36.98, P<0.0001].  Results of analysis of 

covariance show that for a given concentration of cocaine in the brain, the level of activity was 

significantly lower in adolescents as compared to adults [F(1,45)=4.57, P=0.038] (Fig. 3.4f). As 

before, baseline corrections did not change results. 

 

Blood-Brain Correlations 

Concentration of cocaine in the brain was strongly correlated with infraorbital blood 

among individuals (R2 = 0.85, P<0.0001; Fig. 3.5b). The correlation between blood and brain 

methamphetamine concentrations was significant but not as strong in cocaine samples (R2 = 

0.22, P=0.004) (Fig. 3.5a). 

 

Discussion 

These data extend previous reports of reduced locomotor stimulation to cocaine (Collins 

and Izenwasser 2002; Frantz et al. 2006; Laviola et al. 1995) or amphetamines (Bolanos et al. 

1998; Lanier and Isaacson 1977) in adolescents as compared to adults.  To the best of our 

knowledge, this is the first demonstration that the phenomenon is also true for methamphetamine 

in adolescent versus adult male C57BL/6J mice. Given that cocaine and methamphetamine share 
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similar mechanisms of action, the result is not surprising. Regarding the primary question of 

whether pharmacokinetic differences could contribute to the behavioral differences, for 

methamphetamine, results suggest the pharmacokinetic contribution is likely small.  The 

behavioral differences between the age groups were large and statistically significant (Fig. 

3.2d,e) whereas the differences in brain concentrations were small and not significant (Fig. 

3.2a,b).  Moreover, levels of activity were lower in adolescents than adults for a fixed 

concentration of methamphetamine in the brain (Fig. 3.2f).  Taken together, these results argue 

against the pharmacokinetic hypothesis for differential locomotor stimulation to 

methamphetamine.   

 

Results for cocaine were more complex.  Results establish for the first time, that 

adolescents have a higher concentration of cocaine in their brain as compared to adults, 5 

minutes after an i.p. injection.  The observation was replicated three times to confirm the new 

finding (Fig. 3.4a).  The reason cocaine accumulated in the brain of adolescents more rapidly 

than adults may be because brain weight is a larger percentage of body weight in adolescents 

than adults (Fig. 3.1). Since cocaine is lipophilic, the initial peak in adolescents may represent a 

rapid redistribution of a liophilic molecule in a highly perfused organ. Furthermore, this initial 

peak could indirectly contribute to differential locomotor stimulation. For example, it is possible 

that the higher peak and earlier rise in cocaine concentrations in the brains of adolescents as 

compared to adults resulted in greater acute functional tolerance to cocaine. Acute tolerance 

refers to rapid neuroadaptations that occur leading to greater behavioral response when drug 

concentrations are rising than when falling. It is a well documented phenomenon in alcohol 

exposure and has also been observed for the subjective effects of cocaine in humans (Foltin and 

Fischman 1991) as well as cardiovascular responses to cocaine in rats (Tella et al. 1999) and 

humans (Foltin and Fischman 1991). The higher peak in adolescents may act comparably to what 

would be a higher dose in adults. Since acute tolerance to alcohol has been shown to increase 

with dose in mice (Ponomarev and Crabbe 2004), the effect of the higher peak in adolescents 

may increase acute tolerance therefore decreasing locomotor stimulation.  

 

An alternative explanation is that the higher peak concentration of cocaine produced 

stereotypic behavior in adolescents, resulting in reduced locomotor activity (Caster et al. 2005). 

Although stereotypy was not measured in the present study, indirect evidence suggests 
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adolescents were not engaged in stereotyped behaviors.  First, differences in locomotor activity 

between age groups were seen shortly after drug administration and stereotyped behaviors 

typically occur after an initial locomotor activation phase (Rebec and Bashore 1984). Second, the 

dose response analysis showed that both adolescents and adults increased responding with dose 

(Fig. 3.2e, 3.4e). Given that the dose response curve for the locomotor stimulating effects of 

cocaine is known to follow an inverted U-shape with stereotypy contributing to the descending 

limb (Shuster et al. 1977; Tolliver and Carney 1994), if adolescents were engaged in stereotypy, 

an increase of dose would be expected to further decrease locomotion. Rather, the evidence 

suggests that adolescents are less sensitive than adults to the locomotor stimulating effects of 

cocaine and methamphetamine. This is consistent with the conclusions of previous studies 

(Bolanos et al. 1998; Collins and Izenwasser 2002; Frantz et al. 2006; Lanier and Isaacson 1977; 

Laviola et al. 1999; Laviola et al. 1995; Spear and Brake 1983).  It also explains why adolescents 

and adults showed similar levels of locomotor activity after the high methamphetamine dose (4 

mg/kg; Fig. 3.2e).  We have other unpublished data on the time course for locomotor stimulation 

to 4 mg/kg in adolescents versus adults and believe that this dose of methamphetamine is 

probably near the intersection of the descending limb of the U-shape curve in adults with the 

ascending limb in adolescents.  Probably had we used a higher dose of cocaine, we would have 

eventually reached the point of intersection where stimulation in adolescents is comparable to 

adults. 

  

The finding that cocaine concentration in the brain is similar between adolescents and 

adults after 10 minutes is consistent with Frantz et al. (2006) and Caster et al. (2005) in rats. 

However our results do not replicate the finding of McCarthy et al. (2004) which suggested 

adolescent male C57BL/6J mice have lower cocaine concentrations in the brain than adults 15 

minutes after cocaine administration (See Table 3.1). The explanation for this discrepancy is not 

clear.   

 

The current study used custom made home cages conducive for video tracking to monitor 

locomotor activity in the animal’s home environment. The finding that locomotor stimulation to 

cocaine was attenuated in adolescents as compared to adults under these conditions is consistent 

with previous studies where animals were transferred to a new cage for activity measurements 

(Bolanos et al. 1998; Collins and Izenwasser 2002; Frantz et al. 2006; Lanier and Isaacson 1977; 

49



 

  

Laviola et al. 1999; Laviola et al. 1995; Spear and Brake 1983). Although this suggests the 

phenomenon of differential locomotor stimulation is robust across these two environments, it is 

important to note the methodological differences that could impact generalization of results. 

First, mice were singly housed for video tracking. Single housing has been shown activate the 

hypothalamic-pituitary-adrenal axis and affect behavior in a number of tasks (Schrijver et al. 

2002; Schrijver and Wurbel 2001). On the other hand, the single housing in these studies lasted 

over 50 days whereas in this study animals were singly housed for only 5 days.  Another 

methodological consideration is that mice were not handled, other than to change cages, prior to 

the testing day. Handling has been shown to increase locomotor stimulation to cocaine in 

adolescent, but not adult, rats (Maldonado and Kirstein 2005a; b). Therefore, it is possible that 

had we handled the mice, the adolescents might have displayed higher levels of locomotor 

stimulation, more comparable to adults. Finally, testing in the home cage as opposed to a novel 

environment might have affected the magnitude of the behavioral difference between the age 

groups. While locomotor stimulation to psychostimulants has been observed in both types of 

environments (Ganea et al. 2007), adolescent rats have been shown to ambulate more than adults 

when placed in a novel environment in the absence of drug administration (Spear and Brake 

1983).  

 

Blood and brain sample correlations 

The finding that cocaine concentration in the brain is higher than in the blood is 

consistent with previous studies examining trunk blood and brain drug concentrations in adult 

mice (Benuck et al. 1987; Patrick et al. 1993; Reith et al. 1987) and rats (Nayak et al. 1976) but 

see McCarthy et al. (2004) who found higher concentrations of cocaine in blood than brain in 

C57BL/6J mice. Results suggest sampling blood from the infraorbital sinus after cocaine 

administration accurately reflects concentrations of cocaine in the brain.  The weaker correlation 

between blood and brain samples for methamphetamine as compared to cocaine can be explained 

by a few key differences. First, the dose range was lower for methamphetamine than cocaine (1, 

2, 4 mg/kg methamphetamine versus 5, 15, 30 mg/kg cocaine). Second, concentrations of 

methamphetamine in blood were lower than in brain and some of the blood (but not brain) 

samples reached the limit of detection for LC/MS/MS.  

 

Limitations 
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It is important to note that the techniques used in this study do not differentiate 

pharmacologically active drug (e.g., drug bound to dopamine transporters) and the amount of 

drug that is inactive (e.g., drug that is not affecting cellular processes). It has been established 

that depot binding (e.g., drug binding to plasma protein, muscle, and fat), can affect the 

magnitude and duration of drug action (Fasano et al. 2005; Nayak et al. 1976). Given that white 

matter is increasing throughout adolescence (Giedd 2004), it is conceivable that there is a 

difference in depot binding within white matter between adolescents and adults. If so, then it is 

possible adults and adolescents could have the same absolute concentration of drug in the brain 

while having differential amounts of pharmacologically active drug.  

 

Another limitation for whole brain sampling is that it does not differentiate drug levels in 

areas of the brain that are more directly involved in locomotor stimulation from other regions. 

For example, dopaminergic projections from the ventral tegmental area to the striatum have been 

shown to be important in the motor activation effects of cocaine and methamphetamine (Rebec 

2006). If there are any differences in distribution of cocaine or methamphetamine within the 

brain between adolescents and adults, then that could also explain behavioral differences.  

 

Caution should be taken before generalizing results to other strains or other species given 

that previous studies have noted differences in pharamacokinetics between strains (Azar et al. 

1998; McCarthy et al. 2004) and between rats and humans (Cho et al. 2001). While dose, strain, 

and type of administration all affect pharmacokinetics, our estimates of cocaine and 

methamphetamine concentrations in the brain and blood are within the range observed in other 

studies for methamphetamine (Brien et al. 1978; Fornai et al. 1999; Hendrickson et al. 2004; 

Won et al. 2001) and cocaine (Azar et al. 1998; Benuck et al. 1987; Miller et al. 1996; Pan and 

Hedaya 1998; Reith et al. 1987). Additionally, the primary routes of metabolism in mice (Boyer 

and Petersen 1992; Shuster et al. 1983) are similar to those in rats (Estevez et al. 1977) and 

humans (Bencharit et al. 2003; Brzezinski et al. 1997).  

 

Summary 

These results add to the growing rodent literature on adolescents documenting differential 

behavioral responses to drugs of abuse as compared to adults (Badanich et al. 2006; Bolanos et 

al. 1998; Collins and Izenwasser 2002; Laviola et al. 1995).  We show, for the first time, that 
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adolescents display reduced locomotor stimulation to methamphetamine, similar to cocaine and 

amphetamine that share similar mechanisms of action.  Results do NOT support the 

pharmacokinetic hypothesis for differential locomotor stimulation to methamphetamine because 

locomotor stimulation was significantly reduced in adolescents versus adults even though 

concentrations of drug in the brain were similar at all time points.  However, for cocaine, the 

story was more complex.  Adolescents experienced higher concentrations of cocaine in their 

brain as compared to adults 5 minutes after an i.p injection.  This is an important discovery 

because a higher concentration in adolescents as compared to adults has never previously been 

reported (see Table 3.1), but no other study, to our knowledge sampled that early.  The possible 

role this might have on affecting behavior at later time points is not clear, but acute functional 

tolerance represents a possible mechanism for future exploration.  Nonetheless, given that the 

pharmacokinetic difference was only for the early time point and that locomotor activity differed 

at many later time points, the possible pharmacokinetic contributions are likely small.  
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Figure 3.1. Brain - body mass allometry.  Brain mass plotted against body mass for adolescent 

(open circles) and adult (filled circles) C57BL/6J male mice. Simple linear regression lines are 

shown separately for adults (solid line) and adolescents (dashed line).  
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Figure 3.2. Methamphetamine data.  (a) Time course for methamphetamine concentrations in the 

brain after i.p. injection of 2 mg/kg (adults closed symbols, adolescents open symbols; data from 

experiments 1 and 3 combined; n = 5, 8, 3, 7, 4, 3 adults and 5, 8, 4, 8, 4, 3 adolescents per time 

point, respectively). Methamphetamine concentrations in the brain (b) and blood (c) at the 15 

min time point after i.p. injection of 1, 2, or 4 mg/kg (adults filled bars, adolescents open bars; 

n=8 per bar). (d) Time course for locomotor activity after i.p. injection of 2 mg/kg (n=4 per age 

group).  Only the first 70 minutes are shown to facilitate comparison with the pharmacokinetic 

data above.  (e) Distance traveled in 15 minutes after 0, 1, 2, or 4 mg/kg (n=8 per bar). (f) 

Distance traveled plotted against brain-methamphetamine concentration, separately for adults 

(open symbols) and adolescents (filled symbols).  The simple linear regression lines are shown 

separately for adults (filled line) and adolescents (dashed line). All graphs in a row share the 

same y-axis labels.  Standard error bars shown. 
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Figure 3.3. Locomotor activity before and after cocaine.  Average distance traveled (meters, in 5 

min bins; ± standard error; n=4 per age group) in the home cage of adolescent (open circles) or 

adult (filled circles) mice starting at the onset of the dark cycle (when lights shut off) and ending 

200 minutes later. The first 60 minutes shows baseline activity when animals were left 

undisturbed. An i.p. injection of saline was administered at 60 min (1st arrow).  At 120 min (2nd 

arrow) an i.p. injection of 30 mg/kg cocaine was administered.  Other than removing animals for 

the injections they were left undisturbed and distance was measured continuously using video 

tracking software (see methods). 
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Figure 3.4. Cocaine data.  (a) Time course for cocaine concentrations in the brain after i.p. 

injection of 30 mg/kg (adults closed symbols, adolescents open symbols; data from experiments 

1 and 3 combined; n = 6, 8, 5, 6, 5, adults and 6, 8, 6, 6, 6 adolescents per time point, 

respectively). Cocaine concentrations in the brain (b) and blood (c) at the 10 min time point after 

i.p. injection of 5, 15, or 30 mg/kg (adults filled bars, adolescents open bars; n=8 per bar). (d) 

Time course for locomotor activity after i.p. injection of 30 mg/kg (n=4 per age group).  Note 

this is the same data as shown in Figure 3.3, minutes 125-190. Only the first 70 minutes are 

shown here to facilitate comparison with the pharmacokinetic data above.  (e) Distance traveled 

in 10 minutes after 0, 5, 15, or 30 mg/kg (n=8 per bar). (f) Distance traveled plotted against 

brain-cocaine concentration, separately for adults (open symbols) and adolescents (filled 

symbols).  The simple linear regression lines are shown separately for adults (filled line) and 

adolescents (dashed line). All graphs in a row share the same y-axis labels.  Standard error bars 

shown. 
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Figure 3.5. Correlation between brain and blood.  Concentration of methamphetamine (a) and 

cocaine (b) in the brain plotted against infraorbital blood for adolescents (open circles) and adults 

(filled circles). Simple linear regression lines are shown for the combined adolescent and adult 

data. 
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CHAPTER IV 
 
 
 
 
 
 
 
 

Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and 
methamphetamine in adolescent versus adult male C57BL/6J mice  
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Abstract 

Adolescence is a time period when major changes occur in the brain with long-term 

consequences for behavior.  One ramification is altered responses to drugs of abuse, but the 

specific brain mechanisms and implications for mental health are poorly understood.  Here, we 

used a mouse model in which adolescents display dramatically reduced sensitivity to the acute 

locomotor stimulating effects of cocaine and methamphetamine.  The goal was to identify key 

brain regions or circuits involved in the differential behavior.  Male adolescent (PN 30-35) and 

young adult (PN 69-74) C57BL/6J mice were administered an intraperitoneal injection of 

cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 minutes later. 

Locomotor activity was monitored continuously in the home cage by video tracking.  

Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 

different brain regions.  As expected, adolescents were less sensitive to the locomotor 

stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose 

response relationship. After a saline injection, adolescents showed similar levels of Fos as adults 

in all regions except the dorsal and lateral caudate where levels were lower in adolescents. 

Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in 

both adolescents and adults, but Fos levels were similar in both age groups for a majority of 

regions and doses.  Locomotor activity was correlated with Fos in several brain areas within 

adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a 

given amount of locomotor activity in key brain regions including the caudate where they 

showed reduced Fos under baseline conditions.  Future research will identify the molecular and 

cellular events that are responsible for the differential psychostimulant-induced patterns of brain 

activation and behavior observed in adolescent versus adult mice. 
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Introduction 

The literature on acute locomotor stimulation from cocaine and amphetamines in animal 

models dates back more than 80 years (Tatum and Seevers, 1929).  Key brain regions (e.g., 

caudate, nucleus accumbens), neural circuits (e.g., natural reward, basal ganglia, motor), and 

specific cellular and molecular events (e.g., dopamine neurotransmission, DARPP-32 signaling) 

have been identified that contribute to increased physical activity, arousal, reward and other 

behaviors induced by these drugs (Gold et al., 1989, Uhl et al., 2002, Rebec, 2006, Zachariou et 

al., 2006, Zombeck et al., 2008).  However, it has proven much more difficult to identify the 

features that contribute to individual differences in sensitivity to locomotor responses or other 

behavioral effects (Volkow et al., 2002, Klein and Gulley, 2009).  This is important because it 

has been argued that individual differences in sensitivity to initial drug experience are related to 

vulnerability for future drug abuse (Lambert et al., 2006). 

 

Recently, an important gap in the literature is being filled that could make a significant 

contribution to the field.  Several studies using rodent animal models have discovered that 

sensitivity to the acute locomotor response to psychostimulant drugs such as cocaine and 

amphetamines is strongly dependent on age.  We previously reported that adolescent C57BL/6J 

mice (age range 30-35) are significantly less sensitive to the locomotor stimulating effects of 

cocaine and methamphetamine as compared to young adults (age range 60-67) (Zombeck et al., 

2008). This general observation of reduced acute locomotor response has been observed in 

previous studies mostly using rats (Lanier and Isaacson, 1977, Laviola et al., 1995, Bolanos et 

al., 1998, Maldonado and Kirstein, 2005a, Frantz et al., 2007, Zakharova et al., 2009) but it is not 

always observed (Camarini et al., 2008, Parylak et al., 2008) and some studies show increased 

stimulation in adolescent rats as compared to adults (Catlow and Kirstein, 2005, Caster et al., 

2007, Caster and Kuhn, 2009).   

 

Many potential mechanisms could explain differential locomotor stimulation between 

ages. Developmental changes during adolescents include increased dopamine receptors in the 

caudate in adolescent rodents as compared to adults (Teicher et al., 1995, Tarazi et al., 1998, 

Tarazi et al., 1999), immature prefrontal cortex (Rosenberg and Lewis, 1995, Giedd et al., 1999), 

decreased white matter (Giedd, 2004), among others (for review see Spear, 2000).  One method 
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to refine the search for a mechanistic explanation is to examine the patterns of Fos activation that 

occur throughout the brain after an injection of drug in each age group.  The idea is that neuronal 

activation, as indicated by Fos induction, will reflect behavior and therefore identify the key 

brain regions and circuits involved in differential behavioral responses (Rhodes et al., 2003, 

Rhodes et al., 2005, Zombeck et al., 2008).  By virtue of knowing the key brain regions, 

information about the distribution of cell types, receptor signaling systems, and principle afferent 

and efferent connections in the regions becomes available from the literature.  This can help 

refine hypotheses about specific cellular or molecular mechanisms underlying the behavioral 

difference between the age groups.   

 

Only a few studies have compared Fos or other related molecular responses to 

psychostimulants in adolescent as compared to adult rodents.  Caster and Kuhn (2009) found 

higher levels of c-fos gene expression in the caudate of adolescent (age 28 days) as compared to 

adult (65 days) Sprague Dawley rats in response to 10 mg/kg cocaine, but the reverse for 40 

mg/kg.  In this study, adolescents displayed greater locomotor stimulation than adults for the 10 

mg/kg dose and the reverse for the 40 mg/kg dose.  Another study found elevated ΔFosB 

expression in the nucleus accumbens and caudate of adolescent versus adult male CD-1 mice 

following chronic administration of cocaine (20 mg/kg/day for 7 days) or amphetamine (5 

mg/kg/day for 7 days) (Ehrlich et al., 2002).  ΔFosB accumulates after repeated administration of 

psychostimulants and is thought to mediate longer lasting transcriptional regulation that is 

directly induced from the immediate early gene responses that occur during the initial drug 

administration (Nestler et al., 2001).  This would suggest that cells in the striatum may display a 

greater initial genomic response than adults for a given dose of drug associated with decreased 

sensitivity to the locomotor activating effects.  However, Ehrlich et al. (2002) did not measure 

locomotor activity or immediate early gene responses, so this hypothesis requires further 

investigation.  Consistent with the idea, Anderson et al. (2001) found a greater percentage of Fos 

positive cells in the striatum of adolescent (age 35 days) versus young adult (age 60) Sprague 

Dawley rats following acute amphetamine (1 or 5 mg/kg). However, lower c-fos mRNA levels 

were observed in the ventral caudate of adolescent compared to adult Sprague Dawley rats 

following two intravenous doses of cocaine (Cao et al., 2007). 
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Taken together the evidence reviewed above points to the striatum as a location where 

cellular or molecular differences occur in adolescents as compared to adults that could mediate 

reduced sensitivity to locomotor activating effects of psychostimulants between the age groups.  

That is not surprising given that cocaine and amphetamines increase dopamine in extracellular 

spaces and the striatum is a major site of dopamine innervation (Wise, 2002).  But there are a 

number of remaining questions.  First the direction of the difference in immediate early gene 

induction, i.e., whether adolescents show greater or reduced Fos response to the drugs as 

compared to adults, is not consistent between the studies.  Second, to the best of our knowledge, 

none of the previous studies examined Fos induction from methamphetamine between 

adolescents and adults.  Given current methamphetamine use (Winslow et al., 2007), and the 

potential differences during adolescence, we thought it would be important to investigate.  Third, 

to our knowledge, none of the previous studies analyzed the Fos responses using locomotor 

activity as a covariate in the statistical analysis.  We have found, as others have in previous 

studies, that level of locomotor activity is strongly correlated with Fos levels throughout the 

brain (Rhodes et al., 2005, Caster and Kuhn, 2009).  Therefore, one of the aims of this study was 

to determine whether the differential Fos induction from cocaine and methamphetamine in 

adolescents as compared to adults could be explained merely based on the level of physical 

activity displayed by the animals.  Fourth, other areas besides the striatum receive dopamine 

innervation, and cocaine and methamphetamine affect signaling of other neurotransmitters 

including serotonin (Cunningham and Callahan, 1994, Muller et al., 2003) and norepinephrine 

throughout the brain (Uhl et al., 2002).  Moreover, many other brain regions are involved in the 

locomotor activating effects of cocaine and amphetamines besides the striatum (e.g., ventral 

pallidum, motor cortex).  The adolescent brain significantly differs from adults in these brain 

areas as well and that could contribute to differential locomotor activity.  Therefore, we 

examined 16 different regions throughout the brain that we hypothesized might be involved in 

the differential locomotor activating effects of cocaine and methamphetamine in adolescents as 

compared to adults.   

 

As compared to adults, we predicted adolescents would have reduced levels of Fos in 

response to cocaine and methamphetamine in most brain areas because we expected Fos would 

reflect the reduced locomotor activity (Zombeck et al., 2009).  After locomotor activity was 
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removed as a covariate, we expected the differences in Fos between the age groups would no 

longer be apparent except in key brain regions involved in the differential behavior.  We 

reasoned that reduced or enhanced signaling in response to the same stimulus in adolescents 

versus adults could modulate the motor circuit and contribute to reduced sensitivity to locomotor 

stimulation in adolescents.   

 

Methods 

Subjects 

A total of 96 male C57BL/6J mice were used.  The experiment was conducted in 4 

separate batches consisting of 2 replicates for cocaine and 2 for methamphetamine.  Each batch 

or replicate, consisted of 12 adults and 12 adolescents evenly distributed among the doses.  After 

arrival from The Jackson Laboratory (Bar Harbor, ME), mice were housed in group of 4 for 6 

days to habituate and then housed singly in custom-made acrylic home cages (18.5 cm x 33.5 cm 

x 16 cm) with clear plastic lids conducive for video tracking from above. Adolescent mice were 

21 days old at arrival and tested at 30-35 days of age. Adult mice were 60 days old at arrival and 

tested at 69-74 days of age.  All mice were housed on a 12:12 reverse light/dark cycle (lights off 

at 10 AM and on at 10 PM) with the room temperature maintained at 21 ± 1 ºC. Free access to 

food and water was available at all times. All procedures were approved by the University of 

Illinois Institutional Animal Care and Use Committee and adhered to NIH guidelines. 

 

Drug solutions 

Cocaine hydrochloride or methamphetamine hydrochloride (Sigma Aldrich, St. Louis, 

MO, USA) was dissolved in 0.9% saline and was administered at a dose of 0, 15, 30 mg/kg or 0, 

2, 4, mg/kg respectively via intraperitoneal injections in a volume of 10 ml/kg.  Dose was chosen 

based on the literature (Azar et al., 1998, Vorhees et al., 2005, Zombeck et al., 2009) and was 

prepared according to the salt not the base form.  

 

Locomotor activity 

Locomotor activity was continuously recorded using Topscan software (Clever Sys Inc, 

Reston, VA, USA).  Mice were video-tracked in custom-made home cages where they were 

acclimated for 3-8 days prior to any injections (see Subjects section). Recording began at the 

68



 

  

onset of the dark phase (i.e. active period).  First, baseline locomotor activity was monitored for 

1 hr. All mice then received a saline injection in order to measure the behavioral response to an 

injection.  Activity was again measured for 1 hr after which an injection of cocaine (0, 15, 30 

mg/kg) or methamphetamine (0, 2, 4 mg/kg) was administered. For each dose of each drug, 8 

adolescent and 8 adult mice were sampled. Locomotor activity recorded for 1.5 hrs before 

animals were sacrificed by decapitation. Brains were quickly dissected and placed in 5% acrolein 

in phosphate buffered saline (PBS) solution overnight (Zombeck et al., 2008). 

 

Immunohistochemistry 

Following Zombeck et al. (2008), brains were transferred into 30% sucrose solution for 

24 hours at 4 ºC and then transferred into a fresh 30% sucrose solution for storage until 

sectioning. Brains were then sectioned (40 μm thick) using a cryostat.  Sections were placed into 

a 24 well plate containing tissue cryoprotectant, then stored at -20 ºC.  Alternate sections were 

transferred into PBS, 24 hrs before beginning immunohistochemistry. Free-floating sections 

were pretreated with sodium borohydride (100 mg per 20 ml PBS) for 30 min, washed with PBS-

X (PBS containing 0.2% v/v Triton X-100), and blocked with 6% v/v Normal Goat Serum 

(NGS) for 1 hr at room temperature. Sections were then incubated in rabbit antibody against c-

Fos at a dilution of 1:20,000 (Calbiochem, San Diego, CA, USA) in PBS-X containing 2% NGS 

for 48 hrs at 5 ºC. After primary incubation, sections were washed in PBS-X followed by 

incubation in secondary biotinylated antibody against rabbit immunoglobulin made in goat 

(Vector Labs, Burlingame, CA, USA) at a dilution of 1:500 in PBS-X with 2% NGS for 90 min 

at room temperature. The peroxidase method (ABC system, Vector Labs, Burlingam, CA, USA; 

37 ul A, 37 ul B in 15 ml PBS-X) and diaminobenzidine (DAB) as chromogen enhanced with 

nickel chloride (Sigma, St. Louis, MO, USA) was used to visualize the antibody complex. The 

reaction was stopped by washing the sections in PBS.  Sections were mounted onto subbed 

slides, allowed to air dry, and then were dehydrated and coverslipped using Permount (Sigma, St. 

Louis, MO, USA). 

 

Image analysis 

Following Zombeck et al. (2008), microscopic images of the sections were captured via a 

Zeiss Axiocam digital camera (Zeiss, Germany) interfaced to a personal computer.  ImageJ 
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software (NIH, Bethesda, MD) was used to automatically count Fos-positive cells at 100X total 

magnification within a frame (1.0 X 0.63 mm) placed at the locations shown in Figure 4.1 

redrawn from Paxinos and Franklin (2001). For brain regions that were smaller than the frame, 

as was the case for the piriform cortex and the dentate gyrus, the region was outlined by hand 

and particles were counted only within the outlined structures. The counting was done 

unilaterally, in three alternate sections for each brain region, to obtain an average cell count per 

brain region for analysis. 

 

Statistical analysis 

Statistical analysis was preformed using SAS version 9.1 (SAS Institute, Cary, NC, 

USA).  Locomotor activity was analyzed two ways.  First, total distance traveled was summed 

over each epoch; the 60 minutes before any injections were given, the 60 minutes after the saline 

injection, and the 90 minutes after the saline or drug injections.  Baseline total distance traveled 

(before injections and after saline) was compared between adolescents and adults using an un-

paired t-test.  Distance following the drug injections was analyzed separately for each drug by 

two-way ANOVA with dose and age entered as the two factors.  Second, locomotor activity was 

divided into 15 minute bins consisting of summed distance traveled over that period.  

Adolescents and adults were compared for baseline distance traveled over the 4 time increments 

(i.e., 1 hour period) following a saline injection using repeated measures analysis of variance 

with age and time (4 levels) as factors.  Distance traveled after cocaine or methamphetamine 

administration was analyzed separately for each dose of drug over the 6 time increments (i.e., 90 

min period) following drug injection using repeated measures analysis of variance with age and 

time (6 levels) as factors. 

 

Number of Fos positive cells for each brain region was analyzed using analysis of 

variance with batch, age and dose as factors. Batch was included as a factor to eliminate 

differences in staining due to variance between immunohistochemisty runs (Zombeck et al., 

2008).  The Fos numbers were power transformed as needed to decrease skewness and kurtosis 

in the residual distribution.  Least square means (adjusted for batch) and confidence intervals 

were back-transformed so that the means could be presented in the same units, number of Fos-

positive cells, for all regions.  
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The relationship between Fos staining and locomotor activity was analyzed by analysis of 

covariance. This was done to determine whether Fos levels differ between adolescents and adults 

after accounting for the expected positive relationship between acute levels of physical activity 

and Fos observed in previous studies throughout the brain (Rhodes et al., 2005, Caster and Kuhn, 

2009). In this model, Fos staining was analyzed as the response, locomotor activity summed over 

90 minutes was the continuous predictor (covariate), and age was entered as a categorical factor.  

Separate tests were run for each dose.  Otherwise, dose would strongly bias the correlation 

between physical activity and Fos because dose strongly influences both variables.  Again, the 

Fos numbers were power transformed as needed to decrease skewness and kurtosis in the 

residual distribution.  The difference between the least square means, adolescent minus adult, 

adjusted for locomotor activity, were back-transformed so that the difference could be presented 

in the same units, number of Fos-positive cells, for all regions.  

 

Two different methods were used to correct for the multiple testing in this study. First we 

adjusted the cut off p-value so that the global false discovery rate for the entire study was less 

than or equal to 5% using Qvalue software (Storey, 2002, Rhodes et al., 2005).  Second, we 

extracted the principle components (the linear combinations of Fos levels across all regions that 

explain 70% of the variation in the data), and analyzed those variables using the same strategy 

described above for analyzing Fos in individual regions.   

 

Results 

Locomotor activity 

See Figure 4.2. Baseline locomotor activity summed over 60 minutes preceding 

injections and over the 60 minutes following the saline injection was not significantly different 

between adolescents and adults.  A saline injection induced a small, brief increase in locomotor 

activity [time, F(3, 282)=163.2, P<0.0001; first 15 minutes following injection greater than 

following three time points, all P<0.0001], but no significant differences were observed between 

ages (i.e., the effect of age and age by time interaction were not significant). 
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Both cocaine and methamphetamine increased the total distance traveled over the 90 

minute period following injections as indicated by a main effect of dose [cocaine, F(2,42)=24.9, 

P<0.0001; methamphetamine, F(2,42)=133.6, P<0.0001].  Adolescents displayed reduced 

locomotor activity as compared to adults as shown by a main effect of age [cocaine, 

F(1,42)=10.0, P=0.003; methamphetamine, F(1,42)=23.9, P<0.0001].  The interaction between 

age and dose was significant for methamphetamine [F(2,42)=4.3, P=0.02] but not cocaine.  To 

examine this difference in more detail, distance traveled in 15 minute bins following the drug 

injections was analyzed separately for each dose of each drug.   The magnitude of the difference 

in locomotor activity between adolescents versus adults was similar at all time points for both 

doses of cocaine and for the 2 mg/kg dose of methamphetamine (i.e., the adolescent and adult 

curves were parallel following injection of cocaine or methamphetamine in Fig. 4.2b, c and e, 

and the interaction between age and time was not significant).  However, the time-course of 

locomotor stimulation after 4 mg/kg, revealed an interesting difference between the age groups.  

Initially, during the first 45 minutes, both adolescents and adults displayed similar levels of 

locomotor activity, but the effect wore off between 45 to 90 minutes in adolescents whereas in 

adults, the high level of locomotor activity was maintained up to 90 minutes following the ip 

injection of 4 mg/kg (see Fig. 4.2f) [the interaction between age and time was significant, 

F(5,70)=8.4, P<0.0001].   

 

Fos positive cells 

Analysis of all the p-values collected from the tests reported in Tables 4.1-4.4 indicated 

that the standard cut off p-value, 0.05, would result in a global false discovery rate of 6 %.  

Qvalue calculated that if the cut off was set at 0.04 then the false discovery rate was 5%.  

Therefore, we considered a p-value less than or equal to 0.04 as evidence for statistical 

significance for the individual tests.  For the results of the principle component analysis, we used 

the standard 0.05 cut off because the data were reduced across the 16 brain regions to 3 principle 

components. 

 

Baseline differences 

After a saline injection, Fos levels were similar in adolescents and adults in all regions 

except the dorsal and lateral caudate, where adolescents displayed significantly reduced Fos as 
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compared to adults [dorsal caudate, F(1,26)=4.6, P=0.04; lateral caudate, F(1,26)=5.9, P=0.02].   

Locomotor activity was significantly correlated with Fos in the globus pallidus, and similar 

trends were observed for the dentate gyrus (P=0.08), and nucleus accumbens core region 

(P=0.06). 

 

Cocaine  

Cocaine increased Fos as indicated by a significant main effect of dose (see Fig. 4.3, 

Table 4.1).  Inspection of the least square means in Table 4.1 shows a strong dose response for 

most regions.  Levels of Fos were similar in adolescents and adults in all regions except the 

lateral caudate and the somatosensory cortex where adolescents displayed slightly lower Fos 

across all treatments including the baseline saline injection.  

 

When Fos was analyzed with locomotor activity (distance traveled 90 min after drug 

injection up to the point of euthanasia) as a covariate, 3 of the 16 brain regions sampled showed 

a significant correlation between numbers of Fos positive cells and level of locomotor activity 

after the 30 mg/kg dose: the cingulate cortex, dorsal caudate, and dentate gyrus (Table 4.2).  

After the 15 mg/kg dose only 1 region showed a significant correlation, the motor cortex.  After 

correcting for differences in locomotor activity among subjects using analysis of covariance, the 

dorsal caudate and the bed nucleus of the stria terminalis showed significant differences between 

the age groups, with adolescents showing greater Fos in this region as compared to adults for a 

given level of locomotor activity after the 30 mg/kg dose (Fig. 4.4a, Table 4.2).  

 

The first principle component accounted for 50% of the variation in the data and was 

strongly correlated (Pearson’s r > 0.50) with number of Fos positive cells in 6 of the 16 brain 

regions (ventral caudate, dentate gyrus, globus pallidus, nucleus accumbens core and shell, and 

piriform cortex). Congruent with the results in Tables 4.1 and 4.2 for most of the high loading 

brain regions, the first principle component showed significant effects for dose [F(2,28)=3.8, 

P=0.04] and locomotor activity [F(1,30)=4.2, P=0.05] but not age.  The second and third 

principle components loaded on different regions but none of them showed significant effects of 

age.  Together the first 3 components accounted for 70% of the variation in the data. 
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Methamphetamine 

As with cocaine, methamphetamine significantly increased Fos in all regions (Table 4.3).  

Inspection of the least square means in Table 4.3 shows that the induction of Fos is strongly dose 

dependent for a majority of regions (Table 4.3).  Levels of Fos were similar in adolescents and 

adults in all regions except the visual cortex and ventral pallidum where adolescents displayed 

slightly higher Fos across all treatments including the baseline saline injection.  

 

Locomotor activity was positively correlated with Fos in the dorsal caudate and the 

prefrontal cortex after the 2 mg/kg dose, and negatively correlated with Fos in the nucleus 

accumbens core region after the 4 mg/kg dose, but no other statistically significant locomotor 

correlations were detected.  When locomotor activity was included as a covariate, the dorsal 

caudate showed a trend for increased Fos in adolescents as compared to adults for a given level 

of locomotor behavior in response to the 2 mg/kg dose (Table 4.4).  This difference was greater 

and significant for the 4 mg/kg dose (Table 4.4).  In a post hoc analysis for the 2 mg/kg dose, 

after removing one outlier (an adolescent animal that moved 123 meters yet displayed only 4 Fos 

cells, see Fig. 4.4b), the covariate, locomotor activity, remained significant  [F(1,10)=18.9, 

P=0.002] , and age was statistically significant [F(1,10)=10.7, P=0.009] with adolescents 

showing greater Fos than adults for a given level of locomotor activity (Fig. 4.4b).   

 

In addition to the dorsal caudate, 3 other brain regions showed elevated levels of Fos in 

adolescents as compared to adults for a given level of locomotor activity after the 4 mg/kg dose 

of methamphetamine: the lateral caudate, shell of the nucleus accumbens and cingulate cortex 

(Table 4.4).  Of these, there was a significant interaction between age and locomotor activity in 

the lateral caudate, with adolescents showing a negative correlation between locomotor activity 

and number of Fos positive cells whereas adults showed a positive correlation. 

 

The first principle component accounted for 58% of the variation in the data and was 

strongly correlated (Pearson’s r > 0.50) with number of Fos positive cells in 8 of the 16 brain 

regions (cingulate cortex, motor cortex, nucleus accumbens core and shell, prefrontal cortex, 

somatosensory cortex, visual cortex, and ventral pallidum).  Congruent with results in Tables 4.3 

and 4, for most of the high loading brain regions, the first principle component showed 
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significant effect of dose [F(2,24)=6.54, P=0.0054] and locomotor activity [F(1,26)=10.71, 

P=0.003] but not age.  The second and third principle components loaded on different regions 

but none of them showed significant effects of age.  Together the first 3 components accounted 

for 78% of the data. 

 

Discussion  

Despite significantly reduced locomotor response to cocaine and methamphetamine in 

adolescents as compared to adults (see Fig. 4.2), the Fos response was largely similar between 

the two age groups in the brain regions sampled (Fig. 4.3, Tables 4.1 and 4.3).  This was a 

surprise because in previous studies, we and others have found strong correlations between 

locomotor activity and Fos throughout the brain (Rhodes et al., 2005, Caster and Kuhn, 2009).  

Therefore, we predicted that the Fos response generally would be reduced in adolescents as 

compared to adults because their level of locomotor activity was reduced.   In fact, the opposite 

was true.  In a majority of regions adolescents tended to display greater Fos than adults for a 

given amount of locomotor activity (Tables 4.2 and 4.4).  After correcting for locomotor activity 

using analysis of covariance, the striatum stood out among all other brain areas as consistently 

showing significantly greater numbers of Fos cells for a given level of locomotor activity in 

adolescents as compared to adults (Fig. 4.4).  This was not a result of baseline differences in Fos 

between the two age groups, because after a saline injection, adolescents had significantly fewer 

rather than greater numbers of Fos cells in the dorsal and lateral caudate as compared to adults.  

The number of Fos positive cells in the dorsal caudate in response to 30 mg/kg cocaine, and in 

the dorsal caudate, lateral caudate, and nucleus accumbens shell in response to 4 mg/kg 

methamphetamine were all significantly greater in adolescents than adults for a given level of 

locomotor activity (Tables 4.2 and 4.4).  Overall, these findings confirm previous studies that 

have identified the striatum as a location where molecular or developmental changes likely occur 

that mediate the reduced locomotor response to psychostimulants in adolescents.   

 

Caster and Kuhn (2009) recently examined locomotor activity, c-fos and zif268 gene 

expression in various subregions of the striatum and cortex of Sprague Dawley rats after acute 

administration of 10 or 40 mg/kg cocaine.  Our results are consistent with Caster and Kuhn 

(2009) in identifying the striatum as a key brain region involved in the differential locomotor 
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response between age groups.  However, the direction of the differences in locomotor behavior 

and induction of immediate early genes (i.e., whether adolescents displayed a greater or lesser 

response than adults) and the relationship between immediate early gene induction and 

locomotor activity were not consistent between the two studies.  First, in Caster and Kuhn 

(2009), adolescent rats displayed greater locomotor activity than adults after 10 mg/kg and 

reduced locomotor activity after 40 mg/kg, whereas adolescent male C57BL/6J mice displayed 

reduced locomotor activity after 15, or 30 mg/kg cocaine and no significant locomotor 

stimulation in either age group from 5 mg/kg (Zombeck et al., 2009).  Second, Caster and Kuhn 

(2009) found that striatal c-fos levels changed in parallel with locomotor activity between the age 

groups whereas we did not.  In Caster and Kuhn (2009), c-fos levels were greater in adolescents 

than adults for the 10 mg/kg dose when adolescents were more physically active than adults, and 

greater in adults than adolescents for the 40 mg/kg dose when adults were more physically active 

than adolescents.  Therefore, in Caster and Kuhn (2009), the differences in c-fos and zif268 

between adolescents and adults could have been a reflection of the relationship between c-fos 

and locomotor activity, whereas in our study, analysis of covariance suggested that Fos is 

significantly greater in adolescent mice as compared to adults in the striatum for a given level of 

locomotor behavior (Fig. 4.4).  

 

Only a few other studies besides Caster and Kuhn (2009) examined immediate early gene 

induction from cocaine or amphetamines in adolescents versus adults, but to the best of our 

knowledge none of these other studies measured locomotor activity.  Our results are generally 

consistent with Ehrlich et al. (2002) who found greater ΔFosB expression in the caudate and 

nucleus accumbens after repeated administration of cocaine or amphetamine in adolescent versus 

adult CD-1 mice.  Greater ΔFosB expression in the striatum is expected if Fos responses are 

greater during initial exposure to the drugs, because Fos contributes to the build up of the more 

stable transcription factor, ΔFosB.  Results are also consistent with Anderson et al. (2001) who 

found slightly greater numbers of Fos-positive cells in the striatum of adolescent as compared to 

adult Sprague Dawley rats in response to 1 or 5 mg/kg amphetamine.  On the other hand 

Kosofsky et al. (1995) and Cao et al. (2007) found reduced c-fos mRNA in the striatum of 

adolescent as compared to adult Sprague Dawley rats after i.p. 40 mg/kg cocaine (Kosofsky et 

al., 1995), or after two 100 μl intravenous injections of 750 μg/kg cocaine spaced 1 min apart 
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(Cao et al., 2007).  The explanation for the difference is not clear, but relatively large doses and 

varying routes of administration may have played a role.  Additionally, knowing the level of 

locomotor behavior displayed by the animals before they were sampled in the different studies 

might help clarify some of the differences. 

 

In our study, the results of the principle component analysis confirmed that the central 

(correlated) patterns of neural activation across the different brain regions significantly reflected 

locomotor activity but none of the first three principle components showed age differences.  This 

result suggests that a large background pattern of neural activity during the test is unrelated to the 

age difference in locomotor behavior.  Fos levels in the striatum, which differed significantly 

between the age groups in the individual tests, were also partially correlated with the principle 

components.  That suggests only a subset of the signal represented by Fos in the striatum 

contributes to age differences in locomotor stimulation.  One of the limitations of using the 

immunohistochemical detection of Fos to reflect neuronal activation, is that Fos labels many 

different types of neurons and even some glial cells that happen to be transcriptionally activated 

over a relatively large time window (e.g., 90 min) following drug administration (Nestler et al., 

2001, Edling et al., 2007).  In this analysis, cells were not labeled with other markers (i.e., double 

or triple labeled) because the goal was to first identify key brain regions or circuits implicated in 

the differential behavior.   

 

Future studies will be needed to identify the phenotype of the cells in the striatum that 

display greater activation for a given level of locomotor stimulation in adolescents than adults.  

The majority of neurons in the striatum are GABAergic neurons that project to either the globus 

pallidus (internal or external segment) or substantia nigra. These projections are referred to as the 

direct, indirect, and striosomal pathways, each of which has implications for movement and can 

be individually identified with neuronal markers (e.g., dynorphin, enkephalin, substance P, etc.) 

(Graybiel, 1990).   

 

Previous studies using adult rats tested in their home cage (i.e., as opposed to a novel 

environment), suggest that a majority of the Fos-positive cells in the striatum induced from acute 

cocaine or amphetamines contain dynorphin and express D1 as opposed to D2 receptors (Badiani 
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et al., 1999, Uslaner et al., 2001, Ferguson et al., 2003, Gross and Marshall, 2009).  A subset of 

these D1-expressing GABA/dynorphin neurons project back to the substantia nigra pars 

compacta and inhibit the dopamine output neurons (negative feedback).  These neurons occur in 

discrete regions of the striatum called the striosomes that can be histologically differentiated 

from the surrounding regions, known as the matrix (Bolam et al., 1988, Graybiel et al., 1990).  

Increased Fos in striosomes in adolescents as compared to adults could explain reduced 

locomotor activity because that would suggest the dopamine output neurons were receiving 

stronger negative feedback.  Alternatively, increased Fos in D1-expressing GABA/dynorphin 

neurons in the matrix that project to the internal portion of the globus pallidus and substantia 

nigra pars reticulata would not be expected to result in decreased locomotor activity because 

activation of this pathway increases motor activity via the ventral thalamus and cortical motor 

output neurons.  Therefore, our current working hypothesis is that adolescents are less sensitive 

to the locomotor stimulating effects of cocaine and methampethamine in part because of greater 

negative feedback from the striatum back to dopamine output neurons.   

 

Another interesting discovery was the difference in time course for locomotor stimulation 

in adolescents and adults in response to the 4 mg/kg dose of methamphetamine (Fig. 4.2f).  The 

results show that for a high dose of methamphetamine, the effect on locomotor activity is 

initially the same for adolescents as adults, but wanes much more quickly in adolescents.  This 

pattern was not apparent for any other dose of cocaine or methamphetamine that we tested.  All 

the other doses showed a similar time course of locomotor stimulation and return to baseline 

between ages even if the amplitudes of stimulation were different.  To the best of our knowledge 

we are the first to report this interesting difference for 4 mg/kg methamphetamine.  In previous 

studies, we conducted a careful analysis of the concentrations of methamphetamine in the brain 

after a 4 mg/kg dose and found no statistically significant differences between the ages 

(Zombeck et al., 2009).  One possibility for the rapid return to baseline in adolescents as 

compared to adults is that there is a ceiling effect preventing a greater peak response in adults.  

An alternative explanation is that the molecular, developmental or neurological changes in the 

brain that differentiate adults from adolescents in locomotor responses to psychostimulants are 

highly dynamic, capable of changing within the time-course of acute administration of the drug.   
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This study extends the current literature on psychostimulant induced locomotor activity 

in adolescents. Consistent with previous reports, adolescents stimulated less than adults to acute 

methamphetamine treatment (Zakharova et al., 2009, Zombeck et al., 2009).  The literature for 

cocaine is mixed.  Some studies are consistent with ours and have found attenuated stimulation 

to acute cocaine in adolescents as compared to adults (Laviola et al., 1995, Maldonado and 

Kirstein, 2005a, Frantz et al., 2007, Zombeck et al., 2009), while others have found no difference 

(Camarini et al., 2008, Parylak et al., 2008) or increased stimulation (Catlow and Kirstein, 2005, 

Caster et al., 2007, Caster and Kuhn, 2009) in adolescents.  The cause for the discrepancies in the 

findings is unclear, however variations in age ranges within adolescents (Snyder et al., 1998), 

dose (Caster and Kuhn, 2009), route of administration, strain (McCarthy et al., 2004), and 

handling (Maldonado and Kirstein, 2005a, Maldonado and Kirstein, 2005b), may contribute.   

 

Although it is possible that reduced locomotor stimulation in adolescents is a result of 

increased stereotypy (i.e., suggesting adolescents are more sensitive to the drugs), that is not 

likely for a number of reasons.  First, we observed the mice during the tests, and although we did 

not record our observations in any formal way, we did not see evidence for increased stereotypy 

in any of the drug groups relative to saline controls.  Moreover, that would not be expected 

because typically a higher dose of cocaine and methamphetamine is used to induce stereotypy in 

mice (Tolliver and Carney, 1994a, Tolliver and Carney, 1994b, Atkins et al., 2001, Schlussman 

et al., 2003, Tilley and Gu, 2008).  Another reason is that both adolescents and adults increased 

activity at the higher doses of the drug relative to the medium doses. This suggests that both age 

groups are on the ascending limb of the dose response curve. Stereotypy is thought to contribute 

more to the descending limb of the curve (Shuster et al., 1977, Tolliver and Carney, 1994a).   

 

In summary, results show that adolescent male C57BL/6J mice display greater Fos 

response to cocaine and methamphetamine in the striatum as compared to adults for a given level 

of locomotor activity.  It is possible that the greater Fos reflects a greater negative feedback or 

inhibitory signal in adolescents. Future studies examining the phenotype of c-fos activated cells 

in the striatum and other brain regions of adolescents as compared to adults are needed to test 

these ideas. 
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Tables 

 

Table 4.1. Mean number of Fos positive cells and associated statistics after saline, 15 or 30 

mg/kg cocaine 
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Table 4.2. The difference in cocaine-induced Fos between adolescents and adults after correcting 

for locomotor activity 

 

87



 

  

Table 4.3. Mean number of Fos positive cells and associated statistics after saline, 2, or 4 mg/kg 

methamphetamine 
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Table 4.4. The difference in methamphetamine-induced Fos between adolescents and adults after 

correcting for locomotor activity 
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Figures 

 

Figure 4.1. Locations where Fos positive cells were counted (boxes, shown roughly to scale, 

were 1 X 0.63 mm). Reprinted from The Mouse Brain in Stereotaxic coordinates, 2nd edition, 

Paxinos G and Franklin K, Figures 17, 22, 25, 30, 33, 42, 52, Copyright 2001, with  permission 

from Elsevier.  As noted, for the piriform cortex and the dentate gyrus, the nucleus was outlined 

by hand and particles were counted only within the outlined structures. Legend: PFC=prefrontal 

cortex, M1=motor cortex, Cg=cingulate cortex, NACC=nucleus accumbens core, 

NACS=nucleus accumbens shell, Pir=piriform cortex, CPuD=dorsal caudate, CPuL=lateral 

caudate, CPuV=ventral caudate, LS=lateral septum, BNST=bed nucleus of the stria terminalis, 

VP=ventral pallidum, GP=globus palidus, SX=somatosensory cortex, DG=dentate gyrus, 

V1=visual cortex. 
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Figure 4.2. Reduced locomotor response to cocaine and methamphetamine in adolescent male 

C57BL/6J mice as compared to adults.  Average distance traveled in 5 min bins (± SE) is plotted 

against time separately for adults (filled symbols) and adolescents (open symbols).  Animals 

were given a saline injection at 60 min, and either saline or drug injection at 120 min.  Data for 

the cocaine trials are shown on top and methamphetamine on the bottom. Each data point 

represents the average of 8 individuals. All graphs share the same x- and y-axis labels.  
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Figure 4.3. Acute cocaine increases Fos in a dose-dependent fashion in adolescents and adults.  

Representative sections stained for Fos showing the dorsal caudate of adolescents and adults 90 

min after an intraperitoneal injection of saline, 15, or 30 mg/kg cocaine.  The dots represent Fos-

positive nuclei, total magnification was 100X. 
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Figure 4.4.  Increased Fos response from cocaine and methamphetamine in the dorsal caudate for 

a given level of locomotor activity in adolescents as compared to adults.  Number of Fos positive 

cells in the dorsal caudate is plotted against distance traveled in the 90 minute period following 

an injection of either 30 mg/kg cocaine (top) or 2 mg/kg methamphetamine (bottom).  

Adolescents (open symbols) are shown separately from adults (filled symbols).  The simple 

linear regression lines are shown separately for each age group.  Both graphs share the same x-

axis label.  
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CHAPTER V 
 
 
 
 
 
 
 
 

Neuroanatomical distribution of psychostimulant-induced Fos in striosome versus matrix: a 
possible explanation for reduced locomotor stimulation in adolescents versus adults 
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Abstract 

In the previous chapter, adolescent mice displayed elevated Fos immunoreactivity for a given 

level of locomotor activity in the dorsal caudate following cocaine administration as compared to 

adults. This presented the question of how relatively higher Fos in adolescents could be 

associated with lower locomotor activity. The current chapter tests the hypothesis that adolescent 

mice experience greater inhibitory feedback from the caudate to the substantia nigra by 

examining Fos immunoreactivity in the striosomal regions of the caudate. Home cage locomotor 

activity in adolescent and adult C57BL/6J mice was recorded for 90 min following 30 mg/kg 

cocaine or saline administration. Adjacent brain sections were immunostained for Fos and the 

striosomal marker, MOR1. Despite significant differences between age groups in locomotor 

stimulation, no differences were observed in the number of Fos positive cells within striosomal 

regions. Results suggest that striosomal signaling does not differ between age groups. Alternative 

signaling pathways in the striatum represent additional explanations for Fos differences between 

age groups. For example, increased cholinergic signaling from striatal interneurons in 

adolescents may act to oppose dopaminergic signaling and depress locomotor activity. Future 

studies are needed to test alternative hypothesis for mechanisms underlying attenuated 

stimulation in adolescents as compared to adults.  
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Introduction 

In chapter 4, adolescents displayed increased Fos relative to adults after correcting for 

differences in locomotor activity in the dorsal caudate following the highest doses of cocaine and 

methamphetamine (Zombeck et al., 2010). Surprisingly, few other brain regions showed 

significant differences in Fos, despite a large difference in locomotor stimulation between age 

groups. We interpreted these findings as evidence that portions of the striatum display increased 

neuronal activation in adolescents compared to adults in response to psychostimulants. This 

claim is substantiated by other papers that have also found greater immediate early gene 

expression in the striatum of adolescents as compared to adults (Andersen et al., 2001, Ehrlich et 

al., 2002, Cao et al., 2007, Caster and Kuhn, 2009).  

 

The striatum is a logical area to investigate given its known role in psychostimulant 

induced locomotor stimulation (Rebec, 2006). Cocaine and methamphetamine are known to 

increase dopamine in extracellular spaces in the striatum (Wise, 2002). Dopamine release in the 

striatum is thought to be a major contributor to psychostimulant induced increases in locomotor 

activity (Wickens, 1990). This idea stems from myriad studies examining the role of dopamine in 

motor activation and specifically how disruptions in dopamine signaling can prevent 

psychostimulant induced locomotor activation. For example, mice lacking the dopamine D1 

receptor gene do not show locomotor stimulation to cocaine (Drago et al., 1998). Furthermore, in 

vivo electrophysiology studies show that administration of cocaine results in widespread 

activation of striatal neurons and antagonism of dopamine receptors by haloperidol blocks this 

effect (White et al., 1998). However, dopamine is not purely excitatory within the striatum and 

there are a number of mediating factors dictating the role of striatal dopamine in locomotor 

activation. For example, dopamine D1 receptors are commonly excitatory, while dopamine D2 

receptors are commonly inhibitory. The role of dopamine in locomotor stimulation is further 

complicated by interactions with other neurotransmitter systems. The striatum receives 

glutamatergic inputs from the cortex and ablation of the cortex attenuated amphetamine induced 

excitation of motor-related neurons (Tschanz et al., 1994). Therefore it is thought that dopamine 

and glutamate are synergistic in the induction of locomotor response (Haracz et al., 1998). 

Together, the evidence suggests psychostimulant effects on dopamine transmission in the 

striatum are involved in the locomotor stimulatory effects of the drug.    
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The striatum is part of the basal ganglia which are a group of subcortical structures 

involved in motor control. The basal ganglia is complex and involves many pathways, however 

the classical model describes two main efferent pathways from the striatum (Graybiel, 1990, 

Graybiel, 2004). The first is called the direct pathway and activation is thought to increase 

locomotor activity. The second is called the indirect pathway and activation is thought to 

decrease locomotor activity. This basic theory of basal ganglia function is widely published, 

however until recently, in vivo evidence supporting the theory was lacking and 

electrophysiological studies incongruent with the theory cast doubt on the validity of the model 

(Gulley et al., 2004, Surmeier et al., 2005). Two groups have demonstrated support for the 

classic model of the basal ganglia by selectively activating the direct and indirect pathways using 

genetic engineering (Bateup et al., 2010, Kravitz et al., 2010). Both studies used the knowledge 

that dopamine D1 receptors are expressed primarily in striatal neurons comprising the direct 

pathway, while dopamine D2 receptors are expressed primarily in striatal neurons of the indirect 

pathway. Kravitz et al. (2010) used an optogenetics approach by virally introducing 

channelrhodopsin-2 and controlling its’ expression via the regulatory elements of the D1 or D2 

receptor gene. The result was the ability to selectively activate D1 or D2 containing neurons 

using light. Kravitz et al. (2010) discovered that when D1 containing neurons were activated 

(direct pathway) in vivo, mice exhibited reductions in freezing behavior and elevated locomotor 

activity. In contrast, when D2 containing neurons were activated (indirect pathway), mice 

exhibited increases in freezing behavior and reductions in locomotor activity. Bateup et al. 

(2010) employed a similar genetic engineering approach, but instead of optogenetics to control 

D1 and D2 neurons, they selectively disrupted DARPP-32. The result was impairment in 

striatonigral (direct pathway) or striatopallidal (indirect pathway) neurons. Mice lacking 

DARPP-32 in striatonigral neurons exhibited lower basal and cocaine induced locomotor activity 

than controls. Conversely, mice lacking DARPP-32 in striatopallidal neurons exhibited greater 

basal and cocaine induced locomotor activity than controls. Collectively, these data support the 

direct and indirect pathway model for striatal involvement in locomotor activity in mice.  

 

Which cell types and which pathways Fos is localized in is important for understanding 

how relatively greater Fos in adolescents could relate to lower locomotor stimulation. One 

97



 

  

hypothesis is that decreased activation of the direct pathway is responsible for attenuated 

adolescent stimulation. However, this hypothesis is not consistent with the observation of 

relatively greater Fos in adolescents. Therefore, alternative pathways and cell types need to be 

explored to determine how higher Fos could result in lower locomotor stimulation. An 

alternative hypothesis is that adolescents experience greater activation of the indirect pathway 

than adults. That is, the increased Fos observed in adolescents compared to adults occurs in D2 

containing neurons of the striatum. However, Fos induction from cocaine has been shown to 

primarily occur in D1 containing neurons (Graybiel et al., 1990, Moratalla et al., 1993, Bertran-

Gonzalez et al., 2008). Fos induction in D2 containing neurons has only been shown is certain 

contexts. Specifically, D2 containing neurons show immunoreactivity to Fos when the animal 

was placed in a novel environment following drug injection (Bertran-Gonzalez et al., 2008). In 

Chapter 4 (see methods), mice were placed in their home environment following drug 

administration. Therefore, D2 containing neurons would not be expected to show Fos induction 

in the results presented in Chapter 4. Additionally, cocaine and methamphetamine increase 

dopamine in extracellular spaces (Sulzer et al., 2005) and dopamine is thought to inhibit the 

indirect pathway (Fisone et al., 2007). Therefore, if increased activation of the indirect pathway 

does occur in adolescents, it would unlikely be from the dopamine signaling enhancing 

properties of these drugs. 

 

Striatal mechanisms that modulate dopamine release in the striatum may also alter 

psychostimulant induced locomotor stimulation. The striatum contains a negative feedback loop 

to the substantia nigra pars compacta, called the striosomal pathway (Graybiel, 1990). 

Striosomes are areas of the striatum that are histologically distinct from the surrounding area. 

They were first identified by Graybiel et al. (1978) as areas of sparse acetylcholine esterase 

staining. Since then, many other neural markers have been identified that differentiate the 

striosomes from the surrounding matrix (e.g. MOR1, calbindin) (Graybiel, 1990, Graybiel et al., 

1990, Bernard et al., 1993).  In this pathway, excitatory inputs from cortex and substantia nigra 

synapse on GABAergic neurons which primarily project to the substantia nigra pars compacta 

and immediate surrounds (Gerfen 1984). The result is inhibition of dopaminergic signaling to 

striosome and matrix portions of the striatum. Therefore, it is possible that the increased Fos in 

adolescents as compared to adults in the previous chapter was neuroanatomically located 
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primarily in the striosomal region.  If true, that could explain why adolescents displayed 

attenuated locomotor stimulation from cocaine as compared to adults.   

 

While further studies are needed to fully elucidate striosomal impact on locomotor 

activity, the ratio of striosome to matrix immediate early genes expression has been found to 

predict motor stereotypies (Canales, 2005). Activation of the striosomal pathway can be 

identified by examining GABAergic neurons in striosomes.  One plausible hypothesis is that 

adolescents have greater activation of the striosomal pathway than adults in response to cocaine. 

This is consistent with the Fos data, in that greater activation could lead to decreased locomotor 

stimulation. Furthermore, striosomal neurons have been shown to have predominately D1 

binding sites as opposed to D2 (Graybiel, 1990). Fos in primarily activated in D1 containing 

neurons (Graybiel et al., 1990, Moratalla et al., 1993, Bertran-Gonzalez et al., 2008).  Therefore, 

greater Fos signaling in the striosomes in adolescents versus adults could contribute to reduced 

locomotor stimulation in adolescents. 

 

 Microdialysis studies examining dopamine release in adolescent and adult rodents lends 

some support for the idea that dopamine signaling is altered during adolescence. Basal levels of 

extracellular dopamine in the striatum have been shown to be lower in adolescents than adults, 

suggesting inhibitory tone on dopamine signaling may be greater in adolescents (Andersen and 

Gazzara, 1993). However, Frantz et al. (2007) observed no differences in levels of extracellular 

dopamine in the nearby region of the nucleus accumbens following cocaine administration. 

Furthermore, D1 and D2 dopamine receptors have been shown to be expressed greater in 

adolescents than adults suggesting even similar levels of extracellular dopamine may have 

different effects between the two age groups (Tarazi et al., 1998, Tarazi et al., 1999). While 

much research is still needed to understand differences in dopamine signaling between age 

groups and the potential functional significance thereof, these data show it is conceivable that 

dopaminergic pathways may be differentially activated between adolescents and adults. 

 

The goal of this chapter is to identify if the striosomal pathway from the striatum is 

differentially activated from cocaine between adolescents and adults. The hypothesis is that 
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adolescents will display increased Fos immunoreactivity in neurons in striosomes as compared to 

adults. 

 

Methods 

Subjects 

Male C57BL/6J (n=32) mice arrived from The Jackson Laboratory (Bar Harbor, ME). 

Mice were housed in groups of 4 for 5 days to habituate and then housed singly in custom made 

acrylic home cages (18.5 cm x 33.5 cm x 16 cm) with clear plastic lids conducive for video 

tracking from above. Adolescent mice were 21 days old at arrival and tested at 30 days of age. 

Adult mice were 56 days old at arrival and tested at 65 days of age. All mice were housed on a 

12:12 reverse light/dark cycle (lights off at 10 AM and on at 10 PM) with the room temperature 

maintained at 21 ± 1 ºC. Free access to food (Harlan Teklad 7012, Madison, WI, USA) and water 

was available at all times. All procedures were approved by the University of Illinois 

Institutional Animal Care and Use Committee and adhered to NIH guidelines. 

 

Drug solutions 

Cocaine hydrochloride (Sigma Aldrich, St. Louis, MO, USA) and sodium pentobarbital 

(Sigma Aldrich, St. Louis, MO, USA) were prepared by dissolving in 0.9% saline and were 

administered at a dose of 30 mg/kg and 100 mg/kg respectively via intraperitoneal (i.p.) 

injections in a volume of 10 ml/kg. The cocaine solution was prepared according to the salt, not 

the base, form. Dose was chosen based on a previous study showing age differences in Fos 

immunoreactivity in the dorsal caudate following 30 mg/kg cocaine (Zombeck et al., 2010). 

 

Locomotor activity 

Locomotor activity of the mice in their home cage was recorded using Topscan software 

(Clever Sys Inc, Reston, VA, USA) following Zombeck et al. (2009, 2010). All mice received a 

saline injection 1 hr following the onset of the dark phase (i.e. active period) in order to measure the 

behavioral response to an injection. Activity was measured for 1 hr after which an injection of 

cocaine (30 mg/kg) was administered. Locomotor activity recorded for 1.5 hrs before animals were 

sacrificed. 
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Immunohistochemistry 

Brain fixation 

Following Clark et al. (2008) mice were anesthetized with 100 mg/kg sodium 

pentobarbital (i.p.) and then perfused transcardially with 4% paraformaldehyde in phosphate 

buffer saline (PBS; 0.287% sodium phosphate monobasic anhydrous, 1.102% sodium phosphate 

dibasic anhydrous, 0.9% sodium chloride in water). Brains were postfixed overnight, and then 

transferred to 30% sucrose in PBS. Brains were coronally sectioned (40 µm thick) using a 

cryostat. Sections were placed into a 24 well plate containing tissue cryoprotectant (30% 

ethylene glycol, 25% glycerin, 45% PBS), then stored at -20oC.  

Fos 

One in 6 series sections were transferred into PBS, 24 hrs before beginning 

immunohistochemistry. Free-floating sections were pretreated with sodium borohydride (100 mg 

per 20 ml PBS) for 30 min, washed with PBS-X (PBS containing 0.2% v/v Triton X-100), and 

blocked with 6% v/v Normal Goat Serum (NGS) for 1 hr at room temperature. Sections were 

then incubated in rabbit antibody against c-Fos at a dilution of 1:20,000 (Calbiochem, San 

Diego, CA, USA) in PBS-X containing 2% NGS for 48 hrs at 5 ºC. After primary incubation, 

sections were washed in PBS-X followed by incubation in secondary biotinylated antibodies 

against rabbit immunoglobulin made in goat (Vector Labs, Burlingame, CA, USA) at a dilution 

of 1:500 in PBS-X with 2% NGS for 90 min at room temperature. The peroxidase method (ABC 

system, Vector Labs, Burlingam, CA, USA; 37 ul A, 37 ul B in 15 ml PBS-X) and 

diaminobenzidine (DAB) as chromogen enhanced with nickel chloride (Sigma, St. Louis, MO, 

USA) was used to visualize the antibody complex. The reaction was stopped by washing the 

sections in PBS.  Sections were mounted onto subbed slides, allowed to air dry, and then were 

dehydrated and coverslipped using Permount (Sigma, St. Louis, MO, USA). 

MOR1 

 Adjacent sections rostral to those stained for Fos were stained for MOR1. Free-floating 

sections were washed with PBS-X and pretreated with hydrogen peroxide (3% in PBS-X) for 10 

min. Sections were again washed with PBS-X and then blocked with 10% NGS (PBS-X plus). 

Sections were incubated in rabbit antibody against MOR1 at a dilution of 1:8000 (Immunostar, 

Stillwater, MN) in PBS-X plus for 48 hrs. The remainder of the procedure followed as was used 

with Fos.  
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Image analysis 

Microscopic images of adjacent sections (one stained for Fos, the other MOR1) were 

captured via a Zeiss Axiocam digital camera (Zeiss, Germany) interfaced to a personal computer. 

Images were taken at 100X total magnification in the dorsal caudate region following Zombeck 

et al. (2008). Images were aligned and analyzed using ImageJ software (NIH, Bethesda, MD). 

First, the striosome region was outlined by hand and particles were counted only within the 

corresponding outlined structures on the adjacent Fos stained section. Next, the entire caudate 

was outlined and total Fos counts in the caudate and total area of the sampled caudate were 

obtained. The counting was done unilaterally, in three sections for each brain region, to obtain an 

average cell count per brain region for analysis. 

 

Statistical analysis 

Distance traveled summed over the 60 minutes post saline injection was analyzed using 

unpaired t-tests comparing adults and adolescents. Locomotor activity 90 minutes following 

cocaine administration was analyzed using analysis of variance (ANOVA) with age (adolescent 

versus adult), dose (saline or 30 mg/kg), and age by dose interaction as factors.  

 

Volume of the striosome and matrix, number of Fos positive cells within striosome and 

matrix, and density of Fos positive cells per volume for the striosome and matrix subregions 

were analyzed using ANOVA with age, dose, and age by dose interaction as factors. Fos counts 

were also analyzed using analysis of covariance. This was done to determine whether Fos levels 

differ between adolescents and adults after accounting for the expected positive relationship 

between acute levels of physical activity and Fos observed in previous studies throughout the 

brain (Rhodes et al., 2005, Caster and Kuhn, 2009). In this model, Fos staining was analyzed as 

the response, summed locomotor activity over 90 minutes as the continuous predictor 

(covariate), and age as the factor. To examine density differences between striosome and matrix 

regions in adolescents and adults following cocaine administration, repeated measures ANOVA 

was performed for Fos density with age and location (striosome or matrix) and the interaction as 

factors.  
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Results 

Locomotor activity 

One hour after the onset of the dark cycle, mice received a saline injection to assess the 

behavioral response to an injection. No differences in locomotor activity following a saline 

injection were observed between adolescents and adults (t(23)=0.78, P>0.05). The pattern of 

locomotor activity was consistent with previous chapters (see Fig. 2.3, 3.3, 4.2) 

 

Cocaine administration caused approximately 8-fold increase in locomotor activity 

relative to saline (main effect of dose, F(1,28)=117.2, P<0.0001) (Fig 5.1). However the magnitude 

of locomotor stimulation to cocaine was attenuated in adolescents as compared to adults (main 

effect of age, F(1,28)=10.3, P<0.003; age*dose interaction, F(1,28)=6.4, P<0.02). 

 

Fos localization 

The caudate displayed patches of MOR1 stain consistent with previous studies 

identifying the areas as striosomes (Capper-Loup et al., 2002) (See Fig. 5.2). In general, cocaine 

administration significantly increased Fos in both striosomes and matrix subregions. However 

adolescents did not differ statistically across the dependant variables. Age differences were not 

observed in volume of the striosomes or matrix, number of Fos positive cells within striosomes 

or matrix, or the density of Fos positive cells in the striosomes or matrix. See Table 1 for a 

summary of means and statistics.  

 

We were interested in examining if the pattern of Fos density shifted between 

predominately striosome or matrix portions between age groups following cocaine. Therefore, 

repeated measures ANOVA was performed with Fos density as the repeated variable, and 

location (striosome or matrix), age (adolescent or adult), and the interaction as factors. There was 

a nonsignificant trend for greater density in striosomes relative to matrix (main effect of location, 

F(1,14)=3.9, P=0.07); adolescents showed 17% greater Fos density in striosomes compared to 

matrix, while adults showed a 9% greater difference. However the difference between age 

groups was not statistically significant (main effect of age, F(1,14)=0.7, P>0.05), nor was a main 

effect of location or the age by location interaction (age*location interaction, F(1,14)=0.15, 

P>0.05).  
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Previous studies have shown strong correlations between number of Fos positive cells in 

the caudate and locomotor stimulation from cocaine (Rhodes et al., 2005, Caster and Kuhn, 

2009). Therefore, locomotor activity was included as a covariate in an analysis of Fos density in 

striosomes and in an analysis of total Fos (striosomes + matrix) between ages following cocaine. 

Locomotor activity was positively correlated with total Fos (main effect of locomotor activity 

(F(1,12)=8.5, P=0.01).  Similar trends were observed for Fos density in the striosomes (F(1,12)=4.4, 

P=0.06), and matrix (F(1,12)=7.84, P=0.02). Fos activation was slightly greater in adolescents 

compared to adults for a given level of locomotor activity, but this was not statistically 

significant for either total Fos,  Fos density in striosomes, or Fos density in matrix subregions 

(P>0.05).  

 

Discussion 

The major finding of this chapter is that Fos expression in striosomal regions of the 

dorsal caudate did not significantly differ between adolescent and adult mice, despite behavioral 

differences between ages in cocaine stimulation (Fig. 5.1). The failure to show age differences 

for Fos expression in striosomal regions provides evidence against the hypothesis that elevated 

striosomal signaling following cocaine administration causes reduced locomotor stimulation seen 

in adolescents as compared to adults.  

  

 A trend for greater Fos density in striosome regions as compared to the matrix was 

present in both adults and adolescents. This observation is consistent with previous studies 

showing similar trends for predominately striosomal Fos expression following pharmacological 

treatment. For example, relatively greater Fos expression in striosomes versus matrix has been 

demonstrated following coadministration of dopamine D1 and D2 agonists (Capper-Loup et al., 

2002). Consistent with the idea that dopamine signaling activates striosomal regions, Graybiel et 

al. (1990) found greater striosomal Fos following amphetamine administration. However the 

same study showed no regional differences in Fos following cocaine administration. Overall, the 

data suggest dopamine signaling increases Fos expression biased toward striosome regions over 

matrix portions of the striatum. 
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Fos expression is correlated with locomotor activity in a number of brain regions, 

including the caudate (Rhodes et al., 2005, Caster and Kuhn, 2009). Previously, we demonstrated 

that adolescents displayed increased Fos relative to adults after correcting for differences in 

locomotor activity (Zombeck et al., 2010). Therefore, distance traveled following cocaine 

administration was included as a covariate in an analysis of total Fos counts (matrix and 

striosomes combined). Similar main effects, although not statistically significant, were observed 

with adolescents displaying elevated Fos counts for a given distance traveled than adults. 

Therefore, the question of how elevated Fos immunoreactivity in the caudate of adolescents as 

compared to adults is associated with lower levels of locomotor stimulation remains unanswered. 

 

Dampening of dopamine induced locomotor stimulation by interneurons within the 

caudate represents one possibility for how relatively greater Fos immunoreactivity in adolescents 

could result in lower levels of locomotor stimulation. In addition to medium spiny projection 

neurons, the caudate contains large aspiny cholinergic interneurons. These neurons oppose 

dopaminergic function and generally act to depress motor activity (Graybiel, 1990, Wickens, 

1990). Therefore, one hypothesis for attenuated stimulation in adolescents is that they display 

elevated acetylcholine signaling relative to adults. Similar ideas have been expressed by Bolanos 

et al. (1998). Multiple explanations are possible for how cholinergic interneurons could be 

differentially activated from cocaine between age groups. One theory for how dopamine and 

cholinergic systems interact in the caudate is that dopamine inhibits cholinergic interneurons via 

D2 dopamine receptors located on interneurons (Wickens, 1990). However, cholinergic 

interneurons may also contain D1 dopamine receptors which increase acetylcholine release 

(Damsma et al., 1990, Zhou et al., 2002). Therefore, adolescents may display increased D1 

dopamine receptors on cholinergic interneurons which results in increased cholinergic inhibition 

of GABAergic projection neurons and ultimately attenuated locomotor stimulation. An 

alternative explanation is that differential interneuron stimulation could be driven by cortical 

projections. To test the hypothesis that elevated interneuron signaling in adolescents contributes 

to stimulation differences, the caudate could be double labeling for choline acetyltransferase and 

Fos as one method for estimating cholinergic interneuron activity (Robertson and Staines, 1994). 

Greater number of choline acetyltransferase and Fos colabeled cells in adolescents would suggest 
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a role for elevated cholinergic inhibition of motor activity in attenuated stimulation displayed in 

adolescents. 

  

So far, the hypotheses postulated have all been predicated on the assumption that Fos is 

reflective of excitatory signaling within a neuron. An alternative idea is that adolescents display 

increased Fos relative to adults because those cells have been inhibited to a greater degree. 

Greater inhibition of GABAergic neurons of the direct pathway is consistent with the behavioral 

observation of relatively lower locomotor activity in adolescents. However, Fos expression is 

primarily thought to represent excitatory signaling within the cell. Pharmacological agents that 

increase signaling (e.g. cocaine) elevate Fos (Zombeck et al., 2010), while agents that decrease 

signaling (e.g. diazepam) lower Fos (Beck and Fibiger, 1995). Therefore, it is unlikely that 

elevated Fos in adolescents is reflective of greater neural inhibition. 

 

Non-neuronal induction of Fos represents an alternative explanation for differential Fos 

immunoreactivity between ages. For example, astrocytes play an important role in glutamate 

metabolism (Kondziella et al., 2007). Glutamate signaling in is increased following cocaine 

administration and is thought to augment dopamine induced locomotor activity (Pierce et al., 

1996, Reid et al., 1997). For example, intra accumbens infusion of NMDA antagonist reduces 

cocaine induced locomotor stimulation (Pulvirenti et al., 1991). While Fos is primarily expressed 

in neurons, cell culture studies have demonstrated c-fos expression in astrocytes following 

cocaine (Malaplate-Armand et al., 2005). It is conceivable that adolescents may have increased 

astrocyte activation compared to adults. If metabolism of glutamate by astrocytes is greater in 

adolescents, then excitatory glutamatergic signaling in the caudate would be expected to 

terminate faster, possibly resulting in decreased locomotor stimulation observed in adolescents. 

This hypothesis could be tested by examining Fos activation in astrocytes or using microdialysis 

to measure glutamate release in the caudate following cocaine administration. 

 

In summary, the current study failed to show evidence for the hypothesis that elevated 

striosomal signaling contributes to attenuated locomotor stimulation to cocaine in adolescents as 

compared to adults. However, the dorsal caudate remains an area of interest for examination of 

age differences to cocaine. Alternative explanations, such as differences in interneuron signaling 
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or astrocyte functions, represent possible future avenues of exploration for age differences in 

stimulation. 
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Tables 

Table 5.1 Histology summary 

F(1,28)=1.6, P>0.05F(1,28)=218.8, P<0.00010.29±0.0240.02±0.0070.34±0.0290.02±0.005Matrix

F(1,28)=0.1, P>0.05F(1,28)=111.3, P<0.00010.34±0.0380.02±0.0090.37±0.0500.01±0.003StriosomesFos Density

F(1,28)=0.3, P>0.05F(1,28)=0.2, P>0.051091.0±9.11080.7±7.01090.0±8.91092.4±11.4Matrix

F(1,28)=0.2, P>0.05F(1,28)=1.4, P>0.0575.5±9.569.1±5.974.9±8.162.4±8.3StriosomesArea

F(1,28)=1.6, P>0.05F(1,28)=210.4, P<0.0001313.6±26.924.9±7.7366.9±32.826.2±5.2Matrix

F(1,28)=0.5, P>0.05F(1,28)=81.8, P<0.000124.0±2.11.3±0.428.4±5.10.8±0.2StriosomesFos

AgeDose300300

AdolescentsAdults

StatisticsMean
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1. Sum distance traveled in 90 minutes following 30 mg/kg cocaine or saline in 

adolescent and adult mice. Error bars represent SEM.  
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Figure 5.2. Shown here are adjacent sections, the top photograph shows Fos positive nuclei and 

the bottom photograph shows striosomes by MOR1 immunostain. 
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