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ABSTRACT

Motivated by security and privacy considerations in applications of discrete

event systems, we describe and analyze the complexity of verifying various

state-based notions of opacity in systems that are modeled as (possibly non-

deterministic) finite automata with partial observation on their transitions.

Assuming that the intruder observes system activity through some projec-

tion map and has complete knowledge of the system model, we define three

notions of opacity with respect to a set of secret states: (i) initial-state

opacity is a notion that requires the membership of the system true initial

state to the set of secret states remain opaque (i.e., uncertain) to the intruder;

(ii) K-step opacity is a notion that requires that at any specific point in

time within the last K observations, the entrance of the system state to the

given set of secret states remain opaque to the intruder; (iii) infinite-step

opacity is a notion that requires the entrance of the system state at any

particular instant to the set of secret states remain opaque, for the length

of the system operation, to the intruder. As illustrated via examples in

the thesis, the above state-based notions of opacity can be used to charac-

terize the security requirements in many applications, including encryption

using pseudo-random generators, coverage properties in sensor networks, and

anonymity requirements in protocols for web transactions.

In order to model the intruder capabilities regarding initial-state opacity,

we address the initial-state estimation problem in a non-deterministic finite

automaton under partial observations on its transitions via the construction

of an initial-state estimator. We analyze the properties and complexity of

the initial-state estimator, and show how the complexity of the verification

method can be greatly reduced in the special case when the set of secret

states is invariant (i.e., it does not change over time). We also establish that

the verification of initial-state opacity is a PSPACE-complete problem.

In order to verify K-step opacity, we introduce the K-delay state estimator
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which constructs the estimate of the state of the system K observations ago

(K-delayed state estimates) for a given non-deterministic finite automaton

under partial observation on its transitions. We provide two methods for

constructing K-delay state estimators, and hence two methods for verifying

K-step opacity, and analyze the computational complexity of both. In the

process, we also establish that the verification of K-step opacity is an NP-

hard problem. We also investigate the role of the delay K in K-step opacity

and show that there exists a delay K∗ such that K-step opacity implies K ′-

step opacity for any K and K ′ such that K ′ > K ≥ K∗. This is not true for

arbitrary K ′ > K though the converse holds trivially.

Infinite-step opacity can be verified via the construction of a current-state

estimator and a bank of appropriate initial-state estimators. The verification

of infinite-step opacity is also shown to be a PSPACE-hard problem.

Finally, we tackle the problem of constructing a minimally restrictive

opacity-enforcing supervisor (MOES) which limits the system’s behavior

within some pre-specified legal behavior while enforcing opacity require-

ments. We characterize the solution to MOES, under some mild assump-

tions, in terms of the supremal element of certain controllable, normal, and

opaque languages. We also show that this supremal element always exists

and that it can be implemented using state estimators. The result is a su-

pervisor that achieves conformance to the pre-specified legal behavior while

enforcing opacity by disabling, at any given time, a subset of the control-

lable system events, in a way that minimally restricts the range of allowable

system behavior.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Motivated by the increased reliance on shared cyber-infrastructures in many

application areas (ranging from defense and banking to health care and power

distribution systems), various notions of security and privacy have received

considerable attention from researchers. The work pursued so far can be

roughly classified into two main approaches: the first approach focuses on

carefully characterizing the intruder’s capabilities, whereas the second one

focuses on the information flow from the system to the intruder [1,2]. Opacity

is a security notion that falls in the second category and aims at determining

whether a given system’s secret behavior (i.e., a subset of the behavior of the

system that is considered critical and is usually represented by a predicate)

is kept opaque to outsiders [3, 4]. More specifically, this requires that the

intruder (modeled as a passive observer of the system’s behavior) never be

able to establish the truth of the predicate.

In this thesis, we study various notions of opacity with respect to predicates

that are state-based. More specifically, we consider a scenario where we

are given a discrete event system (DES) that can be modeled as a non-

deterministic finite automaton with partial observation on its transitions.

The intruder is assumed to have full knowledge of the system model and

be able to track the occurrence of the observable transitions in the system.

Assuming that the initial state of the system is (partially) unknown, we

define, analyze, and describe three state-based notions of opacity as described

below.

(i) Initial-state opacity: The secret behavior of the system is defined as

the membership of its initial state to a set of secret states S [5]. This notion

requires that the intruder never be certain that the initial state of the system
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belonged to the set of secret states S, regardless of the activity that takes

place in the system.

(ii) K-step opacity (K ≥ 0): The secret behavior of the system is defined

as the evolution of the system’s state to a set of secret states S [4, 6] at

any given time within the past K observations. Specifically, K-step opacity

requires that, at any given time, the intruder cannot determine with certainty

that the state of the system 0, 1, . . . , or K observations ago belonged to the

secret set of states S. The notion of K-step opacity is suitable for situations

where the secrecy of some states becomes unimportant after the occurrence

of a certain number of events (e.g., the passage of time).

(iii) Infinite-step opacity: The secret behavior of the system is defined

as the evolution of the system’s state to a set of secret states S [7] within the

past observations (including the latest observation). Specifically, infinite-step

opacity requires that, at any given time, the intruder cannot determine with

certainty that the state of the system 0, 1, 2, . . . , observations ago belonged to

the secret set of states S. This is essentially the extension of K-step opacity

as K approaches infinity.

There are many areas where state-based notions of opacity can be used

to characterize security requirements. For example, state-based notions of

opacity can be used to study conditions under which the key sequence gener-

ated by a pseudo-random generator in a cryptographic protocol can become

compromised (e.g., because its initial state or its state at a particular point in

time is revealed). Another example can be found in the context of coverage

analysis of a mobile agent in a terrain equipped with cameras (that provide

some partial coverage). Here, one can use the notion of K-step opacity to

characterize paths that a mobile agent can follow without exposing the exact

time(s) (measured with respect to the snap-shots provided by the cameras)

at which the object goes through certain strategic (secret) areas. Some of

these applications are discussed in more detail Chapter 3 and in Chapter 8.

As another example, consider the communication protocols for a bank

transaction where the user communicates important account information in

certain states and dummy information in others. This mechanism prohibits

an eavesdropper from intercepting the packets that include important infor-

mation — which can be used for replay attack. A replay attack is a network

attack where valid data transmission is maliciously or fraudulently repeated

or delayed [8]. The notion of infinite-step opacity can be used to verify
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whether the given communication protocol indeed hides such important in-

formation from the eavesdropper.

Due to the state-based nature of the notions of opacity introduced in this

thesis, one way to verify them is to construct appropriate state estimators.

The problem of state estimation in discrete event systems along with its ap-

plications to fault diagnosis and control, has attracted significant research

interest over the last two decades [9]–[16]. The main problem that has been

studied consists of reconstructing all possible states that a known system

can be in based on possibly limited knowledge of its initial state and partial

knowledge of the sequence of events that occur in the system. The state esti-

mation problem has found applications in diverse areas, including stabilizing

supervisory control [15],[17], fault diagnosis [11],[16], interface design [13],

and discrete event system inversion [18]. The notions of opacity introduced

in this thesis require that the truth of a certain predicate on the system state

cannot be determined by an outside observer for the duration of a certain

time window (or for all times in the case of infinite-step opacity). Depending

on the notion of opacity that is used, this predicate can be defined for states

visited in the past (with no bound on how far into the past) or for states

which have been visited a fixed number of observations in the past. In ei-

ther case, existing state estimation techniques cannot verify these properties

since they are tracking the current state but not the state trajectory or the

previous states.

Motivated by such limitations, we study the problem of state estimation in

discrete event systems. The basic state estimation setting we consider is the

following: we are given a finite non-deterministic automaton with (partially)

unknown initial state and partial event observation (without loss of gener-

ality we assume that no state observation is explicitly available — we can

always incorporate any state information that is available by appropriately

enhancing the underlying automaton [19]). We formally define the problems

of initial-state estimation and K-delayed state estimation, and introduce the

initial-state estimator and K-delay state estimator as respective solutions to

these problems.

In order to show how state estimators can be used to verify opacity, we

start in Chapter 5 by showing that a system is initial-state opaque if and only

if all initial-state estimates (in its initial-state estimator) contain at least one

state outside the set of secret states S. Initial-state opacity verification using
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the initial-state estimator is shown to require space complexity that in the

worst case can be exponential in the square of the number of states of the

given finite automaton. For a fixed set of secret states S, we also propose a

more efficient method for verifying initial-state opacity which requires space

complexity that is exponential in the number of states of the given finite au-

tomaton (but is specific to the secret set of states S and, unlike the approach

that uses the initial-state estimator, has to be repeated for a different set of

secret states S). We also describe how the approach based on the initial-

state estimator can be extended in certain settings where the set of secret

states S is time-varying. The exponential complexity of the methods for

verifying initial-state opacity is not desirable for implementation purposes;

however, since in Chapter 6 we establish that the verification of initial-state

opacity problem is PSPACE-complete for |Σobs| > 1 (where |Σobs| denotes

the number of observable events in the system), it is unlikely that the notion

of initial-state opacity can be verified via a polynomial-time algorithm.

In Chapter 5, we also show that a system is K-step opaque if and only

if all K-delayed state estimates (in its K-delay state estimator) contain at

least one state outside the set of secret states S. K-step opacity verification

using the K-delay state estimator is shown to require space complexity that

in the worst case can be exponential in the square of the number of states

of the given finite automaton and K. Again, the exponential complexity

of this algorithm is not desirable; however, we show in Chapter 6 that the

verification of the K-step opacity problem is NP-hard for |Σobs| > 1.

Finally, in oder to verify infinite-step opacity, we show in Chapter 5 that

for any K ≥ 2N2
− 1 (where N is the number of states of the discrete event

system) K-step opacity and infinite-step opacity become equivalent; hence

one can construct the K-delay state estimator, with K = 2N2
− 1, to verify

infinite-step opacity. We also introduce a reduced-complexity method to

verify infinite-step opacity using the current-state estimator and a bank of

initial-state estimators. In Chapter 6, we establish that the verification of

the infinite-step opacity problem is PSPACE-hard for |Σobs| > 1.

In order to show the applicability of the theoretical developments of this

thesis to real-sized problems, we also employ existing tools and appropriate

transformations to implement the algorithm for verifying infinite-step opacity

using a current-state estimator and a bank of initial-state estimators. We

use this implementation in Chapter 8 to analyze tracking problems in some
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representative sensor networks.

A natural question that follows the verification problem is the enforcement

problem: in case the given system is not opaque, are there ways to enforce

opaqueness? There are many ways one can answer such questions depending

on the available control (or enforcement) mechanisms that the supervisor can

use to remove behaviors from the system that violate opacity. Examples of

such control mechanisms include: (i) disabling controllable events (which are

essentially a subset of system events that can be controlled by the supervisor);

(ii) changing the observability of events (where the supervisor can force some

sequences of events in the system to look alike so that the secret behavior is

concealed). In this thesis, we assume that the available control mechanism is

capable of disabling controllable events and study how it can be used to en-

force various notions of opacity. More specifically, in Chapter 7, we consider

the problem of designing a (minimally restrictive) supervisor which (i) limits

the system’s behavior within some pre-specified legal behavior, and (ii) en-

forces (either initial-state or infinite-step) opacity requirements by disabling,

at any given time, the least possible number of events. For enforcing initial-

state opacity, we establish that the set of solutions can be characterized as

the intersection of controllable, normal, and opaque languages. Using this

characterization, we then show that the solution to our problem is the supre-

mal element of such languages. We argue that, under some mild assumptions,

the supremal element exists, and we derive a formulation for it. Moreover,

assuming that the given legal behavior is regular (i.e., it can be described

via a finite automaton), we show that the supremal element is also regular.

Finally, we propose a procedure that uses an appropriate state estimator to

implement this supremal element, effectively integrating the verification and

control problems. For enforcing infinite-step opacity, we leverage the results

on initial-state opacity and build a finite bank of supervisors that implement

minimally restrictive supervisory strategies.

1.2 Related Work

The developments in this thesis are related to existing security work in the

area of DESs. In particular, [20] and [21] focus on finite Petri nets and define

opacity with respect to state-based predicates; our work here essentially (i)
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introduces the notions of K-step and infinite-step opacity (not present in

either [3], [20], or [21]) and (ii) studies and solves these problems (as well as

the problem of initial-state opacity) for the case of finite automata.

The authors of [22] consider multiple intruders modeled as observers with

different observation capabilities (namely different natural projection maps)

and require that no intruder be able to determine that the actual trajectory of

the system belongs to the secret language assigned to that intruder. Assum-

ing that the supervisor can observe/control all events, the authors establish

sufficient conditions for the existence of a supervisor with a finite number

of states (i.e., a regular supervisor) that enforces this opacity requirement

for all observers of the system. In particular, it is shown that the optimal

supervisor in this setting always exists but is not guaranteed to be regular.

The assumptions on the full controllability and observability of events by the

supervisor are partially relaxed in [23] where the authors consider a single in-

truder that might observe different events than the ones observed/controlled

by the supervisor. Under these assumptions, [23] establishes that a mini-

mally restrictive supervisor always exists, but its regularity depends on the

relationship between the set of events observed by the intruder and the sets

of events observed/controlled by the supervisor. In contrast to [22] and [23],

opacity in our framework assumes that the states of the system can be parti-

tioned into secret and non-secret ones; this state-based formulation is what

enables us to use various state estimators to verify opacity. Also, note that

the notions of opacity introduced here are not considered in [22] and [23]

and (as explained in more details in Chapter 3 of the thesis) they cannot be

readily captured by the framework of [22, 23]. The supervisor introduced in

this work to enforce initial-state opacity can certainly be formulated in terms

of the language framework of [23]. However, our approach in Chapter 7 of

this thesis leads to a closed form expression for the optimal solution which is

not present in [23] and also allows us to use a state estimator to synthesize

the supervisor.

Related to our work here is also the work in [24] where the authors par-

tition the event set into public level and private level events, and consider

the verification of intransitive non-interference, a property that captures the

allowed information flow (e.g., the occurrence of certain events) from private

level events to public level events through a downgrading process. Moreover,

the authors of [25] consider the problem of designing a minimally restric-
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tive supervisor which enforces non-interference for automata when there is

no downgrading process. Our model of the intruder’s capability (in terms of

observability power) is different from [24] and [25] which makes the two frame-

works incomparable. As we show in Chapter 3, when there is no downgrading

process, the notion of non-interference can be translated to an instance of

0-step opacity (current-state opacity); however, in general, one cannot formu-

late the state-based notions of opacity in the framework of [24] or [25]. Since

the results of Chapter 7 of this thesis on designing supervisory control can

be easily extended to design minimally restrictive supervisors that enforce

0-step opacity (see Chapter 7), the synthesis of a supervisor that enforces

non-interference in [25] can also be generated using the framework of this

thesis.

The authors of [26] model the intruder as a non-passive entity which can

override the decision of the supervisor to disable certain events; they are

concerned with the problem of intrusion detection and derive sufficient con-

ditions under which a supervisor can detect the presence of an intrusion.

Compared to [26], the intruder in our framework is passive (modeled as an

observer) and cannot change the system configuration or model.1 Also note

that, unlike [26], we are not seeking to avoid states as long as we can guar-

antee that entrance to these states retains opacity.

1Note that the intruder in our framework can actually be allowed to interfere with
uncontrollable events, without having to adjust any of the developments we present. In
fact, as long as the intruder is capable of only disabling events that are enabled by the
supervisor (but not enabling events that are disabled by the supervisor), the development
that we present here still guarantees the enforcement of opacity.
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CHAPTER 2

BACKGROUND

2.1 Languages and Automata

Let Σ be an alphabet and denote by Σ∗ the set of all finite-length strings

of elements of Σ, including the empty string ǫ. For any string t, |t| denotes

the length of t (with |ǫ| taken to be zero). A language L ⊆ Σ∗ is a subset

of finite-length strings from strings in Σ∗. A language is finite if it contains

only a finite number of strings. We say that a finite language L is of length

K if the maximum length of the strings in L is K. For a string ω, ω denotes

the prefix-closure of ω and is defined as ω̄ = {t ∈ Σ∗| ∃s ∈ Σ∗{ts = ω}},

where ts denotes the concatenation of strings t and s. The prefix closure L

of language L is the union of all prefix closures of all strings in L. A language

is prefix-closed if L = L. The post-string ω/t of ω after t ∈ ω̄ is defined as

ω/t = {s ∈ Σ∗| ts = ω}. The concatenation L1L2 of two languages L1 and

L2 is defined as L1L2 = {ts|t ∈ L1, s ∈ L2} [27].

A DES is modeled in this thesis as a non-deterministic finite automaton

G = (X, Σ, δ, X0), where X = {0, 1, . . . , N − 1} is the set of states, Σ is

the set of events, δ : X × Σ → 2X (where 2X is the power set of X) is

the non-deterministic state transition function, and X0 ⊆ X is the set of

initial states. The function δ can be extended from the domain X ×Σ to the

domain X × Σ∗ in the routine recursive manner: δ(i, ts) :=
⋃

j∈δ(i,t) δ(j, s),

for t ∈ Σ and s ∈ Σ∗ with δ(i, ǫ) := i. The behavior of DES G is captured by

L(G) := {s ∈ Σ∗ | ∃i ∈ X0{δ(i, s) 6= ∅}}. We use L(G, i) to denote the set

of all traces that originate from state i of G (so that L(G) =
⋃

i∈X0
L(G, i)).

The prefix-closed language E is regular if there exists a finite automaton G

such that L(G) = E [19, 28].

The product of two non-deterministic automata G1 = (X1, Σ1, δ1, X01)

and G2 = (X2, Σ2, δ2, X02) is the automaton G1 × G2 := AC(X1 × X2, Σ1 ∩
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Σ2, δ1×2, X01 × X02) where δ1×2((i1, i2), α) := δ1(i1, α) × δ2(i2, α) for α ∈

Σ1 ∩ Σ2, and AC denotes the accessible part of the automaton (i.e., the set

of states reachable from the set of initial states via some string s ∈ Σ∗ where

Σ = Σ1 ∩ Σ2). The construction of the product automaton implies that

L(G1 × G2) = L(G1) ∩ L(G2) [27].

In general, only a subset Σobs of the events can be observed. Typically,

one assumes that Σ can be partitioned into two sets, the set of observable

events Σobs and the set of unobservable events Σuo (so that Σobs∩Σuo = ∅ and

Σobs ∪ Σuo = Σ). The natural projection P : Σ∗ → Σ∗
obs can be used to map

any trace executed in the system to the sequence of observations associated

with it. This projection is defined recursively as P (ts) = P (t)P (s), t ∈

Σ, s ∈ Σ∗, with

P (t) =







t, if t ∈ Σobs,

ǫ, if t ∈ Σuo ∪ {ǫ}.

More general projections of the form P : Σ → ∆∪{ǫ} that may map multiple

events to a label in the set ∆∪{ǫ} can also be incorporated in our development

in a straightforward manner. To keep notation simple we only discuss the

natural projection.

2.2 State Mappings

Given a non-deterministic finite automaton G = (X, Σ, δ, X0), XK (K ≥ 2)

denotes the set of K-tuples of states of DES G, i.e., XK := X×X×. . .×X =

{(j1, . . . , jK)|jk ∈ X}, 1 ≤ k ≤ K. We call m ⊆ XK a K-dimensional state

mapping.

The set of states included as the first (last) component in a K-dimensional

state mapping m is called the set of starting (ending) states of m and is

denoted by m(K − 1) (by m(0)). We also denote by m(k), 0 < k < K − 1,

the set of intermediate states in the K-tuple, i.e.,

m(k) = {jK−k|(j1, . . . , jK) ∈ m}.

A 2-dimensional state mapping is referred to as a state mapping.We say that
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state mapping m1 refines m2 if the set of starting states m1(1) is a subset of

the set of starting states m2(1), i.e., m1(1) ⊆ m2(1). Moreover, if mapping

m1 refines m2 and mapping m2 refines m1, then we say that mapping m1

is consistent with m2 (in this case, m1(1) = m2(1)). For m = ∅, we define

m(1) = m(0) = ∅.

We define the shift operator >>: 2XK

× 2X2
→ 2XK

for a K-dimensional

state mapping m1 ∈ 2XK

and a state mapping m2 ∈ 2X2
as

m1 >> m2 := {(j2, . . . , jK , jK+1)|(j1, j2, . . . , jK) ∈ m1, (jK , jK+1) ∈ m2}.

We also define the composition operator ◦ : 2X2
× 2X2

→ 2X2
for state

mappings m1, m2 ∈ 2X2
as

m1 ◦ m2 := {(j1, j3)|∃j2 ∈ X{(j1, j2) ∈ m1, (j2, j3) ∈ m2}}.

Note that the shift operator takes as input two sets of tuples: the first set

involves K-tuples K ≥ 2, and the second set involves tuples of size two;

for each K-tuple of the first set, all 2-tuples in the second set whose first

element is the same as the last element of the K-tuple from the first set are

used to produce an output K-tuple by using the 2nd, 3rd, . . ., Kth elements

of the first K-tuple, and the second element of the second 2-tuple. The

composition operator, on the other hand, takes as input two sets of 2-tuples

and produces as output another set of 2-tuples by including all 2-tuples

with the first element borrowed from a 2-tuple in the first input set and

the second element borrowed from a 2-tuple in the second set, as long as

these two 2-tuples share the same second/first element (as done in the case

of the shift operator). Note that the composition operator is only defined

for tuples of size two. For any Z ⊆ X and K ≥ 2, we define the operator

⊙K : 2X → 2XK

as ⊙K(Z) = {(i, i, . . . , i)|i ∈ Z} where the tuples involve K

identical elements.

Given a non-deterministic finite automaton G = (X, Σ, δ, X0) and a natural

projection map P with respect to the set of observable events Σobs (Σobs ⊆ Σ),

we can map any sequence of observations ω ∈ Σ∗
obs (of finite but arbitrary

length) in DES G to a state mapping by using the mapping M : Σ∗
obs → 2X2

such that the 2-tuple (i, j) ∈ M(ω) if and only if there exists a sequence of

events that starts from i and ends in j, and produces observation ω. We call
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M(ω) the ω-induced state mapping and define it formally below.

Definition 2.2.1 (ω-Induced State Mapping). Given a non-deterministic

finite automaton G = (X, Σ, δ, X0) and a natural projection map P with

respect to the set of observable events Σobs (Σobs ⊆ Σ), the ω-induced state

mapping after observing the sequence of observations ω ∈ Σ∗
obs is defined as

M(ω) = {(i, j)|i, j ∈ X, ∃t ∈ Σ∗{P (t) = ω, j ∈ δ(i, t)}}.

We define M(ǫ) = ⊙2(X). Note that M(ω) = ∅ denotes the fact that the

sequence of observations ω is not feasible in DES G. �

The following proposition can be easily shown.

Proposition 2.2.1. Given a non-deterministic finite automaton G = (X, Σ,

δ, X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), the ω-induced state mapping satisfies the following

for ω1, ω2 ∈ Σ∗
obs: M(ω1ω2) = M(ω1) ◦ M(ω2). �

Generalizing the notion of the ω-induced state-mapping, we map a se-

quence of observation ω = α0α1 . . . α|ω|−1 in DES G to a (|ω|+1)-dimensional

state mapping via the mapping T|ω| : Σ
|ω|
obs → 2X|ω|+1

as

T|ω|(ω) = {(j0, j1, . . . , j|ω|) ∈ X |ω|+1|∀l(0 ≤ l ≤ |ω| − 1)∃tl ∈ Σ∗{P (tl) = αl,

jl+1 ∈ δ(jl, tl)}}

which we call the ω-induced (|ω|+ 1)-dimensional state mapping. Note that

T|ω|(ω) = ∅ denotes the fact that the sequence of observations ω is not feasible

in DES G.
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CHAPTER 3

STATE-BASED NOTIONS OF OPACITY

In this chapter, we consider discrete event systems that are modeled as non-

deterministic finite automata under a natural projection map P , and we

define and motivate three state-based notions of opacity: initial-state opac-

ity, K-step opacity, and infinite-step opacity. We motivate these notions by

considering representing applications in the security/privacy domains. For

instance, we show that the conditions under which the key sequence gen-

erated by a pseudo-random generator in a cryptographic protocol becomes

compromised (e.g., because its initial state or its state at a particular point in

time is revealed) can be formulated and analyzed using state-based notions of

opacity. We also consider tracking problems in sensor networks and motivate

the application of state-based notions of opacity in such contexts. At the end

of this chapter, we also discuss the relation between the state-based notions of

opacity introduced in this chapter and other related notions in discrete event

systems, including non-interference, diagnosability, and unique input/output

sequences.

3.1 Initial-State Opacity

Initial-state opacity requires that the membership of the system initial state

to the set of secret states (denoted by S) remains opaque to an intruder (out-

side observer) who is observing the events that occur in the system through

a natural projection map P . In other words, for a system to be initial-state

opaque, we require that the intruder be unable to determine with certainty

that the initial state of the system belonged to the set of secret states S.

Note that our definition of initial-state opacity allows the intruder to deter-
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mine that the system started from a non-secret initial state.1 The following

definition describes initial-state opacity formally.

Definition 3.1.1 (Initial-State Opacity). Given a non-deterministic finite

automaton G = (X, Σ, δ, X0), a natural projection map P with respect to the

set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X,

automaton G is initial-state opaque with respect to S and P (or (S, P,∞)

initial-state opaque), if for all i ∈ X0 ∩ S and for all t ∈ L(G, i) we have

∃j ∈ X0 − S, ∃s ∈ L(G, j){P (s) = P (t)}. (3.1)

�

According to Definition 3.1.1, DES G is (S, P,∞) initial-state opaque if for

every string t that originates from a system initial state in the set of secret

states S, there exists a string s that originates from a system initial state

outside the set of secret states S and has the same projection as t.

3.2 K-Step Opacity

The notion of K-step opacity is suitable for cases when, following K obser-

vations, one does not mind if an intruder can infer information about secret

states (e.g., because the secret transaction has completed or because the in-

trusion will be detected). The formal definition of K-step opacity (refer to

Figure 3.1) is provided below.

Definition 3.2.1 (K-Step Opacity). Given a non-deterministic finite au-

tomaton G = (X, Σ, δ, X0), a natural projection map P with respect to the

set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X,

automaton G is K-step opaque (for a nonnegative integer K) with respect to

S and P (or (S, P, K)-opaque), if for all t ∈ Σ∗, t′ ∈ t̄, and i ∈ X0,

{|P (t)/P (t′)| ≤ K, ∃j ∈ S{j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}

1This is because non-secret initial-states do not contain secret information; thus, reveal-
ing that the system started from a non-secret state does not expose any critical information
to the intruder. Note, however, that one can easily address the case when exposing that
the system started from a non-secret state is also considered critical information.
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Figure 3.1: Graphical representation of the notation used in Definition 3.2.1
(|P (t′′)| = |P (s′′)| ≤ K).

⇒ {∃s ∈ Σ∗, ∃s′ ∈ s̄, ∃i′ ∈ X0, ∃j′ ∈ δ(i′, s′){P (s) = P (t),

P (s′) = P (t′), j′ ∈ X − S, δ(j′, s/s′) 6= ∅}}.

�

Note that 0-step opacity is a special case of of the above definition when

K = 0. In this thesis, we use 0-step opacity and current-state opacity inter-

changeably. For t, s ∈ L(G) with P (s) = P (t) we say that t passes through

state j when s passes through state j′ if there exists t′ ∈ t̄, s′ ∈ s̄, and

i, i′ ∈ X0 such that j ∈ δ(i, t′), j′ ∈ δ(i′, s′) while (i) P (t′) = P (s′) and (ii)

t/t′ and s/s′ have continuations from states j and j′, respectively. According

to Definition 3.2.1, DES G is (S, P, K)-opaque if for every string t in L(G)

that visits a state j in S within the past K observations (and has a contin-

uation from j), there exists a string s in L(G) with P (s) = P (t) such that

when string t passes through the state j in S, string s passes through a state

j′ in X −S (and has a continuation from j′). Note that s could be the same

as t, in which case t would be passing through both secret and non-secret

states.

3.3 Infinite-Step Opacity

K-step opacity requires opacity for only K observations since the last en-

trance of the system to the set of secret states S. This notion is suitable for

cases where there is a bounded delay, after which one does not care if the

intruder can infer information about the behavior (states) that was (were)

considered previously secret. However, in many applications the existence of

such bound might not be viable. For this reason, we extend the definition of
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(S, P, K)-opacity to cases where K approaches infinity. We call this notion

infinite-step opacity and define it formally in the following definition.

Definition 3.3.1 (Infinite-Step Opacity). Given a non-deterministic finite

automaton G = (X, Σ, δ, X0), a natural projection map P with respect to the

set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X,

automaton G is infinite-step opaque with respect to S and P (or (S, P,∞)-

opaque), if for all t ∈ Σ∗, t′ ∈ t̄, and i ∈ X0,

{∃j ∈ S{j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}

⇒ {∃s ∈ Σ∗, ∃s′ ∈ s̄, ∃i′ ∈ X0, ∃j′ ∈ δ(i′, s′){P (s) = P (t),

P (s′) = P (t′), j′ ∈ X − S, δ(j′, s/s′) 6= ∅}}.

�

According to Definition 3.3.1, DES G is (S, P,∞)-opaque if for every string

t in L(G) that visits a state j in S (and has a continuation from j), there

exists a string s in L(G) with P (s) = P (t) such that when string t passes

through the state j in S, string s passes through a state j′ in X −S (and has

a continuation from j′). Note that s could be the same as t, in which case t

would be passing through both secret and non-secret states.

3.4 Motivational Examples

The state-based notions of opacity introduced in this chapter can be used

to describe various desirable properties in security applications where vital

information is associated with the states of the system and needs be kept

secret from the intruder for the duration of system operation. Applications

include encryption using key strings provided by pseudo-random generators

and coverage properties of mobile agents in sensor networks. In this sec-

tion, we motivate the aforementioned state-based notions of opacity using

examples from these contexts.
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1 1 10 0 0 01

bit 7bit 0

Figure 3.2: A conventional 8-bit LFSR with tapped bits 0,1,7 and seed
(initial state) 10010011.

3.4.1 Encryption using Pseudorandom Generators

In cryptography, a symmetric cipher combines plain text bits (original in-

formation) with a pseudo-random bit stream (key-stream), typically using a

bitwise XOR operation. For example, message 1010 XOR-ed with key-stream

0100 results in the encrypted message 1110. Knowledge of the encrypted mes-

sage does not reveal the plain text unless the key-stream is compromised. To

create the key-stream, one often uses a linear feedback shift register (LFSR)

or some other type of pseudo-random number generator. An LFSR (Fig-

ure 3.2) is an autonomous shift register whose input bit (on the left in Fig-

ure 3.2) is obtained by XOR-ing some predefined combination of the bits

that are stored in the shift register (this implies that the input bit is a linear

function — in GF (2) — of the LFSR’s previous state). The initial state of

the LFSR is called the seed, and the bits that affect the next input bit (and

thus the next state) are called the tapped bits. The taps are XOR-ed sequen-

tially and then fed back into the register as the input bit. Figure 3.2 shows

an 8-bit LFSR with tapped bits 0, 1, 7, and seed 10010011. The output of

the LFSR is usually the last bit shifted out from the shift register.

Because the operation of the register is deterministic, the sequence of values

produced by the register (which is used to generate the key-stream for the

stream cipher) is completely determined by its seed. For example, given

that the seed (initial state) of the LFSR in Figure 3.2 is 10010011, the next

output is 1 (i.e., the rightmost bit shifted out) and the next state of the

LFSR becomes 01001001 (because the incoming bit is given by 1⊕0⊕1 = 0,

and the rest of the bits are the seven leftmost bits of 10010011 with the

rightmost bit shifted out). Note that the register has a finite number of

possible states (28 states in the example of Figure 3.2), so it must eventually

enter a repeating cycle. An LFSR with a well-chosen feedback function (taps)

and initial state can have a very long cycle and can produce a sequence
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Output

Figure 3.3: Operation of LFSR when the clock mechanism is active.

of bits which appears2 random. Alternative structures to the conventional

LFSR do exist; for example, the LFSR structure proposed in [29] contains a

clock mechanism (Figure 3.3). When the system is clocked, bits that are not

tapped are shifted as normal to the next flip-flop. The tapped bits, on the

other hand, are XOR-ed with the new output before the resulting bits are

shifted. For example, in Figure 3.3, the value of the shift register, before the

clock is enabled, is 10010011; upon clocking, the output of the shift register

becomes 1, which is the value of the rightmost bit that is shifted out; after

that, the value of the shift register becomes 10101001. Note that bits 2, 3, 4,

5, 6, and 7 are shifted to the right as in the conventional LFSR (bit 7 simply

becomes the output bit); bits 0 and 1 are XOR-ed with the output of the

LFSR (which is 1) before they are shifted (to take positions 1 and 2). Also

note that bit 0 in this case is simply the rightmost bit before clocking. When

the clock is not active, the shifting mechanism remains identical to that of

the conventional LFSR. For example, in the previous scenario, if the clock

was not active, the next state of the shift register would have been 01001001

(since the tapped bits are bits 0, 1, and 7). Clearly, by manipulating the

activation of the clock mechanism, one can create more complex behavior

than that of an unclocked LFSR.

An intruder can interact with protocols that use (clocked) LFSRs by in-

serting some plain text and by observing the ciphered text in order to find

the seed. Note that finding the seed is equivalent to finding the stream of the

keys used to encrypt all previous messages. Hence, if the intruder records all

of the (encrypted) conversation, after finding the seed, she/he can go back

and decrypt them using the key-stream. As we will see, many of the security

concerns about this protocol can be recast in the framework of this thesis;

for example, the question of whether there is a seed for which there exists

2Clearly, initial state 00000000 would not be a good choice in the example of Figure 3.2,
regardless of the choice of tapped bits.
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Figure 3.4: (a) 2-dimensional grid in which a vehicle can move; (b)
kinematic model for a vehicle in the grid in (a); (c) automaton model of the
vehicle kinematic model and the corresponding sensor readings (there are
two sensors, α and β, with coverage areas within cell 2, and within cells 0, 2
and 3, respectively).

a sequence of inputs that reveals that seed, can be answered by formulating

the problem as a set of initial-state opacity problems, each with a different

set of secret initial states (as we will see in Chapter 5, this set of problems

can be solved via the construction of a single initial-state estimator). Note

that if there is such a seed, one might be interested in how long (in terms of

input size) it takes for the intruder to detect it. An answer to this question

can be obtained via a problem formulation that involves K-step opacity.

3.4.2 Tracking of Mobile Agents using Sensor Networks

Consider a vehicle capable of moving in a space modelled as a two-dimensional

array of cells (grid). In Figure 3.4-a we provide a toy example of a 2×2 grid.

The state of the vehicle corresponds to the coordinates (x, y) (or cell num-

ber) of its location in this grid, and any trajectory that the vehicle follows

corresponds to a sequence of states. Clearly, the origin of the trajectory is

captured by the initial state of the vehicle.

In order to capture vehicle movement limitations (due to physical obsta-

cles or constraints in the vehicle motion), we assume that the vehicle possible

movements are available via a kinematic model, i.e., a finite state machine

whose states are associated with the state (position) of the vehicle and whose

transitions correspond to the possible movements of the vehicle at each posi-

tion (up, right, diagonal, etc.). Figure 3.4-b depicts an example of a kinematic

model H for a vehicle that moves in the grid of Figure 3.4-a. This model
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captures the various restrictions on the vehicle movement: for example, the

kinematic model H indicates that the vehicle can go from cell 0 to cell 2 and

potentially park itself there (i.e., stay in cell 2 for consecutive time instants),

but it cannot go directly from cell 2 to cell 0. Similarly, the vehicle can com-

mute between cells 0 and 1 indefinitely, but it cannot park in any of these

cells (it cannot remain in the same cell for consecutive instants).

We assume that a number of sensors are deployed in the grid. Typically, the

sensor network will not capture all movements of the vehicle and hence the

observation of movements will be partial. Each sensor detects the presence

of the vehicle in a cell or in some aggregation of cells, and it emits a signal

to indicate that a vehicle passes through a cell within its coverage. However,

sensors cannot determine the exact cell at which the vehicle resides within

their coverage area. In order to model sensor readings, we can enhance the

kinematic model by assigning label α to all transitions that end in a cell

within the coverage area of sensor α. Since sensor coverage may overlap, the

label of transitions ending in areas which are covered by more than one sensor

can be chosen to be a special label that indicates the set of all sensors covering

that location. In Figure 3.4-c, assuming that the coverage area of sensor α

only includes cell 2, and that the coverage area of sensor β includes cells 0,

2 and 3, we depict the (non-deterministic) automaton G that models both

the kinematic model of the vehicle and the corresponding sensor readings.

Dotted arrows correspond to (unobservable) transitions to locations that are

not covered by any sensor.

One of the questions that might arise in the above context is that of char-

acterizing all the trajectories (sequences of states) that a vehicle can follow

such that the passage of each trajectory from specific locations remains am-

biguous to the sensor network. These trajectories can be of interest for a

variety of reasons. For example, they can be employed to hide the origin

of a trajectory (initial-state) from an intruder who is employing the sensor

network (i.e., who is observing the labels in Figure 3.4-c) trying to identify

whether the vehicle originated from a set of secret (strategically important)

locations or whether the vehicle passed from this particular set of locations

at some instant of time. Questions regarding the passage of a trajectory from

specific locations, in general, can be answered using the infinite-step opacity

framework, whereas questions regarding the origin of a trajectory can be

answered using the initial-state opacity framework of this thesis.
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Figure 3.5: (a) DES G in Sections 3.5.1 and 3.5.3; (b) DES H in
Section 3.5.2.

3.5 Existing Related Notions

3.5.1 Trajectory-Based K-Step Opacity

The DES G in Figure 3.5-a is 2-step opaque with respect to S = {1, 6};

however, upon observing αα, the intruder is certain that, regardless of the

state sequence that has occurred, the system has visited a secret state within

the last 2 observations (although one cannot determine exactly when this

happened). This system can be considered as insecure if the attacker is only

interested in determining whether the system has reached secret states at any

point during the last K = 2 observations. We refer to a system for which

this scenario does not occur as a trajectory-based K-step opaque system.

It can be easily seen that a system that is trajectory-based K-step opaque

is also K-step opaque; however, as the preceding example demonstrated, the

converse is not necessarily true. In other words, K-step opacity is a weaker

condition than trajectory-based K-step opacity. Note that the essential dif-

ference between K-step opacity and trajectory-based K-step opacity is the

time at which the state of the system is exposed. Depending on the applica-

tion, K-step opacity might be a more suitable requirement than trajectory-

based K-step opacity for characterizing security requirements. For instance,

suppose the DES G in Figure 3.5-a is a communication protocol for a bank

transaction where a user has two options: communicate important account

information while at state 1 (secret state) and dummy information while at

states 3 and 5 (non-secret states), or communicate dummy information at

states 2 and 4 (non-secret states) and important account information while
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at state 6 (secret state). If an eavesdropper does not know which of the two

options the user has followed (due to the unobservable event δuo), then (even

though she/he knows that important account information has been commu-

nicated) she/he does not know when this was done. Therefore, the fact that

the system is 2-step opaque is critical (despite the fact that the system is not

trajectory-based 2-step opaque).

As another example, consider the pseudo-random generator introduced in

Section 3.4.1 that is used for generating a key string in encryption appli-

cations. As mentioned earlier, such a pseudo-random generator is usually

implemented as an autonomous finite machine that cycles through a large

number of states. In such case, knowing that the system was in a partic-

ular state at a specific point in the past (as captured by K-step opacity)

is indeed important because this exposes the subsequent sequence of states

and thus the key string used for encryption. On the other hand, knowing

that the system has been in a particular state in the recent past (as cap-

tured by trajectory-based K-step opacity) offers little information (in fact,

it offers zero information if K is larger than the number of states of the

pseudo-random generator).

Another example can be found in the context of coverage analysis of a

mobile agent in a terrain equipped with cameras (that provide some partial

coverage) which was discussed in Section 3.4.2. Here, one can use the notion

of K-step opacity to characterize paths that a mobile agent can follow without

exposing the exact time(s) (measured with respect to the snap-shots provided

by the cameras) at which the object goes through certain strategic (secret)

areas. Again, depending on the underlying application, knowledge that the

agent has been through a secret state might not be important if the exact

timing is not precisely known.

3.5.2 Non-Interference

The notion of non-interference is defined assuming that the set of events Σ

can be partitioned into a finite number of security levels [24,25]. When there

are only two levels of security, i.e., public events ΣPu and private events ΣPr

(so that Σ = ΣPu ∪ΣPr and ΣPu ∩ΣPr = ∅), non-interference requires that a

user who only observes public events cannot determine the occurrence of any
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private event(s) [24, 25]. More specifically, in a non-interferent system that

is typically defined as a deterministic finite automaton G = (X, Σ, δ, X0), for

every string in L(G) containing private events, there exists another string in

L(G) with the same substring of public events and without private events.

The notion of non-interference for this scenario can be easily translated to

an instance of current-state opacity as follows: we first obtain the product

Ĝ = G×H where the deterministic automaton H is depicted in Figure 3.5-b

(this product essentially splits and annotates the states of G with label Pr

if they are reached from a state with label Pr or via a private event, and

with label Pu, otherwise); if we define the initial state of Ĝ to be X0 ×{Pu}

and the set of secret states S to be the set of states in Ĝ with label Pr, i.e.,

S = {(x, Pr)|x ∈ X}, then it is not hard to argue that G is non-interferent

if and only if Ĝ is (S, P, 0)-opaque (i.e., current-state opaque) where the

projection map P is with respect to the set of observable events Σobs = ΣPu.

Note that, in general, the reverse is not possible: we cannot translate each

instance of a K-step opacity (or even a current-state opacity) problem to an

instance of a non-interference problem.

3.5.3 Language-Based Opacity

In the framework considered in [22] and [23], the set of strings L(G) in the

system is partitioned into secret strings E and non-secret strings L(G) −E,

and the system is opaque if P (E) ⊆ P (L(G)−E). The notion of initial-state

opacity introduced in this chapter can be translated to a version of opacity

as studied in [22] and [23] by defining the secret language to be

E =
⋃

i∈S∩X0

L(G, i).

Using this approach, DES G is (S, P,∞) initial-state opaque if and only if it

is opaque with respect to E.

The notion of K-step opacity cannot be easily translated to a version

of language-based opacity as studied in [22] because in the framework we

consider here, each string in the system can serve as both secret (when it

visits secret states during the past K observations) and non-secret (when it

does not visit any secret state during the past K observations). To clarify
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this issue consider the DES G in Figure 3.5-a and assume that X0 = {0},

S = {1, 6}, and Σobs = {α}. In order to characterize 2-step opacity using

the framework of [22], one might be tempted to define this language as the

set of all strings that can be generated by the system and visit a secret state

within the past 2 observations. Hence, E = {δuo, δuoα, δuoαα} which implies

that L(G) − E = {ǫ}. It is not hard to see that P (E) * P (L(G) − E)

although the system is 2-step opaque. The problem is that string δuoαα can

be considered as secret when it passes through the set of secret states (i.e.,

after δuo or δuoαα) and non-secret when it does not pass through the set of

secret states (i.e., after δuoα). A similar argument can be made for δuoα.

Note that it might be possible to enlarge the state space (i.e., consider a

larger automaton) and capture K-step opacity of the original automaton via

a language formulation in this larger automaton. This, however, will be at

the cost of higher complexity.

We can extend the definition trajectory-based K-step opacity (see Sec-

tion 3.5.1) to trajectory-based infinite-step opacity by removing the restric-

tion on the length K of the sequence of observations. Note that trajectory-

based infinite-step opacity coincides with the language-based notion of opac-

ity considered in [22]. If we define the language E ⊆ L(G) to be the set of

strings in G that visit at least one secret state, then L(G) − E is the set of

strings in G that only visit non-secret states. It is not hard to see that G is

trajectory-based infinite-step opaque if and only if P (E) ⊆ P (L(G) − E).

3.5.4 Diagnosability

Diagnosability (in its simplest form) is defined assuming that the states of

the system can be partitioned into two sets: faulty states (denoted by the

set F , F ⊆ X) and normal states (denoted by X − F ) [11]. The system is

assumed to enter a faulty state in the set F after the occurrence of a fault

and remain within the set F afterwards. The system is diagnosable if there

exists a finite integer K ≥ 0 such that a failure, i.e., an unobservable event

(that causes the system to enter states in the set F and remain there), is

guaranteed to be detected and isolated after the occurrence of at most K

events following the failure.

One major difference between diagnosability and K-step opacity, is the
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assumption that faulty states are δ-invariant, i.e., once the system evolves

to a faulty state it remains in the set F , whereas in opacity the set S is not

necessarily δ-invariant. Another — perhaps not so important — difference

is that diagnosability focuses on whether a fault can be detected/diagnosed

after a finite number of events (and not observations) which results in the

(rather standard) requirement that cycles of unobservable events are absent

from the given system.

Assuming that: (i) S is δ-invariant and, (ii) S comprises the set of faulty

states, then G being diagnosable implies that the system is not (S, P, K)-

opaque (or (S, P,∞)-opaque) for some large enough K; the reason for this

is that diagnosability implies that the entrance of the system to states in

S will be detected after at most n0 events. It is important to point out

that K-step opacity is not the inverse of diagnosability: for a system not to

be diagnosable, there must exist at least two infinite traces with the same

projection such that one enters the set of faulty (secret) states and one does

not. On the other hand, for K-step opacity we need this to be true for

each trace that enters the faulty (secret) states: each such trace needs to

have a corresponding trace that does not enter faulty (secret) states and has

identical projection. This difference perhaps explains why it is unlikely that

there exists an algorithm that can verify K-step opacity with polynomial-

time complexity (the problem is shown to be NP-hard in Chapter 6) while

polynomial-time tests for verifying diagnosability exist[30, 31].

3.5.5 Initial-State Verification

The authors of [32] study the initial-state verification problem, i.e., the exis-

tence of a unique input/output (UIO) sequence for a state i of a given discrete

event system which can be modeled as a Mealy machine.3 A UIO sequence

for state i is an input sequence x such that the output sequence generated by

the machine in response to x from initial state i is different from the response

to x from any other initial state. While the notion of initial-state opacity is

related to the notion of a UIO sequence, these two notions were developed

for completely different purposes: with initial-state opacity we are trying to

hide the membership of the initial state of the system to the set of secret

3A Mealy machine is a finite state machine that generates an output based on its
current state and input [19].
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states while with a UIO sequence, we are trying to demonstrate that the

system started from a given initial state (or set of initial states).
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CHAPTER 4

DELAYED STATE ESTIMATION IN
DISCRETE EVENT SYSTEMS

Initial-state opacity, K-step opacity, and infinite-step opacity are predicates

that can be defined for states visited in the past (at a fixed point in time

or at a fixed number of observations in the past). Existing state estimation

techniques cannot verify these properties since they are not tracking the

sequence of states and the time at which there were visited. For this reason,

in this chapter, we introduce the problem of delayed estimation and construct

delay state estimators which are capable of capturing additional information

about state estimates and can be used to verify opacity notions of interest.

The basic state estimation setting we consider is the following: we are

given a finite automaton with (partially) unknown initial state and partial

event observation. For this type of DES, we consider two estimation prob-

lems: initial-state estimation and K-delayed state estimation. The former

requires the estimate of the initial state of the system following a sequence

of observations, whereas the latter requires the estimate of the state the

system was in when it generated the Kth to last output (i.e., the state of

the system K observations ago). To solve these two problems we construct

appropriate state estimators. Specifically, we construct (i) an initial-state

estimator (that can be used to capture all the information that is relevant

to initial-state estimation and is contained in any sequence of observations

of finite but arbitrary length); (ii) a K-delay state estimator (that can be

shown to contain, after observing any sequence of observations, the informa-

tion that is necessary to deduce the state the system was in K observations

ago). Note that the initial-state estimator and the K-delay state estimator

are not comparable since they aim to capture different information.
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4.1 Initial-State Estimates

Given a sequence of observations ω ∈ Σ∗
obs, the initial-state estimation prob-

lem requires the enumeration of all states that belong to the set of initial

states X0, and which could have generated this observed sequence of labels.

We call this estimate the initial-state estimate and define it formally as fol-

lows.

Definition 4.1.1 (Initial-State Estimate). Given a non-deterministic finite

automaton G = (X, Σ, δ, X0) and a natural projection map P with respect to

the set of observable events Σobs (Σobs ⊆ Σ), the initial-state estimate after

observing the sequence of observations ω ∈ Σ∗
obs is defined as

X̂0(ω) = {i|i ∈ X0, ∃t ∈ Σ∗{P (t) = ω, δ(i, t) 6= ∅}}.

�

Remark 4.1.1. In the area of testing of finite state machines (refer to [33]

for a detailed survey), there are two problems that relate to the initial-state

estimation problem. (i) The initial state identification problem where we

seek to identify (if possible) a sequence of inputs (called distinguishing se-

quence) that uniquely identifies the unknown initial state of the system. (ii)

The initial-state verification problem where we seek to identify (if possible) a

sequence of inputs (called unique input/output (UIO) sequence) that can be

used to verify that the system starts from a known initial state. The partial

observation and the non-deterministic nature of the underlying automaton in

our framework make the problem of initial-state estimation that we consider

here more general than the problems in [33]. �

4.2 Initial-State Estimator

In order to capture initial-state estimates for a given non-deterministic finite

automaton G = (X, Σ, δ, X0), a natural projection map P with respect to

the set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X,

the first method that comes to mind is to use the sequence of observations

to obtain the current-state estimate (using standard techniques described in

Section 4.4) and then back-propagate the state trajectory using the system
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model (obtaining in this way all system initial states that could have gen-

erated the sequence of observations). Though straightforward, this method

requires storage of the sequence of observations, which is not feasible since

the system might generate a sequence of arbitrary length (e.g., in an online

monitoring application). Next we introduce an algorithm which generates

the initial-state estimator G∞,obs, a deterministic finite automaton that is

driven by observable events and whose states are associated with distinct

state mappings.

To construct the initial-state estimator, we associate its initial state m0

with the state mapping ⊙2(X0), where X0 is the set of initial states of the sys-

tem; with a slight abuse of notation we denote this by m0 = ⊙2(X0). When

observation α ∈ Σobs is made, the initial state mapping m0 is composed with

the induced state mapping M(α) corresponding to observation α, resulting

in a state mapping m1 that associates with the next state of the estimator,

i.e., m1 = m0 ◦ M(α). Similarly, for each subsequent observation β ∈ Σobs,

the current state of the ISE that is associated with a state mapping m tran-

sitions into the state associated with the state mapping m′ = m ◦ M(β).

From the structure of the state mappings and the nature of the composition

operator, we can establish that, at any given time step, each state mapping

associated with each state of G∞,obs (other than the initial state m0) includes

all pairs of one starting state (from X0) and one ending state (from X) such

that the ending state can be reached from the starting state via a sequence

of events that generates the sequence of observations seen so far. This is

all the information we need in order to update the state of the estimator

as more labels are observed: at any given time, the state mapping provides

information about the possible initial- and current-state estimates (and the

connections between them) through its pairs of starting and ending states.

Note that this structure (which will be described formally and shown to be

well-defined shortly) is guaranteed to be finite and has at most 2N2
states

(actually 2|X0|×N states1) where N is the number of states of the finite au-

tomaton G (and |X0| is the number of possible initial states of the system).

The initial-state estimator, when considered as a finite automaton, summa-

rizes the effect of any sequence of observations on the estimate of the initial

and current states. This summary is independent of the observation length

1In the sequel, for the sake of easier presentation, we use X × X instead of X0 × X to
denote the pairs of possible initial and current states.
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and allows multiple sequences of observations (possibly of different lengths)

to be mapped to the same state in the initial-state estimator, as long as

they impose identical constraints on the initial/current-state estimates and

the possible paths between them. Thus, state mappings are important as

a tool for compressing information and performing initial-state estimation

recursively using finite memory. We can think of state mappings as a way

to partition the set of all sequences of observations, of arbitrary but finite

length, into a finite number of equivalence classes: two strings belong to the

same equivalence class if and only if they induce the same state mapping.

The following algorithm formally describes the construction of the initial-

state estimator.

Definition 4.2.1 (Initial-State Estimator (ISE)). Given a non-deterministic

finite automaton G = (X, Σ, δ, X0) and a natural projection map P with re-

spect to the set of observable events Σobs (Σobs ⊆ Σ), the initial-state esti-

mator is the deterministic automaton G∞,obs = AC(2X×X , Σobs, δ∞,obs, X∞,0)

with set of states 2X×X (power set of X × X), event set Σobs, initial state

X∞,0 = ⊙2(X0), and state transition function δ∞,obs : 2X×X × Σobs → 2X×X

defined for α ∈ Σobs as

m′ = δ∞,obs(m, α) := m ◦ M(α),

where m, m′ ∈ 2X×X. Recall that M(α) denotes the state mapping that is

induced by observing α and AC denotes the states of this automaton that

are accessible starting from state X∞,0. If we let X∞,obs ⊆ 2X×X be the

reachable states from the initial state X∞,0 under δ∞,obs, then G∞,obs =

(X∞,obs, Σobs, δ∞,obs, X∞,0). �

Remark 4.2.1. The authors of [34] also consider the problem of initial-state

estimation and provide two formulae for obtaining initial-state estimates: the

first one is a simple set intersection expression and the second one has a

predictor-corrector recursive form. They also introduce an initial-state esti-

mator which generates initial-state estimates using pairs of states of the form

(initial-state, current-state) which is similar to our state mappings. Under

the assumption that the system is “initial-state observable” (which guarantees

that singleton state mappings are always reachable within a finite number of

observations), the transition function of the initial-state estimator in [34] is
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defined using a recursive algorithm based on stacks. At each point in time,

the stack contains the list of state mappings for which the transition function

should be defined. At each level, the top state mapping is popped out and

the next state mapping is obtained (for all possible observation sequences of

length one). All of the non-singleton state mappings (i.e., state mappings

with more than one pair) that are obtained in this way are pushed back into

the end of the stack and the current state mapping is permanently popped

out. This iterative algorithm continues until all reachable state mappings are

singleton. The authors of [34] also prove that if the underlying system is de-

terministic, the state complexity of the corresponding initial-state estimator

is O(2N) where N = |X| is the number of states of the system. Moreover,

it is shown that the number of different initial-state estimates in the pairs

(initial-state, current-state) is 2N − 1.

Although the construction of the state transition function using stacks is

more effective from a programming perspective, it is not efficient since it may

calculate the transition function more than once for the same state mapping.

The method we introduce here for constructing the initial-state estimator does

not suffer from this problem (and does not require the system to be “initial-

state observable”). Also, while suited for online initial-state estimation, the

results of [34] cannot be used for verifying initial-state opacity since we need

to find the effect of “all” possible observations on the initial-state estimate.

This is not possible using the initial-state estimator of [34], if the system

is not initial-state observable. The ISE construction, on the other hand,

achieves this purpose creating in the process a finite structure.

Another difference between our work and that of [34] is the underlying

model: in this chapter, we assume that the system can be modeled as a non-

deterministic automaton with event observations, whereas the system in [34]

is modeled as a deterministic finite automaton with (possibly partial) state

observations. This makes our framework more general compared to that of

[34]. Also, since our system is non-deterministic, none of the bounds obtained

in [34] on the number of states of its initial-state estimator is applicable in

our setting. �

Remark 4.2.2. In [35], a finite tree, called unique input-output (UIO) tree,

is constructed using the concepts of path vector and vector perturbation which

are special cases of a state mapping. In a path vector, each element in the
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set of starting states is mapped to exactly one element in the set of ending

states (this follows from the assumption of full-observation in [35]), whereas

in a state mapping this association can be one-to-many. �

In the following lemma, we show that the state mapping associated with

the state of the ISE G∞,obs reached via a string ω consists exactly of the pairs

of a starting/ending state from which a sequence of events that generates the

sequence of observations ω could have originated/ended.

Theorem 4.2.1. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its ISE G∞,obs = (X∞,obs, Σobs, δ∞,obs, X∞,0) con-

structed as in Definition 4.2.1. If ISE state m is reachable from ISE initial

state X∞,0 = ⊙2(X0) via a finite-length string ω (ω 6= ǫ), then m is associated

with a state mapping that satisfies

m = {(i, j)|i ∈ X0, j ∈ X, ∃t ∈ Σ∗{P (t) = ω, j ∈ δ(i, t)}}.

�

Proof. Assume ω = α0 . . . αn and denote the sequence of ISE states visited

via ω (starting from the ISE initial state m0 = ⊙2(X0)) by m0, m1, . . . , mn+1.

We prove the result by induction: for ω = α0, the statement can easily be

seen to be true: m1 = m0◦M(α0) is simply the set of pairs of an ending state

(in X) that can be reached from the starting state (in X0) via a string with

projection α0. Now assuming that the lemma holds for ω′ = α0α1 . . . αn−1,

we prove it for ω = α0 . . . αn. Recall that mn+1 is the ISE state that is

reachable from the ISE initial state with string ω (in the lemma, state mn+1
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is denoted by m). By construction, we have

mn+1 = mn ◦ M(αn)

= {(i, k)|∃j ∈ X{(i, j) ∈ mn, (j, k) ∈ M(αn)}} (4.1)

= {(i, k)|∃j ∈ X, ∃i ∈ X0, ∃k ∈ X, ∃tn−1 ∈ Σ∗{P (tn−1) =

α0α1 . . . αn−1, j ∈ δ(i, tn−1), (j, k) ∈ M(αn)}} (4.2)

= {(i, k)|∃j ∈ X, ∃i ∈ X0, ∃k ∈ X, ∃tn−1 ∈ Σ∗{P (tn−1) =

α0α1 . . . αn−1, j ∈ δ(i, tn−1), ∃tn ∈ Σ∗

{P (tn) = αn, k ∈ δ(j, tn)}}} (4.3)

= {(i, k)|i ∈ X0, k ∈ X, ∃tn ∈ Σ∗{P (tn) = α0α1 . . . αn,

k ∈ δ(i, tn)}},

where (4.1) follows from definition of the ◦ operator, (4.2) follows from the

induction hypothesis, and (4.3) follows from definition of M(α). Note that

in the last line, we use tn = tn−1tn. If we rename k to j, tn to t, and replace

α0α1 . . . αn with ω, the proof is completed.

Next we prove that the estimate of the system initial state after observing

a nonempty string ω (according to Definition 4.1.1) is the set of starting

states in the state mapping associated with the ISE state reached via string

ω.

Corollary 4.2.1. Consider a non-deterministic finite automaton G = (X, Σ,

δ, X0) with a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its ISE G∞,obs = (X∞,obs, Σobs, δ∞,obs, X∞,0)

constructed as in Definition 4.2.1. The initial-state estimate X̂0(ω) after

observing the sequence of observations ω, ω 6= ǫ, can be captured using the

ISE as X̂0(ω) = m(1) where m = δ∞,obs(X∞,0, ω). �

Proof. By Theorem 4.2.1,

m = δ∞,obs(X∞,0, ω) = {(i, j)|i ∈ X0, j ∈ X, ∃t ∈ Σ∗{P (t) = ω, j ∈ δ(i, t)}}.

32



4

(b)

0

2 3

1

β

β αβ

δuo α

0

1

2

3

1

2

3

4

0

4

0

1

2

3

1

2

3

4

0

0

1

2

3

1

2

3

4

0

4

0

1

2

3

1

2

3

4

00

1

2

3

1

2

3

4

0

0

1

2

3

1

2

3

4

0

α

(a)

αα

αα

α

β

β

m0 m1 m2

m3

4

m5

4

m4

4

4

m0α

β
m2

m5m4m3

m1

Figure 4.1: (a) G; (b) initial-state estimator G∞,obs.

Therefore,

m(1) = {i|(i, j) ∈ m}

= {i|i ∈ X0, ∃j ∈ X, ∃t ∈ Σ∗{P (t) = ω, j ∈ δ(i, t)}}

= {i|i ∈ X0, ∃t ∈ Σ∗{P (t) = ω, δ(i, t) 6= ∅}}

= X̂0(ω),

which completes the proof.

The following example clarifies the ISE construction.

Example 4.2.1. Consider the automaton G of Figure 4.1-a with Σobs =

{α, β}. Figure 4.1-b shows the ISE for this system. The initial uncertainty

is assumed to be equal to the state space and, hence, the initial state of the

ISE is the state mapping m0 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}. The state

mapping M(α) induced by observing α is {(0, 2), (0, 3), (2, 2), (4, 4)} which

implies that α can be observed only from states 0, 2 and 4. Moreover, if the

initial state was 0, the current state can only be one of the states in {2, 3};

however, if the initial state was 2, the current state could only be 2; finally,

if the initial state was 4, the current state would be 4. Following observation

α, the next state m′ in the ISE can be constructed as m′ = m0 ◦ M(α) =

{(0, 2), (0, 3), (2, 2), (4, 4)} ≡ m1. Mapping m1 summarizes starting/ending

state information with its pairs (on the right of Figure 4.1-b we use a graphical

way to describe the pairs associated with the ISE; for example, after observing

α we know that one possibility is that we started at state 0 and ended in state
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2 or state 3).

Similarly, the state mapping M(β) induced by observing β is M(β) =

{(0, 1), (1, 4), (3, 4)} implying that β can be observed from states 0, 1, and 3

and that the current state can be either {1}, {4}, or {4}, respectively. To

take into account the observation α followed by observation β, we need to

compose state mapping m1 and M(β) which results in {(0, 4)} ≡ m4.

Using this approach for all possible observations (from each state), the ISE

construction can be completed as shown in Figure 4.1-b. Note that this figure

does not include the state that corresponds to the empty state mapping and is

reached via sequences of observations that cannot be generated by G; we can

(and will) safely ignore this state since it cannot be reached via sequences of

observations that are generated by underlying activity in system G. �

Remark 4.2.3. Note that all estimates of the system initial state that are

associated with an ISE state (state mapping) m′ that is reachable from a given

ISE state (state mapping) m in G∞,obs are refinements of the estimates of

the system initial state associated with m. In other words, the initial-state

estimate, if changed, can only get more accurate; this is a straightforward

consequence of the definition of the initial-state estimate and implies that a

sequence of observations that result in the traversal of a cycle in G∞,obs does

not yield extra information about the system initial state. In other words, if

we consider a cycle m1
α1−→ m2

α2−→ . . .
αn−1
−−−→ mn

αn−→ m1 in G∞,obs (constructed

as in Definition 4.2.1), then m1, m2, . . . , mn are consistent (refer to Section 2

for the definition). Moreover, if m1 in the aforementioned cycle is reached via

string ω in G∞,obs, i.e., δ∞,obs(X∞,0, ω) = m1, then observing ω, ωα1 . . . αn

or ω(α1 . . . αn)∗ yields the same information about the initial state. This

implies that if one is given these choices, then one can simply use ω as a

representative of this class of observation sequences and discard all other

observation sequences without loosing any information about the initial state.

The use of state mappings systematically accomplishes such reductions and

hence provides us with a practical way to summarize observations (using finite

storage). �

Remark 4.2.4. In G∞,obs there exist cycles of states such that, once reached,

there are no traces outside these cycles. We refer to the ISE states in these

cycles as ergodic states. The ergodic states in the ISE are associated with

estimates of the system initial state that cannot be further refined. For ex-
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ample, the self-loop at ISE state m5 in Figure 4.1-b denotes one such cycle

(consisting of a single state). Note that if a sequence of observations reaches

an ergodic ISE state, the estimate of the initial state cannot be improved with

future observations. For example, if we reach ISE state m5 via βαα∗ there is

no reason to wait for more observations to refine the initial-state estimate.

Since the ISE has at most 2N2
states, we know that among all strings of length

2N2
− 1, at least one is guaranteed to reach any given (ergodic or otherwise)

ISE state. One can therefore argue that the set of all strings of length smaller

than or equal to K (for some K ≥ 2N2
− 1) reveals the same information

about the system initial state as any other set of strings of length smaller than

or equal to K ′ with K ′ > K: specifically, for any string of length smaller than

or equal to K ′, there exists an “equivalent string” (as far as initial-state esti-

mation is concerned) of length smaller than or equal to K. In Chapter 5, we

use this fact to show that K-step opacity and K ′-step opacity are equivalent

for K ′ > K ≥ 2N2
− 1. This implies that infinite-step opacity is equivalent

to K-step opacity for K ≥ 2N2
− 1. �

4.3 Current-State Estimates

Upon observing some string ω (sequence of observations), the state of the

system might not be identifiable uniquely due to the lack of knowledge of the

initial state, the partial observation of events, and/or the non-deterministic

behavior of the system. We denote the set of states that the system might

reside in given that ω was observed as the current-state estimate X̂|ω|(ω) and

define it formally below.

Definition 4.3.1 (Current-State Estimate). Given a non-deterministic finite

automaton G = (X, Σ, δ, X0) and a natural projection map P with respect to

the set of observable events Σobs (Σobs ⊆ Σ), the current-state estimate after

observing string ω is defined as

X̂|ω|(ω) := {j ∈ X|∃t ∈ Σ∗, ∃i ∈ X0{j ∈ δ(i, t), P (t) = ω}}.

�
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Figure 4.2: Current-state estimator G0,obs.

4.4 Current-State Estimator

Given a non-deterministic finite automaton G = (X, Σ, δ, X0) and a natural

projection map P with respect to the set of observable events Σobs (Σobs ⊆

Σ), the current-state estimator is a deterministic automaton G0,obs which

captures current-state estimates and can be constructed as follows [34]. Each

state of G0,obs is associated with a unique subset of states of the original DES

G (so that there are at most 2|X| = 2N states). The initial state of G0,obs is

associated with X0, representing the fact that the initial state could be any

state in X0. At any state Z of the estimator (Z ⊆ X), the next state upon

observing an event α ∈ Σobs is the unique state of G0,obs associated with the

set of states that can be reached in G from (one or more of) the states in

Z with a string of events that generates the observation α. We denote this

automaton by G0,obs = AC(2X , Σobs, δobs, X0) where 2X (power set of X) is

the state set, Σobs is the set of observable events, δobs is the state transition

function, X0 is the initial state, and AC is the part of the automaton that

is accessible from initial state X0. We also define Xobs ⊆ 2X to be the

reachable states from X0 under δobs, so that G0,obs = AC(2X , Σobs, δobs, X0) =

(Xobs, Σobs, δobs, X0). The following example clarifies this construction. More

details can be found in [34].

Example 4.4.1. Consider the DES G in Figure 4.1-a with initial state X0 =

X. Assuming that Σobs = {α, β}, then the current-state estimator G0,obs in

Figure 4.2 is constructed as follows. Starting from the initial state X0 and

observing α, the current state is any of the states in {2, 3, 4}; at this new

state, the set of possible transitions is the union of all possible transitions

for each of the states in {2, 3, 4}. Following this procedure, G0,obs can be

completed as in Figure 4.2. Note that the state of G0,obs that is associated
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with the empty set of states (and that is reached via strings ω ∈ Σ∗
obs for which

P−1(ω)∩L(G) = ∅) is not drawn in Figure 4.2 for clarity purposes. In fact,

we can (and will) safely ignore such states since they can never be reached via

sequences of observations that are generated by underlying activity in system

G. �

4.5 K-Delayed State Estimates

Similar to the current-state estimates, we denote the set of states that the

system was possibly in when it generated the Kth to last output (i.e., the

state of the system K observations ago) following a sequence of observations

ω = α0α1 . . . αn (n ≥ K) as the K-delayed state estimate X̂|ω|−K(ω) and

define it formally below.2 Note that the current-state estimate can also be

seen as the 0-delayed state estimate.

Definition 4.5.1 (K-Delayed State Estimate). Given a non-deterministic

finite automaton G = (X, Σ, δ, X0) and a natural projection map P with

respect to the set of observable events Σobs (Σobs ⊆ Σ), the K-delayed state

estimate after observing string ω = α0α1 . . . αn (n ≥ K) is defined as

X̂|ω|−K(ω) := {j ∈ X|∃t′, t′′ ∈ Σ∗, ∃i ∈ X0{j ∈ δ(i, t′), δ(j, t′′) 6= ∅,

P (t′) = α0α1 . . . αn−K , P (t′′) = αn−K+1 . . . αn}}.

�

Based on Definition 4.5.1, the K-delayed state estimate X̂|ω|−K(ω) after

observing ω = α0α1 . . . αn (n ≥ K) is the set of all states that (i) are reach-

able in G from (at least one pair of) initial state i and string t′ with pro-

jection P (t′) equal to the first n − K observable events in ω (in the same

order) and (ii) for which there exists at least one continuation t′′ with pro-

jection P (t′′) equal to the last K observable events in ω (in the same or-

der). Note that the set of states reachable in G via a string t′ with projec-

tion P (t′) = α0α1 . . . αn−K ≡ ω′ is the current-state estimate that was ob-

tained after observing ω′ but before observing P (t′′) = αn−K+1 . . . αn ≡ ω′′;

2K-delayed state estimation for discrete event systems is related to fixed-lag smoothing

for discrete-time systems [36].
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thus, X̂|ω|−K(ω) ⊆ X̂|ω′|(ω
′) and the K-delayed state estimate can be consid-

ered as the subset of states in X̂|ω′|(ω
′) from which the post K observations

αn−K+1 . . . αn are possible. Note that Definition 4.5.1 implies that if ω ∈ Σ∗
obs

is not a valid sequence of observations in G, then X̂|ω|−K(ω) = ∅. Also, by

convention, X̂|ω|−K(ω) is taken to be X̂0(ω) for |ω| < K.

4.6 K-Delay State Estimator

The K-delay state estimator (KDE) is a deterministic finite automaton that

reconstructs the k-delayed state estimates (0 ≤ k ≤ K) associated with a

given sequence of observations ω. In the sequel, we introduce two methods for

constructing K-delay state estimators: (i) by storing the possible sequences

of the last (K +1)-visited states via (K +1)-dimensional state mappings, (ii)

by storing the k-delayed state estimates, 0 ≤ k ≤ K, and remembering the

sequence of the last K observations.

4.6.1 State Mapping-Based K-Delay State Estimator
(SM-KDE)

The SM-KDE utilizes (K + 1)-dimensional state mappings to capture the

K-delayed state estimates as follows: each state of the SM-KDE is asso-

ciated with a unique (K + 1)-dimensional state mapping, with the initial

state m0 of the SM-KDE associated with the (K + 1)-dimensional state

mapping ⊙K+1(X0). With a slight abuse of notation, we denote this by

m0 = ⊙K+1(X0). When observation α ∈ Σobs is made, this initial (K + 1)-

dimensional state mapping m0 is shifted with the induced state mapping

M(α) corresponding to observation α, resulting in a (K + 1)-dimensional

state mapping m1 that associates with the next state of the state estima-

tor, i.e., m1 = m0 >> M(α). Similarly, for each subsequent observation

β ∈ Σobs, the current state of the SM-KDE that is associated with a (K +1)-

dimensional state mapping m transitions into the state associated with the

(K+1)-dimensional state mapping m′ = m >> M(β). From the structure of

(K +1)-dimensional state mappings and the nature of the shift operator, we

can establish that a sequence of observations causes the SM-KDE to transi-

tion through a sequence of (K +1)-dimensional state mappings such that, at
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any given time step, the set of states in the associated (K + 1)-dimensional

state mapping m correspond to delayed state estimates. More specifically,

the set of ending states m(0) corresponds to zero-delayed state estimates

(current-state estimates), the set of intermediate states m(k), 1 < k < K,

corresponds to k-delayed state estimates, and the set of starting states m(K)

corresponds to K-delayed state estimates. In this manner, we can build a

structure which, at any time following a given sequence of observations, main-

tains information about the 0-delayed, 1-delayed, . . ., and K-delayed state

estimates through the (K + 1)-dimensional state mappings associated with

each of its states. In fact, the estimator also contains complete information

about the possible system state trajectories during the last K observations.

Definition 4.6.1 (State Mapping-Based K-Delay State Estimator

(SM-KDE)). Given a non-deterministic finite automaton G = (X, Σ, δ, X0)

and a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), we define the K-delay state estimator as the determinis-

tic automaton GK,obs = AC(2X(K+1)
, Σobs, δK,obs, XK,0) with state set 2X(K+1)

,

event set Σobs, initial state XK,0 = ⊙K+1(X0), and state transition function

δK,obs : 2X(K+1)
× Σobs → 2X(K+1)

defined for α ∈ Σobs as

m′ = δK,obs(m, α) := m >> M(α),

where m, m′ ∈ 2X(K+1)
. Recall that M(α) denotes the state mapping that

is induced by observing α and AC denotes the states of this automaton

that are accessible starting from state XK,0. If we let XK,obs ⊆ 2X(K+1)
be

the reachable states from the initial state XK,0 under δK,obs, then GK,obs =

(XK,obs, Σobs, δK,obs, XK,0). �

Example 4.6.1. Consider the DES G in Figure 4.1-a with X0 = {0, 1, 2, 3, 4}

and Σobs = {α, β}. For this system, the 2-delay state estimator is represented

in Figure 4.3 along with the 3-dimensional state mappings m0, m1, . . . , m10

needed in the construction. The initial state of the system is X0 = X and

the initial state of the 2-delay state estimator captures this in m0 via a 3-

dimensional state mapping that maps each system state to itself as ⊙3(X) =

{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4)}≡ m0.

Starting from the initial state, assume that we observe α. As described in

Example 4.2.1, the state mapping M(α) induced by observing α is {(0, 2), (0, 3),
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Figure 4.3: State mapping-based 2-delay state estimator corresponding to
DES G.

(2, 2), (4, 4)}. Following observation α, the next state m′ in the 2-delay state

estimator can be constructed as m′ = δK,obs(m0, α) = m0 >> M(α) =

{(0, 0, 2), (0, 0, 3), (2, 2, 2), (4, 4, 4)} ≡ m1.

Next, consider the case when following observation α we observe β. As

the induced state mapping M(β) = {(0, 1), (1, 4), (3, 4)}, we have m′ =

δK,obs(m1, β) = m1 >> M(β)= {(0, 3, 4)} ≡ m4. This implies that αβ can

only be observed if the system follows the state trajectory 0 → 3 → 4. Us-

ing this approach for all possible observations (from each state), the 2-delay

state estimator construction can be completed as shown in Figure 4.3. Note

that we have not included the state that corresponds to the all empty state

mapping (and any transitions from/to it) to avoid cluttering the diagram. �

Remark 4.6.1. On the right of Figure 4.3, we use 3-dimensional trellis

diagrams to describe the triples associated with states of the 2-delay state es-

timator. In general, we can graphically represent an induced K-dimensional

state mapping m using a K-dimensional trellis diagram, i.e., a K-partite

graph where the nodes in the state set X are replicated K times and or-

dered into K vertical slices ranging from slice 0 to slice K − 1 (hence a

K-dimensional trellis diagram has K · N nodes with N = |X|). Each node

at slice k (1 ≤ k ≤ K − 2) is either isolated or connected to (at least) one

node at slice k − 1 and (at least) one node at slice k + 1. The nodes at slice

0 (K − 1) are either isolated or connected to (at least) one node at slice 1

(K − 2). �

In the following theorem, we show that the SM-KDE state m that is
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reached via a sequence of observations ω is associated with a (K + 1)-

dimensional state mapping such that the first |ω| − K observations would

have taken the system to the starting states of the (K +1)-dimensional state

mapping and, in addition, the last K observations could have taken place

from these starting states, visiting in the process the intermediate states in

the tuple, in the order captured by the elements of the (K + 1)-dimensional

state mapping.

Theorem 4.6.1. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) with a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its SM-KDE GK,obs = (XK,obs, Σobs, δK,obs, XK,0)

constructed as in Definition 4.6.1. Suppose SM-KDE state m is reachable

from the SM-KDE initial state XK,0 = ⊙K+1(X0) via the string ω = α0α1 . . .

αn, ω 6= ǫ. Then, SM-KDE state m can be characterized as follows:

(i) |ω| ≤ K: m = {(j0, j1, . . . , jK) ∈ X0 × XK |(0 ≤ l ≤ |ω| − 1, 0 ≤ d ≤

K − |ω| − 1) : jd+1 = jd, ∃tl ∈ Σ∗{P (tl) = αl, jK−|ω|+l+1 ∈ δ(jK−|ω|+l, tl)}}.

(ii) |ω| ≥ K: m = {(j0, j1, . . . , jK) ∈ XK+1|(0 ≤ l ≤ K − 1) : ∃tl ∈

Σ∗{P (tl) = αn−K+1+l, jl+1 ∈ δ(jl, tl)}, ∃i ∈ X0, ∃t′ ∈ Σ∗{P (t′) = α0α1 . . . αn−K ,

j0 ∈ δ(i, t′)}}.

(iii) m = ∅ when there is no t ∈ L(G) such that P (t) = ω. �

Proof. (i) When |ω| ≤ K (before K observations are made), the states in the

ω-induced (|ω|+1)-dimensional state mapping replace the rightmost states in

the current (K+1)-tuple leaving the first K−|ω|+1 leftmost states identical.

This implies that m = {(j0, j1, . . . , jK) ∈ X0 × XK |(0 ≤ l ≤ |ω| − 1, 0 ≤ d ≤

K − |ω| − 1) : jd+1 = jd, ∃tl ∈ Σ∗{P (tl) = αl, jK−|ω|+l+1 ∈ δ(jK−|ω|+l, tl)}}

which completes the proof of part (i).

(ii) Denote the sequence of SM-KDE states visited via ω by m0, . . . , mn, mn+1.

We prove the result by induction: for ω = α0α1 . . . αK−1, (|ω| = K), the

statement is true from Part (i). Now assuming that the lemma holds for

ω = α0α1 . . . αn−1 (n ≥ K), we prove it holds for ω = α0α1 . . . αn. Recall

that mn+1 is the SM-KDE state that is reachable with ω = α0α1 . . . αn (which
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in the lemma is denoted by m). By construction we have

mn+1 = mn >> M(αn)

= {(j1, . . . , jK+1)|(j0, j1, . . . , jK) ∈ mn, (jK , jK+1) ∈ M(αn)}

(by definition of >> operator)

= {(j1, . . . , jK+1) ∈ XK+1|(0 ≤ l ≤ K − 1) : ∃tl ∈ Σ∗{P (tl) = αn−K+l,

jl+1 ∈ δ(jl, tl)}, ∃i ∈ X0, ∃t ∈ Σ∗{P (t) = α0α1 . . . αn−K−1, j0 ∈ δ(i, t)}}

(jK , jK+1) ∈ M(αn)} (by induction hypothesis)

= {(j1, . . . , jK+1) ∈ XK+1|(0 ≤ l ≤ K − 1) :

∃tl ∈ Σ∗{P (tl) = αn−K+l, jl+1 ∈ δ(jl, tl)}

∃i ∈ X0{∃t ∈ Σ∗{P (t) = α0α1 . . . αn−K−1}, j0 ∈ δ(i, t)}

∃tK ∈ Σ∗{P (tK) = αn, jK+1 ∈ δ(jK , tK)}} (by definition of M(αn))

= {(j1, . . . , jK+1) ∈ XK+1|(1 ≤ l ≤ K) :

∃tl ∈ Σ∗{P (tl) = αn−K+1+l, jl+1 ∈ δ(jl, tl)}

∃i ∈ X0, ∃t′ ∈ Σ∗{P (t′) = α0α1 . . . αn−K , j1 ∈ δ(i, t′)}}}.

Note that in the last line, we define t′ = tt1 from the previous line. The proof

is completed by decreasing the indices by one.

(iii) Follows from the definition of the shift operator.

Corollary 4.6.1. Consider a non-deterministic finite automaton G = (X, Σ,

δ, X0) with a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its SM-KDE GK,obs = (XK,obs, Σobs, δK,obs, XK,0)

constructed as in Definition 4.6.1. The k-delayed state estimate X̂|ω|−k(ω),

0 ≤ k ≤ min(K, |ω|), after observing ω = α0α1 . . . αn can be captured as

follows: X̂|ω|−k(ω) = m(k) where δK,obs(XK,0, ω) = m. �

Proof. First, assume that |ω| ≥ K. From Theorem 4.6.1 we have for 0 ≤
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k ≤ K

m(k) = {jK−k|(j0, j1, . . . , jK) ∈ m}

= {jK−k|(j0, j1, . . . , jK) ∈ XK+1, 0 ≤ l ≤ K − 1 :

∃tl ∈ Σ∗{P (tl) = αn−K+l+1, jl+1 ∈ δ(jl, tl)}

∃i ∈ X0, ∃t′ ∈ Σ∗{P (t′) = α0α1 . . . αn−k, j0 ∈ δ(i, t′)}}}

= {jK−k|∃s′, s′′ ∈ Σ∗, ∃i ∈ X0{jK−k ∈ δ(i, s′),

δ(jK−k, s
′′) 6= ∅, P (s′) = α0α1 . . . αn−k, P (s′′) = αn−k+1 . . . αn}}

= X̂|ω|−k(ω),

where the third equation follows from the second equation with s′ = t′t0t1 . . .

tK−k−1 and s′′ = tK−ktK−k+1 . . . tK−1. The proof for |ω| ≤ K is similar to the

previous case and is omitted.

4.6.2 Observation Sequence-Based K-Delay State Estimator
(OS-KDE)

In this section, we introduce the construction of automaton Gobservation
K,obs which

captures K-delayed state estimates by remembering the sequence of the

last K observations (this should be contrasted to GK,obs which captures the

compatible sequences of the last K-visited states via (K + 1)-dimensional

state mappings). At each state of Gobservation
K,obs , we store a (K + 2)-tuple

Q ∈ ΣK
obs,ǫ × 2X × . . . × 2X consisting of the following information: (i) the

last K observations (Σobs,ǫ denotes the set Σobs ∪ {ǫ}), and (ii) all the k-

delayed state estimates for k = 0, 1, . . . , K. Upon observing a new event,

all k-delayed state estimates are updated to ensure that estimates that are

not consistent with the last observation are removed. Finally, the string that

stores the last K observations is updated by adding the last observation to

the end of it and by removing the first one. The main difference here is

that Gobservation
K,obs only remembers the sets of states that are possible 0, 1, . . . ,

K observations ago, but does not explicitly record the sequences of states

that are possible; however, knowledge of the last K observations (together

with the underlying system model) allows one to reconstruct these sequences

if required. We now discuss the systematic construction of Gobservation
K,obs . For

brevity, we define the function δo : X×Σobs → 2X for any i ∈ X and α ∈ Σobs
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as

δo(i, α) = {j ∈ X|∃s ∈ Σ∗{P (s) = α, j ∈ δ(i, s)}}. (4.4)

The function δ0 can be extended from the domain X × Σobs to the domain

X × Σ∗
obs in the routine recursive manner: for t ∈ Σobs and s ∈ Σ∗

obs,

δo(i, ts) :=
⋃

j∈δo(i,t)

δo(j, s),

with δo(i, ǫ) := i. With a slight abuse of notation, we use δo : 2X ×Σobs → 2X

to also denote its extension from states to sets of states as follows: for all

Z ⊆ X define

δo(Z, α) =
⋃

z∈Z

δo(z, α).

For clarity, we also introduce the following notation: let ω = α′
0 . . . α′

n with

n ≥ K denote the sequence of observations that have been seen so far (from

the initialization of the system); we will rename the last K observations

α′
n−K+1 . . . α′

n to α−K+1 . . . α0 (i.e., α′
n−i = α−i for i = 0, 1, . . . , K − 1) to

make the discussion independent of n (the total number of observations seen

so far). Also note that in the following definition strings α−kα−k+1 . . . α0 of

length less than K are represented as ǫK−k−1α−kα−k+1 . . . α0.

Definition 4.6.2 (Observation Sequence-Based K-Delay State Estimator

(OS-KDE)). Given a non-deterministic finite automaton G = (X, Σ, δ, X0)

and a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), we define the observation sequence-based K-delay state

estimator as the deterministic automaton Gobservation
K,obs = AC((ΣK

obs,ǫ × 2X ×

. . . × 2X), Σobs, δobservation
K,obs , Xobservation

K,0 ) with

(i) set of states ΣK
obs,ǫ × 2X × . . . × 2X, where each state is a (K + 2)-tuple

which consists of one string of length K or less, and K + 1 subsets of X;

(ii) event set Σobs;

(iii) initial state Xobservation
K,0 = (ǫ, X0, . . . , X0); and

(iv) state transition function δobservation
K,obs : (ΣK

obs,ǫ × 2X × . . . × 2X) × Σobs →

(ΣK
obs,ǫ ×2X × . . .×2X) defined as follows: if the current state is the (K +2)-

tuple Q = (Ω, ZK , . . . , Z0) ∈ ΣK
obs,ǫ × 2X × . . .× 2X, where Ω = α−K . . . α−1 ∈

ΣK
obs,ǫ and Zk ∈ 2X , 0 ≤ k ≤ K, then the next state for α0 ∈ Σobs is

Q̂ = δobservation
K,obs (Q, α0) = (Ω̂, ẐK , . . . , Ẑ0)
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Figure 4.4: Observation sequence-based 2-delay state estimator
corresponding to DES G in Figure 4.1-a.

where Ω̂ = Ωα0/α−K , and the sets Ẑk are defined recursively as

Ẑk = {z|z ∈ Zk−1, ∃ẑ ∈ Ẑk−1 : ẑ ∈ δo(z, α−k+1)}

for k = 1, 2, . . . , K with Ẑ0 = δo(Z0, α0). Recall that AC denotes the states of

this automaton that are accessible starting from state Xobservation
K,0 . If we let

Xobservation
K,obs ⊆ (ΣK

obs,ǫ × 2X × . . . × 2X) be the reachable states from the ini-

tial state Xobservation
K,0 under δobservation

K,obs , then Gobservation
K,obs = (Xobservation

K,obs , Σobs,

δobservation
K,obs , Xobservation

K,0 ). �

Remark 4.6.2. The OS-KDE introduced in Definition 4.6.2 is related to the

inverter with delay that was introduced in [18]. Assuming that the system is

invertible with delay, the inverter in [18] acts as an online algorithm which,

for a given time index, stores the K subsequent observations (where K is the

fixed delay in the definition of invertibility with delay) in order to be able to

refine the state estimate at this time index (using back propagation). The

refined state estimate that is obtained is used along with the plant model to

reconstruct the executed sequence of events. The OS-KDE is a finite structure

that captures all estimates with delay for any observation sequence. In other

words, what we do here can be seen as an offline approach for refining the

current-state estimate using any possible sequence of observations and K

future observations. This is necessary when trying to verify system properties

that depend on delayed state estimates (such as K-step opacity). �

Example 4.6.2. Consider the DES in Figure 4.1-a. For this system, the ob-

servation sequence-based 2-delayed state estimator Gobservation
2,obs is represented
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in Figure 4.4. The initial state X0 = X and hence the OS-KDE initial-state

Xobservation
2,0 becomes (ǫ, X, X, X) ≡ Q0 which, using the notation in Defini-

tion 4.6.2, implies that Z0 = X, Z1 = X, Z2 = X, Ω = ǫ and α−1 = α−2 = ǫ.

Upon observing α (α0 = α), the current (system) state estimate becomes

Ẑ0 = {2, 3, 4} and since α can only be observed from {0, 2, 4}, Ẑ1 = {0, 2, 4}.

Also, since only one observation has been made, Ẑ2 = Ẑ1 = {0, 2, 4}; fi-

nally, ω̂ = ωα/α−2 = ǫα/ǫ, so that the next OS-KDE state upon observing α

becomes (α, {0, 2, 4}, {0, 2, 4}, {2, 3, 4}) ≡ Q1.

Note that at OS-KDE state Q1, Z0 = {2, 3, 4}, Z1 = {0, 2, 4}, Z2 =

{0, 2, 4}, Ω = α and hence α−1 = α and α−2 = ǫ. If β is observed at OS-KDE

state Q1, i.e., α0 = β, the next OS-KDE state Q̂ = (Ω̂, Ẑ2, Ẑ1, Ẑ0) ≡ Q4 can

be obtained via

Ẑ0 = δo(Z0, α0)

= δo({2, 3, 4}, β)

= {4}

Ẑ1 = {z ∈ Z0| ∃ẑ ∈ Ẑ0 : ẑ ∈ δo(z, α0)}

= {z ∈ {2, 3, 4}| ∃ẑ ∈ {4} : ẑ ∈ δo(z, β)}

= {3}

Ẑ2 = {z ∈ Z1| ∃ẑ ∈ Ẑ1 : ẑ ∈ δo(z, α−1)}

= {z ∈ {0, 2, 4}| ∃ẑ ∈ {3} : ẑ ∈ δo(z, α)}

= {0},

with Ω̂=Ωα0/α−2=αβ/ǫ=αβ.

OS-KDE state Q4 ≡ (αβ, {0}, {3}, {4}) conveys the following information:

the current-state estimate is {4}, the previous state estimate is {3}, and the

estimate of the system state two observations ago is {0}. Also αβ captures

the last two observations (observed in that order). Using this approach for

the remaining possible observations, the observation sequence-based 2-delayed

state estimator can be completed as shown in Figure 4.4. Note that the states

associated with empty state estimates (i.e., of the form (Ω, ∅, ∅, . . . , ∅)) and

transitions from/to these state have not been included. Note that the SM-

KDE and OS-KDE in Figures 4.3 and 4.4 respectively are identical automata

but, as clarified later on, this will not necessarily be the case in general. �
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In the sequel, we obtain a characterization of each set of states Zk, 0 ≤

k ≤ K, in the OS-KDE state Q = (Ω, ZK , . . . , Z0) reached via a sequence of

observations ω. Specifically, we show that j ∈ Zk, 0 ≤ k ≤ K, if and only

if there exists a string t in L(G) that has projection ω, |ω| ≥ k, and visits

state j exactly k observations ago. If there does not exist t ∈ L(G) such

that P (t) = ω, then Zk = ∅, 0 ≤ k ≤ K. Furthermore, if |ω| < k, then Zk,

0 ≤ k ≤ |ω|, is as described above and Zk = Z|ω| for |ω| + 1 ≤ k ≤ K. The

following theorem states this formally.

Theorem 4.6.2. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its OS-KDE Gobservation
K,obs = (Xobservation

K,obs , Σobs,

δobservation
K,obs , Xobservation

K,0 ) constructed as in Definition 4.6.2. Suppose that state

Q is reachable from the OS-KDE initial state Xobservation
K,0 = (ǫ, X0, X0, . . . , X0)

via the string ω = α0α1 . . . αn. Then, the OS-KDE state Q can be character-

ized as follows:

(i) |ω| < K: Q = (Ω, ZK , . . . , Z0) ∈ (ΣK
obs,ǫ, 2

X , . . . , 2X) with

1. Ω = α0 . . . αn,

2. Z0 = {j ∈ X|∃t ∈ Σ∗, ∃i ∈ X0{P (t) = ω, j ∈ δ(i, t)}},

3. for 1 ≤ k ≤ |ω|, Zk = {j ∈ X|∃t ∈ Σ∗, ∃t′ ∈ t̄, ∃i ∈ X0{P (t) = ω,

P (t)/P (t′) = αn−k+1 . . . αn, j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}, and

4. for |ω| + 1 ≤ k ≤ K, Zk = Z|ω|.

(ii) |ω| ≥ K: Q = (Ω, ZK , . . . , Z0) ∈ (ΣK
obs,ǫ, 2

X , . . . , 2X) with

1. Ω = αn−K+1 . . . αn,

2. Z0 = {j ∈ X|∃t ∈ Σ∗, ∃i ∈ X0{P (t) = ω, j ∈ δ(i, t)}},

3. for 1 ≤ k ≤ K, Zk = {j ∈ X|∃t ∈ Σ∗, ∃t′ ∈ t̄, ∃i ∈ X0{P (t) = ω,

P (t)/P (t′) = αn−k+1 . . . αn, j ∈ δ(i, t′), δ(j, t/t′) 6= ∅}}.

(iii) Zk = ∅, 0 ≤ k ≤ K, when there is no t ∈ L(G) such that P (t) = ω. �

Proof. (i) Denote the sequence of OS-KDE states visited via ω = α0α1 . . . αn

by Q0, Q1 . . . , Qn, Qn+1 where Q0 = (ǫ, X0, X0, . . . , X0). We prove the result

by using induction on |ω|: first assume that ω = α0, i.e., |ω| = 1, and that
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state Q1 = (α0, ZK, . . . , Z1, Z0) is reachable in OS-KDE via ω. Characteri-

zation of Z0 follows from (4.4). For Z1 by the update rule of OS-KDE we

have

Z1 = {z ∈ X0|∃ẑ ∈ Z0{ẑ ∈ δo(z, α0)}}

= {z ∈ X0|∃s ∈ Σ∗{P (s) = α0, ẑ ∈ δ(z, s)}}.

Define t = s, t′ = ǫ, and i = j = z, and the characterization is complete. Note

that for 2 ≤ k ≤ K, Zk = Z|ω| since the system has not generated enough

observations. Now assuming that the lemma holds for ω = α0α1 . . . αn−1 (n <

K), we prove it holds for ω = α0α1 . . . αn−1αn with αn ∈ Σobs. Let Qn+1 =

(α0α1 . . . αn, ẐK , ẐK−1, . . . , Ẑ0) be the OS-KDE state that is reachable with

ω = α0α1 . . . αn (which in the lemma is denoted by Q). Also assume that

Qn = (α0α1 . . . αn−1, ZK , ZK−1, . . . , Z0). The characterization of Ẑ0, Ẑ1, and

Ẑk, |ω| + 1 ≤ k ≤ K, follows from the previous part. Next we show that

the characterization given in the theorem holds for Ẑk, 1 ≤ k ≤ |ω|, using

induction on k: we have already established that the characterization for Ẑ1

follows from the previous part; assuming that the characterization holds for

k − 1, 2 < k < |ω| + 1, we show that it also holds for k. By the update rule

of OS-KDE, we have

Ẑk = {z ∈ Zk−1|∃ẑ ∈ Ẑk−1{ẑ ∈ δo(z, αn−k+1)}}

= {z ∈ X|∃t ∈ Σ∗, ∃t′ ∈ t̄, ∃i ∈ X0, ∃ẑ ∈ Ẑk−1{P (t) = α0 . . . αn−1,

P (t)/P (t′) = αn−k+1 . . . αn−1, z ∈ δ(i, t′), δ(z, t/t′) 6= ∅, ẑ ∈ δo(z, αn−k+1)}

(4.5)

= {z ∈ X|∃s, t ∈ Σ∗, ∃t′ ∈ t̄, ∃i ∈ X0, ∃ẑ ∈ Ẑk−1{P (t) = α0 . . . αn−1,

P (t)/P (t′) = αn−k+1 . . . αn−1, z ∈ δ(i, t′), δ(z, t/t′) 6= ∅, P (s) = αn−k+1,

ẑ ∈ δ(z, s)}, (4.6)

where (4.5) follows from the induction hypothesis on n and (4.6) follows from

(4.4). By induction hypothesis on k, we have

ẑ ∈ Ẑk−1 ⇔ ∃r ∈ Σ∗, ∃r′ ∈ r̄, ∃̂i ∈ X0{P (r) = α0 . . . αn,

P (r)/P (r′) = αn−k+2 . . . αn, ẑ ∈ δ(̂i, r′), δ(ẑ, r/r′) 6= ∅}. (4.7)
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Define p′ = t′ and p = p′s(r/r′). Then, by (4.6) and (4.7), we have

Ẑk = {z ∈ X|∃p ∈ Σ∗, ∃p′ ∈ p̄, ∃i ∈ X0{P (p) = α0 . . . αn,

P (p)/P (p′) = αn−k+1 . . . αn, z ∈ δ(i, p′), δ(z, p/p′) 6= ∅}}.

This completes the proof for part (i).

(ii) Similar to part (i).

(iii) If the sequence of observations ω is not feasible in the original system,

we assume (without generality) that the sequence of observations ω becomes

infeasible due to the last observation α. Then by (4.4), δo(i, α) = ∅ for all

i ∈ Z0 since, by assumption, it is not possible to observe α from any state i

in Z0. This implies that Ẑ0 = ∅ which then implies that Ẑk = ∅, 1 ≤ k ≤ K,

by the update rule of OS-KDE. This completes the proof for part (iii).

Corollary 4.6.2. Consider a non-deterministic finite automaton G = (X, Σ,

δ, X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its OS-KDE Gobservation
K,obs = (Xobservation

K,obs , Σobs,

δobservation
K,obs , Xobservation

K,0 ) constructed as in Definition 4.6.2. The k-delayed

state estimate X̂|ω|−k(ω), 0 ≤ k ≤ min(K, |ω|), after observing ω = α0α1 . . . αn

can be captured as follows: X̂|ω|−k(ω) = Zk where δobservation
K,obs (Xobservation

K,0 , ω) =

(Ω, ZK , . . . , Z0). �

Proof. Follows from Theorem 4.6.2 and Definition 4.5.1 with t′′ ≡ t/t′.

4.6.3 Analysis of State-Space Complexity for K-Delay State

Estimators

State Complexity of OS-KDE

The construction of Gobservation
K,obs suggests that its number of states could be

as high as (|Σobs| + 1)K × (2N)(K+1), where N denotes the number of states

of the given automaton G. However, as we argue next, its state complexity

is O((|Σobs| + 1)K × 2N) which is significantly lower.

Theorem 4.6.3. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), the state complexity of Gobservation
K,obs (constructed ac-
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cording to Definition 4.6.2) is O((|Σobs|+1)K ×2N ), where N = |X| denotes

the number of states of the given automaton G. �

Proof. We establish the state space complexity of Gobservation
K,obs by observing

that given (i) the sequence of the past K observations Ω = α−K+1 . . . α0, and

(ii) the K-delayed state estimate ZK , the intermediate k-delayed state esti-

mates Zk (0 ≤ k < K) can be reconstructed uniquely using our knowledge

of the plant model and the past K observations. We can accomplish this in

two steps:

(1) construct K sets of states Xk (0 ≤ k < K) as the set of states reach-

able in G, from states in ZK via a string that produces the sequence of

observations α−K+1 . . . α−k. Following the notation in (4.4), we have Xk =

δo(ZK , α−K+1 . . . α−k).

(2) Update all Xk with their post observations α−k+1 . . . α0 to construct the

k-delayed state estimate Zk. To accomplish this, we can use an approach sim-

ilar to the recursive state transition function introduced in Definition 4.6.2:

by definition, X0 is the same as Z0. Next, we start from X1 and remove all

those estimates that are not consistent with observing α0 (i.e., their transi-

tions do not generate observation α0 or do not result in a state in Z0); this

way, we obtain Z1. Then, we consider X2 and remove all states y in X2 from

which α−2 cannot occur (i.e., state y from which δo(y, α−2) = ∅) or states

y for which α−2 leads to a state outside Z1 (i.e., states which have been re-

moved in previous steps). We can repeat this procedure for X3, . . . , XK−1

and α−3, . . . , α−K+1. Therefore, using only Ω and ZK , we can construct all

intermediate k-delayed state estimates Zk that were explicitly stored at each

state of the K-delayed estimator in our earlier construction.

To understand why the reconstruction above is correct, consider an obser-

vation sequence-based 2-delayed state estimator and a state Q̂ = (Ẑ2
α−1
−−→

Ẑ1
α0−→ Ẑ0) (a graphical way to represent (α−1α0, Ẑ2, Ẑ1, Ẑ0)) that is reach-

able in that estimator via a string ω. Now consider the last successor of

the OS-KDE state Q namely state Q = (Z2
α−2
−−→ Z1

α−1
−−→ Z0). Based on

our notation, Z0 is the last estimate made before observing α0 (or reaching

(Ẑ2
α−1
−−→ Ẑ1

α0−→ Ẑ0)) and thus can be denoted by X1. By construction, the

unit-delayed state estimate Ẑ1 is the subset of Z0, or X1, from which α0 can

occur. This illustrates how the proposed method constructs the intermediate

delayed state estimates. Note that for the case when less than K observations
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are available, i.e., when |Ω| < K, a similar approach can be taken to con-

struct the intermediate k-delayed state estimates, 0 ≤ k < |Ω|. In this case,

keeping the past |Ω| observations Ω along with the |Ω|-delayed state estimate

suffices to find the intermediate k-delayed state estimates, 0 ≤ k < |Ω|.

Example 4.6.3. For the DES G in Example 4.6.2 with the sequence-based

2-delayed state estimator in Figure 4.4, the state (αα, {0, 2, 4}, {2, 4}, {2, 4})

can simply be represented by (αα, {0, 2, 4}). Specifically, we can obtain the

missing unit-delayed and current-state estimates as described above. Note

that based on the above notation, in state (αα, {0, 2, 4}, {2, 4}, {2, 4}), we

have Z2 = {0, 2, 4} and α−2α−1 = αα. Using this, we can obtain

X1 = δo(Z2, α−2)

= δo({0, 2, 4}, α)

= {2, 3, 4},

and

X0 = δo(Z2, α−2α−1)

= δo({0, 2, 4}, αα)

= {2, 4}.

We can then set Z0 = X0 and reflect the post observation (α−1 = α) made

after the previous estimation, which updates X1 to Z1 = {2, 4}. �

The above discussion not only demonstrates that storing the intermediate

state estimates is not necessary (as long as the plant model is readily available

and one is willing to do some computation) but also implies that keeping this

information as part of the state label does not generate new states (even if

the plant model is unavailable). In other words, Gobservation
K,obs with reduced

state labels (constructed without explicitly storing the intermediate delayed

state estimates as described above) is isomorphic to the one that stores them

explicitly (described in Definition 4.6.2).

State Complexity of SM-KDE

Each state of the SM-KDE GK,obs is associated with a (K + 1)-dimensional

state mapping. This suggests that the state complexity of this automaton is
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bounded by 2NK+1
since there are NK+1 (K +1)-dimensional state mappings

over the N states of the given automaton (each SM-KDE state is associated

with a subset of these state mappings). In this section, we use the results on

the state complexity of Gobservation
K,obs that we established in the beginning of this

section to prove that the state complexity of GK,obs is O((|Σobs|+ 1)K × 2N).

More specifically, we introduce a function which maps each state of Gobservation
K,obs

to a state in GK,obs and then show that the range of this function covers all

states of GK,obs. This implies that the number of states of GK,obs is less than

or equal to the number of states of Gobservation
K,obs and hence establishes that the

state space complexity of GK,obs is also O((|Σobs|+ 1)K × 2N). The following

theorem states and proves this formally.

Theorem 4.6.4. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), the state complexity of GK,obs (constructed according

to Definition 4.6.1) is O((|Σobs| + 1)K × 2N), where N = |X| denotes the

number of states of the given automaton G. �

Proof. To prove that the set of states of the SM-KDE, denoted by XK,obs,

has cardinality equal to or less than the set of states of the OS-KDE, denoted

by Xobservation
K,obs , we define a function f : Xobservation

K,obs → 2X(K+1)
and show that

for all Q ∈ Xobservation
K,obs :

(a) f(Q) ∈ XK,obs, and

(b) for each m ∈ XK,obs, there exists at least one Q ∈ Xobservation
K,obs such that

f(Q) = m.

The establishment of these two properties proves that the number of elements

in the set XK,obs is less than or equal to the number of elements in the set

Xobservation
K,obs .

We define the mapping f : Xobservation
K,obs → 2X(K+1)

as follows:

(i) For Ω = α0α1 . . . αn, |Ω| < K, Q = (Ω, Z|Ω|, . . . , Z|Ω|, Z|Ω|, Z|Ω|−1, . . . , Z0) ∈

Xobservation
K,obs :

f(Q) ≡{(j0, j1, . . . , jK)|(K − |Ω| ≤ k ≤ K,

0 ≤ l ≤ |Ω| − 1, 0 ≤ w ≤ K − |Ω| − 1) : jk ∈ ZK−k,

jw+1 = jw, ∃tl ∈ Σ∗{P (tl) = αl, jK−|Ω|+l+1 ∈ δ(jK−|Ω|+l, tl)}}. (4.8)
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(ii) For Ω = αn−K+1αn−K+2 . . . αn, |Ω| = K, Q = (Ω, ZK , . . . , Z0) ∈ Xobservation
K,obs :

f(Q) ≡{(j0, j1, . . . , jK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) :

jk ∈ ZK−k, ∃tl ∈ Σ∗{P (tl) = αn−K+1+l, jl+1 ∈ δ(jl, tl)}}. (4.9)

Function f maps an OS-KDE state Q to a set of (K + 1)-tuples of states

(j0, . . . , jK) such that each state jk in this tuple is chosen from the corre-

sponding delayed state estimate ZK−k and also such that the system can

visit the sequence of states j0, . . . , jK and produce the sequence of observa-

tions Ω.

To prove (a), we first consider the case where |Ω| < K with Ω = α0α1 . . . αn.

Applying the characterization of Zk, 0 ≤ k ≤ |Ω|, from part (i) of Theo-

rem 4.6.2 to the definition of mapping f in (4.8), we have

f(Q) = {(j0, j1, . . . , jK)|(1 ≤ k ≤ K, 0 ≤ l ≤ |Ω| − 1, 0 ≤ w ≤ K − |Ω| − 1) :

j0 ∈ X0, jk ∈ X, jw+1 = jw, ∃tl ∈ Σ∗{P (tl) = αl, jK−|Ω|+l+1 ∈ δ(jK−|Ω|+l, tl)}}

By part (i) of Theorem 4.6.1, f(Q) is the SM-KDE state m which is reachable

from initial state XK,0 = ⊙K+1(X) via string Ω.

Next, we consider the case where |Ω| = K. Assume that OS-KDE state

Q = (Ω, ZK , . . . , Z0) is reachable in Gobservation
K,obs from its initial state Xobservation

K,0

via string ω = α0α1 . . . αn with |ω| ≥ K and Ω = αn−K+1 . . . αn. Applying

the characterization of Zk, 0 ≤ k ≤ K, from part (ii) of Theorem 4.6.2 to

the definition of mapping f in (4.8), we have

f(Q) = {(j0, j1, . . . , jK)|(0 ≤ k ≤ K, 0 ≤ l ≤ K − 1) : ∃tl ∈ Σ∗{

jk ∈ X, P (tl) = αn−K+1+l, jl+1 ∈ δ(jl, tl), ∃t′ ∈ Σ∗, ∃i ∈ X0{j0 ∈ δ(i, t′)}}.

By part (ii) of Theorem 4.6.1, f(Q) is the SM-KDE state m which is reachable

from initial state XK,0 = ⊙K+1(X) via string ω (state m has the additional

restriction that P (t′) = α0α1 . . . αn−K). This completes the proof for part

(a).

To prove (b), consider state m in GK,obs which is reachable from initial

state XK,0 = ⊙K+1(X) via string ω = α0α1 . . . αn. We consider two cases

depending on whether |ω| < K or |ω| ≥ K.

First suppose that |ω| ≤ K and define Zk := m(k), for 0 ≤ k ≤ K.
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Next, we characterize Zk, 0 ≤ k ≤ |ω|. We use part (i) of Theorem 4.6.1 to

characterize m as m = {(j0, j1, . . . , jK) ∈ X0 ×XK |(0 ≤ l ≤ |ω|−1, 0 ≤ w ≤

K − |ω| − 1) : jw+1 = jw, ∃tl ∈ Σ∗{P (tl) = αl, jK−|ω|+l+1 ∈ δ(jK−|ω|+l, tl)}}.

Any j ∈ Z0 maps to the jK in an (j0, j1, . . . , jK) ∈ m. Hence, take t =

t0t1 . . . t|ω|−1, i = j0 and use the above characteristic to prove that for all j ∈

Z0, ∃t ∈ Σ∗, ∃i ∈ X0 such that P (t) = ω, j ∈ δ(i, t). Similarly, any j ∈ Zk for

1 ≤ k ≤ |ω|, maps to a jK−k in (j0, j1, . . . , jK−k, . . . , jK) ∈ m. Hence, we can

take t′ = t0t1 . . . tn−k, and argue that for all j ∈ Zk, 1 ≤ k ≤ |ω|, there exists

t ∈ Σ∗, t′ ∈ t̄, and i ∈ X0 such that: P (t) = ω, P (t)/P (t′) = αn−k+1 . . . αn,

j ∈ δ(i, t′), and δ(j, t/t′) 6= ∅. Therefore, by part (i) of Theorem 4.6.2, Q is

a state in Gobservation
K,obs reachable from the initial state Xobservation

K,0 . It follows

from the definition of f that f(Q) = m.

We can use a similar approach for |ω| > K. Defining Ω = αn−K+1αn−K+2 . . .

αn and Zk := m(k), 0 ≤ k ≤ K, we show that there exists a state Q ≡

(Ω, ZK , . . . , Z0) in Gobservation
K,obs that is reachable from its initial state Xobservation

K,0

via string ω and satisfies f(Q) = m. Using part (ii) of Theorem 4.6.1, we have

m = {(j0, j1, . . . , jK) ∈ XK+1|(0 ≤ l ≤ K − 1) : ∃tl ∈ Σ∗{P (tl) = αn−K+l+1,

jl+1 ∈ δ(jl, tl), ∃i ∈ X0, ∃t′ ∈ Σ∗{P (t′) = α0α1 . . . αn−K , j0 ∈ δ(i, t′)}}. Any

j ∈ Z0 maps to an jK in (j0, j1, . . . , jK) ∈ m. Hence, take t = t′t0t1 . . . tK−1

and use the above characteristic to prove that ∀j ∈ Z0 : ∃t ∈ Σ∗, ∃i ∈ X0 such

that P (t) = ω and j ∈ δ(i, t). Similarly, any j ∈ Zk for 0 ≤ k ≤ K, maps

to an jK−k in (j0, j1, . . . , jK−k, . . . , jK) ∈ m. Hence, take t = t′t0t1 . . . tK−1,

and use the characterization of m to prove that for all j ∈ Zk, 1 ≤ k ≤

K, ∃t ∈ Σ∗, ∃t′ ∈ t̄, ∃i ∈ X0{P (t) = ω, P (t)/P (t′) = αn−k+1 . . . αn, j ∈

δ(i, t′), δ(j, t/t′) 6= ∅}. Therefore, Q is a state in Gobservation
K,obs reachable from

the initial state Xobservation
K,0 via string ω. Clearly, f(Q) = m which shows

that any state in XK,obs is the image of mapping f of at least one state in

Xobservation
K,obs . Thus, GK,obs has no more states than Gobservation

K,obs , which com-

pletes the proof.

Theorem 4.6.4 proves that it is more state space efficient to construct the

SM-KDE than to construct the OS-KDE; however, implementing the OS-

KDE is easier than implementing the SM-KDE since at each state of the

OS-KDE fewer elements need to be stored and the update rule for states is

simpler. Therefore, the preference between ease of programming and state

space efficiency is the deciding factor for choosing between these two imple-
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Figure 4.5: Example demonstrating that the number of states in GK,obs can
be less than the number of states in Gobservation

K,obs : (a) G; (b) Gobservation
1,obs ; (c)

G1,obs.

mentations.

Note that for DES G in Figure 4.1-a, the number of states for both es-

timators is the same (indeed they are isomorphic) which shows that the

introduced mapping between the states of these two estimators can be one-

to-one. Note, however, that this is not necessarily the case. Consider, for

example, the DES G in Figure 4.5-a with initial state set X0 = {0, 1} = X.

Figures 4.5-b and 4.5-c depict Gobservation
1,obs and G1,obs, respectively. As can be

seen, storing the last observation results in creating more states compared

to storing the 2-dimensional state mapping corresponding to the last two

states visited. This can be explained as follows: sequences of observations

αα, βα, ββ, and αβ correspond to the same sequence of states visited and

hence all states reachable in Gobservation
1,obs via these sequences of observations

are mapped to the (unique) 2-dimensional state mapping in G1,obs reachable

via any of these sequences. This demonstrates that the mapping introduced

in the proof of Theorem 4.6.4 between the states of Gobservation
1,obs and G1,obs can

be many-to-one.

Remark 4.6.3. Theorem 4.6.4 can be also interpreted as follows: in order

to construct k-delayed state estimates, 0 ≤ k ≤ K, it is more state space

efficient to store the set of sequences of the last K visited states (that gen-

erate the last K observations) instead of storing the sequence of the last K

observations. The intuition behind this is the fact that multiple sequences of

observations can be mapped to the same set of state sequences. �
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CHAPTER 5

VERIFICATION OF STATE-BASED
NOTIONS OF OPACITY

In this chapter, we show how state estimators can be used to verify opacity.

We start by showing that a system is initial-state opaque if and only if all

initial-state estimates (in its initial-state estimator) contain at least one state

outside the set of secret states S; therefore, one can construct the initial-state

estimator of Definition 4.2.1 to verify initial-state opacity. Verification using

the initial-state estimator is shown to require space and time complexity that,

in the worst case, can be exponential in the square of the number of states of

the given finite automaton. A more efficient method for verifying initial-state

opacity for a fixed set of secret states S is also proposed and analyzed. This

method requires space (and thus time) complexity that is exponential in the

number of states of the given finite automaton but is specific to the secret

set of states S and (unlike the approach using ISE) has to be repeated for a

different set of secret states. Before closing our discussion on the verification

of initial-state opacity, we also describe how our approach can be extended

in certain settings where the set of secret states S is time-varying.

Next, we show that a system is K-step opaque if and only if all k-delayed

state estimates, 0 ≤ k ≤ K, in its K-delay state estimator, contain at least

one state outside the set of secret states S; therefore, one can use a K-delay

state estimator to verify K-step opacity. Verification using the K-delay state

estimator is shown to require space complexity that in the worst case can be

exponential in K and exponential in the square of the number of states of

the given finite automaton.

Finally, we show that for any K ≥ 2N2
− 1 (where N is the number of

states of the discrete event system) K-step opacity and infinite-step opacity

become equivalent, and hence one can construct the K-delay state estimator,

with K = 2N2
− 1, and verify infinite-step opacity. We also introduce a

reduced-complexity method to verify infinite-step opacity using the current-

state estimator and a bank of initial-state estimators.
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5.1 Verifying Initial-State Opacity

Initial-state opacity requires that regardless of the string that might be gen-

erated by the system (and regardless of the corresponding sequence of ob-

servations) no definite information about the membership of the initial state

of the system to the set of secret states S can be inferred. In the following

lemma, we show that this is equivalent to the fact that none of the pos-

sible initial-state estimates X̂0(ω) associated with any possible sequence of

observations ω in the system is a subset of the set of secret states, unless

the sequence of observations ω cannot be generated by G (in which case

X̂0(ω) = ∅).

Theorem 5.1.1. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, automaton G is (S, P,∞)

initial-state opaque if and only if for all ω ∈ Σ∗
obs

X̂0(ω) * S or X̂0(ω) = ∅,

where X̂0(ω) is the initial-state estimate after observing the sequence of ob-

servations ω. �

Proof. First we consider sequences of observations ω such that X̂0(ω) =

∅. Note that X̂0(ω) = ∅ if and only if there is no string t in L(G) such

that P (t) = ω; in other words, ω /∈ P (L(G)). Therefore, the sequence of

observations ω cannot violate initial-state opacity because Definition 3.1.1

requires that the sequences of observations ω be generated by DES G, i.e.,

ω ∈ P (L(G)).

Next we consider sequences of observations ω such that X̂0(ω) 6= ∅. Using

Definition 4.1.1, we have

{∀ω ∈ Σ∗
obs{X̂0(ω) * S}} ⇔

{∀ω ∈ Σ∗
obs{∃j ∈ X0 − S, ∃s ∈ Σ∗{P (s) = ω, δ(j, s) 6= ∅}}} ⇔

{∀ω ∈ Σ∗
obs{∃j ∈ X0 − S, ∃s ∈ L(G, j){P (s) = ω}}} ⇔

{∀i ∈ X0, ∀t ∈ L(G, i){∃j ∈ X0 − S, ∃s ∈ L(G, j){P (s) = P (t)}}},

which is equivalent to initial-state opacity of G. This completes the proof.
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5.1.1 Verifying Initial-State Opacity using Initial-State
Estimator

In this section we discuss how the ISE construction can be used to verify

initial-state opacity. Recall that in Theorem 5.1.1, we show that the given

DES G is initial-state opaque if and only if none of the (non-empty) initial-

state estimates associated with a sequence of observations is a subset of

the set of secret states. Also, from Corollary 4.2.1, we know that the ISE

construction captures the set of all initial-state estimates for all possible

sequences of observations (of any nonzero length) in the system, and hence by

Theorem 5.1.1, it can be used for verifying initial-state opacity. We formalize

this discussion in the following theorem.

Theorem 5.1.2. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) with a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its ISE G∞,obs = (X∞,obs, Σobs, δ∞,obs, X∞,0) con-

structed as in Definition 4.2.1. Automaton G is (S, P,∞) initial-state opaque

if and only if for all m ∈ X∞,obs,

m(1) * S or m(1) = ∅.

�

Proof. Follows from Theorem 5.1.1 and Theorem 4.2.1. Note that m(1) = ∅

implies that this state is reached only via sequences of observations that

cannot be generated by the original system.

Example 5.1.1. Consider the DES G in Figure 4.1-a and the corresponding

ISE in Figure 4.1-b. This system is not ({0}, P,∞) initial-state opaque due

to the existence of ISE state m4, which can be reached via sequences of the

form (ββ +αβ)α∗. Since m4 = {(0, 4)}, its only possible starting state is {0}

which falls completely within S (i.e., m4(1) ⊆ S). This means that observing

any string of the form (ββ + αβ)α∗ positively determines the system initial

state as state 0, which falls completely within the set of secret states and

hence violates initial-state opacity. �

In order to verify initial-state opacity using Theorem 5.1.2, we need to con-

struct the ISE and verify that each (non-empty) set of starting states in the

state mappings associated with ISE states contains an element outside the
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set of secret states S. As a result, checking for initial-state opacity has space

and time complexity O(2N2
), where N = |X| is the number of states of the

given automaton. This exponential complexity is not desirable for implemen-

tation purposes. As we show in Chapter 6, however, verifying initial-state

opacity is a PSPACE-complete problem and hence it is unlikely that any

algorithm can verify this property in polynomial-time [37]; nevertheless, a

reduced complexity verification method (that can be used when the secret

set S is fixed and invariant over time) is presented in the next section.

5.1.2 Verifying Initial-State Opacity for a Fixed Set of Secret
States

Verifying initial-state opacity using the initial-state estimator (ISE) as de-

scribed in Section 5.1.1 is not tailored to a particular S (i.e., the ISE can

be used even if the set of secret states is modified or is to be designed). If

S is invariant (fixed over time), we can potentially simplify the verification

method since we do not necessarily need the exact estimate of the system

initial states but only knowledge of whether the current system state(s) is

(are) reachable from secret/non-secret initial states. In this section we show

that, for a given (invariant) set of secret states S, the complexity of the

verification method can be reduced from exponential in the square of the

number of states (O(2N2
)) to exponential in the number of states (O(4N)),

where N = |X| denotes the number of states of the underlying automaton

G. Note that the price paid for this reduction is that each set of secret states

S would require a separate ISE construction.

Consider a non-deterministic finite automaton G = (X, Σ, δ, X0) with set

of states X = {0, 1, . . . , N − 1}, a natural projection map P with respect

to the set of observable events Σobs (Σobs ⊆ Σ), and a set of secret states

S ⊆ X. We start with the observation that in order to verify initial-state

opacity, we only need to know whether (following a sequence of observations

ω ∈ Σ∗
obs) a possible current state is reachable from secret initial states (in

S) or not (outside S). Therefore, instead of associating a set of starting

states with each ending state (as done with state mappings), we can simply

assign to each ending state one of four labels to indicate whether this state

is (i) reachable exclusively from secret initial states (label S), (ii) reachable
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exclusively from non-secret ones (label NS), (iii) reachable from a mixture

of both types of states (label M), or (iv) not reachable from any initial state

(label NR). We capture this via a set of N pairs of the type (Y(i), i) where

i ∈ X and N = |X|. This set of pairs is called a state-status mapping q

which is of the form

q = {(Y(0), 0), (Y(1), 1), . . . , (Y(N−1), N−1)|Y(i) ∈ {S, NS, M, NR}∀i ∈ X}.

The set of all state-status mappings is denoted by {S, NS, M, NR}X ≡ ∆X

and has cardinality 4N .

Each time a new observation is made, the label Y associated with (ending)

states in the pairs of state-status mapping q can be easily propagated along

with the ending state estimates according to the following simple rule: when

composing the current state-status mapping with the state mapping induced

by the new observation, if two or more (ending) state estimates with two

different labels from the set {S, NS, M} merge to an identical ending state

estimate, we assign to this new (ending) state estimate the label (M); this

indicates that the new ending state can be reached from at least one secret

and at least one non-secret initial state. If, on the other hand, the merging

involves one or more states with a single label from the set {S, NS, M} and

zero or more states with label NR, then the label S, NS, or M propagates

intact. Finally, if the last observation cannot occur from any of the ending

states or the merging involves only states with label NR, we assign label

NR to it. We formalize the above idea via the composition operator ⊗ :

∆X × 2X2
→ ∆X defined for a state-status mapping q ∈ ∆X and a state

mapping m ∈ 2X2
as:

q ⊗ m = {(Y(i), i)|i ∈ X},
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where

Y(i) =















































































S, if (i) ∃i′ ∈ X{(i′, i) ∈ m}, and (ii) ∀i′ ∈ X{(i′, i) ∈ m ⇒

{(S, i′) ∈ q or (NR, i′) ∈ q},

NS, if (i) ∃i′ ∈ X{(i′, i) ∈ m}, and (ii) ∀i′ ∈ X{(i′, i) ∈ m ⇒

{(NS, i′) ∈ q or (NR, i′) ∈ q},

M, if either: (i) ∃i′ ∈ X{(i′, i) ∈ m and (M, i′) ∈ q} or

(ii) ∃i′, i′′ ∈ X{(i′, i), (i′′, i) ∈ m and (S, i′), (NS, i′′) ∈ q},

NR, if either: (i) ∄i′ ∈ X{(i′, i) ∈ m} or

(ii) ∀i′ ∈ X{(i′, i) ∈ m ⇒ (NR, i′) ∈ q}.

In order to verify initial-state opacity, we construct a deterministic finite

automaton Gverifier, called verifier. Under a sequence of observations ω ∈

Σ∗
obs, ω 6= ǫ, the verifier reaches a state associated with a state-status mapping

for which each state i is associated with a unique label Y(i) from the set

∆ ≡ {S, NS, M, NR}. Label Y(i) indicates whether i is reachable in G via

sequences of events (with projection ω) that start exclusively from secret

initial states (Y(i) = S), or exclusively from non-secret initial states (Y(i) =

NS), or from a mixture of secret and non-secret initial states (Y(i) = M), or

not reachable at all (Y(i) = NR). The state-status mapping associated with

the verifier initial state is q0 = {(Y0(i), i)|i ∈ X} where

Y0(i) =



















S, for i ∈ X0 ∩ S,

NS, for i ∈ X0 − S,

NR, for i ∈ X − X0.

Upon observing an event α ∈ Σobs, both components in each pair of the state-

status mapping associated with the verifier current state need to be updated;

this is accomplished by defining the next state under input α to be the state

associated with state-status mapping q0 ⊗ M(α), where M(α) is the state

mapping induced by observation α. The construction of the deterministic

automaton Gverifier continues in this way as stated formally below.

Definition 5.1.1 (Verifier). Consider a non-deterministic finite automaton

G = (X, Σ, δ, X0), with set of states X = {0, 1, . . . , N − 1}, a natural projec-

tion map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and
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Figure 5.1: G with Σobs = {α, β}.

a set of secret states S ⊆ X. We define the verifier as the deterministic au-

tomaton Gverifier = AC(∆X , Σobs, δverifier, Xverifier,0) with set of labels ∆ =

{S, NS, M, NR}, set of states ∆X , event set Σobs, initial state Xverifier,0 =

{(Y0(i), i)|i ∈ X}, and state transition function δverifier : ∆X × Σobs → ∆X

defined for α ∈ Σobs as

δverifier(q, α) := q ⊗ M(α).

Recall that M(α) denotes the state mapping that is induced by observing α

and AC denotes the accessible part of this automaton starting from state

Xverifier,0. If we let Xverifier ⊆ ∆X be the set of verifier states reachable from

the verifier initial state Xverifier,0 under the state transition mapping δverifier,

then Gverifier = (Xverifier, Σobs, δverifier, Xverifier,0). �

Example 5.1.2. Consider the DES G in Figure 5.1 with X0 = X and

S = {2}. The state-status mapping q0 associated with the initial state of

the verifier Gverifier for G equals {(NS, 0), (NS, 1), (S, 2), (NS, 3)}. Upon ob-

serving α, following the rules of the operator ⊗, the next state of the verifier

becomes

q1 ≡ q0 ⊗ M(α) = {(NS, 0), (M, 1), (NS, 2), (M, 3)}.

To better understand this, observe that system states 0 and 2 are only reach-

able from the non-secret initial state 0 via the observation α and therefore the

label associated with these states is NS; system states 1 and 3 are reachable

from both the secret initial state 2 and the non-secret initial state 0 via ob-

servation α. Therefore, states 1 and 3 are associated with label M to denote

the fact that they are reachable from both secret and non-secret initial states.

Note that q1 is the state-status mapping associated with the verifier state

reachable via α from the verifier initial state q0. Upon observing another α,

the state-status mapping is updated according to the rules of the operator ⊗

q2 ≡ q1 ⊗ M(α) = {(NS, 0), (NS, 1), (NS, 2), (NS, 3)}.
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The construction of the verifier can be continued in this fashion until no more

states can be constructed. �

A system is initial-state opaque if a viable sequence of observations in

the system can originate from at least one non-secret initial state. In the

following theorem, we prove that the verifier described in Definition 5.1.1,

contains this information (for all possible observations) in the state-status

mappings associated with its states.

Theorem 5.1.3. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) with set of states X = {0, 1, . . . , N −1), a natural projection map P with

respect to the set of observable events Σobs (Σobs ⊆ Σ), a set of secret states

S ⊆ X, and the verifier Gverifier = (Xverifier, Σobs, δverifier, Xverifier,0) con-

structed as in Definition 5.1.1. The verifier state q that is reachable from the

verifier initial state Xverifier,0 via a finite-length string ω ∈ Σ∗
obs, ω 6= ǫ, is

associated with a state-status mapping q ∈ ∆X such that

(i) {(Y(i), i) ∈ q, Y(i) ∈ {S, NS, M}} ⇔ {∃i′ ∈ X0, ∃s ∈ Σ∗{P (s) = ω, i ∈

δ(i′, s)}}; moreover, q additionally satisfies the following:

(a) (S, i) ∈ q ⇔ {∀i′ ∈ X0{∃s ∈ Σ∗{P (s) = ω, i ∈ δ(i′, s)}} ⇒ {i′ ∈

S}};

(b) (NS, i) ∈ q ⇔ {∀i′ ∈ X0{∃s ∈ Σ∗{P (s) = ω, i ∈ δ(i′, s)}} ⇒ {i′ ∈

X0 − S}};

(c) (M, i) ∈ q ⇔ {∃i′ ∈ X0 − S, ∃i′′ ∈ X0 ∩ S, ∃s, s′ ∈ Σ∗{P (s) =

P (s′) = ω, i ∈ δ(i′, s), i ∈ δ(i′′, s′)}}.

(ii) (NR, i) ∈ q ⇔ {∀i′ ∈ X0{∄s ∈ Σ∗{P (s) = ω, i ∈ δ(i′, s)}}}. �

Proof. (i) We prove part (i) by induction on the length of the string ω.

Assume ω = α0 . . . αn and denote the sequence of verifier states visited via

ω by q0 ≡ Xverifier,0, q1, . . . , qn+1. First, we need to prove the induction

hypothesis for ω = α0. From Definition 5.1.1, we have q1 = q0 ⊗ M(α0). By
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the definition of operator ⊗, we have

{(Y(i), i) ∈ q1, Y(i) 6= NR}

⇔ {∃i′ ∈ X{(i′, i) ∈ M(α0), (Y(i′), i′) ∈ q0, Y(i′) 6= NR}}

⇔ {∃i′ ∈ X, ∃s ∈ Σ∗{i ∈ δ(i′, s), P (s) = α0, (Y(i′), i′) ∈ q0,

Y(i′) 6= NR}} (By definition of M(α0))

⇔ {∃i′ ∈ X0, ∃s ∈ Σ∗{P (s) = α0, i ∈ δ(i′, s)}} (By definition of q0).

This completes the proof for ω = α0. Next, we show that if the hypothesis

of the induction is true for ω = α0α1 . . . αn−1, then it is also true for ω′ =

α0α1 . . . αn. From the induction hypothesis we have

{(Y(i′), i′) ∈ qn, Y(i′) 6= NR} ⇔ {∃j ∈ X0, ∃r ∈ Σ∗{P (r) = ω, i′ ∈ δ(j, r)}}.

(5.1)

As mentioned before, the verifier state that is reachable via ω (ω′) is qn

(qn+1). From Definition 5.1.1, we have qn+1 = qn ⊗M(αn). By the definition

of operator ⊗, we have

{(Y(i), i) ∈ qn+1, Y(i) 6= NR}

⇔ {∃i′ ∈ X{(i′, i) ∈ M(αn), (Y(i′), i′) ∈ qn, Y(i′) 6= NR}}

⇔ {∃i′ ∈ X, ∃t ∈ Σ∗{i ∈ δ(i′, t), P (t) = αn, (Y(i′), i′) ∈ qn, dY(i′) 6= NR}}

(5.2)

⇔ {∃j ∈ X0, ∃s ∈ Σ∗{P (s) = ω′, i ∈ δ(j, s)}} (5.3)

where (5.2) follows from the definition of M(α0) and (5.3) follows from (5.1)

with s = rt. This completes the proof for part (i).

(a), (b): We describe the proof for parts (a) and (b) focusing on part (a)

(the proof for part (b) is similar). We use induction on the length of the

string ω. Assume ω = α0 . . . αn and denote the sequence of verifier states

that are visited via ω by q0, q1, . . . , qn+1. First, we need to prove the induction

hypothesis for ω = α0. From Definition 5.1.1 we have q1 = q0 ⊗ M(α). Note

that the state-status mapping associated with the verifier initial state q0

assigns a label Y from the set {S, NS} to the pairs (Y, i) in the state-status

mapping based on whether the system state element i of the pair is secret or

not (and assigns NR if state i is not in X0). From definition of the operator
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⊗, it follows that

(S, i) ∈ q1

⇔ {∀i′ ∈ X0{(i
′, i) ∈ M(α0) ⇒ (S, i′) ∈ q0}}

⇔ {∀i′ ∈ X0{{∃s ∈ Σ∗{P (s) = α0, i ∈ δ(i′, s)}} ⇒ {(S, i′) ∈ q0}}} (5.4)

⇔ {∀i′ ∈ X0{{∃s ∈ Σ∗{P (s) = α0, i ∈ δ(i′, s)}} ⇒ {i′ ∈ S}}}, (5.5)

where (5.4) follows from definition of M(α0) and (5.5) follows from definition

of q0. This proves the induction hypothesis for ω = α0 for part (a).

Next, assuming that the hypothesis holds for ω = α0α1 . . . αn−1, we prove

it for ω′ = α0 . . . αn. Recall that qn+1 (qn) is a verifier state reachable from the

verifier initial state via ω′ (ω) (in the theorem, verifier state qn+1 is denoted

by q). By the induction hypothesis, we have

(S, i′) ∈ qn ⇔ {∀j ∈ X0{{∃r ∈ Σ∗{P (r) = ω, i′ ∈ δ(j, r)}} ⇒ {j ∈ S}}}.

(5.6)

By construction of the verifier, we have qn+1 = qn ⊗M(αn). From definition

of the operator ⊗ we have

(S, i) ∈ qn+1

⇔ {∀i′ ∈ X{(i′, i) ∈ M(αn) ⇒ (S, i′) ∈ qn}}

⇔ {∀i′ ∈ X{∃t ∈ Σ∗{P (t) = αn, i ∈ δ(i′, t)} ⇒ {(S, i′) ∈ qn}}} (5.7)

⇔ {∀j ∈ X0{∃s ∈ Σ∗{P (s) = ω′, i ∈ δ(j, s)} ⇒ {j ∈ S}}}, (5.8)

where (5.7) follows from definition of M(αn) and (5.8) follows from (5.6) with

s = rt. This completes the proof for part (a).

(c) Similar to the previous parts, we use induction on the length of the

string ω. Assume ω = α0 . . . αn and denote the sequence of verifier states vis-

ited via ω by q0, q1, . . . , qn+1. First, we need to prove the induction hypothesis

65



for ω = α0. From the definition of operator ⊗, we have

(M, i) ∈ q1 ⇔

{∃(i′, i), (i′′, i) ∈ M(α0){(NS, i′), (S, i′′) ∈ q0}} ⇔

{∃i′, i′′ ∈ X0, ∃s, s′ ∈ Σ∗{P (s) = P (s′) = α0, i ∈ δ(i′, s), i ∈ δ(i′′, s′),

(NS, i′) ∈ q0, (S, i′′) ∈ q0}} ⇔

{∃i′ ∈ X0 − S, ∃i′′ ∈ X0 ∩ S, ∃s, s′ ∈ Σ∗{P (s) = P (s′) = α0, i ∈ δ(i′, s),

i ∈ δ(i′′, s′)}},

where the last equation follows from the definition of q0. The above argument

establishes the hypothesis of the induction for ω = α0.

Next, assuming that the hypothesis holds for ω = α0α1 . . . αn−1, we prove

it for ω′ = α0 . . . αn. Recall that qn+1 (qn) is a verifier state reachable from the

verifier initial state via ω′ (ω) (in the theorem, verifier state qn+1 is denoted

by q). By the induction hypothesis, we have

(M, i′) ∈ qn ⇔

{∃j ∈ X0 − S, ∃j′ ∈ X0 ∩ S, ∃r, r′ ∈ Σ∗{P (r) = P (r) = ω, i′ ∈ δ(j, r),

i′ ∈ δ(j′, r′)}}. (5.9)

By construction of the verifier, we have qn+1 = qn ⊗M(αn). By definition of

the operator ⊗, it follows that

(M, i) ∈ qn+1 ⇔

{{∃(i′, i), (i′′, i) ∈ M(αn){(NS, i′), (S, i′′) ∈ qn}} or

{∃(i′, i) ∈ M(αn){(M, i′) ∈ qn}}} ⇔

{{∃(NS, i′), (S, i′′) ∈ qn, ∃t, t′ ∈ Σ∗{P (t′) = P (t) = αn,

i ∈ δ(i′, t), i ∈ δ(i′′, t′)}} or (5.10)

{∃(M, i′) ∈ qn, ∃t ∈ Σ∗{P (t) = αn, i ∈ δ(i′, t)}}} ⇔ (5.11)

{∃j ∈ X0 − S, ∃j′ ∈ X0 ∩ S, ∃s, s′ ∈ Σ∗{P (s) = P (s′) = ω′,

i′ ∈ δ(j, s), i′ ∈ δ(j′, s′)}}. (5.12)

Note that (5.10) is equivalent to (5.12) by parts (a) and (b) and (5.11) is

equivalent to (5.12) by (5.9) with s = rt and s′ = r′t′. This completes the
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proof for part (c).

(ii) In part (i) we showed that pair (Y(i), i) in the state-status mapping q

(which is reachable in the verifier via ω) has label Y(i) 6= NR if and only if

there exists an initial state i′ and a string s such that i ∈ δ(i′, s) is nonempty

and P (s) = ω. This is equivalent to Y(i) = NR if and only if for all initial

states i′, there does not exist any string s such that i ∈ δ(i′, s) and P (s) = ω.

Therefore, part (ii) follows from part (i).

Since the verifier has all the information concerning the origin of any se-

quence of observations in the system, it can be used to verify initial-state

opacity. We need the following definition before formalizing this with a the-

orem.

Definition 5.1.2. Given a set of states X and a set of labels ∆ = {S, NS, M,

NR}, a state-status mapping q ∈ ∆X is NR-certain if

∀i ∈ X{Y(i) = NR}.

A state-status mapping that is not NR-certain is said to be L-certain (L ∈

{N, NS, M}) if

∀i ∈ X{Y(i) = L or Y(i) = NR}.

�

Theorem 5.1.4. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) with set of states X = {0, 1, . . . , N −1), a natural projection map P with

respect to the set of observable events Σobs (Σobs ⊆ Σ), a set of secret states

S ⊆ X, and the verifier Gverifier = (Xverifier, Σobs, δverifier, Xverifier,0) con-

structed as in Definition 5.1.1. Automaton G is (S, P,∞) initial-state opaque

if and only if

∀q ∈ Xverifier{q is not S-certain}.

�

Proof. First observe that in an initial-state opaque system, for any string t ∈

Σ∗ that originates from a secret initial state i (t ∈ L(G, i), i ∈ X0 ∩S), there

exists another string s ∈ Σ∗ that originates from a non-secret initial state j

(s ∈ L(G, j), j ∈ X0−S) that has the same projection as t, i.e., P (s) = P (t).
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More formally, ∀i ∈ X0 ∩ S, ∀t ∈ Σ∗

{δ(i, t) 6= ∅ ⇒ {∃j ∈ X0 − S, ∃s ∈ Σ∗{P (s) = P (t), δ(j, s) 6= ∅}}}.

In Theorem 5.1.3, we proved that for each state of the verifier Gverifier, the

associated state-status mapping captures the origin of any sequence in the

system that leads to state i ∈ X, i.e., whether state i is reachable from

secret initial states, non-secret initial states, both secret and non-secrets

initial states, or not reachable from any initial state at all. If the origin of

the given sequence is not reachable from any initial state, q is NR-certain. In

such case, initial-state opacity is not violated since the definition of initial-

state opacity only restricts attention to sequences of observations that can

be generated in the system; therefore, for ω ∈ Σ∗
obs, ω 6= ǫ,

{∃q ∈ Xverifier{q = δverifier(Xverifier,0, ω), q is S-certain}} ⇔

{∀j ∈ X0, ∀t ∈ Σ∗{{P (t) = ω, δ(j, t) 6= ∅} ⇒ j ∈ S}}.

This violates initial-state opacity and (together with the initial case of ω = ǫ

which clearly holds) completes the proof.

Remark 5.1.1. By construction of the verifier, once the state-status map-

ping associated with a verifier state becomes L-certain, L ∈ {S, NS, M}, it re-

mains L-certain or it becomes NR-certain. Hence, for verification purposes,

we need not generate subsequent states from a verifier state whose associ-

ated state-status mapping is L-certain. Moreover, the state-status mapping

associated with any verifier state reachable from a state for which the asso-

ciated state-status mapping only contains labels M, NS, and/or NR, cannot

become S-certain. Therefore, we need not generate subsequent states from

verifier states whose associated state-status mappings only contain labels M,

NS, and/or NR. �

Example 5.1.3. In this example, we first show that the DES G in Figure 5.1

with X0 = X is initial-state opaque with respect to S = {2}. For this, we

construct the verifier Gverifier for G as depicted in Figure 5.2. The verifier

initial state is q0 = {(NS, 0), (NS, 1), (S, 2), (NS, 3)} denoting the fact that

system state 2 is secret. Upon observing α (and following the details described
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αβ

(NS, 0), (NS, 1), (NS, 2), (NS, 3)q2
(NS, 0), (M, 1), (NS, 2), (M, 3)

(NS, 0), (NS, 1), (S, 2), (NS, 3)q0

q1

Figure 5.2: Verifier Gverifier corresponding to G for S = {2}.

in Example 5.1.2), the verifier next state becomes

q1 = {(NS, 0), (M, 1), (NS, 2), (M, 3)}.

This implies that upon observing α, the current system state is (i) either 0

or 2, which are only reachable from non-secret initial states, or (ii) either 1

or 3, each of which is reachable from both secret and non-secret initial states.

The generation of the states in the Gverifier is stopped at state q1 with as-

sociated state-status mapping {(NS, 0), (M, 1), (NS, 2), (M, 3)} since q1 only

contains labels M and NS (Remark 5.1.1). One can also verify that upon

observing β from initial state q0, the verifier state q2 that is reached is associ-

ated with state-status mapping {(NS, 0), (NS, 1), (NS, 2),(NS, 3)}. Transitions

from verifier state q2 also need not be considered further since the state-status

mapping of this state is NS-certain (Remark 5.1.1). Since the verifier does

not (and cannot) contain any state such that the associated state-status map-

ping is S-certain, we conclude that DES G is initial-state opaque with respect

to S = {2}.

Next, we assume that S = {1}. The verifier initial state in this case is

q0 = {(NS, 0), (S, 1), (NS, 2), (NS, 3)}

denoting the fact that system state 1 is secret. The verifier construction

can be completed for all possible observations (from each state) as shown in

Figure 5.3. Note that for verifier states that are S-, NS-, or M-certain, we do

not need to consider any outgoing transitions (we ignore the NR-certain state

since it is only reached via sequences of observations that cannot be generated

by the system). As can be observed, verifier state q3, which is associated with

state-status mapping {(S, 0), (S, 1), (S, 2), (S, 3)} and is reachable from the

verifier initial state via βα, is S-certain. Therefore, DES G is not initial-
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(NS, 0), (NS, 1), (NS, 2), (NS, 3)q1

α

α

(NS, 0), (S, 1), (NS, 2), (NS, 3)

(S, 0), (M, 1), (S, 2), (M, 3)

(S, 0), (S, 1), (S, 2), (S, 3)

β

q2

q0

q3 (M, 0), (M, 1), (M, 2), (M, 3)q4

β

Figure 5.3: Verifier Gverifier corresponding to G for S = {1}.

state opaque with respect to S = {1}. As mentioned before, this means that

observing string βα positively determines the system initial state as state

1, which is within the set of secret states and hence violates initial-state

opacity. �

Remark 5.1.2. The verifier introduced in Definition 5.1.1 has state com-

plexity O(4N) where N = |X| denotes the number of states of the underlying

automaton G. As a result, checking for initial-state opacity has space com-

plexity O(4N) and similar time complexity. When compared to the O(2N2
)

space and time complexity for verifying initial-state opacity using the ISE, the

employment of a verifier results in a large reduction in complexity. However,

there are situations where the use of the ISE might be preferable:

(i) If the set of secret states is not known or is not invariant, then the

reduced complexity method requires a new verifier to be constructed for each

possible set of secret states, whereas the ISE can be used to verify initial-state

opacity for any set. For |X| = N , there are at most 2N possible sets of secret

states and thus verifying initial-state opacity for all possible sets of secret

states using a verifier has state space complexity O(2N × 4N) or equivalently,

O(8N). This is still better than constructing an ISE which has state space

complexity O(2N2
).

(ii) The ISE can be used to provide a “measure” of opacity: specifically,

the cardinality of the set of non-secret starting states (or the percentage of

non-secret possible starting states over all possible starting states) of the state

mappings associated with the states of the ISE can provide a measure of opac-

ity (note that such simple measures of opacity have been frequently employed

in cases where anonymity is desirable [38]).
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(iii) If the set of secret states S changes along the observation, the ISE

can provide useful information regarding initial-state opacity; this case is

discussed in more detail in the next section. �

5.1.3 Verifying Initial-State Opacity for a Time-Varying Set
of Secret States

In this section, we consider cases where the set of secret states varies along the

observation (in contrast to the invariant set of secret states that was assumed

in the previous section). There are many security applications where this

might be the case. For example, in a multi-level clearance system, upon an

upgrade in the clearance level (modeled via an observable event), the user

can have a more refined picture of the initial state of the system; similarly,

upon a downgrade in the clearance level, the information that the user can

infer about the initial state of the system becomes limited [39].

In the modeling of discrete event systems, the evolution of states is based

upon the occurrence of events that may happen at any point in time. Hence,

the notion of time is not captured within this framework. In order to over-

come this restriction in modeling the time-varying behavior of the set of

secret states, we follow an approach inspired by Ramadge and Wonham’s su-

pervisory control framework [15] (where control requirements are described

as sub-languages of the system language L(G)). Specifically, we assume that

the changes in the set of secret states are synchronized with observations,

i.e., occurrences of observable events. In other words, we assume that the

set of secret states is given by a mapping S : P (L(G)) → 2X which maps

each projection ω ≡ P (t) of a string t in L(G) to a subset of the set X.

Note that this constrains the nature of time-variations in the set of secret

states (to be the same for system behaviors that generate the same sequence

of observations, i.e., for t1, t2 ∈ L(G) such that P (t1) = P (t2)).

In general, the mapping function S(·) may require infinite space to be

described. For this reason, we assume that the given automaton G (for which

initial-state opacity needs to be verified) is associated with a deterministic

finite automaton Gs = (Xs, Σobs, δs, xs,0) that models the changes in the set of

secret states. More specifically, each state of the automaton Gs is associated

with a set of secret states (with the initial state xs,0 of the automaton Gs
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associated with the initial set of secret states); a state transition in Gs can

occur after an observable event and models a change in the state of Gs and

possibly in the associated set of secret states (note that multiple automaton

states in Xs could be associated with the same set of secret states). It is

assumed that the DES Gs contains all possible sequences of observations that

can be generated by DES G (i.e., P (L(G)) ⊆ L(Gs)) so that, by following a

sequence of observations, we can capture the corresponding set of secret states

(in other words, S(ω) = F(δs(xs,0, ω)) where F : Xs → 2X is the mapping

that associates to each state of Gs a set of secret states). The definition

of initial-state opacity for G can then be trivially extended to include this

time-varying set of secret states as follows.

Definition 5.1.3 (Initial-State Opacity for Time-Varying Set of Secret

States). Consider a non-deterministic finite automaton G = (X, Σ, δ, X0),

a natural projection map P with respect to the set of observable events Σobs

(Σobs ⊆ Σ), and a (time-varying) set of secret states S : P (L(G)) → 2X that

is specified via a deterministic finite automaton Gs = (Xs, Σobs, δs, xs,0) that

satisfies P (L(G)) ⊆ L(Gs) and is associated with a function F : Xs → 2X,

such that

S(ω) = F(δs(xs,0, ω))

for any string ω ∈ P (L(G)). Then, automaton G is initial-state opaque

with respect to S(·) and P (or (S(·), P,∞) initial-state opaque) if for all

t ∈ L(G, i) with P (t) = ω and for all i ∈ X0 ∩ S(ω), we have

∃j ∈ X0 − S(ω), ∃s ∈ L(G, j){P (s) = ω}.

�

In order to verify initial-state opacity when the set of secret states S varies

as in Definition 5.1.3, one needs to verify that for each string t in L(G) with

P (t) = ω such that t can originate from a state in X0 ∩ S(ω), there exists a

string s with P (s) = P (t) = ω such that string s can originate from a state

in X0 − S(ω). In the following theorem, we show how one can modify the

ISE construction to verify initial-state opacity for the case of a time-varying

set of secret states.

Theorem 5.1.5. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events
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Σobs (Σobs ⊆ Σ), and a time-varying set of secret states S : P (L(G)) → 2X

that is specified by the state of the deterministic automaton Gs = (Xs, Σobs, δs,

xs,0) in Definition 5.1.3. Construct the ISE G∞,obs = (X∞,obs, Σobs, δ∞,obs,

X∞,0) and the automaton G∗
∞,obs = G∞,obs×Gs = (X∗

∞,obs, Σobs, δ
∗
∞,obs, X

∗
∞,0),

where X∗
∞,obs is the set of states in G∗

∞,obs that are reachable from its initial

state X∗
∞,0 = X∞,0 × xs,0. Then, automaton G is (S(·), P,∞) initial-state

opaque if and only if for all (m, xs) ∈ X∗
∞,obs,

m(1) * F(xs) or m(1) = ∅. (5.13)

�

Proof. To prove the only if part, we assume that system is (S(·), P,∞) initial-

state opaque. Then for all s ∈ Σ∗ with P (s) = ω

{∃i ∈ S(ω) ∩ X0{δ(i, s) 6= ∅}} ⇒

{∃t ∈ Σ∗, ∃i′ ∈ X0 − S(ω){P (t) = ω, δ(i′, t) 6= ∅}}.

Denote the state mapping associated with the state reached in G∞,obs via ω,

by m. By Theorem 4.2.1, we know that m(1) contains both system states i

and i′. Since i ∈ X0∩S(ω) and i′ ∈ X0−S(ω), this implies that m(1) contains

system states in both X0∩S(ω) and X0−S(ω); therefore, m(1) * S(ω) which

completes the proof for the only if part. Obviously, for all s ∈ Σ∗ such that

s /∈ L(G), G∗
∞,obs will be driven by ω = P (s) to a state (m, xs) such that

m = ∅.

To prove the (if) part, assume that (5.13) holds and use contradiction. If

the system is not (S(·), P,∞) initial-state opaque, then there exists s ∈ Σ∗

with P (s) = ω such that ∃i ∈ X0 ∩ S(ω){δ(i, s) 6= ∅ and

{∀t ∈ Σ∗, ∀i′ ∈ X0{P (t) = ω, δ(i′, t) 6= ∅} ⇒ {i′ ∈ X0 ∩ S(ω)}}.

Denote the state mapping associated with the state reached in G∞,obs via ω,

by m. By Theorem 4.2.1, we know that m(1) contains system state i and

all system states i′ from which strings t with P (t) = ω can originate. Also,

since i, i′ ∈ S(ω), this implies that m(1) 6= ∅ and m(1) contains system states

in S(ω); this contradicts (5.13) and hence completes the proof for the (if)

part.
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5.2 Verifying K-Step Opacity

In this section, we show that for a DES G to be K-step opaque, it is nec-

essary and sufficient that each k-delayed state estimate X̂|ω|−k(ω), 0 ≤ k ≤

min(K, |ω|), associated with a sequence of observations ω contain at least one

state outside the set of secret states S (unless the sequence of observations

ω cannot be generated by G in which case X̂|ω|−k(ω) = ∅).

Theorem 5.2.1. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, automaton G is (S, P, K)-

opaque if and only if for all ω ∈ Σ∗
obs, 0 ≤ k ≤ min(K, |ω|)

X̂|ω|−k(ω) * S or X̂|ω|−k(ω) = ∅, (5.14)

where X̂|ω|−k(ω) is the k-delayed state estimate associated with the sequence

of observations ω. �

Proof. (Only if) Proof by contradiction. Assume that there exists a k-delayed

state estimate X̂|ω|−k(ω), 0 ≤ k ≤ K, associated with a sequence of obser-

vations ω = α0 . . . αn with |ω| ≥ K (for now), such that X̂|ω|−k(ω) ⊆ S and

X̂|ω|−k(ω) 6= ∅. From Definition 4.5.1, this implies that there exists t ∈ Σ∗

with P (t) = α0α1 . . . αn such that for some k in 0 ≤ k ≤ K we have

∀i ∈ X0{δ(i, t) 6= ∅} ⇒

{∀t′ ∈ t̄{|P (t)/P (t′)| = k}∀j ∈ δ(i, t′){δ(j, t/t′) 6= ∅ ⇒ j ∈ S}}. (5.15)

Unless X̂|ω|−k(ω) = ∅ (in which case δ(i, t) would be empty as well), we

conclude that there exists at least one string t that passes through the set

of secret states S at some point k within the past K observations and all

sequences in the system that generate the same sequence of observations

pass through secret states when t passes through secret states; therefore, the

system is not K-step opaque.

To handle the case when |ω| < K, we assume that there exists a k-delayed

state estimate X̂|ω|−k(ω), 0 ≤ k ≤ |ω|, associated with a sequence of observa-

tions ω = α0 . . . αn with |ω| < K, such that X̂|ω|−k(ω) ⊆ S and X̂|ω|−k(ω) 6= ∅.

From Definition 4.5.1, this implies that (5.15) holds and that the system is

not K-step opaque (following the same reasoning as in the case for |ω| ≥ K).
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(If) Assume that the system is not K-step opaque. Hence, from Defini-

tion 3.2.1, there exists a string t in L(G) that visits state(s) j in S within

the past K observations (i.e., there exists t′ ∈ t̄ such that for some i ∈ X0

and j ∈ S, j ∈ δ(i, t′), δ(j, t/t′) 6= ∅) such that for all strings s in L(G)

with P (s) = P (t), when string t passes through the state(s) j in S, string s

passes through state(s) j′ ∈ S. This means that (i) state(s) j reachable from

initial state(s) i ∈ X0 via string t′ ∈ t̄ and with continuation(s) via string t/t′

belongs (belong) to S; (ii) state(s) j′ ∈ S reachable from initial state i′ ∈ X0

via string s′ ∈ s̄ with continuation(s) via string s/s′ belongs (belong) to S;

and (iii) P (t′) = P (s′) and |P (t)/P (t′)| = |P (s)/P (s′)| = k with 0 ≤ k ≤ K.

Now consider the k-delayed state estimate X̂|ω|−k(ω) with ω ≡ P (t). From

Definition 4.5.1 we know that X̂|ω|−k(ω) includes all states j and j′ charac-

terized above. Also, since by assumption, the sequence of observations ω

violates K-step opacity, we have for all j ∈ X̂|ω|−k(ω): j ∈ S. Hence, there

exists ω ∈ Σ∗
obs and 0 ≤ k ≤ min(K, |ω|) such that X̂|ω|−k(ω) ⊆ S and

X̂|ω|−k(ω) 6= ∅, which completes the proof.

Corollary 4.6.1 proves that SM-KDE captures the set of all k-delayed state

estimates, 0 ≤ k ≤ K, via its (K+1)-dimensional state mappings and, hence,

by Theorem 5.2.1, it can be used for verifying K-step opacity.

Theorem 5.2.2. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) with a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its SM-KDE GK,obs = (XK,obs, Σobs, δK,obs, XK,0)

constructed as in Definition 4.6.1. Automaton G is (S, P, K)-opaque if and

only if for all m ∈ XK,obs, k ∈ {0, . . . , K}

m(k) * S or m(k) = ∅. (5.16)

�

Proof. Follows from Theorem 5.2.1 and Corollary 4.6.1. Note that m(k) = ∅

implies that this state is reached only via sequences of observations that

cannot be generated by the original system. Also, we do not need to treat

the case when |ω| < K separately because for |ω| ≤ k ≤ K, X̂|ω|−K(ω) = X0

or X̂|ω|−K(ω) = ∅.

Remark 5.2.1. If we assume that the system is “alive with respect to observ-

able events” (i.e., if we require that it is always possible to observe a sequence
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of events of arbitrary length), then it is not hard to argue that (5.16) can be

replaced with the following simpler form:

∀m ∈ XK,obs : m(K) * S or m(K) = ∅. (5.17)

In other words, assuming that the system is alive with respect to observable

events, in order to verify K-step opacity, one need only check the K-delayed

state estimates and verify that they do not fall entirely within the set of secret

states (as opposed to (5.16) where all k-delayed state estimates, 0 ≤ k ≤ K,

need to be verified). This assumption is less stringent than the commonly ac-

cepted assumptions for the diagnosis problem [40] where it is required that no

sequence of arbitrary length of unobservable events can occur in the system.

In other words, the diagnosis problem is formulated under the assumptions

that (i) G is live, and (ii) there exist no cycles of unobservable events. For

Condition (5.16) to be relaxed into Condition (5.17), we require (i) to hold for

observable events but (ii) is not required. For a detailed comparison between

diagnosability and K-step opacity please refer to Section 3.5.4. �

Example 5.2.1. DES G in Figure 4.1-a with X0 = {0, 1, 2, 3, 4} is not

({0}, P, 2)-opaque due to the existence of state m4 (or m6) in the state mapping-

based 2-delay state estimator depicted in Figure 4.3. If the system generates

the sequence of observations αβ (or ββ), then (since the only state from

which αβ or ββ can be observed is state 0) we can conclude with certainty

that the system was in state 0 two steps ago. This violates the 2-step opacity

requirement since state 0 is a secret state. The unit-delay state estimator

for this system is shown in Figure 5.4 (again we have not included the state

that corresponds to the empty state mapping); it can be verified that for each

of the 2-dimensional state mappings m associated with its states, every set

of intermediate states m(k), 0 ≤ k ≤ 1, contains at least one element out-

side S. Hence, DES G is ({0}, P, 1)-opaque. This demonstrates that K-step

opacity does not in general imply K ′-step opacity for K ′ > K. The converse,

however, is trivially true, i.e., K ′-step opacity implies K-step opacity for

K ′ > K. �

Corollary 4.6.2 proves that the OS-KDE captures the set of all k-delayed

state estimates, 0 ≤ k ≤ K, via its (K + 2)-tuples and hence, by Theo-

rem 5.2.1, it can be used for verifying K-step opacity.
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Figure 5.4: State mapping-based 1-delay state estimator corresponding to
DES G.

Theorem 5.2.3. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) and a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and its OS-KDE Gobservation
K,obs = (Xobservation

K,obs , Σobs,

δobservation
K,obs , Xobservation

K,0 ) constructed as in Definition 4.6.2. Automaton G is

(S, P, K)-opaque if and only if for all Q = (Ω, ZK , . . . , Z0) ∈ Xobservation
K,obs ,

k ∈ {0, . . . , K},

Zk * S or Zk = ∅. (5.18)

�

Proof. Follows from Theorem 5.2.1 and Corollary 4.6.2. Note that Zk =

∅ implies that this state is reached only via sequences of observation that

cannot be generated by the original system.

Example 5.2.2. As discussed in Example 5.2.1, DES G in Figure 4.1-a with

X0 = {0, 1, 2, 3, 4} is not ({0}, P, 2)-opaque since observing the sequence of

observations αβ (or ββ) reveals that the system was in state 0 two steps ago

and state 0 is a secret state. Note that the reachable states in the observation

sequence-based 2-delay state estimator (depicted in Figure 4.4) via αβ (or ββ)

are Q4 = (αβ, {0}, {3}, {4}) (or Q6 = (ββ, {0}, {1}, {4})). The 2-delayed

state estimate associated with either of these states is {0} and falls entirely

within the set of secret states, which means that the system is not ({0}, P, 2)-

opaque. �

The exponential complexity of the algorithms proposed in this chapter

for verifying K-step opacity is not desirable for implementation purposes.

However, in Chapter 6, we show that deciding whether the non-deterministic

finite automaton G is K-step opaque is NP-hard for |Σobs| > 1. This implies
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that it is unlikely that any algorithm can verify K-step opacity in polynomial

time.

Remark 5.2.2. In Section 3.5.1, we introduce the notion of trajectory-based

K-step opacity. It is not hard to see that DES G is trajectory-based K-step

opaque if and only if for any given sequence of observations ω, there always

exists at least one compatible sequence of states such that G visits exclusively

non-secret states while generating the last K events in ω. Since the SM-

KDE captures the sequence of states via the K-dimensional state mappings,

we easily conclude that trajectory-based K-step opacity can be verified using

K-delay state estimators: automaton G is trajectory-based K-step opaque

if and only if, in the SM-KDE associated with the system, for all nonempty

m ∈ XK,obs, there exists (i0, i1, . . . , iK) ∈ m such that i0, i1, . . . , iK ∈ X−S.�

5.3 Verifying Infinite-Step Opacity

5.3.1 Verifying Infinite-Step Opacity Using K-Delay State
Estimator

As mentioned before, infinite-step opacity can be considered as the limiting

case of K-step opacity as K approaches infinity. Note that in this case,

the K-delay state estimator is not a finite structure anymore (because K

approaches infinity) and hence it is not useful in modeling the intruder or

verifying infinite-step opacity. However, in this section, we show that for

K ≥ 2N2
− 1, K-step opacity implies infinite-step opacity and hence the

verification method for K-step opacity based on K-delay state estimators

can be used to verify infinite-step opacity. Specifically, we show that for

K ′ > K ≥ 2N2
− 1, K-step opacity and K ′-step opacity are equivalent;

therefore, since infinite-step opacity is the limiting case of K-step opacity as

K → ∞, we can state that K-step opacity for K ≥ 2N2
− 1 is equivalent

to infinite-step opacity (the other direction is obviously true: infinite-step

opacity always implies K-step opacity). Note that K-step opacity does not

in general imply K ′-step opacity for K ′ > K (in fact, Example 5.2.1 is a

demonstration of this).

The idea behind the proof is the following. Fix a point in the system’s
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state trajectory; in the K-step opacity problem we are interested in finding

how much we can say regarding the membership of the state, at that fixed

point in time, to the set of secret states, even after we make K additional

observations. We can gain insight to this question by considering the estimate

of the state at this fixed point as the initial uncertainty for an initial-state

estimation problem. Note that here we are concerned with the information

conveyed by the set of all sequences of observations of length at most K, and

not a specific sequence of observations.

We carry the formal proof of the fact that K-step opacity and K ′-step

opacity are equivalent for K ′ > K ≥ 2N2
− 1 in two theorems. First, in

Theorem 5.3.1, we prove that for the aforementioned fixed point in the state

trajectory, for K ≥ 2N2
− 1, the information required for opacity verification

(i.e., membership of the state at that point in time in the set of secret states

S) is equivalent over all possible observation sequences of length K. Then,

in Theorem 5.3.2, we show that this equivalence results in the equivalence of

K-step opacity and K ′-step opacity for K ′ > K ≥ 2N2
− 1.

Theorem 5.3.1. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0) with |X| = N , and construct GK,obs and GK∗,obs for K > K∗ = 2N2
− 1

as delayed state estimators as described in Definition 4.6.1. Then, for any

(K + 1)-dimensional state mapping m associated with the SM-KDE state

reached in GK,obs via ω = α0α1 . . . αn with |ω| > 2N2
− 1 and for each m(k),

2N2
≤ k ≤ K, there exists a (K∗ + 1)-dimensional state mapping m′ associ-

ated with a state reached in GK∗,obs via some ω′ = α0α1 . . . αn−kα
′
n−k+1 . . . α′

n′

for some n′ ≤ n+2N2
− 1− k and with α′

n−p ∈ Σobs, k− 1 ≤ p ≤ n−n′, such

that m(k) = m′(k + n′ − n). �

Proof. Recall that in any K-delay state estimator GK,obs, the k-delayed state

estimate due to observation ω is captured via the set m(k), where m is the

(K+1)-dimensional state mapping associated with the state reached in GK,obs

via ω = α0α1 . . . αn (k satisfies 0 ≤ k ≤ K). Now consider the fixed point in

time after the sequence of observations α0α1 . . . αn−k has been observed. Once

k more observations are made (i.e., once αn−k+1αn−k+2 . . . αn are observed),

the set m(k) denotes the k-delayed state estimate at that fixed point due to

the sequence of observations ω = α0α1 . . . αn−kαn−k+1 . . . αn. Similarly, m′(l)

denotes the l-delayed state estimates at that fixed point due to the sequence

of observations ω′ = α0α1 . . . αn−kα
′
n−k+1 . . . α′

n′ for n′ − l = n − k. In other
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words, m(k) represents the k-delayed state estimate, if after the passage

of the system through the state at that fixed point αn−k+1αn−k+2 . . . αn is

observed, whereas m′(l) denotes the l-delayed state estimate at this same

point if α′
n−k+1 . . . α′

n′ is observed. To prove Theorem 5.3.1, we need to

show that assuming k ≥ 2N2
, there exists an l ≤ 2N2

− 1 such that the

l-delayed state estimate at that same fixed time due to a shorter sequence

of observations ω′ = α0α1 . . . αn−kα
′
n−k+1 . . . α′

n′ with n′ = l + n − k is the

same as the k-delayed state estimate of that fixed point due to the sequence

of observations ω = α0α1 . . . αn−kαn−k+1 . . . αn.

Denote the estimate of the system’s (current) state at that point (i.e., the

estimate after observing α0α1 . . . αn−k) by Z ⊆ X. The problem of k-delayed

estimation of the state of the system at the fixed point in time after observing

ω = α0α1 . . . αn can be viewed as an initial-state estimation problem where

(due to the observations α0α1 . . . αn−k that have been made before reaching

that fixed point) the initial uncertainty about the “initial state” is the set Z.

Hence, the set m(k) after observing ω = α0α1 . . . αn is the same as the set of

starting states of the state mapping that is associated with the state that is

reached via αn−k+1αn−k+2 . . . αn in the ISE whose initial state is associated

with the state mapping ⊙2(Z). Note that the string αn−k+1αn−k+2 . . . αn has

length k > 2N2
−1. Since the ISE has at most 2N2

states, strings of length at

most 2N2
− 1 can be chosen to visit any (reachable) ISE state. This implies

that the state reached in this ISE via the string αn−k+1αn−k+2 . . . αn of length

k can also be reached via a string of length less than or equal to 2N2
− 1,

which we denote by α′
n−k+1α

′
n−k+2 . . . α′

n′ for some n′ ≤ n + 2N2
− 1 − k.

Since the states reached in the ISE via either of these strings are identical,

the k-delayed state estimate due to ω is the same as the (k−(n−n′))-delayed

state estimate due to ω′. This completes the proof.

The above result can be used to show that K ′-step opacity is equivalent

to K-step opacity for K ′ > K ≥ 2N2
− 1. We prove this by showing that for

K ≥ 2N2
, K-step opacity is equivalent to K∗-step opacity with K∗ = 2N2

−1.

Theorem 5.3.2. For a non-deterministic finite automaton G = (X, Σ, δ, X0),

K-step opacity is equivalent to K∗-step opacity for K > K∗ = 2N2
− 1 where

N = |X|. �

Proof. (K-step opacity ⇒ K∗-step opacity) Recall that DES is K-step opaque

if and only if (5.16) in Theorem 5.2.2 holds. Consider the (K+1)-dimensional

80



state mapping m and (K∗+1)-dimensional state mapping m′ associated with

the states reached in GK,obs and GK∗,obs respectively via ω. Observe that

m(k) = m′(k), 0 ≤ k ≤ 2N2
− 1; since both m(k) and m′(k) denote the k-

delayed state estimate due to observation ω, they are identical sets of states.

Therefore, (5.16) implies that ∀m ∈ XK∗,obs, ∀k ∈ {0, . . . , K∗} : m(k) * S or

m(k) = ∅, which implies that K∗-step opacity holds.

(K∗-step opacity ⇒ K-step opacity) We need to show (5.16). From The-

orem 5.3.1 we have: for any (K + 1)-dimensional state mapping m associ-

ated with states of GK,obs reached via a string ω with |ω| ≥ 2N2
− 1 and

2N2
≤ k ≤ K, there exists a (K∗ + 1)-dimensional state mapping m′ associ-

ated with states of GK∗,obs and some l satisfying 0 ≤ l ≤ 2N2
− 1 such that

m(k) = m′(l). Now if DES G is K∗-step opaque, then all sets of intermediate

states m′(l) of all (K∗ + 1)-dimensional state mappings m′ associated with

states in GK∗,obs contain states outside the set of secret states or are empty;

following the previous discussion, for 2N2
≤ k ≤ K, all sets of intermediate

states m′(k) of all (K∗ + 1)-dimensional state mappings m′ associated with

states of GK,obs contain states outside the set of secret states. This implies

(5.16) for 2N2
≤ k ≤ K. Moreover, the discussion in part (i) implies (5.16) for

0 ≤ k ≤ 2N2
−1. Therefore, (5.16) holds if m is reached in GK,obs via a string

ω with |ω| ≥ 2N2
−1. If m is reached via a shorter string t with |t| < 2N2

−1,

then the discussion in part (i) still implies (5.16) for 0 ≤ k < 2N2
− 1; more-

over, for 2N2
− 1 ≤ k ≤ K, we have m(k) ≡ X0 (since we have yet to make

enough observations) which trivially satisfies (5.16).

5.3.2 Verifying Infinite-Step Opacity Using a Bank of
Initial-State Estimators

The verification method for infinite-step opacity introduced in the previous

section requires the construction of a (2N2
−1)-delayed state estimator which

has state complexity O(|Σobs|2
N2

−1×(2N )2) (by Section 4.6.3) or, equivalently

for |Σobs| ≥ 2, O(|Σobs|2
N2

−1). In this section, we introduce a different method

that uses both the ISE and the current-state estimator to verify initial-state

opacity with complexity O(2N2
).

In order to verify that a system is infinite-step opaque, we need to verify

that at any point during the observation process, knowing the sequence of
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observations before reaching that point, in addition to a future observation

sequence (that is possible from that point onward), does not (and will not)

allow us to determine whether the set of possible states at that point is a

subset of the set of secret states. We perform this verification using a two-

phase approach: (i) finding all possible estimates of the system’s current

state along any possible sequence of observations, and (ii) for each point in

this trajectory (set of possible system states), calculating the information

that can be gained about the state at that point by observation sequences

that are possible from that point onward. The first phase can be achieved

via a standard current-state estimator [4] (see Example 4.6.1). The second

phase requires the construction of an ISE-like state estimator for each possible

uncertainty about the current-state estimate (which is now used as the initial

state estimate for the ISE-like state estimator). In other words, for each set

of state estimates Z ⊆ X provided in the first phase, we construct an ISE

whose initial state is associated with the state mapping ⊙2(Z). Clearly, if

any of these ISEs contains a state with associated (non-empty) state mapping

m such that its set of starting states contains elements only in S (i.e., if

m(1) ⊆ S), then DES G is not infinite-step opaque. The following theorem

formalizes the above discussion and proves that the two-phase approach is

correct.

Theorem 5.3.3. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X. For each set of current-

state estimates Zn associated with a state of its current-state estimator G0,obs,

construct the initial-state estimator G
(n)
∞,obs = (X

(n)
∞,obs, Σobs, δ

(n)
∞,obs, X

(n)
∞,0) by

setting its initial state X
(n)
∞,0 to be ⊙2(Zn). Then, automaton G is (S, P,∞)-

opaque if and only if for all n, and for all m ∈ X
(n)
∞,obs,

m(1) * S or m(1) = ∅. (5.19)

�

Proof. If for some n and m ∈ X
(n)
∞,obs, we have m(1) = ∅, then m is reach-

able via an infeasible sequence of observations which is not important in the

definition of infinite-step opacity.

(If) We prove this by contradiction. Assume that (5.19) holds but DES G
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is not (S, P,∞)-opaque. Hence, there exists a string t that passes through

a secret state j such that every other string s with P (s) = P (t) also passes

through a secret state j′ when string t passes through the secret state j. More

specifically, suppose that string t (string s) originates from state i ∈ X0 (state

i′ ∈ X0) and that string t (string s) can be written as t = t′t′′ (s = s′s′′)

such that P (t′) = P (s′), state i (state i′) reaches state j (state j′) via string

t′ (string s′), and state j (state j′) reaches some state k (state k′) via string

t′′ (string s′′). To keep notation simple (and without loss of generality), we

assume that there is only one string s, s 6= t with P (s) = P (t); the properties

of the current-state estimator [34] imply that Zn ≡ {j, j′} can be associated

with some state of G0,obs. The corresponding G
(n)
∞,obs has initial state X

(n)
∞,0 =

{(j, j), (j′, j′)}. Consider the state m that is reached in G
(n)
∞,obs from X

(n)
∞,0

via P (t′′) (which equals P (s′′) because s = s′s′′, t = t′t′′, P (s) = P (t) and

P (s′) = P (t′)): since state j (state j′) reaches state k (state k′) via string t′′

(string s′′), the sequence of observations P (t′′)(=P (s′′)) could have originated

from both states j and j′ (and only from these two since string s was assumed

without loss of generality to be unique). By Corollary 4.2.1, we know that

the starting and ending states in the state mapping associated with the ISE

state reached via string ω are, respectively, the set of states from which the

observation ω could have originated and the set of states that are reached

from such initial states. This implies that m = {(j, k), (j′, k′)} which in turn

implies that m(1) = {j, j′} and m(1) ⊆ S since we assumed {j, j′} ∈ S. This

is a contradiction to our initial assumption that (5.19) holds and completes

the (If) part of the proof.

(Only if) Assume that DES G is (S, P,∞)-opaque. We need to prove that

for all n and m ∈ X
(n)
∞,obs, (j, k) ∈ m and j ∈ S imply that there exists

(j′, k′) ∈ m such that j′ ∈ X − S. We prove this by contradiction. Assume

that there exist n and m ∈ X
(n)
∞,obs such that for all (j, k) ∈ m we have

j ∈ S, and also that m is reached via ω in G
(n)
∞,obs. By properties of the

ISE states [5], this implies that for any state j in the initial state X
(n)
∞,0 of

G
(n)
∞,obs and for all r ∈ Σ∗ such that P (r) = ω and δ(j, r) is defined, we have

j ∈ S. Without loss of generality, assume that there are only two such initial

states in X
(n)
∞,0 and denote them by j and j′ (if there is only one such initial

state, define j = j′); also, without loss of generality, we assume that from

each of the states j and j′, only one string can originate with projection

ω; denote the string that originates from j (j′) by t′′ (s′′) (note that it is
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Figure 5.5: ISE G
(4)
∞,obs corresponding to states {2, 3, 4}.

possible that t′′ = s′′). As mentioned before, the initial state X
(n)
∞,0 of G

(n)
∞,obs

is constructed using an estimate of the current state Z that is a reachable

state in G0,obs, e.g., via a string Ω. By construction of G0,obs, we know that

there exist i, i′ ∈ X0 and t′, s′ ∈ Σ∗ such that j ∈ δ(i, t′), j′ ∈ δ(i′, s′), and

P (s′) = P (t′) = Ω. Define t = t′t′′ and s = s′s′′ and assume that we observe

Ωω. For this sequence of observations, there is a string t such that every

other string s with P (s) = P (t), passes through the set of secret states when

t does. This violates infinite-step opacity which is a contradiction and hence

the proof is complete.

Remark 5.3.1. In practice, since the set of initial state estimates can only

decrease with additional observations [5], we only need to construct G
(n)
∞,obs

for Zn’s which have at least one secret state. �

Example 5.3.1. In this example, we show that DES G in Figure 4.1-a is

not ({3}, P,∞)-opaque. To verify infinite-step opacity we need to first con-

struct the current-state estimator G0,obs as in Figure 4.2. This state estima-

tor has five states Z1 = {4}, Z2 = {1, 4}, Z3 = {2, 4}, Z4 = {2, 3, 4}, Z5 =

{0, 1, 2, 3, 4}; hence, we need to construct five ISEs. Since only state map-

pings Z5 = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)} and Z4 = {(2, 2), (3, 3), (4, 4)}

contain the secret state 3, by Remark 5.3.1, we only need to construct two

ISEs: (i) ISE G
(5)
∞,obs with initial state mapping corresponding to Z5 is indeed

the initial-state estimator in Figure 4.1-b which we constructed previously

in Example 4.2.1. It can be easily verified that the set of starting states of

all (non-empty) state mappings associated with this ISE has states outside

the set of secret states. (ii) The ISE G
(4)
∞,obs with initial state correspond-

ing to Z4 is depicted in Figure 5.5 (again ignoring the empty state mapping

reached via sequences of observations that cannot be generated by G). State

m2 = {(3, 4)} in G
(4)
∞,obs violates ({3}, P,∞)-opacity since its set of starting
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states only contains state 3 which is a secret state. State m2 is reachable in

G
(4)
∞,obs via β from m0. Moreover, m0 in this ISE corresponds to the state in

G0,obs (in Figure 4.2) that is reached via observation α. Putting these two

pieces of information together, we can conclude that observing αβ reveals that

the system has gone through state 3, which is a secret state. �

The verification of infinite-step opacity using Theorem 5.3.3 requires that

for each state of the current-state estimator, an ISE-like state estimator be

constructed. Since there are at most 2N states for the current-state estimator,

this implies that the complexity of this method is O(2N×2N2
) or equivalently

O(2N2
). This exponential complexity1 is not desirable for implementation

purposes; as we show in Chapter 6, however, verifying infinite-step opacity

is PSPACE-hard and hence it is unlikely that any algorithm can verify this

property in polynomial-time [37].

Remark 5.3.2. In Section 3.5.3, we extend the definition trajectory-based

K-step opacity to trajectory-based infinite-step opacity. It is not hard to argue

that if we define the language E ⊆ L(G) to be the set of strings in G that

visit at least one secret state, then L(G) − E is the set of strings in G that

only visit non-secret states. Thus, G is trajectory-based infinite-step opaque

if and only if P (E) ⊆ P (L(G) − E).

If we construct a (possibly non-deterministic) automaton G̃ = (X, Σ, δ̃, X̃0)

from G by removing all transitions from non-secret states in G that end

in a secret state, and if we set X̃0 = X0 ∩ (X − S), we easily see that

L(G̃) = L(G)−E. Therefore, DES G is trajectory-based infinite-step opaque

if and only if P (L(G̃)) = P (L(G)). �

1A more careful argument (that takes into account the fact that the state mapping in
the ISE construction can only include at most |X0| states in the set of starting states) can
be used to argue that the complexity of this method is O(2|X0|N ).
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CHAPTER 6

COMPUTATIONAL COMPLEXITY OF
VERIFYING OPACITY

In this chapter we consider the computational complexity of verifying various

notions of opacity. We start with initial-state opacity, which as shown in

Chapter 5 can be verified (for a fixed set of secret states S) with space and

time complexity O(4N), where N = |X| is the number of states of the given

automaton. In fact, in this chapter, we establish that the verification of

initial-state opacity for |Σobs| > 1 is a PSPACE-complete problem [37].

Verifying K-step opacity using KDE was shown in Chapter 5 to have space

and time complexity O((|Σobs| +1)K ×2N ); in this chapter, we establish that

deciding whether the non-deterministic finite automaton G is K-step opaque

is NP-hard for |Σobs| > 1 [37].

Finally, verifying infinite-step opacity using the current-state estimator

and a bank of initial-state estimators has space and time complexity O(2N2
).

In this chapter, we show that verifying infinite-step opacity is PSPACE-hard

for |Σobs| > 1 [37].

6.1 Review of Complexity Theory

We now briefly review some necessary results and definitions from complexity

theory (see [37] for further details). A problem is a parameterized question to

be answered. An instance of a problem is obtained by specifying particular

values for all problem parameters. A decision problem is one whose answer,

depending on the instance, is either “yes” or “no”. An algorithm solves a

problem if it produces a correct answer when applied to any instance of the

problem. In the sequel, we only consider decision problems.

The class of problems that can be solved by an algorithm that is polynomial

in the size (encoding) of the problem is called P. NP stands for the class of

decision problems that are “verifiable” by a polynomial-time algorithm. A
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decision problem is NP-hard if any other decision problem in NP can be

reduced to this problem using a polynomial-time algorithm. If a decision

problem is NP-hard and is in NP, then it is called NP-complete. It is widely

conjectured that P is a proper subset of NP. If this is true, then there is no

polynomial-time algorithm for any NP-complete or NP-hard problem.

The class of decision problems that can be solved using space that is poly-

nomial in the size (encoding) of the problem is called PSPACE. A PSPACE-

hard problem is a decision problem such that any other decision problem

in PSPACE can be reduced to this problem using a polynomial-time algo-

rithm. If a PSPACE-hard problem is in PSPACE, then it is called PSPACE-

complete. Although all problems solvable in polynomial-time can be solved

in polynomial-space, it is widely believed that there exist problems solvable

in polynomial-space that cannot be solved in polynomial-time. Also, it is

known that NP⊆PSPACE and the inclusion is widely believed to be proper.

A PSPACE-complete problem can be solved in polynomial-time if P=NP and

NP=PSPACE. In other words, showing that a problem is PSPACE-complete

is strong evidence that the problem is computationally expensive.

One of the first problems proved to be NP-complete is the non-tautology

(NT) problem introduced in [41]. In order to describe this problem formally,

we introduce some notation. Let U = {u1, u2, . . . , uM} be a set of Boolean

variables (i.e., variables that take value in {0, 1}). A truth assignment for U

is a function T : U → {0, 1}. If T (u) = 1 we say that u is true under T . If

u is a variable in U , u and ¬u (negated u) are literals over U . A Boolean

expression is built from a set of Boolean variables U , conjunction (logical

AND) ∧, disjunction (logical OR) ∨, logical negation ¬, and parentheses for

grouping. A phrase p is a conjunction of literals. A Boolean expression E

is considered to be in (L, P )-disjunctive normal form ((L, P )-DNF) if it is a

disjunction of P phrases {p1, . . . , pP} each with at most L literals. E can

also be represented as {p1, . . . , pP}. We assume that for each variable u, at

most one of the literals u or ¬u appears in every phrase.

Definition 6.1.1 (Non-Tautology (NT) Problem). Given a set of variables

U = {u1, . . . , uM} and a Boolean expression E = {p1, . . . , pP} in (L, P )-

DNF, for L, P > 0, does there exist a truth assignment T for U that makes

E false? �

The authors of [41] prove that the NT problem is NP-complete for M > 1
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and P > 2.

6.2 Verification of Initial-State Opacity is

PSPACE-Complete for |Σobs| > 1

In this section we study the complexity class of the verification of the initial-

state opacity (INI) problem. We establish that the INI problem, for |Σobs| >

1, is PSPACE-complete. We achieve this using a reduction from the language

containment for non-deterministic finite automata (LC) problem, which is

known to be PSPACE-complete1 for |Σ| > 1 [42, 43]. We define the INI and

the LC problems formally below.

Definition 6.2.1 (Initial-State Opacity Verification (INI) problem). Given

a non-deterministic finite automaton G = (X, Σ, δ, X0), a natural projection

map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set

of secret states S ⊆ X, is automaton G (S, P,∞) initial-state opaque? �

Definition 6.2.2 (Language Containment (LC) problem). Given two non-

deterministic automata G1 = (X1, Σ, δ1, X1,0) and G2 = (X2, Σ, δ2, X2,0) with

sets of initial states X1,0 and X2,0, is L(G1) ⊆ L(G2)? �

Theorem 6.2.1. The INI problem is PSPACE-complete for |Σobs| > 1. �

Proof. We first prove that the INI problem is in PSPACE for |Σobs| > 1

by introducing a polynomial-time algorithm which reduces every instance

of the INI problem with |Σobs| > 1 to an instance of the LC problem with

|Σ| > 1; since the LC problem is in PSPACE for |Σ| > 1, this proves that

the INI problem is also in PSPACE for |Σobs| > 1. Given a non-deterministic

automaton G = (X, Σ, δ, X0) and a natural projection map P with respect to

the set of observable events Σobs (Σobs ⊆ Σ), the unobservable reach UR(x, α)

of state x of G under event α ∈ Σobs is the set of states reachable from x with a

sequence of events s in which the only observable event is event α that appears

exactly once (no other observable event appears, i.e., P (s) = α). Then, the

non-deterministic automaton Go = (X, Σobs, δo, X0) is constructed from G by

removing all unobservable events and by introducing for each event α ∈ Σobs

transitions associated with label α from each state x to each state in the

1The problem can be solved in polynomial time if |Σ| = 1.
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unobservable reach UR(x, α). Note that computing the unobservable reach

takes O(N3) time [19], where N denotes the number of states of DES G.

Next, we construct two non-deterministic automata G1 = (X, Σobs, δo, X1,0)

and G2 = (X, Σobs, δo, X2,0) which have the same set of states, event set, and

state transition function as Go, but differ in their sets of initial states, which

are taken respectively to be X1,0 = X0 ∩ S and X2,0 = X0 − S. Since in

constructing these two automata, the structure of Go is preserved and only

the set of initial-states is modified through set intersection, this construction

requires O(N) time.

Next, we show that L(G1) ⊆ L(G2) if and only if G is (S, P,∞) initial-state

opaque. Define

L(G, X0 ∩ S) :=
⋃

i∈X0∩S

L(G, i),

and

L(G, X0 − S) :=
⋃

i∈X0−S

L(G, i).

By (3.1), DES G is (S, P,∞) initial-state opaque if and only if

P (L(G, X0 ∩ S)) ⊆ P (L(G, X0 − S)). (6.1)

By construction of Go, we have that L(Go) = P (L(G)) and, since X1,0 =

X0∩S and X2,0 = X0−S, (6.1) is equivalent to L(G1) ⊆ L(G2). This proves

that the INI problem is in PSPACE for |Σobs| > 1.

In order to show that the INI problem is PSPACE-hard for |Σobs| > 1, we

reduce the LC problem with |Σ| > 1 to an instance of the INI problem with

|Σobs| > 1 via a polynomial-time algorithm. Given two non-deterministic

automata G1 = (X1, Σ, δ1, X1,0) and G2 = (X2, Σ, δ2, X2,0), define the non-

deterministic automaton G = (X, Σ, δ, X0) with the set of states X = X1 ∪

X2, set of initial states X0 = X1,0 ∪ X2,0, and state transition function δ :

X × Σ → 2X given by2

δ(x, α) =







δ1(x, α), if x ∈ X1

δ2(x, α), if x ∈ X2.

2Without loss of generality, we assume that X1 ∩ X2 = ∅ (one can always rename the
states to ensure this).
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Note that the time- and state-complexity of constructing G is O(m2 + n2)

where m = |X1| and n = |X2|, i.e., polynomial in the number of states of G1

and G2. We show that L(G1) ⊆ L(G2) if and only if G is (S, P,∞) initial-

state opaque where S ≡ X1,0 and projection mapping P is with respect to the

set of observable events Σobs = Σ. Using (6.1) and assuming that Σobs = Σ,

we have

G is (S, P,∞) initial-state opaque ⇔

L(G, X0 ∩ S) ⊆ L(G, X0 − S) ⇔

L(G, X1,0) ⊆ L(G, X0 − X1,0) (S = X1,0 ⊆ X0) ⇔

L(G, X1,0) ⊆ L(G, X2,0) (X0 = X1,0∪̇X2,0) ⇔

L(G1) ⊆ L(G2).

Since Σ = Σobs, this proves that each instance of the LC problem with

|Σ| > 1 can be reduced to an instance of the INI problem with |Σobs| > 1 via

a polynomial-time algorithm; therefore, the INI problem is PSPACE-hard

for |Σobs| > 1. Since the INI problem is PSPACE-hard and is in PSPACE,

we conclude that the INI problem is PSPACE-complete.

Remark 6.2.1. The authors of [32] study the existence of a unique in-

put/output (UIO) sequence for a state i of a given deterministic finite state

machine which can be modeled as a Mealy machine (see Section 3.5.5). Re-

call that a Mealy machine is a finite state machine that generates an output

based on its current state and input [19]. A UIO sequence for state i is an

input sequence x such that the output sequence generated by the machine in

response to x from initial state i is different from the response to x from any

other initial state. Assuming that the uncertainty about the initial state of

the system is X (i.e., X0 = X) and that the state transition function is deter-

ministic (i.e., from each state and with each input, the next state is unique),

the authors of [32] show that determining whether a given state i has a UIO

sequence is a PSPACE-complete problem.

One can always transform the Mealy machine modeling of [32] (where each

state transition is triggered by an input/output pair) to the automaton mod-

eling of this thesis (where each state transition is triggered by an event) in

polynomial time [19]; therefore, it is possible to extend the definition of UIO

in [32] to our framework as follows: a UIO sequence for state i is a string
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s such that the sequence of observations P (s) generated by DES G from any

state other than i is different than that from i. Using this definition, and

setting S = {i} and X0 = X, it is not hard to see that state i has no UIO

sequence if and only if DES G is initial-state opaque. This demonstrates

that with X0 = X, the verification of initial-state opacity is a PSPACE-hard

problem even if the given DES is deterministic (in the sense that the cardi-

nality of the state transition function for each state/event pair is at most 1).

Note that in this section, we also showed that the verification of initial-state

opacity is a PSPACE-complete problem but under different assumptions (we

made no assumption about the set of initial states X0 but we assumed that

the given DES is non-deterministic). �

6.3 Verification of K-Step Opacity is NP-Hard for

|Σobs| > 1

In order to establish the complexity class of the verification of K-step opacity

problem, we need the language-containment for non-deterministic automata

with finite languages (LC-FIN) and therefore describe it formally. First, we

need to define the language marked by an automaton.

Definition 6.3.1 (Marked Language). Given a non-deterministic finite au-

tomaton G = (X, Σ, δ, X0, Xm) with set of marked states Xm ⊆ X, define the

marked language Lm(G) of G as

Lm(G) = {s ∈ L(G)|∃i ∈ X0{δ(i, s) ∩ Xm 6= ∅}}.

�

Note that in general, Lm(G) is not prefix-closed. Also, we have Lm(G) ⊆

L(G); if Xm = X, then Lm(G) = L(G).

Definition 6.3.2 (LC-FIN Problem). Given two non-deterministic automata

G1 = (X1, Σ, δ1, X1,0, Xm,1) and G2 = (X2, Σ, δ2, X2,0, Xm,2) with finite lan-

guages Lm(G1) and Lm(G2), is Lm(G1) ⊆ Lm(G2)? �

The authors of [44] prove that the LC-FIN problem is NP-complete for

|Σ| > 1.
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Next, we define the LC-FIN-CLOSED problem as a special case of the

LC-FIN problem when Xm = X. When Xm = X, Xm is dropped from the

5-tuple description of G. In order to characterize the complexity class of the

K-step opacity verification (KSTEP) problem, we first prove that the LC-

FIN-CLOSED problem for |Σ| > 1 is NP-complete, and then show that the

LC-FIN-CLOSED problem for |Σ| > 1 can be reduced in polynomial time

to an instance of the KSTEP problem for |Σobs| > 1. This proves that the

KSTEP problem is NP-hard for |Σobs| > 1. Below, we describe the KSTEP

and the LC-FIN-CLOSED problems formally.

Definition 6.3.3 (K-Step Opacity Verification (KSTEP) problem). Given

a non-deterministic finite automaton G = (X, Σ, δ, X0), a natural projection

map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set

of secret states S ⊆ X, is automaton G (S, P, K)-opaque? �

Definition 6.3.4 (LC-FIN-CLOSED Problem). Given two non-deterministic

automata G1 = (X1, Σ, δ1, X1,0) and G2 = (X2, Σ, δ2, X2,0) with finite lan-

guages L(G1) and L(G2), is L(G1) ⊆ L(G2)? �

Theorem 6.3.1. The LC-FIN-CLOSED problem is NP-complete for |Σ| >

1. �

Proof. In order to show that the LC-FIN-CLOSED problem is NP-hard, we

reduce the NT problem (defined in Section 6.1) with M > 1 and P > 2 (where

M is the number of Boolean variables and P is the number of phrases) to

an instance of the LC-FIN-CLOSED problem with |Σ| > 1 via a polynomial-

time algorithm.

Consider the Boolean expression E = {p1, . . . , pP} in (L, P )-DNF (i.e.,

an expression which is the disjunction of P phrases, each with maximum

number of L literals) and assume that E is defined over the set of variables

U = {u1, . . . , uM}. We construct the non-deterministic3 finite automaton

G = (X, Σ, δ, X0) with state set X = (U ∪ {uf}) × {1, . . . , P}, event set

Σ = {0, 1}, set of initial states X0 = {u1} × {1, . . . , P}, and state transition

function δ : X × Σ → X defined for (ui, j) ∈ X, 1 ≤ i ≤ M − 1, 1 ≤ j ≤ P

as follows:

3The non-determinism is due to the fact that the initial state is a set.
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i) for 0 ∈ Σ we have

δ((ui, j), 0) =







(ui+1, j), if (¬ui ∈ pj) ∨ (ui /∈ pj ∧ ¬ui /∈ pj),

undefined, otherwise.

ii) for 1 ∈ Σ we have

δ((ui, j), 1) =







(ui+1, j), if (ui ∈ pj) ∨ (ui /∈ pj ∧ ¬ui /∈ pj),

undefined, otherwise.

The state transition function is defined for (uM , j) ∈ X, 1 ≤ j ≤ P as follows:

i) for 0 ∈ Σ we have

δ((uM , j), 0) =







(uf , j), if (¬uM ∈ pj) ∨ (uM /∈ pj ∧ ¬uM /∈ pj),

undefined, otherwise.

ii) and for 1 ∈ Σ we have

δ((uM , j), 1) =







(uf , j), if (uM ∈ pj) ∨ (uM /∈ pj ∧ ¬uM /∈ pj),

undefined, otherwise.

Since there is no transition defined out of the states (uf , j) (1 ≤ j ≤ P ) and

there are no cycles in the automaton (one can never return to state (ui, j)

from a state (ui′, j) with i′ > i), we can easily see that L(G) is a finite

language of length M . Each string s in L(G) has length M and visits the

sequence of states (u1, j) → (u2, j) → . . . → (uM , j) → (uf , j). We can define

a truth assignment as follows: ui is set to true if the ith event in the string s is

1. Moreover, by construction of G, the set of strings in G that can originate

from the initial state (u1, j) and reach the state in (uf , j) (1 ≤ j ≤ P ) defines

the set of all truth assignments which makes phrase pj true. Expression E is

true if and only if at least one of its phrases is true. Therefore, L(G) captures

all truth assignments that make E true. For E to be a tautology (i.e., for

E to be true under all truth assignments), it is necessary and sufficient that

L(G) contains all possible strings of length M and, since L(G) is assumed to

be prefix-closed, it is necessary and sufficient that L(G) contains all possible
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strings of length at most M ; in other words, E is a tautology if and only if

L(G) = {ǫ}
M
⋃

k=1

Σk,

where M is the number of Boolean variables. Therefore, checking whether E

is a tautology with M = |U | > 1 reduces to an instance of LC-FIN-CLOSED

with Σ = {0, 1} (|Σ| > 1). Also, note that this reduction can be done in time

polynomial in the size of E (i.e., in the total number of literals summed over

all phrases). This proves that the LC-FIN-CLOSED for |Σ| > 1 is NP-hard.

Note that the LC-FIN-CLOSED problem is a special case of the LC-FIN

problem, and since the LC-FIN problem is in NP, the LC-FIN-CLOSED

problem is also in NP. This completes the proof.

Remark 6.3.1. The reduction technique used in the proof of Theorem 6.3.1

is similar to the one used in [44] in proving NP-completeness of the LC-

FIN problem. However, in the construction introduced in [44], the languages

of the obtained automata are not necessarily prefix-closed; more specifically,

the state transition function of the constructed automaton in [44] is total and

only one state in the automaton is marked. In the proof of Theorem 6.3.1, we

extend this construction to guarantee that the constructed languages are all

prefix-closed by marking all states and allowing the state transition function

to be partial. �

In the following example, we illustrate the reduction introduced in the

proof of Theorem 6.3.1.

Example 6.3.1. Consider the Boolean expression E = {(u1∧u2), (¬u2∧u3∧

u4)} which is in (3,2)-DNF (i.e., the number of phrases is P = 2, and the

maximum number of literals in each phrase is L = 3) and is defined over the

set of Boolean variables U = {u1, u2, u3, u4}. Following the algorithm in the

proof of Theorem 6.3.1, we construct the non-deterministic automaton G =

(X, Σ, δ, X0) with X = (U∪{uf})×{1, 2}, Σ = {0, 1}, and X0 = {u1}×{1, 2}

as depicted in Figure 6.1. Since variable u1 is present in the phrase p1, we

have δ((u1, 1), 1) = (u2, 1) and δ((u1, 1), 0) is undefined. Also, since variable

u2 is not present in the phrase p2, we have δ((u1, 2), 0) = δ((u1, 2), 1) =

(u2, 2). Following this approach, one can complete the construction of G.

As can be easily verified, the string 0100 is not in L(G) which implies that
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Figure 6.1: DES G constructed from the (3,2)-DNF Boolean expression
E = {(u1 ∧ u2), (¬u2 ∧ u3 ∧ u4)}.

L(G) 6= {ǫ}∪Σ∪Σ2 ∪Σ3 ∪Σ4; hence E is not a tautology. For example, the

truth assignment u1 = 0, u2 = 1, u3 = 0, and u4 = 0 makes E false. �

Next, we reduce the LC problem to an instance of K-step opacity.

Theorem 6.3.2. Given two non-deterministic automata4 Gi = (Xi, Σ, δi,

Xi,0), i = 1, 2, with finite languages of length K and |Σ| > 1, define the non-

deterministic automaton G = (X, Σ, δ, X0) with the state set X = X1∪X2, set

of initial states X0 = X1,0∪X2,0, and state transition function δ : X×Σ → 2X

given by δ(x, α) = δ1(x, α) if x ∈ X1, and δ(x, α) = δ2(x, α) if x ∈ X2. Then

L(G1) ⊆ L(G2) if and only if G is (S, P, K)-opaque where S ≡ X1,0 and

projection map P is with respect to the set of observable events Σobs = Σ. �

Proof. Note that in an automaton with a finite language, there cannot exist

any cycle. In other words, none of the strings that originate from state i

can visit this state again in the future. Also, since G1 and G2 are both non-

deterministic automata with finite languages of length K, the construction of

G ensures that G is also a non-deterministic automaton with finite language

of length K. This implies that the length of all strings in G that start from

a state i in the set of initial states X0 = X1,0 ∪ X2,0 is at most K and that

these strings cannot visit state i again in the future; since S ≡ X1,0, the set

of strings that pass through S within the past K observations is L(G1) and,

in fact, these strings only pass through S at the system startup. Also note

that none of the strings in L(G2) ever passes through S.

According to Definition 3.2.1, DES G is (S, P, K)-opaque if for every string

t in L(G) that passes through S within the past K observations, there exists

a string s in L(G) with P (s) = P (t) such that when string t passes through S,

string s does not. Since Σobs = Σ, P (s) = P (t) implies s = t. Also, since all

of the strings in L(G) have length at most K, (S, P, K)-opacity of G implies

4Without loss of generality, we assume that X1 ∩ X2 = ∅. One can always rename the
states to achieve this.
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that the set of strings t in L(G) that pass through S is a subset of the set of

strings s in L(G) that do not pass through S. From the previous discussion,

we know that the set of strings in L(G) that pass through S = X1,0 is L(G1)

and the set of strings that do not pass through S is L(G2) (i.e., strings that

start from X2,0). This implies that (S, P, K)-opacity of G is equivalent to

L(G1) ⊆ L(G2). Observing that |Σobs| = |Σ| > 1 completes the proof.

The time complexity of constructing G is N2
1 + N2

2 with N1 = |X1| and

N2 = |X2|, which is polynomial in the number of states of G1 and G2.

Therefore, Theorem 6.3.2 proves that deciding whether the non-deterministic

finite automaton G is K-step opaque is NP-hard for |Σobs| > 1.

6.4 Verification of Infinite-Step Opacity is

PSPACE-Hard for |Σobs| > 1

In order to characterize the complexity class of the infinite-step opacity ver-

ification (INF) problem, we show that each instance of the INI problem

(studied in Section 6.2) can be reduced (via an algorithm which has com-

plexity polynomial in the number of states of automaton G) to an instance

of the INF problem. This proves that the INF problem is an NP-hard prob-

lem for |Σobs| > 1 since the INI problem is a PSPACE-complete problem for

|Σobs| > 1.

If none of the secret states of system G is reachable after startup (i.e., if

none of the strings in the system can pass through the set of secret states

except at startup), then it is not hard to see that infinite-step opacity and

initial-state opacity become equivalent. In the following lemma, we use this

insight to reduce each instance of the INI problem to an instance of the INF

problem. First, we define the INF problem.

Definition 6.4.1 (Infinite-Step Opacity Verification (INF) problem). Given

a non-deterministic finite automaton G = (X, Σ, δ, X0), a natural projection

map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set

of secret states S ⊆ X, is automaton G (S, P,∞)-opaque? �

Definition 6.4.2. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), define the non-deterministic finite automaton Ĝ = (X̂, Σ, δ̂, X0) with
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state set X̂ constructed from X by adding duplicates x′
0 for each x0 ∈ X0

(we denote this by x0
d
≡ x′

0), and state transition function δ̂ : X̂ × Σ → 2X̂

defined for α ∈ Σ and x ∈ X as

δ̂(x, α) = {y|y ∈ δ(x, α) − X0} ∪ {y′|y ∈ δ(x, α) ∩ X0, y
d
≡ y′},

and for α ∈ Σ and x′ ∈ X̂ − X as

δ̂(x′, α) = δ̂(x, α),

where x′ d
≡ x. �

Lemma 6.4.1. Given a non-deterministic finite automaton G = (X, Σ, δ, X0),

a natural projection map P is taken with respect to the set of observable

events Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, construct the

non-deterministic finite automaton Ĝ as in Definition 6.4.2. Then,

(S, P,∞) initial-state opacity for G ⇔ (S ∩ X0, P,∞)-opacity for Ĝ.

�

Proof. The state transition function δ̂ of Ĝ is the same as the state transition

function δ of G except for transitions x → y from a state x ∈ X to a state

y ∈ X0. In Ĝ, these transitions are replaced with x → y′ where state y′

is the duplicate of state y. The state set of Ĝ is extended to include such

duplicates. Note that the transitions defined from (duplicate) state y′ are

the same as those of the (original) state y, which guarantees that none of the

strings in Ĝ that originate from a state y ∈ X0 will ever visit this state (or

any other state in X0) in the future. In other words, if a string s ∈ L(G)

starts from a state x ∈ X0 in G and visits some state y ∈ X0 in its path,

then the same string in Ĝ will visit the duplicated state y′ when state y is

visited in G. Note that Ĝ contains the same strings as G, i.e., L(Ĝ) = L(G).

If system Ĝ is infinite-step opaque with respect to Ŝ and P , this implies that

the membership of system state to the set Ŝ = S ∩X0 cannot be determined

at any time during the observation. However, system Ĝ can only visit states

in X0 (and hence in S∩X0) at startup. This implies that infinite-step opacity

and initial-state opacity with respect to Ŝ and P are equivalent for system

Ĝ. Moreover, systems Ĝ and G have the same set of initial states, closed
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behavior, and set of observable events. Therefore, initial-state opacity of

Ĝ with respect to Ŝ and P is equivalent to initial-state opacity of G with

respect to Ŝ and P . Also, for G, initial-state opacity with respect to Ŝ and

P is equivalent to initial-state opacity with respect to S and P since in the

definition of initial-state opacity, states in S − X0 are not important (recall

that Ŝ = S ∩ X0). Hence, initial-state opacity of Ĝ with respect to Ŝ and

P is equivalent to initial-state opacity of G with respect to S and P . This

completes the proof.

Note that the reduction technique introduced in Lemma 6.4.1 clearly has

(state or time) complexity that is polynomial in the number of states of G.

Corollary 6.4.1. The INF problem is PSPACE-hard for |Σobs| > 1. �
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CHAPTER 7

ENFORCING OPACITY

In this chapter, using the state estimator constructions of Chapter 4, we

consider the problem of designing a (minimally restrictive) supervisor which:

(i) limits the system’s behavior within some pre-specified legal behavior,

and (ii) enforces (either initial-state or infinite-step) opacity requirements by

disabling, at any given time, the least possible number of events.

For enforcing initial-state opacity, we establish that the set of solutions

can be characterized as the intersection of controllable, normal, and opaque

languages. Using this characterization, we then show that the solution to the

problem of enforcing our requirements is a supervisor that enforces the supre-

mal element of such languages. We argue that, under some mild assumptions,

the supremal element exists and derive a formulation for it. Moreover, as-

suming that the given legal behavior is regular, we show that the supremal

element is also regular. Finally, we propose a procedure that uses initial-

state estimators to implement this supremal element, effectively integrating

the verification and control problems.

For enforcing K-step opacity, we briefly discuss that we can follow a similar

approach for the previous case (i.e., for the case of initial-state opacity),

and use a K-delay state estimator (instead of an initial-state estimator) to

construct the supervisor that enforces K-step opacity (instead of initial-state

opacity).

For enforcing infinite-step opacity, we leverage the results on initial-state

opacity and build a finite bank of supervisors that implement minimally

restrictive supervisory strategies.
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7.1 Review of Supervisory Control Theory

7.1.1 Language-Based Approach

In the Ramadge and Wonham framework introduced in [15], it is assumed

that the event set Σ can be partitioned into the sets of controllable events

(Σc) and uncontrollable events (Σuc) so that Σc ∩Σuc = ∅ and Σc ∪Σuc = Σ.

Control is achieved by means of a supervisor which at any given time can

disable one or more controllable events. Formally, given a non-deterministic

finite automaton G = (X, Σ, δ, X0) and a natural projection map P with

respect to the set of observable events Σobs (Σobs ⊆ Σ), a feasible supervisor νo

(subscript o denotes the partial observation) for G is a map νo : P (L(G)) →

{Σ′ ⊆ Σ|Σuc ⊆ Σ′} which defines the set of events Σ
′

that remain enabled

after observing a particular string from the system (note that Σ′ necessarily

includes all uncontrollable events). If we denote the closed-loop system by

νo/G, the minimally restrictive feasible supervisor problem (MS ) is defined

as the design of a feasible supervisor νo such that: (i) L(νo/G) ⊆ E for a

given (prefix-closed) language E that describes desirable behavior (control

objective), and (ii) L(νo/G) is as least restrictive as possible (i.e., for any

other feasible supervisor ν ′
o such that L(ν ′

o/G) ⊆ E, we have L(ν ′
o/G) ⊆

L(νo/G)). If we exclude requirement (ii) (that the supervisor is minimally

restrictive), the following theorem from [19,28] characterizes all solutions to

the supervisory control problem for certain prefix-closed languages. In the

sequel we assume that Σc ⊆ Σobs.

Theorem 7.1.1 ([28]). Given a non-deterministic finite automaton G =

(X, Σ, δ, X0), a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), a set of controllable events Σc (Σc ⊆ Σobs), a set of

uncontrollable events Σuc = Σ − Σc, and a prefix-closed language K ⊆ L(G)

with K 6= ∅, there exists a feasible supervisor νo for G such that L(νo/G) = K

if and only if: (i) K is (L(G), Σuc)–controllable [19,28] (i.e., KΣuc∩L(G) ⊆

K), and (ii) K is (L(G), P )–normal [19,28] (i.e., K = L(G)∩P−1(P (K))).

�

The following lemma from [45] characterizes a class of normal languages

which is used in Chapter 7.

Lemma 7.1.1. ([45]) Given a non-deterministic finite automaton G = (X, Σ,
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δ, X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of controllable events Σc (Σc ⊆ Σ), a set of uncon-

trollable events Σuc = Σ − Σc, for any prefix-closed language M ⊆ P (L(G)),

the language K = P−1(M) ∩ L(G) is normal with respect to (L(G), P ). �

For any E ⊆ L(G), we define N (E) (C(E)) to be the set of all prefix-

closed sublanguages of E that are normal (controllable). The set CN (E) ≡

C(E)∩N (E) is closed under union and, hence, there exists a unique supremal

element supCN (E) under the partial order of set inclusion for this set [19,

28]. We denote supCN (E) by E↑CN . Using this, we can formulate the

solution ν↑CN
o to MS, when limited to normal sublanguages of E, as E↑CN .

The following lemma (taken from [45]) characterizes this solution.1 In the

sequel, the superscript E↑Co (E↑N ) denotes the supremal prefix-closed and

(P (L(G)), Σuc)–controllable ((L(G), P )–normal) sublanguage of E.

Lemma 7.1.2 ([45]). Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), a set of controllable events Σc, a set of uncontrollable

events Σuc = Σ − Σc, and a prefix-closed language E ⊆ L(G), we have

E↑CN = L(G) ∩ P−1((P (E↑N))↑Co). �

7.1.2 State-Based Approach

Another approach for defining supervisory control problems is the state-based

approach where, instead of specifying the legal behavior as a prefix-closed

language E, a set of forbidden states is provided via some predicate R :

X → {0, 1} with R(x) = 0 capturing the fact that x ∈ X is a forbidden

state. This set of forbidden states needs to be avoided via a state-feedback

supervisor νs : X → {Σ′ ⊆ Σ|Σuc ⊆ Σ′} ([19,28]). Given the state the system

is in, the supervisor determines which controllable events to disable. It can

be shown that there exists a state-feedback supervisor such that all states

x for which R(x) = 1 can be visited under supervision, if and only if R is

controllable [19, 28], i.e., if and only if it satisfies the following: (i) if state

m satisfies R then m is reachable from the initial state of G via a string of

states satisfying R, and (ii) at any of the visited states, uncontrollable events

1Note that if CN (E) = ∅ then there is no solution to MS.
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take the system to states which again satisfy R. If R is not controllable,

we can seek a controllable predicate that best approximates R from below.

Specifically, we say that predicate R1 refines R2 if for all x ∈ X, R1(x) = 1

implies R2(x) = 1. Now define CR(R) to be the set of all predicates that are

controllable and refine R. Then, CR(R) is closed under union and, hence, has

a supremal element supCR(R) (denoted by R↑CR). Let ν↑CR
s be the state-

feedback supervisor that synthesizes2 the predicate supCR(R); also denote

by R/G the accessible part of automaton G when all the states that do not

satisfy R are removed. Then, for any predicate R, we have L(ν↑CR
s /G) =

L↑C(R/G) [19, 28]. In other words, to find the state-feedback supervisor to

synthesize the predicate supCR(R), one can first remove all states that do

not satisfy R and then find the supremal controllable sublanguage of the

closed-behavior of the remaining state transition diagram.

7.2 Minimally Restrictive Opacity-Enforcing Feasible

Supervisor Problem (MOES)

Opacity is defined to be a property of the states of the given finite automaton;

however, the application of supervisory control to the system modifies the

original structure of the automaton and hence its states. The remedy to this

problem is to find a way to map states of the supervised system to states of

the original system and, hence, re-define the set of secret states for the system

under supervision to include all those states that are mapped to secret states

in the original system.

Definition 7.2.1 (Opacity for Supervised System). Given a non-deterministic

finite automaton G = (X, Σ, δ, X0), a natural projection map P with re-

spect to the set of observable events Σobs (Σobs ⊆ Σ), and a set of se-

cret states S ⊆ X, we say that the non-deterministic automaton G′ =

(X ′, Σ′, δ′, X ′
0) is (S, P,∞) initial-state opaque ((S, P,∞)-opaque) with re-

spect to G if Gp = G′ × G ≡ (Xp, Σp, δp, X0p) is (Sp, P,∞) initial-state

opaque ((Sp, P,∞)-opaque), where X0p = {(x′
o, xo)|x′

o ∈ X ′
o, xo ∈ Xo} and

Sp = {(x′, x) ∈ Xp|x ∈ S}. �

Using Definition 7.2.1, initial-state (infinite-step) opacity is enforced under

2Note that if CR(R) = ∅ then the problem has no solution.
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supervision if νo/G (the supervised system) is (S, P,∞) initial-state opaque

((S, P,∞)-opaque) with respect to G. Note that this definition requires νo/G

to be regular. A feasible supervisor that achieves this property is called an

opacity-enforcing feasible supervisor for the system and is denoted by νop.

Definition 7.2.2 (MOES). Given a non-deterministic finite automaton G =

(X, Σ, δ, X0), a natural projection map P with respect to the set of observable

events Σobs (Σobs ⊆ Σ), a set of secret states S ⊆ X, a prefix-closed and regu-

lar language E ⊆ L(G), and a set of controllable events Σc (Σc ⊆ Σobs), find

an opacity-enforcing feasible supervisor νop for G such that (i) L(νop/G) ⊆ E,

and (ii) L(νop/G) is as large as possible. �

The MOES problem that requires enforcing initial-state opacity is denoted

with MOES0 and the MOES problem that requires enforcing infinite-step

opacity is denoted with MOES∞. Following this convention, we denote the

initial-state (infinite-step) opacity-enforcing supervisor by ν0
op (ν∞

op ).

7.3 Solution to MOES0

7.3.1 Characterizing the Solution to MOES0

The solutions to MOES0 can be characterized using machinery that already

exists in the literature on supervisory control (e.g., [15,19]). We first recall a

language-based formulation of the state-based notion of initial-state opacity.

Definition 7.3.1 (Language-Based Definition of Initial-State Opacity). Given

a non-deterministic finite automaton G = (X, Σ, δ, X0), a natural projection

map P with respect to the set of observable events Σobs (Σobs ⊆ Σ), and a set

of secret states S ⊆ X, language K ⊆ L(G) is (S, P,∞) initial-state opaque

with respect to G if

∀i ∈ X0 ∩ S, ∀t ∈ L(G, i) ∩ K̄, ∃j ∈ X0 − S, ∃s ∈ L(G, j) ∩ K̄{P (s) = P (t)}.

�

The following lemma relates Definition 7.3.1 to Definition 7.2.1 for a regular

language K.
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Lemma 7.3.1. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), a set of secret states S ⊆ X, a prefix-closed and regular lan-

guage K ⊆ L(G) and the non-deterministic finite automaton GK = (XK , ΣK ,

δK , X0K) such that L(GK) = K, K is (S, P,∞) initial-state opaque with re-

spect to G if and only if GK is (S, P,∞) initial-state opaque with respect to

G. �

Proof. Observe that t ∈ K is equivalent to the fact that there exists a state

iK ∈ X0K such that t ∈ L(GK , iK). Hence, the statement that

∀i ∈ X0 ∩ S, ∀t ∈ L(G, i) ∩ K, ∃j ∈ X0 − S, ∃s ∈ L(G, j) ∩ K̄{P (s) = P (t)},

(7.1)

is equivalent to saying that for all iK ∈ X0K and i ∈ S ∩ X0, if L(GK , iK) ∩

L(G, i) 6= ∅ then

∀t ∈ L(GK , iK) ∩ L(G, i), ∃j ∈ X0 − S, ∃jK ∈ X0K , ∃s ∈ L(G, j) ∩ L(GK , jK)

{P (s) = P (t)}.

(7.2)

Define Gp = (Xp, Σp, δp, X0p) as Gp = GK ×G. Then, L(GK , iK)∩L(G, i) 6=

∅ is equivalent to the existence of some t such that δp((iK , i), t) exists for

(iK , i) ∈ X0p. In the sequel, we use ip to denote (iK , i). Note that since

i ∈ S ∩ X0, we have ip ∈ Sp ∩ X0p. Hence, L(GK , iK) ∩ L(G, i) 6= ∅ is

equivalent to ∃ip ∈ Sp∩X0p such that δp(ip, t) exists. Similarly, the statement

∃s ∈ L(G, j)∩L(GK , jK) is equivalent to ∃jp ≡ (jK , j) ∈ X0p −Sp such that

δp(jp, s) exists. Hence, (7.2) is equivalent to saying that for all ip ∈ Sp ∩X0p

and for all t ∈ L(Gp, ip) there exist jp ∈ X0p−Sp and s ∈ L(Gp, jp) such that

P (s) = P (t). We conclude that (7.1) is equivalent to Gp being (Sp, P,∞)

initial-state opaque. Based on Definition 7.2.1, this is equivalent to GK

being (S, P,∞) initial-state opaque with respect to G, which concludes the

proof.

Using the notion of initial-state opacity for languages, we now characterize

all opacity-enforcing feasible supervisors and derive the solution to MOES0.

Theorem 7.3.1. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events
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Σobs (Σobs ⊆ Σ), a set of secret states S ⊆ X, a set of controllable events Σc

(Σc ⊆ Σobs), and a set of uncontrollable events Σuc = Σ − Σc, there exists

an opacity-enforcing feasible supervisor ν0
op for G such that L(ν0

op/G) = K, if

and only if: (i) K is (L(G), Σuc)–controllable; (ii) K is (L(G), P )–normal;

(iii) K is (S, P,∞) initial-state opaque with respect to G. �

Proof. Follows from Theorem 7.1.1 and Lemma 7.3.1.

For any E ⊆ L(G), define P0(E) to be the set of prefix-closed sublan-

guages of E that are initial-state opaque. Then, using Theorem 7.3.1, for

any supervisor ν0
op that enforces initial-state opacity we have L(ν0

op/G) ∈

CNP0(E) :=C(E)∩N (E)∩P0(E). MOES0 requires the minimally restric-

tive opacity-enforcing feasible supervisor, and since MOES0 assumes that

Σc ⊆ Σobs, Theorem 7.3.1 can be used to characterize the solution to MOES0

as the supervisor ν↑CNP 0

op such that L(ν↑CNP 0

op /G) = supCNP0(E) ≡ E↑CNP 0
.

In the next section, we prove that such supremal element exists and provide

a formulation for it.

7.3.2 Properties of Initial-State Opaque Languages

In this section, through various lemmas, we characterize the language E↑CNP 0

and, hence, obtain the solution to MOES0.

Lemma 7.3.2. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, for any language E ⊆

L(G), we have

P0(E) = {K ⊆ E|K = K, K ⊆ L(G) ∩ P−1(P (K ∩ L(G, X0 − S)))}.

�

Proof. Define V ≡ K ∩ L(G, X0 − S) and W ≡ K ∩ L(G, X0 ∩ S). Recall

that

P0(E) = {K ⊆ E|K = K, ∀t ∈ K, ∀i ∈ X0 ∩ S{t ∈ L(G, i) ⇒

{∃s ∈ K, ∃j ∈ X0 − S{s ∈ L(G, j), P (s) = P (t)}}}}
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which implies that

P0(E) = {K ⊆ E|K = K, ∀t ∈ Σ∗{t ∈ W ⇒

{∃s ∈ Σ∗{s ∈ V, P (s) = P (t)}}}}.

Therefore K ∈ P0(E) implies that P (W ) ⊆ P (V ). Moreover, we have

K = V ∪ W , which implies that P (K) = P (V ) ∪ P (W ) and, since P (W ) ⊆

P (V ), that P (K) = P (V ), or equivalently, K ⊆ P−1(P (V )). Moreover,

K ⊆ E ⊆ L(G), and hence K ⊆ (L(G) ∩ P−1(P (V ))). Putting all of these

together, we have

P0(E) = {K ⊆ E|K = K, K ⊆ (L(G) ∩ P−1(P (V )))}

which concludes the proof.

The next lemma states that the set of initial-state opaque and prefix-closed

sublanguages of E has a supremal element.

Lemma 7.3.3. P0(E) is nonempty and closed under arbitrary unions; in

particular, the supremal element supP0(E) exists in P0(E).

Proof. We have ∅ ∈ P0(E) and hence P0(E) is non-empty. Now let Kλ ∈

P0(E) for λ ∈ Λ, some index set. We show that K :=
⋃

Kλ ∈ P0(E). This

is straightforward since for all λ ∈ Λ:

Kλ ∈ P0(E) ⇒ Kλ ⊆ (L(G) ∩ P−1(P (Kλ ∩ L(G, X0 − S))));

hence,

K ⊆
⋃

(L(G) ∩ P−1(P (Kλ ∩ L(G, X0 − S))))

= (L(G) ∩
⋃

P−1(P (Kλ ∩ L(G, X0 − S))))

= (L(G) ∩ P−1(P (
⋃

Kλ ∩ L(G, X0 − S))))

= (L(G) ∩ P−1(P (K ∩ L(G, X0 − S)))),

which implies that K ∈ P0(E). Therefore, P0(E) is closed under arbitrary

unions and hence the supremal element exists.

106



Assuming that E is prefix-closed, the following theorem derives a formu-

lation for the supremal element E↑P 0
of P0(E).

Theorem 7.3.2. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, for any prefix-closed

language E ⊆ L(G), we have E↑P 0
= E ∩ P−1(P (E ∩ L(G, X0 − S))). �

Proof. To prove the theorem, we show that: (a) every K ∈ P0(E) is a subset

of H ≡ E ∩ P−1(P (E ∩ L(G, X0 − S))), and (b) H ∈ P0(E). From Lemma

7.3.2, K ∈ P0(E) implies that K ⊆ L(G) ∩ P−1(P (K ∩ L(G, X0 − S))).

Since K ⊆ E, we have K ⊆ L(G) ∩ P−1(P (E ∩ L(G, X0 − S))). Finally,

K ⊆ E ⊆ L(G) implies that K ⊆ H. To show H ∈ P0(E) we need to

show that: (i) H is initial-state opaque, and (ii) H is prefix-closed. For

(i), note that H contains all strings s in E for which there exists a string

t in E that has the same projection (as s) and starts from a non-secret

state. Hence, based on the definition of initial-state opacity, H is initial-state

opaque. Moreover, L(G, X0−S) is prefix-closed by construction; this implies

that P−1(P (L(G, X0 − S))) is also prefix-closed since projection and inverse

projection preserve prefix closure [19, 28]. Furthermore, the intersection of

two prefix-closed languages is prefix-closed [19, 28], thus H is prefix-closed.

This completes the proof that H = E↑P 0
.

Corollary 7.3.1. Given a non-deterministic finite automaton G = (X, Σ,

δ, X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, normality is preserved

under ↑P 0
operator for a prefix-closed and normal language E ⊆ L(G). �

Proof. Define M ≡ P (E ∩L(G, X0 −S)). Note that M is prefix-closed since

prefix-closure is preserved under projection and inverse projection [19, 28].

Using Theorem 7.3.2, E↑P 0
can also be written (since E ⊆ L(G)) as E↑P 0

=

E ∩ P−1(M) ∩ L(G). It follows from Lemma 7.1.1 that P−1(M) ∩ L(G) is

normal. If E is normal, then E↑P 0
is normal since normality is preserved

under intersection for prefix-closed languages [19, 28].

In the next lemma we prove that for any prefix-closed and normal language

E and for any M = M ⊆ P (E ∩ L(G, X0 − S)), K ≡ L(G) ∩ P−1(M) is a

sublanguage of E that is both normal and initial-state opaque.

107



Lemma 7.3.4. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), and a set of secret states S ⊆ X, for any prefix-closed

and normal language E ⊆ L(G) and any prefix-closed language M ⊆ P (E ∩

L(G, X0 − S)), we have K ≡ P−1(M) ∩ L(G) ∈ NP0(E). �

Proof. Define U ≡ E ∩ L(G, X0 − S) and V ≡ K ∩ L(G, X0 − S). To prove

that K ∈ NP0(E) we need to show that: (i) K ⊆ E, (ii) K is normal,

and (iii) K is initial-state opaque. For (i), it follows from the definition of

M that K ≡ P−1(M) ∩ L(G) ⊆ P−1(P (E)) ∩ L(G). Since E is normal,

we have P−1(P (E)) ∩ L(G) = E and hence K ⊆ E. Condition (ii) is true

by Lemma 7.1.1. For (iii), we again use the definition of M to infer that

K ⊆ P−1(P (U)) ∩ L(G); hence s ∈ K implies that s ∈ P−1(P (U)) which in

turn implies that there exists t ∈ U such that P (s) = P (t). Now t ∈ U implies

that t ∈ L(G) and, hence, by normality of K (and since P (s) = P (t)) we have

t ∈ K; moreover, t ∈ L(G, X0 − S) and, hence, t ∈ V . Thus, for all s ∈ K

there exists t ∈ V such that P (s) = P (t), i.e., P (K) ⊆ P (V ) which implies

that K ⊆ P−1(P (V )) and since K ⊆ L(G), that K ⊆ P−1(P (V )) ∩ L(G).

By Lemma 7.3.2, K ∈ P0 which concludes the proof.

We complete the analysis on the properties of initial-state opaque lan-

guages by considering the controllability condition.

Lemma 7.3.5. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), a set of secret states S ⊆ X, a set of controllable events Σc

(Σc ⊆ Σobs), and a set of uncontrollable events Σuc = Σ − Σc, initial-state

opacity is preserved under ↑CN operator for any prefix-closed and normal

language E ⊆ L(G). �

Proof. We show that K ∈ NP0(E) implies K↑CN ∈ P0. Since K is prefix-

closed, from Lemma 7.1.2 we have K↑CN = L(G) ∩ P−1((P
(

K↑N))↑Co).

Moreover, K ∈ N (E) implies that K↑N = K and, hence, K↑CN = L(G) ∩

P−1((P (K))↑Co). Define M ≡ (P (K))↑Co such that K↑CN = L(G)∩P−1(M).

Note that K ∈ P0 which by Lemma 7.3.2 implies that K ⊆ L(G)∩P−1(P (K∩

L(G, X0 − S))) or, equivalently, P (K) = P (K ∩ L(G, X0 − S)) (refer to the

proof of Lemma 7.3.2). Therefore, M = (P (K))↑Co ⊆ P (K) = P (K ∩

L(G, X0 − S)); by Lemma 7.3.4, K↑CN = L(G) ∩ P−1(M) ∈ NP0(K) which
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implies that K↑CN ∈ NP0(E) since K ⊆ E. This in turn implies that

K↑CN ∈ P0 which completes the proof.

The following theorem derives a formulation for E↑CNP 0
.

Theorem 7.3.3. Given a non-deterministic finite automaton G = (X, Σ, δ,

X0), a natural projection map P with respect to the set of observable events

Σobs (Σobs ⊆ Σ), a set of secret states S ⊆ X, a set of controllable events Σc

(Σc ⊆ Σobs), and a set of uncontrollable events Σuc = Σ−Σc, a prefix-closed

language E ⊆ L(G), we have

E↑CNP 0

= L(G) ∩ P−1((P ((E↑N)↑P
0

))↑Co).

�

Proof. By Lemma 7.3.5, initial-state opacity is preserved under ↑CN operator

for normal languages; hence E↑CNP 0
= (E↑NP 0

)↑CN . Also, by Corollary

7.3.1, normality is preserved under the ↑P 0
operator for normal languages;

therefore, E↑NP 0
= (E↑N )↑P

0
. Putting these two facts together, we have

E↑CNP 0
= ((E↑N)↑P

0
)↑CN . Using Lemma 7.1.2, the proof is complete.

7.3.3 Implementing the Solution to MOES0 using the

Initial-State Estimator

MOES0 requires the minimally restrictive opacity-enforcing feasible super-

visor νop that can enforce the legal behavior described via the prefix-closed

language E. Theorem 7.3.1 states that the solution to MOES0 boils down

to E↑CNP 0
and Theorem 7.3.3 (assuming that E is normal) characterizes

this solution as E↑CNP 0
= L(G) ∩ P−1((P (E↑P 0

))↑Co). Observe that Theo-

rem 7.3.2 characterizes E↑P 0
= E ∩P−1(P (E∩L(G, X0 −S))) which implies

that E↑P 0
can be implemented using projection and intersection operations

on languages. Also [45] provides a formulation for the supremal controllable

sublanguage E↑C (assuming that E is prefix-closed) using concatenation, in-

tersection and complementation operations on languages. For regular lan-

guages, all these operations can be implemented using operations on finite

automata [27]. Since in MOES0 E is assumed to be regular, E↑CNP 0
can

be obtained (and, hence, the solution to MOES0 can be implemented) via

109



operations on the automata describing E and G, which implies that E↑CNP 0

is regular. We now point out that the ISE construction can be used for veri-

fying initial-state opacity and propose an algorithm that efficiently integrates

the verification and control problems. In the sequel we assume, without loss

of generality, that E is normal (if this assumption is not satisfied, we can

always first compute E↑N using the results in [45]).

Algorithm A: Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0), with a set of observable events Σobs (Σobs ⊆ Σ), a set of control-

lable events Σc (Σc ⊆ Σobs), a set of secret states S ⊆ X, and a prefix-

closed, normal and regular language E ⊆ L(G), E 6= ∅, describing the

legal behavior. We can obtain a minimally restrictive supervisor ν↑CR
s for

G that enforces initial-state opacity with respect to the natural projec-

tion map P : Σ → Σobs via the following steps: (i) Construct automa-

ton GE = (XE , Σ, δE, X0E) such that L(GE) = E. (ii) Construct Gp =

GE × G = (Xp, Σ, δp, X0p); define Sp ≡ {(xe, x) ∈ Xp|x ∈ S}. (iii) Construct

the ISE G
(p)
∞,obs = (X

(p)
∞,obs, Σobs, δ

(p)
∞,obs, X

(p)
∞,0) corresponding to Gp. (iv) Con-

struct the state-feedback supervisor ν↑CR
s for G

(p)
∞,obs that avoids all states

in G
(p)
∞,obs for which the set of starting states of the associated state map-

ping (is nonempty and) contains no state outside Sp; for this, first define the

predicate R : X
(p)
∞,obs → {0, 1} as R(m) = 0, if m(1) ⊆ Sp and m 6= ∅, and

R(m) = 1, otherwise. Then construct the accessible part R/G
(p)
∞,obs of the ISE

G
(p)
∞,obs when all the states that do not satisfy R are removed, and find the

supremal controllable sublanguage of the closed-behavior of the remaining

state transition diagram. �

Theorem 7.3.4. Given a prefix-closed, normal and regular language E ⊆

L(G), E 6= ∅, the control action of the solution ν↑CNP 0

op to MOES0 after

observing ω is the same as the control action of the state-feedback supervisor

ν↑CR
s (as synthesized by Algorithm A) at the state reached in G

(p)
∞,obs via ω.�

Proof. We first show that steps (i)-(iv) implement P (E↑P 0
). In [5], we showed

that in the ISE G∞,obs for G, P (L(G, X0 −S)) is characterized via the set of

strings in G∞,obs that start from its initial state and reach a state in G∞,obs

for which the associated state mapping contains in its set of starting states

at least one state outside the set of secret states S. Using this result, we

can argue that P (E ∩ L(G, X0 − S)) is characterized via the set of strings

in G
(p)
∞,obs (as constructed in Algorithm A) that start from initial state X

(p)
0,obs
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and reach a state in G
(p)
∞,obs for which the associated state mapping contains

at least one state outside Sp in its set of starting states. Theorem 7.3.2 states

that E↑P 0
= E ∩ P−1(P (E ∩ L(G, X0 − S))) which implies that P (E↑P 0

) =

P (E∩P−1(P (E∩L(G, X0−S)))) and thus P (E↑P 0
) = P (E)∩P (P−1(P (E∩

L(G, X0 − S)))), since both E and P−1(P (E ∩ L(G, X0 − S))) are prefix

closed; in turn, this implies that P (E↑P 0
) = P (E ∩ L(G, X0 − S)), which

means that one can implement P (E↑P 0
) by removing in the ISE the states

that do not satisfy R, i.e., L(R/G
(p)
∞,obs) = P (E↑P 0

). Removing states and the

associated labels from ISE G∞,obs (i.e., evaluating R/G
(p)
∞,obs) might violate

the controllability condition, hence step (v) of the algorithm implements

(P (E↑P 0
))↑Co ; therefore, the state-feedback supervisor ν↑CR

s synthesizes the

predicate supCR(R). We have L(ν↑CR
s /G) = L↑C(R/G) [19, 28] and, hence,

L(ν↑CR
s /G

(p)
∞,obs) = (L(R/G

(p)
∞,obs))

↑Co = (P (E↑P 0
))↑Co .

Finally, to prove the theorem we need to show that

νop(ω) ≡ ν↑CR
s (δ

(p)
∞,obs(X

(p)
∞,0, ω))

is the solution to MOES0 where δ
(p)
∞,obs(X

(p)
∞,0, ω) denotes the state in G

(p)
∞,obs

reached via ω from initial state X
(p)
∞,0. For this, we can equivalently prove

that the transition structure of the automaton G̃ ≡ ν↑CR
s /G

(p)
∞,obs can be used

to implement the solution to MOES0 as follows: a string s can be executed

in the closed loop system νop/G if its projection P (s) = ω belongs to L(G̃).

For this, we show that: (i) G̃ is an opacity-enforcing feasible supervisor,

and (ii) L(G̃/G) = E↑CNP 0
. Note that automaton G̃ is a feasible supervisor

for G since L(G̃) is (P (L(G)), Σuc)–controllable [19, 28]. Moreover, L(G̃) is

initial-state opaque by construction. Hence, G̃ is an opacity-enforcing feasible

supervisor. To show (ii), note that the supervisor G̃ observes the behavior

through the projection map P ; therefore, the behavior of G̃ can be described

via L(G̃/G) = L(G) ∩ P−1(L(G̃)). Moreover, L(G) ∩ P−1(L(G̃)) = L(G) ∩

P−1((P (E↑P 0
))↑Co) = E↑CNP 0

which results in L(G̃/G) = E↑CNP 0
.

Example 7.3.1. Consider the DES G in Figure 4.1-a. Assume that Σc =

{β}. Also suppose that E = L(G) meaning that the only requirement for

the supervisor is to enforce initial-state opacity. This implies that steps (i)-

(iii) of Algorithm A can be replaced by the construction of the ISE for G.

Figure 4.1-b depicts this ISE for G and denotes it by G∞,obs. This system

is not ({1, 3}, P,∞) initial-state opaque due to the existence of ISE state
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Figure 7.1: (a) R/G∞,obs; (b) G̃ ≡ ν↑CR
s /G∞,obs as well as the minimally

restrictive opacity-enforcing supervisor ν↑CNP 0

op for G in Figure 4.1-a.

m5 = {(1, 4), (3, 4)} whose set of starting states (m5(1) = {1, 3}) is strictly

within S. In other words, observing βα(α)∗ determines the system initial

state to be within the set {1, 3}.

To obtain the minimally restrictive supervisor that enforces ({1, 3}, P,∞)

initial-state opacity, following step (iv) of Algorithm A, we first remove from

G∞,obs the states that violate initial-state opacity, in this case, m5; Figure

7.1-a depicts the accessible part of the remaining automaton R/G∞,obs. Next,

following step (v) of Algorithm A, we check for the controllability condition.

At state m2, α is disabled which is an uncontrollable event. Hence, access to

state m2 should be rejected earlier, which is accomplished by disabling β at

state m0. Figure 7.1-b depicts the automaton associated with the supremal

controllable sublanguage of the automaton in Figure 7.1-a. Based on this,

the supervisor does not allow observing β as the first observation. Indeed,

observing βα determines the system initial state to be within the set {1, 3},

which consists exclusively of secret states (and, hence, violates initial-state

opacity). �

7.4 Solution to MOES∞

Verifying infinite-step opacity using Theorem 5.3.3 consists of two phases:

(i) The first phase constructs a standard current-state estimator and, as

part of verifying infinite-step opacity, we need to ensure that none of these
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current-state estimates lies entirely within the set of secret states, i.e., the

system is current-state opaque (or 0-step opaque). If current-state opacity

is violated, we can follow an approach similar to the one in Section 7.3, to

obtain a current-state estimator (instead of an initial-state estimator) and

then construct a state-feedback supervisor that enforces current-state opacity

(instead of initial-state opacity). Without loss of generality, we assume that

the system under consideration is current-state opaque (otherwise, one can

always design an optimal supervisor that enforces current-state opacity and

then consider the controlled system under this supervisor as the new system

to be controlled).

(ii) The second phase constructs, for each current-state estimate Z ⊆ X

provided in the first phase, an ISE whose initial state is associated with the

state mapping ⊙(Z). We argued that if any of these ISEs contains a state

with associated (non-empty) state mapping m such that the set of starting

states m(1) contains elements only in S (i.e., m(1) ⊆ S and m(1) 6= ∅),

then DES G is not infinite-step opaque. Therefore, one can enforce infinite-

step opacity by prohibiting sequences of observations which reach such ISE

states in one of the associated ISEs. This requirement can be equivalently

described as a MOES0 problem where the intruder knows that the initial

state of the system is Z. We denote this special case of the MOES0 problem

as MOES0
Z where subscript Z ⊆ X represents the initial uncertainty about

the initial state is Z (as opposed to MOES0 where this uncertainty is taken

to be X0). Given any discrete event system G with N states, assume that

the current-state estimator has M := |X0,obs| ≤ 2N states, which we denote

by X0,obs = {Z0, . . . , ZM−1}, Zq ⊆ X, 0 ≤ q ≤ M − 1. We therefore obtain

supervisors that solve MOES0
Zq

, 0 ≤ q ≤ M − 1, as ν↑CNP 0

op,q . Recall that

for any solution ν↑CNP 0

op to MOES0, we have an equivalent state-feedback

supervisor ν↑CR
s . Thus, for any solution ν↑CNP 0

op,q to MOES0
Zq

, the equivalent

state-feedback supervisor is denoted by ν↑CR
s,q . The following algorithm for-

malizes the construction of ν↑CR
s,q , 0 ≤ q ≤ M − 1.

Algorithm B Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0), with a set of observable events Σobs (Σobs ⊆ Σ), a set of control-

lable events Σc (Σc ⊆ Σobs), a set of secret states S ⊆ X, and a prefix-

closed, normal and regular language E ⊆ L(G), E 6= ∅, describing the le-

gal behavior. Assume (without loss of generality) that G is current-state

opaque. We can obtain a bank of state-feedback supervisors ν↑CR
s,q for G
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that enforce initial-state opacity with respect to the natural projection map

P : Σ → Σobs via the following steps: (i) Construct automaton GE =

(XE, Σ, δE , X0E) such that L(GE) = E. (ii) Construct Gp = GE × G =

(Xp, Σ, δp, X0p) and define Sp ≡ {(xe, x) ∈ Xp|x ∈ S}. (iii) Construct

the current-state estimator G
(p)
0,obs = (X

(p)
obs, Σobs, δ

(p)
obs, X0p) corresponding to

Gp. (iv) For each set of current-state estimates Zq associated with a state

of the current-state estimator G
(p)
0,obs, construct the initial-state estimator

G
(p,q)
∞,obs = (X

(p,q)
∞,obs, Σobs, δ

(p,q)
∞,obs, X

(p,q)
∞,0 ) by setting its initial state X

(p,q)
∞,0 to be

⊙(Zq). (v) For each ISE G
(p,q)
∞,obs, 0 ≤ q ≤ M−1, where M denotes the number

of states of the current-state estimator G
(p)
0,obs, construct the state-feedback

supervisor ν↑CR
s,q for G

(p,q)
∞,obs that avoids all states in G

(p,q)
∞,obs for which the set

of starting states of the associated state mapping contains no state outside

Sp; for this, first define the predicate R : X
(p,q)
∞,obs → {0, 1} as R(m) = 0,

if m(1) ⊆ Sp and m 6= ∅, and R(m) = 1, otherwise. Then construct the

accessible part R/G
(p,q)
∞,obs of the ISE G

(p,q)
∞,obs when all the states that do not

satisfy R are removed, and find the supremal controllable sublanguage of the

closed behavior of the remaining state transition diagram. �

Following the approach in Theorem 7.3.4, it can be shown that the control

action of the solution ν↑CNP 0

op,q to MOES0
Zq

after observing ω and assuming

that the initial uncertainty is Zq is the same as the control action of the

state-feedback supervisor ν↑CR
s,q (as synthesized by Algorithm B) at the state

reached in G
(p,q)
∞,obs via ω. In the sequel, we define the state of the supervisor

ν↑CR
s,q as the current state of the automaton ν↑CR

s,q /G
(p,q)
∞,obs.

We use the bank of state-feedback supervisors ν↑CR
s,q , 0 ≤ q ≤ M − 1, asso-

ciated with each state of the current-state estimator, to enforce infinite-step

opacity as follows. Following a sequence of observations ω, we enable the

state-feedback supervisor ν↑CR
s,q associated with the state Zq of the current-

state estimator (Zq is reachable via ω). Once the state-feedback supervisor

ν↑CR
s,q is enabled, it will stay enabled for the remainder of the operation of the

system. Note that a state-feedback supervisor ν↑CR
s,q starts operating from

its (unique) initial state and its current state is updated according to new

observations. This guarantees that the membership of the system’s state to

the set of secret states (at the point where the sequence of observations ω

is made) will be kept opaque for all possible subsequent observations. Since

the control action of the state-feedback supervisor ν↑CR
s,q is merely determined

by its state, we simply need to track its current state based on the observed
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events. Upon observing a new label α, we need to first update the current

state of all enabled state-feedback supervisors, and also enable a new su-

pervisor to ensure that the membership of the system’s state to the set of

secret states (at the point where the sequence of observations ωα is made)

will be kept opaque for all possible future observations. As a result, after

observing the sequence of observations ω, |ω| state-feedback supervisors are

enabled and the overall control action is defined to be the intersection of the

individual control actions of these |ω| supervisors.

Theorem 7.4.1. Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0), with a set of observable events Σobs (Σobs ⊆ Σ), a set of controllable

events Σc (Σc ⊆ Σobs), a set of secret states S ⊆ X, and a prefix-closed,

normal and regular language E ⊆ L(G), E 6= ∅, describing the legal be-

havior. Assume that the system is current-state opaque and construct the

current-state estimator G
(p)
0,obs = (X

(p)
obs, Σobs, δ

(p)
obs, X0p) and the bank of state-

feedback supervisors ν↑CR
s,q associated with the bank of initial-state estima-

tors G
(p,q)
∞,obs = (X

(p,q)
∞,obs, Σobs, δ

(p,q)
∞,obs, X

(p,q)
∞,0 ), 0 ≤ q ≤ M − 1, where M de-

notes the number of states of the current-state estimator G
(p)
0,obs (as in Al-

gorithm B). Also assume that upon observing the sequence of observations

ω = α0α1 . . . αn, the sequence of states visited by the current-state estima-

tor G
(p)
0,obs is given by Zq0 = X0p, Zq1, . . . , Zqn

, Zqn+1, 0 ≤ qi ≤ M − 1,

0 ≤ i ≤ n + 1, which we denote by Zq0

α0−→ Zq1

α1−→ . . . Zqn

αn−→ Zqn+1. Then:

(i) The control action of the solution ν↑CNP∞

op to MOES∞ after observing

the sequence of observations ω is

ν↑CNP∞

op (ω) = ν↑CR
s,q0

(z0) ∩ ν↑CR
s,q1

(z1) ∩ . . . ∩ ν↑CR
s,qn

(zn) ∩ ν↑CR
s,qn+1

(zn+1), (7.3)

where zi, 0 ≤ i ≤ n, is the state in G
(p,qi)
∞,obs that is reached from its initial state

X
(p,qi)
∞,0 via αiαi+1 . . . αn, i.e., zi = δ

(p,qi)
∞,obs(X

(p,qi)
∞,0 , αiαi+1 . . . αn) and zn+1 =

X
(p,qn+1)
∞,0 .

(ii) The solution ν↑CNP∞

op to MOES∞ always exists. �

Proof. (i) We prove (7.3) by induction on the length of the sequence of obser-

vations. The control action of ν↑CNP∞

op for ω = ǫ, i.e., before any observation

is made, enforces the opacity of the membership of the initial state of the

system to the set of secret states. Therefore, the control action of ν↑CNP∞

op for

ω = ǫ is equivalent to control action of ν↑CR
s,q0

(z0) which enforces initial-state
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opacity. Next, assuming that (7.3) holds for ω = α0α1 . . . αn, we prove that

for any αn+1 ∈ Σobs, (7.3) holds for ω = α0α1 . . . αnαn+1. Denote the (last)

state-feedback supervisor that is enabled after observing ω = α0α1 . . . αn+1

by ν↑CR
s,q .

To establish the theorem, we essentially show that the control actions

of previously enabled state-feedback supervisors do not affect the control

action of state-feedback supervisor ν↑CR
s,q , and visa versa. This implies that

the MOES∞ problem is equivalent to a set of independent MOES0 problems,

and the optimality of the solution to MOES∞ follows from the optimality of

the solutions to each of the MOES0 problems.

We first describe how the design of supervisor νj may be affected because

certain behavior in the system has already been disabled prior to the enabling

of supervisor νj due to the actions of supervisors that were enabled earlier,

say supervisor νi. For notational simplicity we take j = 2 and i = 1, but the

discussion can be easily extended to any i, j ≥ 0. We start by describing what

the potential problems might be and argue that these potential problems do

not surface. Assume that string s = s1s2s3 with P (s1) = ω1, P (s2) = ω2,

and P (s3) = ω3 is removed by supervisor ν1 after observing ω1 and that

supervisor ν2 becomes enabled when the sequence of observations ω1ω2 is

observed. Also, denote the current-state estimate at the point when sequence

of observations ω1ω2 was observed by X12. Recall that supervisor ν2 enforces

opacity of the membership of the system state to the set of secret states at

the point when the sequence of observations ω1ω2 was observed for all future

observations. Now, if the only string with projection ω3 that can originate

from non-secret states in X12 is s3 and there exist(s) other string(s) s1s2t with

P (t) = ω3 such that string t can originate from secret states in X12, then

disabling string s1s2s3 may reveal later on that the system actual state at

the point when the sequence of observations ω1ω2 was observed belonged to

the set of secret states. Note that ν2 is designed without taking into account

the effect of the supervisor ν1; this implies that the supervisor ν2 will not

disable string t since ν2 is under the impression that in the corresponding

system model, there exists a string s3 that originates from a non-secret state

and has the same projection as string t, i.e., P (s3) = P (t) = ω3.

The situation described above cannot occur because when a string s is

removed from the closed behavior L(G) of the DES G due to the action of

supervisor ν1 with partial observation, all strings t with the same projection,
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i.e., all strings in P−1(P (s)), will also be removed from L(G). This implies

that if string s1s2 is removed by supervisor ν1, all other strings s1t with

P (s1t) = P (s1s2) are also removed by supervisor ν1. Hence, the situation

previously described cannot occur. We can use a similar argument to estab-

lish that the control actions of ν2 need not be considered in the design of ν1.

This proves that the designs of ν1 and ν2 can be considered independently,

which completes the proof of part (i).

(ii) In part (i) we show that the solution ν↑CNP∞

op to MOES∞ exists if

and only if ν↑CR
s,q exists for 0 ≤ q ≤ M − 1. Theorem 7.3.1 proves that ν↑CR

s,q ,

0 ≤ q ≤ M−1, always exists and hence the proof for part (ii) is complete.

In practice, we only need to enable state-feedback supervisors associated

with a current-state estimator state Z such that Z ∩ S 6= ∅ because, when

Z∩S = ∅, no sequence of observations can refine the initial state uncertainty

(captured by the set Z) to a nonempty subset of S. Nevertheless, since we

enable a new state-feedback supervisor each time we observe a new label, it

seems that an infinite number of supervisors needs to be used. As it turns

out, however, this scheme can be implemented with finite space complexity

by taking advantage of the fact that there is a finite number of supervisors,

each with a finite number of states. Next, we describe the details of this

implementation.

During the operation of the system, if the current-state estimator state Zq

is visited twice (for example, after observing the sequence of observations ω

and ωΩ) then the state-feedback supervisor ν↑CR
s,q associated with the current-

state estimator state Zq should be enabled twice. To model this, we store a

single copy of ν↑CR
s,q but allow it to simultaneously lie in more than one state.

Then, the control action for each ν↑CR
s,q can be defined as the intersection of

the control actions at each of its current states. The implementation of the

supervisor in this way results in the implementation of a non-deterministic

finite automaton which is relatively straightforward and requires finite mem-

ory. From this point onwards, upon observing a new label, both of the states

are updated and the control action is obtained by taking the intersection of

the control actions in the resulting states. In this way, we can implement

two or more state-feedback supervisors that share the same structure ν↑CR
s,q

but may differ in their current states (and hence control actions). If the

state-feedback supervisor ν↑CR
s,q is re-enabled, we can use the same approach:

117



at all times, the control action is defined as the intersection of the control

actions of all possible current states of ν↑CR
s,q .

The previous discussion implies that the control action of the solution to

MOES∞ is the intersection of the control actions of all enabled supervisors

as indicated by their possible multiple current states. To keep track of the

enabled state-feedback supervisors along with their current states, we define

a binary state-indicator vector for each of the state-feedback supervisors in

the bank. The size of this vector equals the number of states of the corre-

sponding state-feedback supervisor and each of its elements corresponds to

a state of the state-feedback supervisor. Once a supervisor is enabled, the

first element of the state-indicator vector (corresponding to the initial state

of this supervisor) becomes “1” (initially all elements are set to “0”). If,

following the observation of an event α ∈ Σobs, the supervisor state evolves

from state i to state j, the jth element in the indicator vector for the next

state (initially taken to be the all zero vector) becomes “1”. If this observa-

tion also requires that the state-feedback supervisor is re-enabled, i.e., if the

associated current-state estimator state is revisited, we update the indicator

vector of the next state as described above and also insert a “1” in the first

element of the state-indicator vector. Upon a new observation, the state evo-

lution of the supervisor is updated so that the states that are reachable from

the current state(s) via the new observation have a “1” at the corresponding

location of the state-indicator vector. The following algorithm formalizes this

construction.

Algorithm C Consider a non-deterministic finite automaton G = (X, Σ, δ,

X0), with a set of observable events Σobs (Σobs ⊆ Σ), a set of controllable

events Σc (Σc ⊆ Σobs), a set of secret states S ⊆ X, and a prefix-closed,

normal and regular language E ⊆ L(G), E 6= ∅, describing the legal behav-

ior. Construct the non-deterministic finite automaton GE = (XE , Σ, δE, X0E)

with L(GE) = E, the non-deterministic finite automaton Gp = GE × G =

(Xp, Σ, δp, X0p), the current-state estimator G
(p)
0,obs = (X

(p)
obs, Σobs, δ

(p)
obs, X0p) as-

sociated with Gp, and the bank of state-feedback supervisors ν↑CR
s,q associated

with the bank of initial-state estimators G
(p,q)
∞,obs = (X

(p,q)
∞,obs, Σobs, δ

(p,q)
∞,obs, X

(p,q)
∞,0 ),

0 ≤ q ≤ M−1, where M denotes the number of states of the current-state es-

timator G
(p)
0,obs, as indicated in Algorithm B. Construct the state-indicator vec-

tor I
(ω)
q associated with each state-feedback supervisor ν↑CR

s,q , 0 ≤ q ≤ M − 1,

after observing the sequence of observations ω = α0α1 . . . αn by recursively
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applying the following for i = 0 to i = n.

(i) Initialize the state-indicator vector I
(α0α1...αi)
q = 0, 0 ≤ q ≤ M − 1, where

the size of the zero-vector 0 equals the number of states of the automaton

ν↑CR
s,q /G

(p,q)
∞,obs.

(ii) Let Zq be the state in the current-state estimator G
(p)
0,obs that is reached

from its initial state X0p via the string α0 . . . αi. If Zq∩S 6= ∅, then enable the

qth state-feedback supervisor ν↑CR
s,q in the bank of state-feedback supervisors

by setting the first element in its associated state-indicator vector I
(α0α1...αi)
q

to “1”, i.e., set I
(α0α1...αi)
q (0) = 1.

(iii) If the state-feedback supervisor ν↑CR
s,q is (already enabled and is) at

state j when the sequence of observations α0α1 . . . αi−1 is observed (i.e.,

if I
(α0α1...αi−1)
q (j) = 1), and if state j transitions to state j′ in automaton

ν↑CR
s,q /Gp,q

∞,obs upon observing the last label αi, then set entry j′ of the state-

indicator vector I
(α0α1...αi)
q to “1”, i.e., set I

(α0α1...αi)
q (j′) = 1. �

Definition 7.4.1. Consider the state-feedback supervisor νs : XH → {Σ′ ⊆

Σ|Σuc ⊆ Σ′} associated with finite automaton H = (XH , Σobs, δH , X0,H), with

set of states XH = {0, 1, . . . , Q − 1} and state-indicator vector I. Define the

control action of the state-feedback supervisor νs on the state-indicator vector

I = (i0, . . . , iQ−1)
T for 0 ≤ q ≤ Q − 1 as νs(I) :=

⋂

q:iq=1

νs(q). �

Using Theorem 7.4.1, Algorithm C, and Definition 7.4.1, it is easy to see

that the control action of the solution ν↑CNP∞

op to MOES∞ after observing

the sequence of observations ω = α0α1 . . . αn is ν↑CNP∞

op (ω) =

M−1
⋂

q=0

ν↑CR
s,q (I(ω)

q ).

Example 7.4.1. Consider the DES G in Figure 4.1-a with Σc = {β} and

E = L(G). As mentioned in Example 5.3.1, this system is not ({3}, P,∞)-

opaque since observing αβα∗ reveals that secret state 3 was visited in the past.

We follow Algorithm B to design a minimally restrictive supervisor which

enforces infinite-step opacity. First, we need to construct the current-state

estimator and the associated bank of ISEs. In Example 5.3.1, we carried this

step as part of the verification process and argued that we only need to con-

struct the two ISEs Gp,3
∞,obs and Gp,4

∞,obs associated with current-state estimator

states Z3 = {2, 3, 4} and Z4 = {0, 1, 2, 3, 4}. Next, following Algorithm B, we

construct the state-feedback supervisor ν↑CR
s,3 (ν↑CR

s,4 ) which avoids the states
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Figure 7.2: Supervisor ν↑CR
s,3 defined in Algorithm B.

in ISE Gp,3
∞,obs (Gp,4

∞,obs) for which the set of starting states of the associated

state mapping contains no state outside the set of secret states {3}.

It can be easily verified that the sets of starting states of all state mappings

associated with ISE Gp,4
∞,obs (depicted in Figure 4.1-b) have states outside the

set of secret states {3} and, hence, no supervision is required (i.e., we do not

need to construct ν↑CR
s,4 ). On the other hand, the set of starting states of state

mapping m2 = {(3, 4)} associated with ISE Gp,3
∞,obs (depicted in Figure 5.5)

only contains state 3 and, hence, violates infinite-step opacity. The supervisor

ν↑CR
s,3 which avoids reaching that state is depicted in Figure 7.2. As a result of

all of these discussions, the bank of state-feedback supervisors only contains

one supervisor ν↑CR
s,3 . The state-indicator vector I3 associated with the state-

feedback supervisor ν↑CR
s,3 is initialized to Iǫ

3 = (0, 0)T . Upon observing α, state

Z3 is reached in the current-state estimator from its initial state Z4 and,

hence, the state-feedback supervisor ν↑CR
s,3 associated with state Z3 becomes

enabled, i.e., Iα
3 = (1, 0)T . Upon activation of ν↑CR

s,3 , the controllable event β is

disabled. After that, supervisor ν↑CR
s,3 transitions to state 1, i.e., Iαα

3 = (0, 1)T ,

and does not limit the behavior of the system anymore. Also, since state Z3 is

not reachable in the current-state estimator again, supervisor ν↑CR
s,3 will not be

re-enabled in future. Hence, the net effect of this supervision is the removal

of the sequence of observations αβα∗ from the set of observations that the

system could generate. (Note that if at the very beginning β is observed, then

no supervisor will ever be enabled.) �

Remark 7.4.1. In order to implement the solution to MOES∞ using Algo-

rithm B, one needs to store (i) the bank of state-feedback supervisors ν↑CR
s,q ,

0 ≤ q ≤ M−1, and (ii) the bank of state-indicator vectors Iq, 0 ≤ q ≤ M−1,

associated with each state-feedback supervisor. Here, M is the number of

states of the current-state estimator associated with DES G. If N is the num-

ber of states of G, then the bank of state-feedback supervisors has O(2N×2N2
)

or, equivalently, O(2N2
) state-space complexity (each state-feedback supervi-

sor is constructed from an ISE-like automaton (which has O(2N2
) state-space

complexity) and there are at most O(2N) such state-feedback supervisors (as-
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sociated with each state of the current-state estimator)). Each state-indicator

vector is a vector of 0s and 1s and contains at most 2N2
elements (which is

the maximum number of states of a state-feedback supervisor). Therefore,

storing the bank of state-indicator vectors requires O(2N × 2N2
) or, equiva-

lently, O(2N2
) bits. The exponential complexity of the solutions to MOES∞

is not surprising since algorithms that implement minimally restrictive su-

pervisors for non-deterministic automata with partial observations (e.g., to

enforce diagnosability [46]) typically have similar complexity [46]. �

Remark 7.4.2. For enforcing K-step opacity, one can follow a similar ap-

proach for the case of initial-state opacity to show that the minimally re-

strictive supervisor that enforces K-step opacity can be constructed using the

K-delay state estimator. For this, one needs to extend the state-based no-

tion of K-step opacity to languages and then follow a similar procedure as in

Section 7.3 to establish that the set of K-step opaque languages has supre-

mal element. Due to the similarity of the materials, we will not include the

details here. �
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CHAPTER 8

APPLICATION EXAMPLE: TRACKING
OF MOBILE AGENTS IN SENSOR

NETWORKS

As mentioned in earlier chapters, there are many areas where infinite-step

opacity (or more generally, state-based notions of opacity) can be used to

characterize security requirements of interest. In Chapter 3, we studied con-

ditions which may cause the seed (i.e., the initial state) or the current state of

a pseudo-random generator in a cryptographic protocol to be compromised,

and showed that this problem can be formulated and analyzed using a state-

based opacity framework. We also demonstrated how coverage properties of

mobile agents in sensor networks can be studied using state-based notions of

opacity.

In this chapter, we show how the theoretical developments of Chapters 4

and 5 can be applied to analyze tracking problems in some representative

sensor networks.

8.1 Introduction

Modern tactical intelligence, surveillance and reconnaissance (ISR) technolo-

gies include a vast assortment of air and ground based radars, unmanned

autonomous vehicles, unattended ground-based sensors (UGS) and human

intelligence observations. These sensing platforms produce streams of events

based on what they detect within their physical range. The resulting event

stream must then be combined with the physical/logical limitations of the

environment in order to identify and track vehicles, aircraft, and/or peo-

ple. As a result, the problem of tracking in sensor networks has received

considerable attention [47–49].

In this section, we study the related problem of security and privacy in

planar sensor networks. More specifically, we study the problem of tracking

the trajectory of the location of a given vehicle (how it positions itself as time
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goes on) with respect to a certain set of strategic (secret) locations, using

information from a set of sensors that are deployed in a given planar region.

These trajectories can be of interest for a variety of reasons. For example,

feasible trajectories can be exploited in order to hide the origin of a trajectory

from an observer who is employing the sensor network trying to identify

whether the vehicle originated from a strategically important location or

determine whether the vehicle passed from this particular set of strategic

locations at some specific instant of time. It is assumed that the locations of

the deployed sensors are known and remain constant, but the sensor coverages

are allowed to differ (i.e., heterogenous sensor networks are considered).

In order to study this problem, we use the notion of infinite-step opacity

introduced in Chapter 3.3. Recall that this notion is defined assuming that

the underlying system is a discrete event system (DES) that can be modeled

as a non-deterministic finite automaton with partial observation on its transi-

tions. As shown later in this chapter, non-deterministic finite automata with

partial observation on their transitions can be used to conveniently model

the movement of mobile agents in various terrains; thus, state-based opacity

notions (including infinite-step opacity) are ideally suited for coverage anal-

ysis and verification of security/privacy properties of interest. By defining

the set of secret states to be the set of strategic locations, infinite-step opac-

ity translates to the ability of the intruder to determine, given all available

(past and current) sensor readings, whether the vehicle has gone through

some strategic locations at a specific instant in time.

Due to the cost associated with sensor deployment, designers are typically

faced with limitations on the number (or location) of deployed sensors. Min-

imal sensor selection problems aim at finding the set of sensors such that:

(i) properties of interest about the sensor network hold, and (ii) if any of

the sensors in the set is turned off, the property ceases to hold [50]. This

chapter studies sensor selection problems in which the desired property is

taken to be the ability of the sensor network to identify the passage of the

vehicle through strategic locations; thus, the minimal sensor selection prob-

lem translates to the problem of finding a set of sensors (from a given set of

available sensors) such that turning off any of the sensors in this set renders

the system infinite-step opaque. In this chapter, we also propose a top-down

algorithm to solve the minimal sensor selection problem and establish the

correctness of the algorithm by showing that lack of infinite-step opacity is
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a mask-monotonic property [51]. The effectiveness and applicability of this

algorithm are subsequently evaluated via an extensive set of simulations.

8.1.1 Related Work

The framework considered here for tracking analysis is related to the weak

model introduced in [47] for studying the trackability of sensor networks.

A sensor network is trackable if the rate of growth of the number of state

sequences that are consistent with a given sequence of observations is sub-

exponential in the length of the observations. The authors of [47] show

that the rate of growth of the number of consistent state sequences is either

polynomial or exponential in the size of the observations; they also obtain

necessary and sufficient conditions on the placement of the sensors such that

this growth is polynomial, i.e., such that the sensor network is trackable.

While the model in this chapter is similar to that of [47], this thesis studies a

different problem: trackability studies the number of state sequences that are

consistent with the given sequence of observations, while infinite-step opacity

studies the state estimates that appear in these state sequences (and whether

they fall exclusively in the set of secret states at specific points in time).

The authors of [49] study the problem of multiple-target tracking for sensor

networks with deterministic deployment subject to communication delays,

noisy observations, false alarms, and data packet losses. Assuming that the

noisy observation of the state of the object is measured with a known detec-

tion probability (less than one) and that the number of false alarms follows a

Poisson distribution, the authors of [49] use the Markov Chain Monte Carlo

Association algorithm to estimate the number of moving objects and their

state trajectories. Unlike the framework of [49], the formulation study in

this chapter does not assume probabilities associated with the target move-

ments. Furthermore, the focus is on characterizing the target trajectories

with respect to a set of secret locations.

The sensor selection problem studied here is related to the coverage prob-

lem in sensor networks which has been studied with respect to different ob-

jectives and metrics (see, for example, [52–54]). The characteristic attribute

used to classify different approaches to the coverage problem is whether sen-

sor deployment is deterministic or stochastic. In deterministic sensor de-
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ployment, the possible locations of the sensors are preselected, whereas in

stochastic sensor deployment, sensors are deployed according to a known

probability distribution. The coverage problem in the deterministic case

boils down to the problem of finding the optimal placement for sensors such

that a target coverage objective is met [53, 54]. In the stochastic case, the

coverage problem reduces to finding the number of sensors that must be de-

ployed, given the sensor deployment distribution, in order for every point

in the field of interest to be covered by at least k sensors with some target

probability p [52]. The sensor selection problem studied here is related to

the coverage problem with deterministic sensor deployment [53].

The problem of connected coverage has been studied by [53], where the

authors provide a geometric analysis that relates coverage to connectivity,

and also define the necessary conditions for a sensor network to be connected.

The authors of [54] studied the problem of deterministic coverage under the

additional constraint that each sensor must have at least k neighbors. In its

simplest form (full event observation), the minimum sensor selection problem

considered here can be seen as the study of the connectivity of the sensor

network graph with respect to the set of secret states (strategic locations).

8.2 Sensor Selection Related Questions

Due to the cost associated with deploying sensors, designers are typically

faced with limitations on the number (or location) of deployed sensors. Min-

imum sensor selection problems aim to find the minimum number of sensors

(or, more generally, a set of sensors of minimum cost) such that certain prop-

erties about the sensor network hold [50]. These properties vary depending

on the underlying application and include (among others) observability, nor-

mality, diagnosability, and co-observability [51,55]. In this chapter, by letting

the desired property be the ability of the sensor network to identify the pas-

sage of the vehicle through some set of strategic cells S, the minimum sensor

selection problem is defined as the problem of finding the set of sensors (from

a given set of available sensors) that has the minimum possible cardinality

and guarantees that the system is not infinite-step opaque with respect to

S. This problem is defined formally below.
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Definition 8.2.1 (Minimum Sensor Selection Problem). Given an n1 × n2

2-dimensional grid, the kinematic model H of the vehicle that moves in this

grid, sensor coverage areas expressed in terms of aggregations of cells (for

each sensor in the given set), and a set of strategic (secret) cells S, find a

subset of the given set of sensors that has minimum cardinality and ensures

that the system is not infinite-step opaque. �

Clearly, the solution to the minimum sensor selection problem can be ob-

tained by searching through all sensor configurations and obtaining the set

of sensors (of minimum cardinality) such that the system is not infinite-step

opaque. The problem has exponential complexity in the number of available

sensors (because there is an exponential number of sensor configurations).

Another version of sensor selection problem is the minimal sensor selection

problem which aims at finding a minimal solution, i.e., a set of sensors that

have the following properties: (i) if all sensors in the set are selected, the

system is not infinite-step opaque, (ii) by turning off any one sensor in this set,

the system becomes infinite-step opaque. This problem is defined formally

below.

Definition 8.2.2 (Minimal Sensor Selection Problem). Given an n1 × n2

2-dimensional grid, the kinematic model H of the vehicle that moves on the

grid, sensor coverage areas expressed in terms of aggregations of cells (for

each sensor in the given set), and a set of strategic (secret) cells S, find a

subset of of the given set of sensors which is minimal and ensures that the

system is infinite-step opaque, i.e., find a set of sensors such that (i) when

all sensors in the set are selected the system is not infinite-step opaque, and

(ii) if any one of the sensors in this set is turned off, the system becomes

infinite-step opaque. �

The authors of [51] study minimal solutions to the sensor selection prob-

lem for a general property P , and propose a top-down algorithm for finding

a minimal solution with complexity polynomial in the number of available

sensors and in the time needed to verify property P . They also argue that

as long as property P is mask-monotonic, the top-down algorithm obtains

a minimal solution. For the property P to be mask-monotonic the follow-

ing needs to be true: if the given setting G satisfies P with set of deployed

sensors I; then the given setting satisfies P with any other set of deployed

sensors I ′ that includes I (i.e., I ⊆ I ′).
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In the sequel, we show that lack of infinite-step opacity is mask-monotonic.

First, for simplicity it is assumed that in Definitions 8.2.1 and 8.2.2 sensor

coverage areas are not overlapping. In this case, turning on a sensor α can

be modeled as adding event α to the set of observable events Σobs (and

removing it from the set of unobservable events). Assume that the system

is not infinite-step opaque for a given set of deployed sensors I1 denoted by

projection map PΣo1; then, there exists a string s that passes through the

set of secret states such that no other string t with the same projection,

PΣo1(s) = PΣo1(t), passes through a non-secret state when s passes through

the set of secret states. Next, one turns on more sensors, and denotes the

set of deployed sensors by I2 ⊇ I1 and the corresponding projection map by

PΣo2. Since Σo1 ⊆ Σo2,

PΣo2(s) = PΣo2(t) ⇒ PΣo1(s) = PΣo1(t),

which implies that strings s and t with PΣo2(s) = PΣo2(t) will also satisfy

PΣo1(s) = PΣo1(t); thus, string t has to pass through secret states when

string s passes through secret states even under mapping PΣo2. This implies

that lack of infinite-step opacity is mask monotonic as long as sensor coverage

is not overlapping.

Next, we consider the case when sensors are overlapping. Recall that the

label of transitions ending in cells which are covered by more than one sensor

is chosen to be a special label that indicates the set of all sensors covering that

cell. Therefore, if the set of sensors that cover a cell changes — due to turning

on more sensors — then the associated label with transitions ending in that

cell will also change. However, if the transitions that end in a specific cell

have identical labels before turning on a sensor, they will also have identical

labels after turning on that sensor (although the associated label may now

be different). Thus if s and t are such that PΣo2(s) = PΣo2(t), then it also

holds that PΣo1(s) = PΣo1(t). The rest of the proof is similar to the previous

case.

The above discussion implies that lack of infinite-step opacity is mask

monotonic and one can use the top-down algorithm proposed in [51] to find

the minimal solution to the sensor selection problem in Definition 8.2.1. The

top-down algorithm works as follows: one starts by selecting all sensors and

switches sensors off one at a time (in some arbitrary order), until the system

127



becomes infinite-step opaque. The last sensor is kept so that the resulting

set of selected sensors ensures that the system is not infinite-step opaque

and, from this set of sensors, one tries to find a sensor to turn off such that

the system does not become infinite-step opaque (e.g., by going through the

sensors in some predefined order). If this is possible, that sensor is turned

off and one continues until no sensor can be turned off, obtaining in this way

a minimal solution to the sensor selection problem in Definition 8.2.1.

It should be noted that there may exist more than one minimal solution

and that the minimal solution does not necessarily correspond to the set of

sensors that has minimum cardinality. This also explains why obtaining a

minimal solution is generally easier than obtaining the minimum solution.

8.3 Simulation Studies

8.3.1 Generating Kinematic Models and Sensor Coverages

To study the verification process of infinite-step opacity in tracking problems

in the context of sensor networks, one first needs to obtain a system model.

We use the approach described in Section 3.4.2 and model the terrain that

the vehicle is moving on as a grid of n × n cells, which are identified (for

different values of n) as follows:
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This implies that the kinematic model H (which describes the limitations

on the vehicle movements) has n2 states. It is assumed that the vehicle in

each cell can only move to neighboring cells so that from each state i (1 ≤

i ≤ n2) of the kinematic model H there are at most1 9 possible transitions:

i → i−n−1, i → i−n, i → i−n+1, i → i−1, i → i, i → i+1, i → i+n−1,

i → i + n, and i → i + n + 1.

In order to show the applicability of the results to typical kinematic models

1Of course, states on the edges of the grid have fewer possible transitions.
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on an n × n grid, the possible transitions (movements) between neighboring

cells are chosen randomly. This is accomplished by creating for each state

i, 1 ≤ i ≤ n2, a random binary vector of size 9, each element of which

corresponds to one of the 9 possible state transitions for state i. The index

of the element is the index of the state transition (in the ordering described

above) and the randomly obtained binary value indicates whether the given

transition is possible (value 1) or not (value 0). Matlab is used to create

this random binary vector (0 and 1 are chosen with equal probability) and

the resulting information is stored in a text file (in a format appropriate for

the UMDES Library tool [56] which is described in more detail later in this

chapter).

It is also assumed that there are m sensors in the sensor network and dif-

ferent values of m are tried at the beginning of each simulation. The coverage

of sensors is determined randomly by creating a rectangular coverage region

for each sensor. More specifically, the top left and bottom right vertices of

the coverage region are chosen with probability that is uniform in the given

grid. Once sensor coverage areas are chosen as described above, labels are

assigned to the transitions in the kinematic model H to obtain automaton

G (as described in Section 3.4.2). Again, Matlab is used to create the ran-

dom sensor coverage areas and store the resulting automaton G in a format

appropriate for the UMDES library tool.

8.3.2 Using UMDES to Verify Infinite-Step Opacity

In order to implement the verification method for infinite-step opacity de-

scribed in Section 5.3.2, the UMDES Library is used. UMDES is a library of C

routines developed at the University of Michigan [56] for studying discrete

event systems modelled as finite automata. The routines currently available

in the UMDES Library implement many of the basic operations needed for fault

diagnosis [16] and supervisory control [28] for discrete event systems. The

UMDES Library also includes basic functions pertaining to the manipulation

and composition of finite automata.

The routines in the UMDES Library have a command-line interface. Inputs

(i.e., finite automata) to these routines are either command-lines or text files

formatted appropriately. In particular, an automaton with N states is stored
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as a text file with extension .fsm and has a header (the first line of the file)

and exactly N paragraphs. The header denotes the number of states (N) and

the ith paragraph, 1 ≤ i ≤ N , describes the identifier of the ith state followed

by the transitions defined out of that state. Each transition is associated

with a label and letter “o” if observable and “uo” if unobservable (the letter

associated with each label is assumed to be consistent throughout the text

file).

The first step in verifying infinite-step opacity (as described in Theo-

rem 5.3.3) requires constructing the current-state estimator. The UMDES Li-

brary provides a routine for creating the current-state estimator for a given

automaton. Note that this routine is developed assuming that the given au-

tomaton has one (unique) initial state but one can overcome this limitation

by adding a dummy state x to G and by connecting it to all states in X0 using

a dummy unobservable transition. It is not hard to see that the current-state

estimator Ĝ0,obs constructed for this new automaton Ĝ (with state x as its

unique initial state) is the same as the current-state estimator G0,obs con-

structed for automaton G with X0 as its initial state (except that the initial

state of Ĝ0,obs has the extra element x in its initial state estimate compared

to the initial state estimate of G0,obs). Another issue that arises when using

the UMDES Library routine for constructing the current-state estimator is the

output of this routine. As part of the verification process, the set of states

of the current-state estimator needs to be parsed from the file describing it.

As will be explained later, Matlab is used to call all UMDES Library routines

and to manipulate their output. The output of the UMDES Library routine

for current-state estimation (is a text file that) has some extra information

which makes parsing the current-state estimator states impossible using the

routines provided in Matlab for reading text (e.g., textscan). In order to

solve this problem, one can use Linux capabilities to manipulate text files and

discard the information that is not necessary, so that the textscan routine

can be used to parse the information regarding the current-state estimator

states from this modified file.

The next step in verifying infinite-step opacity (as described in Theo-

rem 5.3.3) requires constructing ISEs with their initial state set to ⊙2(Z0) for

each state Z0 of the current-state estimator which contains a state in the set

of secret states S. As there is no support for constructing ISEs in the UMDES

Library, we employ a transformation that enables us to use the routine for
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Σ

Figure 8.1: Automaton Hi.

current-state estimation in order to construct ISEs. Specifically, to construct

the ISE associated with G = (X, Σ, δ, X0), we perform the following steps:

(i) For each i ∈ X0, one constructs Gi = ({i} × X, Σ, δi, {i} × X0) where

for j ∈ X, α ∈ Σ: δi((i, j), α) ≡ (i, δ(j, α)). In words, Gi is the automaton

that is obtained by annotating each state of G with label i and assuming

that the automaton starts from state i.

(ii) The automaton Ĝ = (
⋃

i∈X0
Xi, Σ, δ̂,⊙2(X0)) is constructed, with Xi,

i ∈ X0, denoting the set of states of Gi and δ̂((i, j), α) = δi((i, j), α). In

words, Ĝ is obtained by taking the union of all Gi, i ∈ X0, and setting its

set of initial states equal to ⊙2(X0).

(iii) By constructing the current-state estimator for Ĝ, one can obtain the

ISE for G as described in Chapter 4.

Remark 8.3.1. In Step (i), in order to annotate automaton G, one uses the

product routine provided in the UMDES Library and the auxiliary automaton

Hi depicted in Figure 8.1.

In Step (ii), one cannot use the union routine provided in the UMDES Li-

brary to obtain Ĝ. The problem is that the union routine provided by the

UMDES Library acts on two non-deterministic automata G1 and G2, and re-

turns the deterministic automaton G′ that is the determinization of the non-

deterministic automaton G1 ∪ G2 (constructed using the subset construction

[19]). This implies that the output G′ of the union operator and G1 ∪ G2

can have different sets of states. In Step (ii) of the transformation described

above, however, the set of states (and non-determinism) of the automaton

from the union operator needs to be intact; therefore the union routine pro-

vided in the UMDES Library cannot be used here. This issue is solved by using

Linux capabilities to manipulate files. As mentioned before, each Gi is stored

as a text file, e.g., as Gi.fsm. In order to construct the union ∪Gi without

modifying the set of states, the header from each file Gi.fsm (corresponding

to each Gi, i ∈ X0) is removed, and then all of these files are merged into

one file with its header (i.e., number of states) equal to |X0| × N (since the
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number of automata of the form Gi that are merged is |X0|, and each Gi has

N states). The automaton corresponding to this file is Ĝ in Step (ii) of the

above transformation. �

The above transformation obtains the ISE by constructing the current-

state estimator for an annotated system model but, compared to the method

described in the previous section (which constructs the ISE using state map-

pings), it is not as efficient in terms of memory and/or computational time.

One obvious reason for this is that many states in Ĝ that are not reachable

from its set of initial-states are nevertheless constructed and stored as part

of the algorithm. This issue was ignored for the sake of using existing rou-

tines from the UMDES Library. The reader, however, should keep in mind

that the effect of this inefficiency on the time required for simulation is large.

Therefore, when looking at the reported times required for running the sim-

ulations, one needs to keep in mind that these time measurements are not

indicative of the actual time required for verifying infinite-step opacity (they

are longer than the actual time); instead, these timing measurements should

be used as a relative measure of difference between simulations with different

parameters.

The last step in verifying infinite-step opacity (as described in Theo-

rem 5.3.3) requires checking whether the set of starting states of any of the

state mappings in the constructed ISEs lies entirely within the set of secret

states. This checking is accomplished and a wrapper for the program is ob-

tained using Matlab code. The code first creates a random kinematic model

with associated sensor coverage as described in Section 8.3.1. The result is

stored in a text file readable by UMDES Library routines as described in this

section. Then, the current-state estimator and the required initial-state esti-

mators based on the transformation procedure described in this section are

constructed. Note that UMDES Library routines can be called within Matlab

using the system routine.

8.3.3 Simulations Results

The first part of the simulation (small example) studies the effect that the

number of deployed sensors has on infinite-step opacity and hence indirectly

solves the (minimal) sensor selection problem. It is assumed that the vehicle
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is moving on a 6 × 6 grid and that S = {5, 16, 27} and X0 = X. The

kinematic model used throughout this part of the simulation is depicted in

Figure 8.2. It is assumed that up to 7 sensors are available for deployment,

with coverage as depicted in Figure 8.2. One starts assuming that all sensors

are selected. At each step, sensors are turned off one at a time, and one

checks whether the system becomes infinite-step opaque. Sensors are turned

off in the same order as their identifier with the largest one (i.e., 7) turned

off first. The results are summarized in Table 8.1: after turning off sensors

7, 6, and 5, turning off any additional sensor violates infinite-step opacity;

therefore, the solution to the minimal sensor selection problem is the set of

sensors {1, 2, 3, 4}. As can be observed, the algorithm runs relatively fast.

The solution to the minimum sensor selection problem was also studied via

an exhaustive search over all possible sensor configurations. For this part,

one starts by turning off all sensors. The proposed algorithm first enumerates

all 7 subsets of set I = {1, 2, 3, 4, 5, 6, 7} of size 1 using the function nchoosek

in Matlab. For each such subset,2 the corresponding sensor is turned on and

one verifies whether the system is infinite-step opaque. If the system is not

infinite-step opaque, the algorithm stops and reports the chosen sensor as

the solution to minimum sensor selection problem. Otherwise, that sensor

is turned off and the algorithm proceeds with the next subset. Once each

sensor corresponding to a sensor subset of size 1 is turned on and the system

is verified to be infinite-step opaque, the algorithm proceeds by enumerating

all subsets of set I of size 2, checking whether the selected subset makes the

system infinite-step opaque. As soon as the algorithm finds a sensor configu-

ration for which the system is not infinite-step opaque, the algorithm stops.

The proposed algorithm stops after enumerating the set {1, 2, 3, 4}. This im-

plies that the solution to the minimal sensor selection obtained previously is

also a solution to the minimum sensor selection problem. In the second part

of the simulation, one studies the minimal solution to the sensor selection

problem in Definition 8.2.1 for randomly generated grids with randomly se-

lected sensor coverage. For this, one randomly creates 100 grids of size 6× 6

as described in Section 8.3.1. It is also assumed that up to 7 sensors can be

deployed with sensor coverage chosen randomly as described in Section 8.3.1.

Table 8.2 describes the cardinality of the solution to the minimal sensor se-

2The order follows the order of the resulting vector from function nchoosek.
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Figure 8.2: Example of a 6 × 6 sensor grid.

Table 8.1: Infinite-step opacity for the 6 × 6 grid in Figure 8.2. |Xobs|
denotes the number of current-state estimator states and max |Xn

∞,obs|
denotes the maximum number of ISE’s states. Here i : j means sensors
i, i + 1, . . . , j are deployed.

Deployed sensors 1:7 1:6 1:5 1:4 1,2,3 1,2,4 1,3,4 2,3,4
|Xobs| 53 37 17 11 6 10 7 8

max |Xn
∞,obs| 2451 915 322 193 64 64 64 64

Time (Sec) 3.55 1.9 2.4 3.8 3.4 3.8 3.4 3.17
Infinite-Step Opaque? No No No No Yes Yes Yes Yes
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Table 8.2: Solution to the minimal sensor selection problem for 100
randomly generated 6 × 6 grid with up to 7 sensors.

Cardinality of the minimal solution 1 2 3 4 5 6 7
Number of grids 0 0 72 20 2 5 0

Table 8.3: Number of ISE’s states as a function of grid size.

Grid size 6 × 6 8 × 8 10 × 10
Number of current-state estimator states 48 44 80

Number of ISE 11 15 24
Maximum Number of ISE’s states 2243 1935 5070

Time (Sec) 13 30.5 1048

lection problem in Definition 8.2.1 for these randomly generated grids. This

table should be interpreted as follows: out of 100 grids, 72 needed 3 sensors

to violate infinite-step opacity, 20 needed 4 sensors, and so forth. As can

be seen from this table, on average 3 sensors suffice to violate infinite-step

opaque.

The third part of the simulation studies the effect of the grid size on the

number of states of the generated ISE’s. For this, one doubled and tripled the

size of the grid. More specifically, n= 6, 8, 10 were used, each time choosing

S randomly such that it includes 3% of system states and also spreads over

the grid. It was also assumed that X0 = X. For each value of n, 5 sensors

were considered with location and coverage chosen randomly (as described

earlier). The results are summarized in Table 8.3. As the number of cells in

the grid triples (from 36 to 100), the size of constructed ISE’s also triples.

Also observe that (not surprisingly) the algorithm takes a relatively long time

for large size grids.

Remark 8.3.2. In this chapter, we study the application of the notion of

infinite-step opacity to coverage analysis of mobile agent trajectory and exist-

ing tools were employed and appropriate transformations were devised to ver-

ify infinite-step opacity using a current-state estimator and a bank of initial-

state estimators. While in this chapter we focus on the notion of infinite-step

opacity, other state-based notions of opacity introduced in Chapter 3 can be

used to characterize other interesting security properties of sensor networks.

For example, the notion of initial-state opacity (K-step opacity) can be em-

ployed to hide the fact that the vehicle has started (passed) from some partic-
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ular set of strategically important locations initially (within the past K sensor

readings) from an observer who is employing the sensor network. The verifi-

cation technique that was introduced in this chapter can easily be extended for

verifying initial-state opacity. For verifying K-step opacity, a Java toolbox

is now available in [57]. �
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

In this thesis, motivated by a variety of security applications, we follow a

state-based approach to define, analyze, and verify three notions of opacity:

(i) Initial-state opacity: For a system to be (S, P,∞) initial-state opaque,

the membership of the initial state of the system to the set of secret states S

needs to remain opaque (for the whole length of the observation) to an out-

side observer who is observing the system behavior through a static natural

projection map P .

(ii) K-step opacity: For a system to be (S, P, K)-opaque, for K ≥ 0, the

entrance of the system to the set of secret states S, at any time during the

past K observations, should remain opaque to outsiders.

(iii) Infinite-step opacity: For a system to be (S, P,∞)-opaque, the

entrance of the system to the set of secret states S, at any time during the

observations, should remain opaque to outsiders. Infinite-step opacity can be

considered as the limiting case of K-step opacity as K approaches infinity.

While in these definitions, we assumed that the projection map is a static

natural projection map of the form P : Σ → Σobs; more general projections

of the form P : Σ → ∆ ∪ {ǫ} that may map multiple events to a label in

the set ∆ ∪ {ǫ} can also be handled in a straightforward manner. To keep

notation simple, in this thesis, we only discuss the natural projection.

To verify initial-state opacity, we construct an initial-state estimator which

provides initial-state estimates. We show that for a system to be initial-state

opaque, all initial-state estimates (associated with states of this estimator)

need to contain at least one state outside the secret set S. We also investigate

the complexity of the verification method and show that it can be largely

reduced if the set of secret states S is fixed. Extensions to scenarios where
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the set of secret states is time-varying are also discussed. We also establish

that the verification of initial-step opacity is a PSPACE-complete problem.

To verify K-step opacity, we introduce the K-delay state estimator which

provides K-delayed state estimates. These are the estimates of the state

of the system k observations ago, 0 ≤ k ≤ K, and are consistent with all

observations so far (including the last K observations). We show that for

a system to be K-step opaque, all k-delayed state estimates, 0 ≤ k ≤ K

(associated with states of the K-delay state estimator), need to contain at

least one state outside the secret set S. We also investigate the complexity of

the verification method and establish that the verification of K-step opacity

is an NP-hard problem.

To verify infinite-step opacity, we show that for any K ≥ 2N2
− 1 (where

N is the number of states of the discrete event system), K-step opacity and

infinite-step opacity become equivalent; hence, the verification method for

K-step opacity can be applied for verifying infinite-step opacity with K =

2N2
− 1. We also introduce a different method to verify infinite-step opacity

using the current-state estimator and a bank of initial-state estimators; this

verifier method has considerably lower space and time complexity compared

to the method that constructs a K-delay state estimator for K = 2N2
−1. We

also establish that the verification of infinite-step opacity is a PSPACE-hard

problem.

To address the problem of designing feasible supervisors that enforce opac-

ity, we formulate the problem as a supervisory control problem that enforces

opacity while limiting the behavior of the system to a subset behavior, called

legal behavior and described by a prefix-closed language E. We show that

there always exists a solution to this problem and characterize the set of so-

lutions as the set of sublanguages of E that are controllable, observable, and

initial-state opaque. We show that there always exists a minimally restrictive

solution to this problem and under the assumption that Σc ⊆ Σobs, we pro-

pose a method to find the supremal language among such languages (which

is the solution of our minimally restrictive supervisory control problem).
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9.2 Future Work

There are many interesting future directions. In the near future, we plan to

investigate the following.

1. Extension to modular settings: In this setting, the given system is mod-

eled as a composition (synchronous product) of M modules {G1, G2, . . . ,

GM} where each module Gi is modelled as a non-deterministic finite

automaton with Ni states where the set of secret states S is of the form

S = {(x1, x2, . . . , xM)|xi ∈ Si} for set of secret states Si for each mod-

ule Gi. Extensions of the definition of state-based notions of opacity

to such systems is a topic of ongoing research.

2. Introducing probabilistic metrics to this framework: Initial-state opac-

ity does not consider the likelihood of sequences of observations that

violate the initial-state opacity requirement (instead it simply reports

whether a given system is opaque or not). In addition, it does not at-

tempt to characterize the confidence of the intruder when initial-state

opacity is not violated (e.g., the probability that the system initial state

belongs to the set S). This can limit the appropriateness of the notion

of initial-state opacity in applications where the confidence of the in-

truder can serve as a measure of security. An example of an application

where such confidence concerns have been considered is anonymity pro-

tocols [38, 58–60]. Such systems consist of a set of users whose known

actions generate associated outputs that are observed by intruders who

then try to infer the identity of the originator of the action. The goal of

any anonymity protocol is to hide the origin (user) for certain actions

in the system despite the observed outputs. Depending on the kind of

protection offered by an anonymity protocol, a probabilistic notion of

initial-state opacity can be more appropriate for describing the security

requirements.

Introducing probabilistic metrics to our framework can be achieved as

follows: consider a scenario where we are given a stochastic discrete

event system (SDES) that can be modeled as a probabilistic finite au-

tomaton (PFA) with partial observation on its transitions; assuming

that the initial-state distribution vector is known, we can define two

notions of opacity: almost initial-state opacity and probabilistic initial-

139



state opacity. The former notion requires that the probability of behav-

ior that violates initial-state opacity lies below a threshold; probabilistic

initial-state opacity, on the other hand, considers the probability that

the system initial-state lies in the set of secret states (and hence, the

confidence of the intruder) given any possible observation in the system,

and requires that this probability lies below a threshold for all possible

behavior in the system. Such probabilistic extensions are currently the

topic of ongoing research.

3. Another extension is to connect the design of control policies for stochas-

tic systems under suitable optimality criteria for probabilistic opacity.

4. Finally, we are interested in studying tracking problems involving two

(or more) mobile agents with possibly different kinematic models or

kinematic models with common patterns (in case where the mobile

agents share group formations) [48,61,62]. In this case, sensor readings

can be triggered by any of the vehicles, which adds uncertainty to the

problem and can potentially be handled by using projection mappings

more general than natural projection. The study of this problem and

variations of it, along with potential applications of modular verifica-

tion techniques [63] will be part of future work.
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