
A Formal Executable Semantics of Verilog∗

Patrick Meredith Michael Katelman José Meseguer Grigore Ros, u
Department of Computer Science

University of Illinois at Urbana-Champaign
{pmeredit, katelman, meseguer, grosu}@uiuc.edu

Abstract

This paper describes a formal executable semantics for
the Verilog hardware description language. The goal of our
formalization is to provide a concise and mathematically
rigorous reference augmenting the prose of the official lan-
guage standard, and ultimately to aid developers of Verilog-
based tools; e.g., simulators, test generators, and verifica-
tion tools. Our semantics applies equally well to both syn-
thesizeable and behavioral designs and is given in a famil-
iar, operational-style within a logic providing important ad-
ditional benefits above and beyond static formalization. In
particular, it is executable and searchable so that one can
ask questions about how a, possibly nondeterministic, Ver-
ilog program can legally behave under the formalization.
The formalization should not be seen as the final word on
Verilog, but rather as a starting point and basis for commu-
nity discussions on the Verilog semantics.

1 Introduction

There are many tools based on Verilog, which implic-
itly, through their implementation, interpret the semantics
of the language; e.g., simulators, test generators, and formal
verification tools. The language standard for Verilog [9] is
the only official document regarding the meaning of Ver-
ilog, and anyone implementing a Verilog-based tool should
understand it thoroughly. It is written in English prose
and, while extensive and generally clear, we have encoun-
tered important situations where the intentions of the stan-
dard were unclear and we had no good means of resolv-
ing our conundrum.

One of the goals of a formal semantics is to avoid prob-
lems with the imprecise nature of prose by using rigorous
mathematical definitions. Therefore, in this paper we de-
velop an extensive formalization of the Verilog language,

∗Supported in part by NSF grants CCF-0916893, CNS-0720512, CCF-
0905584, and CCF-0448501, by NASA contract NNL08AA23C, by a
Samsung SAIT grant, and by several Microsoft gifts.

using a familiar, operational-style. Our goal is not to re-
place the standard, but rather to augment it with a formal,
yet intuitive and operationally clean, description of the lan-
guage that tool designers and other interested parties can
use to help resolve complex questions about the language,
when they arise. This is useful for all types of tools, but es-
pecially for formal verification tools, where the advertised
guarantees are very strong.

There are many common methods of giving a formal se-
mantics, such as structural-operational semantics [20, 21],
context reduction [6], and denotational semantics [22]. In
this paper we use an operational-style approach based in
rewriting logic, called a rewriting logic semantics[17, 5].
While it is outside the scope of this paper to give a detailed
comparison of this approach with the many others (for the
interested reader, see [17, 5]), there are three benefits we
briefly mention. First, rewriting logic semantics admits a
style similar to functional programming, which is familiar
to many people. Second, the semantics is concurrent, and
can directly support descriptions of nondeterministic com-
putations. Third, there are tools, such as Maude [4], allow-
ing us to execute Verilog programs directly with a rewrit-
ing logic semantics. No separate interpreter need be writ-
ten, and we can even search through the different concur-
rent interleavings allowed by the inherently parallel seman-
tics of Verilog.

In principle, there is no a priori reason why the seman-
tics given in this paper could not be used as the basis for
a formal semantics within another framework, should one
desire that, provided that the framework in question also
supports concurrency. Therefore, the goals of this paper do
not depend on a definitional style; it is simply necessary to
make some choice, and we believe that there are real bene-
fits, such as the ones described above, and used to good ef-
fect in subsequent sections, to a rewriting logic semantics.
Those interested in translating a rewriting logic semantics
to other styles may find good guidance in [5].

In addition to the description of our formal seman-
tics given in this paper, and its full definition in rewriting
logic [10, 13], we contribute observations about particu-

1 module flipflop(clk, in, out);
2 input clk
3 input[15:0] in;
4 output[15:0] out;
5
6 reg[15:0] r;
7
8 assign out = r;
9
10 always@(posedge clk)
11 begin
12 r <= in;
13 end
14 endmodule

Figure 1. Flpflop Example

larly curious aspects of Verilog, some where we have made
choices of interpretation of the standard where other inter-
pretations are possible. We also show how our definition
can be used with the Maude tool to ask questions about the
meaning of Verilog programs. We hope that our seman-
tics and observations can provide a good basis for a dis-
cussion within the community of Verilog users and tool de-
velopers; one ultimately resulting in more robust designs,
consistency between tools, and simpler construction of new
tools based on Verilog. In fact, questions as to the cor-
rect semantics of Verilog can be seen in actual production
systems. During the development of our semantics we ran
into situations in which two popular simulators, VCS [23]
and Icarus Verilog (Iverilog) [26], differ in the evaluation of
fairly small Verilog programs. The value of a formal seman-
tics for these situations is to provide a precise interpretation
of the Verilog standard that, although open to challenges
itself, can clarify the discrepancies between different tools
where source code may sometimes be proprietary. Section
5 discusses one of these examples; several others are shown
in Section 5.1. The rest of this paper is organized as follows:
Section 2 gives a high-level overview of the Verilog seman-
tics and the main concepts it involves, and also discusses
some curious aspects we have encountered, including bugs
in well-known Verilog simulators. Section 3 gives a brief
overview of rewriting semantics, followed in Section 4 with
a guided-tour of our semantic definition. The full definition
“source code” can be found in [12]. Section 6 compares our
definition to some other definitions of Verilog. Section 5
discusses how our semantics should be used to help resolve
questions about Verilog, as well as some additional possi-
ble uses of the semantics. Finally, Section 7 provides some
concluding remarks.

2 Verilog Semantics: High-Level Concepts

While we believe most of our readers will be familiar
with Verilog, we begin with a simple example to show some

of the features of the language. Then we introduce some of
the high level aspects of the semantics of Verilog: the dif-
ferent types of assignments, processes and events, process
and event scheduling, and value sizing.

2.1 An Introductory Example

Figure 1 shows a Verilog module that defines a sim-
ple flipflop. A module is a unit of design that allows for
code reuse and abstraction. It is similar in spirit to mod-
ules from several software programming languages. While
the example is simple, it illustrates some important fea-
tures of Verilog.

Verilog has two main types of data: variables and nets.
Variables represent the notion of state, requiring memory of
some kind1, while nets abstract the idea of wires that carry
information from one area of a design to another. The input
and output keywords declare which variables are inputs and
outputs to the module. Module inputs and outputs are au-
tomatically assumed to have the net type wire, so it is not
necessary to give them a type declaration unless a different
type is wanted. The name r is declared with the reg type,
which is a variable type.

Both nets and variables are either single bits (by default)
or bit vectors of more than one bit. The input clk is a single
bit value, because no indices are specified for it, while in is
declared to be sixteen bits indexed from 15 to 0. Accord-
ing to the Verilog standard variable data types may only be
assigned within procedural blocks, such as the one on lines
10–13, which will be described below, while net types can
only be assigned in wired assignments such as the one on
line 8, which will also be described below.

Lines 10-13 show a procedural block, in this case an
always block. An always block denotes a constantly run-
ning computation, essentially an infinite loop. Note that
Verilog also has an initial block, which runs only at the
beginning of simulation. An initial block can be seen in
the example in Figure 2. The term procedural blocks refers
to always and initial blocks collectively. In its most basic
form the always block takes a single statement. The phrase
@(posedge clk) delays the statement or block following it
until its condition is met. Meeting the condition, in this
case, requires the value of clk to change from some non-1
value to 1 (a positive edge). This allows us to delay the en-
tire body of the always, resulting in the value of the reg r
only changing on the positive edge of the clk input. For the
purposes of this definition, we refer to @(X) for some X
as a trigger, while X itself is often known as a sensitivity
list (X may refer to more than one variable or net separated
by the keyword or).

1It must be noted that, when synthesized to hardware, data declared
with a variable type may require no actual state elements. If so, the syn-
thesizer will allocate no storage

2

The assignment on line 8 is a net assignment. Perhaps
somewhat counter-intuitively, this assignment will be the
last action of the module on a given positive edge of clk.
A net assignment occurs whenever any value in its right
hand side changes, in this case, when r changes. This can
be thought of in terms of hardware as attaching a wire to the
output of the reg r.

This example only illustrates a very small number of
Verilog features, which we, however, believe are enough to
prepare the reader for the rest of the paper. More features
will be introduced as needed.

2.2 Types of Assignments

As the example in Figure 1 illustrates, there are two ba-
sic types of assignments at the top level, continuous assign-
ments, such as the one on line 8, that allow assignment to
net types, and procedural assignments, such as the one on
line 12, that allow assignment to variable types. Procedural
assignments can be broken down further into blocking and
non-blocking assignments.

The module in Figure 2 shows an initial block and two
always blocks, which look very similar, yet compute very
different results. In the initial block, nb 1 is initialized to 0.
In the block on lines 8–12, blocking assignments are used
(hence the variable names b 1,b 2), while lines 14–18 use
non-blocking assignments.

To understand what is going on in this example, let us
assume a value for in. Let in be 1, then, considering the first
always block on lines 8–12, the value of b 1 will be 1, while
that of b 2 will be 2. This is because the assignment of b 1
blocks the statements following it until its completion. The
non-blocking assignments in the block on line 14–18 do not
block the statements following them. Following the block,
nb 1 will contain 1, but nb 2 will also contain 1, because
the previous value of nb 1 (0) is used in the assignment
on line 17.

2.3 Processes and Events

As a language created to model and design circuits,
Verilog is inherently concurrent. Capturing this concur-
rency, and the resulting non-determinism allowed by the
standard, is one of the most important tasks of any formal
definition of the language. Many Verilog users, however,
learn the language primarily through simulators, which tend
to be single threaded and deterministic.

To ease understanding and maintain consistency, we
adopt several of the terms used in the Verilog standard. First
and foremost is that of the process. In a Verilog design a
process is anything that can perform computation. Accord-
ing to Section 11.2 in the standard, “Processes are objects

1 module assignment_types(clk, in);
2 input clk;
3 input [15:0] in;
4 reg[15:0] b_1, b_2, nb_1, nb_2;
5
6 initial nb_1 = 0;
7
8 always@(posedge clk)
9 begin
10 b_1 = in;
11 b_2 = b_1 + 1;
12 end
13
14 always@(posedge clk)
15 begin
16 nb_1 <= in;
17 nb_2 <= nb_1 + 1;
18 end
19 endmodule

Figure 2. Assignment Types Example

that can be evaluated, that may have state, and that can re-
spond to changes on their inputs to produce outputs”. Going
back to our introductory flipflop example from Figure 1, the
always block on lines 10–13 is one process, while the wire
assignment on line 8 is another. The module itself is also
a process.2 Our formal representation of processes is given
in Section 4.

While processes are very specific, the terminology of
event encompasses several different concepts. Except
where specifically mentioned, we try to make the event ter-
minology of the standard explicit in the definition, to ease
understanding for those familiar with the standard. Every
update of a net or variable is an update event. The evalua-
tion of a process is an evaluation event. This is the only type
of event that is not explicitly represented in the definition,
which merges the concepts of process and evaluation event,
effectively treating processes as events.

2.4 Event and Process Scheduling and Timing

While Verilog is used to synthesize circuit designs, it is
essentially designed for simulation. Because of this, Verilog
is sensitive to simulator time. In fact, in addition to the
ability to delay statements until a particular condition holds,
such as on line 10 in Figure 1, it is also possible to delay
statements some number of simulator cycles.3 The syntax
for this consists of preceding a statement, say S, with # N,
which means that S will be delayed N simulator cycles.

Events can be further divided into five categories that

2Though our definition handles modules much as typical simulators: it
inlines them into the top module, this semantics gives equivalent results to
treating modules as actual processes

3Simulator cycles are an abstract unit of time not tied to any particular
real world unit of time.

3

determine how they are scheduled for execution with re-
spect to simulation time: active events, inactive events, non-
blocking assign update events, monitor events, and future
events. We further add the category of listening events,
which do not exist in the standard but help clarify the ex-
ecution of Verilog designs.

Active events are all events that are currently running,
i.e., they are not waiting for any specific trigger, and they
have not been delayed. Inactive events are curious, in that
they only occur when a statement has been delayed by ex-
actly zero simulator cycles (e.g., # 0 r = 1;). Non-blocking
assign update events correspond to the actual change in
state that occurs after a non-blocking assignment. Moni-
tor events are related the Verilog monitor statement, which
is essentially a print statement that occurs at the end of ev-
ery simulator cycle in which its arguments change4. Fu-
ture events are processes that have been delayed by some
non-zero amount, which must still eventually execute. Lis-
tening events are those events that are waiting for a par-
ticular trigger to occur; they will be promoted to active
events/processes as soon as that trigger occurs (such as the
positive edge of clk on line 8 of Figure 2).

Each type of event, as listed, is promoted to an active
event/process only when there are no events before it in the
list, except for listening events, which may be promoted as
soon as the trigger that they are listening for occurs. For
example, inactive events are all, at the same time, acti-
vated (that is, promoted to active events) when there are no
more active events/processes left. Similarly, non-blocking
assign update events are all simultaneously promoted to ac-
tive events/processes when there are no more active or inac-
tive events in the given simulation cycle. When all events,
except for listening events and future events, have been ex-
hausted, the time is advanced to the time specified for the
earliest future event. If there are no pending future events
the program completes execution. Section 4.6 provides the
formal definition of part of this scheduling.

2.5 Value Sizing

Verilog has interesting rules for the size of operands.
Figure 3 shows a simple, by no means exhaustive, exam-
ple of this. Despite the fact that both r 1 and r 2 are only
four bits wide, the reg out is still assigned the value 30.
For the purposes of the addition, r 1 and r 2 are treated as
sixteen bit quantities, because out is a sixteen bit quantity.
There are many different rules for the sizing of values; the
above example only covers one of them (sizing to the left
hand side of an expression). All of the rules are covered
in our definition. Due to the fact that the standard specifies
these rules very clearly, we refer the interested reader to the

4It ignores changes in the output of the $time() function, however.

1 module value_size;
2 reg[3:0] r_1, r_2;
3 reg[15:0] out;
4
5 initial
6 begin
7 r_1 = 15;
8 r_2 = 15;
9 out = r_1 + r_2;
10 end
11 endmodule

Figure 3. Value Sizing Example

standard or the full specification of our definition available
at [12].

3 Rewriting Logic Semantics

To better understand the semantics of Verilog presented
in this paper, we provide a brief introduction to term rewrit-
ing, rewriting logic, and the use of rewriting logic in pro-
gramming language definitions. Term rewriting is a stan-
dard computational model supported by many systems;
rewriting logic [13, 10] organizes term rewriting modulo
equations as a complete logic and serves as a founda-
tion for programming language semantics [16, 14, 15, 5].
Continuation-based rewriting logic semantics (RLS), the
form of rewriting logic semantics adopted in this paper, pro-
vides explicit representations of control context and repre-
sents the state of a running program/design as a multiset of
nested terms.

3.1 Term Rewriting

Term rewriting is a model of computation that works by
progressively changing (rewriting) a term. This rewriting
process is defined by a number of rules, which are each of
the form: l→ r, where the terms l, r may contain free vari-
ables. One step of rewriting is performed by first finding a
rule whose left hand side matches either the entire term or
a subterm. This is done by finding a substitution, θ, from
variables to terms such that the left-hand side of the rule, l,
matches part or all of the current term when the variables in
l are instantiated according to the substitution. The matched
subterm is then replaced by the result of applying the sub-
stitution to the right-hand side of the rule, r. Thus, the part
of the current term matching θ(l) is replaced by θ(r). The
rewriting process continues as long as it is possible to find
a subterm, rule, and substitution such that θ(l) matches the
subterm. When no matching subterms are found, the rewrit-
ing process terminates, with the final term being the result
of the computation. Rewriting, like other methods of com-
putation, may not terminate.

4

There exist a plethora of term rewriting engines, includ-
ing ASF [24], Elan [1], Maude [4], OBJ [7], Stratego [25],
Tom [18], and others. Rewriting is also a fundamental part
of many existing languages and theorem provers.

3.2 Rewriting Logic

Rewriting logic [13] is a computational logic built upon
equational logic which provides support for concurrency.
In equational logic, a number of sorts (types) and equations
are defined. The equations specify which terms are con-
sidered to be equal. All equal terms can then be seen as
members of the same equivalence class of terms, a concept
similar to that from the λ calculus, where λ terms can be
grouped into equivalence classes based on relations such as
α and β equivalence. Rewriting logic provides rules in ad-
dition to equations, used to transition between equivalence
classes of terms. This allows for concurrency, where differ-
ent orders of evaluation could lead to non-equivalent results,
such as in the case of data races. Transitions in the sys-
tem, such as updating a variable or net in Verilog, must be
with rules, rather than equations, because they result in ac-
tual changes of evaluation state. Simple evaluation, such as
adding two constant numbers, can be written using an equa-
tion because no change to the externally visible state oc-
curs. The distinction between rules and equations is crucial
for formal analysis, since terms which are equal according
to equational deduction can all be collapsed into the same
analysis state. Rewriting logic is connected to term rewrit-
ing in that some equations, such as associativity, commuta-
tivity, and identity, can be used as structural axioms, so that
matching of rules happens modulo such axioms, and the re-
maining equations and rules, respectively of the form l = r
and l ⇒ r, can be transformed into term rewriting rules by
orienting them properly (necessary because equations can
be used for deduction in either direction), transforming both
into l → r. This provides a means of taking a definition in
rewriting logic and a term and “executing” it.

3.3 Continuation-based RLS

In Continuation-based Rewriting Logic Semantics,
the current program is represented as an associative-
commutative multiset of nested terms representing the cur-
rent processes, store, pending update events, etc. Informa-
tion stored in the state can be nested, allowing logically
related information to be grouped and manipulated as a
whole. Arguably, the most important pieces of informa-
tion are the Continuations, named k, which are first-order
representations of the current computation for each active
process, made up of a list of instructions separated by y.
The continuation can be seen as a stack, with the current
instruction at the left and the remainder (continuation) of

the computation to the right. These stacks, along with other
state components, can be saved and restored later, allow-
ing for clear definition of the delay and trigger constructs.
Below is a rewriting logic equation specifying how blocks
denoted by begin and end are scheduled for evaluation
within a process.

k(stmt(begin S SL end y K)
= k(stmt(S) y stmt(begin SL end) y K)

5

The conventions used in the above equation will be main-
tained throughout this paper: semantic operators (such as
stmt, k) are denoted in a sans serif font, while portions of
Verilog syntax (begin and end) are denoted in bold face,
and term variables (such as S and SL) are in italics. This
equation unrolls a single statement consisting of a block
into a semantic series of statements. The variable S refers
to a single statement, while SL is a list of statements and
K refers to the rest of the computation. In our syntax it is
the statement itself that ends with Verilog’s semi-colon ter-
minator, so statement lists use a space for concatenation of
statements. Below is a computation for the block on lines
9–12 of Figure 2 before and after the above equation is ap-
plied one time, and then after it is applied again. Note that
this is an equation rather than a rule because no change to
the actual state of the program takes place; only the repre-
sentation of the program changes.

k(stmt(begin b 1 = in; b 2 = b 1 + 1; end))
. . . k(stmt(b 1 = in;) y stmt(begin b 2 = b 1 + 1; end))
. . . k(stmt(b 1 = in;) y stmt(b 2 = b 1 + 1;)

y stmt(begin empty end))

Note that this is the whole computation, so the K in the
above equation matches an empty computation (which is
the identity for the y operator). As the sans serif font de-
notes, empty is a semantic constant. It simply stands for an
empty statement list, the equation below handles this case;
for simplicity we abuse the term empty to be identity for any
sort (i.e., for both statement lists and computations).

stmt(begin empty end) = empty

4 Rewriting Logic Semantics of Verilog

We next introduce the most interesting portions of our
definition. We have to present chosen those features of
Verilog that we feel are most central to the spirit of the

5Those who are familiar with rewriting logic or term rewriting may
note that there is no need to match the k operator in this equation. It is not
matched in the actual definition, and is only matched here for clarity.

5

env(clk← [0#1], in← [0#16], out← [0#16], r← [0#16])
time(0)
activeProcesses(k(top(always@(posedge clk)

begin
r <= in;

end
)))

updateEvents(empty)
inactiveEvents(empty)
nonBlockingAssignUpdateEvents(empty)
monitorEvents(empty)
futureEvents(empty)
futureMonitorEvents(empty)
listeningEvents(continuousListeningEvent(r, out, exp(16, r)))
output(empty)
finish(false)

Figure 4. Initial Configuration for Flipflop Ex-
ample

language. Other features are elided, but not from the def-
inition itself, because either we feel the standard describes
them very clearly (such as value sizing mentioned before),
or they are not particularly interesting (such as the equations
and rules for the Verilog $display() function). Interested
readers are encouraged to check the full definition [12].

4.1 Verilog Configuration

We begin by introducing the configuration for Verilog
programs. A configuration is the term representation for
the state of a whole program, all equations and rules in the
definition are repeatedly applied to this configuration to ad-
vance the state of the system.

The initial configuration for the flipflop example pro-
gram from Figure 1 can be seen in Figure 4.

The first subterm, env is the environment of the system.
It is a mapping from variable or net names to bit vectors.
The first element in a bit vector is the value, the second (af-
ter the #) is the size of the bitvector. Note that nothing in the
configuration distinguishes nets from variables. This is one
of the first lessons of the Verilog standard: net and variable
types only need be distinguished at the syntactic level. It is
enough to have a static analysis that determines if nets and
variables are used incorrectly. This fits neatly with the fact
that the storage elements for variable types are generally not
allocated by Verilog synthesis tools when no storage is ac-
tually needed. In our opinion, the distinction between nets
and variables is very much an archaic part of the standard
that is no longer strictly necessary. It is well known that
combinatorial circuits can be generated from always blocks
under certain conditions6. Section 4.3 discusses how modi-

6The always block begins with a trigger statement that contains all the
names of every variable or net used to compute values, and no persistent
storage is necessary.

fications to the environment are defined.
The second subterm, time, contains the current simulator

cycle, which always begins at 0.
The subterm activeProcesses contains all the currently

active processes. In this case there is only one, the always
block from lines 10–13. As mentioned in Section 3.3, the
operator k denotes a computation. The operator top denotes
that the enclosed syntax is a top term, a name we created
ourselves. We break intramodule Verilog syntax into three
categories: top, statement, and expression. Statement and
expression are standard terms (expressions compute a value,
statements are evaluated for their side effects), while top is
either a procedural block (always or initial) or a continuous
wire assignment.

Section 4.2 discusses how the evaluation of procedural
blocks (always and initial) is defined, while Section 4.5
will show how the trigger (@(posedge clk)) is evaluated.

Subterm inactiveEvents contains empty because no state-
ments have been delayed by zero cycles; this will also
be discussed in Section 4.5. Additionally, nonBlockingAs-
signUpdateEvents, monitorEvents, futureEvents are all
empty because no non-blocking assignments, monitor state-
ments, or non-zero delay statements have occurred in the
initial state of the system. The subterm futureMonitor events
is also related to monitor events. Monitor statements are not
covered in depth here (see [12]).

The subterm listeningEvents contains all those processes
that are listening for a change in some variable or net, so
that they can continue execution. In the initial state, only
the assign statement is listening. The term continuousLis-
teningEvent distinguishes this as a continuous net assign-
ment, rather than a procedural process, which would use in-
stead the term listeningEvent. The reason for this distinction
is explained in Section 4.3. The continuousListeningEvent
operator takes three arguments: the first, in this case r, is the
sensitivity list that must experience a change for the listen-
ing event to be activated (in this case it is only a single vari-
able). The second argument is the net to which the contin-
uous net assignment assigns; this is significant for reasons
explained in Section 4.3. The last argument is the expres-
sion that makes up the right hand side of the net assignment,
stored as a computation. The term constructor exp simply
denotes that this computation is an expression rather than
top or statement. The first argument is used for sizing val-
ues, which, as mentioned in Section 2.5, is elided from this
paper; the argument is included here for completeness.

The subterm output is used to hold the output of the func-
tions $display, $strobe, and $monitor. The contents of
output are reported at program termination; it should obvi-
ously begin empty as no output has been generated before
the program runs.

The operator finish supports the Verilog function $finish.

6

4.2 Procedural Blocks

The semantics for initial blocks are very simple. The
statements of an initial block must run exactly once. The
equation below simply strips off the initial keyword, forc-
ing the statements represented by S to evaluate. Note that
the k operator is not mentioned in the equation; in fact, no
subterms are mentioned except those we explicitly require.

top(initial S) = stmt(S)

The semantics of always is very similar, except that the
statements of the body of the block must be repeated indef-
initely, thus the equation forces the statements S to be run,
but also schedules another copy of the always block to run
after S completes. In this case the equation must match the
k operator to keep the always block from infinitely unrolling
rather than executing the statements of the body before un-
rolling another step.

k(top(always S)) = k(stmt(S) y top(always S))

4.3 Assignments

At their most basic level, the different types of assign-
ments generate update events. The update events them-
selves are responsible for actually updating the environment
of the system and waking up any listening processes, as will
be explained in the next section. In addition to the presented
equations/rules, there also are assignments with delays or
triggers in the right hand side. The semantics of these dif-
fer from delayed statements, which are described in Section
4.5, but are elided for the sake of brevity.

We begin first with blocking assignments, for which it
is imperative that any trailing statements are not executed
until the generated update event completes. The first step,
which is not shown, is to calculate the value of the right
hand side of the assignment. The equation below assumes
that the right hand side is already evaluated, the result being
the BV at the beginning of the computation.

activeProcesses(k(BV y blockingAssign(X) y K) PS)
updateEvents(ES)
= activeProcesses(PS)
updateEvents(updateEventList(updateEvent(X,BV),K) ES)

Here PS is a set of processes and ES is a set of events, as
previously seen. Again, X is a variable name, while K is
the rest of the computation. The important point here is that
the K term is placed in the updateEvent list that is added

1 module netassign;
2 wire w;
3 reg r;
4
5 assign w = r;
6
7 initial
8 begin
9 r = 0;
10 r = 1;
11 end
12 endmodule

Figure 5. Net Assignment Example

to updateEvents. This K will contain any remaining state-
ments in the given procedural block. As we will see in the
next section, this K will be run as an active process once
the update event updates the state of the system. K is re-
moved from the activeProcesses for the time being, until
the generated updateEvent completes. The updateEventList
term allows us to group any number of update events that
must be executed in order. This is useful both for assign-
ments with concatenations on the left-hand side (see [12]),
and for scheduling non-blocking assign update events.

While very similar in form, we use a rule to define non-
blocking assignments. The reason for this is that all of
the non-blocking assignments added to the nonBlockingAs-
signUpdateEvents set are eventually scheduled to execute
in one updateEventList (see Section 4.6). This is to facil-
itate the standard mandate that non-blocking assignments
in one procedural block complete in order. If an equation
were used, non-blocking assignments in different procedu-
ral blocks would only be allowed to interleave in one order.
With a rule, we ensure that non-blocking assignments may
be ordered non-deterministically, while still keeping the or-
dering within one block.

activeProcesses(k(BV y nonBlockingAssign(X) y K) PS)
nonBlockingAssignUpdateEvents(EL)
→ activeProcesses(k(K) PS)
nonBlockingAssignUpdateEvents(updateEvent(X,BV);EL) ES)

Here EL represents a list of events. A list differs from
a set in that the elements are ordered. Note that the term
K is allowed to continue as k(K) appears in the activeProc-
cesses on the right hand side of the rule. This is exactly
the desired semantics of a non-blocking assignment: the
rest of the block is allowed to complete before the update
event from the assignment is allowed to make any change
to the environment.

Lastly, we have the two equations for continuous (net)
assignment. The important issue here is that only one out-
standing update event exists for a given net at a time. This is
actually an issue which is not explicitly covered in the stan-
dard. The best we can glean from the standard is that a net

7

assignment should perform essentially as an always block
with one blocking assignment in it (save that the type of the
left hand side must be a net type). We argue that this does
not quite make sense, though we do provide a version of the
definition that performs this way. Instead we propose a se-
mantics that is similar to the one proposed by Gordon [8].
The issue is that, since update events are processed concur-
rently, if the always block approach is taken, very counter-
intuitive results are possible. For example, in Figure 5, if
the always block semantics is used, w could be 0 or 1 af-
ter evaluation. Because nets are supposed to represent the
ideal of a wire attached to an input, we argue that only 1
makes sense as a result for w. An argument can be made
that using an always block semantics makes sense, and that
assignments to the same variable should never occur in the
same simulator cycle, however. We believe that this is an
interesting and open topic of debate.

activeProcesses(continuousk(X,BV1) PS)
updateEvents(continuousUpdateEvent(X,BV2) ES)
= activeProcesses(PS)
updateEvents(continuousUpdateEvent(X,BV1) ES)

activeProcesses(continuousk(X,BV) PS)
updateEvents(ES)
= activeProcesses(PS)
updateEvents(continuousUpdateEvent(X,BV) ES)
otherwise

BV1 and BV in the first and second equations, respec-
tively, are the results of assignment computations. By the
time a bitvector becomes the sole remaining argument, the
computation has been completely evaluated. The first equa-
tion will replace any pending update event to the same net
with an update containing the current value of the assign-
ment right hand side computation, BV1. Gordon refers to
this idea as cancelling. The second equation is an otherwise
equation [4] that is only applied if the first equation does
not match because there is not already a pending continu-
ousUpdateEvent.

4.4 Variable Lookup and Updating

Net/variable lookup and updating is performed by rules.
The reason for this is that the lookup and updating of vari-
ables can affect the state of other concurrent processes. As
well as a theoretical argument that this constructs must be
rules because they affect the output of the program, there
is a practical argument: rewriting logic supporting tools
such as Maude [4] (which is used for our definition) are
able to search the non-deterministic state space of a running
Verilog program, but it only uses the rules of the definition,
not the equations, to search non-deterministic choices.

The first rule is for net/variable lookup. The value of
a given net or variable is simply found in the store. Note
that we must mention the activeProcesses term because env
exists at the top level of the configuration. There are also
rules for variable or net slice lookups, and lookups of both
varieties for continuous (wire assign) processes. These are
similar and thus omitted. The value sizing has also been
removed for simplicity.

activeProcesses(k(exp(N,X) y K) PS) env(X ← BV,Env)
→ activeProcesses(k(BV y K) PS) env(X ← BV,Env).

Here BV is a bitvector, PS is the remaining active pro-
cesses, K is the rest of the computation, X is the variable or
net name, and Env is the rest of the environment.

Net/variable updating occurs when an update event ex-
ecutes. Update events are generated by the assignments
explained in the previous subsection. Update events must
update the environment, wake up any process that is cur-
rently waiting as a listening event, and alert any monitor
event that the value has changed.

updateEvents(updateEventList(updateEvent(X,BV1);EL,K)ES1)
monitorEvents(ES2)
env(X ← BV2,Env)
listeningEvents(ES2)
→ updateEvents(updateEventList(EL,K)ES1)
env(X ← BV1,Env)
listeningEvents(sense(X,BV2,BV1,ES2))
monitorEvents(sense(X,BV2,BV1,ES3))

Here the various ES’s represent sets of events. The up-
dateEventList groups several update events as a list. This
allows us to ensure that non-blocking assignments oc-
cur in program text order within a procedural block, as
well as allowing for an easy and clear representation of
concatenation-form assignments (see [12]). The opera-
tor sense is responsible for waking up the proper listen-
ing events and deciding if any monitor event need exe-
cute in the current simulator cycle. It uses the previous
and current value of the variable or net that is updated to
make its determinations.

The last equation here schedules the K from the upda-
teEventList to execute when all update events in the upda-
teEventList have been exhausted. For non-blocking assign-
ments, the term K will by empty, meaning that nothing is
scheduled (see Section 4.6).

updateEvents(updateEventList(empty,K) ES)
activeProcesses(PS)
= updateEvents(ES)
activeProcesses(k(K) PS)

8

4.5 Delays and Triggers

The semantics for delays and triggers is fairly straight-
forward. Delays simply move the current active process to
the future event set with a simulator time equal to the cur-
rent time added to the time of the delay, if the delay is non-
zero. If the delay is zero, the rest of the active processes is
moved to the set of inactive events set. Triggers add the rest
of the current active process to the set of listening events.
The equations for each of these follow.

activeProcesses(k(stmt(# NzN S) y K) PS)
futureEvents(EL)time(N)
= activeProcesses(PS)
futureEvents(futureEvent(N + NzN, stmt(S) y K);EL)
time(N)

Here, in the equation for non-zero delays, NzN is a non-
zero natural number, while N is any natural number. N is
the current time, while NzN is the delay. As expected, the
rest of the current process, K, is added to the future event
set, as well as the delayed statement S. The first argument
to the futureEvent operator is the simulator cycle in which
the event should be scheduled to run as an active process.

activeProcesses(k(stmt(# 0 S) y K) PS)
inactiveEvents(EL)
= activeProcesses(PS)
inactiveEvents(inactiveEvent(stmt(S) y K);EL)

This equation for zero delayed statements differs only
in that the rest of the active process is moved to the inac-
tive events set.

activeProcesses(k(stmt(@(SL) S) y K) PS)
listeningEvents(EL)
= activeProcesses(PS)
listeningEvents(listeningEvent(SL, stmt(S) y K);EL)

In the last equation, the process is added to the listening
events set. Here, SL is the sensitivity list; it is maintained
as the first argument to the listeningEvent so that sense can
decide which listening events must be scheduled when an
update event executes.

4.6 Process/Event Scheduling

Lastly, we present some of the rules for scheduling the
main simulator loop. The general ordering of events was
given in Section 2.4. The general idea is to continue with
the next set of events in the list when all the previous sets
are empty.

Active processes and update events are allowed to
run at any time. The first set of events activated
when active processes and update events are exhausted is
the inactive events.

activeProcesses(empty)
updateEvents(empty)
inactiveEvents(NES)
→ activeProcesses(activate(NES))
updateEvents(empty)
inactiveEvents(empty)

The operator activate schedules each individual inactive
event as an active process with its own k operator. Here the
term NES is specifically a non-empty set of events.

When there are no active processes, update events,
or inactive events, the non-blocking assign update events
are activated simultaneously by moving them to the
update event set.

activeProcesses(empty)
updateEvents(empty)
inactiveEvents(empty)
nonBlockingAssignUpdate(NEL)
→ activeProcesses(empty))
updateEvents(updateEventList(NEL, empty))
inactiveEvents(empty)
nonBlockingAssignUpdateEvents(empty)

The variable NEL denotes a non-empty list of events.
The events in the non-blocking assign update event set are
added to one updateEventList. The continuation argument
is empty, as there is nothing to continue after a non-blocking
assignment changes the state of the program, as mentioned
in Section 4.4. The rest of the scheduling rules are elided;
they may be found in the full definition [12].

5 Using the Semantics

The first use of the semantics, as a tool, is running
Verilog programs within Maude [4]. The Maude rewrite
command simply chooses some fair deterministic order for
applying rules. If the rewrite command is used with the
Verilog semantics and a Verilog program, it is similar to
a simulator for Verilog. What gives us extra power, how-
ever, is the Maude search command. This command, as
mentioned briefly earlier, allows for searching all possible
non-deterministic choices during the rewriting process. The
upshot of this is that if there is visible non-determinism in
a Verilog program it will become manifest as multiple pos-
sible outputs from the program. It is also possible to apply
the Maude LTL model checker to search for possible safety
and liveness violations. The only caveat to these uses is that
the Verilog programs must be of fairly small size (less than
approximately 40,000 lines of code).

9

1 module propagation_loop;
2
3 reg [15:0] x;
4
5 initial
6 begin
7 x = 0;
8 x <= 2;
9 #10 $display("x = %d", x);
10 $finish;
11 end
12
13 always @(x[0])
14 begin
15 x = x + 1;
16 end
17
18 endmodule

Figure 6. Propagation Loop Example

Displaying the possible outputs of non-deterministic
programs using the search command allows for verifying
the results of simulators or other formal tools. For instance,
the example in Figure 6 shows a Verilog program that ter-
minates with x = 3 in VCS, but in Iverilog v.092 produces
an infinite loop. Running the semantics tells us that x = 3
is a possible solution, but an infinite loop is not. This was
submitted to the Iverilog community, who have agreed that
this is a bug. Several other examples of differing output be-
tween the two can be seen in Section 5.1. Some of these
examples can be determined to both be correct with respect
to the semantics as we have defined them, meaning that the
output of each was listed as a possible output using search.

5.1 Examples

Here we show more of the examples we have discovered
where the output of Iverilog and VCS differ substantially.
In some places the differing results both occur as possible
outputs from our definition. In some cases the output of the
Iverilog simulation does not conform to any of hte possible
outputs from the definition, and it is not clear if perhaps the
output of Iverilog should be visible from the definition.

Figure 7 shows an example that tests the propagation of
values to net assignments. The value of y is updated from
0 to 1 twice, which generates two positive edges on y and
up to two positive edges on x. Iverilog executes the dis-
play zero times, while VCS executes it once. It should ac-
tually display at least once because even if only the value
of the last assignment to y is propagated to x, going from
the uninitialized value to 1 should result in a positive edge.
One may make the argument that the always block can fail
to begin (and thus become delayed) before the update to
x. Currently, in our definition, the always block must be-

1 module net_assignment;
2
3 wire x;
4 reg y;
5
6 assign x = y;
7
8 initial
9 begin
10 y = 0; y = 1;
11 y = 0; y = 1;
12 end
13
14 always@(posedge x) $display("posedge x");
15
16 endmodule

Figure 7. Net Assignment Nondeterminism

1 module nonblocking_assignment;
2
3 reg [15:0] x,y;
4
5 initial
6 begin
7 y = 0;
8 x <= 0; x <= 1;
9 x <= 2; x <= 3;
10 #10
11 $display("x = %d, y = %d\n", x, y);
12 end
13
14 always @(x[0])
15 begin
16 y <= y + 1;
17 end
18
19 endmodule

Figure 8. Non-Blocking Assignment Bug

gin execution before the update to x because scheduling the
execution of an always block is an equation rather than a
rule. We believe that this is an interesting area of discussion
with regards to the standard: should all of the updates be
allowed to occur before the always block begins execution?
What is particularly interesting is that Iverilog displays the
”posedge x” output if the always block is moved from line
14 to line 5. The conclusion we draw is that Iverilog sched-
ules events in textual order. This could potentially lead to
misunderstandings for users.

Figure 8 shows a program which updates the values of
the variable x with non-blocking assignments. The delay on
line 10 is used to ensure that the non-blocking assignments
have their updates scheduled before the call to $display.
With VCS the register y has the value 1 at the end, while
in iVerilog it has the value 2, which is not a correct answer

10

1 module finish;
2
3 always #25 $display($time);
4
5 initial #100 $finish;
6
7 endmodule

Figure 9. Finish Nondeterminism

under the standard. The reason 2 is not a possible answer
is that all of the non-blocking assignment updates for x are
scheduled at the same time. Any non-blocking assignments
to y cannot cause actual updating until after all the updates
to x occur. Thus, regardless of the number of non-blocking
assignments to y that actually occur (which is nondetermin-
istic) the value of y on the right hand side must always be
0. This was submitted as a bug to the Iverilog team, and has
since been fixed.

Figure 9 shows a situation in which Iverilog and VCS
produce different results that are both correct under our defi-
nition. Iverilog will display 25, 50, 75, 100, while VCS will
not display the final 100. This is due to the nondetermin-
ism of scheduling $finish. It is valid for $finish to happen
before or after the last $display.

6 Related Work

In [8], Michael Gordon presents a formal semantics for
a simplified version of Verilog called V. V does not deal
with many of the features of Verilog that our definition
does (such as value sizing). Additionally, it uses new ter-
minology rather than that of the standard. While the syn-
tax described in the paper is formal, the semantics, as pre-
sented, are primarily in English language form. Addition-
ally, the semantics presented is not executable, making it
more difficult to ask questions about what output a given
program should produce.

Gordon Pace and Jifeng He present a brief formal seman-
tics of Verilog in [19]. While completely formal, the defi-
nition they present does not cover several major features of
Verilog, such as non-blocking assignments or handling the
intricacies of bitvectors. Additionally, their semantics is not
executable, though they do use it to prove some interesting
theorems regarding some Verilog case study programs, such
as the mutual exclusion of synchronizing handshake.

In [27], Huibiao Zhu, Jifeng He, and Jonathan Bowen
present an algebraic semantics of Verilog, which they use
to derive a denotational semantics. Their semantics cover
a smaller subset of the language than He’s earlier work
in [19]: not even net assignments are covered. Essentially,
only procedural blocks with blocking assignments and tim-

ing controls are defined.
Of the definitions that we have found, ours is the clos-

est to covering the whole of the Verilog language. Only
a few small features such as tasks are not in the current
definition, and we intend to add them. Additionally, only
our semantics is executable, allowing for experimentation
with Verilog programs.

7 Conclusions

We introduced a new executable formal semantics for
the Verilog language. Formal definitions were presented for
several of the key constructs of Verilog. We believe that our
definition can be useful both for clearing up misunderstand-
ings about the standard as well as a starting point for discus-
sion on exactly what the standard should entail, e.g., should
net assignments be treated deterministically, as presented in
Section 4.3, or non-deterministically (as an always block
with one blocking assignment) as the standard seems to im-
ply? Because our definition is executable, asking questions
about what a certain Verilog program should output is far
easier. The full definition is available at [12], and we en-
courage readers to peruse it.

References

[1] P. Borovansky, C. Kirchner, H. Kirchner, and P. E. Moreau.
ELAN from a Rewriting Logic Point of View. Theoretical
Computer Science, 285(2):155–185, 2002.

[2] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and J. Quesada. Maude: specification and pro-
gramming in rewriting logic. Theoretical Computer Science,
285:187–243, 2002.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott. The Maude 2.0 system. In
Rewriting Techniques and Applications (RTA’03), volume
2706 of LNCS, pages 76–87. Springer, 2003.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. L. Talcott. All About Maude - A High-
Performance Logical Framework, How to Specify, Program
and Verify Systems in Rewriting Logic. Springer, 2007.

[5] T. F. S, erbănut, ă, G. Ros, u, and J. Meseguer. A rewriting logic
approach to operational semantics. Information and Com-
putation, 207(2):305–340, 2009.

[6] M. Felleisen and R. Hieb. The revised report on the syn-
tactic theories of sequential control and state. Theoretical
Computer Science, 103(2):235–271, 1992.

[7] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In Software Engineering with
OBJ: algebraic specification in action. Kluwer, 2000.

[8] M. J. C. Gordon. The semantic challenge of verilog hdl.
In Logic in Computer Science (LICS’95), pages 136–145,
1995.

[9] IEEE Standard for Verilog Hardware Description Language.
IEEE Std 1364-2005, 2005.

11

[10] N. Martı́-Oliet and J. Meseguer. Rewriting logic: roadmap
and bibliography. Theoretical Computer Science, 285:121–
154, 2002.

[11] P. Meredith, M. Katelman, J. Meseguer, and G. Ros, u. For-
mal executable semantics of verilog – expanded technical
report. Technical report, May 2010. IDEALS entry.

[12] P. Meredith, M. Katelman, J. Meseguer, and G. Ros, u. For-
mal executable semantics of verilog webpage, 2010. fsl.
cs.uiuc.edu/verilog_semantics.

[13] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. Theoretical Computer Science, 96:73–155,
1992.

[14] J. Meseguer and G. Roşu. The rewriting logic semantics
project. In Structural Operational Semantics (SOS’05), vol-
ume 156 of ENTCS, pages 27–56. Elsevier, 2006.

[15] J. Meseguer and G. Roşu. The rewriting logic semantics
project. Theoretical Computer Science, 373(3):213–237,
2007.

[16] J. Meseguer and G. Ros, u. Rewriting Logic Semantics:
From Language Specifications to Formal Analysis Tools (IJ-
CAR’04). In International Joint Conference on Automated
Reasoning, volume 3097 of LNAI, pages 1–44. Springer,
2004.

[17] J. Meseguer and G. Ros, u. The rewriting logic semantics
project. Theoretical Computer Science, 373(3):213–237,
2007.

[18] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern
matching compiler for multiple target languages. In Com-
piler Construction (CC’03), pages 61–76, 2003.

[19] G. J. Pace and J. He. Formal reasoning with verilog
hdl. In Workshop on Formal Techniques for Hardware and
Hardware-like Systems, 1998.

[20] G. D. Plotkin. The origins of structural operational seman-
tics. Logic and Algebraic Programming, 60-61:3–15, 2004.

[21] G. D. Plotkin. A structural approach to operational se-
mantics. Logic and Algebraic Programming, 60-61:17–
139, 2004. Previously published as technical report DAIMI
FN-19, Computer Science Department, Aarhus University,
1981.

[22] D. Scott and C. Strachey. Toward a mathematical seman-
tics for computer languages. In J. Fox, editor, Symposium
on Computers and Automata, volume XXI, pages 19–46,
Brooklyn, N.Y., 1971. Polytechnic Press.

[23] Synopsys. Vcs. http://www.
synopsys.com/tools/verification/
functionalverification/pages/vcs.aspx.

[24] M. G. J. van den Brand, J. Heering, P. Klint, and P. A.
Olivier. Compiling language definitions: the ASF+SDF
compiler. ACM TOPLAS, 24(4):334–368, 2002.

[25] E. Visser. Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems. In Domain-Specific Program
Generation, pages 216–238, 2003.

[26] S. Williams. Icarus verilog. http://www.icarus.
com/eda/verilog/.

[27] H. Zhu, J. He, and J. P. Bowen. From algebraic se-
mantics to denotational semantics for verilog. In Interna-
tional Conference on Engineering Complex Computer Sys-
tems (ICECCS’06), pages 139–151, 2006.

12

