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Abstract

We present an exact path integral methodology for computing quantum dynamical infor-

mation. This method combines the concepts of iterative propagation with the features of

Monte Carlo sampling. The stepwise evaluation of the path integral circumvents the growth

of statistical error with time and the use of importance sampling leads to a favorable scaling

of required grid points with the number of particles. Three different Monte Carlo sam-

pling procedures are presented. Time correlation functions for several multi-dimensional

model systems are computed and accurate long time dynamics are obtained. In the end, the

capabilities and limitations of the method are discussed.
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Chapter 1

Introduction

Feynman makes a general argument in his paper “Simulating physics with computers” [1]

on why quantum dynamics is a hard computational problem. It goes as follows. In quantum

mechanics one is only allowed to compute probabilities. So to specify the initial state of

a system we would need a probability distribution. For example, to specify the initial

state of a single particle we need to supply probabilities at different configurations of this

system, which in this case are different position values. Let’s say we specify (or store in a

computer) this information with n numbers. For M particles, the number of configurations

that need to be specified with probabilities grows as nM . Hence, nM numbers are needed to

be stored. It is easily seen that as n and M grow, storing the initial conditions will get out of

hand pretty quickly. This exponential scaling is the central problem in computing quantum

dynamics. It is a direct consequence of the non-locality inherent to the quantum theory.

In contrast, for a system evolving under the laws of classical mechanics, 6M numbers are

needed to be stored (the factor of 6 comes from the initial three position coordinates and

three momenta). This linear scaling with number of particles has led to the development

of methods based on numerical integration of classical equations of motion, also known as

molecular dynamics, which have enjoyed enormous success in computing the dynamics of

classical systems. In the same paper, Feynman suggested that a quantum computer, i.e a

computer that itself operates under the laws of quantum mechanics, will offer a solution.

While there has been recent progress in both the experimental [2] and algorithmic [3] aspects

of quantum computing, large quantum computers are far in the future. This necessitates the

development of quantum dynamical methods for classical computers and this dissertation
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presents one such method. In this chapter, we review the essentials needed to understand

the method which will be presented in later chapters.

1.1 Quantum dynamics

The problem of quantum dynamics is to determine the properties of the wave function Ψ

of a system at time t, given the initial wave function at t = 0 and the Hamiltonian Ĥ of

the system. This problem is answered by solving the time-dependent Schrödinger equation

(TDSE),

i~
∂Ψ

∂t
= ĤΨ. (1.1)

This equation can be solved analytically for very few Hamiltonians, e.g. the free particle,

the linear potential, the harmonic oscillator. Computationally however, numerically exact

solutions for arbitrary Ĥ can be obtained. For this to work, the (initial) wave function

needs to be stored on a grid to start the numerical iteration. The cost (memory) of storing

the wave function, as argued before, increases exponentially with the number of degrees

of freedom. Therefore, exact results are only obtained for small systems via grid-based or

basis-sets methods [4]. The exponential storage problem can be avoided in Feynman’s path

integral approach to quantum mechanics [5, 6]. In this formulation the dynamics is given by

the integral

Ψ(x, t) =

∫

dx′K(x, x′; t)Ψ(x′, 0), (1.2)

where K(x, x′; t) ≡ 〈x|e−itĤ/~|x′〉 contains all information about the dynamical behavior of

a system and is known as the propagator.1 We will adopt a one-dimensional notation in

much of the following, realizing that the generalization to many dimensions is easy. It can

1Also called the Green’s function or the kernel
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be shown that the propagator satisfies the TDSE

i~
∂K

∂t
= ĤK (1.3)

with the initial condition K(x, x′; 0) = δ(x−x′). Since the TDSE is not solvable analytically

for a general Hamiltonian, K(x, x′; t) is unavailable analytically except for the few special

cases mentioned before. However, it can be proved [7] that the short time propagator of

any system can be well approximated by simple analytic expressions, such as the standard

Trotter formula [8]:

K(x, x′; ∆t) ≡ 〈x|e−i∆tĤ/~|x′〉 =
( m

2πi~∆t

)1/2

× exp

[

i

~

(

m

2∆t

(

x− x′
)2

−
∆t

2

(

V (x) + V (x′)
)

)]

,
(1.4)

where ∆t is a short time. The path integral provides the link between the propagator for

any time t and the (analytically) known short time propagator. Here is how the link is

established. The time evolution operator is factored into a product of N exponential opera-

tors, e−itĤ/~ = e−i∆tĤ/~e−i∆tĤ/~ . . . e−i∆tĤ/~, where N (the number of time discretizations or

slices) is chosen such that ∆t = t/N is a short time for the system of interest. It is clear that

each of these exponential operators, called the short time evolution operators, propagates

the system for time t/N . Complete sets of position eigenstates
∫

dxk|xk〉〈xk| = 1 are inserted

between the short time evolution operators, and the following result is obtained:

〈xN |e
−itĤ/~|x0〉 =

∫

dx1 · · ·

∫

dxN−1〈xN |e
−i∆tĤ/~|xN−1〉 · · · 〈x2|e

−i∆tĤ/~|x1〉〈x1|e
−i∆tĤ/~|x0〉,

(1.5)

3



where xN ≡ x and x0 ≡ x′. After using the Trotter formula for the short time propagators

in (1.5) we arrive at the result

K(xN , x0; t) =
( m

2πi~∆t

)
N
2

∫

dx1 · · ·

∫

dxN−1 exp

[

i

~

(

m

2∆t

N
∑

k=1

(

xk − xk−1

)2

−∆t
N
∑

k=0

λkV (xk)

)]

,

(1.6)

where λk = 1
2
for k = 0, N and λk = 1 otherwise. Each point xk is associated with a

particular time tk = k∆t/N , and thus the sequence {xk} ≡ x0, x1, x2, . . . , xN−1, xN denotes

a path in space-time connecting the fixed initial and final points, x0 and xN . The propagator

is obtained by summing over all possible paths that connect x0 and xN , i.e. by performing

a path integral. The paths contribute equally in magnitude since the absolute value of

the integrand in (1.6) is 1 for any sequence xk. The presence of i in the exponent makes

the integrand oscillatory, implying paths in general can cancel each other’s contributions (or

interfere). Hence, computing the path integral amounts to summing the contributions (which

involves cancellation) of an enormous number of equally-weighted paths. On a computer the

evaluation of this integral (call it I) starts by initializing it to 0 (I = 0). A sequence {xk}

is then picked and the integrand is computed and the result is added to I. The process

is repeated for another sequence until all possible sequences are picked. The final result is

then scaled by a factor which depends on the way the sequences were picked – for example,

randomly or in an orderly fashion. Note that at no stage we are required to store the

sequences (paths). Hence the path integral avoids the exponential storage problem associated

with the Schrödinger representation. However, numerical summation over paths presents

problems of its own. The path integral is a multi-dimensional integral with, in general,

(N−1)d dimensions, where d is the number of spatial dimensions. The dimensionality of this

integral becomes very high for long propagation times as a larger N is needed to maintain

the accuracy of short-time propagators. Numerical evaluation by quadrature (e.g. the
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trapezoidal rule) becomes exponentially more expensive as the dimensionality of the integral

increases [4]. Monte Carlo methods [9], which are suited for high dimensional integrals, fail

to compute (1.6) because the oscillatory nature of the integrand leads to the notorious sign

problem [10, 11, 12](see Sec 1.4). One way to avoid the sign problem is to compute the

integral in (1.5) one at a time from right to left [13]. This will take us back to the idea

of storing the propagated quantity that, as we discussed earlier, gets exponentially more

expensive with the system size d. The split propagator method [14] and numerical matrix

multiplication (NMM) [13] scheme employ the conventional (uniform) grid to carry out this

iterative propagation and work only for small systems of one, two or possibly three degrees of

freedom. Therefore, real-time path integration remains a challenge despite significant efforts

in the past few decades [11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] (see Chapter

2). Quite ironically, the path integral formalism – which was invented to extract quantum

dynamical information, has become a powerful and practical computational approach to

obtain time-independent (equilibrium) properties of a quantum system [29]. We explain this

next.

1.2 Imaginary time path integral

If we let t → −i~τ in (1.6), that is go to an imaginary time τ (where τ is assumed to be a

positive real number), we obtain

KIm(xN , x0; τ) =
( mN

2π~2τ

)
N
2

∫

dx1 · · ·

∫

dxN−1 exp

[

−

(

mN

2~2τ

N
∑

k=1

(

xk − xk−1

)2

+
τ

N

N
∑

k=0

λkV (xk)

)]

.

(1.7)

Equation (1.7) is the imaginary time path integral and KIm(xN , x0; τ) is the imaginary

time propagator. This path integral is easier to visualize than the real time counterpart

(1.6). Here, we can see that there are paths that contribute very little to the integral (as

5



compared to before when all of them contributed the same), for there are paths for which

the exponent is very large and thus the integrand is negligibly small. Moreover, we don’t

need to worry about paths cancelling each other’s contributions because the integrand is no

longer oscillatory (there is no i in the exponent), making all contributions add together with

some being large and others small [6]. This invites the application of Monte Carlo methods

which are the subject of the next section. If we now identify xN ≡ x0 (closing the path) and

take the integral over x0 on both sides of (1.7), we get

∫

dx0K
Im(x0, x0; τ) =

( m

2π~2∆τ

)N/2
∫

dx0

∫

dx1 · · ·

∫

dxN−1

exp

[

−

(

mN

2~2τ

N
∑

k=0

(

xk − xk−1

)2

+
τ

N

N−1
∑

k=0

V (xk)

)]

.

(1.8)

The left hand side of (1.8) is the trace of the operator e−τĤ . Identifying τ with the inverse

temperature β = 1
kBT

the operator becomes the Boltzmann operator and the trace gives

the partition function of a quantum system described by the Hamiltonian H at a given

temperature T [30]. After rearranging some terms in the exponent on the right hand side

we get the following result for the partition function:

Z =
( mN

2π~2β

)N/2

×

∫

dx0

∫

dx1 · · ·

∫

dxN−1 exp
[

− β

(N−1
∑

k=0

mN

2~2β2
(xk − xk+1)

2 +
N−1
∑

k=0

1

N
V (xk)

)

]

.

(1.9)

This is an interesting result, because it gives the equilibrium statistical mechanics of a

quantum system in terms of an integral that looks, apart from the presence of ~ and a

multiplicative constant, like the configuration integral of N classical particles in a potential

given by

U(x1, x2, . . . , xN) =
N−1
∑

k=0

[ mN

2~2β2
(xk − xk+1)

2 +
1

N
V (xk)

]

. (1.10)
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This means that a single quantum particle in a potential V (x) is isomorphic to a chain of N

(fictitious) classical particles that interact via harmonic springs of force constant mN/~2β2

and each of them feels a potential equal to V (x)/N . The quantum partition function is

thus equivalent to the classical partition function for this ensemble of pseudoparticles [7].

From the partition function thermodynamic quantities like free energy, internal energy, en-

tropy, etc. can be computed. For calculating other physical observables, say the average

position, we require the density matrix (operator) ρ̂ = e−βĤ/Tr(e−βĤ). Using the position

representation the density matrix is expressed as

ρ(xN , x0) =
KIm(xN , x0; β)

Z
, (1.11)

where KIm and Z are obtained from (1.7) and (1.9). Hence the density matrix is available

as the ratio of path integrals. The thermodynamic average of a physical observable A is

defined as

〈A〉 =
Tr(ρ̂Â)

Z
, (1.12)

where Â is the quantum mechanical operator corresponding to the observable A. By taking

the trace in the position representation it is easily shown that this average can also be

expressed as the ratio of two imaginary time path integrals. Thus the imaginary time

dynamics as represented in the path integral formulation, gives the complete description of

a quantum system at thermodynamic equilibrium [30]. Moreover, computing such thermal

averages now amounts to an exercise in multi-dimensional integration, an exercise most

welcome by the Monte Carlo method.
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1.3 The Monte Carlo method

To illustrate the ideas in this section we shall consider the integral2

I =

∫ 1

0

dx1

∫ 1

0

dx2 . . .

∫ 1

0

dxd f(x1, x2, . . . , xd). (1.13)

One can compute this integral by using a quadrature rule and summing f over, say, a series

of equally spaced lattice points in the d-dimensional hypercube. The error associated with

such a quadrature formula, like the trapezoidal rule, goes as O(N−2/d), where N is the

number of (lattice) points used [32]. But again, I can be thought of as an average of f(x)

in the hypercube of volume 1, and in this light one can evaluate it by summing the function

over random points distributed homogeneously in the d-dimensional hypercube. (1.13) then

becomes the sum

I =
1

N

N
∑

i=1

f(Xi), (1.14)

where Xi ≡ (x1, x2, . . . , xk, . . . , xd) is a point selected at random in the d-dimensional hy-

percube and N is the total number of such points. (1.14) is the Monte Carlo estimate of

the integral (1.13). Metropolis and Ulam say in their original paper [31] the estimate “will

never be confined within given limits with certainty, but only—if the number of trials is

great—with great probability.” There will always be a statistical error associated with a

Monte Carlo result. Using the central limit theorem the error in the estimate can be shown

[32] to be

σI = N−1/2σf , (1.15)

where σf is the square root of the variance of the integrand; that is, a measure of the

deviation of f from its average value.

Equation (1.15) reveals two important aspects about Monte Carlo (MC). First, the error

2Metropolis and Ulam present a similar integral to illustrate the method in perhaps the first paper on
Monte Carlo – [31].
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in the estimate of the integral decreases as N−1/2 no matter what the dimensionality of the

integral is! Compare this scaling with the error expression for the trapezoidal rule, O(N−2/d).

Clearly, as the dimensionality d of the integral increases, the number of points needed to

maintain the same precision (error) in a trapezoidal rule will have to be exponentiated with

d. On the other hand, MC will converge with about the same number of points as needed

to converge the result in one dimension. Second, the error in an MC estimate is less if σf is

smaller; that is, if f is (or can be manipulated to be) as smooth as possible. For example,

take f to be a constant function (the smoothest possible function). Then, even one point

gives a great estimate for the average. Next, say the function f is sharply peaked around a

particular point and small elsewhere (in other words, f is not smoothly varying). Clearly,

a homogeneous distribution of random points will give a very poor estimate to the integral

of this function as a majority of points will lie outside the region that contributes most

to the integral. Ideally, we would like to select/sample more points in the region where f

is large or important. This biasing of random points is acheived via importance sampling

[32] by introducing a weight function (also called probability density or sampling function)

w(x1, x2, . . . , xd) that is positive definite at all points and is normalized to unity.3 We write

the integral of (1.13) as,

I =

∫ 1

0

dx1

∫ 1

0

dx2 . . .

∫ 1

0

w(x1, x2, . . . , xd)
f(x1, x2, . . . , xd)

w(x1, x2, . . . , xd)
(1.16)

and instead of summing over a homogeneous distribution of random points (in other words,

points that are selected with a uniform weight), we distribute points according to the density

w, and then sum f/w over the selected distribution. The MC equivalent sum for the integral

becomes

I =
∑

Xi distributed according to w

f(Xi)

w(Xi)
. (1.17)

3w may not be normalized to unity, but its normalization should be known. When we compute averages
as ratios of two integrals, even the latter requirement is relaxed.
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One can now see that if w is chosen to have more or less the shape of f , in the sense that

the ratio f/w is close to 1, then σf/w is small. This dramatically reduces the error in the

MC estimate.

The next question is how to generate points distributed with the probability density

w. One can achieve this in an analytical manner by a change of variables (such that dy =

w(x)dx) and subsequent inversion or by numerical techniques such as the von Neuman

rejection method [32]. But these methods work only for a simplified probability density and

are not very efficient (if at all applicable) in large dimensions. A general method that easily

adapts to high dimensions and works for complicated probability densities is the method by

Metropolis et al [9]. This algorithm generates a sequence of points X0, X1, . . . via a random

walk proceeding through the d-dimensional configuration space according to a rule. As the

walk becomes longer and longer, the points connected by the random walker approximate

more closely the desired distribution. Here is the rule. Suppose the walker is at a point

Xn in the sequence. To generate Xn+1, it proposes a trial point Xtrial. This trial point

can be chosen in any convenient manner, for example uniformly at random within a small

hypercube about Xn. The trial point is then “accepted” or “rejected” according to the ratio

r = w(Xtrial)/w(Xn). If r ≥ 1, then the point is accepted, while if r < 1, the point is accepted

with probability r. Otherwise, the point is rejected. If accepted we put Xn+1 = Xtrial, and if

rejected Xn+1 = Xn. Successive application of the rule generates Xn+2, Xn+3 . . . , and so on.

For details about why this rule works and other subtleties that come in the implementation

of the Metropolis algorithm the reader is referred to the textbooks [33][34]. Now let us see

in what physical problems the Monte Carlo technique is useful and where it fails.

1.4 The sign problem

In section 1.2 we stated that the expected value of a physical observable in a system that is

in equilibrium is given by (1.12). For example, in the case where the observable is potential
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energy V , we have

〈V 〉 =
Tr[e−βĤ V̂ ]

Tr[e−βĤ ]
=

∫

dx0〈x0|e
−βĤ |x0〉V (x0)

∫

dx0〈x0|e−βĤ |x0〉
. (1.18)

Using (1.7) and (1.9), we can write this average as a ratio of two path integrals,

〈V 〉 =

∫

dx0

∫

dx1 · · ·
∫

dxN−1V (x0) exp
[

− β
∑N−1

k=0

[

mN
2~2β2 (xk − xk+1)

2 + 1
N
V (xk)

]

]

∫

dx0

∫

dx1 · · ·
∫

dxN−1 exp
[

− β
∑N−1

k=0

[

mN
2~2β2 (xk − xk+1)2 +

1
N
V (xk)

]

] .

(1.19)

Note that we have cancelled the prefactors and x0 ≡ xN . Also, so far we have been using

one-dimensional notation for convenience, but the xk’s are d-dimensional in general and we

will remind ourselves of that at this point. Let us examine these integrals. The integrals

are high-dimensional, even for one spatial dimension the integral is N -dimensional. For a

d-dimensional system the integrand is Nd-dimensional, which even for a small system (say

d = 10) and large enough time discretization for the Trotter approximation to be valid (say

N = 15), easily becomes an integral in many (150) dimensions. Because of the presence

of the exponential with a real (negative) exponent and high dimensionality, the integrand

is peaked in a small region (so has a high variance), and most of the points (or paths)

end up with a very small contribution to the integral. Most importantly, the contributions

from different points (or paths) in the high-dimensional space all add ; some being large and

some being small. This allows for efficient application of importance sampling, resulting in

the reduction of the variance of the sharply peaked integrand and hence lowering the MC

error. Moreover, the weight function (which in this case can be taken to be the exponential

term) entering the Metropolis algorithm need not be normalized as the computation of ratios

results in cancelling of any multiplicative constants. Hence, the path integral representation

of the thermal average (or the Boltzmann operator) lends itself naturally to the use of

Metropolis Monte Carlo. If the sampling function w appearing in (1.16) is taken to be

w = exp
[

− β
∑N−1

k=0

[

mN
2~2β2 (xk − xk+1)

2 + 1
N
V (xk)

]

]

then after distributing the points using
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the Metropolis algorithm, the thermal average becomes

〈V 〉 =
∑

x0

V (x0), (1.20)

where the points x0, x1, . . . , xN−1 are distributed according to w. This method, known as

the path integral Monte Carlo (PIMC), has been established as a powerful tool for evalu-

ating thermal averages in systems with hundreds of quantum degrees of freedom that obey

Boltzmann or Bose-Einstein statistics [35][36].

Unfortunately, these advantages do not pertain to quantum dynamics,4 which is obtained

via the path integral representation of the time evolution operator (1.6). The integrand (call

it f) entering in (1.6) has the imaginary i in the exponent. Because of this, f is oscillatory

and so has a high variance. Since the weight function has to be positive, a natural choice

(and the best choice) is the absolute value of f , which is 1. This means that the high vari-

ance of f , can not be reduced by a weight function w since f/w has the same variance as

f . Most importantly, the contributions to the integral from different regions now need to

not just be added (as in the thermal equilibrium case) but also subtracted. And there is no

way of translating this subtraction, or the delicate cancelling, into w (the positive definite

probability density) that enters the Monte Carlo method. As time t increases, f becomes

more oscillatory and its variance becomes huge, which leads to a large error (noise) in the

MC estimate. To make matters worse the result for the integral of f (the signal), because of

the cancellation, is a very small number. And this causes the signal/noise ratio to rapidly

approach zero such that the computer time needed to achieve a given accuracy grows ex-

ponentially with the dimensionality (Nd) of the integral. This problem is known as the

sign problem5 and it has severely hindered the applications of the Monte Carlo method in

computing quantum dynamical properties for long times and/or large many-body systems

[12, 37, 38]. The problem is not limited to quantum dynamics. In the simulation of fermions

4Nor to Fermi-Dirac statistics, we will soon see why.
5To be precise the dynamical sign problem

12



by MC (even in the study of equilibrium properties), due to the antisymmetry of the wave-

function, one has to place a minus sign in the integrand for odd permutations and subtract

the contribution of negative permutations from that of the positive permutations, which

leads to the (fermion) sign problem [37][38]. In the field-theoretic polymer simulations MC

runs into a sign problem when constraints are taken into account via delta functions which

when expressed as exponentials involve an i in the exponent [39][40][41]. Many interesting

sytems in high-energy physics also encounter this problem where it goes by another name,

the ‘complex-action problem’ [42]. In this thesis we focus on the quantum dynamical sign

problem. We will face this problem in the context of computing time correlation functions,

which is the subject of the next section. In the next chapter we will review the progress

that has been made towards circumventing or alleviating this problem, and will discuss the

applicability and limitations of existing methods. We conclude this section with a quote

that sums up the power and the weakness of Monte Carlo –“Monte Carlo can add but it can

not subtract”.6

1.5 Time correlation functions

Time correlation functions can be shown, by the theory of linear response, to be related to

phenomenological coefficients describing time-dependent phenomena [43]. For example, the

self-diffusion coefficient can be expressed as an integral over the velocity time correlation

function. A general quantum time correlation function is given by

CAB(t) = 〈Â(0)B̂(t)〉 =
1

Z
Tr

(

e−βĤÂeitĤ/~B̂e−itĤ/~
)

, (1.21)

where Â and B̂ are quantum mechanical operators corresponding to physical observables.

CAB(t) is also known as the real time correlation function as the correlations are measured

between points on the real time axis. We will assume for simplicity that the operators are

6I do not know whose quote this is, I heard it from Professor David Ceperley.
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local in position, i.e, Â = A(x̂) and B̂ = B(x̂). We showed in previous sections that the

Boltzmann operator, e−βĤ , and the time evolution operators, e−itĤ/~ (forward) and eitĤ/~

(backward), can be expressed as path integrals. So, just like equilibrium averages, thermally

averaged time correlation functions can also be expressed as ratios of path integrals. Working

in position representation, the above expression becomes

CAB(t) =
1

Z

∫ ∫ ∫

dxdx′dx′′〈x|e−βĤ |x′〉〈x′|eitĤ/~|x′′〉〈x′′|e−itĤ/~|x〉A(x′)B(x′′). (1.22)

Expressing the three propagators as path integrals results in summing imaginary time paths

connecting x and x′, forward (real-time) paths connecting x′ and x′′ and backward paths

connecting x′′ and x. We know that the real time path summations will lead to cancellation

problems which severely limit a direct application of MC based schemes to compute CAB(t).

A form that appears much more convenient from a computational point of view is the

symmetrized time correlation function [44],

CAB(t) = 〈A(0)B(t− i~β/2)〉 =
1

Z
Tr

(

Âei(t+i~β/2)Ĥ/~B̂ei(t−i~β/2)Ĥ/~
)

(1.23)

which is obtained by shifting the domain of the real time correlation function by −i~β/2 such

that the correlations are now measured between points in the complex time plane. Therefore,

CAB(t) is also called the complex time correlation function. Introducing the complex time

tc = t− i~β/2 and working in the position representation the symmetrized time correlation

function becomes

CAB(t) =
1

Z

∫ ∫

dxdx′〈x|eit
∗
cĤ/~|x′〉〈x′|e−itcĤ/~|x〉A(x)B(x′). (1.24)

We now have two complex time propagators that, when expressed as path integrals, result

in summing forward complex time paths connecting x and x′ and backward complex time

paths connecting x′ and x. Just like before with the imaginary time propagator, the (forward)
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complex time propagator can be expressed as a path integral by letting t → tc in (1.6), and

one gets

G(xN , x0; tc) =
( mN

2π~2tc

)
N
2

∫

dx1 · · ·

∫

dxN−1 exp

[

−

(

mN

2~2tc

N
∑

k=1

(

xk − xk−1

)2

+
tc
N

N
∑

k=0

λkV (xk)

)]

.

(1.25)

The main advantage of using the complex time correlation function is that the two com-

plex time propagators involved in the integrand are not pure phase, but have an inbuilt

“Boltzmann weight” that enables the application of importance sampling technique. Of

course, the sign problem is still present and will make the numerical evaluation of CAB(t)

very demanding – especially if real (physical) time t is larger compared with the imaginary

(thermal) time ~β/2. Nevertheless, Monte Carlo methods should be more stable (especially,

when combined with tricks like contour distortion [18] or staging [45] – see chapter 2) in the

direct evaluation of CAB(t) as compared to a direct attack on CAB(t).

It has been shown that the symmetrized time correlation function is related to the real

time form through a Fourier transform identity [46]. Thus both the forms contain the same

physical information and an accurate estimate of one of them can be used to calculate the

other if needed. Also, certain phenomenological coefficients like the thermal rate constant of

a reactive process are shown to be directly related to the symmetrized form [47]. It is also

useful to know that the symmetrized time correlation function is always purely real while

the real time form is in general a complex function of time. Throughout this dissertation we

focus on the symmetrized time correlation functions and an exact method will be developed

to compute them. But before we introduce the method, let us review existing approaches

that were developed in the context of evaluating the real (or complex) time path integral

and the time correlation functions. We will discuss their applicability and limitations, and

in the process will hopefully reveal the motivations and goals of the method presented in
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this work.
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Chapter 2

Motivation

In this chapter we review computational approaches to the problem of quantum dynamics,

showing their applicability and shortcomings, and in the process reveal the motivations

behind our work. At the end, we will state the goal of this dissertation and outline the path

towards attaining it.

The focus of this brief review is primarily on two major approaches — Monte Carlo-based

methods and iterative techniques, which have been developed to evaluate real (or complex)

time path integrals. Other alternate approaches to quantum dynamics such as wavepacket

methods [48], basis sets techniques [49][50], and quasiclassical methods like centroid molec-

ular dynamics [51] will not be reviewed. These methods are capable of extracting exact

dynamics but are in general limited in their applications to certain systems and/or system

sizes. We will also not review methods that arise directly from the semiclassical theory,

like the semiclassical initial value representation [52] or the forward-backward semiclassical

dynamics for time correlation functions [53][54], where the goal is to add in quantum effects

to a classical MD simulation and much of the effort is spent in dealing with the ‘semiclas-

sical sign problem’. While these methods introduce a great improvement in dealing with

large systems [55], they are not reliable if quantum effects are not moderate or if long time

dynamics is desired. We have another reason for not carrying out a more complete survey

— the method we develop in subsequent chapters derives its ideas from Monte Carlo path

integration and iterative methodologies, and so a closer look at the past employment of

these techniques will hopefully be of assistance in understanding the goals and features of

our method. A good review of other approaches listed before can be found elsewhere [56].
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2.1 Monte Carlo-based approaches

We learned in section 1.2 that in imaginary time PIMC faces no cancellation problems and

thermal averages can thus be computed. Say, we compute the correlation function (ei-

ther the standard or the symmetrized form) in imaginary time via PIMC. Thirumalai and

Berne showed that one can obtain dynamical information via an analytic continuation of

this imaginary time average to real time [15]. The sign problem is thus avoided as no direct

computation of the real time path integral is needed and only an accurate inversion of imag-

inary time data is required. However, due to the rather extreme instability of the numerical

inversion (of the Laplace transform) process, even small statistical errors in imaginary time

data can lead to large deviations in analytically continued real time quantities [57]. This

problem becomes particularly severe with high temperature and long times. The maximum

entropy method [25] has improved the applicability of this idea but its range is still limited

to short times and systems where quantum coherences dissipate rapidly [57]. Thirumalai

and Berne also suggested a direct MC attack on the complex time correlation function in-

troduced in the last chapter [44]. As we discussed in section 1.5, MC would only be reliable

for short times, t < ~β/2, and this was confirmed in the work of Behrman and Wolynes [16].

For long times (t > ~β/2) the complex time correlation function was computed by Chang

and Miller [18], as well as by Doll et al [58], via a contour distortion (CD) technique which

converted the kinetic energy part of the integrand into a real (no i) Gaussian factor (which

was used as the weight function). This simple coordinate rotation was successfully applied

for problems involving potential barriers but was invalid for potential wells as the integrand

became unbounded for these potentials [18].

The first direct approaches to purely real time path integration using Monte Carlo were

explored by Filinov [59], Doll et al [21], and Makri and Miller [19]. The central idea was

to introduce a weight function (filter) in the integrand, via certain approximations, that

could be used as a Monte Carlo sampling function. The effect of the weight function was to
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suppress paths whose actions vary rapidly but favor those whose actions are close to being

stationary. Hence, a Monte Carlo procedure would sample the regions of “stationary phase”

of the integrand, thereby implicitly finding the stationary phase paths and nearby paths, and

avoid any explicit work to do so. Makri and Miller had the most viable approach of all as they

could tune a parameter to make the method work, at least in principle, from the stationary

phase limit up to the exact (unfiltered) integral. However, the full quantum limit could not

be reached because the Monte Carlo statistics became prohibitively poor as the dynamics

got dominated by many interfering trajectories [19]. Mak and Chandler fused the ideas

of stationary phase Monte Carlo (SPMC) and contour distortion in order to sample paths

near the true complex stationary phase of the integrand [20]. Using importance sampling

they could obtain correlation functions for a spin boson problem for times longer than the

thermal time, but for systems that possess enormous number of important stationary paths,

their method was unable to circumvent the sign problem. Inspired by the observation that

grouping paths into sets (either analytically or numerically) before they are sampled always

reduces the sign problem, Mak proposed a stochastic resummation method [23] that included

an analytic procedure for summing the paths before conventional stochastic sampling began.

This idea has evolved into an approach called multilevel block algorithm with cumulant

action [60]. While this method, and other methods like a recursive summation over classes

of paths [24], have improved the estimates of path integral calculations, they have not

managed to give converged results for a general system over long times. More recently,

Makri developed a method based on correlating the errors associated with the integrals

of positive and negative parts of the integrand by knowing some information about the

integrand exactly. This information guided noise reduction (IGNoR) [61] is demonstrated

to improve on raw Monte Carlo results and the idea of using it in conjuction with other

methods [62], including the one discussed in this thesis, appears promising.

Summarizing, Monte Carlo-based methods provide accurate quantum dynamical infor-

mation only for short times in general systems or longer times in case of special potentials.
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All these methods (with the exception of a direct attack on the complex time correlation

function suggested by Thirumalai and Berne) require some kind of approximation or assump-

tions to be reliable – for example, a valid coordinate transformation (CD) or introduction of

artificial weight via an approximation (SPMC) or prior knowledge of some exact informa-

tion (IGNoR). Thus, the integrand that enters the path integral is substantially modified (or

specialized) in the process of making the method feasible. To date, an accurate computation

of the time corrleation function over long times for any general quantum system has not

been possible with a Monte Carlo procedure. The reason for so much effort over the past

few decades on developing Monte Carlo-based approaches for real time dynamics is the fact

that the path integral is a multi-dimensional integral, so some kind of importance sampling

has to be utilized in its computation. We concur with this reasoning and this dissertation

will present a Monte Carlo method for computing complex time correlation functions which

does not require any modification of the integrand, involves no approximations beyond the

standard short time approximation to the propagator (which can be made arbitrarily ac-

curate by increasing the number of time slices), and is applicable to a general potential or

interactions between particles. Most importantly, the method will be shown to accurately

compute the correlation function for long times. Since we are dealing with the complex time

path integral as it is, the sign problem associated with stochastic summations is still present

in its entirety, but (as we shall soon see) much progress can be made in extending the Monte

Carlo technique to long time if there is some iterative support.

2.2 Iterative propagation

We learned from the previous section and the last chapter that the Monte Carlo method

is unable to get quantum dynamical information of an aribitrary many particle system for

long times. We noted before that this is due to the sign problem that all stochastic methods

face when they are applied to sample integrands of oscillatory nature. This forces us to look
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at deterministic methods for the global evaluation of the path integral. The system-specific

discrete variable representations [63] and their time dependent extensions offer maximal

efficiency for this purpose [64]. But their practical ability, just like conventional quadrature

schemes, critically depends of the dimensionality of the integral which involves both the

spatial degrees of freedom (d) and the (extra) dimensions coming from time slicing (N − 1).

Even for one degree of freedom the number of dimensions can be huge, if we are interested

in many periods of real time, so to evaluate the path integral accurately over long times we

need to depart from global integration methods.

The structure of the path integral [see Eq. (1.5)], where only nearest-neighbor factors are

coupled, implies that the path integral expression may be evaluated iteratively, performing

the integrals one at a time from right to left. This approach appears promising, because it

replaces the evaluation of a single many-dimensional integral by multiple fewer-dimensional

integrals. Clearly, if M points are employed in this iterative calculation, the result obtained

after N iterations is equivalent to having summed the propagator (amplitudes) along MN

paths. Thus, by converting path integration into iterative matrix multiplication, one can

circumvent the sign problem and obtain accurate results. Thirumalai and Berne implemented

this idea and developed the numerical matrix multiplication (NMM) scheme [13] which gave

accurate long time results for the complex time correlation function. Feit and Fleck provided

a more general and efficient method, the pseudospectral-split propagator method [14], by

which pure real time propagators for long times could be computed. However, the major

drawback of both these techniques was their limited applicability to systems with one, two,

or possibly three degrees of freedom. This is because the iterative nature of these methods

demanded the storage of grid points and propagator matrices, leading to the employment of

conventional (uniformly spaced) grids, the size of which (as we discussed in Sec. 1.1) scales

exponentially with the number of degrees of freedom.1 Thus, exact long time computations

1The pseudospectral-split propagator method, unlike NMM, avoided the storage of the propagator matrix
and hence is the more efficient of the two.
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of quantum time correlation functions for a general system were possible via iterative path

integral methods but only if the system had very few degrees of freedom. It is important here

to point out an iterative influence functional technique [65] developed by Makri to obtain

dynamics governed by certain Hamiltonians with many degrees of freedom. For certain

special cases, like the harmonic environment, it can be shown [66] that the storage of the

propagator for all degrees of freedom can be avoided by pre-integrating out all (bath) but

few degrees of freedom (system). The price to be paid is that the resulting path integral

expression will be non-local in time, but for a dissipative bath these non-local interactions

will be finite in their extent and this could be exploited, as shown by Makri, to obtain exact

time evolution of the low-dimensional system via an iterative algorithm. Makri and co-

workers used a combination of several tricks, like the usage of physically motivated reference

Hamiltonians and the employment of system-specific discrete variable representation, to

make the method economical enough to study a host of interesting problems like the electron

transfer in solution or systems interacting with coherent laser radiation [67]. Yet, situations

which did not allow a decomposition of the Hamiltonian into a system coupled to a harmonic

bath, and many-dimensional ‘systems’ in general, were out of reach with this technique.

Hence, we conclude that although computing the path integral iteratively circumvents

the sign problem and enables the knowledge of long time quantum dynamical information,

the storage requirements imposed in this approach get prohibitively expensive with system

size, just as in the direct Schrödinger wave function propagation on a computer. Efforts that

tackle many-dimensional quantum systems, like the influence functional approach, impose

significant restrictions on the choice of the Hamiltonian. As a consequence, long time infor-

mation is only obtained for general systems with very few degrees of freedom. Can iterative

propagation be extended to higher integral dimensions of the path integral with assistance

from Monte Carlo walks? We will answer this question in the next chapter; for now, let us

state the goal and present the outline of this dissertation.
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2.3 Goal and outline

Each of the two existing approaches for computing quantum dynamics under Feynman’s

formulation — Monte Carlo-based computation of the path integral and iterative evaluation

of the path integral, possess important advantages and major drawbacks. When the system

exhibits a great amount of quantum coherence or long time dynamics is desired, Monte Carlo

fails, but it is the only feasible method for carrying out integrations in several dimensions.

When the system has more than a few degrees of freedom, iterative propagation fails, but

it provides a reliable access to get arbitrarily long time quantum dynamical information.

In view of this situation, calculations of time-dependent properties in general polyatomic

quantum systems have been possible at short times, in simplified models or via approximate

treatments. We also learn two important facts from the discussion so far. First, the path

integral is a many-dimensional integral and so Monte Carlo concepts must be employed.

And second, the path integral has a built-in iterative structure, the computation along

which avoids the sign problem, and so such a structure must be exploited. Keeping these

facts in mind, we state the goal of this dissertation and present the outline for the rest of

the document.

The goal of this thesis is to develop a stable, numerically exact, fully quantum mechanical

methodology that is capable of calculating complex time correlation functions over long

times for a general many-body quantum system. In the light of previous two sections, a

more specific goal is to show to the reader that the two seemingly different approaches to

quantum dynamics via Feynman’s path integral formulation —Monte Carlo path integration

and iterative propagation, can be combined into one unified framework which shows promise

for long-time propagation of many-body systems.

Here is the outline of what is to follow. Chapter 3 will present the method — the idea, the

iterative structure, the algorithm; and a simple sampling strategy to illustrate the features

of the method will be described. Chapter 4 describes a novel sampling scheme that leads to
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improved results. The optimal sampling strategy for the method is described in chapter 5.

Finally, in chapter 6 we present some concluding remarks.
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Chapter 3

Iterative Monte Carlo

In this chapter we develop a fully quantum mechanical methodology to calculate complex

time correlation functions that does not suffer as severely from the drawbacks of the methods

reviewed in the last chapter, and combines their advantages, thus showing promise for long

time propagation of many-body systems.

3.1 The basic idea

Consider, for clarity, the discretized path integral representation of the complex time prop-

agator:

〈xN |e
−itcĤ/~|x0〉 =

∫

dx1 · · ·

∫

dxN−1〈xN |e
−i∆tcĤ/~|xN−1〉 · · ·

× 〈x2|e
−i∆tcĤ/~|x1〉〈x1|e

−i∆tcĤ/~|x0〉.

(3.1)

This can be obtained by letting t → tc in (1.5). In this, tc is a complex time, N is the

number of time slices, ∆tc = tc/N , and we have used one-dimensional notation for simplicity.

Equation (3.1) is a multi-dimensional integral with the number of integration variables equal

to (N − 1) × d, where (N − 1) is the number of path integral discretizations (or “beads”)

and d is the number of degrees of freedom represented by x. As discussed before, Monte

Carlo methods offer the only viable approach for evaluating integrals of such large dimension.

However, for t 6= 0 the short time propagators are oscillatory (particularly so as the ratio t/~β

approaches or exceeds unity) and the sign problem in the (N − 1)d-dimensional integration

space is extremely severe. In the conventional PIMC method, the number of samples required
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to control the statistical error grows exponentially with the number of integration variables,

quickly reaching astronomical values. As a result, PIMC calculations are feasible in practice

only for small systems and very few time steps.

As we argued earlier in section 2.2, the calculation of a single (N − 1)d-dimensional

integral can be replaced by (N − 1) d-dimensional integrals if an iterative evaluation of

the path integral is carried out, performing the integrals one at a time from right to left.

The resulting schemes highlighted before require storage that scales exponentially with the

number d of degrees of freedom, but they avoid the sign problem. Although grid and basis

set reduction techniques can often improve the storage problem, the prognosis for application

to condensed phase systems remains poor.

We want to exploit the advantages of both these approaches and avoid their drawbacks.

Here is the idea. We use Monte Carlo to sample important paths, but rather than attempt-

ing to evaluate the desired average from the Monte Carlo random walk, we simply store the

sampled path coordinates, generating grids. We use these grids (which consist of judiciously

selected points) to evaluate the complex time path integral iteratively. The stepwise evalua-

tion of the path integral circumvents the exponential growth of statistical error with time (or

time slices N) and the use of importance sampling in the multi-dimensional grid selection

and path summations leads to favorable scaling with the number of degrees of freedom d.

Thus, iterative Monte Carlo (IMC) circumvents the exponential scaling of the PIMC error as

the real time t is increased, leading to stable results over long propagation time. Moreover,

the required grid size for IMC generally grows slowly with number of dimensions d because

of the use of importance sampling in the grid selection, compared to the scaling associated

with other iterative methods that use quadrature-generated grids.

Here is the idea condensed into one line — use Monte Carlo to form a grid of points,

using the path coordinates visited by the random walker, and propagte the quantity of interest

iteratively on this grid. Now we describe the method in detail.
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3.2 The method

We start by recalling the complex time correlation function defined in chapter 1,

CAB(t) =
1

Z
Tr(Âeit

∗
cĤ/~B̂e−itcĤ/~), (3.2)

where tc = t − i~β/2 is a complex time that arises by combining the real time with one

half of the Boltzmann constant. Inserting the resolution of identity, (3.2) is expressed as a

double integral,

CAB(t) =
1

Z

∫ ∫

dxdx′〈x|Âeit
∗
cĤ/~|x′〉〈x′|B̂e−itcĤ/~|x〉. (3.3)

We will use one dimensional notation for clarity, it is understood that x in general represents d

degrees of freedom. Assuming that the operators Â and B̂ are local in position, i.e, Â = A(x̂)

and B̂ = B(x̂) (or that they can be expressed in terms of coordinate derivatives, as in the

case of the momentum operators), the correlation function takes the following form:

CAB(t) =
1

Z

∫ ∫

dxdx′〈x|eit
∗
cĤ/~|x′〉〈x′|e−itcĤ/~|x〉A(x)B(x′). (3.4)

Operators that are not local in position space can be treated by inserting two additional

integration variables in (3.4). Notice that the partition function can be also expressed as a

double integral by setting Â = B̂ = 1̂,

Z = Tr(e−βĤ) = Tr(eit
∗
cĤ/~e−itcĤ/~) = Tr(1̂eit

∗
cĤ/~1̂e−itcĤ/~)

=

∫ ∫

dxdx′〈x|eit
∗
cĤ/~|x′〉〈x′|e−itcĤ/~|x〉.

(3.5)

Our focus is the forward complex time propagator

G(x′, x) = 〈x′|e−itcĤ/~|x〉. (3.6)
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〈x|eit
∗
cĤ/~|x′〉 is the backward complex time propagator. It is easily seen that the forward and

backward complex time propagators are complex conjugates of each other, and therefore,

〈x|eit
∗
cĤ/~|x′〉 = 〈x′|e−itcĤ/~|x〉∗ = G(x′, x)∗. (3.7)

From (3.6) and (3.7), and expressing Z in terms of G(x′, x), the expression of correlation

function in (3.4) becomes

CAB(t) =

∫ ∫

dxdx′|G(x′, x)|2A(x)B(x′)
∫ ∫

dxdx′|G(x′, x)|2
. (3.8)

Thus the evaluation of the forward complex time propagator, G(x′, x), determines the cor-

relation function completely via (3.8). From now onwards, unless otherwise stated, when we

say “the complex time propagator” or just “the propagator” we mean the forward complex

time propagator. Below we focus on its evaluation starting by expressing it as a discretized

path integral.

3.2.1 Iterative structure

We begin by splitting the complex time tc into 2N − 1 slices ∆tc = tc/(2N − 1). N is chosen

large enough for a convenient approximation of the propagator to be sufficiently accurate over

the complex time step ∆tc. Expressing the complex time evolution operator in terms of a

product of 2N−1 short time factors, the propagator G(x′, x) ≡ G(x′
N , xN ) ≡ R2N−1(x

′
N , xN)

is written in the form of a discretized path integral:

R2N−1(x
′
N , xN ) =

∫

· · ·

∫

dx1dx
′
1 · · · dxN−1dx

′
N−1〈x

′
N |e

−i∆tcĤ/~|x′
N−1〉 · · · 〈x

′
2|e

−i∆tcĤ/~|x′
1〉

× 〈x′
1|e

−i∆tcĤ/~|x1〉〈x1|e
−i∆tcĤ/~|x2〉 · · · 〈xN−1|e

−i∆tcĤ/~|xN〉.

(3.9)
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A large enough choice of N guarentees that the short time propagator is a known function

(either analytically or numerically). Let us call this function s:

s(xk, xk−1; ∆tc) = 〈xk|e
−iH∆tc/~|xk−1〉. (3.10)

It is useful to define propagators for 2k − 1 time steps; as follows:

R2k−1 ≡ R2k−1(x
′
k, xk; (2k − 1)∆tc) = 〈x′

k|e
−iH((2k−1)∆tc)/~|xk〉. (3.11)

We start the iterative propagation with R1(x
′
1, x1; ∆tc), which is the same as the short-time

propagator s(x′
1, x1; ∆tc) and hence is available. The rest of the Rk’s can be derived in an

iterative fashion as follows. Note that we will suppress the parametric dependence of Rk

and s on ∆tc for brevity.

We obtain R3 from R1 by using two short-time propagators, s(x′
2, x

′
1) and s(x1, x2), as

R3(x
′
2, x2) =

∫

dx′
1

∫

dx1s(x
′
2, x

′
1)R1(x

′
1, x1)s(x1, x2). (3.12)

Next, combining the short-time propagators with R3, we get R5,

R5(x
′
3, x3) =

∫

dx′
2

∫

dx2s(x
′
3, x

′
2)R3(x

′
2, x2)s(x2, x3). (3.13)

Repeated use of this process yields R7, R9, etc., and eventually R2N−1 as illustrated in the
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Figure 3.1: Discretization of the path integral for the propagator in the iterative procedure
described in section 3.2.1

next block of equations:

R7(x
′
4, x4) =

∫

dx′
3

∫

dx3s(x
′
4, x

′
3)R5(x

′
3, x3)s(x3, x4)

R9(x
′
5, x5) =

∫

dx′
4

∫

dx4s(x
′
5, x

′
4)R7(x

′
4, x4)s(x4, x5)

...

R2N−1(x
′
N , xN) =

∫

dx′
N−1

∫

dxN−1s(x
′
N , x

′
N−1)R2N−3(x

′
N−1, xN−1)s(xN−1, xN). (3.14)

Thus an iterative structure or loop is seen to emerge,

R2k+1(x
′
k+1, xk+1) =

∫

dx′
k

∫

dxks(x
′
k+1, x

′
k)R2k−1(x

′
k, xk)s(xk, xk+1), k = 1, 2, . . . , N−1

(3.15)

the computation of which yields the full propagator G(x′, x) ≡ R2N−1(x
′, x) after N−1 steps.

The series of iterations required to obtain the complex time propagator are shown schemat-

ically in the diagram of Figure 1. Conventional iterative path integral schemes discretize

the function R2k−1(x
′
k, xk) on a grid and evaluate the required integrals by quadrature, i.e.,

by some form of matrix-vector multiplication. We plan to perform these operations by the

Metropolis Monte Carlo procedure. This procedure is described below.
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3.2.2 IMC algorithm

The novel element of IMC is the use of Monte Carlo to evaluate (3.15). Here is the general

algorithm that accomplishes this; depending on the particular sampling strategy the details

might be slightly different.

1. We perform a random walk in the space of x′
1, x1, . . . , x

′
k, xk, . . . variables to sample

paths. Dimensionality of the space in which the walk is performed and the choice of the

weight function ρ(. . . , x′
k, xk, . . .) depend on the sampling strategy employed. Moves

are accepted or rejected according to the standard Metropolis criteria.

2. The (accepted) coordinates visited by these paths are stored in the form of a two-

dimensional grid for each bead pair (x′
k, xk). A rejected move is dealt with by incre-

menting the multiplicity of an already stored grid point pair.

3. The probability of selecting the coordinates (x′
k, xk), in other words, the marginal

distribution of the points on the grid corresponding to the kth bead pair, is computed

by evaluating the integral

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1

∫

dx′
k+1

∫

dxk+1 · · · ρ(. . . , x
′
k, xk, . . .). (3.16)

The result is stored in the array P2k−1(x
′
k, xk). Notice how the integral is over all the

variables except x′
k, xk, which is precisely the definition of marginal probability. The

marginal distributions P will in general be determined as un-normalized functions.

Since the unavailable normalization (which is a pure number) will cancel out in the

final step, we will keep the discussion simple and omit writing these factors.

4. The iterative process is initialized by setting up an array R1(x
′
1, x1) = s(x′

1, x1; ∆tc)

on the stored (x′
1, x1) grid.

5. The propagator for the 2nd bead pair, or the three step propagator R3, is obtained
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from R1 by carrying out the double integral in (3.12). Multiplying and dividing the

integrand by P1(x
′
1, x1) and exploiting the fact that the distribution of the stored grid

points (x′
1, x1) is given by this function, the Monte Carlo estimate of the double integral

becomes

R3(x
′
2, x2) = θ1

∑

x′
1
,x1

s(x′
2, x

′
1)
R1(x

′
1, x1)

P1(x′
1, x1)

s(x1, x2), (3.17)

where θ1 is a normalization constant, which is unavailable, but will cancel out in the

final step. Thus, we compute the un-normalized function R̃3,

R̃3(x
′
2, x2) =

∑

x′
1
,x1

s(x′
2, x

′
1)
R1(x

′
1, x1)

P1(x′
1, x1)

s(x1, x2), (3.18)

where the array R̃3 set up on the x′
2, x2 grid stores the three step propagator. For

each point (x′
2, x2) we sum the summand in (3.18) over the x′

1, x1 points and store the

result in the array R̃3. Since the short complex time propagators s decay exponen-

tially as the difference of the end point coordinates increases, the sum in this equation

needs to include only those coordinate pairs (x′
1, x1) for which the absolute value of

s(x′
2, x

′
1)s(x1, x2) exceeds a certain threshold.1 This is the second stage where impor-

tance sampling ideas reduce the computational effort in IMC, the first stage being the

Monte Carlo sampling carried out in step 1.

6. Subsequent iterations are performed in a similar fashion by noting that the propagator

for the kth bead pair (or for 2k + 1 time steps) is obtained from the propagator for

(k− 1)th bead pair (or for 2k− 1 time steps) according to the integrals in the iterative

loop of (3.15). The following Monte Carlo sums, corresponding to the double integrals

1We will expand on this point later in section 3.3.2
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entering in the iterative loop, are carried out,

R̃2k+1(x
′
k+1, xk+1) =

∑

x′
k
,xk

s(x′
k+1, x

′
k)
R̃2k−1(x

′
k, xk)

P2k−1(x′
k, xk)

s(xk, xk+1), k = 1, 2, . . . , N − 1.

(3.19)

Thus the arrays R̃5, R̃7, . . . are generated and stored.

7. It is easy to see that the function obtained after N−1 iterations, namely the propagator

R̃2N−1(x
′
N , xN ), is proportional to the complex time propagator G. We have,

G(x′, x) ≡ G(x′
N , xN) = θ1θ2 . . . θN−1R̃2N−1(x

′
N , xN ). (3.20)

8. Substituting the above expression for G in the correlation function (3.8) and cancelling

out the normalization factors, we get

CAB(t) =

∑

x′
k
,xk

|R̃2N−1(x
′
N
,xN )|2

P2N−1(x
′
N
,xN )

A(xN)B(x′
N)

∑

x′
k
,xk

|R̃2N−1(x
′
N
,xN )|2

P2N−1(x
′
N
,xN )

. (3.21)

Equation (3.21) is the IMC estimate of the complex time correlation function.

3.3 Implementation

Evaluation of integrals via IMC algorithm begins, just like in other MC algorithms, with the

choice of sampling function ρ. Performing the Metropolis random walk in some space with

the sampling function generates a grid in that space. The distribution of points on this grid

is exactly given by ρ, and this distribution is known as the joint probability distribution.

In the MC-based methods we reviewed in Chapter 2, the knowledge of joint distribution

(or equivalently ρ) is enough to evaluate the MC estimate. However, in IMC, the iterative

computation of the path integral forces us to depart from joint probability distribution and

acquire the knowledge of the marginal probabilities. For a general ρ knowing the marginal
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distribution exactly2 from the grid generated via a joint distribution, is not an easy problem.

We will explain why this is so in the first sub-section and also present the reader with a trailer

of the sampling strategies that form the bulk of the rest of this thesis.

3.3.1 Sampling strategies

No harm will be done if we rewrite the full path integral expression for the complex time

propagator, (3.9), in terms of the functions s:

R2N−1(x
′
N , xN) =

∫

· · ·

∫

dx1dx
′
1 · · · dxN−1dx

′
N−1s(x

′
N , x

′
N−1) · · · s(x

′
2, x

′
1)

× s(x′
1, x1)s(x1, x2) · · · s(xN−1, xN ).

(3.22)

As is well known, the optimal choice of the sampling function ρ for a MC computation of

an integral is the absolute value of the entire integrand that enters the integral. In the case

of the above expression the optimal choice is the absolute value of the product of all short

time propagators present in the integrand:

ρ(. . . x′
k, xk, . . .) = |s(x′

1, x1)|
N−1
∏

k=1

|s(x′
k, x

′
k+1)||s(xk, xk+1)|. (3.23)

If a Metropolis sampling is done with ρ, the marginal distribution for the grid x′
k, xk is given

by (3.16) as

P2k−1(x
′
k, xk) =

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1

∫

dx′
k+1

∫

dxk+1 · · · |s(x
′
1, x1)|

×
N−1
∏

k=1

|s(x′
k, x

′
k+1)||s(xk, xk+1)|.

(3.24)

To proceed with the IMC prescription we need to know P (x′
k, xk).

3 The s functions in

general, via kinetic energy (recall harmonic springs), couple the grid point (x′
k, xk) to its

2The correct thing to say will be knowing the marginals up to a normalization constant
3Note from now on, P ≡ P (x′

k
, xk) ≡ P2k−1(x

′

k
, xk)
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nearest neighbors – (x′
k−1, xk−1) and (x′

k+1, xk+1). Therefore, an analytical evaluation of this

integral for arbitrary potential4 is not possible. A possible solution could be to compute this

integral numerically, say via MC, using a sampling function whose shape is similar to the

integrand in (3.24) and whose normalization (which would be a function of (x′
k, xk) and not

just a number) is available. This restricts the kind of systems that one can simulate and

moreover carrying out these sums for every x′
k, xk on each grid will be extremely inefficient.

The ideal scenario would be to use the grids already generated via ρ to estimate P . For

example, if the (marginal) distribution of the beads x′
1, x1, . . . , x

′
k−1, xk−1, x

′
k+1, xk+1, . . . (that

is all beads except x′
k, xk) is given by Ξ then we could write P as

P (x′
k, xk) =

∑

...,x′
k−1

,xk−1,x
′
k+1

,xk+1,...

|s(x′
1, x1)|

∏N−1
k=1 |s(x′

k, x
′
k+1)||s(xk, xk+1)|

Ξ
. (3.25)

But Ξ is unavailable, the computation of which demands the knowledge of P , which is what

we set out to compute in the first place! Note, we can not make a feasible self-consistent

scenario of computing P and Ξ, because Ξ would require a storage of all the variables

(except two) which would get prohibitively expensive (as N increases) and clearly we lack a

sufficiently accurate choice of a starting function (for arbitrary k) to ignite the self-consistent

loop.

Thus, we depart from global (single walk) ways of using MC to compute integrals and

introduce a new sampling strategy that involves multiple walks with bead-adapted sam-

pling functions, which enables the knowledge of the marginal distributions from the grids

generated to compute the propagator. This strategy is described in the next chapter. We

then move on to design the optimal sampling scheme for IMC, using the conventional global

sampling function, by exploiting the iterative structure of the entire path integral necklace5

and computing marginals with a self-consistent solution of equations that does not present

any storage issues and possesses a sufficiently accurate initializing function to start the pro-

4Under the Trotter approximation of s, the potential does not couple xk (for any k) to other beads
5Not just the half necklace shown in Figure 3.1
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cedure. This strategy is described in chapter 5. Later in the current chapter we will present

the simplest scheme, which compromises on the optimal choice of the sampling function,

but leads to an easy determination of the marginal distributions. We tabulate below three

sampling strategies we have developed for IMC; the contents of the table will become clear

as the reader visits the relevant sections.

SAMPLING STRATEGY WEIGHT FUNCTION MARGINALS COMPUTED

Potential-only Employs only potential terms Analytically

Bead-adapted Adapted for each bead pair Iteratively

Whole-necklace Conventional PIMC weight Recursively

3.3.2 Local summations

We have discussed what we call the first stage of importance sampling or MC ideas that are

incorporated into IMC. As mentioned in step 5 of the IMC algorithm, the use of importance

sampling ideas is not just limited to the grid selection. After the marginals are known, via

any of the sampling schemes tabulated above, we perform the local summations of (3.19).

These local sums, after N − 1 iterations, lead to an exponentially large number of paths

getting included globally in the computation of the path integral. In this section we will

look at how IMC carries out these summations.

For each grid point x′
k+1, xk+1, strictly speaking, the local sum is over all x′

k, xk grid points.

However, the short complex time propagators that enter this sum decay exponentially as the

the distance between the end point coordinates (for example, distance between xk+1 and

xk) increases. This suggests the possibility of getting away by summing over a fraction of

x′
k, xk grid points, thus saving significant computer time. Since we use the Trotter form

for short time propagators in all of our sampling strategies, let us rigorously analyze the
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above argument for that case. It is important to mention here that the sampling strategies

presented in the next two chapters are applicable to any approximation for the short complex

time propagator, and are not limited to the Trotter formula. Similar analysis, like the one

we are about to begin, can also be done for those approximations.

From (1.4), which gives the Trotter form for the short real time propagator, we obtain

the Trotter formula for the short complex time propagator by letting t → tc:

s(xk+1, xk; ∆tc) =
( m

2πi~∆tc

)1/2

exp

(

im

2~∆tc

(

xk+1 − xk

)2
)

× exp

(

−
i∆tc
2~

(

V (xk+1) + V (xk)
)

)

.

(3.26)

Recall ∆tc = tc/N = (t − i~β/2)/N . Similar expressions are obtained for s(x′
k+1, x

′
k) and

s(x′
1, x1) by changing the variables of the function s. Our focus here is the absolute value

of the first exponential term in (3.26). Taking the product of two such terms coming from

s(x′
k+1, x

′
k) and s(xk+1, xk) we get

gw = e
− mβN

4|tc|2
{(x′

k+1
− x′

k
)2+(xk+1− xk)

2}
. (3.27)

As can be seen, the above function is a Gaussian and can be interpreted as a probability

(weight) with which (x′
k, xk) will contribute to the sums in the iterative loop. Writing in

terms of gw the kth iteration of (3.19) becomes

R̃2k+1(x
′
k+1, xk+1) =

∑

x′
k
,xk

gw . . .
R̃2k−1(x

′
k, xk)

P2k−1(x′
k, xk)

, (3.28)

where . . . contains other terms from the short time propagator that were not included in

gw. From (3.27) we see that if (x′
k, xk) exceeds a certain large distance (determined by a

user-fixed threshold T that plays the role of a convergence parameter) from (x′
k+1, xk+1),

which is fixed in the sum of (3.28), then gw is exponentially small. More precisely if the

points (x′
k, xk) that are being summed fall outside the circle (see figure 3.2) described by the
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Figure 3.2: The circle described by the equation (3.29)

equation

(x′
k − x′

k+1)
2 + (xk − xk+1)

2 = r2, (3.29)

with x′
k+1, xk+1 as the center and the radius r derived to be

r =

√

4T

mNβ

(

t2 +
~2β2

4

)

, (3.30)

then we can throw them away. The points that fall inside the circle, we name them con-

nections, are included with weight gw. Thus, a dramatic enhancement in the speed of the

algorithm results, without any compromise on the desired accuracy of the estimate. To sum

up, while the first stage uses a random walk directed by a sampling scheme to select the best

possible collection of grid points, the second stage works by inspection. It uses an analytic

weight function, inbuilt in the path integral representation of the complex time correlation

function, to select a subset of the collection that is statistically significant for employment

in the local sum. Thus, the working expression that enters the code is the following iterative

38



cycle

R̃2k+1(x
′
k+1, xk+1) =

∑

x′
k
,xk such that

(x′
k
−x′

k+1
)2+(xk−xk+1)

2 < r2

gw . . .
R̃2k−1(x

′
k, xk)

P2k−1(x′
k, xk)

, k = 1, 2, . . . N − 1.

(3.31)

No matter what sampling strategy is used, after it reveals the marginals, the above set of

sums are then performed to obtain the correlation function in the end. Note that this analysis

easily generalizes to more dimensions d, where the condition now places the points on the kth

grid within a 2d-dimensional hypersphere centered at the point in question on the (k + 1)th

grid. The only effect of adding more degrees of freedom will be an effective decrease in the

radius of the hypersphere, which leads to the fall in the number of connections, necessitating

increasing the number of grid points to ensure adequate representation of the integrand.

The fall in the number of connections affects the stability of the first two sampling schemes

as d increases. However, the problem is overcome, for all practical purposes, in the optimal

sampling scheme described in chapter 5.

One last important point before we take a small break in the next section. Above, in

(3.30) we wrote the expression for the radius of the circle that determines the statistically

significant set of points or connections that are included in the local summations. Clearly, the

bigger the circle – in other words, the larger the area of the circle – more are the connections

to be found. The area of the circle is proportional to the radius squared which means, more

grid points will be summed as the radius increases. From (3.30) it is seen that increasing the

real time t leads to a larger radius r, which means for longer times more connections will be

utilized, proliferating the number of global paths employed to obtain the IMC estimate of the

path integral. This is consistent with Feynman’s sum over all paths picture, where quantum

dynamics at longer times demands a rise in the number of paths. Similarly, lowering of

temperature, meaning a rise in β, results in larger r. Lowering the temperature strengthens

the quantum effects in the system and this is correctly transferred into the IMC procedure
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because more connections are summed owing to a greater r. Similar arguments can be

made with other physical attributes of the system and the interpretation is found to be

consistent with the nature of quantum dynamics. Apart from being physically sound, this

in-built self-adjusting feature of IMC is clearly computationally desirable. In extracting

short time dynamics for example, only the most relevant paths are summed, minimizing any

wasteful operations. Then again, IMC enlarges the necessary connection base, if long time

information is to be delivered. For example, in some cases, when t/β > 1, the entire (x′
k, xk)

grid becomes statistically significant. This characteristic is absent in PIMC where the only

way to improve the accuracy is to increase the total number of MC samples, most of which

end up being statistically irrelevant forcing an exponential effort to converge. In contrast

IMC is designed to select, from a given number of MC samples, paths that will never be

selected by PIMC unless the latter uses an exponentially large number of samples. This

point is proven more rigorously in section 4.2 of the next chapter.

3.4 Recap and Preview

A lot has been said, derived and argued in the last few sections. Let us at this point take

a short break to recap the characteristics of IMC and present a preview of its potential and

limitations. This will hopefully help the reader to know what to expect from the method as

we will swiftly move, from next section onwards, to IMC sampling strategies and results.

• In IMC, the iterative evaluation of the path integral expression avoids the direct inte-

gration of an oscillatory function in 2(2N −1)d-dimensional space, thus circumventing

the exponential growth of statistical error with time that characterizes the real (or

complex) time path integral. If an average of M grid points is selected for each 2d-

dimensional grid, the result obtained through (3.21) is equivalent to a summation over

M2(2N−1) integrand points.

• At the same time, the use of importance sampling to generate the grid and connec-
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tions implies the storage requirements and the number of operations of IMC will be

dramatically smaller than in standard basis set or grid-based methods. For t = 0 the

grid size required is the typical number of paths necessary to converge the Monte Carlo

evaluation of the path integral; thus this grid scales slowly with the number of degrees

of freedom d.

• For 0 < t ≤ ~β/2, the propagator is somewhat oscillatory. If the number of particles

is not very large, such a propagator can still be represented adequately on a grid of

realistic size. However, the conventional multistep Monte Carlo path integral (PIMC)

will typically be out of reach in that case, as phase cancellation becomes dominant at

an exponential rate when the number of time steps is increased. On the other hand,

the iterative evaluation of the path integral on a Monte Carlo grid will still allow

propagation for many time steps. Of course, as the real time is increased further for

a fixed temperature, and/or the number of particles becomes large, the propagator

will become more oscillatory, and more grid points will be required. If the real time

becomes very long as compared to the “thermal time” t ∼ ~β/2 and the number of

degrees are high enough, such that even the single-step integrals performed in the IMC

method become too costly, the results will be harder to get.

• In summary, to the extent that the single-step complex time propagator for a given sys-

tem is amenable to Monte Carlo sampling, the IMC methodology will allow evaluation

of the complex time path integral for many time steps.

3.5 Potential-only sampling

In section 3.3.1 we dismissed an analytical evaluation of the marginal distributions on the

grounds that the ideal choice of the sampling function, (3.23), has terms that are coupled to

one another, making it hard to analytically do the integral, (3.24), that outputs marginals.
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A closer look at the Trotter approximation, (3.26), tells us that this coupling is only present

in the first exponential, the kinetic energy part of the short time propagator. We already

took advantage of this feature during the second stage of IMC when connections are selected.

The absolute value of the second exponential in (3.26), or the potential part of the short time

propagator, is e−
β

4N

(

V (xk+1)+V (xk)
)

. And it does not couple the beads xk+1 and xk, which

suggests that if the grid is selected with a sampling function that is a product of such terms,

we can get the marginal distributions analytically. Specifically, one can show after doing

some algebra that the ‘optimal’ sampling function, if one is forced to include only potential

terms of the short time propagator, is

ρ =
N
∏

k=1

e−
β

2N
V (x′

k
)e−

β

2N
V (xk). (3.32)

The marginals, computed merely by inspection using (3.16) with the above expression for ρ

as the integrand, are found to be

P2k−1(x
′
k, xk) =

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1

∫

dx′
k+1

∫

dxk+1 · · · ρ(. . . , x
′
k, xk, . . .)

=

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1

∫

dx′
k+1

∫

dxk+1 · · ·
N
∏

k=1

e−
β

2N
V (x′

k
)e−

β

2N
V (xk)

= e−
β

2N
V (x′

k
)e−

β

2N
V (xk) × constant.

(3.33)

Since the constant will cancel eventually in the last step of the IMC algorithm, we won’t

worry about it. Note that if ρ were to have terms that coupled the beads x′
k, xx to their

neighbors, then the constant will be replaced by a function of x′
k, xk, which in general will

be unknown. Thus, quite easily, marginal distributions of all the grids are available within

the potential-only sampling. Of course, this is possible at a rather huge cost. Firstly, notice

that P is independent of t! Implying no matter at what time the dynamics is simulated, a

similar grid is generated, which is clearly undesirable as the integrand that enters the sums
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in the iterative cycle changes considerably with time t and this should be reflected in the grid

selection. Second, the grid is always a high temperature distribution — β/N corresponds

to higher temerature than β. This means a lowering of the temperature (increasing β) will

not be reflected (because of increasing N to keep a small value for β/N), implying the

distribution will be classical like at all temperatures. Finally, we have already mentioned

the stability issues that will come up as the connections fall with increasing d. The first two

points will be addressed by the sampling scheme presented in the next chapter. And all the

three issues mentioned here will be taken care of by the optimal whole-necklace sampling.

The choice of potential-only sampling is adequate for the purpose of illustrating the

features of IMC, mostly because the second stage of incorportating importance sampling

ideas is still intact, and the iterative propagation will make up for the poor selection of grid

points. In the next section we will show the first IMC results obtained from potential-only

sampling. We will focus on one-dimensional problems, applications to multi-dimensional

systems will be taken up in the next two chapters via much improved sampling strategies.

3.6 First Results

Once the marginal distributions are known, they are to be plugged into the iterative loop

given by (3.31) and after N −1 iterations the complex time correlation function is outputed.

We present in this section calculations of the complex time position autocorrelation function,

which is obtained by setting Â = B̂ = x̂. Figure 3.3 shows this correlation function for a

one dimensional harmonic oscillator of unit mass and frequency. The results of the IMC

methodology with 2N − 1 = 7 (i.e, 14 path integral beads6) are compared to numerically

exact results, and also to the results of a conventional Metropolis Monte Carlo (PIMC)

evaluation of the complex time path integral, where the number of Monte Carlo samples was

adjusted to use the same number of operations employed in IMC. The IMC calculation was

6The number of beads is twice the number of slices
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done with just 1000 grid points. As it is seen very clearly in the figure, the statistical error

of the direct Monte Carlo calculation grows exponentially with time and the results become

meaningless beyond t ∼ ~β, in striking contrast to the results obtained with IMC with the

same numerical effort, which track the exact results at all times.

Figure (3.4) shows the same, but for a lower temperature, β = 3. Again, PIMC starts

to fail around t = 3 while IMC is consistently tracking the exact results. The error in

IMC can be further reduced with a small increase in the number of points. The fact that

with just ∼1000 points the correlation function can be reliably computed for long times

clearly indicates that in IMC an exponentially large number of paths are included over all,

without a similar increase in computational effort. If the number of grid points were to

scale exponentially with time in PIMC, IMC-like results would be obtained, but clearly we

are looking at an astronomical number of computations in that case. Next in Figure (3.5)

we compute the same correlation function for a strongly anharmonic oscillator described by

the potential V (x) = 1
2
x2 + 1

5
x4. This calculation is done at β = 0.5. Again, PIMC gets

meaningless beyond t ≈ β, while IMC with the same numerical effort maintains accuracy

even at times for which t/~β ≈ 15. This suggests the efficiency of IMC is not affected by the

kind of potential the particle feels. Thus, it is seen that IMC avoids the exponential growth

of statistical error, so characteristic of MC, as the real time is increased.

In the next chapter we will look at many-particle quantum systems after we describe an

improved sampling strategy.
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Figure 3.3: Complex time position autocorrelation function for a one dimensional harmonic
oscillator with unit mass and frequency at β = 1. Solid black line: Exact results. Blue
squares: Results obtained with IMC using 14 beads and 1000 points. Red dashed line:
Results obtained through PIMC for 14 beads, with the number of samples adjusted to have
the same number of operations as in the IMC calculation.
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Figure 3.4: Complex time position autocorrelation function for a one dimensional harmonic
oscillator with unit mass and frequency at β = 3. Solid black line: Exact results. Blue
squares: Results obtained with IMC using 14 beads and 1500 points. Red dashed line:
Results obtained through PIMC for 14 beads, with the number of samples adjusted to have
the same number of operations as in the IMC calculation.
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Figure 3.5: Complex time position autocorrelation function for a one dimensional anhar-
monic oscillator, V (x) = 1

2
x2 + 1

5
x4, with unit mass at β = 0.5. Solid black line: Exact

results. Blue squares: Results obtained with IMC using 14 beads and 1500 points. Red
dashed line: Results obtained through PIMC for 14 beads, with the number of samples
adjusted to have the same number of operations as in the IMC calculation.
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Chapter 4

IMC with bead-adapted sampling

In the previous chapter we used the potential part of the short complex time propagator

as the sampling function, generating a grid of points distributed similar to the classical

Boltzmann factor at the high temperature corresponding to the imaginary part of the time

step. This choice was adequate for the purpose of illustrating the features of IMC. It is

well known, however, that the Monte Carlo procedure is most efficient when the sampling

function is as close as possible to the (absolute value of) the entire integrand. In this chapter

we present an optimized IMC procedure where the sampling function used in the evaluation

of (3.15) satisfies this requirement. Further, the scheme we describe here is quite general and

does not rely on the use of the Trotter approximation to construct the short time propagator.

Thus, the present IMC method can be used in conjunction with improved propagators [68]

that allow larger time steps, such as the pair-product form in the case of neat fluids [35].

4.1 Bead-adapted sampling strategy

The main part of the integrand in (3.15) is, R2k−1(x
′
k, xk), the propagator for 2k−1 complex

time steps. For k = 1, this is the high-temperature/short time propagator, which is sharply

peaked about |x1 − x′
1| (because of the kinetic energy term) and extended along the x1 = x′

1

axis (because of the small value of the exponent in the potential part). As k increases, the

propagator R2k−1(x
′
k, xk) broadens along the direction |x′

k − xk| but becomes less extended

along the x′
k and xk coordinates. Thus, it is clear that the shape of the integrand varies

drastically with k. This behavior should be reflected in the range of the grid on which
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R2k−1(x
′
k, xk) is stored, and therefore should be incorporated in the sampling function.

4.1.1 Sampling function

As we argued above, we would like to generate points distributed roughly as the envelope of

the complex time propagator to be used at each iteration. This can be achieved through a

Monte Carlo random walk that uses |R2k−1(x
′
k, xk)| as the sampling function. However, this

idea appears impractical, because the propagator is not available analytically, except within

a short time approximation that should be inadequate beyond k = 1.

In order to address this issue, our sampling function is adapted to each path integral

bead. To generate the grid for the kth bead pair, we perform a Monte Carlo random walk in

the space of x1, x
′
1, . . . , xk, x

′
k, accepting or rejecting moves according to the weight function

ρk(x
′
1, x1 . . . x

′
k, xk) =

∣

∣〈x′
1|e

−i∆tcĤ/~|x1〉
∣

∣

k−1
∏

l=1

∣

∣〈x′
l|e

−i∆tcĤ/~|x′
l+1〉

∣

∣

∣

∣〈xl|e
−i∆tcĤ/~|xl+1〉

∣

∣. (4.1)

We have reverted back to the bra-ket notation for the short time propagator as it will

be useful later; recall s(xk+1, xk; ∆tc) =
∣

∣〈xk+1|e
−i∆tcĤ/~|xk〉

∣

∣. The coordinates of accepted

moves for the bead pair (x′
k, xk) are stored, forming the two-dimensional grid for these beads.

The other bead pairs {(x′
1, x1), . . . , (x

′
k−1, xk−1)} act as auxillary variables and are discarded.

Just as before, in the IMC algorithm prescribed in 3.2.2, a rejected move is dealt with by

incrementing the multiplicity of an already stored grid point pair.

The probability of selecting the coordinates (x′
k, xk) for the kth bead pair is

P2k−1(x
′
k, xk) =

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1 ρk(x
′
1, x1, . . . , x

′
k, xk)

=

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1

∣

∣〈x′
1|e

−i∆tcĤ/~|x1〉
∣

∣

×
k−1
∏

l=1

∣

∣〈x′
l|e

−i∆tcĤ/~|x′
l+1〉

∣

∣

∣

∣〈xl|e
−i∆tcĤ/~|xl+1〉

∣

∣.

(4.2)
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At this point we will define the short real time step (∆t) and short imaginary time step (∆β)

as ∆tc = tc/(2N − 1) ≡ ∆t − i~∆β. In the special case of purely imaginary time (t = 0),

the sampling function in (4.1) is simply the Boltzmann weight of the path integral segment

with endpoints (x′
k, xk), which contains 2k − 1 steps, such that

P2k−1(x
′
k, xk) =

∫

dx′
1

∫

dx′
1 · · ·

∫

dx′
k−1

∫

dxk−1 〈x
′
1|e

−∆βĤ |x1〉

×

k−1
∏

l=1

〈x′
l|e

−∆βĤ |x′
l+1〉〈xl|e

−∆βĤ |xl+1〉.

(4.3)

Removing the resolution of identity multiple times, this becomes

P2k−1(x
′
k, xk) = 〈x′

k|e
−(2k−1)∆βĤ |xk〉 = R2k−1(x

′
k, xk). (4.4)

Thus, in the case of zero real time, the sampled points for the kth bead pair have precisely

the desired distribution. While this is not the case for t > 0, the distribution in (4.2) is

still similar to (and only somewhat broader than) |R2k−1(x
′
k, xk)|, thus ideally suited to our

purpose. The close similarity of the distribution P2k−1(x
′
k, xk) (resulting from the bead-

adapted sampling procedure) to the ideal distribution |R2k−1(x
′
k, xk)| of the kth grid point

pair is illustrated in Figures 4.1, 4.2, and 4.3.1

4.1.2 Computing marginal distributions

We start by the definition of the marginal distribution, (4.2), within the bead-adapted

sampling. For k = 1, i.e. the first grid or bead pair, the grid is sampled with ρ1(x
′
1, x1).

Since there are no other variables in the function ρ1, this itself is the marginal distribution.

Confirming this with the expression in (4.2), for k = 1 there are no integrals to evaluate, we

1The figures on the left refer to the parameters (a), the figures on the right to (b). We will adopt this
convention throughout.
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have

P1(x
′
1, x1) = ρ1(x

′
1, x1) =

∣

∣〈x′
1|e

−i∆tcĤ/~|x1〉
∣

∣. (4.5)

For the second bead pair, k = 2, we start with the definition and find

P3(x
′
2, x2) =

∫

dx′
1

∫

dx1

∣

∣〈x′
2|e

−i∆tcĤ/~|x′
1〉
∣

∣

∣

∣〈x′
1|e

−i∆tcĤ/~|x1〉
∣

∣

∣

∣〈x1|e
−i∆tcĤ/~|x2〉

∣

∣

=

∫

dx′
1

∫

dx1

∣

∣〈x′
2|e

−i∆tcĤ/~|x′
1〉
∣

∣ P1(x
′
1, x1)

∣

∣〈x1|e
−i∆tcĤ/~|x2〉

∣

∣.

(4.6)

Can we do this double integral? It turns out we can, the strategy was designed for precisely

this purpose. This is the double integral over x′
1, x1 coordinates and we just showed in (4.5)

that their distribution is given by P1(x
′
1, x1) = ρ1. Therefore, we convert the integral into a

Monte Carlo sum to get

P3(x
′
2, x2) = θ1

∑

x′
1
,x1

∣

∣〈x′
2|e

−i∆tcĤ/~|x′
1〉
∣

∣ P1(x
′
1, x1)

∣

∣〈x1|e
−i∆tcĤ/~|x2〉

∣

∣

P1(x′
1, x1)

= θ1
∑

x′
1
,x1

∣

∣〈x′
2|e

−i∆tcĤ/~|x′
1〉
∣

∣

∣

∣〈x1|e
−i∆tcĤ/~|x2〉

∣

∣,

(4.7)

where θ1 is some normalization constant that will eventually cancel out. Thus the marginal

distribution of the second grid is known. Working from the definition again, the distribution

of x′
3, x3 grid points is given by

P5(x
′
3, x3) =

∫

dx′
1

∫

dx1

∫

dx′
2

∫

dx2

∣

∣〈x′
3|e

−i∆tcĤ/~|x′
2〉
∣

∣

∣

∣〈x′
2|e

−i∆tcĤ/~|x′
1〉
∣

∣

∣

∣

× 〈x′
1|e

−i∆tcĤ/~|x1〉
∣

∣

∣

∣〈x1|e
−i∆tcĤ/~|x2〉

∣

∣

∣

∣〈x2|e
−i∆tcĤ/~|x3〉

∣

∣.

(4.8)

In the above expression, just by inspection, if we carry out the integral over x′
1, x1 first, we

get a familiar function — P3(x
′
2, x2). Thus, we can write (4.8) as

P5(x
′
3, x3) =

∫

dx′
2

∫

dx2

∣

∣〈x′
3|e

−i∆tcĤ/~|x′
2〉
∣

∣ P3(x
′
2, x2)

∣

∣〈x2|e
−i∆tcĤ/~|x3〉

∣

∣. (4.9)

50



Clearly we can do this double integral by Monte Carlo too, as we are now aware of the dis-

tribution of x′
2, x2 grid points. Thus, an iterative structure very reminiscent of the structure

derived in section 3.2.1 emerges. The marginal distribution of the grid points on the (k+1)th

grid is expressed in terms of the marginal distribution of grid points on the kth as:

P2k+1(x
′
k+1, xk+1) =

∫

dx′
k

∫

dxk

∣

∣〈x′
k+1|e

−i∆tcĤ/~|x′
k〉
∣

∣ P2k−1(x
′
k, xk)

∣

∣〈xk|e
−i∆tcĤ/~|xk+1〉

∣

∣.

(4.10)

By replacing P with R and removing the absolute values on the short time propagators in

the above expression, the reader can convince herself that the iterative structure (3.15) of

last chapter is recovered. This means that, just like R2k−1(x
′
k, xk), the marginal distributions

P2k−1(x
′
k, xk) are also subject to iterative propagation and can be computed with the same

prescription with which the propagators were computed. Specifically, we get the following

MC estimate for the marginal distribution of the (k + 1)th grid,

P2k+1(x
′
k+1, xk+1) = θk

∑

x′
k
,xk

∣

∣〈x′
k+1|e

−i∆tcĤ/~|x′
k〉
∣

∣

P2k−1(x
′
k, xk)

P2k−1(x′
k, xk)

∣

∣〈xk|e
−i∆tcĤ/~|xk+1〉

∣

∣

= θk
∑

x′
k
,xk

∣

∣〈x′
k+1|e

−i∆tcĤ/~|x′
k〉
∣

∣

∣

∣〈xk|e
−i∆tcĤ/~|xk+1〉

∣

∣.

(4.11)

Again, in practice we compute the un-normalized P̃2k+1,

P̃2k+1(x
′
k+1, xk+1) =

∑

x′
k
,xk

∣

∣〈x′
k+1|e

−i∆tcĤ/~|x′
k〉
∣

∣

∣

∣〈xk|e
−i∆tcĤ/~|xk+1〉

∣

∣. (4.12)

In terms of the these un-normalized marginals, the IMC estimate from (3.19) for the prop-

agated R function is obtained as

R̃2k+1(x
′
k+1, xk+1) =

∑

x′
k
,xk

〈x′
k+1|e

−i∆tcĤ/~|x′
k〉
R̃2k−1(x

′
k, xk)

P̃2k−1(x′
k, xk)

〈xk|e
−i∆tcĤ/~|xk+1〉. (4.13)
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Equations (4.12) and (4.13) represent the summations that enter the iterative loop. As the

number of iterations increase we get all the marginals and all the propagators up to the final

propagator R̃2N−1(x
′
N , xN ) and final marginal P̃2N−1(x

′
N , xN), which are then used to com-

pute the complex time correlation function. To ignite the iterative cycle the intializing prop-

agator function R1(x
′
1, x1) is known via the short time approximation s ≡ 〈x′

1|e
−i∆tcĤ/~|x1〉

and the intializing marginal distribution is known, as emphasized earlier, by design.

4.2 t = 0 vs t > 0

Consider the case of zero time, i.e., tc = −i~β/2. In this case the iterative structures, (4.10)

and (3.15), corresponding to the marginals and propagators respectively are not similar,

they are exactly the same! This is because for zero real time the absolute values of the

short time propagator is the same as the short time propagator, there is no phase. Thus

R̃2k−1(x
′
k, xk) = P̃2k−1(x

′
k, xk) and (4.13) becomes

R̃2k+1(x
′
k+1, xk+1) = P̃2k+1(x

′
k+1, xk+1) =

∑

x′
k
,xk

∣

∣〈x′
k+1|e

−i∆tcĤ/~|x′
k〉
∣

∣

∣

∣〈xk|e
−i∆tcĤ/~|xk+1〉

∣

∣.

(4.14)

In this special case, R̃2k+1 does not depend on R̃2k−1; thus, the accuracy of this imaginary

time (t = 0) propagator at each iteration does not depend on the precision with which the

previous step was evaluated, but only on the number of grid points and their placement.

By the same argument, only made iteratively, in the calculation of the correlation function

the sums evaluated in earlier iterations cancel out and thus do not affect the final result.

Thus, one concludes that the IMC estimate of the zero-time result is in this case identical to

that of PIMC performed via a standard Metropolis random walk with ρN as the sampling

function. The additional summations in the IMC steps are redundant in the case of pure

imaginary time.

The situation could not be more different in real-time calculations. When t 6= 0, the sum

52



in (4.13) contains phase factors, and R̃2k−1(x
′
k, xk) 6= P̃2k−1(x

′
k, xk). Defining

fk(x
′
k+1, xk+1, x

′
k, xk) =

〈x′
k+1|e

−i∆tcĤ/~|x′
k〉〈xk|e

−i∆tcĤ/~|xk+1〉

P̃2k+1(x′
k, xk)

, (4.15)

iteration of (4.13) leads to the result

R̃2N−1(x
′
N , xN ) =

∑

x′
N−1

,xN−1

· · ·
∑

x′
1
,x1

fN−1(x
′
N , xN , x

′
N−1, xN−1) . . . f1(x

′
2, x2, x

′
1, x1)R1(x

′
1, x1).

(4.16)

If M points are used for the kth grid pair, (4.16) shows that the N − 1 iterative steps

performed to obtain R̃N amount to a total of MN−1 evaluations of the integrand. Thus, the

number of terms included in the IMC estimate of the propagator grows exponentially with

the number of time slices (although the computational effort through the iterative process

scales linearly). This exponential increase in the number of integrand evaluations counteracts

the exponential growth of statistical error due to phase cancellation. Thus, the precision of

the IMC result will tend to remain constant as the number of iterations is increased, in sharp

contrast to the conventional Monte Carlo estimate, which is characterized by exponential

proliferation of statistical error. We should mention here that the argument just made is

valid for a fixed complex time step. If the ∆tc is changed, say as a result of increasing t

then we will require more IMC grid points to maintain the same statistical error. Also if the

oscillatory character of the short time propagator is increased as a result of added degrees

of freedom, the number of points M must grow to account for the convergence of single step

integrals.
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4.3 Results

As promised in the last chapter, we present results for the position correlation function of a

system of d uncoupled harmonic oscillators described by the Hamiltonian

H =
d

∑

i=1

1

2
(p2i + ω2

i x
2
i ). (4.17)

Exact results were generated analytically. The IMC results were compared against those

generated by the conventional path integral Monte Carlo method with the number of samples

set equal to the total number of operations performed in the IMC calculation. The following

parameters were used:

(i) d = 1, ω1 ≡ ω = 1 (Figures 4.4(a), 4.4(b) and 4.5),

(ii) d = 4, ωi = 0.81, 0.92, 1.00, 1.16 (Figure 4.6),

(iii) d = 7, ωi = 0.81, 0.92, 1.00, 1.07, 1.16, 1.22, 1.32 (Figure 4.7), and

(iv) ωi = 1 with d = 1, . . . , 13 (Figures 4.8(a) and 4.8(b)).

All calculations presented below were performed with the Trotter discretization of the short

complex time propagator (3.26).

Figures 4.4(a) and 4.4(b) illustrates the performance of IMC at each iteration with a

(fixed) complex time step ∆tc = ∆t− i~∆β. Since a graph of the propagated function R̃2k−1

would not be very informative, we use this function in the expression for the correlation

function, (3.21), reporting the value of the symmetrized correlation function at the complex

time (2k − 1)∆tc, i.e., at the inverse temperature 2(2k − 1)∆β and time (2k − 1)∆t,

Cxx((2k − 1)∆tc) =

∫

dx′
k

∫

dxk|Rk(x
′
k, xk)|

2x′
kxk

∫

dx′
k

∫

dxk|Rk(x′
k, xk)|2

. (4.18)

Note that the temperature decreases with each iteration. Results are shown in Figures 4.4(a)

and 4.4(b) for ~ω∆β = 0.25. When ω∆t = 0 there is no sign problem, and according to
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the discussion following (4.14) both IMC and PIMC should yield comparable results. Figure

4.4(a) confirms this behavior. However, for the value ω∆t = 0.5 the real and imaginary time

parameters are comparable, leading to severe phase cancellation in the multi-dimensional

path integral. Indeed, as seen in Figure 4.4(b), the statistical error of the conventional

PIMC calculation grows exponentially with the number of path integral beads, while the

IMC results with 5000 grid points faithfully track the exact values with statistical deviations

of nearly constant magnitude.

Figure 4.5 shows the symmetrized correlation function as a function of real time for a

one dimensional harmonic oscillator at a fixed temperature corresponding to ~ωβ = 1. The

number of beads varies between 6 and 54 (2N − 1 = 3–27) in order to keep the real-time

step ∆t within the range 0.3–0.5. Since the temperature is fixed, the imaginary time step

decreases as N and t are increased. For the longest times shown in the figure, ∆t/∆β = 30.

Thus, the oscillatory character of the integrand increases with time. For this reason we

set the grid size according to the relation 2500 + 800N , increasing it linearly with the

number of beads. PIMC results are also shown for comparison. For each run, the number of

PIMC samples was adjusted to yield the same number of operations employed in the IMC

calculation. As can be seen in Figure 4.5, the IMC results are stable and accurate even when

t exceeds the thermal time t ∼ ~β/2 by an order of magnitude. By comparison, the PIMC

results become meaningless after the first quarter of the oscillation period.

Figures 4.6 and 4.7 present similar results for 4- and 7-dimensional systems respectively

with β = 5. For d = 4 (Figure 4.6), the IMC calculation was performed with 14–30 beads

(2N−1 = 7–15). The grid size was increased slightly faster than linearly with the number of

beads, following the relation −40000 + 3500N4/3. In the case of d = 7 (Figure 4.7) we used

14 beads (2N −1 = 7) for all calculations. The number of points was increased linearly with

time, following the relation 60000 + 20000t. Again, the statistical error of the conventional

PIMC procedure becomes very large (≥ 100%) as soon as t > ~β/2 and continues to grow

exponentially as the real time is increased. In striking contrast to that behavior, the IMC
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procedure led to accurate results with small statistical uncertainty.

Figure 4.8(a) investigates the performance of IMC for calculations with several particles.

Shown in this figure is the value of the correlation function at fixed t = 0 as a function of the

number d of degrees of freedom for β = 5. Since the real time is zero, these results correspond

to an equilibrium calculation where there is no sign problem. Once again, the PIMC method

is extremely efficient in this case; in line with the discussion of the previous section, the

IMC and PIMC results are comparable in accuracy. Figure 4.8(b) shows analogous results

for t = 4 (which exceeds significantly the characteristic thermal time). This calculation

employed 10000d grid point pairs for d ≤ 9 and 10000d + 100000(d − 9) for d ≥ 10 . The

increase of the number of grid points for 10 or more degrees of freedom was necessary to

maintain small statistical error in IMC. There are two reasons for this: (i) As discussed at

the end of the previous section, the integrand is oscillatory, thus there is phase cancellation

in IMC (although the resulting sign problem is far less severe compared to PIMC); (ii)

When the number of degrees of freedom is large, distances among grid points become large

on average, and the number of connections drops below the acceptable threshold, unless the

number of grid points is increased. With the given parameters the error bars associated with

the PIMC results exceed 100% for d > 4 , while the IMC results remain close to the exact

values.

4.4 Summary

The improved IMC scheme described in this chapter employs bead-adapted sampling with a

weight function that closely resembles the absolute value of the entire integrand correspond-

ing to each step in the iterative process. This way the selected grid points are guaranteed

to span the most important regions of each integration variable, leading to high efficiency.

The calculations reported in the previous section revealed a nearly constant statistical error

with increasing number of path integral beads using grids of modest size. We found that the
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number M of grid points must be increased somewhat faster than linearly with the number

d of degrees of freedom to guarantee stability. The present scheme includes kinetic energy

terms and this gradually decreases grid spread in each iteration. As compactness of the

IMC grid leads to avoidance of unnecessary oscillatory components, this procedure performs

well at later iterations. However, grid sampling during the first few time steps corresponds

to a high-temperature distribution, and thus is much wider than necessary, decreasing effi-

ciency. We describe in the next chapter an IMC scheme that uses the optimal grid, composed

exclusively of coordinates visited by the entire path integral necklace.
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Figure 4.1: Grid P2k−1(x
′
k, xk) generated using the bead-adjusted sampling procedure (blue

dots), compared to the exact absolute value of the propagator |R2k−1(x
′
k, xk)| (red dots), for

the kth bead pair, in the case of a harmonic oscillator for k = 1. (a) ~ω∆tc = −0.5i and (b)
~ω∆tc = 3− i0.5.
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Figure 4.2: Same as in Figure 4.1 but for k = 2.
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Figure 4.3: Same as in Figure 4.1 but for k = 5.
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Figure 4.4: Complex time position autocorrelation function for a harmonic oscillator with
unit mass with fixed ∆tc. The solid line shows exact results. The blue squares show results
obtained with the IMC method with 5000 grid points. The red hollow circles show PIMC
results, with the number of samples adjusted to have the same number of operations as IMC.
(a) ~ω∆β = 0.25, ω∆t = 0 (b) ~ω∆β = 0.25, ω∆t = 0.5.
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Figure 4.5: Complex time position autocorrelation function for a one-dimensional harmonic
oscillator with ~ωβ = 1. Solid Line: exact results. Blue squares: results obtained with
the IMC method. Red circles: results obtained from a conventional Metropolis Monte Carlo
evaluation of the complex time path integral expression, with the number of samples adjusted
to have the same number of operations as IMC.
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Figure 4.6: Complex time position autocorrelation function for a 4-dimensional multi-
frequency harmonic oscillator with unit mass at β = 5. Solid Line: exact results. Blue
squares: results obtained with the IMC method. Red circles: results obtained conventional
PIMC procedure, with the number of samples adjusted to have the same number of opera-
tions as IMC. See the text for additional details.
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Figure 4.7: Complex time position autocorrelation function for a 7-dimensional multi-
frequency harmonic oscillator with unit mass at β = 5. Solid Line: exact results. Blue
squares: results obtained with the IMC method. Red circles: results obtained conventional
PIMC procedure, with the number of samples adjusted to have the same number of opera-
tions as IMC. See the text for additional details.
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Figure 4.8: Complex time position autocorrelation function of a d-dimensional harmonic
oscillator with unit mass and frequency for β = 5. Solid Line: exact results as a function of
the number d of dimensions. Solid blue squares: results obtained with the IMC method using
2N − 1 = 5 (10 path integral beads). Hollow red circles with error bars: results obtained
via conventional Metropolis Monte Carlo evaluation of the complex time path integral, with
10 path integral beads and the number of samples adjusted to have the same number of
operations as IMC. (a) t = 0, IMC performed with a total of 10000 grid points. (b) t = 4 ,
IMC with performed with 10000d grid points up for d ≤ 9 and with an addition of 100,000
grid points per dimension for d ≥ 10.
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Chapter 5

IMC with whole-necklace sampling

Clearly, the choice of grid points is extremely important to the success of a Monte Carlo-

based method. In earlier chapters we discussed two possible schemes for selecting grid pairs.

Specifically, in chapter 4 we used a potential sampling procedure. This resulted in similar

grids for all iterations, but the spread of the distributions was rather large because the

sampling function was a high temperature distribution. In chapter 5 we improved the grid

selection process by using a bead-adapted sampling procedure. The latter leads to grid pair

distributions of varying shape; the first bead pair is associated with a high temperature

distribution and thus a large span, while the addition of complex time steps in the sampling

function with increasing k effectively lowers the temperature, leading to more compact grids.

The wide span of the grid for the initial iterations is not optimal for convergence. Recall the

expression for the complex time correlation function, (3.4),

CAB(t) =
1

Z

∫ ∫

dxdx′〈x|eit
∗
cĤ/~|x′〉〈x′|e−itcĤ/~|x〉A(x)B(x′). (5.1)

If we express both the forward and backward complex time propagators as path integrals,

and if number of time slices in each direction is 2N − 1, then the above expression for the

correlation function uses 2(2N − 1) variables or beads. Since the correlation function is a

trace, these beads form a closed or whole necklace. Our goal is to compute the correlation

function and ideally, we would like to have grid pairs distributed as the absolute value of

the integrand for the entire path integral necklace (see Figure 5.1). Such sampling generates

equivalent and economical grid distributions at all path integral steps (beads). The apparent
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Figure 5.1: Illustration of the path integral necklace for the complex time correlation func-
tion, (5.1). The upper half segment corresponds to the complex time forward propagator,
(3.9). The lower half necklace corresponds to the backward propagator.

difficulty in the IMC use of such grids is that one must know the marginal distribution

of individual bead pairs. Thus, we develop here a procedure for evaluating the required

marginal distributions. We find that the whole-necklace grid selection procedure leads to

superior performance, significantly enhancing stability.

5.1 Whole-necklace sampling strategy

The conventional PIMC procedure uses the absolute value of the integrand as the sampling

function. In the case of the path integral representation of the complex time correlation

function, this is given by the product of absolute values of the short time propagators,

ρ(x′
1, . . . , x

′
2N−1, x1, x2N−1) =

∣

∣〈x′
1|e

−i∆tcĤ/~|x1〉
∣

∣

∣

∣〈x2N−1|e
−i∆tcĤ/~|x′

2N−1〉
∣

∣×

N−1
∏

l=1

∣

∣〈x′
l|e

−i∆tcĤ/~|x′
l+1〉

∣

∣

∣

∣〈xl|e
−i∆tcĤ/~|xl+1〉

∣

∣

∣

∣〈x′
N+l|e

i∆t∗cĤ/~|x′
N+l−1〉

∣

∣

∣

∣〈xN+l|e
i∆t∗cĤ/~|xN+l−1〉

∣

∣.

(5.2)
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Equation (5.2) is the joint probability distribution of all the variables (beads) that enter the

sampling function. Further, we use the absolute value of the short time propagator,

Q1(x
′, x) =

∣

∣〈x′|e−i∆tcĤ/~|x〉
∣

∣ (5.3)

and its iteration,

Q2k+1(x
′, x) =

∫

dx′′

∫

dx′′′Q1(x
′, x′′′)Q2k−1(x

′′′, x′′)Q1(x
′′, x), (5.4)

to define functions Q2k−1 analogous to the propagator iteration, (3.15). (Note that the

absolute value of the complex time propagator is the same for a complex time step and its

complex conjugate, thus the value of Q2k−1 does not depend on whether the time steps it

spans are on the forward or backward part of the necklace.) These functions are symmetric,

i.e., Q2k−1(x
′, x) = Q2k−1(x, x

′). Given the joint probability distribution (5.2), the desired

grid pair distribution P2k−1(x
′
k, xk) is the marginal distribution

P2k−1(x
′
k, xk) =

∫

dx′
1

∫

dx1 · · ·

∫

dx′
k−1

∫

dxk−1

∫

dx′
k+1

∫

dxk+1 · · ·
∫

dx′
2N−1

∫

dx2N−1 ρ(x
′
1, . . . , x

′
2N−1, x1, . . . , x2N−1).

(5.5)

From this and (5.4) it follows that

P2k−1(x
′
k, xk) = Q2k−1(x

′
k, xk)Q4N−2k−1(x

′
k, xk). (5.6)

Below we describe a recursive scheme for calculating Q2k−1.

Application of (5.4) gives

Q3(x
′
2, x2) =

∫

dx′
1

∫

dx1Q1(x
′
2, x

′
1)Q1(x

′
1, x1)Q1(x1, x2). (5.7)

Since the distribution of the grid point pairs (x′
1, x1) is P1(x

′
1, x1) = Q1(x

′
1, x1)Q4N−3(x

′
1, x1)
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(from (5.6) ), the Monte Carlo estimate to (5.7) is

Q3(x
′
2, x2) =

∑

x′
1
,x1

∫

dx′
1

∫

dx1P1(x
′
1, x1)

P1(x′
1, x1)

Q1(x
′
2, x

′
1)Q1(x

′
1, x1)Q1(x1, x2)

= λ
∑

x′
1
,x1

Q1(x
′
2, x

′
1)Q1(x1, x2)

Q4N−3(x′
1, x1)

.

(5.8)

Here λ =
∫

dx′
k

∫

dxkP2k−1(x
′
k, xk) is a normalization constant which is going to be the same

for any bead pair and will eventually cancel out just like before. Similarly, we find

Q5(x
′
3, x3) =

∑

x′
2
,x2

∫

dx′
2

∫

dx2P3(x
′
2, x2)

P3(x′
2, x2)

Q1(x
′
2, x

′
2)Q3(x

′
2, x2)Q1(x2, x3)

= λ
∑

x′
2
,x2

Q1(x
′
3, x

′
2)Q1(x2, x3)

Q4N−5(x′
2, x2)

.

(5.9)

More generally,

Q2k−1(x
′
k, xk) = λ

∑

x′
k−1

,xk−1

Q1(x
′
k, x

′
k−1)Q2k−3(x

′
k−1, xk−1)Q1(xk−1, xk)

P2k−3(x′
k−1, xk−1)

= λ
∑

x′
k−1

,xk−1

Q1(x
′
k, x

′
k−1)Q1(xk, xk−1)

Q4N−2k+1(x′
k−1, xk−1)

(5.10)

for k = 2, . . . , N . Since the single-step propagator is assumed available, (5.10) is a (propor-

tionality) relation between Qn and Q4N−n for odd values of n.

For closure, we must obtain additional relations. Starting again with Q1, we use the

two-step propagator on both sides to obtain the relation

Q5(x
′
3, x3) =

∫

dx′
1

∫

dx1Q2(x
′
3, x

′
1)Q1(x

′
1, x1)Q2(x1, x3). (5.11)
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whose Monte Carlo estimate is

Q5(x
′
3, x3) =

∑

x′
1
,x1

∫

dx′
1

∫

dx1P1(x
′
1, x1)

P1(x′
1, x1)

Q2(x
′
3, x

′
1)Q1(x

′
1, x1)Q2(x1, x3)

= λ
∑

x′
1
,x1

Q2(x
′
3, x

′
1)Q2(x1, x3)

Q4N−3(x′
1, x1)

.

(5.12)

This procedure leads to the new set of relations

Q2k+1(x
′
k+1, xk+1) = λ

∑

x′
k−1

,xk−1

Q2(x
′
k+1, x

′
k−1)Q2k−3(x

′
k−1, xk−1)Q2(xk−1, xk+1)

P2k−3(x′
k−1, xk−1)

= λ
∑

x′
k−1

,xk−1

Q2(x
′
k+1, x

′
k−1)Q2(xk−1, xk+1)

Q4N−2k+1(x′
k−1, xk−1)

.

(5.13)

These relations connect Q4N−n and Qn+2 for odd n.

It is clear that these relations connect all Qn for n = 3, 5, . . . , 4N − 3. Starting with a

zeroth order approximation forQ3, we use its relation toQ4N−3 to correctQ3 self-consistently,

obtaining accurate distributions Q3 and Q4N−3. Next, we use the distribution Q4N−3 to

obtain Q5, from which we determine Q4N−5, etc.

Finally, 5.6 implies that the single-bead distributions

Sk(xk) =

∫

dx′
kP2k−1(x

′
k, xk) (5.14)

are independent of the bead index k, thus all beads share the same distributions. In fact,

Sk(x) ≡ S(x) is the PIMC distribution that characterizes each bead of the necklace (with

the same complex time argument).

5.2 Results

In this section we present numerical results that illustrate the IMC methodology with whole-

necklace sampling. In all calculations we use the Trotter factorization of the short time prop-
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agators just like before. As it should be clear from the discussion in the previous section, the

main advantage of the present IMC is its use of optimal grids, generated via whole-necklace

PIMC sampling. Figures 5.2, 5.3 and 5.4 show the distributions P2k−1(x
′
k, xk) for k = 1, 3

and 5 generated by the procedure described in section 5.1 for a one-dimensional harmonic

oscillator with ~ωβ = 1, ωt = 1, and 2N − 1 = 9. The distributions are also compared

to those obtained using the potential sampling and bead-adapted sampling procedures. As

expected, the original potential sampling scheme results in broad circular distributions that

have similar shapes for all bead pairs. Our recent bead-adapted sampling gives rise to distri-

butions that are significantly more compact, starting out elongated along the main diagonal

and becoming more symmetric as the inclusion of additional beads in the sampling function

effectively lowers the temperature. As seen in the figures, the present whole-necklace sam-

pling scheme leads to the most compact grid distributions in all cases, which have shapes that

are similar to those obtained from bead-adapted sampling but are less spread out. Shown

in Figure 5.5 are single-bead distributions, (5.14), obtained from the calculated pair distri-

butions (some of which are displayed in Figures 5.2, 5.3, and 5.4) by integrating (summing)

with respect to one of the coordinates and binning the results. As argued in the previous

section, the single-bead probabilities are independent of bead index in whole-necklace sam-

pling. Figure 5.5 verifies this behavior, showing that the single-bead distributions obtained

from the distinct pair distributions are indeed indistinguishable.

Figures 5.6–5.9 illustrate the performance of the present IMC scheme, which employs

whole-necklace sampling. Error bars were estimated from the variance of several separate

IMC calculations. Figure 5.6 illustrates the performance of the method at each iteration with

a (fixed) complex time step ∆tc = ∆t − i~∆β. Since a graph of the propagated function

R̃2k−1 would not be very informative, we present in Figure 5.6 the value of the symmetrized

correlation function at the complex time (2k−1)∆tc, i.e., at the inverse temperature 2(2k−
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1)∆β and time (2k − 1)∆t,

Cxx((2k − 1)∆tc) =

∫

dx′
k

∫

dxk|Rk(x
′
k, xk)|

2x′
kxk

∫

dx′
k

∫

dxk|Rk(x′
k, xk)|2

. (5.15)

Note that the temperature decreases with each iteration in this calculation. Results are

shown in Figure 5.6 for a one-dimensional harmonic oscillator with ~ω∆β = 0.05 and

ω∆t = 0.1. The IMC calculation was performed with 10000 grid points, and results are

presented with up to 15 iterations (29 path integral slices in the propagator). Also shown

are results obtained by the PIMC method with the number of samples adjusted to have the

same number of operations as the IMC calculation. As expected, the statistical error of the

PIMC calculation grows exponentially with the number of path integral beads, while the

IMC results with 10000 grid points faithfully track the exact values with statistical devia-

tions of nearly constant magnitude. More specifically, the statistical error does not increase

noticeably with the number of iterations when the ratio ∆t/∆β is held fixed.

Next, we compare the IMC methodology with the whole-necklace sampling procedure

presented in the present paper to our recent scheme which employed a bead-adapted sampling

procedure. Figure 5.7 present such IMC calculations on a d-dimensional harmonic oscillator

of unit mass and frequency for β = 1, t = 0, and N = 3 (10 beads) as a function of the

number d of spatial degrees of freedom. The total number of grid points was set equal to

10000 for d ≤ 15 and 20000 for d > 15. The two schemes perform almost equally well

up to d = 10. However, the bead-adapted IMC results begin to degrade as the number of

spatial dimensions is increased, requiring a larger grid to maintain comparable precision. In

contrast to this behavior, the whole-necklace IMC procedure yields accurate results up to 50

degrees of freedom. This comparison demonstrates the superiority of the present sampling

technique.

Figure 5.8 shows the position autocorrelation function of a d-dimensional harmonic os-

cillator with unit mass and frequency for β = 7, t = 3.5, and N = 4 (14 beads) as a function
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of the number d of spatial degrees of freedom. The total number of grid points employed in

IMC was increased linearly with d as the function 5000d.

Finally, we show in Figure 5.9 the position autocorrelation function of an anharmonic

oscillator with potential function V (x) = 1
2
x2+ 1

5
x4 at a fixed temperature corresponding to

β = 1. The number of beads ranged between 6(N = 2) and 78(N = 20). The number of grid

points in the IMC calculations was increased linealy with the number of beads according to

the relation 1500 + 2000N .

5.3 Summary

We have shown that the IMC methodology can be formulated in terms of grids obtained via

ordinary PIMC sampling. Because the scheme uses the absolute value of the entire complex

time propagator, the result grid distributions are spatially confined as the Boltzmann density

itself at the given temperature. Thus, unnecessary phase cancellation from broader regions

of space is avoided, leading to better statistics. The recursive procedure presented in section

5.1 leads to determination of all bead-pair probability distributions, converging very rapidly.

Our numerical results presented in the above section show that converged results are obtained

using modest-sized grids of ∼ 104 points on systems of 10–20 degrees of freedom. In these

calculations, the grid size was increased linearly with system dimension. However, because

the IMC integrand contains an oscillatory factor, phase cancellation will eventually (as the

number of particles is increased) become extensive, necessitating the use of many more grid

points to achieve convergence.
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Figure 5.2: Bead pair distributions P2k−1(x
′
k, xk) for k = 1 generated by the whole-necklace

sampling procedure for a one dimensional oscillator with ~ωβ = 1, ωt = 1, and 2N − 1 = 9.
Red: potential-only sampling. Green: bead-adapted sampling. Blue: whole-necklace PIMC
sampling.
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Figure 5.3: Bead pair distributions P2k−1(x
′
k, xk) for k = 3 generated by the whole-necklace

sampling procedure for a one dimensional oscillator with ~ωβ = 1, ωt = 1, and 2N − 1 = 9.
Red: potential-only sampling. Green: bead-adapted sampling. Blue: whole-necklace PIMC
sampling.
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Figure 5.4: Bead pair distributions P2k−1(x
′
k, xk) for k = 5 generated by the whole-necklace

sampling procedure for a one dimensional oscillator with ~ωβ = 1, ωt = 1, and 2N − 1 = 9.
Red: potential-only sampling. Green: bead-adapted sampling. Blue: whole-necklace PIMC
sampling.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-3 -2 -1  0  1  2  3

x

S
k
(x
)

Figure 5.5: Single-bead distributions, (5.14), as obtained from integrating the two-bead dis-
tributions (obtained with whole-necklace sampling) shown in Figures 5.2, 5.3, and 5.4. Red,
green, blue, cyan and gold correspond to results obtained from the two-bead distributions
with k = 1, 2, 3, 4, 5 respectively.
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Figure 5.6: Position correlation function with fixed complex time step, (5.15). Blue squares:
whole-necklace IMC with 10000 grid points. Hollow circles: PIMC results with the same
number of operations.
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Figure 5.7: Zero-time position correlation function for a d-dimensional harmonic oscillator.
Green triangles: IMC with bead-adapted sampling. Blue squares: IMC with whole-necklace
sampling.
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Figure 5.8: Position correlation function for a d-dimensional harmonic oscillator. Blue
squares: IMC with whole-necklace sampling. Red circles: PIMC results with the same
number of operations.
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Figure 5.9: Position correlation function for a one-dimensional anharmonic oscillator. Blue
squares: IMC with whole-necklace sampling. Red circles: PIMC results with the same
number of operations.
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Chapter 6

Conclusion

The IMC path integral methodology avoids the exponential proliferation of the sign problem

with increasing number of time steps by evaluating the path integral expression iteratively.

At the same time, it takes advantage of Monte Carlo sampling, both in the selection of

grid points and the integral evaluation. These features make IMC a promising approach

for performing fully quantum mechanical calculations on systems with several degrees of

freedom. In the conventional PIMC method, a random walk is performed in the space of

all path integral variables, and the average value of the quantity of interest is computed

from the sampled path configurations, which have a probability distribution given by the

given weight function. If M paths are sampled, the computed value is the average of M

integrand evaluations. The presence of the Boltzmann factor in finite-temperature expression

implies that the integrand is localized over a very small fraction of path space. Because the

Metropolis sampling procedure focuses on statistically important paths, the PIMC algorithm

yields results with acceptable statistical error using modest values of M as long as the

integrand is a smooth function, as in the case of equilibrium averages (i.e., t = 0). Under

such conditions, the PIMC statistical error generally grows linearly with integral dimension,

thus results of adequate precision can be obtained even with many particles and many path

integral variables (beads). On the other hand, the integrand is highly oscillatory in real

time calculations (t 6= 0), leading to exponential dependence of the Monte Carlo error on

integral dimension. In such cases the PIMC method requires astronomical numbers of terms

to converge if there are more than a few degrees of freedom and/or path integral beads.

The IMC scheme uses a Monte Carlo-based grid ofM points for each integration variable,
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which is constructed from the coordinates of paths visited in a PIMC calculation. Rather

than averaging the desired function values over paths, IMC evaluates the multi-dimensional

integral iteratively, summing over only a pair of variables in each step. After N such steps,

the IMC value of the complex time propagator is equivalent to the sum of MN integrand

values, and when the propagator is squared to give the correlation function, the number of

combined terms is M2N . This exponential proliferation of terms with the number of beads

counters the exponential growth of statistical error due to phase cancellation. If the number

M of grid points required to perform a single step ∆tc in the iterative process is within

reach for the problem at hand, the IMC calculation will yield results of comparable precision

to complex times ∼ N∆tc , i.e., for low temperatures and over long real time. Thus, the

numerical effort in IMC scales linearly with propagation time and inverse temperature.

We note that the above remarks pertain to the precision attained as the number of

path integral beads increases with a fixed complex time step. If, on the other hand, ∆tc

is changed as a result of incrementing the real time t while keeping the temperature fixed,

the oscillatory character of the short complex time propagator will increase. In that case it

may be necessary to increase the number of IMC grid points in order to maintain a nearly

constant statistical error.

Similarly, the statistical error of IMC is expected to grow as the number of particles is

increased. For d degrees of freedom, the number of grid points required in IMC must be

sufficiently large to account properly for phase cancellation in the 2d-dimensional integral

performed in each step. Compared to the 2(2N − 1)d-dimensional integral performed in

PIMC, the gain in efficiency again grows exponentially with the number of path integral

beads.

Applications of IMC we envision include simulation of barrier crossing processes through

the evaluation of reactive flux correlation functions [69], which is an ongoing project, and

calculation of force and velocity correlation functions in atomic clusters. As the number

of degrees of freedom increases, we expect that the required number of grid points will
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eventually become unrealistically large. Establishing the practical system size limitations of

IMC will also be the subject of future work. IMC has already been extended to compute

the more demanding real time correlation function by Baltaretu and Makri [70]. Possible

extensions of this idea to the problem of fermion statistics are discussed in the work of

Chen [71], though the sign problem seems too severe in that case. Finally, we note that the

present scheme can take advantage of advanced and highly efficient PIMC algorithms, as well

as path integral molecular dynamics (PIMD) techniques [72]. These algorithms have proven

extremely useful for simulating equilibrium properties of quantum many-body systems. The

iterative Monte Carlo methodology described in this dissertation extends these capabilities

to time-dependent properties.
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Appendix A

The source codes for the three versions of IMC – Potential-only (IMC1), Bead-Adapted

(IMC2), and Whole-necklace (IMC3), are included in the file source.zip and are uploaded

via the Electronic Thesis Deposit. The codes are written in FORTRAN 90.
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