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Abstract

The art gallery problem asks for the smallest number of guards required to see every
point of the interior of a polygon P . We introduce and study a similar problem called the
chromatic art gallery problem. Suppose that two members of a finite point guard set S ⊂ P
must be given different colors if their visible regions overlap. What is the minimum number
of colors required to color any guard set (not necessarily a minimal guard set) of a polygon
P? We call this number, χG(P ), the chromatic guard number of P . We believe this problem
has never been examined before, and it has potential applications to robotics, surveillance,
sensor networks, and other areas. We show that for any spiral polygon Pspi, χG(Pspi) ≤ 2,
and for any staircase polygon (strictly monotone orthogonal polygon) Psta, χG(Psta) ≤ 3.
We also show that for any positive integer k, there exists a polygon Pk with 3k2+2 vertices
such that χG(Pk) ≥ k.



Figure 1: [left] Two strictly monotone orthogonal polygons. They take the form of two vertices
connected by two different staircase-shaped paths. This is the definition of “staircase polygon”
that we will use. [right] Two orthogonal convex fans. This family of polygons is a subset of the
strictly monotone orthogonal polygons. Some other papers use the term “staircase polygon” to
refer exclusively to the orthogonal convex fans, but we will not.

1 Introduction

Suppose a robot is navigating a region populated with radio beacons. The robot is equipped
with the following primitives: drive toward the beacon, drive away from the beacon, and drive
along the level sets of the beacon’s intensity (similar to the model in [24]). If this robot were
to be in an area where two different beacons were broadcasting on the same frequency, it may
become confused and the action that it takes when ordered to perform a certain primitive could
become unpredictable. The same phenomenon could happen with other sensing and actuation
models. A robot navigating visually and being told “drive toward the red landmark” may get
confused if there are two red landmarks in its visibility region. This raises a natural question:
How many classes of partially distinguishable guards are required to guard a given area? In
this paper, we try to answer this question for bounded simply-connected polygonal areas. We
assume that a robot cannot see a given landmark if the polygon boundary is in the way.

Spiral polygons are a heavily studied area in visibility. Special results for this class of poly-
gons are availible for the watchman route problem [18], the weakly cooperative guard problem
[12], the visibility graph recognition problem [4], point visibility isomorphisms [14], and trian-
gulation [25]. An algorithm for decomposing general polygons into a minimum number of spiral
polygons was described in [11]. We choose to focus on spiral polygons because we think that
they could be a useful building block in solving the chromatic guard number problem for general
polygons.

There are two commonly used definitions for staircase polygons (see Figure 1). The one we
use is that a staircase polygon is a strictly monotone orthogonal polygon. This definition was
also used in [8], which found an asymptotically tight bound on the number of guards required
to solve the prison yard problem for these polygons. The problem of placing a maximum area
staircase of this kind in a planar point set was studied in [16]. They have also been examined in
the context of self-avoiding walks for physics modelling in [22] and [23]. These polygons always
take the form of two convex right angle vertices joined by two subchains of alternating convex
and reflex vertices (described in greater detail in Section 4.2). The other definition, which is
a special case of the one we use, is that a staircase polygon is an orthogonal convex fan. This
definition is used in [1]. These polygons trivially have a chromatic guard number of one (they
are star-shaped). From this point forward, “staircase polygons” will refer exclusively to strictly
monotone orthogonal polygons. We choose to focus on these staircase polygons because of their
potential as building blocks for a bound on the chromatic guard number of general orthogonal
polygons.

Section 2 contains the formal definition of the problem. Section 3 contains a proof of a lower
bound on the chromatic guard number for general polygons. Section 4 contains upper bounds
on the chromatic guard number for spiral polygons and staircase polygons. Section 5 discusses
directions of future research.
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2 Problem definition

Let a polygon P be a closed, simply connected, polygonal subset of R2 with boundary ∂P . A
point p ∈ P is visible from point q ∈ P if the closed segment pq is a subset of P . The visibility

polygon V (p) of a point p ∈ P is defined as V (p) = {q ∈ P | q is visible from p}. Let a guard

set S be a finite set of points in P such that
⋃

s∈S V (s) = P . The members of a guard set
are referred to as guards. A pair of guards s, t ∈ S is called conflicting if V (s) ∩ V (t) 6= ∅.
Let C(S) be the minimum number of colors required to color a guard set S such that no two
conflicting guards are assigned the same color. Let T (P ) be the set of all guard sets of P . Let
χG(P ) = minS∈T (P )C(S). We will call this value χG(P ) the chromatic guard number of the
polygon P . Note that the number of guards used can be as high or low as is convenient. We
want to minimize the number of colors used, not the number of guards.

The notion of conflict can be phrased in terms of link distance. The link distance between
two points p, q ∈ P (denoted LD(p, q)) is the minimum number of line segments required to
connect p and q via a polygonal path. Each line segment must be a subset of P .

Theorem 1. Two guards s1, s2 ∈ P conflict if and only if LD(s1, s2) ≤ 2.

Proof. If LD(s1, s2) = 1, then they are mutually visible, and obviously conflict.
If LD(s1, s2) = 2, then there exists a point r ∈ P , such that s1r, rs2 ⊆ P . Since s1r ⊆ P ,

r ∈ V (s1). Since rs2 ⊆ P , r ∈ V (s2). Because r is in V (s1) and V (s2), the intersection of V (s1)
and V (s2) is non-empty; therefore s1 and s2 conflict.

If s1 and s2 conflict, then let r be a point in the intersection of V (s1) and V (s2). Since
r ∈ V (s1), s1r ⊆ P . Since r ∈ V (s2), rs2 ⊆ P . Because s1r, rs2 ⊆ P , LD(s1, s2) ≤ 2.

3 Lower bounds on the chromatic guard number

Theorem 2. For every positive integer k, there exists a polygon P with 3k2 + 2 vertices such

that χG(P ) ≥ k.

Proof. The polygon P is a version of the standard “comb” used to show the occasional ne-
cessity of ⌊n/3⌋ guards in the standard art gallery problem [3]. The vertex list of P is
[(0, 1), (1, 0), (2, 1), (4, 1), (5, 0), (6, 1) . . . (4k2−4, 1), (4k2−3, 0), (4k2−2, 1), (4k2−2, 2k−2), (0, 2k−
2)]. This polygon has 3k2 + 2 vertices, and it consists of a closed rectangular region (the body

region) with corners (0, 1), (4k2 −2, 1), (4k2 −2, 2k−2), (0, 2k−2) that has k2 notches attached
to the bottom edge. Call the vertices with a y coordinate of zero apex points. Note that each
notch has a unique apex point. A guard with coordinates (x, y) will be referred to as an apex

guard if y < 1 and will be referred to as a body guard if y ≥ 1 (See Figure 2).
Each body guard can guard up to k distinct notches. However, since the visibility polygon

of a body guard includes the entire body region, and every guard’s visibility polygon intersects
the body region, a body guard will conflict with every other guard in the polygon. Let mbody

be the number of body guards used in a guard set of P .
Each apex guard can guard only one notch. However, two apex guards will not conflict if

they are placed far enough away from each other. Since the top edge of P has a y coordinate
of 2k− 2, two apex guards are only forced to conflict if the distance between the apex points of
their corresponding notches is 4k or less. Let a set of k notches be consecutive if the maximum
distance between the apex points of any two notches in the set is 4k. Let mapex be the maximum
number of apex guards in any consecutive set of k notches in P .
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Figure 2: [top] The polygon P (Theorem 2) for k = 3. The guard s1 is a body guard, and the
guard s2 is an apex guard. [bottom] A guard placement that requires three colors.

Suppose the polygon P has a guard set S assigned to it that requires only χG(P ) colors.
Consider a set of k consecutive notches in P that contains mapex apex guards. All of these apex
guards will conflict with each other, and all of these apex guards will conflict with all of the body
guards. Therefore, χG(P ) ≥ mapex+mbody. Now, note that each body guard can guard at most
k notches. Since there are k2 notches, by the pigeonhole principle, apex guards can guard at
most kmapex notches (see Figure 2). Since each notch must be guarded, kmapex + kmbody ≥ k2,
so mapex +mbody ≥ k. Therefore χG(P ) ≥ mapex +mbody ≥ k.

4 Upper bounds on the chromatic guard number

One could just give every guard its own color. Any polygon P with n vertices can be guarded
by ⌊n/3⌋ guards (the art gallery theorem [3]), so χG(P ) ≤ ⌊n/3⌋. However, this bound is
unsatisfying, because colors can often be reused. There exist polygons with an arbitrarily high
number of vertices that require only two colors. We prove bounds better than ⌊n/3⌋ for two
categories of polygons.

4.1 Spiral polygons

A chain is a series of points [p1, p2, . . . , pn] along with line segments connecting consecutive
points. A subchain is a chain that forms part of the boundary of a polygon. The points p1
and pn are called endpoints, and all other points are internal vertices. A convex subchain is a
subchain where all the internal vertices have an internal angle of less than π radians. A reflex

subchain is a subchain where all the internal vertices have an internal angle of greater than π
radians. Note that convex and reflex subchains can trivially consist of a single line segment (if
there are no internal vertices). A spiral polygon is a polygon with exactly one maximal reflex
subchain (all reflex subchains of the spiral polygon must be contained within the maximal reflex
subchain).

Theorem 3. For any spiral polygon P , χG(P ) ≤ 2.

Proof. The spiral polygon consists of two subchains, a reflex subchain, and a convex subchain.
Let vs and vt be the endpoints of the reflex subchain. Without loss of generality, assume that
the path along the convex subchain from vs to vt runs clockwise. The guards will all be placed
along the edges of the convex subchain.

Call the nth guard placed sn. Place s1 at vs. Let pn be the point most clockwise along
the convex subchain that is visible from sn. Let bn be the most counterclockwise vertex along
the reflex subchain visible from sn. Let gn be the vertex immediately clockwise from bn. Let
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Figure 3: [top left] A spiral polygon P . The convex subchain is highlighted in red, and the reflex
subchain is highlighted in blue. [top right] The first guard s1 is placed on vertex vs. The points
p1, b1, g1, and r1 are marked and the interval that s2 can be placed in is highlighted in green.
[bottom left] Recursively showing that placed guards form a guard set. The subpolygon P1 is
assumed to be guarded by s1. The region that s2 is responsible for is P2, bounded by the reflex
subchain between b1 and b2, the edge between p2 and b2, the convex subchain between p2 and
p1, and the edge between b1 and p1. The subpolygon P2 has been triangulated, indicating that
s2 can guard the whole subpolygon. The triangle with endpoints p2, b2, and s2 is degenerate,
as those three points are colinear. [bottom right] A guard placement and 2-coloring.

rn be the point on the convex subchain colinear with gn and bn and visible from both. Note
that pn and rn define the endpoints of an interval along the convex subchain. Place sn+1 at a
point on this interval that is not one of the endpoints. Note that this means that sn+1 6∈ V (sn).
Terminate when a guard can see vt (see Figure 3).

We can show that this is a guard set for the polygon by triangulating the polygon using
the polygon vertices, the members of S, and the points pi and showing that each triangle has
a member of S as one of its vertices. Suppose that the polygon bounded by the edges starting
from pn counterclockwise along the boundary of P until bn and the edge between pn and bn has
already been triangulated such that each triangle contains a vertex in the set {si|i ≤ n}. We
must show that sn+1 can guard the subpolygon bordered by the edges counterclockwise from
pn+1 to pn, the edge between pn and bn, the vertices counterclockwise from bn to bn+1, and
the edge between bn+1 and pn+1 (call this subpolygon Pn+1). If each of these vertices in the
subpolygon is visible from sn+1, then the subpolygon can be triangulated by connecting each
vertex to sn+1, meaning that sn+1 guards the entire subpolygon (see Figure 3).
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bnbn+1

Figure 4: A polygon consisting of the edges on the reflex subchain between bn and bn+1 and the
edges sn+1bn and sn+1bn+1. Since all the vertices on the reflex subchain are reflex, this polygon
has only one triangulation, where all triangles have sn+1 as an endpoint.

Since sn+1 is placed on the interval in between pn and rn, it must be able to see the entire
edge between gn and bn, meaning that bn is visible from sn+1. The vertex bn+1 is visible from
sn+1 by definition. Examine the polygon consisting of the edges along the reflex subchain
between bn and bn+1, sn+1bn, and sn+1bn+1. Since all the vertices along the reflex subchain are
reflex, they cannot have edges between each other in a triangulation, so in any triangulation,
they must all be connected to sn+1 (see Figure 4). The point pn+1 is visible to sn+1 by definition.
The point pn is visible to sn+1 because sn+1 is on the interval between pn and rn, and the only
reflex vertex which could obstruct part of that interval’s view of another part of that interval
would have to lie in between bn and gn on the reflex subchain (by definition, there are no such
vertices). Because the vertices in between pn and pn+1 lie on a convex subchain, if sn+1 can see
both pn and pn+1, then sn+1 can see all the vertices in between. This means that Pn+1 can be
triangulated with every triangle having sn+1 as an endpoint, so sn+1 guards Pn+1 (the triangle
with endpoints pn+1, bn+1, and sn+1 is degenerate, as those three points are colinear, but this
is not a problem). This technique still works if sn+1 can see vt (in this case, pn+1 = bn+1 = vt).
This implies inductively that S is a guard set for P .

Because all the guards are along the convex subchain, if two guards conflict, their visibility
polygons must intersect somewhere along the convex subchain. Also, since sn 6∈ V (sn+1) and
sn 6∈ V (sn−1), sn+1 cannot conflict with sn−1, or there would be no room along the convex
subchain to place sn. Therefore, all evenly indexed guards can be colored red, and all oddly
indexed guards can be colored blue, so χG(P ) ≤ 2.

4.2 Staircase polygons

An orthogonal polygon is a polygon in which all angles are right angles. An alternating subchain

is a subchain with at least one internal vertex, with the first and last internal vertices being
convex, and with consecutive internal vertices alternating between convex and reflex. A staircase

polygon is an orthogonal polygon consisting of two convex vertices, vw and vz, connected by two
alternating subchains. For simplicity, we will assume without loss of generality that orthogonal
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Figure 5: [left] A staircase polygon P with vertices vw and vz identified. The lower subchain
is highlighted in red, and the upper subchain is highlighted in blue. [middle] The guard s1 is
placed on the neighbor of vw on the lower subchain. The guard s2 is placed on the rightmost
convex vertex in V (s1). [right] A guard placement and coloring for P that uses only three colors.

polygons are always oriented such that each edge is either vertical or horizontal, and that vw
is the top left vertex, and that vz is the bottom right vertex. Put the polygon on a coordinate
plane with vw at the (0, 0) coordinate, let right be the positive x direction, and let up be
the positive y direction. As mentioned earlier, “staircase polygon” is a synonym for strictly
monotone orthogonal polygon.

Theorem 4. For any staircase polygon P , χG(P ) ≤ 3.

Proof. Due to our assumptions about the orientation of the polygon P , one of the alternating
subchains is going to be above the other one. Call the higher subchain the upper subchain and
call the other subchain the lower subchain. Place a guard s1 on the neighbor of vw along the
lower subchain. If guard si has been placed on the lower subchain, then place guard si+1 on
the right-most convex vertex on the upper subchain that is contained in V (si). If guard si has
been placed on the upper subchain, then place guard si+1 on the right-most convex vertex on
the lower subchain that is contained in V (si). Stop placing guards when a guard can see vz,
and let m be the number of guards placed (See Figure 5).

First, it must be shown that si and si+2 are not placed on the same vertex. Suppose without
loss of generality that si is on the lower subchain. Note that the rightmost convex vertex on
the lower subchain in V (si+1) must also be the lowest convex vertex on the lower subchain
in V (si+1). Note also that a ray extended downward from si+1 must intersect the horizontal
edge incident to si+2 (otherwise si+2 would not be the rightmost convex vertex on the lower
subchain). If this is the same horizontal edge that is incident to si, then the point where the
ray intersects the horizontal edge incident to si must be a convex vertex (call it vf ). Since the
convex vertex vf neighbors the convex vertex vi along a horizontal edge, and since vf is to the
right of vi, vf must be vz. Therefore, si+2 would only be placed on the same vertex as si if vz is
visible from si+1. Since we stop placing guards once a guard can see vz, two guards will never
be placed on the same vertex.
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Next, it must be shown that this is a guard set for the staircase polygon. Suppose without
loss of generality that guard si is placed on the lower subchain. Assume that the set [s1, s2 . . . si]
forms a guard set for the subpolygon that lies above the guard si (call this subpolygon Pi). We
must show that the set [s1, s2 . . . si+1] forms a guard set for the subpolygon that lies to the left
of guard si+1 (call this subpolygon Pi+1). Let pi+1 be the point where a ray extended downward
from si+1 intersects the lower subchain. Note that each vertex on the lower subchain between
si and pi+1 is visible from si+1. We have to show that si+1 guards Pi+1\Pi. Let vri be the
reflex vertex to the right of si on the lower subchain. Let Qi+1 be the subpolygon below si+1

and to the left of si+1 (See Figure 6). Clearly, Qi+1 ⊇ Pi+1\Pi (as si+1 cannot be lower than
si). Note that every vertex of Qi+1 that is not connected to si+1 by an edge of Qi+1 is on the
lower subchain. For any given vertex v in Qi+1 that is not a connected to si+1 by an edge of
Qi+1, all edges of Qi+1 not incident to si+1 that lie above v must also lie to the left of v, and
all edges of Qi+1 not incident to si+1 that lie to the right of v must also lie below v. Since si+1

is never lower than v, and never to the right of v, every vertex v of Qi+1 must be visible from
si+1. This means that one could triangulate Qi+1 such that each triangle has si+1 as one of its
corners. Therefore, the guard si+1 can guard Qi+1 by itself. Therefore, the set [s1, s2 . . . sm]
forms a guard set for P .

Finally, it must be shown that the guard set [s1, s2 . . . sm] can be colored with three colors.
Suppose guard si is placed on the lower chain. Let yi be the y-coordinate of the lowest point
visible from si. Note that, because si is on a convex right-angle vertex on the lower subchain,
V (si) is bordered on the bottom by a horizontal line at the same height as the horizontal edge
incident to si; therefore yi is just the y-coordinate of si. Let yi+3 be the y coordinate of the
highest point in V (si+3). Because si+3 is on a convex right-angle vertex on the upper subchain,
V (si+3) is bordered on top by a horizontal line at the same height as the horizontal edge incident
to si+3; therefore yi+3 is just the y-coordinate of si+3. Now, we must show that yi > yi+3. In the
portion of the proof that showed that each guard is placed on a unique vertex, we demonstrated
that the y-coordinate of si+1 (call it yi+1) has to be higher than the y-coordinate of si+3. If
yi ≤ yi+3, then yi ≤ yi+3 < yi+1. However, this is impossible, because si+1 was placed on the
rightmost (and thus, lowest) vertex on the upper chain that was in V (si). Therefore, yi > yi+3.
Since the highest point in V (si+3) is lower than the lowest point in V (si), si and si+3 cannot
conflict (see Figure 7).

Since si and si+3 do not conflict, we can color all guards with an index of 0 mod 3 with
green, all guards with an index of 1 mod 3 with red, and all guards with an index of 2 mod 3
with blue. Therefore χG(P ) ≤ 3.

We have assumed throughout this proof that guard si was placed on the lower subchain.
However, the arguments made above still apply if si was placed on the upper subchain (reflect
the polygon over the y = −x line).

5 Conclusion

One direction of future research would be to find bounds for other categories of polygons.
Finding a bound better than χG(P ) ≤ ⌊n/3⌋ for general polygons is the most obvious target
(sources that examine visibility problems in general polygons include [3], [5], [6], [20]), but
orthogonal polygons [8], [9], [13], [19], and monotone polygons [2], [17], are also heavily studied
in visibility. Visibility in curvilinear bounded regions has also been researched [10]. Allowing
polygons with holes is another possibility, as is placing further restrictions on the placement of

7



P1 P2

Q2

P2\P1

s4

s2 s2

s4

s2

s4

s4

s2

s4

s2

s4

s2

s1

s3

s1

s3

s1

s3

s1

s3

s1

s3

s1

s3

Figure 6: [top left] A polygon P with a guard placement. [top middle] The region P1 that s1 is
responsible for guarding. [top right] The region P2 that s1 and s2 are reponsible for guarding.
[bottom left] The region P2\P1 that s2 is responsible for guarding. [bottom middle] The region
Q2, which consists of the portion of P below and to the left of s2. This region is a superset of
P2\P1. [bottom right] A triangulation of Q2 where all triangles have a vertex at the location of
s2, showing that s2 guards Q2.
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Figure 7: [left] A staircase polygon P with a guard placement. [right] The regions V (s1) and
V (s4) are shown. Note that the lowest point in V (s1) is higher than the highest point in V (s4),
as the horizontal line incident to s1’s vertex is higher than the horizontal line incident to s4’s
vertex.
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guards, perhaps forcing the guards to be strongly cooperative [21] or weakly cooperative [15].
The problem could also be attacked from a visibility graph context. The structure of stan-

dard visibility graphs for general polygons is still not completely understood, but [7] gives four
necessary conditions for visibility graphs. It is likely that analogues of these four conditions
could be made for “2-link” visibility.

Finally, for practical robotics purposes, it would be useful to make a more realistic model
of when guards conflict. For example, using a model where a robot has limited vision, so two
guards sufficiently far from each other will not conflict even if there is no obstacle between them.
Alternately, it may be useful to make a model where the “signal” from a guard degrades as the
robot gets further away, perhaps degrading faster if it must go through an obstacle.
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