
ReLooper: Refactoring for Loop Parallelism

Danny Dig
University of Illinois

Urbana-Champaign, USA
dig@illinois.edu

Cosmin Radoi
Mihai Tarce

Marius Minea
Politehnica University
Timisoara, Romania

radoi,tarce,marius@cs.upt.ro

Ralph Johnson
University of Illinois

Urbana-Champaign, USA
rjohnson@illinois.edu

ABSTRACT
In the multicore era, sequential programs need to be refac-
tored for parallelism. The next version of Java provides
ParallelArray, an array data structure that supports paral-
lel operations over the array elements. For example, one can
apply a procedure to each element, or reduce all elements to
a new element in parallel. Refactoring an array to a Paral-

lelArray requires (i) analyzing whether the loop iterations
are safe for parallel execution, and (ii) replacing loops with
the equivalent parallel operations. When done manually,
these tasks are non-trivial and time-consuming. We present
ReLooper, an Eclipse-based refactoring tool, that performs
these tasks automatically. Experience with refactoring real
programs shows that ReLooper is useful: it reduces the bur-
den of analyzing and rewriting parallel loops, and it is fast
enough to be used interactively.

1. INTRODUCTION
In the multicore era, programmers often turn to paral-

lelism when they need to optimize their programs for per-
formance. Sometimes, this requires rearchitecting the whole
program. However, the most common way is to parallelize
a program incrementally, by changing one piece at a time.
Each step can be seen as a behavior-preserving transforma-
tion, i.e., a refactoring. The latter approach is safer, and
programmers prefer to maintain a working, deployable ver-
sion of the program.

To parallelize code, programmers often use parallel libra-
ries that support different kinds of parallelism. For exam-
ple, TBB [12], TPL [13], and ForkJoinTask [6] support task
parallelism for C++, C#, and Java, respectively. TBB
and TPL also support data parallelism, through Parallel.For
utilities.

Java will include the ParallelArray [6] framework, a spe-
cial kind of array that provides parallel operations. For ex-
ample, one can apply a procedure to the elements of an array,
map elements to new elements, or reduce all elements into a
single value like a sum. The framework efficiently executes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Technical ReportAvailable for early dissemination of ideas.
Copyright 2009 Held by the authors .

these parallel operations by splitting the computations on
array elements among a pool of worker threads, and relying
on a runtime library to balance the work among the proces-
sors in the system.

The parallel constructs provided by libraries are in general
more verbose than parallel constructs provided by program-
ming languages, thus they require many code changes. In
addition, these libraries assume that all parallel computa-
tions do not interfere with each other, so they run with-
out any synchronization. It is the programmer’s respon-
sibility to verify non-interference. This is non-trivial and
time-consuming, and the code changes are tedious.

To refactor an existing array into a ParallelArray, the
programmer constructs it by using factory methods (e.g.,
by copying elements from another array). Then the pro-
grammer identifies the loops that iterate over all the array
elements and she analyzes each loop to infer its intent (e.g.,
the loop reduces all elements to a value). Next, she replaces
the loop body with a call to the equivalent parallel operation
(e.g., reduce). The parallel operation takes an element oper-
ator as an argument and executes it on each element. Since
Java does not support anonymous functions (i.e., lambda
expressions), the programmer needs to encapsulate the op-
erator inside an anonymous class, by subclassing one of the
132 provided operator classes, and override the op method.

There are several preconditions that the programmer needs
to check before applying the refactoring: (i) a loop iterates
over all elements of the array, (ii) a loop does not contain
blocking IO operations, (iii) the loop iterations do not have
conflicting memory accesses.

Although parallelizing loops has received significant inter-
est for scientific computation, much of this work is done in
the context of scalar arrays (i.e., arrays of primitive types).
Since such primitive types cannot be mutated, it suffices
that the analysis determines that expressions a[i] and a[j]

in nested loops do not refer to the same array element (i.e.,
i 6= j). However, in object-oriented programs that contain
shared (heap-allocated) and mutable objects, the above ana-
lysis is not sufficient. The analysis needs to determine that
different loop iterations (that are intended to be parallelized)
do not write to the same object, which results in a race. For
example, it needs to determine that two iterations of the
loop do not write to a global, static field, or that no two
array cells refer to the same object. In addition, even if the
array contained distinct objects, the analysis needs to de-
termine that starting from two distinct objects (reachable
in different iterations) and following their field references we
do not reach and write to the same object.

Converting an array into ParallelArray is non-trivial and
time-consuming: the programmer needs to understand the
alias relations and the state updates for all the statements
(including arbitrarily long chains of method calls) in the
loops over the array. Also the code rewriting is tedious: for
example, in the real-world programs that we looked at, each
parallelized loop required an average of 10 changes.

We have built an interactive refactoring tool, ReLooper,
that automates the safety analysis and the rewriting of code.
ReLooper is integrated with Eclipse’s refactoring engine, so
it offers all the convenient features of a refactoring engine:
previewing the changes, preserving the formatting, undoing
changes, etc. To use ReLooper, the programmer selects a
target array or Vector and chooses ConvertToParallelArray

from the refactoring menu. ReLooper performs the safety
analysis and warns the programmer if some preconditions
are not met, then ReLooper rewrites the code.

At the heart of ReLooper lies a data-flow analysis that de-
termines objects that are shared among loop iterations, and
detects writes to the shared objects. The analysis builds on
the SSA (single static assignment) intermediate representa-
tion of a program, and it analyzes both programs in source
code and in byte code. Our analysis is flow-sensitive (but
path-insensitive), context-sensitive, field-insensitive.

Since the static analysis performed by ReLooper is con-
servative, it could give false warnings. Thus it is crucial
that ReLooper be interactive: the programmer can decide
to ignore the warnings and proceed anyway (after all, she
understands the problem domain better than any tool), or
she can cancel the current refactoring, fix the problems,
and use ReLooper once more. In contrast to the previous
work on automatic (i.e., non-interactive) loop paralleliza-
tion [1, 8, 11, 16], our approach is agile enough for interac-
tive development use, yet only requires minimal confirma-
tion from the user.

Previous analyses for loop parallelization [8,16] model the
whole heap and try to mark all aliases between all objects.
Our analysis focuses only on the aliases that can potentially
lead to data races in the loops intended for parallelization.
Therefore, it is fast enough to be used in an interactive mode,
while it still catches races in real-world programs.

This paper makes the following contributions:

• Analysis. We present several analyses that determine
whether loops over arrays containing mutable, nested
objects reachable through the heap, can be safely par-
allelized.

• Tool. We have implemented these analyses, the in-
ference of parallel operations, and the code rewriting
in an automated refactoring tool, ReLooper, integrated
with the Eclipse IDE. ReLooper can be downloaded at:
http://refactoring.info/tools/ReLooper

• Evaluation. We used ReLooper to parallelize several
loops in real programs. ReLooper correctly inferred the
parallel operations and it efficiently and effectively an-
alyzed whether the loops can be parallelized. These
experiments show that ReLooper is useful.

2. MOTIVATING EXAMPLE
As our running example, we use a small program that

works with Particle bodies (this is a simplified version of
an N-body particle simulation). Figure 1 shows the code for

class Particle {
double x, y, m;

public Particle(double x, double y, double m) {
this.x = x;

this.y = y;
this.m = m;

}

static Particle createRandom(){

return new Particle(Math.random(), Math.random(),
Math.random() * 100);

}

void moveBy(double dx, double dy){

this.x = x + dx;
this.y = y + dy;

}
}

Figure 1: Mutable Particle

Particle. A particle has a position in space, given by its
2-D coordinates (x and y), and mass (stored in its m field).
Class Particle provides an constructor, a factory method
that creates random particles, and a moveBy method that
updates the position of a particle.

There is one client, ParticleComputation (shown on the
left-hand side of Fig. 2) that performs different computa-
tions over an array of Particle objects. The first loop in
method compute() initializes the array elements using the
factory method createRandom(). The second loop iterates
over all array elements and moves each particle by a delta.
The third loop computes the center of mass for all the par-
ticles and stores the result in the cm variable.

The right-hand side of Fig. 2 shows the refactored pro-
gram, using ParallelArray. For each loop that iterates over
the array elements, ReLooper infers the intent of the loop
and replaces it with the equivalent parallel operation from
ParallelArray. In our example, the first loop initializes the
array elements, so ReLooper replaces it by invoking the op-
eration replaceWithGeneratedValue and passes an operator
implemented as an anonymous Generator class. ReLooper

overrides the op() method to create objects like in the orig-
inal code. It correctly replaces the last two loops with the
appropriate operations (apply and reduce) and generates the
anonymous classes that encapsulate the element operators.

Notice that there is no synchronization construct in any of
the parallel operations. Any inserted synchronization would
have sequentialized the parallel operation, which defeats the
whole purpose of running it in parallel. However, without
synchronization, the parallel execution could end up in a
race. ReLooper warns the user if any such races might occur.

Consider the operation that moves each particle, by apply-
ing moveBy to each element in parallel. The moveBy method
mutates the state (as defined by fields x and y) based on
the current field values. If the array contained duplicate ele-
ments (i.e., the same object reference being present in more
than one cell of the array), mutating the state of the dupli-
cate in parallel results in a data race. The final values of the
state fields are non-deterministic, based on different thread
interleavings. However, if there is no sharing between the
array elements, the parallel updates can proceed safely.

ReLooper checks that the array cells do not share any ob-
jects. ReLooper determines that the loop that initializes the
array elements creates new, unique objects in each iteration.

Figure 2: The programmer selects the bodies array and ConvertToParallelArray refactoring. ReLooper converts the

sequential loops (left-hand side) into parallel loops (right-hand side) using the ParallelArray framework.

In addition, it determines that the objects returned by two
calls to Particle.createRandom do not share anything.

Moreover, ReLooper checks that the loop iterations do not
mutate other shared objects. For example, the loop that
computes the center of mass of all particles mutates the
shared object cm. ReLooper’s analysis catches this write to a
shared object, but the analysis allows it because this prob-
lem is eliminated when cm becomes the accumulator variable
for the reduce operation (internally, the reduction creates
fresh cm variables, and accumulates them in a final step).

3. THE REFACTORING TOOL
The process of using ReLooper has two steps. In the first

step, the programmer (who understands the problem do-
main) expresses the intent to parallelize some loops by se-
lecting an array (from now on simply referred as the target
array) and the ConvertToParallelArray operation from the
refactoring menu. ReLooper analyses whether the loops in-
tended for parallelism can be safely parallelized and reports
to the programmer any potential problems, e.g., data races
in the to-be parallelized loops. The programmer can decide
to ignore the warnings and to proceed to the next step, or
she can cancel the current refactoring, fix the problems, then
re-run ReLooper.

In the second step, the programmer confirms the changes
that she intends ReLooper to apply. For each loop, there
are two choices: (i) replace the loop with the parallel oper-
ation, or (ii) leave the loop sequential, but replace accesses
to the indexed elements from the target array with indexed
elements from ParallelArray. By default, ReLooper chooses
the first choice for those loops where it did not find any
problems, and chooses the second choice for loops where it
found problems. The programmer can overwrite ReLooper’s
default selection, and choose to parallelize some loops, but
leave others sequential.

Next, we present the pseudocode of the refactoring algo-
rithm. The algorithm takes as input the target array or
Vector object, the source code of the application that uses
it, as well as the bytecode of all libraries invoked from the
source code. While the source code is needed for the refac-
toring itself, the safety analysis works on the bytecode and
correctly takes all library behavior into account.

First the algorithm searches the source code for all ac-
cesses to array (e.g., array.length) as well as accesses to ar-
ray elements (e.g., array[i].field). Then the algorithm instru-
ments the write accesses so that they can be analyzed later
by the static analysis. This means inserting some “markers”
that can be later retrieved from the control-flow graph.

Next, for each loop that iterates over the array, the algo-
rithm checks whether it is safe to run all the loop iterations
in parallel. The analysis checks three preconditions: (i) the
loop traverses all elements of the array, (ii) the loop does not
have blocking IO operations, and (iii) the loop iterations do
not have conflicting memory accesses.

ReLooper presents to the programmer the loops that it
thinks are safely parallelizable. The programmer can change
the set of parallelizable loops.

Lastly, during the transformation step, for each loop that
is parallelizable, the algorithm infers the equivalent parallel
operation from ParallelArray and replaces the loop with the
inferred parallel operation. All other accesses, i.e., outside of
loops or accesses in loops that are not safe, are replaced by
ReLooper with the equivalent accessors from ParallelArray.

4. TRANSFORMATIONS.
ReLooper applies several transformations.
Type Declaration. ReLooper changes the type declara-

tion of the target array into a ParallelArray. For the ex-
ample in Fig. 2, it changes bodies with the parametric type
ParallelArray<Particle>. If the original array contained el-
ements of primitive types (e.g., int, double), ReLooper would
have replaced the type with one of the more specific types
for scalars (e.g., ParallelDoubleArray).

Initializer. ReLooper replaces the array initializer (i.e.,
code that allocates storage for the array) with a call to the
create factory method that creates a ParallelArray. ReLooper

passes to create the same array capacity, and specifies the
base element type and the pool of worker threads that will
be used at runtime. For example, in Fig. 2, ReLooper invokes
the defaultExecutor() pool which arranges to use most of the
processors available at runtime. If the array was initialized
from another array, ReLooper would have invoked another
factory method, createUsingHandoff and passed the other
array as argument.

Parallel Operations. ReLooper replaces a loop with the
equivalent parallel operation from ParallelArray. Table 1
describes how ReLooper infers the parallel operations based
on the kind of array accesses in the loop. We denote an
array indexed element with a[i], a field of an array element
with a[i].x, and a reference to the loop index variable (other
than in indexed elements) with i. Each row describes the
predicate of read/write accesses that is evaluated to decide
when to use one particular operation.

If a loop contains accesses triggering more than one oper-
ation, ReLooper chooses the most specific operation. This is
both simpler to understand, and is faster at runtime.

Notice that replaceWithMappedIndex is the only API method
from ParallelArray that provides access to the loop index
variable, and it also enables writing the array elements.
Therefore, anything that can be expressed with other op-
erations can be expressed with replaceWithMappedIndex. For
example, an apply could be expressed as replacing an array
element with itself, and ignoring the loop index variable.
However, this is both harder to understand, and less effi-
cient, thus ReLooper infers the most specific operation.

Element Operator. After inferring the kind of parallel
operation, ReLooper creates the element operator, i.e., the
functor that ParallelArray invokes on each element. Since
Java does not currently support lambda expressions, the op-
erator is encapsulated as an op method in one of the Ops oper-
ator subclasses. ReLooper chooses the right operator subclass

Operation Element Access
replaceWithMappedIndex a[i] = expression with a[i] ∧ read i

replaceWithMapping a[i] = expression with a[i]

replaceWithGeneratedValue a[i] = expression not containing a[i]

replaceWithValue a[i] = constant/literal
apply read a[i] ∨ read a[i].x ∨ write a[i].x

reduce accumulating all elements

Table 1: Decision table used by ReLooper to infer the

parallel operations based on accesses in each loop.

among the 132 possible choices offered by ParallelArray.
Each operation takes specific operators, for example, apply

takes an Ops.Procedure, and reduce takes an Ops.Reducer.
Since the Ops hierarchy provides several choices for operators
over primitive types (e.g., Ops.DoubleReducer), object types
(e.g., Ops.ObjectToInt), or parametric types (Ops.Op<A,R>),
ReLooper chooses the correct operator based on the types of
the array elements and the return type of the operation.

ReLooper extracts the body of the loop into the op method
and replaces the accesses to array elements, with accesses
to the arguments of the operator. For example, in Fig. 2,
ReLooper replaces accesses to the element bodies[i] with ac-
cesses to the argument elt. In addition, for operators that
need to return results (e.g., a Generator), ReLooper adds the
return statement (see Fig. 2, line 24).

Loop styles. Besides classical for loops in Java ReLooper

handles the newer-style forEach loops too. Since a forEach

loop in Java can only be used to read array elements, there
are only two possible equivalent operations: apply or reduce.

Other Accesses. If the analysis determines that a par-
ticular loop is not safely parallelizable, ReLooper can still
parallelize other loops over the array. As for the unsafe
loop, or array accesses outside of loops, ReLooper replaces
the array accesses with calls to the equivalent ParallelArray

APIs (and leaves the loop sequential). For example, it re-
places a read access a[i] with a.get(i), and a write access
a[i] = expression with a.set(i, expression).

Loops over Vector. ReLooper allows a programmer to
parallelize loops over Vector types, besides arrays. Vector

is a collection class that implements a growable array of
objects.

The Vector class provides an internal Iterator that allows
one to express loops using the hasNext and next methods.
ReLooper converts such loops too. Most of the Vector’s API
method are syntactic sugar for accesses over arrays (e.g.,
get(i) is equivalent to read a[i], and set(i, Obj) is equiva-
lent to a[i] = Obj), so ReLooper handles them similarly. The
methods with no obvious array equivalent are the ones that
enable growing, e.g., add and addElement. ReLooper replaces
loops that add elements with the replaceWithMappedIndex()

operation. This operation allows to insert elements at a
specific position, and ReLooper refers to this position by an
AtomicInteger index variable that is incremented atomically.

5. PROGRAM ANALYSIS
This section describes the preconditions that must hold

to ensure the safety of loop parallelization, i.e., the safety
of replacing a loop with a call to parallel operation. The
preconditions in Section 5.1 ensure that a loop traverses all
elements of an array. Section 5.2.1 ensures that there are
no loop-carried dependences, while Section 5.2 ensures that
the memory updates in loop iterations are not conflicting.

5.1 Linear Traversal
Since a parallel operation applies the given element oper-

ator to all elements of a ParallelArray, the refactored code
can have different semantics if the original loop does not
iterate over all array elements. ReLooper checks whether a
loop iterates over all elements linearly, i.e., one element at
a time, without skipping.

ReLooper treats the common case when the loop index
variable is also the index used in the array accesses in the
loop body (otherwise, ReLooper does not parallelize the loop).
To check that all elements of the array are iterated, the ana-
lysis checks whether the loop index variable starts from 0

and goes to the array’s length, and is incremented by one in
each iteration. We also allow traversal in the reversed order,
from the last element to the first.

In addition, the analysis ensures that the array traversal
does not intentionally abort before reaching the last element.
Since a parallel operation is not user-cancellable, the refac-
tored code would inevitably traverse all elements, whereas
the original code only traversed some. The analysis checks
that the loop body does not contain statements that abort
the loop traversal: return, break, or throw. We allow con-

tinue, a statement that stops the processing of the current
iteration and jumps to the next iteration. ReLooper replaces
continue statements with return statements inside the ele-
ment operator; this ensures that the processing of the cur-
rent element terminates, while allowing processing of other
elements. However, the analysis can not ensure that a loop
does not abort through unchecked exceptions.

Note that if the given loop is a forEach, ReLooper does not
need to check that the loop iterates all elements, since this
is guaranteed by the semantics of forEach.

Additionally, the analysis checks that the loop body con-
tains only references to the currently indexed element. If the
loop body refers to other array elements (potentially writ-
ten in other iterations), this would introduce a dependency
between those iterations.

5.2 Conflicting Memory Accesses
Next, the analysis determines whether the loop iterations

have conflicting memory accesses. We have developed a
data-flow analysis that detects updates to shared objects
in the parallel sections of the program. Before giving more
details and examples, we define the key concepts of parallel
section, shared object, and update.

Definition 1. Parallel Section. A parallel section con-
tains program instructions that are executed in parallel by
a particular loop that is a candidate for parallelization.

Definition 2. An object is a memory location (on the
heap) and is named by a new statement.

A reference is a strongly typed pointer to an object.
A shared object is an object that is pointed to by refer-

ences from different iterations of a parallel loop. All objects
that are referenced by the fields of a shared object are shared
themselves.

Definition 3. An update of shared object is a write to
a field of a shared object. We also refer to this update as a
race.

We illustrate these definitions with a simple example pre-
sented in Fig. 3.

1 class Test {
2 Particles[] bodies;
3 int iters;

4

5 void introduceSharing(){

6 Particle cropper = new Particle(2,3,4);
7 for (int i = 0; i < bodies.length; i ++){

8 this.iters = i;
9 Particle d = cropper;

10 d.x = i;

11 d = new Particle(0,0,1);
12 d.y = i;

13 }
14 }
15 }

Figure 3: Shared Objects

During a parallel section (lines 8–12), a reference could
point all the time to a shared object or it could point to a
shared object only at a specific program point. For example,
the object pointed by the reference this is a shared object.
This is the object whose introduceSharing method runs the
loop. The reference this points to a shared object through-
out the parallel section. The object Particle(2,3) allocated
on line 6 is a shared object too. However, the object Parti-

cle(0,0,1) allocated on line 11 is not a shared object. The
reference d points to a shared object at line 9, but points to
a non-shared object after line 11. Therefore, line 10 intro-
duces a race (an update to a field of a shared object), but
the update at line 12 does not. Also the update at line 8
introduces a race, since it is a write to a field of a shared
object (i.e., a field of this).

ReLooper detects the races at lines 8 and 10, and presents
them to the user. Next, we will show how the analysis works.

In order to detect races, the analysis (i) follows the shared
objects through the control flow graph (CFG) and (ii) de-
tects updates to shared objects.

The analysis visits program instructions following the CFG,
and marks the shared objects. This marking happens through
the transfer functions associated with each instruction. It
also checks whether the current instruction writes a field of
a shared object. The join operator for several edges is set
union, and the algorithm uses a worklist approach to iterate
up to a fixpoint.

Our sharing analysis is an interprocedural data-flow ana-
lysis. The analysis is flow-sensitive, context-sensitive, path-
insensitive, and field-insensitive.

The analysis is built upon the SSA (static single assign-
ment) representation of the program. We use the WALA [14]
library to get the SSA form for every method of a program.
In SSA, every variable is assigned exactly once. SSA splits
variables in the original code, so that each definition of a
variable generates its own version.

Consider the example in Fig. 4. Each new definition of
c generates a new variable version. A variable definition is
an assignment of a newly allocated object. Therefore, each
variable version can be seen as a label of a heap-allocated
object.

In our example, lines 1 and 4 are definitions of c, therefore
they generate new versions, c1, respectively c2. Note that
line 2 which introduces an alias to c, is not a definition
(i.e., it does not label a new heap location), thus it does not
appear in the SSA form. Instead, future uses of d (up to a
new definition of d) are seen as using c1. This tremendously

Particle c = new Particle(2,3,4);
Particle d = c;

if (condition) {
c = new Particle(0,0,1);

}

read c

1 Particle c_1 = new Particle(2,3,4);
2 if (condition) {

3 c_2 = new Particle(0,0,1);
4 }
5 c_3 = phi(c_1, c_2)

6 read c_3

Figure 4: Coverting a program into a conceptual

SSA form

simplifies the reasoning about aliases.
Since each variable version is defined exactly once (i.e., it

is immutable), by tracking these versions and not the orig-
inal variables, we know at each point in the program which
are the objects that can be reached through references. This
is exactly the reason why we are using the SSA form: to
track the objects, not their references.

Note that a variable version can point to more than one al-
located object. This can happen due to the path-insensitivity
of SSA. For example, the read at line 5 can see either version
c1 or c2, so the SSA form uses a so-called φ-function, that
merges the two versions in a new version, c3, and uses c3

from now on when reading c. For conciseness and intuitive-
ness, from here on, we will be referring to an SSA variable
version as an object.

The SSA form also preserves the program flow from the
original CFG.

Next, we present our data-flow analysis by first explaining
the intraprocedural part, and later we will expand it with
method calls (i.e., interprocedural).

5.2.1 Intraprocedural analysis
We denote by S the set of all shared objects. The analysis

starts from the entry methods. We define an entry method
to be a method that contains references to the target array.

In each entry method, S initially contains only its argu-
ments and the object pointed by this. For each instruction
in the entry method’s SSA, we update S based on a transfer
function.

For the same instruction we associate different transfer
functions, based on whether the instruction is in a parallel
section. Figure 5 presents the transfer functions for instruc-
tions in a parallel section. We will use the following generic
notations: C is a class, o1, o2, o3 are objects, f is a field access
and C.f is an access to a static field, [e] is an access to an
indexed element of an array.

We present the transfer functions as rules that update the
set of shared objects, S. The upper part contains the rule
premises, and the lower part shows the additional members
introduced in the shared set S, for different types of instruc-
tions. In all other cases, S does not change (the transfer
function is the identity). Note that since our analysis is
field-insensitive, assigning a shared object o2 to a field of an
object o1 marks the whole object o1 as shared.

For the sequential section, all the rules in the parallel sec-
tion apply too. In addition, we have new rules. Figure 6
presents only the added rules. In essence, any assignment
to an object o1 marks that object as shared, whereas in the
parallel section, o1 is marked as shared only if the right-hand
side of the assignment denotes a shared object.

We illustrate this analysis using a small variation of our
motivating example. The program in Fig. 7 is similar with
the one in Fig. 2, but the code in compute is different. We
have extracted the loop that moves particles into the method

o2 ∈ S

o1 ∈ S
for o1 = o2[e], o1[e] = o2, o1 = o2.f, o1.f = o2

o1 ∈ S
for o1 = C.f

o2 ∈ S ∨ o3 ∈ S

o1 ∈ S
for o1 = φ(o2, o3)

Figure 5: Transfer functions for instructions in par-

allel sections

o1 6= targetArray

o1 ∈ S
for o1 = o2[e], o1 = o2.f, o1 = C.f, o1 = new C()

Figure 6: Extra transfer functions for instructions in

the sequential sections, in addition to the functions

from Fig. 5.

moveAll, we removed the loop that computes the center of
mass, and instead we added another loop (lines 32–36) that
introduces sharing. The left-hand side of the figure shows
the source code where we marked the parallel sections with
[[]] symbols. The right-hand side shows the set of shared
objects, S, as it is updated by the transfer functions. On
the same line with the instruction, we show the output of
its associated transfer function.

For now, we will only focus on the lines 32–36 (that high-
light the intraprocedural analysis), and we will revisit the
whole example once we introduced the interprocedural ana-
lysis. The assignment in line 32 (in a sequential section)
uses the transfer function defined in Fig. 6 and marks the
cropper object as shared, by adding it to the S set. Before
this line, S = this. After this line, S = {this, cropper1}

In line 35, there is an assignment of a shared object,
cropper1 to an indexed element of bodies[], therefore, ac-
cording to the transfer function in Fig. 5, bodies is marked
as shared (i.e., S = {this, cropper1, bodies1}).

Since line 35 is executed on a branch, on line 36, the
analysis uses the merge function, defined as set union, to
merge the results of the two branches. Therefore, S =
{this, cropper1, bodies1}.

Updates to Local Variable References

Consider the example of the center of mass loop in Fig. 2.
The local variable cm is declared outside of the parallel sec-
tion, but its reference is written inside of the parallel section.
This is a race.

The SSA representation of the program only keeps track
of the definitions and uses of variables. It is unaware of the
local variable declaration point in the CFG. This limitation
makes it dificult to use the SSA representation for detecting
races as the one described above.

In order to detect this class of race conditions, we aug-
mented the data-flow analysis with an AST-based analysis
that handles the scenario presented above.

Our analysis allows one exception from this rule. Namely,
if it determines that the written variable is used for accu-
mulating the result of a reduce operation. Internally, the
implementation of the reduce creates fresh variables, and ac-
cumulates them in a final step, which effectively eliminates

1 // Sequential version
2

3 class Particle {
4 ... same as before
5

6 static Particle createRandom(){
7 return new Particle(Math.random(),...

8 Math.random());
9 }

10

11 void moveBy(double dx, double dy){
12

13 this.x = x + dx;
14 this.y = y + dy;

15 }
16 }
17

18 class ParticleComputation {
19

20 void compute() {
21 Particle[] bodies;

22 bodies = new Particle[10000000];
23

24 [[

25 bodies[i] = Particle.createRandom();
26]]

27

28 this.moveAll(bodies);

29

30 Particle cropper = new Particle(10,2,1);
31 [[

32 if (i % 13)
33 bodies[i] = cropper;

34]]
35

36 this.moveAll(bodies);

37 }
38

39 void moveAll(Particle[] arr) {
40 [[

41 arr[i].moveBy(0,7);
42]]
43 }

44 }

// Set of shared objects

Particle.createRandom() {}
return ...not shared...

Particle.createRandom() return ...not shared...

this.moveBy(dx, dy) {}
{}

{}
{}

this.moveBy(dx, dy)

this.compute() {this}

{this}

Particle.createRandom() {this}

this.moveAll(bodies) {this}

{this,cropper}

{this,cropper}
{this, cropper, bodies}

{this, cropper, bodies}

this.moveAll(bodies) {this, cropper,bodies}

this.compute()

this.moveAll(arr) {this}

arr[i].moveBy(0,7)

this.moveAll(arr)

// Set of shared objects

this.moveBy() {this}
{this}

this.x = ... WRITE_TO_SHARED {this}
this.y = ... WRITE_TO_SHARED {this}

this.moveBy()

this.moveAll(arr) {this, arr}

arr[i].moveBy(0,7)

this.moveAll(arr)

Figure 7: Extended example shows the propagation of the sharing information, and the detection of updates

to shared objects. Left column shows the original code, where we marked the parallel sections. The middle

column shows the set of shared objects after the analysis of each line of code. The right column shows the

shared objects for a different analysis of the same method. For each method call, we underline the receiver

and arguments that are shared. For each analysis of a method, we show, on the same line as the method

declaration, which formal arguments are shared.

the loop-carried dependency.

5.2.2 Interprocedural analysis
Next, we present how the analysis handles method calls.
Every method declaration has its own SSA form. This

is computed modularly by WALA. A method’s signature
includes the receiver (its own this), and a list of formal
method arguments.

When our analysis visits an InvokeMethod SSA instruction,
the analysis performs the following:

1. It constructs the set of shared objects, Sm, for the in-
voked method. For this, it binds the formal method
arguments to the actual parameter. For each actual
parameter that is marked shared, it adds its corre-
sponding formal parameter in Sm.

2. It computes the data-flow analysis for the invoked method
using the intraprocedural analysis presented above. If
the method is invoked from a parallel section, the ana-
lysis uses the transfer functions for parallel sections,
otherwise it uses the functions for the sequential sec-
tions.

3. It propagates the changes from the set Sm back to the

calling context. For each formal parameter that was
marked as shared in this method (and thus added to
Sm), the analysis adds the corresponding actual pa-
rameter to the shared set S of the invoking method.

Once a method invocation is visited by our algorithm, the
analysis memoizes the results of the data-flow analysis for
that particular sharing pattern of the input parameters. The
analysis also uses this mechanism to handle recursive meth-
ods, by not starting a new analysis for an already memoized
starting point.

5.2.3 Detecting updates to shared objects
The analysis associates a detection rule for every SSA

instruction in the parallel sections. These rules have as
premises conditions on the sharing set S and detects whether
that instruction writes to a shared object. Figure 8 presents
the detection rules.

5.3 Detecting I/O operations
The ParallelArray framework is implemented using lightweight

tasks, a thread-like entity that has a light overhead. The
documentation specifies that tasks (and therefore parallel
operations) should not perform blocking I/O operations,

o1 ∈ S

WritesToShared
for o1[e] = o2, o1.f = o2

WritesToShared
for C.f = o1

Figure 8: Detection rules for instructions in the par-

allel sections

since this can result in poor performance. Essentially, a
task blocked on I/O leads to blocking its corresponding
worker thread, which blocks its corresponding core. Since
the framework only spawns a number of worker threads
equal with the number of cores (assuming that tasks do not
block), a blocked task leads to losing a core momentarily.

Although the framework documentation mentions this re-
striction on using I/O operations, it does not enforce it. Our
analysis warns the user when the loops intended for paral-
lelization invoke I/O operations. As it visits the CFG for
the parallel sections, the analysis catches any invokations of
methods from a black-list containing the standard Java I/O
classes.

5.4 Putting it all together
Next we put all the pieces together and show how the ana-

lysis detects conflicting updates for the program in Fig. 7.
The analysis starts from the entry method, compute. In the

beginning, the set of shared objects contains only this. The
instruction at line 22 instantiates our target array. Although
this is a definition in a sequential section (which normally
marks a shared object), since this instruction writes to our
target array, the analysis does not mark it as shared.

Line 25 lies within a parallel section (marked from now on
with [[]]). Since this line invokes method createRandom, the
analysis visits this method using the steps described in the
interprocedural analysis. Since this method is static (i.e.,
does not have an object receiver), and it does not have any
parameters, there is no binding of arguments. This method
creates a new object, i.e., not shared, (line 7), that is bound
to bodies[i] upon return.

Next, let’s examine line 28, which invokes method moveAll

(referred to as the target method). Notice that this instruc-
tion is not in a parallel section. We will now follow the
algorithm described for the interprocedural analysis. Since
the receiver of the target method is shared (the this object
from S), the object this of the target method is added to
Sm. We mark this transfer of sharing through the under-
lining of this at line 28, and respectively at line 39 (middle
column). Since the actual argument, bodies is not shared,
the formal argument arr is not added to Sm.

Now we will follow the data-flow analysis through the
method moveAll. At line 41, there is another method in-
vocation, moveBy, in a parallel section. The receiver, arr[i],
of this method is not shared, so this in method moveBy of
class Particle is not shared (i.e., not added to moveBy’s Sm).
The analysis then follows through method moveBy (line 11).
Since nothing is shared here, method moveBy does not prop-
agate any sharing.

Upon the return from moveAll in line 44, the analysis prop-
agates any changes into the set of shared objects back to the
calling context in method compute. In this case, since there
were no changes, there is nothing to propagate back to S.

Next, the analysis reaches line 30. We explained lines 30–
34 in section 5.2.1. Notice that S expands with the objects
cropper and bodies.

The analysis reaches the instruction on line 36 where method
moveAll is invoked again. The receiver this is shared so the
target method’s this is added to Sm (like we showed at the
previous invocation). Additionaly, as this time the actual
parameter bodies is shared, so the formal parameter arr is
added to Sm.

Next, the analysis checks whether there is a memoization
of the data-flow analysis for method moveAll with the input
set of shared objects Sm = {this, arr}. As the method was
only previously analyzed for the input set Sm = {this} (the
invocation at line 28), the analysis cannot use any memoized
results so it needs to analyze the method again for the new
input set.

The analysis revisits line 41. The receiver for moveBy in-
vocation, arr, is now shared, so this is added to moveBy’s
Sm. Again, since moveBy is only memoized for a empty set of
shared objects, the analysis revisits the method for the new
input set ({this}). The analysis reaches line 13. This line
contains a shared object (this) as the target of a field up-
date. Using the detection function from Fig. 8, the analysis
reports the correct data race.

6. EVALUATION

6.1 Research Questions
To evaluate the effectiveness of ReLooper, we answer the

following research questions:

• Q1: Does the analysis find safety problems? Is it fast?

• Q2: What is the rewriting effort? How many changes
does ReLooper automatically perform?

• Q3: What is the speedup of the refactored code?

These questions answer a higher-level question, is ReLooper

useful, from different points of view. The safety and the
rewriting questions measure whether ReLooper reduces the
burden of parallelizing sequential loops. The speedup ques-
tion measures whether it is worth to parallelize those loops.

6.2 Methodology
To answer these questions, we used ReLooper to parallelize

computationally intensive loops from real programs. We use
both programs that are traditionally used as benchmarks in
the parallel programming literature, as well as programs that
we or others have previously developed.

Table 2 lists the programs that we used. They range
from a few thousand to a hundred thousand non-blank, non-
comment LOC. BarnesHut, MonteCarlo, and Em3d are part
of the JOlden benchmark. BarnesHut computes the force in-
teractions for N bodies. MonteCarlo is a financial simulation
of stock market. Em3d computes the electromagnetic field
propagation in three dimensions. POSTagger and Coref
are two natural language processing applications developed
in the cognitive group at the University of Illinois. POSTag-
ger tags each word with its part of speech, and Coref finds
the words in a text that refer to the same entity. Lucene is
a text search engine library.

To find the computationally intensive loops, we profiled
the programs, or read the program documentation. Then

we used ReLooper to convert the array or Vector used in the
loops into a ParallelArray. ReLooper raised safety warnings
in programs. We checked whether the reported problems
were genuine, then we fixed those problems by making those
parts thread-safe (e.g., by using the Atmomic* classes from
the Java’s concurrency package). Then we ran ReLooper once
more to parallelize the safe loops. Finally, we ran the parallel
programs and confirmed that they were producing the same
results as the sequential programs, and reported the speedup
of the parallel parts.

6.3 Results

6.3.1 Does the analysis find safety problems?
The analysis columns in Table 2 presents the results of

the analysis. The Warnings column shows how many warn-
ings ReLooper raised, and how many of these were genuine
warnings. After manually analyzing the code, we found that
the warnings in most of the programs were genuine, and
ReLooper did not miss any races (no false negatives). The
only false positives were given in the Coref case study, and
were due to the field-insensitiveness of our analysis.

There were two kinds of warnings that ReLooper raised: (i)
warnings about conflicting memory accesses, and (ii) warn-
ings about I/O operations.

We fixed the problems reported in the first category. Some-
times, this required changing code very far away from the
code in the loops. For example, POSTagger was using a
machine learning classifier that was writing to static fields.
The write happened in a method four levels down on the call
stack from the method invoked in the loop. Analyzing all
this code manually is a considerable effort. We fixed the re-
ported problem by replacing the global state (static fields)
with thread-local state (fields encapsulated in ThreadLocal

utility).
With respect to the I/O warnings, we traced the problem

and found that indeed, the parallel loops were performing
I/O operations in most case studies. We heeded the advice
given by ReLooper and did not parallelize those loops.

Not only is ReLooper effective in finding problems, but it is
efficient too. The analysis runs fast enough for an interactive
tool. In the worst case, in the POSTagger program, it took
25 seconds, but the amount of code visited starting from the
parallel loop was large (it contained many machine learning
components: the classifier, feature extraction, etc.).

6.3.2 What is the rewriting effort?
The Transformation section in Table 2 shows the amount

of code that ReLooper changed. For each case study, the
changes are reported for one single refactoring (with the ex-
ception of Em3d where we applied two refactorings). The
LOC changed represent the total of lines deleted, added,
or updated during the refactoring (they do not include the
changes required to fix the safety warnings). The next columns
show how many of the loops that were iterating over the tar-
get array or Vector were parallelized, and how many loops
were left sequential. The latter are loops that have I/O op-
erations, or had race conditions that we could not solve.

6.3.3 What is the speedup?
The Speedup section in Table 2 shows the speedup of

the refactored loops reported against the original sequen-
tial loops. We ran the parallel code on a dual-core laptop.

The first column shows the relative performance of the refac-
tored code when running on one single processor. As seen,
in most cases, the overhead of the parallel code is small.
In some cases, the slow down is due to the synchronization
primitives that we added to fix the conflicting memory up-
dates. When running on two cores, we get some speedup,
without doing any performance tuning.

7. RELATED WORK

Safety analysis for loop parallelism.
Parallelizing loops has received significant interest for sci-

entific computation, initially for Fortran programs. How-
ever, much of this work is done in the context of numerical
computation on scalar arrays and does not deal with the
problems posed by sharing heap-allocated array elements.
More recently, in the context of Java, [1] identifies alias-free
array regions for an optimizing compiler, but only for one-
dimensional scalar arrays. In [11], aliasing of array objects
is treated using SSA form and index partitioning, but in an
intraprocedural context only.

Our approach is different in purpose from the above-cited
works, which perform full program analysis to find loops that
can be safely and automatically parallelized by a compiler.
Instead, we provide a tool that attempts to parallelize loops
explicitly chosen by the programmer, employing a demand-
driven analysis to signal problems that the human may have
missed. Thus, our stated analysis goal is to quickly and
correctly identify dependencies for most cases occurring in
practice. Although one issue we flag is object sharing, our
purpose is not to do a full-fledged alias or shape analysis,
for which there is a significant body of research.

Closer to our work is [16], which presents a loop-based de-
pendence analysis using an points-to mapping that is element-
and instance-sensitive. Complex data structures track as-
signments at arbitrary field depth. However, interprocedu-
ral analysis and destructive updates are not implemented
and sketched as extensions only. Marron et al. [8] addresses
the same problem of proving array entries disjoint, using
an abstract heap with refined relations of aliasing, connec-
tivity and interference between references. The analysis is
presented in an intraprocedural context, and results are re-
ported for small/medium size Java programs.

One of our analyses performs race detection, though we
are concerned with potential races that would occur with
parallelization, and not with misplaced locking. Of the many
papers on static race detection, [10] is close in its treatment
of complex object relations. It employs a k-object sensitive
alias analysis [9] and an escape analysis to increase the preci-
sion of its findings. An earlier race detection approach with
similar focus is [2].

Loop parallelization has become highly relevant for dy-
namic compilation; however, most analyses are highly con-
servative, e.g., cannot handle loops involving method calls
or have restrictive conditions on object referenes.

Refactoring for parallelism.
The earliest work on interactive tools for parallelization

stemmed from the Fortran community, and it targets loop
parallelization. Interactive tools like PFC [4], ParaScope [5],
and SUIF Explorer [7] rely on the user to specify what loops
to interchange, align, replicate, or expand. ParaScope and

Size Analysis Transformation SpeedUp

SLOC Warnings #Analyzed Time Changed #Loops 1-core 2-core

Mem(Genuine) IO Methods [sec] LOC Parallel Seq

POSTagger 35810 4(4) 8 354 25 12 1 1 0.97 1.8

Coref 117660 14(0) 6 257 21 16 1 2 0.97 1.32

MonteCarlo 1127 3(3) 1 83 8.6 15 1 1 0.99 1.42

Barnes-Hut 540 2(2) 0 14 1.7 13 1 1 0.98 1.7

Em3d 189 1(1) 0 22 6.1 52 6 0 0.98 1.35

Lucene 51483 14(14) 0 137 10 44 2 6 0.99 1.96

Table 2: Case studies of using ReLooper on different projects. The size of each project is given in non-comment,

non-blank LOC. The Analysis columns show the number of memory and IO warnings that ReLooper raises,

how many of these were genuine warnings, the number of analyzed methods, and the running time of the

analysis. The Transformation columns show the total number of LOC changed, the number of parallelized

loops, and the number of loops left sequential. The Speedup column shows the speedup of the refactored

code, relative to the original code.

SUIF Explorer visually display the data dependences. The
user must either determine that each loop dependence shown
is not valid (due to conservative analysis), or transform a
loop to eliminate valid dependences.

More recently, in our previous work [3] on retrofitting
parallelism via introducing concurrent libraries we present
refactorings that convert primitive types to thread-safe data
type (e.g., int to AtomicInteger), or refactorings for task
parallelism. The work presented in this paper expands the
toolset with data parallelism.

Wloka et al. [15] present an automated refactoring for
making code reentrant. This refactoring changes global data
(stored in static fields) into thread-local data. We have man-
ually performed this refactoring to eliminate some of the
writes to shared objects pointed by ReLooper in the evalua-
tion programs. The refactoring for reentrancy can be seen
as an enabling refactoring for many other refactorings, in-
cluding the one we present here.

8. CONCLUSIONS
There are two ways in which ReLooper helps Java pro-

grammers who want to parallelize their programs by using
ParallelArray: (i) it helps them discover when parallelizing
a loop is unsafe and (ii) it performs the messy conversion of
the loop, selecting a good operator from the 132 that come
with ParallelArray. Just as ParallelArray is not the only
class in the Java concurrent libraries, ReLooper is not the
only tool needed to parallelize Java programs. However, it
works well for the kinds of problems for which ParallelAr-

ray is most suitable, and the other kinds of problems can be
solved by other refactoring tools.

There are libraries for other languages that are similar to
Java’s concurrent library, such as Intel’s Theaded Building
Blocks, a C++ library. A tool like ReLooper would be useful
for programmers who want to use those libraries, as well.
There are plans to add closures to C++ and Java. This
will make loop conversion easier, but it will not make it any
easier to detect when parallelizing a loop is unsafe. Even
if the actual conversion of a loop is easy enough to do by
hand, automating the analysis of whether a refactoring is
safe makes it easier for a programmer to refactor code safely.
Fast analysis is as important as fast transformations.

9. ACKNOWLEDGMENTS
This work is partially funded by Microsoft and Intel through

the UPCRC Center at Illinois, and a DOE grant ER25752.
Cosmin and Mihai did a part of this work as undergraduate
summer interns at the Information Trust Institute at the
University of Illinois.

We thank John Brant, Fredrik Kjoelstad, Yun Young Lee,
Brett Daniel, Milos Gligoric, Jeff Overbey, and Stas Negara
for feedback on earlier drafts of this manuscript.

10. REFERENCES
[1] P. V. Artigas, M. Gupta, S. P. Midkiff, and

J. Moreira. Automatic loop transformations and
parallelization for Java. In International Conference
on Supercomputing, 2000.

[2] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In PLDI, 2002.

[3] D. Dig, J. Marrero, and M. D. Ernst. Refactoring
sequential Java code for concurrency via concurrent
libraries. In ICSE, pages 397–407, 2009.

[4] J.R.Allen and K. Kennedy. PFC: A program to
convert Fortran to parallel form. In Supercomputers:
Design and Applications, pages 186–205, 1984.

[5] K. Kennedy, K. S. McKinley, and C.-W. Tseng.
Analysis and transformation in the parascope editor.
In ICS, pages 433–447, 1991.

[6] D. Lea. ParallelArray package extra166y.
http://gee.cs.oswego.edu/dl/

concurrency-interest/index.html, 2009.

[7] S.-W. Liao, A. Diwan, J. Robert P. Bosch,
A. Ghuloum, and M. S. Lam. Suif explorer: an
interactive and interprocedural parallelizer. SIGPLAN
Not., 34(8):37–48, 1999.

[8] M. Marron, M. Méndez-Lojo, M. V. Hermenegildo,
D. Stefanovic, and D. Kapur. Sharing analysis of
arrays, collections, and recursive structures. In
PASTE, pages 43–49, 2008.

[9] A. Milanova, A. Rountev, and B. G. Ryder.
Parameterized object sensitivity for points-to analysis
for Java. ACM TOPLAS, 14(1), Jan. 2005.

[10] M. Naik, A. Aiken, and J. Whaley. Effective static
race detection for Java. In PLDI, 2006.

[11] V. Sarkar and S. Fink. Efficient dependence analysis
for Java arrays. In Euro-Par, 2001.

[12] Threading Building Blocks.
http://www.threadingbuildingblocks.org/.

[13] Task Parallel Library. http:
//research.microsoft.com/en-us/projects/tpl.

[14] WALA: T. J. Watson Libraries for Analysis.
http://wala.sf.net.

[15] J. Wloka, M. Sridharan, and F. Tip. Refactoring for
reentrancy. In ESEC/SIGSOFT FSE, pages 173–182,
2009.

[16] P. Wu, P. Feautrier, D. A. Padua, and Z. Sura.
Instance-wise points-to analysis for loop-based
dependence testing. In ICS, 2002.

