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Abstract

Content-based publish/subscribe is a powerful data dissgion paradigm that offers both scalability and flexilyilHowever,
its nature of high expressiveness makes it difficult to arelyr predict the behavior of the system such as event dglprebability
and end-to-end delivery delay, especially when deployest owmreliable, best-effort public networks. This paperposes the
analytical model that abstracts expressiveness natur@mtit-based publish/subscribe, along with uncertairfityraerlying
networks, in order to predict quality of service in terms efigery probability and timeliness based on partial, ingise statistical
attributes of each component in the system. Furthermoeepéper leverages the proposed prediction algorithm toements
heuristic-based subscriber admission control algorittormmaximize system utility when the system cannot suppbsgudiscribers.
The evaluation results yields good prediction accuracy admission rates.

I. INTRODUCTION

Over the past few years, publish/subscribe systems haeattgdecome an emerging paradigm for large-scale infdomat
dissemination. The nature of publish/subscribe where tbdycers of the information (i.e. publishers) and the comens of
the information (i.e. subscribers) are interacted viarmeiaries (i.e. brokers) allows both sides of the commatita to be
decoupled in space, time, and synchronization [1]. Suchbiléy and scalability makes publish/subscribe paradigne of
few viable choices for designing and building large-scatadlissemination systems.

So far, there have been significant efforts from both acadeand industry domains to design standards and build im-
plementations of scalable and efficient distributed phidigbscribe systems [2]-[7], [7]-[11]. Based on commordgepted
taxonomy [1], [12]-[14], publish/subscribe systems carcategorized intdopic-basedoublish/subscribe systems [5]-[7] and
content-basegublish/subscribe systems [2]-[4], [8]-[10]. In topicsea publish/subscribe systems, the event from publishers
are delivered to subscribers that share the same singleshtealue calledopic. In content-based publish/subscribe systems,
each event can contain multiple attributes. Any subsctihat is interested in a topic can further specify, at thdlatte level,
which portion of the topic events it wants to receive. Cotdsgsed publish/subscribe systems give more flexibilityh®
subscribers at the cost of increasing processing complekibrokers.

Besides the increasing complexity compared to topic-basdadish/subscribe systems, another drawback of contased
publish/subscribe systems is less predictability. Sirmghesubscriber has flexibility in choosing information itni&in fine-
grained attribute level, it is also less trivial to determ@vent flow from each publisher to each subscriber. Hentzalso less
trivial to analyze the performance and correctness of edfiased publish/subscribe compared to its topic-basadtepart.
For example, it is less trivial to check how much resourcededed to service each subscriber properly, or to verifyéf th
system’s current state is stable. Moreover, deploying iplifsubscribe systems over unreliable, best-effort nedsvéi.e. the
Internet) further decreases system determinism and padidlity. Such uncertainty and complexity becomes a hindeain
applying content-based publish/subscribe systems tonetescale, time-sensitive applications such as stockebaeport [15],
temperature/climate monitoring [16], and road traffic ntoring [17]. The need to solve such problem calls for a goaaldital
model that could accurately capture 1) applications’ temé requirements, 2) content-based publish/subscripeesgiveness,
3) uncertainty nature of underlying best-effort networks.

However, while it is infeasible to calculagxactresource consumption and quality of service each subscrdoeives in
content-based publish/subscribe systems, it is stillipesso do so in probabilistic manner when somartial information
of each component in the system is given to some extent. Thegartial information refers to trend or pattern of behavior
of each component, ranging from underlying networks (i@w likely that a message will be transmitted over a link withi
5 seconds), hardware capabilities (i.e. the average brekamt processing time), to the information pattern (i.ew Higely
a publisher will publish a value or how likely that a publishell publish the next message within a specific time). Many
real-world event publishers exhibit temporal locality sutat content pattern prediction can be done based on psyio
published events (i.e. Figure 1 for examples). Such pattdonmation can be either explicitly given by or implicitbserved
from each component, thus making it possible to model andigiréehavior of the publish/subscribe system as a whole.



In this paper, we explore the possibility to use such immeriigformation to predict event delivery delay and relidghiin

a distributed content-based publish/subscribe systempblyiag the techniques from probability theory and queuingory.
Specifically, our work has the following contributions. $tirwe propose a generic analytical model &xisting distributed
content-based publish/subscribe systems for the purg@eaformance assessment. Second, we present the sulbselidigility
prediction algorithm based on the proposed analytical hadd the assumption of imperfect statistics informatioreath
pub/sub component. Third, with the proposed predictiommtigm, we present a heuristic-based subscriber admissiatrol
protocol that provides QoS support to existing best-effatributed content-based publish/subscribe systemstirand finally,
we present the simulation results of the proposed systerarurdlistic parameters. The evaluation results yield gamiracy
for the prediction algorithm and good admission rate for ssian control algorithm, even when the statistics infaioraof
each component is inaccurate.
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Fig. 1. Example of real-world event streams and their temiplocality
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This paper is organized as follows. Section Il discussesnibdel of distributed, content-based publish/subscrilstesy
used in this work. Section Ill propose the mathematical rhofleeal-time content-based publish/subscribe systemgaigith
the subscriber reliability prediction and admission cohproblem formulation. Section IV presents the analyticeidel to
predict subscriber real-time reliability. Section V pnetseutility-based subscriber admission control algorgHior overloaded
publish/subscribe systems. Section VI presents the ewatugesults of the proposed systems. Section VII discussiesed
works in quality of service and modeling of real-time publ&ibscribe systems. Finally, Section VIII suggests fitlirections
of the work and concludes the paper.

Il. SYSTEM MODEL

In this section, we first describe the model of soft real-tidistributed content-based publish/subscribe model usexur
work. We then formulate the problem of subscriber reli&piin the described model.



A. Soft Real-time Distributed Publish/Subscribe
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Fig. 2. Example of subscription propagation and event nguiin a publish/subscribe system

In this work, we assume generic acyclic publish/subscribe thodel commonly adopted in existing works [2]-[4], [8] as
follows. A publish/subscribe system consists of a groupwfscribers(information consumers) angublishers(information
providers) connected via a network lofokers(information intermediaries). We assuraeyclic broker tree network (i.e. there
is only one path between each pair of broker). Each subsfpildgisher is connected to only one of the brokers in theéesys
called home broker Each publisher publishessentsor messageso its home broker. Each published event has one or more
attributeswith the associategtalue Each event also has itdetime value, which is the duration between the time the event
was published and the time the event is expired. An eventigsteabe delivered to a subscriben timeif the end-to-end
delivery delay islessthan its lifetime.

The subscriber/publisher joining process and event/sigigmn matching process in the publish/subscribe systershown
in Figure 2 as follows. When a new subscriber joins the systesends its subscription to one of the brokers (Figure)2(a)
A subscription containpredicate filtet specifying event content that the subscriber wants to vecaipon receiving the
subscription from the subscriber, the broker stores theaudtion into its routing table and propagates the new &ititson
to adjacent brokers, which in turn repeat the process ulhtirakers receive the subscription (Figure 2(a) and 2(¥hen
storing a new subscription into its routing table, each brakiso stores link information to the broker which it reesithe
subscription from. When a broker receives a newly-pubtisteent (Figure 2(c)), it checks the event with each subsorip
stored in its routing table. For each matching subscripttbe broker forwards the event to the link which it receivieatt
subscription from. Note that an event is forwardmutce per link even there are multiple matching subscriptionsnfrilat
link. The process then continues, and the event is propadete-by-hop in the reverse direction of the subscriptiotil uin
reaches the designated subscribers. The mentioned pshlisicribe model is simple yet generic enough to represeatiety
of existing publish/subscribe system works [2]-[4], [8].

Another assumption made in this paper is probabilistic rimfation of each publish/subscribe component and underlyin
networks. Specifically, the publisher content distribat{@e. what content a publisher is more likely to publisimter-broker
link delay and bandwidth distribution, broker event praieg time are known as priori either via explicit advertisgs from
publishers or implicit prediction based on statisticaltdrig.

B. Publish/Subscribe Quality of Service

With the presented content-based publish/subscribe model question that may arise is that, given a publish/sidescr
system setting along with all subscribers and their sup8oris, how much quality of service each subscriber can have
Specifically,what fraction of events that match a given subscriber'sresgts will be delivered to that subscriber on timé®
guantify such quality of service, we define a subscribeellevetric calledsubscriber real-time reliabilityas follows.

Subscriber Real-time ReliabilityA subscribers is said to receive the service with real-time reliabilRy, whereR; is defined
as the fraction of all events afs interest that arrives atbefore its deadline (i.e. delivery delay less than the ngestetime).

Since the proposed real-time subscriber reliability corabithe concept of standard reliability with the conceptroétiness
property, it can be used as a good indicator how much qualigseovice each subscriber receives.

1in Figure 2(a), each predicate filter is in conjunctive foramsisting of per-attribute min-max clauses. However, aalytical model supports all possible
forms of filter as long as the filter can be expressed a a sulbbgké @ontent space.



C. Network Model

Each broker is linked via asynchronous, non real-time, davicemmunication link. Inter-broker links can fail with some
probability. The broker/publisher and broker/subscriloées can be either wired or wireless links.

As mentioned earlier, we assume tree, acyclic topology okédar networks, which means there is only one communication
path between each pair of broker. More complex topologieb si$ cyclic networks are considered as future directionyits
be discussed in Section VIII.

In the next section, we will present the formal definition etk component described in this section and the definition of
subscriber reliability estimation problem.

[1l. ANALYTICAL MODEL FRAMEWORK
In order to analytically estimate subscribers’ real-tineability, we present the mathematical model of the corbased
publish/subscribe system as follows. All notations caw &le found in Table I.
A. Publish/Subscribe Entity Model
1) Events:Let E be the set of all events published in the system. An evenft is defined as a 3-tuple

e = (ide, e, de)

, which represent event’s identifier, content attributes] Afetime duration respectively. The content of an eventlenoted
by a., is defined as &-tuple
e = (vlea V2e, -'7vke)

, Whereuw;, is the value of the'” attribute of event. For simplicity of the analysis, we assume that the evenctép) is
always the first attributev(.) and the resk — 1 attributes areghe union of all per-topic attributem the system in an arbitrary
but globally consistent order. Hence, an event of any tapihié system can be expressed with siehl attributes by setting
irrelevant attributes from other topics to null value.

Let V; be the value space of th&" attribute of any eventve € E : v;. € V;). Let T be the set of all topics in the system
(i.,e. T = V7). Let D be the set of all possible lifetime duration values of evéntthe system. Note thdt; and D can be
either discrete or continuous. Without loss of generalitythie analysis, we assuni¢ and D to be discrete in this work.
However, the proof also applies to the continuous case. Wiaale

V=TxVo,x.xV

as the content space of the events in the system.
2) Subscribers:A subscribers is defined as a tuple

§ = (idsa fs)

whereid; is the subscriber’s identifierf; C V is the predicate filter defining the content of interest fokVe define a filter
setF;(E) of event setF with respect to subscriber as

Fy(E)={e€FE:a.€ fs}
3) Publishers: A publisherp is defined by a tuple
b= (idpv Cp(a7 d)v Ip(t))

whereC, : V x D — [0, 1] is the content-lifetime joint distribution function of ews thatp publishes (i.eCj(a,d) is the
probability thatp will publish an event with content and lifetimed), I,,(¢) is the inter-event publishing time distribution, and
id, is the publisher’s identifier. Thus

> Cula,d) =1
(a,d)eVxD
and -
Z Ip(t) =1
t>0

4) Brokers: Each broker in the system has a single event queue that isauséate and match event in first-come-first-serve
basis. A broken in the system is defined as a tuple

b= (idb7 ]\/fb(t))



whereid, is the broker’s identifier, and/,(¢) is the distribution of broker’s event processing (matchang routing) time. For
example,M;(100ms) = 0.2 means with 20% probability, the delay the brokewill take to retrieve an event from its queue
and route the event to the appropriate links is 100 millisglso Note that the event processing time distributldg(t) can be
a function that depends on the number of subscriptions dtarérokerd’s routing table.

B. Network-level Entity Model

We model the publish/subscribe network as a directed acgghphG(B U P U S, L), whereBU P U S is the set of
brokers, publishers, and subscribers in the system,/and(P U B) x (B U S) is the set of directed communication links.
Each communication link € L is a directed edge that dictates the direction of event flawsrey nodes in the system. Each
link can be categorized into eithpublisher-brokerink (direct link from a publisher to a brokerproker-brokerlink (direct
link from a broker to another broker), diroker-subscribellink (direct link from a broker to a subscriber). Each lihkhas
reliability r; and link delay distributionD;(¢). We defineout(l) andin(l) as the source and the sink of linkespectively.

C. Quality of Service Model

1) Subscriber Reliability:Let E, be the set of all events that are published during the pehiatla subscribes is in the
system. Hencel(E;) is the set of all events of's interest during its stay in the system. For each eveatF,(E,), let d?
be thedelivery delayof evente to subscribers (the time period betweea's publishing time and time that is delivered to
s). Thus, the real-time reliability at a subscriberdenoted byR,, can be expressed as

[{e € Fy(E) : df < d.}|
s (Es)|

In the other word,R; is the fraction of all messages matchiglg interest that are delivered toon time. We believe the
defined reliability metric is good enough to represent dqualf service, as it combines both reliability and delay, ethare two
important metrics in soft real-time publish/subscribe laapions. However, we would like to estimaf, for each subscriber
s without actually running the system, which leads to the stiber real-time reliability estimation problem definedSection
[1-D1.

2) Publish/Subscribe Utility Modeltet each subscriber has its own real-time reliability requiremeRt;, a subscribes is
said to have its requirement satisfieddf < R’. We define the set cfatisfied subscriberaith respect to the publish/subscribe
network G, denoted byS’(G), as the set of subscribers @ that have their reliability requirements satisfied (i5¢(B U P U
S,L)={s € S:Rs < R!}). We define the utility of the publish/subscribe netwark= (B U P U S, L), denoted byU(G)
as the number of satisfied subscribers. Thaf (& = (BUP U S, L)) = |S'(G)|.

With nature of proposed utility functiot’ (G), it is more beneficial not to admit the whole subscriber$étto the system
if we know in advance that some subscribers will not meetrtheguirements, since those unsatisfied subscribers wiyl on
waste system resources without adding any benefit to themydnstead, a subscribershould be admitted to the system
only when it is likely to have its requirement satisfied.

R, =

D. Problem Definition

Based on the previously defined model, this section forrealétte two problems to be solved by this work, the subscriber
reliability estimation problem and subscriber admissiontool problem.

1) Subscriber Reliability Estimationtn Section 11I-C1, we formally define subscriber relialyiliand utility as quality of
service indicator for each subscriber in the system. Howeve would like to predict reliabilityR, for each subscribes in
advance before actually running the system. This leadsectibscriber real-time reliability estimation problem.

Definition Subscriber Real-time Reliability Estimation Proble@iven a publish/subscribe netwotk= (BU P U S, L), find
the estimated value aR,, denoted byR, for each subscribes € S.

Based on the proposed analytical model, this work presestsacriber reliability estimation algorithm in Section. IV

2) Subscriber Admission ControAs mentioned in Section 111-C2, admitting all subscribemsthe systems may result in
bad system utility. Thus, the system should pick only a subksubscribers that will maximize the system utility. Heneve
define subscriber admission control problem as follows.

Definition Subscriber Admission Control Probler@iven a publish/subscribe netwok = (B U P U S, L), find the largest
subscriber subset* C S that maximize the utility of the system (i.8* = argmaxgcs U(BUPUS’, L — (B x (S —15")))).

It is trivial that the subscriber admission control problenNP-Hard problem, as the problem can be specialized ta othe
NP-hard optimization problems such as multicast admiss@ntrol or multi-commodity flow problems. However, this Wor
discusses a set of greedy, heuristic-based algorithmslte e subscriber admission control problem in Section V.



Symbol Definition
eckE an event in the set of all system events
de evente’s lifetime
D set of all events’ lifetime values
Qe evente's attributes
k number of all attribute types in the system
Te evente’s topic (V1e)
Vi value space of™ attribute
1% content space of all events
se S a subscriber in the set all subscribers
fs €V subscribers’s content of interest
F,(E) a set of events inE that matches'’s interest
d: end-to-end delivery delay of eventto subscribers
R subscribers’s real-time reliability
R/, subscribers’s estimated real-time reliability
R} subscribers’s requested real-time reliability
U(Rs) subscribers’s utility
U(G) publish/subscribe network:’s utility
S* subscriber subset that maximize system utility
peEP a publisher in the set of all publishers
Cp(a,d) | content-lifetime distribution of events published py
I,(t) publisherp’s event publishing interval distribution
beB a broker in the set of all brokers
My (t) broker b’s event processing time distribution
leL a directed communication link
9] link I's transmission reliability
D (t) link I's successful transmission delay distribution
in(l) link I's sink node
out(l) link I's source node
TABLE |

MODEL VARIABLES’ NOTATION

Symbol Definition
i union of all subscription filters propagated via libk
Al estimated event flow rate through litk
Ap estimated event flow rate from publisher
Ci(a) estimated content distribution of events through link
up(l) upstream links of linkl (Equation (2))
b estimated incoming event flow rate to broker
s estimated event processing rate at broker
qb estimated queuing delay at brokier
Dy (t) estimated total delay distribution at brokier
C;(a,d) | estimated content-remaintime distribution of eventsugtolink [
TABLE Il

ANALYSIS VARIABLES' NOTATION

IV. SUBSCRIBERREAL-TIME RELIABILITY ESTIMATION
A. Estimation Algorithm

In this section, we present how to calculate the estimataltirae reliability R, at each subscriber To do so, it is necessary
to estimate the end-to-end delivery delay and path reiighdistributions of all s’s matching events when they arrive at
Hence, we introduce another set of variables in Table Il lier purpose of the analysis. These variables are not parteof t
problem definition, but are defined as intermediate varg@abieorder to solve the estimation problem. The overall estiom
process, depicted in Figure 3, consists of four steps : matpay subscriptions, calculating per-link event flow rai@lculating
broker queuing/processing delay, and calculating pérdiontent-lifetime distribution.

1) Subscription Propagationin this step, the subscription filters are propagated froivsetibers to each broker in the
system in the same manner as subscription propagation ggatiscussed in Section II-A. As shown in Figure 3(a), each
subscription is propagated in the reverse direction of treneflow direction (i.e. reversed to the direction of theomrs).
When a subscription filtef is propagated to a brokérvia b’'s outgoing linki, the subscription will be propagated to all other
incoming links ofb. At the same time, the subscription filtgrwill be included intoi’s filter set denoted byf;. That is, for
each filterf that propagates via link f; = f; U f. The process continues until all subscriptions are projegig® all brokers
the system.

The filter setf; can be viewed as the union of all subscriptions that are ated through link and hence represents the
content space of the events that should be forwarded td liAk the beginning of this step, each likhas its filter set empty

(i.e. fi = 0). At the end of this step, if any linKs filter set still remains empty, then it means that therd laél no event sent
overl.
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(a) Propagating subscription (reversed (b) Calculating link event rate  (c) Calculating broker total delay dis-(d) Calculating per-link content-
direction of arrows) tribution remaintime distribution

Fig. 3. The steps for subscriber reliability estimation

2) Per-link Event Flow Rate CalculationAfter each link’s filter set is identified, the next step is @laulate each link’s
average event flow rat&;. This step starts by calculating the average event geperadite at each publisher denoted by
Ap, as the inverse of average inter-event generation fingg as follows.

1 1
B 0] Xhr,ms0(t-Dp(t)

The average event flow rate of a publisher-broker limkthen equal to the event flow rate i source publisher, multiplied
by the link’s reliability r; as follows.

Ap =

/\l = Tl.)\p (1)

, Wherep = out(l)

The process continues until the event flow rates of all phblidoroker links are determined. Then, the event flow rafes o
the other links (i.e. broker-broker links and broker-sulisr links) are calculated. To do so, tkentent distributionof each
publisher-broker link is needed. The content distributadra link [, denoted byC/(a), is the probability distribution of the
event content that passes through linkor each publisher-broker linkthat connects a publishet the content distribution
is equal to the content-only projection of this content-lifetime distribution as follows.

Cl/ (a) = Z Cp(av d)
d>0
, wherep = out(l)

A link is consideredesolvedif its average flow rate and content distribution are idesdifiHence, after all publisher-broker
links are resolved, the other links’ average flow rates amtert distributions are then calculated as follows. We aefithe
upstream links of a link, denoted byup(l), as the set of incoming links ts source broker excepts reversed link. In the
other words,

up(l) ={l' € L :in(l') = out(l) A out(l') # in(l)} )

That is,up(l) refers to alll’s adjacent links from which events potentially flowtoAny broker-broker or broker-subscriber
link [ is defined asesolvableif and only if all I's upstream links are resolved. For each resolvablellints average flow rate
A and content distributioi®; (a) can be calculated by the following equation.

N=rA Y C'(a) (3)
a€fi
and ,
il =22 o e

where A and Cga) are the total rate and total content distribution of/&lupstream links. Specifically,

A= Y N (4)



and
o Zl’eup(l) Al,'(jl// (a’)
N A

That is,['s average flow rate\; is calculated from the total rate of dlk incoming event flows that match the filter sgt
The content distributior©; () is then calculated in the same manner.

Once a resolvable link’s flow rate and content distributisidientified, that link then becomes a resolved link. The @sec
then continues to resolve the remaining links until all frkre resolved. Since we assume the broker network to beigcycl
it is guaranteed that the process always find a new resolNialdlentil all links are resolved.

3) Broker Queuing/Processing Delay CalculatioAfter all the links are resolved, we then determine the ayemueuing
delay at each broker. Since we model each broker as an evdahingaserver with a single queue, we can apply queuing
theory techniques to determine broker queuing delay aewisll A brokerb’s average queuing delay, denoted fycan be
calculated based on M/M/1 queuing model as follows.

C'(a)

Ab
— _ 5

o s (e — M) ®)
where

=Y N (6)

leL:in(l)=b

and

1 1

wp = = @)
E[Mb(t)] Zt:Mb(t)>0(t'Mb(t))
In the other words), is the total event flow rates from all éfs incoming links, andu, is b's average matching rate.
Note that if the event flow ratg; is more than the average matching rate then the brokeb is overloaded. In such case,
the queuing delay at brokeérwill be equal to infinity, as the broker will never reach thalde state.
Oncebd’s average queuing delay is determined, we then estitistotal broker delay distribution, denoted @y, (¢) as

Dy(t + qv) = My(t)

That is, the total broker delay distribution is estimatedtas event processing delay distribution plus the averageiigg
delay. Although the proposed approach is a simple delayildlision estimation based on the assumption of M/M/1 queue
model, the evaluation result presented in Section VI yied@sonably accurate results for other queue model as veelurther
improve the delay estimation accuracy, more sophisticegeldniques in queuing theory can be used [18]. One appraaich i
model a broker as a G/G/1 queue, which is presented in Seldti@n

4) Per-link Content-remaintime Distribution Calculatior\fter the queuing and matching delay distributions at atikars
are identified, the last step is to calculate the content &etinhe distribution at each link. To do so, we define content
remaintime joint distribution at each link denoted byC;(a, d), as the joint probability of the content and remaining lifes
of each event that passes through liniNote that it is possible that;(a,d) > 0 whend is negative, which means that such
fraction of events is already expired after they pass thndirnk /.

As shown in Figure 3(d), the process at this step is similgretelink event flow rate calculation described in SectiorAlX/
except that both content and lifetime are now consideretiéncalculation. Specifically, for each publisher-brokakli, the
content-remaintime distributio@’;(a, d) is calculated as

Ci(a,d) = Y (Di(t).Cpla,d+1)) (8)

t:D;y(t)>0

, Wwherep = out(l) and D;(t) is I’s link delay distribution. The reason behind Equation 8jHat once an event is transmitted
via link [, its remaining lifetime is shortened by liriks transmission delay.

Here we once again use the concept of resolved link and rslelNink from Section 1V-A2, except that in this section, a
link [ is resolved when its content-delay distribution is ideatifiHence, we apply Equation (8) to all publisher-brokekdin
making all of them resolved. We then repetitively find a reable link! and calculate its content-remaintime distribution as
follows.

Colard) = 112 3" (Du(t).Cla,d +t)),Ya € f (9)

L pi)>0



, Where

Cad= Y Db(t)-zl/eup(l))\ A.Ci(a,d +t) o)

t: Dy, (t)>0

, Where )\ is calculated from Equation (4).
Hence, the estimated reliabiliti?’, can then be calculated as

rate of unexpired matching events deliveredsto
total rate of all events that matafs interest
Al Z(aefs,d>0) Ci(a,d)

Zaefs (ZpeP(Cp(a)-/\p))

R, =

(11)

wherel is the link tos (i.e., s = in(l))
With Equation (11), we can calculate the estimated reattigliability R, at each subscribes from publish/subscribe
networkG = (BUPUS, L).

B. Improved Reliability Estimation with G/G/1 Queue Model

So far, the load estimation at each broker presented ind@eb#A uses M/M/1 queue model, which assumes event inter-
arrival time distribution and broker processing time dlgttion to be exponential random variables. Such assumpptiay not
result in accurate subscriber reliability estimation asheavent inter-arrival time and broker processing time maydbawn
from other distributions than exponential distributiorar Fexample, the event intern-arrival time may be detertinig.e.
publishers with periodic sensors) or the broker event msiocg time may be uniform (i.e. brokers matching a randonmteve
with an array of subscriptions). To address complex timéridigion for more accurate reliability estimation, thisction
presents a modification to the estimation algorithm base®3Y1 queue model.

To model the system using G/G/1 model, we introduce additianalytical variables as follows. Apart from event flowerat
Ap at each publishep, another variable called evefibw burstinessdenoted byzg, is calculated fronp’s event inter-arrival
time distributionI,(¢) as

2 Var[l,(t)] 21, (ty>0 1p(0)-(t = )}7)2 (12)
" EL(1)] (3)?
The burstiness variab@ hence represents the uniformity level of event generatiterval atp. For examplezg =0 when
I,(t) is a uniform distribution and? = 1 when ,,(¢) is an exponential distribution.
Also, at each pub/sub brokér the burstiness variable? is calculated from its event matching time distributidf,(¢) in
the same Wa)ef, is calculated at each publishgr That is,

Lo VarMy(t)] _ Dty (ty>0 Mu(t)-(t — )7
PTEM (D] (5:)?

(13)

With the event generation burstiness variakﬂeat each publishep and the event matching burstiness variabjeat each
brokerb, a more accurate subscriber reliability estimation athamican be done by the approaches presented in SectionlV-A
but with one additional step between the step in Section /afvd the step in Section IV-A3 in order to calculate link and
broker flow burstiness. Hence, the subscriber reliabilgfineation process with G/G/1 broker model consists of fivepst
. propagating subscriptions, calculating per-link evenowflrate, calculate per-link event flow burstiness, caléudpbroker
gueuing/processing delay, and calculating per-link aorligetime distribution. The details of all steps are tteame as the
ones described in Section 1V-Al through Section IV-A4 exdbp new step to calculate per-link event flow burstinessthad
modified step to calculate broker queuing delay, which aserileed as follows.

1) Per-link Event Flow Burstiness CalculatiorThe process of per-link event flow burstiness calculati@ntstafter the
process of per-link event flow rate calculation (SectionAR} is done. After the flow rate calculation process, the ljpee-
event flow rate); and content distributior®’; (a) is known for each linki. Also, the per-publisher event flow burstiness
for each publishep and per-broker event matching burstinegsfor each publisheb are known via equation (12) and (13)
respectively. The per-link event flow burstiness calcolagprocess aims to calculate per-link event flow burstings®r each
link [. The techniques used in the calculation are adopted froditivaal queuing network theory [18].

The process starts by calculating for eachpublisher-brokerink I using the asymptotic method [18] as follows.

VieL:out(l) € Pz} =r.z) +1—r (14)



, wherep = out(l)
To calculate per-link event flow burstiness famoker-brokerand broker-subscribetinks, a set of linear equations must be
solved according to the following set of rules.

Incoming Flow Superpositionve defineper-broker incoming flow burstinessenoted by:?2 for each brokeb, as the burstiness
of the total event flow coming from all's incoming links. Using the superposition rule and the ggtatic method, the per-
broker incoming flow burstiness is the convex combinatiomath per-link flow burstiness as follows.

Vbe B,z = Y. (%23) (15)

leL:in(l)=b b

, Where )\, is the total incoming event flow rate at brokecalculated from Equation (6).
Equation (15) takes place at each broker B in the system. Hence, there gi@| incoming flow equations.

Broker Incoming-Outgoing Flow Transformatiowe defineper-broker outgoing flow burstinesdenoted by:?, for each broker
b, as the burstiness of the total event flow going out from bréke all b’'s outgoing links. Using Marshall’s formula [18],
the per-broker outgoing flow burstinesg, is a function of total incoming flow burstinesg,, total incoming flow rate\,
(Equation (6), broker average event matching ratgEquation (7)), broker event matching burstiness(Equation (13)) as
follows.

Vb € B, 25, = (py-zi + (1 = pj)-235 (16)

, wherep, = LZ

Since Equation 16 takes place at each brdkerB, there arg B| incoming-outgoing flow equations.

Broker Outgoing Flow Splittingafter a broker fetches the incoming event from the head ofjtieue, it routes the event to
each outgoing link with the subscription that matches trenevHence, the per-link event flow burstiness of each ontglink
z? is a function of its source broker’s incoming traffic ratg (From Equation (6)) and its own traffic rate (From Equation
(3)) as follows.
Vie L:out(l) € B,z = ﬁ.zgo +1-— al (17)
Ab Ab
, whereb = out(l)

From the three equations (Equation (15), (16), and (17¥xetfare three forms of unknown variableg, (zZ , andz?). All
other variables are known from previous calculations. Sie&ch unknown variable? can be written in a linear form of some
variable zZ, using Equation (17) and each unknown variabfg can be written in a linear form of some variablg using
Equation (16), there argB| unknown variables left, which are in the form ef,. Also, there aré B| equations left (Equation
(15)). Since there argB| unknown variables left withB| linear equations, each variabig for each brokeb € B can be
solved by using standard matrix operations. Once varidblése form ofz2, are solved, other unknown variables in the forms
of z2 andz? are also solved using Equation (16) and (17). However, oatjables in the form ot? are needed in the next
step to calculate the queuing delay at each broker.

2) Improved Broker Queuing/Processing Delay Calculatiéyter the total incoming event flow burstines$ is calculated
at each brokeb € B, a more accurate estimation of the average queuing dgléyr each brokeb € B is then a function of
total incoming flow burstiness?,, total incoming flow rate\, (Equation (6), broker average event matching yat¢Equation
(7)), broker event matching burstiness (Equation (13)) as follows.

pb(zl?z—i_zl?)g(pbvzgz’zl?) (18)

= 2.p6-(1 = pp)

wherep, = 2—’; and

2(1—pp).(1—23,)® P
2 2y _ ) exp—=g ) i g <]
) Zbin Bh) = po-(2;+2,) g
9(pv, 25 %) { R
Thus, we replace Equation (5) with new Equation (18) to dateuthe average broker queuing delay, which is then used
to calculate content-remain time distribution and finahg tsubscriber reliability estimation as stated in Sectii4. Note
that when the incoming event flow rate and the event matchiteyaf a broker are exponentially distributed (kg.= 1 and
22 = 1), then Equation (18) is reduced to Equation (5).



The proposed G/G/1 model reliability estimation yieldstéeestimation accuracy when compared to the M/M/1 model
presented in Section IV-A. However, the G/G/1 estimatioquiges solving| B| linear equations and thus makes it hard to do
in decentralized manner. On the other hand, all calculatiorM/M/1 estimation can be done locally at each broker wv f
messages exchanged among neighbors, making it possibldalate in decentralized manner. The estimation resaltnfr
either M/M/1 estimation or G/G/1 estimation can then be usedubscriber admission control to maximize system wtili
the next Section, we will present a heuristic-based adorissontrol based on the presented subscriber reliabiliiynation
to maximize publish/subscribe system utility.

V. UTILITY-BASED SUBSCRIBERADMISSION CONTROL

In this Section, we propose the heuristic-based algoritbnsdlve the subscriber admission problem. That is, given a
publish/subscribe network = (BU P U S, L), find the subset of subscriber sgt denoted byS*, that will maximize system
utility. In the other wordsS* = arg maxg/cs U(G’) whereG' = (BUPUS’,L — (B x (S—5"))). This algorithm is run in a
centralized fashion at a control center node, which pecadti collects monitoring status from each publisher/leo&ntities
in the network and uses such collected status to run the shesceliability estimation and admission control eveiyé a
new subscriber joins the system.

As mentioned, the subscriber admission problem is an NB-pesblem with respect to the number of subscribéfs)(
However, since we can estimate the system utllify=) for any publish/subscribe network based on the approach presented
in Section 1V, we now then propose the heuristic-based,dyredgorithm framework, denoted by*(G) to for the subscriber
admission control problem (i.e4*(G) approximatesS* for G = (BU P U S, L)).

Algorithm 1 FunctionA*(G = (BUPUS, L))

S" <« S

S* <=0

Ur<=0

while S” # ( do
S <= argmaXg/cg” ¢(SI)
G'=(BUPUS*U{s},L— (B x(S—5*={s})))
if U(G") > U* then

S* < S* U {s}
U< U(@)
end if
SI/ = S/I _ {S}
end while
return S*

A. Admission Control Algorithms

Algorithm (1) presents the detail of the greedy, heuribtased subscriber admission control algoritdrhto approximate
the maximume-utility subscriber sét*. The basic concept of the algorithat is to initially set the admitted subscriber sgt
to empty set, and then grows the $#t progressively by including each subscribee S only when the addition of can
increase the system utility. The system utility can be apipnated based on the analytical framework described ini@etv.
The order of subscribers in the addition process is obtaimethe priority functiony(s), which gives a priority value to each
subscribers. Since each subscriber is considered only once in the additiocess, the priority functiof(s) must be chosen
carefully to achieve near-optimum maximum-utility suliser set.

In this work, we pick a set of heuristic subscriber priorin€tions¢(s) to be used with the maximume-utility subscriber
admission algorithm framework* as follows.

Random Priority (random)The priority value of each subscriber is determined rargidmsed on its identification number
(i.e. ¢(s) = idy).

Requirement Priority (hi-reg-first)The priority value of each subscriber is equal to the rditgbrequirement of itself (i.e.
#(s) = RY). Hence, the subscriber with higher reliability requirerneill be considered before the one with lower reliability
requirement in this priority function.

Inversed Requirement Priority (low-reg-firsffhe priority value of each subscriber is equal to the invesb the reliability
requirement of itself (i.e¢(s) = 1 — R¥). This scheme is the opposite of the requirement priorityesee, as the subscriber
with lower reliability will be considered first in this schem



Parameters Value
#event attributesk() 21
event lifetime 1 second
event content distribution| Zipf-like
#brokers 20
#topics 4
#publishers 8
#subscribers 100
#avg publishing rate 1 message / seg
Message size 64 bytes
Simulation Time 10000 seconds
#Runs 5
TABLE Il

SIMULATION PARAMETERS

Additional Content Priority (overlap-first)in this scheme, the first IggS| subscribers will have random priority (i.6(s) =
ids). However, after log|S| subscribers, the subscriber prioritywill be calculated as the inverse of the size of additional
filter space incurred by adding such subscriber ¢@,) = ‘f_ilfl where fo- = U, ¢z fs)-

In Section VI-D, we will evaluate and compare the effectmes of each subscriber priority function to approximate the
maximume-utility subscriber set in the publish/subscrilgstem.

VI. EVALUATION RESULTS

In this section, we present the evaluation results of oupgsed analytical framework. The evaluation is done via ftan
with realistic component parameters. Section VI-A will ciélse the detail of simulation settings. Section VI-B theegents
the results regarding the accuracy of the M/M/1 reliabifitgdiction algorithm and the improved G/G/1 reliabilityediction
algorithm proposed in Section IV-A and Section IV-B respagy. Section VI-D then discusses the efficiency of the suber
admission control algorithm presented in Section V.

A. Simulation Parameters

We validate our approach via simulation using ns-2 netwarlukator [19]. Unless explicitly specified, each simulatis
run with the parameters presented in Table Il The link dédagween broker nodes are derived from Planetlab delay and
bandwidth traces that were collected by Ripeanu et al [Z]].[The event processing delay distribution is approx@daind
simplified from recent related works in event matching althons [22], [23]. Specifically, the average event matchiingget at
each broker is linearly proportional to the number of suipsions stored in that broker’s routing table, with the ie&se rate
roughly equal to 1 millisecond per 1 additional stored stiption. The processing time for each event at a broker is the
drawn from either uniform distribution or exponential distition with the computed average value.

B. Reliability Prediction

In subscriber reliability prediction experiment, we varybtishers’ publishing interval distribution between erpatial,
deterministic (i.e. periodic), and uniform publishingtdisutions. Also, we vary brokers’ event processing disttion between
exponential and uniform matching distributions.

1) Prediction with M/M/1 Broker ModelFigure 4 presents the accuracy of the subscriber reliphgbtimation algorithm
using M/M/1 broker model presented in Section IV-A undefatint distributions of each publisher’s publishing inrand
each broker’s event processing interval. The y-axis of egaph represents the values of actual subscriber realrgiiability
while the x-axis of the graph represents the values of ptedieal-time reliability. Each single point in each grappresents
one subscriber in one run of simulation. As shown in the tesuk algorithm can predict subscriber reliability val@sesurately
in all scenarios. The prediction is most accurate in wherlighibg interval and event processing delay are both expiisiby
distributed (Figure 4(a)). While the results in other $&f are less accurate, almost all predicted values arehassot equal
to the actual reliability values. Hence, the prediction stith be used as reasonably tight upper bound of actualliétia

2) Prediction with G/G/1 Broker ModelThis section presents the accuracy of the subscriber iilfabstimation using
GI/G/1 broker model. The experimental setting is the samé@asseétting in Section VI-B1 except the estimation algorithm
which includes the flow burstiness calculation describe&éation 1V-B. Figure 5 shows the result of G/G/1 predictiés.
seen from the result, the prediction accuracy with G/G/1 eh@glbetter than the one with M/M/1 model when the publiaatio
interval and matching interval are not exponentially distted. When both publication interval and matching inérare
exponentially distributed, both M/M/1 model and G/G/1 mbpeduce the same result as explained in Section IV-B.
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C. The Effect of Imprecise Publisher Information

The reliability prediction results shown in Section VI-Beabased on the experiments with perfectly accurate publishe
content-lifetime distributions. However, such assumptioay not be true in practice as the approximation of pubfishe
characteristic may not be accurate. This section preshatadcuracy of the subscriber reliability prediction aition with
such imprecise publisher information. Specifically, we mefiistribution skewnesslenoted by, as the level of inaccuracy
in the observed publisher content-lifetime distributideet C,,(a,d) be the actual, hidden content-lifetime distribution of a
publisherp, then the observed content-lifetindg, (a, d) of publisherp with skewnessy is

Cyla,d) = — @ d)
ZaEV,dZO Cp(a, d)*
That is, the observed probability that a publishewill publish an event with conteni and lifetimed will be equal to the
actual probability of such event to the power®@f normalized by the total transformed weight. Heneer- 1 represents the
scenario of perfectly precise publisher information.

Figure 6 presents the result of subscriber reliability p#eh algorithm with the same parameter configuration astiGe
VI-B, but with different values of skewnesg), The results shown in Figure 6 are based on exponentiatyilolited publishers’
publication interval and brokers’ event processing detayboth M/M/1 model and G/G/1 model produce the same results.
It can be seen that the accuracy of the prediction algorithghtyy decreases when > 1, but significantly decreases when
a < 1. The conclusion is thatv < 1 reduces the difference of content popularity in Zipf-likistdbution, and thus affects
flow estimation accuracy more than whern> 1. However, the overall prediction accuracy is acceptable.

D. Subscriber Admission Control

We evaluate the heuristic-based admission control algustdiscussed in Section V in a smaller-scale setting duin® t
constraint in exhaustively exploring all possible suldserisets to find the optimal solution. The publish/subscsimem in
the setting consists of 4 brokers, 8 publishers, and 10 stgdeubscribers. The event publishing interval and evertigssing
time are exponentially distributed, resulting in no diffece between results from M/M/1 model and G/G/1 model.

Figure 7 shows the fraction of subscribers that have thajuirements satisfied. As shown from the figure, the pub-
lish/subscribe system without admission control perfotites worst, since all subscribers are admitted to the systeth a
contend for resources. On the other hand, the proposedstiedbiased algorithms give satisfaction rates that argedid@o the
optimal subscriber selection, yielding the effectivenasthe algorithm. Each algorithms perform closed to eacleiottithout
clear extinction, although the low-req-first heuristic fpem slightly better than others as the load increases.
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VIl. RELATED WORKS

There have been significant efforts to model and analyzeighibubscribe systems along with their correctness ptieger
and performance aspects. In his dissertation, Muhl [24ppsed a generic content-based publish/subscribe frarkevaoid a
class of subscription/publication routing and matchirgpathms with proof of correctness and performance ansly&aldoni
et al [25] also proposed correctness proof of publish/siibssystems when subscription propagation delay is noligiel.
However, both works assume reliable underlying networksd does not address event delivery timeliness aspect. He et al
[26] proposed a publish/subscribe model checker basedaiapilistic timed automata. However, the computationarbead
associated with the automata due to state explosion may tlmiusage of such approach to only small-sized problems.

Liu and Jacobsen [22] addressed the uncertainty in termmpfecise knowledge in subscriptions and events in content-
based publish/subscribe systems. By expressing sulisospand events in the form of fuzzy sets, the work proposes th
publish/subscribe systems that allow approximate magchatween subscriptions and events with vague attributesconcept
of publication uncertainty in their work can be considerediealent to the concept of publisher content-lifetime hability
distribution in our work. However, their work focus on thepast of subscription uncertainty and correctness in evetting
while our work focus on uncertainty in underlying networksgent delivery probability and timeliness.

Another work that resembles our work in modeling publish&ribe system integration and timeliness is the work dgne b
Kounev et al [27]. The work analyzes mean delivery delay sfritiuted event-based system with the use of rate calonlati
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and queuing theory. While our work also uses the queuinghieocalculate delivery delay, our work presents the molat t
abstracts content-based events and subscriptions angsdllte-grained prediction of reliability and delay. We afsopose a
heuristic-based admission control on top of such model.

VIII. CONCLUSIONS

In this paper, we discussed the feasibility of performarsseasment of distributed, content-based publish sulessyiems in
terms of event delivery probability and end-to-end delpdelay. We proposed an analytical model that abstracteszmeness
nature of content-based publish/subscribe paradigm agertainty in underlying overlay networks. We then propabeduse of
subscriber real-time reliability as a quality of servicetrisethat combines delivery success rate and timelinessieaeWith the
proposed model, we then presented the real-time relialptiédiction algorithm for the given system configuratiororgover,
a set of subscriber admission control algorithms based @ptédiction algorithm were also proposed. Finally, theegixpental
results validated the algorithms’ accuracy and effectgsn Our future directions of this work include decenteadisubscriber
reliability estimation/admission control, mobile subber admission control, and admission control on cyclientay content-
based publish/subscribe systems.
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