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ABSTRACT 

 

A strong correlation might exist between entrepreneurship and long-term regional 

employment growth (Acs and Armington, 2003). Entrepreneurship may be a more 

sustainable economic development strategy than alternatives, like industrial recruitment, 

because entrepreneurs tend to locate in their home region. Research and policies on 

fostering entrepreneurship are hindered, however, by the lack of a clear definition and 

measure of entrepreneurship (Bruyat and Pierre-Andre, 2000). Multiple definitions of 

entrepreneurship, often flawed, lead to contradictory findings that fuel policymaker 

confusion (Tamasy, 2006). Most importantly, the commonly used measures of 

entrepreneurship ignore innovation—a long established defining attribute of 

entrepreneurship for economic development. This is problematic because only a fraction 

of new businesses are innovative (Audretch, 2005). Reliable measures of 

entrepreneurship must be developed to make possible better economic development 

research and more effective economic development strategies.  

In this dissertation, I develop a definition and regional measure of 

entrepreneurship that will aid entrepreneurship research and economic development 

policy. I address defining and measuring entrepreneurship, posit a comprehensive 

definition of entrepreneurship, and develop a method for measuring entrepreneurship that 

does not ignore the innovation attribute. I test the relationship between economic growth 

and the new entrepreneurship measures, and estimate the determinants of 

entrepreneurship using the new measures. The measure I develop is unique, differing 

from other available measures because it measures the most innovative of entrepreneurs. 

Chapter 1 motivates the need for a different regional measure of entrepreneurship. 

Chapter 2 posits a three-part definition of entrepreneurship, with roots in the work of 

early entrepreneurship scholars including Schumpeter, Knight, and Say. Chapter 3 

reviews current measures of entrepreneurship and compares them to the I present a multi-

faceted definition of entrepreneurship and create an annual county-level indicator that 

incorporates innovation—a commonly overlooked aspect of entrepreneurship. The lack 

of a clear definition and measure of entrepreneurship hinders the research informing 

entrepreneurial support policies (Bruyat and Pierre-Andre, 2000). Confusion amongst 
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policymakers arises from definitions that are either incomplete or contradictory (Tamasy, 

2006). Despite measurement problems, entrepreneurial support programs are popular and 

effective economic development strategies. Since entrepreneurs often locate in their 

home region, entrepreneurial support may prove to be a more effective economic 

development strategy than prominent strategies such as industrial recruitment. Stronger 

economic development research and more effective economic development strategies 

require more reliable measures of entrepreneurship.  

Chapter 4 develops new indicators of entrepreneurship that capture all three 

components of the proposed definition. The identification of innovative industries, 

industries with high level of skill, technology, patents, churn, and employment growth, 

using detailed NAICS (North American Industrial Classification System) industry data, 

represents an important contribution of this dissertation. By applying the innovative 

industries to single-unit employer establishment birth and self employment data, I create 

county-level measures that are available annually for all counties. Using the reduced-

form model of entrepreneurship developed by Goetz and Rupasingha (2008), Chapter 5 

assesses the determinants of the new entrepreneurship indicator. In Chapter 6, I use a 

growth model recently developed at the U.S. Department of Agriculture’s Economic 

Research Service (McGranahan, Wojan, and Lambert, 2009) to examine the relationship 

between my new indicator of entrepreneurship and economic growth. I find a positive 

and robust relationship between growth and my new indicator of entrepreneurship. 

Chapter 7 reviews the results and addresses policy-implications, problems, and future 

work.  

My new indicators represent an improvement over current measures of 

entrepreneurship and have the potential to improve entrepreneurship research and 

policymaking. The chief contribution of these new measures is that they incorporate 

innovation, which others ignore. These indicators are imperfect, but nevertheless 

represent a significant contribution to the literature and can stimulate discussion among 

entrepreneurship scholars about how we conceptualize and measure entrepreneurship. 
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CHAPTER 1: INTRODUCTION 

 

Policies and programs to foster entrepreneurship, particularly at the state and local 

level, are becoming increasingly common. The lack of a theoretically sound definition 

and appropriate measure of entrepreneurship, however, hinders effective policymaking 

and research. Existing research uses a multitude of entrepreneurship indicators, each 

identifying one or more attributes of entrepreneurship, each partially dictated by the 

availability of data for the region and time period of interest. Most important, the 

commonly used measures of entrepreneurship ignore innovation—a long established 

defining attribute of entrepreneurship for economic development. Researchers must 

development more reliable measures of entrepreneurship in order to strengthen economic 

development research and create more effective economic development strategies.  

 This dissertation presents a conceptually clear definition of entrepreneurship and 

indicators of this definition for use in economic development research and policymaking. 

A key aspect of these indicators is that they capture innovation better than existing 

measures of entrepreneurship. This dissertation contributes a method for identifying 

innovative industries and the Entrepreneurial Industries entrepreneurship indicators, 

which have both the breadth and depth to be useful for regional research and economic 

development purposes.  

My new indicators represent an improvement over current measures of 

entrepreneurship and have the potential to improve research and policy by improving the 

quality of empirical entrepreneurship research. The indicators are interesting because 

they are the first known attempt to create an indicator that captures multiple facets of 

entrepreneurship and are readily available at the county level. Although my indicators are 

imperfect, this research represents a significant contribution to the literature and I hope it 

stimulates discussion among entrepreneurship scholars about how we measure and 

conceptualize entrepreneurship. 
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 In Chapter 2, I discuss functional definitions of entrepreneurship, paying 

particular attention to how definitions of entrepreneurship relate to economic 

development. I identify three broad attributes in existing definitions of entrepreneurship 

and posit a definition for this dissertation that includes the three attributes. I define 

entrepreneurship as 1) owning or operating a firm to capture economic rents, while 2) 

bearing the risk and uncertainty of the firm, and 3) being innovative or continually 

reallocating resources. 

  In Chapter 3, I compare existing measures of entrepreneurship and discuss how 

they relate to the definition this dissertation uses. No existing measure meets the 

definition of entrepreneurship established in Chapter 2, with innovation being the most 

overlooked attribute of entrepreneurship. 

 In Chapter 4, I respond to the call for the development of regional 

entrepreneurship measures that capture the innovative nature of entrepreneurship better 

than existing measures. I identify innovative industries using occupation skill and 

technology, and industry patenting, churn, and employment growth. I use data on single-

unit employer establishment births and self employment to count establishments in 

innovative industries for each county. The establishment birth data are available at the 

five-digit NAICS (North American Industrial Classification System) industry level for 

U.S. counties, annually. These data from the Dynamic Data, U.S. Statistics of Business 

and were obtained by USDA-ERS through a special agreement with the Census Bureau. 

The self employment data are available annually for U.S. counties from the Census 

Bureau’s Nonemployer Statistics series. These data are available at the six-digit NAICS 

industry level, but because the data are publicly available, they are subject to suppression. 

In Chapter 5, I examine determinants of entrepreneurship and the determinants of 

my new indicator using an empirical model of county-level entrepreneurship developed 

by Goetz and Rupasingha (2008). I find the determinants of the new indicator are similar 

to parent measures, but amenities, urbanization, and financial collateral appear to drive 

Entrepreneurial Industries.  

In Chapter 6, I test the new entrepreneurship indicators in a growth model 

recently developed at the USDA Economic Research Service. I test the relationship 

between the new indicators and employment, population, and job growth. I find a robust, 
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positive relationship between Entrepreneurial Industries and growth, which may be 

stronger than the relationship other measures have with growth, likely because the 

Entrepreneurial Industries indicator includes the most innovative establishments. 

Chapter 7 offers conclusions and discussion on the virtues and vices of the 

Entrepreneurial Industries indicator. I also discuss the dissertation’s other research 

contributions and conclude with what I learned during the dissertation process. 
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CHAPTER 2: DEFINING ENTREPRENEURSHIP 

 

“risk-takers, the doers, the makers of things” 

--President Obama on entrepreneurs, 

Inauguration Day, 2009 

 

The entrepreneur has played an important role in the academic literature for 250 

years. While there remains a broad consensus about the central role of entrepreneurship 

in the economy, theoretical and conceptual models of entrepreneurship vary widely. 

Theoretical models of entrepreneurship are weak or non-existent, and the term 

entrepreneur is still vaguely defined, even though entrepreneurship scholars seem 

obsessed with defining the word entrepreneur (Bull and Willard, 1993). Scholars have 

long disagreed about the definition of entrepreneurship (Cole, 1942). Defining 

entrepreneurship and developing a theoretical model present two related problems--

defining entrepreneurship is hindered by difficulties in conceptualizing and quantifying 

theoretical models of the entrepreneurial process (Iversen et al., 2008), while the lack of a 

consensus definition hinders theoretical model development (Bull and Willard, 1993). No 

theory of entrepreneurship has been developed that explains or predicts when an 

entrepreneur, by any definition, might appear or engage in entrepreneurship (Bull and 

Willard, 1993). Many different functional definitions or theories of entrepreneurship have 

been proffered, likely because entrepreneurship is a dynamic and complex phenomenon 

with multiple purposes (Bruyat and Pierre-Andre, 2000). This complexity makes it 

impossible to capture the totality of entrepreneurship without using a multi-component 

definition (Iversen et al., 2008). 

 Despite the lack of a consensus definition of entrepreneurship (Iversen et al., 

2008; Bull and Willard, 1993; Bruyat and Pierre-Andre, 2000), and confusion in 

measuring entrepreneurship (Gartner and Shane, 1995; Luger and Koo, 2005; Hoffmann 

et al., 2006), research on entrepreneurship for economic development is booming. 

Researchers have found a strong correlation between entrepreneurship and long-term 

regional employment growth (Acs and Armington, 2003). This relationship has important 

policy implications as entrepreneurship is often considered a more sustainable economic 



 

5 
 

development strategy than alternatives such as industrial recruitment. Nevertheless, the 

lack of a theoretically sound definition of entrepreneurship precludes a full understanding 

of the regional development opportunities associated with entrepreneurship (Casson, 

2003). 

Good science must begin with good definitions (Bygrave and Hofer, 1991), and in 

this regard, current entrepreneurship research fails due to definitional ambiguity. We 

need a clear definition of entrepreneurship to advance theoretical and empirical research 

that can better inform economic development professionals and policymakers about how 

entrepreneurship can drive economic development.  

 This chapter presents a conceptually clear working definition of entrepreneurship 

for economic development. This definition is based on a review of others’ functional 

definitions of entrepreneurship. I use this definition as the basis for developing new 

measures of entrepreneurship in Chapter 4.  

 

2.1. THREE ATTRIBUTES OF ENTREPRENEURSHIP FROM THE FUNCTIONAL 

ENTREPRENEURSHIP LITERATURE       

As the theory behind, and definition of, economic entrepreneurship develops, the 

functions of entrepreneurs receives more attention (Casson, 2003). Literature is moving 

away from the supply-side (trait-based) approach to defining entrepreneurship, e.g., Low 

and Macmillan (1988), to a more demand-side approach. The demand-side approach 

defines entrepreneurship by the entrepreneur’s function, or what entrepreneurs do, rather 

than who entrepreneurs are, and this proves more useful for prescriptive policy research 

(Gartner, 1990; Rocha and Birkinshaw, 2007). This section discusses several major 

functional definitions of entrepreneurship used in the economic and economic growth 

literature over the past 250 years. Particular attention is paid to the relationship between 

entrepreneurship and economic development. Many definitions of entrepreneurship exist, 

but the literature points to three broad yet distinct attributes of the entrepreneur’s 

function:   

1. Ownership or operation of a firm,  
2. Risk and uncertainty bearing, and  
3. Innovation or the reallocation of resources.  

This section is organized around these three attributes of entrepreneurship.  
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2.1.1 Ownership or Operation of a Firm 

Ownership or operation of a firm is an important attribute of entrepreneurship. It 

is not sufficient to define entrepreneurship, but I posit it is necessary to define 

entrepreneurship. The exploitation of entrepreneurial ideas must take place within a firm, 

as there is no market for entrepreneurship (Casson, 2003; Ross and Westgren, 2006). As 

a result, owning or operating a firm—particularly a small firm—is one of the most widely 

used definitions of entrepreneurship (Georgellis and Wall, 2000; Parker, 1996; Glaeser, 

2007; Goetz and Rupasingha, 2008; Shrestha et al., 2007). The owner or operator of a 

firm is the firm’s leader. The firm leader makes daily business decisions about 

innovation, risk preferences, and coordinates firm activities (Cantillon, [1755] 1964; 

Casson, 2003). As will be shown, numerous theorists use ownership of a firm as one of 

the key elements in defining entrepreneurship.  

Richard Cantillon (1680-1734), an Irish economist, was the first economist to 

define entrepreneurs by their function (Rocha and Birkinshaw, 2007). Cantillon’s 

entrepreneur is a firm operator, who has an ownership stake but also bears risk. 

Cantillon’s entrepreneur differs from a capitalist because he/she directs production and 

his/her function is to equate supply and demand in the market. By contrast, a capitalist 

simply provides capital and does not operate the firm (Cantillon, [1755] 1964).  

Jean-Baptiste Say (1767-1832) also distinguishes the entrepreneur from capitalists 

and laborers, but Say defines the entrepreneur as a manager. Say’s entrepreneurs are a 

factor of production whose job it is to assess firm opportunities and select the most 

favorable (Say, [1803] 2001). Say affirms that the entrepreneur receives a wage premium 

due to the scarcity of his/her skills, akin to Coase’s Theory of the Firm (1937). Say does 

not emphasize the risk bearing nature of entrepreneurship like Cantillon does, but instead 

focuses on the managerial, or operator functions. These functions include combining 

factors of production in the firm in the most efficient manner (Iversen et al., 2008). 

T.W. Schultz (1902-1998) was an agricultural economist in the Chicago school, 

and his main contribution was the human capital theory of entrepreneurship. Schultz 

defines entrepreneurship as the ability to reallocate efficiently resources to deal with 

disequilibria in the market and maximize profit. These are decisions that an owner or 
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operator must make (Klein and Cook, 2006; Iversen et al., 2008). Schultz posits that 

economic growth comes from individuals responding to disequilibria, and the higher their 

human capital, the more optimal are their responses to changing economic conditions. 

Schultz extends the entrepreneurship theory literature by concluding that economic 

growth can be advanced with entrepreneurs who have high levels of human capital. 

Like Cantillon, Say, and Schultz, Mark Casson (1945- ) defines entrepreneurs by 

their operator function—assessing markets, making decisions, negotiating, and 

coordinating firm activities. Casson (2003) differentiates the entrepreneur and manager, 

however, by positing that the entrepreneur establishes a firm and bears the start-up costs 

necessary to exploit his entrepreneurial behavior and pursue profit. Casson’s 

entrepreneurs specialize in decision-making, but Casson also makes clear that not all 

decision makers are entrepreneurs (Iversen et al., 2008). 

 

2.1.2 Risk or Uncertainty Bearing 

Risk and uncertainty bearing are important attributes of entrepreneurship because 

they distinguish entrepreneurs from wage and salary workers (Knight, 1942; Casson, 

2003). Entrepreneurs may be richly rewarded with rents due to innovation and early 

adoption, but, to be rewarded, they must bear the associated risk and uncertainty. 

Moreover, risk bearers retain only net profits, after outstanding obligations are paid. Von 

Thünen, Knight, Cantillon, and Casson all emphasize that the entrepreneur bears the cost 

of establishing a firm, receives uncertain compensation, and has a low level of risk or 

uncertainty aversion.  

Johann Heinrich von Thünen (1783-1850) worked on marginal productivity and 

defines economic rents as those that are earned at the margin of production and are 

created by spatial variation (von Thünen, [1826] 1960). Like Cantillon, von Thünen’s 

entrepreneur bears risk and uncertainty, receiving only the residual profits after he/she 

makes all contractual payments, but von Thünen was the first to distinguish between risks 

that can be insured and uncertainty that cannot (Cantillon, [1755] 1964).  

Von Thünen and Cantillon’s work served as a foundation for the work of Frank 

Knight (1885-1972), who fleshes out the unpredictable entrepreneurial income 

component, distinguishing risk from uncertainty in his famous dissertation, “Risk, 
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Uncertainty, and Profit” (Knight, 1942). The association of entrepreneurship with 

uncertainty provided the early foundation for the American or Chicago School of 

economic theory. Knight defines the entrepreneur as a firm owner who purchases inputs 

(labor, raw materials) for a fixed price and makes a product or service, and due to 

changing preferences, will receive an uncertain price in an uncertain economy. Knight’s 

entrepreneur bears the cost of innovation. Since unpredictable contingencies occur, 

innovation must be associated with risk-taking and judgment (better conception of the 

unknowable future market).  

Knight (1942) argues that the entrepreneur assumes three functions or tasks: 

1. Initiate innovations or useful changes,  
2. Adapt to changes in the economic environment, and 
3. Assume the consequences of uncertainty related to the innovation.  

 
Knight states that the entrepreneur functions as an economic pioneer by initiating 

innovations and bearing the costs associated with the innovation’s risk and uncertainty. 

For bearing firm risk and uncertainty, the entrepreneur is entitled to residual income after 

all contractual payments have been made (Casson, 2003). The innovator is generally 

more dynamic than the manager who performs routine activities. Knight, does however 

admit that managers of large firms must make predictions—much like entrepreneurs—

but the manager is not the sole recipient of net profits. 

Knight defines risk as randomness with a known ex-ante probability distribution, 

while uncertainty is randomness with an undefined probability distribution (Klein and 

Cook, 2006). Uncertainty is one of the problems associated with developing a theoretical 

model of entrepreneurship, because of the unknown probability distribution. Knight 

argues that entrepreneurs have an unusually low level of uncertainty aversion (Baumol, 

1993).  

 

2.1.3 Innovation  

Scholars such as Schultz, Kirzner, Knight, and Schumpeter incorporate innovation 

into their definitions of entrepreneurship. Innovation is a crucial component of 

entrepreneurship because it is closely connected with the ability to deal with market 

disequilibria. Many theoretical definitions of entrepreneurship incorporate initiating 
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innovation (Schumpeter and Opie, 1983) and/or recognizing market opportunities 

(Schultz, 1975). 

Two scholars, Schultz and Kirzner, write that market opportunities and 

reallocating resources in response to these market opportunities is entrepreneurship, not 

initiating innovation. Schultz defines entrepreneurship as efficiently reallocating 

resources and dealing with disequilibria in the market to maximize profit (Klein and 

Cook, 2006; Iversen et al., 2008). Schultz (1975) argues that disequilibria exist, not 

because the entrepreneur does not see them, but because reallocating resources takes 

time. Israel Kirzner does not view returns to entrepreneurship as compensation for 

uncertainty (Ross and Westgren, 2006), but rather defines entrepreneurs as those who 

recognize profit opportunities brought about by economic shocks and move the economy 

towards equilibrium (Baumol, 1993).  

Unlike Kirzner and Schultz, Knight and Schumpeter’s entrepreneur creates 

disequilibrium in the market economy that necessitates innovation or change (Knight, 

1942; Schumpeter and Opie, 1983). He/she is responsible for initiating and adapting to 

economic changes and capturing scarce monopoly rents until those rents fall to zero.  

Knight’s entrepreneur shocks the economy with innovation and as those innovations 

become adopted and diffused, he/she adapts to the changing market. Schumpeter’s 

entrepreneur, however, is complex and worthy its own discussion.  

Joseph Schumpeter (1883-1950) represents the German school of economics that 

emphasizes entrepreneurship and innovation. Schumpeter believes the entrepreneur is the 

innovator who transforms inventions and ideas into economically viable entities 

(Baumol, 1990).  Schumpeter defines the entrepreneur as someone motivated by profit to 

destroy outdated patterns of thought and action. Notably, Schumpeter did not think of all 

businessmen or capitalists as entrepreneurs because the entrepreneur can obtain credit, 

thereby making capital unnecessary. 

Schumpeter is widely known for his definition of creative destruction—the start-

up of new firms and displacement of the incumbents, thereby establishing superior 

economic performance in terms of both innovation and growth (Schumpeter and Opie, 

1983). Schumpeter argued that innovation was the strategic stimulus for economic 

development; thus, innovation is a natural component of any definition of 
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entrepreneurship for economic development (Schumpeter and Opie, 1983). Innovation 

was the lynchpin of economic development to Schumpeter. Schumpeter lays out five 

tasks that lead to innovation (McGraw, 2007, Schumpeter and Opie, 1983).  

1. Introduction of a new good, or a new quality of good 
2. Introduction of a new method of production 
3. The opening of a new market 
4. The conquest of a new source of supply of raw materials or half-manufactured 

goods 
5. The carrying out of the new organization 

 
These tasks suggest that Schumpeter thought of innovation as multi-faceted and 

included product, process, organization, purchasing, and marketing innovations. 

Including innovation in my definition of entrepreneurship allows for a qualitatively 

different measure of entrepreneurship, by enabling me to capture entrepreneurs who both 

create products and processes, rather than simply operate a small business. 

Despite Kirzner, Schultz, Knight, and Schumpeter incorporating innovation into 

their theoretical definitions of entrepreneurship, most empirical definitions of 

entrepreneurship overlook innovation, principally because innovation is difficult to 

measure. Thus, as of this writing, only second-best measures of innovation are available 

(Green et al., 2006). 

 

2.1.4 Comparing Definitions of Entrepreneurship   

 Table 2.1 presents these three widely recognized attributes of entrepreneurship—

owner/operator, risk/uncertainty bearing, and innovation—and how definitions of 

entrepreneurship consider these three attributes. Even though these are commonly 

recognized attributes, Table 2.1 shows that no one functional definition adequately 

incorporates all three attributes of entrepreneurship.  
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Table 2.1 Comparison of Definitions of Entrepreneurship 

 

Owner/Operator Risk Bearer Innovator

owners
hip

opera
tio

n

risk uncer
tain

ty

new
 

combinatio
n

rea
llo

cat
ion

    
 

Cantillon X X X

von Thünen X

Say X

Schumpeter X X

Knight X X X X

Kirzner X

Schultz X X

Casson X X X X
 

 

2.2 PROPOSED DEFINITION OF ENTREPRENEURSHIP 

The complexity of entrepreneurship makes it impossible to capture the totality of 

entrepreneurship with one idea; therefore, I propose the following definition of 

entrepreneurship:  

 

The entrepreneur has an owner or operator function, a risk and uncertainty 

bearing function, and, perhaps most importantly, an innovation function. 

 

The combination of innovation, owning or operating an establishment, and 

bearing risk/uncertainty provides an effective working definition of entrepreneurship that 

is useful for economic development purposes. This definition captures all of the 
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components other scholars identify and is multi-faceted, to capture these multiple 

components of entrepreneurship (Figure 2.1).  

 
Figure 2.1 Multi-Faceted Definition of Entrepreneurship 

 

The owner or operator function differentiates entrepreneurs from intrapreneurs 

and social entrepreneurs, by ensuring that the entrepreneur has a firm within which he/she 

can capture rents and capitalize on entrepreneurial skills. Risk bearers are the residual 

claimant to rents and face uncertain profits because employees and creditors must be paid 

first, leaving a positive or negative residual for the risk bearing entrepreneur. This 

uncertain return stimulates entrepreneurs who hope the return is lucrative. Finally, 

innovators create novel combinations of goods, services, and markets in response to 

economic opportunities, differentiating themselves from small business owners who do 

not innovate. Diminishing rents motivate entrepreneurs to constantly innovate and 

reallocate resources to capture changing market opportunities. 

This definition of entrepreneurship, like others, is difficult to formalize in a 

mathematical model. Kirzner argues that the entrepreneur is inherently unpredictable—

making a predictive theory of entrepreneurship impossible (Casson, 2003). A formal 

mathematical or theoretical model has been the goal of many economists studying 

entrepreneurship, but to date none has been widely accepted. The inadequacy of 

economic theory in explaining dynamic processes and heterogeneous firms’ actions in a 

solvable model has been the greatest hindrances to the development of a widely accepted 

model. Neoclassical models are easier to derive, but homogeneous firm and zero profit 

 

Entrepreneurship

Owner or 
Operator

Risk or 
Uncertainty 

Bearing
Innovation
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assumptions combined with the lack of dynamic modeling diminishes this approach. 

Parker (2006) uses optimal control theory to develop a dynamic model that optimizes 

individual behavior, but is still limited by neoclassical assumptions. Endogenous growth 

theory removes the zero profit assumption but remains static and “entrepreneur-less,” 

because firms are homogenous. Developing a theory of economic dynamics will be 

crucial for the advancement of economic theory, but could also prove very useful for 

research on both economic development and entrepreneurship (North, 1994). 

 

2.3 CONCLUSION 

In this chapter, I have established a three-part conceptual definition of 

entrepreneurship, capturing the principal components of many functional theories of 

entrepreneurship. Although my definition may be imperfect, good science must begin 

with a good definition. This definition will serve the dissertation’s purposes of 

contributing to the entrepreneurship and economic development literature, stimulating 

discussion among scholars about how entrepreneurship is conceptualized and measured, 

and providing a theoretically sound definition of regional entrepreneurship.



 

14 
 

CHAPTER 3: CURRENT MEASURES OF ENTREPRENEURSHIP 

 

Measures of entrepreneurship utilized in economic development research and 

policymaking are based, not on ideal definitions of entrepreneurship, but on what data are 

available—a class of “second best” measures (Green et al., 2006). Many studies focus on 

the measurement of entrepreneurship (Gartner and Shane, 1995; Luger and Koo, 2005; 

Hoffmann et al., 2006) but no measure is clearly superior to others. Each metric has its 

own strengths and weaknesses and the choice of measure is likely to influence the 

research results (Gartner and Shane, 1995).  

In this chapter, I discuss the strengths and weaknesses of existing 

entrepreneurship measures, categorizing them by self employed, establishments, and 

births, and comparing each to the definition of entrepreneurship. I find that commonly 

used measures of entrepreneurship 1) ignore innovation, because it is difficult to quantify, 

and 2) are data-driven rather than driven by theory or definition.  

 

3.1 SELF EMPLOYMENT 

The self employment rate is the most widely used measure of entrepreneurship in 

economic development applications and regional research (Iversen et al., 2008). 

Researchers have recognized self employment as a seedbed of entrepreneurship—and a 

convenient measure of entrepreneurs in a region (Low et al., 2005; Goetz and 

Rupasingha, 2008). Self employment is a stock measure, taken at one point in time, and 

stock measures are more stable year-to-year than flow measures, thus more suitable for 

cross-sectional studies (Gartner and Shane, 1995). Despite wide use of the self 

employment rate as a measure of entrepreneurship, it is an imperfect measure because it 

is very broad and captures all types of small business activity, not necessarily 

entrepreneurial activity (Acs et al., 2008).  

In this section, I discuss my analysis of self employment in the regional 

entrepreneurship literature. I find the self employment rate is an imperfect measure of 

jobs held by those who work for themselves; it is easy to obtain and captures 

entrepreneurial activity but not the extent to which entrepreneurs are successful or 

innovative (Munn, 2008). The self employment rate does meet owner/operator and risk-
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bearing attributes of entrepreneurship but does not meet the innovation attribute. Ideally, 

we could measure activity of the innovative self employed—those offering new services, 

innovative products, or unique methods of production or delivery. Users should recognize 

that self employment is just a measure of self employment, not a definition of 

entrepreneurship (Georgellis and Wall, 2000).  

  

3.1.1 The Use of Self Employment as a Measure of Entrepreneurship 

 The self employment rate is often used to measure entrepreneurship because of its 

simplicity and availability. The self employment rate has been used for country-level 

studies (Iversen et al., 2008; Blanchflower, 2004; Blanchflower, 2000; OECD 2000; 

Parker 2005); regional studies (Parker, 1996; Georgellis and Wall, 2000; Shrestha et al., 

2007; Glaeser, 2007 ; Goetz and Rupasingha, 2008; Acs et al., 2008; Saxenian, 1994; 

Schiller and Crewson, 1997); and longitudinal and panel studies of individual behavior 

(Baumol, 1993; Lazear, 2005; Reynolds and Curtin, 2008; Hamilton, 2000; Tamasy, 

2006; Blanchflower and Oswald, 1998). The wide use of the self employment rate is 

likely because it is easy to measure with administrative records and publicly available 

data based on administrative records, e.g., the Bureau of Economic Analysis’ Regional 

Economic Information System (BEA-REIS) or the Census Bureau’s Nonemployer 

Statistics in the U.S. The most widely used measure of U.S. county-level self 

employment is defined as nonfarm proprietors in a county over total nonfarm 

employment (Low et al., 2005, Henderson et al., 2006, Goetz and Rupasingha, 2008). 

Researchers have also measured self employment with surveys of individuals, although 

this is not practical for U.S. counties (Lazear, 2005; Tamasy, 2006; Blanchflower and 

Oswald, 1998; Baumol, 1993). 

  

3.1.2 Calculating the Self Employment Rate 

 The self employment rate is more useful for interregional comparisons than the 

level of self employment. Self employment is usually normalized by employment, rather 

than population, because workers more closely represent the pool of nascent 

entrepreneurs. Employment and labor force are commonly used denominators, but U.S. 

county studies generally use nonfarm employment because nonfarm labor force data are 
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not available for counties. Iversen et al. (2008) show that when calculating the self 

employment rate, the choice of denominator, labor force vs. employment, can affect the 

measure. Nobody has examined the choice of denominator for U.S. counties. Thus, I 

compute the self employment rate for U.S. counties using both denominators, labor force 

(Bureau of Labor Statistics) and total employment (BEA-REIS), with BEA proprietor 

employment as the numerator.1

 Most studies exclude farm self employment from the self employment rate 

because farming is influenced heavily by subsidies (Iversen et al., 2008), there is a 

relatively high proportion of unpaid family labor in farming operations, and there is wide 

disparity in regional levels of farm self employment (Meager, 1992; Blanchflower, 2000). 

The U.S. self employment rate falls by 10 percent when agricultural self employment is 

excluded (Iversen et al., 2008) and the agricultural self employment rate varies widely 

across U.S. counties—as high as 79.1 percent and as low as zero percent, with a mean of 

20.0 percent.

 I do not detect a substantial difference. I find relatively 

little difference in the mean and spread, the correlation between the two measures is 0.93, 

and the Spearman Test of Independence rejects the null hypothesis that the two measures 

are independent of each other.  

2

 

 Heterogeneity suggests farm self employment should not be used for 

regional research. Indeed, Census Bureau data products, e.g., County Business Patterns, 

Nonemployer Statistics, and Statistics of U.S. Businesses, exclude crop and animal 

production. 

3.1.3 Relating Self Employment to Theory 

The self employment rate meets two of the three dimensions of entrepreneurship, 

failing only innovation. Firm ownership or operation and risk and uncertainty bearing are 

inherent in being self employed, (Noteboom, 1999; Baumol, 1993) but the self 

employment rate includes many who are not innovators. Only ten to twenty percent of the 

self employed are innovative (Noteboom, 1999). Publicly available self employment data 

are not sufficiently refined to measure the activity of innovative self employed 

                                                   
1 All data are 2006, U.S. counties 
2 Authors own calculation. Calculated as: (proprietor employment –nonfarm proprietor 
employment)/proprietor employment, 2006. 
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individuals who offer new services, innovative products or technologies, or unique 

methods of production or delivery. 

The self employed entrepreneur identifies an opportunity, creates an institution to 

capture the rents associated with that opportunity, and profits from his/her work. These 

functions are somewhat related to Schumpeterian entrepreneurship, indeed, Schiller and 

Crewson (1997) posit that the self employment rate is a reasonable proxy for 

Schumpeterian entrepreneurship, arguing that self employment is a pragmatic, if not 

compelling, measure of entrepreneurial activity.  

I believe the self employment rate does measure Schumpeterian entrepreneurship 

but it also captures lots of non-Schumpeterian entrepreneurs—those who have not 

innovated, developed a new product, service, or technology, or, those who have stopped 

innovating (Georgellis and Wall, 2000). Thus, self employment does not meet by 

innovation attribute of entrepreneurship. Businesses may start-out fitting the definition of 

Schumpeterian entrepreneurship, but they rarely remain in such a category (Schumpeter 

and Opie, 1983) because they stop innovating once established.  

 The self employed clearly fit Say’s definition of entrepreneurship, the owner-

manager. Small firm’s owners conduct day-to-day tasks associated with running a firm—

managing, bookkeeping, marketing, taking out the trash, etc. In this role, the self 

employed are managers as well as owners. Even the self employed with no employees 

must assume some managerial roles, as there is no one else authorized to make decisions. 

Few argue that the self employed bear risk and uncertainty. Knight posits that the 

entrepreneur faces risk and uncertainty in his remuneration, an attribute that the self 

employed hold. Knight’s definition of entrepreneurship fits into self employment because 

most self employment data do not include incorporated establishments. Those who take 

on the risk of starting a business are more entrepreneurial than wage and salary workers 

are, whether or not the business is innovative just by risk-taking.  

Self employment is widely used because it is readily available to the public, can 

be calculated for small areal units, and is particularly well suited for regional research 

due to its availability over space and time. Finally, self employment captures the stock of 

owner/operators and individuals bearing risk and uncertainty. 
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3.1.4 Problems with Self Employment as a Measure of Entrepreneurship 

 Data issues cause the most significant problems with self employment. These 

issues arise from three primary problems: 

1. Self employment requires careful interpretation because it varies greatly across 
space and time.  

2. self employed business owners with employees are excluded from self 
employment data in the U.S. 

3. Part-time or multiple job holding self employed are counted as equal to full-time 
self employment because data are based on tax returns and there is no information 
on hours worked or percent of income from self employment. 
 

 The self employment rate varies greatly across time and space. Nonfarm self 

employment rates are higher in nonmetro counties than metropolitan counties and highest 

in the Great Plains, Southern Appalachia, and parts of the Rockies (Low et al., 2005). 

Some places that seem especially entrepreneurial actually have low self employment 

rates, e.g., San Jose (Silicon Valley). Finally, self employment rises in recessionary 

periods everywhere and rises, in metro areas in especially good economic times (Parker, 

1996). Conducting interregional and time-dependent analysis requires researchers to 

consider this variation across space and over business cycles. 

U.S. federal data sources use a narrow definition of self employment that excludes 

firms with paid employees.3

 Another difference between the U.S. and OECD data is the treatment of multiple 

jobholders. U.S. data count jobs rather than individuals but OECD Labor Force Statistics 

count the main job, creating a difference where many self employed are also wage 

earners, e.g., rural areas where many hold multiple off-farm jobs and/or non-farm 

 This narrow definition of self-employed is also used in 

Australia and Japan. A broader self employment definition is used throughout Europe and 

by the Organisation for Economic Cooperation and Development (OECD). Using the 

OECD definition of self employment, the U.S. self employment rates would be up to 

50% higher than reported (OECD, 2000). Summing the number of self-employed and 

sole owners of corporations and businesses solves this problem, e.g., de Wit (1993), but 

data on the number of sole owners of corporations and businesses are not available for 

regions in the United States. 

                                                   
3 Self employment is calculated using filings of federal tax Form 1040 (Schedule C), for sole 
proprietorships, and Form 1065 for partnerships. 
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proprietorships. A solution is to access individuals’ tax returns and estimate the percent 

of personal income that comes from self employment but inquiries Stephan Goetz made 

to CES and BEA about answering this question with tax return data cited concern about 

privacy and disclosure of records. Finally, the self employment rate counts all self 

employed equally, the necessity-driven self employed are equals to the wealthiest and 

most innovative entrepreneurs (Glaeser, 2007), thus, the number of self employed does 

not equate to their value to the regional economy.  

  

3.2 ESTABLISHMENT MEASURES OF ENTREPRENEURSHIP  

 The establishment rate may be a good indicator of past entrepreneurship (Gartner 

and Shane, 1995; Loveridge and Nizalov, 2006). Chinitz (1961) describes the 

entrepreneurial culture of New York City, a culture that encourages entrepreneurship and 

has many self employed and small family businesses, and Pittsburgh, an industrial culture 

where labor force participants rely upon getting a job at U.S. Steel—one firm with many 

employees. In Chinitz’s example, establishments per capita are high in New York City 

compared to Pittsburgh. Thus, a high establishment rate is indicative of entrepreneurial 

climate and is suited for longitudinal entrepreneurship research due to its availability and 

stability over time (Saxenian, 1994). 

I find many disadvantages associated with using the establishment rate to measure 

entrepreneurship, however. Establishments fail both the innovation and risk/uncertainty 

attributes of entrepreneurship, making it a weak substitute for entrepreneurship, rather a 

proxy of past entrepreneurship. Additionally, I find that the establishment rate is spatially 

dependent; it is high in sparsely populated areas due to market structure, thus care must 

be taken when using the establishment rate for regions. 

 

3.2.1 Use of Establishment Measures 

 Gartner and Shane (1995) present Organizations per capita, as a measure of 

entrepreneurship based on the premise of entrepreneurship being ownership. Gartner and 

Shane argue the number of establishments, normalized by population, is a good measure 

of regional entrepreneurship over time. The measure is easy to compute and data are easy 

to obtain for regions and countries over relatively long periods. Gartner and Shane (1995) 
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use population in the denominator of the establishment rate because the population is the 

pool of consumers.  

 Average firm size, or the average number of employees, assumes that many small 

firms are more entrepreneurial large firms (Glaeser, 2007; Saxenian, 1994; Chinitz, 1961; 

McGranahan et al., 2009). Glaeser (2007) writes that when the same numbers of 

employees are spread over more firms, there must be more entrepreneurs, or firm leaders, 

per worker; thus, average firm size is a similar measure to organizations per capita.  

 

3.2.2 Relate to Theory 

 Establishment measures fail the innovation and risk/uncertainty attributes of my 

entrepreneurship definition. Establishment based measures of entrepreneurship fail to 

meet risk/uncertainty because they overestimate the risk-bearing or Knightian function of 

entrepreneurship. Knight’s entrepreneur is the residual claimant to firm profits, so 

privately held single unit establishments have a “Knightian entrepreneur” somewhere, 

however, publically held establishments do not meet Knight’s entrepreneurial function 

unless manager compensation is tied to performance.  

The establishment rate does not capture innovation due to the coarseness of the 

measure. Establishment rates suffer from the same problem that self employment rates 

do—they include many repetitive and non-innovative establishments and are not refined 

enough to capture innovation or Schumpeterian entrepreneurship. 

 Establishment-based measures of entrepreneurship meet the owner or operator 

requirement of the definition of entrepreneurship posited in Chapter 2. The establishment 

rate measures Say’s entrepreneur, the number of “managers” meeting the 

ownership/operation attribute. More firms equates to more managers and more firm 

founders, who could be entrepreneurs.  

  

3.2.3 Advantages of Establishment Measures of Entrepreneurship  

Advantages of establishment measures may or may not outweigh that 

establishment measures ignore innovation. Establishment measures are readily available, 

easy to compute across time and space, and are relatively stable across time—unlike self 

employment (Gartner and Shane, 1995). These factors make establishment rates one of 
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the best longitudinal measures of regional entrepreneurship (Gartner and Shane, 1995; 

Acs et al., 2008)—if you consider establishments entrepreneurial. 

   

3.2.4 Disadvantages Associated with Establishment Measures of Entrepreneurship  

The principal problem with using establishment measures is that it ignores 

innovation and risk/uncertainty attributes of entrepreneurship, but measurement issues 

also exist. Measuring entrepreneurship with establishments per capita assume the ratio of 

establishments to entrepreneurs remains constant, i.e., if five people jointly found a firm, 

they are only counted as one establishment, rather than five entrepreneurs. This problem 

is inherent in establishment-level, rather than individual-level measures. Another 

downside of using average firm size is that it can be seen as a measure of competitiveness 

or firm age, but Acs et al., (2008) note these limitations do not preclude it from capture 

some part of what can be considered to be entrepreneurship. Finally, establishments, even 

normalized, are dependent on the population density. Glaeser finds average firm size for 

metropolitan statistical areas is similar across urban areas (Glaeser, 2007), however, I 

find that the measure varies systematically across the rural-urban continuum; rural 

counties have a smaller average firm size than urban counties and many more 

establishments per capita. 

 

3.3 DYNAMIC DATA 

 The flow of establishments, their births and deaths, represents an alternative to 

stock measures, e.g., self employment, and enables researchers to measure the creative 

destruction within an economy. Dynamic data, however, are more difficult to obtain than 

stock data and ignore existing establishments. In this section, I discuss dynamic 

establishment data and measuring entrepreneurship using these data. I relate the measure 

to the proposed definition of entrepreneurship and discuss the pros and cons of measuring 

entrepreneurship with dynamic data. 
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3.3.1 Prior Use of Dynamic Data Measures of Entrepreneurship 

Dynamic data are increasingly being used in the entrepreneurship literature 

because births and deaths are considered more entrepreneurial than self employment and 

other traditional measures of entrepreneurship (Acs and Armington, 2003; Lee et al., 

2004; Luger and Koo, 2005; Acs and Mueller, 2007; Mueller, 2007). Birch (1981) was 

the first to study establishment dynamics after he compiled the first micro dataset on U.S. 

establishments and their dynamics in the 1980s (Acs and Mueller, 2007). Today, better 

micro datasets are available, such as the Census’ Longitudinal Business Database, and 

one publically available dynamic dataset exists, Dynamic Data from, a subset of the 

Statistics of U.S. Businesses.  

Dynamic data include establishment flows over a period, generally a year, and 

includes births, deaths, churn, and even survival of employer establishments. The 

establishment birth rate is the most widely used dynamic measure, it is normalized by 

employment (Mueller, 2007), population (Lee et al., 2004), or establishments (Reynolds 

et al., 1994), and used to measure the entry or creation of firms. The death rate measures 

firms made obsolete, however, few researchers use the exit rate alone, rather they use the 

“churn rate,” the sum of the birth rate plus the death rate. If one has access to micro data, 

the survival rate of establishments can be calculated, which is superior to gross entry and 

exit (Acs et al., 2006). 

Dynamic data—a flow measure—capture change over a period of time, and better 

capture Schumpeterian and Kirznerian entrepreneurship because flows can measure 

entrepreneurship dynamically (Iversen et al., 2008). Flow measures relate less to business 

ownership rates than the stock measures and, as a result, are better able to capture 

innovation and reallocation of resources. Thus, dynamic data capture innovation better 

than stock measures, but flow measures are more difficult and costly to obtain, e.g., a 

survey of individuals or proprietary data. 

 

3.3.2 Relationship to Entrepreneurship Theory 

Publically available dynamic data meet owner/operator and risk/uncertainty 

attributes of entrepreneurship, and are more likely to meet innovation than stock 

measures. By assuming an individual is responsible for the birth of an establishment, I 
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can infer that new establishments meet Cantillon’s entrepreneurship function, ownership 

or operation of a firm, and Knight’s risk and uncertainty bearing because the firm owner 

bears associated risks. Multi-unit firms/establishments and those organized as 

corporations are more likely to fail owner/operator and risk/uncertainty attributes of 

entrepreneurship than single-unit establishments; indeed most establishments begin as S-

corporation or partnership, rather than a C-corp.  

 Schumpeter wrote that births and deaths are essential for innovation, 

entrepreneurship, and economic growth, indeed, births and deaths capture the essence of 

Schumpeter’s creative destruction. Births and deaths, however, do not imply innovation. 

Dynamic data cannot measure innovation in process, product, or markets. Reynolds et al. 

(1994) find most single-unit establishment births are replicative, making them unsuitable 

for capturing innovation. Dynamic data capture more innovation than stock data, births 

and deaths do not meet the innovation attribute of entrepreneurship because so many new 

establishments are repetitive and many deaths occur for reasons other than competitors’ 

innovation.  

 

3.3.3 Advantages of Establishment Birth Measures  

 The advantages of dynamic data are that they are flow data; they better capture 

innovation and dynamic micro data can be refined to include only the most innovative 

establishments. Flows measure the change over a particular period of time and is less 

related to the stock of establishments, which is not a particularly good proxy for 

entrepreneurship, because the stock is taken at one point in time and gives us no 

information about innovation, success, or longevity. Another good use of establishment 

birth data is to refine the data to include the most innovative firms (Luger and Koo, 2005; 

Mueller, 2007).  

  

3.3.4 Disadvantages of Entrepreneurship Birth Measures 

 Disadvantages of using dynamic data include finding an appropriate denominator 

and period of time, and accessing dynamic data. Dynamic data are more costly and time-

consuming to use than stock data, which are generally publically available. The Census’ 

Longitudinal Business Database (LBD) contains the universe of firms and allows 
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estimation of births and deaths, however, accessing these data is a lengthy and costly 

process that researchers can pursue, but practitioners are not able to gain access to or use 

for regional economic development benchmarking and policymaking. 

The period of time in which flows are examined can affect results, especially 

across different points of the macroeconomic cycle, making the measure extremely 

volatile year-to-year (Spelman, 2006; Tamasy, 2006). Lee et al. (2004) find the 2000 

birth rate is 1.16 to 5.05 per 1000 people in U.S. Metropolitan Statistical Areas but Acs 

and Mueller (2008) find the rate ranges from three to 18 over 1998-2001, illustrating the 

volatility. Finally, there is disagreement as to the appropriate denominator for dynamic 

data. Regional studies use both population and employment with slightly different results, 

particularly among heterogeneous units of observation. Macroeconomic studies usually 

use establishments.  

 

3.4 OTHER PROXIES FOR ENTREPRENEURSHIP  

3.4.1 Income 

 Proprietor income is a measure of the economic value of the self employed to an 

economy and serves as a proxy for entrepreneurial success (Low, 2004; Goetz and 

Shrestha, 2009). The user assumes that as average proprietor income rises, the region as a 

whole becomes more prosperous. The self employment income data are problematic, 

however, because, although based on IRS tax filings, the BEA-REIS data are highly 

imputed. The BEA adjusts income up by as much as 40 percent to account for under-

reporting of income. This and other adjustment procedures, some of which are not 

specified by BEA, make the data suspect. Finally, using income data without accounting 

for cost-of-living is problematic, making self employment income a poor choice to 

measure the value of entrepreneurship, particularly because a lot of self employment is by 

necessity (Reynolds et al., 1994). 

 

3.4.2 Patents 

 Measures of invention, while certainly possessing the “creative” portion of 

Schumpeter’s entrepreneur, are not measures of entrepreneurship. Patents fail as a 

measure of entrepreneurship because there is no firm and we do not know if the 
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inventions make it to market; despite this, entrepreneurship literature routinely uses 

patent data (Wong et al., 2005, Trajtenberg et al. 2006). In addition, research facilities, 

universities, and high-tech firms, which are most likely to generate patents, likely exist in 

populated areas, thereby creating an endogeneity problem for researchers interested in 

teasing out the causality between innovation, place, and entrepreneurship (OhUallachain, 

1999; Carlino et al., 2007).  

 

3.4.3 Trait Approach  

 Individuals’ traits, identified in surveys, have been used to measure 

entrepreneurship (Bull and Willard, 1993). Low and MacMillan (1988) conclude that 

there is no typical entrepreneur and that attempts to profile such a person are futile 

because entrepreneurs are, by definition, atypical people. Following Low and MacMillan, 

researchers are moving away from trait-based measures to functional measures of 

entrepreneurship. 

 

3.5 EMPIRICAL COMPARISON OF MEASURES 

Table 3.1 shows entrepreneurship attributes of measures discussed in this chapter, 

their relationship to my three attributes of entrepreneurship, summary statistics, source, 

and definition. Measures in Table 3.1 represent the most widely-used regional 

entrepreneurship measures and their analysis and comparison in this chapter is 

summarized here; none of the measures are ideal, rather, their use appears to be based 

upon their availability. 

The self employment measure ignores innovation, but has a positive relationship 

with growth. The mean of the nonfarm self employment rate is 0.25—that is one quarter 

of nonfarm employment in U.S. counties is in self employment, with no employees—a 

relatively high rate which is exacerbated by the inclusion of multiple job holders and 

part-time proprietorships. As expected with change in a stock measure, the change in the 

nonfarm self employment rate is very small, however, the county-to-county distribution 

of the nonfarm self employment rate is large. 

The establishment measures ignore innovation and risk/uncertainty bearing, 

making them the least entrepreneurial and, likely due to this, establishment rates do not 
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have a statistically significant relationship with employment growth (Table 3.1). 

Dynamic establishment data are the closest to my posited definition of entrepreneurship 

and has a positive relationship with growth. The measure varies a lot over counties 

though; aggregate establishment births, for all counties, have a larger range than in 

metropolitan statistical areas, as reported in Lee et al., 2004 and Acs and Mueller, 2008. 

 The omission of innovation in most of the measures is striking (Table 3.1). 

Summary statistics and relationships with growth suggest that the most promising 

measures of entrepreneurship, currently available, are the self employment rate and 

dynamic establishment data.  

 

Table 3.1 Comparison of Entrepreneurship Measures 

 
 

3.6 CONCLUSION 

I presented different entrepreneurship measures, their relationship to my 

definition of entrepreneurship, and advantages and disadvantages of their use in this 

chapter. I also discussed their variation across space and relationship with economic 
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Nonfarm proprietors over 
nonfarm total employment* X X X X 0.247 0.094 0.030 0.710 +

Change in proprietor rate, 2001-
2006* X X X X 0.010 0.005 0.000 0.071 +

Establishments over 
population**/* X 0.024 0.009 0.004 0.116

Employees over estabs** X 0.332 0.100 0.015 1.100

Single-unit establishment births 
over emp (1000)*** X X X X 9.401 6.028 0.000 96.774 +

Single-unit establishment 
deaths, over emp (1000)*** X X X X 0.073 0.020 0.000 0.500 +

Average nonfarm proprietor 
income* X X 0.125 0.065 -0.725 0.462 -

Patents over population****/* X X 0.0001 0.0003 0.0000 0.0033 +

*Bureau of Economic Analysis, Regional Economic Information System, 2006
**County Business Patterns, US Census Bureau, 2006
***US Census Bureau, Statistics of Businesses, 2002-2003
****United States Patent and Trademark Office, 2006
^Employment Growth, 1991-2006, significant at 0.001 level
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growth. I find self employment is the most widely used measure of regional 

entrepreneurship, due to its availability over time and space. Self employment, however, 

is not an ideal measure of regional entrepreneurship because it grossly overestimates 

entrepreneurship by ignoring innovation and several important measurement issues exist 

with U.S. county-level data, which must be carefully considered. 

Establishment rates ignore both innovation and risk/uncertainty bearing, making 

them less of an entrepreneurship measure than a proxy for past entrepreneurship, 

however, it is a useful measure of entrepreneurship over long periods, and is widely 

available for use. Use of dynamic establishment data is growing as more micro- and 

dynamic datasets become available to researchers. Establishment birth data capture the 

firm ownership and risk bearing attributes of entrepreneurship and the innovation 

attribute, to a certain extent, because they are flow data. More importantly, dynamic data 

are not publically available, thus, unusable by practitioners and policymakers. 

The current state-of-the-art in measuring regional entrepreneurship is a hodge-

podge of second-best measures, based upon available data, and with no consensus among 

researchers, economic development practitioners, or policymakers. Most troubling, the 

commonly used measures of entrepreneurship ignore innovation—a long established 

defining attribute of entrepreneurship that drives economic development (Schumpeter 

and Opie, 1983). No one measure discussed in this section meets the three attributes of 

my entrepreneurship definition. Indeed, one measure cannot be expected to measure 

individuals and firms, stock and flow, change, ownership, risk-bearing, and innovation 

(Gartner and Shane, 1995). Indices have been used to combine one or more dimensions 

of entrepreneurship into one measure (Iversen et al., 2008) but indices of 

entrepreneurship are fraught with weighting and measurement problems of their own 

(Eff, 2007). In the next chapter, I develop a method for identifying innovative 

components of self employment and establishment births, the more promising of the 

measures discussed in this section. 
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CHAPTER 4: THE ENTREPRENEURIAL INDUSTRIES INDICATOR 

 

 This chapter responds to a call in the entrepreneurship literature for the 

development and dissemination of reliable entrepreneurship metrics (Baumol, 1993; 

Gartner and Shane, 1995; Goetz and Freshwater, 2001; Glaeser, 2007). Better indicators 

can improve entrepreneurship research, add value to practitioners’ economic 

development work, and make entrepreneurship policies more effective.  

I develop a new indicator of entrepreneurship that captures the innovative 

dimension of entrepreneurship ignored by others. Identifying innovative industries is the 

key contribution. Combining indicators of innovative industries with federal statistics on 

self employment and establishment births creates an indicator of entrepreneurship for all 

counties, Entrepreneurial Industries. This is the first indicator to capture all the 

dimensions of entrepreneurship (Figure 4.1) 

 
Figure 4.1 Entrepreneurial Industries and Their Specification 

 

  I define innovative industries as meeting one primary and one secondary criterion 

of innovation. The two primary criteria are technology and skill. I use high technology as 

a primary indicator of innovative industries because high tech industries are considered 
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more innovative and more apt to use emerging technologies than other industries. I use 

high skill as a primary indicator of innovative industries because research has identified a 

link between skills and innovation (Yemen and Lahr, 2008). The five secondary criteria 

are a lower threshold of high skill or technology, patents, churn, and employment growth, 

but innovative industries must only meet one secondary criterion.  

I create an indicator of entrepreneurship that incorporates innovation using the 

resulting innovative industries. I count the number of innovative industry establishments 

in both self employment data and a special tabulation of single-unit (non-branch, 

independent) employer establishment births data. Both are available annually at detailed 

industry levels. I standardize the resulting count to obtain Entrepreneurial Industries, 

which is the first annual, county-level indicator of multiple facets of entrepreneurship, 

including innovation. 

In this chapter, I show that Entrepreneurial Industries is a conceptual and 

empirical improvement over other entrepreneurship indicators and measures. The nexus 

between innovative industries and self employment and establishment births makes 

Entrepreneurial Industries useful. I also show that Entrepreneurial Industries is robust to 

changes in the innovative industry definition, suggesting that the method is effective even 

if the inclusion of certain industries might be surprising. 

I proceed by discussing the criteria and method used to identify innovative 

industries and create the Entrepreneurial Industries indicator. In the results section, I 

describe Entrepreneurial Industries and support its empirical validity by comparing it to 

widely used entrepreneurship indicators that are not available for most counties. Finally, I 

demonstrate robustness and discuss the merits of using it as a regional indicator of 

entrepreneurship. 

 

4.1 CRITERIA FOR IDENTIFYING INNOVATIVE INDUSTRIES 

4.1.1 High Technology Industries 

 Many definitions of high tech exist for both occupations and industries. They 

vary widely and are difficult to quantify. For instance, the U.S. Census Bureau defines 

high tech occupations as those embodying new or leading edge technologies. The 

Congressional Office of Technology Assessment describes high tech industries as those 
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engaged in design, development, and introduction of new products and/or innovative 

manufacturing processes through the systematic application of scientific and technical 

knowledge. Others use judgment to identify high technology industries (Niosi, 2000). 

Defining high tech may be as difficult as defining entrepreneurship. 

I adopt the Bureau of Labor Statistics’ (BLS) empirical definition, which uses 

percent of industry employment in high tech occupations. Occupations, not industries, is 

the base unit because many workers in high tech industries do not utilize technology in 

their work, e.g., administrative assistants or marketing specialists; including such workers 

overstates the extent of high tech activity in these industries (Kilcoyne, 2001).  Defining 

high tech industries with average education also proves problematic, e.g., percent of 

employees who hold a college degree in science or engineering (Mueller, 2008). This 

method tends to identify high wage occupations rather than high tech because it includes 

occupations which utilize technology that has been available for generations, e.g., process 

engineers, while omitting jobs directly related to the concept of high technology, e.g., 

technicians (Kilcoyne, 2001). 

The Bureau of Labor Statistics’ (BLS) definition of high tech occupations 

includes science, engineering, or technology-oriented technicians and workers who 

typically use new technologies to perform their duties (Table 4.1), to identify high tech 

industries. The BLS also provides the Standard Occupation Classification (SOC) codes 

for high tech occupations, enabling me to calculate employment by occupation by 

industry. 
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Table 4.1 BLS High Tech Occupations, 2000  

Computer and information scientists, research Nuclear engineers   
Computer software engineers, applications Petroleum engineers  
Computer software engineers, systems software Aerospace engineers 
Geological and petroleum technicians Biomedical engineers 
Network systems and data communications analysts Chemical engineers  
Electronics engineers, except computer Electrical engineers  
Mining and geological engineers Chemists  
Aerospace engineering and operations technicians Astronomers  
Electrical and electronic engineering technicians Physicists  
Electro-mechanical technicians Microbiologists  
Geoscientists, except hydrologists and geographer Biological technicians 
Multi-media artists and animators Chemical technicians  
Medical and clinical laboratory technologists Computer systems analysts 
Nuclear medicine technologists Nuclear technicians  
Radiologic technologists and technicians Epidemiologists  
Medical scientists, except epidemiologists Database administrators 
Atmospheric and space scientists Computer programmers 
Computer hardware engineers Biochemists and biophysicists 
Source: BLS, 2001   

To define high tech industries I calculate percent employment in high tech 

occupations (Bednarzik, 2000). The Industry-Occupation National Employment Matrix, 

(Employment Matrix) contains employment in each occupation for each industry, 

enabling me to calculate percent employment in high tech occupations for each industry. 

The Employment Matrix contains data for each SOC occupation for industries at the 

four- to six-digit NAICS industry level. I use the 2006 Employment Matrix, which 

includes over 300 industries (2002 NAICS) and over 700 SOC occupations. Industry-

occupation employment cells that are confidential, having fewer than 50 jobs, or are of 

poor statistical quality, are suppressed.  

I calculate the average percent high technology employment is 3.5 percent, 

standard deviation, 7.1 percent. Industries at the high end of the distribution were in the 

Information (NAICS 51) and Professional, Scientific, and Technical Services (NAICS 

54) sectors. For example, “Software Publishers” (NAICS 51121) had 42 percent high 

tech employment, “R & D in the physical, engineering, and life sciences” (NAICS 

54171) had 35 percent high tech employment, and “Testing Laboratories” (NAICS 

54138) had 27 percent high tech employment. 

To differentiate “high tech” industries from others,  BLS uses a cutoff scheme 

based upon the mean of high tech employment, defining industries with at least three 
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times the mean level (10.5 percent) of high tech employment as “medium-content” high 

technology industries (Bednarzik, 2000; Hecker, 2005). Only 19 industries, 3.8 percent of 

5-digit industries, meet this criterion, and they are primarily in Manufacturing, 

Information, and Professional, Scientific and Technological Services sectors. I use the 

BLS definition of high tech industries because it is a very strict criterion, which ensures 

high tech industries differ from all industries and differentiates Entrepreneurial Industries 

from its parent measures and other metrics.  

BLS defines industries with two times the mean level (7 percent) of high tech 

employment as “low-content” high technology industries. Thirty industries, or six 

percent, meet this, lower, criterion; the eleven additional industries are primarily in the 

Manufacturing sector and Transportation sector, which suggests that by lowering the 

cutoff, less technological industries are included. I use two times the mean of high tech in 

subsequent sensitivity analysis of the Entrepreneurial Industries method. 

One caveat with this method is that high tech industries do not necessarily imply 

innovative industries. By definition, innovation is the creation of a new product or 

process and high tech industries, by definition, are engaged in design, development, and 

introduction of new products and/or innovative manufacturing processes. Given the 

similarities between these definitions, I argue that high tech industries are a reasonable 

proxy for innovative industries and, by necessitating a secondary innovation criterion, I 

capture only the most innovative industries.   

 

4.1.2 Identifying High Skill Industries  

As an alternative to high tech, I use high skill as a primary indicator of innovative 

industries because research has linked innovative and entrepreneurial activities to high 

skill employees (Lee et al., 2004; Mueller, 2007; Munn, 2008). A higher skilled 

workforce has the necessary tools to create new products and processes. In this section, I 

describe how I identify high skill occupations using ONET data. I choose occupations 

that have the highest level of skills and knowledge that generate innovation and product 

creation, e.g., problem solving, critical thinking, science and engineering knowledge. 

Using my high skill occupations, I identify high skill industries using the same method 

used to identify high tech industries using high tech occupations. 
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4.1.2.1 Identifying high skill occupations 

The advent of occupation-based data and categorical schemes to organize 

occupation-level data has increased research using high skill occupations (Feser, 2003; 

Koo, 2005; Yemen and Lahr, 2008). Identifying high skill occupations is preferable to 

using proxies like education, e.g., Mueller (2007), because unlike education levels, 

occupation provides more information about the actual duties of an employee.  

Occupation-based data are available in ONET-SOC, the Occupational 

Information Network survey that uses Standard Occupation Classifications (SOC) titles 

to match occupations to their attributes, such as skills. The ONET-SOC 12.0 (2006) 

database contains survey data on occupational attributes for 949 SOC occupations and 

includes comprehensive information on worker attributes, including skills, knowledge, 

and education for each occupation. I use the Worker Requirement module of the ONET-

SOC to assess information on “Skills” and “Knowledge” for each occupation. The other 

modules are Worker Characteristics, Workforce Characteristics, Occupational 

Requirements, Experience Requirements, and Occupation-Specific.  

 I select 20 skill and knowledge categories that are relevant to identifying 

employees in innovative industries, using BLS’ definition, i.e., engineering or technical 

skills or skills that include qualities essential to the process of innovation (Table 4.2). I 

include knowledge categories in addition to skill categories because relatively few 

occupations had high levels of skills since they are more general than knowledge.  I 

found that including the knowledge categories increased the scientific and technological 

skills of the occupation set, essential for capturing high skill occupations principally 

involved in innovation.  
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Table 4.2 Selected ONET Skill and Knowledge From Worker Requirement Module 

 

Skill Knowledge
Critical Thinking Computer and Electronics
Time Management Mathematics
Complex Problem Solving Telecommunications
Programming Engineering and Technology
Technology Communications and Media
Science Chemistry
Writing Design
Speaking Physics
Operations Analysis Biology
Troubleshooting  

 

Data for each occupation on both the level of and importance of each 

skill/knowledge are available from ONET. For each occupation, the skill/knowledge 

levels, V, are on a scale of 0 to 7 and the importance of the skill/knowledge to the 

occupation, M, is on a scale of 1 to 5.  

To integrate the level of skill, V, and its importance, M, into one metric, I create a 

weighted matrix using Feser’s (2003) method. The level of skill/knowledge for each 

occupation is ijV , where the ONET survey data give a level, V, of skill/knowledge, j, for 

each occupation, i, and importance, M, of each skill/knowledge to each occupation is ijM . 

Weighted matrix S relates the importance, M, to the level, V, of each skill; let S=V*M, 

where ijS = ijV * ijM . By taking the product of ijV  and ijM , Feser most heavily weights 

knowledge that is of both a high level as well as central to the occupation. For example, 

for i=Economist and j=Critical Thinking, V=5.48 (out of 7) and M=4.56 (out of 5)—both 

are relatively high—but for j=Chemistry, V=0.8 and M=1.3, illustrating that chemistry 

knowledge is unnecessary and unimportant. Thus, for economists, where  j=Critical 

Thinking, ijS =5.46*4.56=24.99 (out of 35) but where j=Chemistry, ijS =0.8*1.3=1.04 

(out of 35).  

I classify an occupation as high skill if its ijS value is high enough to meet the 

cutoff for any one of the 20 selected skills, resulting in 119 high skill occupations. I 
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define the cutoff value for each of the 20 selected skills, j, based upon the distribution of 

the jS  values. I define “high” for each skill as a iS  value greater than three standard 

deviations above the mean. Where the tails of the distribution are small—so small that no 

iS values were greater than three standard deviations above mean—I use two standard 

deviations for the cutoff (Complex Problem Solving, Critical Thinking, Speaking, Time 

Management, and Writing). I use standard deviation rather than a multiple of the mean 

because most of the skills follow a Normal distribution and I wanted to make the criteria 

difficult to meet, so three standard deviations above the mean includes only 0.3 percent of 

occupations for each skill. For example, Critical Thinking has a cutoff value of 28.48, 

recalling that the ijS  where i=Economist and j=Critical Thinking is 24.99, we know 

economist does not meet the high skill criterion via Critical Thinking. The number of 

occupations classified as high in each of the 20 skill/knowledge fields ranged from four 

(Operations Analysis) to 64 (Biology). Of the 119 occupations classified as high skill, 

many of those occupations met the high threshold for several skills. 

 

4.1.2.2 Identifying high skill industries 

 Having identified high skill occupations, I use the Employment Matrix to 

calculate percent high skill employment for each industry, just as I did for high tech 

(Figure 4.2). Again, I use three times the mean level of percent high skill employment as 

a cutoff to define high skill industries because the high cutoff value leaves the most 

skilled industries, which is necessary to differentiate innovative industries from all 

industries and Entrepreneurial Industries from its parent measures. Three times the mean, 

17.2 percent, is the cutoff to designate a high skill industry; percent high skill 

employment for each industry ranged from 0.004 percent to 58 percent 
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High Skill Industries

S=V*M                                      
(occupations, i, and skills, j)

Select (n) High Skill Occupations

For each industry, % employment 
in (n) occupations

Employment Matrix

 
Figure 4.2 Process for Selecting High Skill Industries 

 

One caveat is that the employment matrix does not include self employment by 

occupation and industry. Consequently, I must assume that high skill industries, defined 

by paid employees, are high skill industries for the self employed.  

Assumptions used to identify high tech occupations are also worthy to note. Using 

20 skill/knowledge attributes, and requiring occupations to meet only one, adds breadth 

to the high skill occupation definition and results in almost one in nine occupations being 

high skill. I use a broad definition to define high skill occupations because I restrict the 

number of high skill industries by making that cutoff high, three times the mean level of 

high skill employment. Like high tech, I set the cutoff very high so that only the highest 

skill industries are included. This cutoff enables me to differentiate high skill industries 

from the universe of industries.  

My method for identifying high skill industries is similar to the high tech industry 

method. I believe the high skill and high tech indicators of innovation are superior to the 

secondary criteria discussed in the next section, but, by necessitating a secondary 

innovation criterion, I hope to capture only the most innovative industries, which is 
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necessary to differential Entrepreneurial Industries from other entrepreneurship 

indicators. 

 

4.1.3 Identifying High Patenting Industries  

Patents have been widely used to measure invention (Wong et al., 2005; 

Trajtenberg et al., 2006), and, interacted with establishments, can measure Schumpeterian 

innovation, creating a new product, process, or service within an organization. Both 

traits make patents a useful secondary indicator of innovation.  Because patent data have 

important flaws, I do not use patents as a primary criterion. The combination of high tech 

or high skill and patenting suggests invention and innovation occurs simultaneously 

(Munn, 2008).    

Data are available from the United States Patent and Trade Office (USPTO). 

Patents granted in a single year by county are relatively random due to the scarcity of 

patenting. Consequently, I use patents granted between 1990 and 1999, the most recent 

available data.  In addition, I only use patents assigned to non-government organizations 

and individuals (U.S. or Foreign) because I use private-industry data throughout the 

dissertation.  

There are 417 patent classes, a relatively high level of detail. Unfortunately, 

patent classes cannot be translated directly into NAICS industry sectors. The only link 

between patents and industries are via 1972 Standard Industrial Classification (SIC) 

codes. The USPTO provides patent classes and product field titles from the Office of 

Technology Assessment and Forecast (OTAF), which creates a link between OTAF fields 

and the 1972 SIC. 

To get a NAICS code for high patent industries, I match patent classes/OTAF 

fields to 1972 SIC codes and then use a SIC-NAICS bridge to assign NAICS industry 

codes to patent classes. The method for matching SIC to patent class is broad and 

outdated. Technological developments between the 1972 SIC and the 2005 patent 

classification scheme leave wide gaps in industries that have grown substantially over the 

past 40 years, e.g., Typewriters and Office Computing. More importantly, the match 

between the SIC and OTAF proves imperfect because the OTAF tables do not consider 

all relevant patents or exclude all irrelevant patents. To improve the match, I use patent 
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class descriptions and NAICS codes descriptions to clarify which NAICS code should be 

used. Silverman (1999) and Porter and Stern (2003) used an algorithm to match patent 

classes to 6-digit NAICS code, but their algorithms are not publicly available. 

I identify high patent industries by summing the number of patents granted in 

each patent class and selecting a cutoff value to define high patent classes. Patents are 

count data and have a Poisson distribution. Given the shape of the distribution, I define 

high patent classes at the natural break in the distribution of the data—the tail of the 

Poisson distribution–because the mean is meaningless. Patent classes had considerable 

overlap across NAICS, leaving 32 high patent industries, of which 24 are manufacturing. 

Industry codes for some patent classes in the tail could not be identified, and as a result, 

are omitted from the high patent industry list. Omitted industries were more likely to be 

newer industries. I am not worried about this small bias because the patent criterion is 

only secondary to high skill or high tech. 

Again, patent data have many problems, as many inventions are not patented. The 

degree of incremental patenting varies by industry, and the economic impact of patenting 

varies for regions and industries (Carlino et al., 2007). Patent data are likely to 

overestimate invention in industries that incrementally patent and underestimate 

innovation in others. The manufacturing sector is more likely to patent than other sectors 

that may be equally innovative (Orlando and Verba, 2005); 75 percent of high patent 

industries are manufacturing industries even though manufacturing represents only 4.2 

percent of all establishments. Finally, even when normalized by regional population, 

patent rates are correlated with population and systematically less likely in rural regions 

(OhUallachain, 1999).  

 

4.1.4 Identifying High Churn Industries 

The churn rate has been widely regarded as a key measure of Schumpeter’s 

creative destruction, making it an appropriate indicator of innovativeness. Defined as the 

sum of the establishment birth rate and the death rate, the churn rate captures the 

continual reinvention of products, practices, and services (Peneder, 2008; Iversen et al., 

2008). The birth rate is an indicator of innovative or cost-effective ideas and the death 

rate is an indicator of the firms made obsolete by births or acquisitions.  
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Data used to calculate the churn rate are from a special tabulation of the Statistics 

for U.S. Businesses, Bureau of the Census, courtesy of USDA, Economic Research 

Service; these are the same data I use for establishment births (see Appendix A). I use 

2000-2003 to calculate the churn rate because, much like patents, the births occurring in 

one year are relatively random. I use births and deaths for single-unit establishments 

because these establishments are considered more entrepreneurial than branch units, 

whose entry/exit is decided by a distant Headquarters facility.   

I sum the single-unit employer establishment birth rate and death rate, nationally, 

for each five-digit NAICS code. I calculate the birth rate and death rate for each industry 

using the total number of establishments in each NAICS as the denominator (Equation 

4.1), which is consistent with the way others have calculated the churn rate (Peneder, 

2008; Iversen et al., 2008). The mean churn rate is 0.15 and the median is 0.28, and I use 

the median, approximately twice the mean, as a cutoff to define the secondary criterion 

because three times the mean, resulted in very few “high churn” industries, while using 

the mean resulted in the majority of industries being high churn. Although using the 

median makes half of all industries high churn, I think this is an appropriate cutoff for a 

secondary criterion. 

 

(4.1)      

ij ij
j j

ij ij
j j

births deaths
Churn

estabs estabs
= +
∑ ∑
∑ ∑  

 

Whereas some industries have regulatory or institutional barriers to high churn, 

e.g., Finance and Insurance (NAICS 52), industries with lower barriers to entry often 

have higher churn rates. Professional, Scientific and Technical Services (NAICS 54), has 

a 0.6 churn rate—four times the average and over twice the median. Average 

employment in the industry is three, suggesting that these establishments are staffed by a 

small number of professionals and/or support staff, some of whom could be part-time 

employees.  
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4.1.5 Identifying Industries with the Innovation Stage of the Profit Cycle  

The empirical definition of the innovation stage of the Profit Cycle is based upon 

Ann Markusen’s (1985) Profit Cycles, Oligopoly, and Regional Development. The Profit 

Cycle model organizes information about the timing of industries’ lifecycle stages—one 

of which is innovation. Profit Cycle is closely related to the Product Cycle (McDonald 

and McMillen, 2006). I proceed with a brief discussion of the Profit Cycle, and then 

discuss the data and methods in its use as a secondary criterion. 

The Product Cycle answers Vernon’s (1966) call to interpret the timing of 

innovation and the decentralization of production (Norton and Rees, 1979). It relies on 

the notion that industries have defined lifecycle stages. The five stages of the profit cycle 

include zero profit or experimentation (initial firm birth, product design), innovation or 

super-profit (profits/rents from an innovative edge), mature or normal profit (market 

saturation), concentration (competition or oligopoly), and negative profit/death. The 

innovation stage captures product innovation, when firms make product improvements, 

perfect production, and drive down the cost of production through innovation. 

Additionally, during this stage, the lack of competition allows for high prices while the 

industry is growing (Markusen, 1985). The innovation stage of the profit cycle captures 

this concept, entrepreneurs gaining a monopoly position. Since the innovation stage 

identifies when an industry has the highest profits from an innovative edge, I assume that 

being in the innovation stage of the profit cycle is a useful secondary criterion for 

identifying innovative industries. Process innovation, however, tends to occur in the 

mature and concentration stages of the cycle and because I focus on product innovation, 

is not included in this criterion. 

Markusen defines firms in the innovation (super-profit) stage as having an 

average annual employment growth rate, between observations of a smoothed series, 

greater than two percent (>2%). The lengths of profit cycle stages vary. Sorenson (1997) 

identified profit cycle stages that span multiple decades, but these vary by industry. 

Consequently, I focus on employment growth during the 2001 to 2007 peak-to-peak 

business cycle (March 2001-December 2007) in order to capture industries currently in 

the innovation stage, and that maintained or gained that status during that period. This 

business cycle is particularly useful because of the unusual growth the economy exhibited 
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during the 1991-2001 business cycle, which put many industries in Markusen’s high 

growth stage (greater than two percent average annual employment growth). 

I use employment data from the NAICS based Quarterly Census of Employment 

and Wages (QCEW). The QCEW data are based on unemployment insurance records, 

and include data on paid employees, but not the self employed. The six-digit NAICS data 

are national employment totals for each month, 1990 to 2007. I smooth average annual 

employment data to purge the data of random effects and national business cycle effects 

using method developed by Neumann and Topel (1991) and Sorenson (1997). I smooth 

and plot the industries with more than two percent average annual employment growth 

and no irregularities. I remove industries with irregular plots or other data-induced 

abnormalities from the analysis. 

I find 29 percent of five-digit NAICS industries meet Markusen’s criteria, 

including many service industries (37 percent of all industries in the innovative stage of 

the cycle) and manufacturing industries (45 percent). Although Markusen’s definition 

identifies innovative industries, and is grounded in economic theory, the measure 

includes industries that are growing for non-innovation reasons, such as consumer 

preference. Requiring innovative industries meet both a primary criterion and a secondary 

criterion reduces overestimation of innovative industries.  

 

4.1.6 Rejected Criteria for Identifying Innovative Industries 

I considered using industries newly recognized in NAICS or national input-output 

tables as a secondary criterion, but many are not innovative. While some industries are 

recognized for the first time in NAICS because of innovation, e.g., satellite 

communications and software reproduction, many non-innovative industries are new, 

e.g., bed and breakfast inns, pet supply stores, and diet centers. These industries capture 

today’s changes in preferences, rather than innovation. There is no way to distinguish the 

new and innovative from the new and non-innovative industries, for instance, fiber optic 

cable manufacturing, limited service restaurants, and convenience stores are new 

industries in NAICS, but deciding which are innovative is difficult. A similar argument 

can be made for not using the 1997 and 2002 input-output codes. The majority of changes 

were in declining industries rather than innovative industries.  
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Gazelle establishments, those exhibiting rapid growth in employment and revenue 

growth, are not used to identify innovative industries because such establishments exist in 

all industries (Acs, Parsons, and Tracy, 2008). More importantly, identifying Gazelle 

establishments at the five-digit NAICS is difficult because data on revenue for detailed 

industry sectors are not available (Birch, 1981). Although employment growth data for 

industries are available, using these data would replicate the innovation stage criterion.  

 

4.2 METHOD 

In this section, I discuss the method used to identify innovative industries and the 

method I use to create Entrepreneurial Industries, ST3, named because a key component 

of the method is that Skill or Tech employment must be three times the mean.  

 

4.2.1 Identifying Innovative Industries 

I identify innovative industries at the five-digit NAICS industry level. Construct 

validity decreases with aggregation, but the Employment Matrix is not available at the 

six-digit level for many industries, making five-digit NAICS is the lowest usable level of 

aggregation. Using four-digit NAICS resulted in many overlapping industries, an 

unsuitable level of aggregation. To meet the primary criterion, an industry must have at 

least three times the average level of percent high skill employment (17.2 percent), or 

three times the average level of percent high tech employment (10.4 percent). Therefore, 

I call this method ST3 (Skill or Tech at three times the mean). Both are very selective 

cutoff levels by design; I chose these levels, because BLS uses these levels and using a 

high cutoff ensures that relatively few industries are either high tech or high skill, 

distinguishing my indicator of entrepreneurship differs from others. In Section 4.4., I 

examine the sensitivity of this choice by testing two alternative methodologies for 

identifying innovative industries, including lower the criterion to two times the mean for 

both skill and tech. 

I use more relaxed standards for the secondary criterion. The secondary criterion 

acts only as innovation insurance after passing the primary hurdle. An industry can meet 

the secondary criterion using Patent, Churn, or Profit Cycle criteria, as discussed in 4.1, 

or, by exceeding the average level of skill or tech employment (although if an industry’s 
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primary criterion is high skill, it’s secondary criterion cannot be skill and vice-versa). I 

use the average for skill and technology as a secondary criterion because it represents a 

relatively high standard that is below the cutoff for “high,” but is well above the median. 

Using two times the average was also a difficult standard to meet, so I use the average 

because only one-quarter of industries exceed the average percent high skill employment 

(5.7 percent) and the average is almost three times the median (2.0 percent). Similarly, 

the average percent high technology employment is 3.5 percent and the median is 0.6 

percent.  

Summarizing, the five secondary criteria are: the patent criteria described in 

Section 4.1 (industry is in the top 15 percent of patent activity), the churn criteria 

described in Section 4.1 (the churn rate, birth rate plus death rate, is greater than its 

median or two times the average), the innovation stage of the Profit Cycle described in 

Section 4.1 (average annual employment growth over the 2001-2007 business cycle is 

greater than 2 percent), the percent high skill employment of at least its average (almost 

three times its median), and the percent high tech employment of at least its average 

(almost six times its median). 

The combination of primary and secondary criteria allows for the identification of 

the most innovative of industries. I argue that using multiple identifiers of innovation 

leaves only the most innovative industries, differentiating Entrepreneurial Industries from 

other entrepreneurship measures. This multi-criteria strategy is not original; Peneder 

(2008) does the same, arguing that a combination of two identifiers better captures truly 

entrepreneurial establishments. 

 

4.2.2 Resulting Innovative Industries 

The ST3 method identified 39 innovative industries (Table 4.3). High tech was 

the primary indicator for 19 industries and high skill for 18 industries. No industries had 

high levels of both skill and tech, likely because a high level of specialization in one or 

the other is necessary to meet the cutoff. I believe this indicates the demanding nature of 

the criteria—that innovative industries are different from the universe of industries.  

Many of the innovative industries met two or more secondary criteria, e.g., 

Medical and Diagnostic Laboratories, NAICS 62151.  This is likely because the standards 
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for secondary criteria are much lower than for the primary criterion, which allows them 

to be met more easily. If cutoffs for the secondary criteria were as high as for the primary 

criteria, very few industries would qualify as innovative industries. 

Innovative industries are primarily in Manufacturing (NAICS 31-33), Information 

(51), and Professional, Scientific, and Technological Services (54) (Table 4.3). These 

sectors are overrepresented compared to their share of total industries. Twelve, or 32 

percent, of innovative industries are manufacturing industries but manufacturing 

establishments comprise only 4.2 percent of private establishments (Q1:2008, QCEW). 

The Information sector represents 16.2 percent of innovative industries, but only 1.7 

percent of private establishments, and 16.0 percent of the innovative industries are in the 

Professional, Scientific, and Technological Services sector but only 11.6 percent of 

establishments are in this sector. 

I exclude Mining (NAICS 21) industries from this analysis due to their year-to-

year volatility and dominance in particular regions. The only industry in this sector that 

would have been an innovative industry is Oil and Gas Extraction (NAICS 2111). Peaks 

and valleys in oil and natural gas prices cause lots of entry and exit, which affects annual 

birth data for employers. This sector also has dramatic volatility in year-to-year self 

employment in regions with many independent oil pumps.4

 

  

                                                   
4  I consulted with Mike Orlando, a regional economist with expertise in the energy industry, and former 
Shell Oil engineer. Orlando informed me that several regions in the country are rich in independent oil and 
gas producers, sole proprietors who “turn on the pump” when oil or gas prices rise to a certain level. This 
practice creates year-to-year volatility in births/deaths and self employment in the Oil and Gas Extraction 
sector, particularly in West Virginia, Oklahoma, and the South. 
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4.2.3 Caveats 

The industries in Table 4.3 represent innovative industries, but some industries 

surely could be included and others excluded. Innovative industries should be interpreted 

as part of a method to develop a better indicator of entrepreneurship—the cost of 

developing such a method is that some industries are included and some are not. The 

stringent criteria is what makes innovative industries different from all industries, and, 

when applied to self employment and establishment birth data, will result in an indicator 

of entrepreneurship that is truer to my conceptual definition of entrepreneurship. 

Innovative industries should be interpreted as a whole and not be used for targeted 

recruitment because it is not an exhaustive list, rather an indicator of innovation at the 

industry level. Innovative industries should be interpreted similarly to Richard Florida’s 

Creative Class; Florida includes occupations in which creative people are most likely to 

Table 4.3 Innovative Industries and Composite Criteria 

 

 
Naics Description

High 
Skill

High 
Tech

Ave 
Skill

Ave 
Tech Churn Patent

Profit 
Cycle

22110 Electric Power Generation, Transmission and Distribution  X  X  X  X  X
31161 Animal Slaughtering and Processing  X  X  X  X
32510 Basic Chemical Manufacturing  X  X  X  X  X
32541 Pharmaceutical and Medicine Manufacturing  X  X  X  X  X
33411 Computer and Peripheral Equipment Manufacturing  X  X  X  X
33421 Communications Equipment Manufacturing  X  X  X  X
33431 Audio and Video Equipment Manufacturing  X  X  X  X
33441 Semiconductor and Other Electronic Component Manufacturing  X  X  X  X
33451 Navigational, Measuring, Electromedical, and Control Instruments Manu.  X  X  X  X
33461 Manufacturing and Reproducing Magnetic and Optical Media  X  X  X  X
33641 Aerospace Product and Parts Manufacturing  X  X  X  X  X  X
33661 Ship and Boat Building  X  X  X
33711 Wood Kitchen Cabinet and Countertop Manufacturing  X  X  X
42370 Hardware, Plumbing and Heating  and Supplies Merchant Wholesalers  X  X  X
44110 Automobile Dealers  X  X  X
51121 Software Publishers  X  X  X
51611 Internet Publishing and Broadcasting  X  X  X
51711 Wired Telecommunications Carriers  X  X  X
51731 Telecommunications Resellers  X  X  X
51811 Internet Service Providers and Web Search Portals  X  X  X
51821 Data Processing, Hosting, and Related Services  X  X  X
54121 Accounting, Tax Preparation, Bookkeeping, and Payroll Services  X  X  X
54138 Testing Laboratories  X  X  X
54151 Computer Systems Design and Related Services  X  X  X  X
54171 Research and Development in the Physical, Engineering, and Life Sciences  X  X  X
54172 Research and Development in the Social Sciences and Humanities  X  X  X  X
54194 Veterinary Services  X  X  X  X
55111 Management of Companies and Enterprises  X  X  X  X
56111 Office Administrative Services  X  X  X  X  X
56142 Telephone Call Centers  X  X  X
56151 Travel Agencies  X  X  X
56161 Investigation, Guard, and Armored Car Services  X  X  X
56190 Other Support Services  X  X  X
62151 Medical and Diagnostic Laboratories  X  X  X  X
62211 General Medical and Surgical Hospitals  X  X  X  X
62420 Community Food and Housing, and Emergency and Other Relief Services  X  X  X
81121 Electronic and Precision Equipment Repair and Maintenance  X  X  X  X



 

46 
 

work, it is not a finite list of who is creative and who is not. I use innovative industries as 

a proxy for innovative establishments, but I cannot say whether individual establishments 

are innovative. Finally, some innovative industries may not appear innovative to all 

readers, for example, animal slaughtering facilities, however, many slaughtering 

establishments are innovative in order to improve productivity and sanitation (CREC, 

2009).  

  

4.2.4 Creating Entrepreneurial Industries 

Entrepreneurship varies across space, making counties a suitably small unit of 

observation (Klein and Cook, 2006; Shrestha et al., 2007). Researchers can easily 

aggregate counties into labor market areas or metropolitan statistical areas. Most 

practitioners conduct economic development at the local level (Bartik, 1991; Wasylenko, 

1997), so, when possible, studies of entrepreneurship should also be conducted at the 

local level.  

Many argue that when examining change in entrepreneurship, the beginning and 

end points should coincide with business cycles (Chandra, 2002; Spelman, 2006). 

Examining entrepreneurship over a period of macroeconomic growth will lead to 

different results than examining entrepreneurship across a complete business cycle. Thus, 

I use the 2001-2006 period as the closest I can obtain to the 2001-2007 (peak-to-peak) 

business cycle. Regional business cycles do not necessarily coincide with national 

business cycles, but national business cycles are a reasonable proxy to use when 

conducting analysis for all counties in the county.5 I cannot examine Entrepreneurial 

Industries over the 1991-2001 business cycle because NAICS was not established until 

1997.6

To create the annual, county-level indicator of innovative entrepreneurship, 

Entrepreneurial Industries, I count the number of innovative industry establishments in 

both self employment data and single-unit employer establishment data. Self employment 

  

                                                   
5Atypical business cycles, generally caused by specific events, can influence entrepreneurship measures 
(Parker, 1996; Gartner and Shane, 2005). Hurricane Katrina and events on September 11th caused regional 
changes in employment and business activity.  
6 The years for which Entrepreneurial Industries are available is limited by both data availability and the 
implementation of  NAICS, which replaced the SIC in 1997. Establishment birth data did not become 
NAICS-based until 1989-1999, and is only available through 2002-2003. 
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data are from the Census Bureau’s Nonemployer Statistics and contain the number of 

establishments with no paid employees, e.g., proprietors, partnerships, in each county in 

each industry. Because these data are publically available, industries with less than three 

establishments are suppressed (see Appendix A). Single-unit employer establishment 

birth data are not publically available and were obtained through a special agreement 

with the Census Bureau; these data contain births in each industry in each county with no 

suppression. Counting innovative industry establishments in these data give me the 

number of innovative industry establishment births and self employed in each county, for 

each year. For instance, Champaign County, Illinois, had 19 innovative industry 

establishment births in 2003 and 334 employer establishment births in all sectors—thus 

the innovative industries establishment births represent 5.7 percent of establishment 

births in 2003. Similarly, Champaign County had 146 self employed in innovative 

industries in 2006, 1.30 percent of all self employed. Again, this is not a count of 

entrepreneurs, innovation, or innovative establishments; it is simply the method used to 

create Entrepreneurial Industries, an indicator of regional entrepreneurship. 

Since counties are not homogenous, I must control turn the count into a rate 

(Audretsch and Fritsch, 1994; Gartner and Shane, 1995). For example, 19 births in 

Champaign County are meaningless without knowing the relative size of Champaign 

County. The choice of denominator can be a source of confusion and ambiguity because 

different methods of standardization lead to different results and conflicting policy 

signals (Audretsch and Fritsch, 1994). In this section, I discuss denominators for both self 

employment and establishment births and their appropriateness for Entrepreneurial 

Industries. 

 The theory of entrepreneurial choice explains individuals’ entry into 

entrepreneurship and posits that someone starts each new business. Therefore, the 

denominator for self employment should represent everyone who could enter self 

employment (Evans and Jovanic, 1989). Total employment is a theoretically suitable 

denominator for self employment if we assume nascent entrepreneurs have some work 

experience. Many studies have adopted the same reasoning and use employment as the 

denominator for self employment because workers more closely represent the pool of 
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nascent entrepreneurs than population or establishments (Iversen et al., 2008; Goetz and 

Rupasingha, 2008). 

Despite theory suggesting employment as the denominator for self employment, I 

compare two denominators that could represent the pool of potential entrepreneurs, 

population and total employment. I measure population with BEA-REIS population 

estimates, because these data are available annually. I measure total employment with 

BEA-REIS total nonfarm employment. I exclude production agriculture employment 

because the Census data used to create Entrepreneurial Industries excludes it; the effect 

of this will be highest in rural areas and high-intensity agricultural areas such as 

California’s Central Valley, where the Entrepreneurial Industries rate might be inflated 

because the denominator is smaller. Total jobs are a more accurate count of the pool of 

potential proprietors because it counts each job as equal; this is important because many 

proprietors are multiple-job holders. Total employment excludes the unemployed, but the 

advantages of including multiple job holding proprietors makes this tradeoff worthwhile.  

The Entrepreneurial Industries self employment rate using population or total 

nonfarm employment are very similar (Table 4.4) and have a 0.928 correlation. Spatial 

analysis also points towards their similarity (Figure 4.3). Using population as a 

denominator results in increased heterogeneity, however (Figure 4.3). Heterogeneity 

makes some rates appear extreme, and increased heterogeneity makes statistical results 

less efficient. Thus, employment has both conceptual and empirical advantages over 

population as a denominator for Entrepreneurial Industries self employment.  

 

Table 4.4 Entrepreneurial Industries Self Employment Variables 

 
 

Variable Mean StDev Definition
EI_se/emp 0.00155 0.00187 EI count for se divided by nonfarm total employment (BEA-REIS), 2000
EI_se/pop 0.00077 0.00093 EI count for se divided by population (BEA-REIS), 2000
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Figure 4.3 Entrepreneurial Industries Self Employment Using Nonfarm Employment and 

Population As Denominator 
 

No established theory guides the choice of denominator for establishment births. 

An individual decides to enter self employment, but five individuals may partner to start 

an employer establishment. Thus, the theory of entrepreneurial choice cannot guide the 

choice of denominator for establishment births because the unit is not the individual. 

Researchers have used establishments, population, labor force, and employment 

as the denominator for establishment births with no discussion of their appropriateness 

(Audretsch et al., 2002; Lee et al., 2004; Mueller, 2007). Others have found rates are 

affected by standardization approaches, implying that the selection of denominators 

affects results (Audretsch and Fritsch, 1994; Reynolds et al., 1994; Iversen et al., 2008). 

Given the implications of denominator choice, Love (1995) and Audretsch and Fritsch 

(1995), find the labor market, or people, approach is superior to establishment-based 

denominators for establishment births.  

I normalize the count of Entrepreneurial Industries births using four variables—

population, labor force, employment, and establishments—and compare the resulting 

rates.7

                                                   
7 Data are available annually at the county-level from BEA-REIS, BLS LAUS, and the Census Bureau’s 
County Business Patterns, respectively. 

 Spatial analysis of the four rates shows that the population and labor force rates 

behave similarly (Figure 4.4). Indeed, the mean and standard deviation for the population 

rate is approximately half of that for the labor force rate, so we would expect similar 

maps based on their very similar distributions (Table 4.5). Both population and labor 

force control for the heterogeneity of counties, but labor force includes farm employment, 
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so using population is more consistent with the establishment birth data, which exclude 

production agriculture establishments.  

Although population is the preferred denominator for Entrepreneurial Industries, 

it is notable that establishments are too sensitive to the amount of entry that has already 

occurred to be a denominator for births (Audretsch and Fritsch, 1995; Love, 1995). Love 

(1995) found that using establishments as a denominator in an entrepreneurship model 

can produce the “wrong” signs in the model using an employment rate. Audretsch and 

Fritsch (1994) tested two classes of denominator, establishments and labor market. They 

found fault with the establishment rate because in areas with lots of small establishments, 

(potentially entrepreneurial areas), one additional birth makes little difference in the birth 

rate. In areas with a few relatively large establishments, one birth will dramatically 

increase the birth rate. As a result, two regions with the same population and same 

number of births can have vastly different birth/establishment rates if one region is 

dominated by small firms and the other dependent on a few large firms.  

Very few counties had no innovative industries self employment in a given year, 

but many counties have no innovative industries births in a given year. Establishment 

births at the five-digit NAICS are relatively rare in all but the largest counties. As a 

result, one birth can make the rate appear unusually high. To overcome this problem, I 

use a 3-year moving average of birth counts in innovative industries.8

 

 

 

                                                   
8 To calculate the 3-year moving average for 2000, I sum innovative industry births for 99-00, 00-01, and 
01-02 and divide by three to obtain an average, which I normalize by the base year population. The 
establishment birth data are available from 1998-1999 to 2002-2003. 
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Figure 4.4 Entrepreneurial Industries Births (2000-2003) Using 2000 Denominator 

 

Table 4.5 Summary Statistics Comparing Denominators  

 
 

4.3 ENTREPRENEURIAL INDUSTRIES RESULTS AND SENSITIVITY ANALYSIS 

In this section, I establish that Entrepreneurial Industries is a conceptually and 

empirically valid indicator of entrepreneurship and is an improvement over other metrics 

because it considers innovation. Exploratory spatial data analysis and correlations suggest 

Entrepreneurial Industries has a positive relationship with growth and prosperity and 

differs from its parent measures. I also demonstrate the empirical validity of 

Entrepreneurial Industries by comparing it to widely publicized entrepreneurship indices 

>2 St. Dev above Mean

Denominator: Labor Force

Below Mean

1-2 St. Dev above Mean

Mean to 1 St. Dev above Mean

>2 St. Dev above Mean

Denominator: Population

Below Mean

1-2 St. Dev above Mean

Mean to 1 St. Dev above Mean

>2 St. Dev above Mean

Denominator: Employment-CBP

Below Mean

1-2 St. Dev above Mean

Mean to 1 St. Dev above Mean

>2 St. Dev above Mean

Denominator: Establishments

Below Mean

1-2 St. Dev above Mean

Mean to 1 St. Dev above Mean

Variable Mean Std. Dev. Definition
EI_birth/pop 0.00008 0.00007 EI count for births (Ave. of 1999-2001) divided by population, 2000 (BEA-REIS) 
EI_birth/LF 0.000167 0.000139 EI count for births (Ave. of 1999-2001) divided by labor force, 2000 (BLS LAUS) 
EI_birth/emp 0.000312 0.000528 EI count for births (Ave. of 1999-2001) divided by employment, 2000 (CBP) 
EI_birth/estab 0.00336 0.00251 EI count for births (Ave. of 1999-2001) divided by establishments, 2000 (CBP) 
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available for some cities. Finally, I examine the sensitivity of Entrepreneurial Industries 

to the choice of innovative industries and find that Entrepreneurial Industries results are 

not sensitive to the choice of individual industries, suggesting Entrepreneurial Industries 

is robust to variation in innovative industries. 

 

4.3.1 Construct Validity of Entrepreneurial Industries 

4.3.1.1 Descriptive statistics 

My two indicators of Entrepreneurial Industries, EI_birth/pop and EI_se/emp 

behave similarly spatially (Figure 4.5, 4.6). Both are highest in metro areas, notably 

Atlanta, Miami, Denver, Las Vegas, Dallas, Houston, and the San Jose/Silicon 

Valley/San Francisco metropolitan area, suggesting that the thick markets, access to 

labor, transportation, and intermediate goods in metro areas is associated with a higher 

level of Entrepreneurial Industries. Entrepreneurial Industries also appears high in 

regions with landscape and lifestyle amenities, such as Florida and the Rocky Mountains, 

suggesting high-amenity areas are associated with the level of Entrepreneurial Industries, 

e.g., footloose or lone-eagle entrepreneurs. 
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Figure 4.5 Entrepreneurial Industries Births, Three-Year Moving Average, 2000 
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Figure 4.6 Entrepreneurial Industries Self Employment, 2000 
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Entrepreneurial Industries is also high in some non-metropolitan areas, for 

example, Cherry County, Nebraska, a large county in north central Nebraska. Cherry 

County had only two innovative industry establishment births in the three-year period but 

the low population makes the birth rate relatively high. Cherry County is surrounded by 

areas with no births, evidence that Entrepreneurial Industries births are sparse, even using 

a three-year moving average. The Cherry County case illustrates why I take the three-

year moving average of Entrepreneurial Industries births. Using only one year would 

result in more unusually “high” rates in sparsely populated counties. Entrepreneurial 

Industries must be interpreted as a whole and over a suitable period of time, particularly 

in rural areas. 

Entrepreneurial Industries may be low in sparsely populated areas because lower 

skill and lower technology occupations are more concentrated in rural areas (Massey 

1984; Wojan 2000). Although rural areas have a higher proportion of high school 

graduates, they have a lower proportion of scientists, engineers, technicians, and other 

highly educated people than metro areas. Thus, they have fewer high skill industries. 

EI_se/emp behaves differently from its parent measure, self employment (Figure 

4.7). Spatial evidence suggests it is fundamentally different and includes the most 

innovative entrepreneurs and excludes most necessity-based self employment, implying 

the innovative industries method works to differentiate Entrepreneurial Industries from its 

parent measure (Figure 4.7). Figure 4.7 also shows Entrepreneurial Industries are highest 

in metro areas. EI_se/emp is highest in metro and amenity-driven areas, but self 

employment is highest in sparsely populated counties and most are necessity-based or 

lifestyle entrepreneurs who are self employed due to a lack of wage and salary job 

opportunities, rather than because they are innovating or creating something new 

(Henderson et al., 2006). I argue that the difference between EI_se/emp and its parent 

measure is that Entrepreneurial Industries identifies the most innovative entrepreneurs 

and excludes most necessity-based self employed.  
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Figure 4.7 Entrepreneurial Industries Self Employment and Self Employment,  

Quartiles, Darker is Higher 
 

Entrepreneurial Industries has a positive correlation with parent measures, 

SelfEmp/Emp and Births/Pop, but this correlation is not strong, further suggesting that 

notable differences between Entrepreneurial Industries and parent measures (Table 4.6). 

The correlation between EI_se/emp and its parent measure is 0.13 and 0.30 for 

EI_birth/pop, and suggests creating Entrepreneurial Industries was worthwhile 

empirically.  

Positive correlation coefficients with employment growth, income growth, higher 

education, and Isserman’s (2006) prosperity measure suggest Entrepreneurial Industries 

has construct validity (Table 4.6). Additionally, both Entrepreneurial Industries indicators 

exhibit a negative correlation with indicators of distress—the unemployment rate, 

poverty rate, and high school dropout rate. The Entrepreneurial Industries indicators have 

a positive correlation with McGranahan and Wojan’s (2007) Recast Creative Class but 

the self employment and establishment birth rates have a negative correlation with Recast 

Creative Class (-0.17 and -0.05), illustrating how different Entrepreneurial Industries are 

from parent measures.  

  

    

 

     

      

EI Self Employment 2006 Self Employment 2006
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Table 4.6 Pearson Correlation Coefficients 

 
 

Using Isserman’s (2006) Rural/Mixed Rural/Mixed Urban/Urban classification 

scheme, I find that the correlation signs discussed previously are consistent in both the 

most rural (Rural) and the most urban (Urban) counties (Table 4.7). The correlation 

coefficients for rural counties, however, are generally lower in magnitude. I do not 

include correlations for Mixed Rural and Mixed Urban for brevity. 

In Urban counties, Entrepreneurial Industries is positively related to population. 

In Rural counties, the correlation between population and EI_se/emp is positive and 

higher than in Urban counties, but the correlation between population and EI_birth/pop is 

negative. This may be because self employment is more common in rural areas due to 

thin markets and a lack of wage and salary job opportunities (Low and Weiler, 2008). 

The negative correlation between Entrepreneurial Industries births and population in 

Rural counties is further evidence that employer establishment births are relatively 

uncommon in rural regions.  

The correlation between Entrepreneurial Industries indicators and widely used 

measures of entrepreneurship (Gartner, Births/Emp, SelfEmp/Emp) suggests 

Entrepreneurial Industries is highest in urban areas (Table 4.7). This is likely because 

urban areas tend to have more patenting activity, more establishments, and more 

establishment births, even when normalizing for population (OhUallachain, 1999).  

When interpreting differences in EI_se/emp across rural and urban areas, recall, 

EI_se/emp may undercount entrepreneurship in rural areas due to data suppression, but 

Variable EI_birth/pop EI_se/emp Description
EmpG01_06 0.201 0.360 Employment Growth 2001-2006, BEA-REIS
IncG01_06 0.135 0.187 Income Growth, 2001-2006, BEA-REIS
Unemp01 -0.158 -0.154 Unemployment rate, 2001, BLS LAUS
Poverty -0.129 -0.249 Poverty rate, 2000, Decennial Census
Prosperity 0.078 0.114 Isserman's Prosperity (2005), 2000
RC Creative Class 0.244 0.453 McGranahan & Wojan (2007), 2000
Amenity Scale 0.163 0.212 McGranahan (1999) measure
Gartner: Estab/Pop 0.194 -0.096 Estabs (CBP, 2000) over Pop (BEA-REIS, 2000)
Births/Emp1000 0.300 0.128 Births, 2000 over 1000 employees (CBP, 2000)
SelfEmp/Emp 0.164 0.129 Nonemployers, 2000, over employment (CBP, 2000)
Patent/Pop 0.127 0.257 see text
Population 0.086 0.191 BEA-REIS, 2000
%CollegeEd 0.239 0.303 Percent >25 years with 4-year degree, Census, 2000
%HSdropout -0.190 -0.152 Percent >25 years without HS or GED, Census, 2000
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where innovative industries establishments are non-zero the rate may be inflated because 

the denominator excludes production agriculture employment. I need unsuppressed self 

employment data to explore the direction of the EI_se/emp bias in rural counties.  

 

Table 4.7 Pearson Correlation Coefficients: Urban and Rural Counties 

  Rural Urban 

  EI_birth/pop EI_se/emp EI_birth/pop EI_se/emp 
EmpG01_06 0.10 0.24 0.31 0.33 
IncG01_06 0.07 0.09 0.22 0.16 
Unemp01 -0.15 -0.07 -0.25 -0.06 
Poverty -0.07 -0.15 -0.39 -0.25 
Prosperity 0.06 0.05 0.21 0.12 
RC Creative Class 0.16 0.34 0.49 0.27 
Amenity Scale 0.11 0.17 0.34 0.29 
Gartner: Estab/Pop 0.20 -0.11 0.21 -0.17 
Births/Emp1000 0.28 0.13 0.60 0.67 
SelfEmp/Emp 0.18 0.19 0.37 0.67 
Patent/Pop 0.02 0.11 0.38 0.20 
Population -0.13 0.41 0.10 0.18 
%CollegeEd 0.21 0.13 0.39 0.18 
%HSdropout -0.17 -0.03 -0.31 -0.07 

 

4.3.1.2 Empirical comparison of entrepreneurial industries and other indicators 

County-level entrepreneurship indices are rare. Most assess entrepreneurship in 

metropolitan areas only. Seven metro areas had at least one county in the top 50 

EI_se/emp and top 50 of EI_birth/pop; indeed, all seven metros had multiple counties 

within the top 50. These metro areas are Atlanta, Dallas, Denver, Miami, New York City, 

San Francisco, and Washington, DC (Table 4.8). Although a crude substitute for relevant 

metro rates of Entrepreneurial Industries, my list is comparable to others’ indexes that 

examine metro areas.  

Entrepreneurial Industries is consistent with the most recent and best-known 

metro entrepreneurship index, the Kauffman Index of Entrepreneurial Activity (Fairlie, 

2009). The 2008 index is complex and computed using Current Population Survey data 

on self employment and employer establishment births. All top Entrepreneurial Industries 

metro areas are in the Kauffman top ten, except Denver (Table 4.8). Some large cities do 

not appear in either the Kauffman top ten or the Entrepreneurial Industries top seven 
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(Chicago, Philadelphia, Boston, Detroit, and Seattle), suggesting that city size does not 

predict current entrepreneurial activity.  

Table 4.8 Kauffman Top Ten and Entrepreneurial Industries Cities 

Kauffman Top 10 EI Top 7 
Atlanta Atlanta 
Phoenix 

 Riverside, CA 
 Los Angeles 
 Miami Miami 

New York City New York City 
San Francisco San Francisco 
Dallas Dallas 
Houston 

 Washington, DC Washington, DC 
  Denver 

  

Further empirical support can be gleaned from older entrepreneurship indexes. 

Inc. Magazine’s Top Entrepreneurial Cities (1990) listed Las Vegas as the most 

entrepreneurial city, with the top ten cities including Washington, Orlando, Tallahassee, 

San Jose, Atlanta, Charleston, SC, Lincoln, NE, Raleigh-Durham, NC, and Anaheim, CA 

(Case, 1990). Although only Washington and Atlanta are top Entrepreneurial Industries 

metros, Figures 4.5 and 4.6 show Entrepreneurial Industries is high in Las Vegas 

(southern Nevada), Florida, and parts of the south, including Atlanta, Charleston, 

Charlotte and the Research Triangle. Thus, Inc.’s top ten differ from the top seven 

Entrepreneurial Industries metros, but their top metros are all in Entrepreneurial 

Industries’ top quartile.  

 Finally, Entrepreneur Magazine’s Best Large Cities for Entrepreneurship, 2006, 

are, in-order, Phoenix, Charlotte, Research Triangle, NC, Las Vegas, Austin, 

Washington, DC, Memphis, Nashville, Norfolk/Virginia Beach, and San Antonio. Only 

one of the seven Entrepreneurial Industries cities is on this list but all ten are high for 

either Entrepreneurial Industries self employment or Entrepreneurial Industries births, 

suggesting the top Entrepreneurial Industries metros are similar to other indices’ top 

entrepreneurial metropolitan areas. For example, Phoenix has shown up on several of the 

entrepreneurial indexes and is not among the high Entrepreneurial Industries cities; it has 
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a high level of Entrepreneurial Industries births but not Entrepreneurial Industries self 

employment.  

 

4.3.2 Variations for Sensitivity Analysis 

 To differentiate Entrepreneurial Industries from widely used entrepreneurship 

measures, I developed a method for identifying innovative industries, since data on 

innovative establishments are not available. The cost of identifying innovative 

entrepreneurs via innovative industries is that I must estimate the number of innovative 

establishments by defining some industries as innovative and others, not. In this section, 

using two alternative methods, I assess the sensitivity of Entrepreneurial Industries to the 

selection of innovative industries. The inclusion or exclusion of individual industries does 

not affect Entrepreneurial Industries results. Focusing on the inclusion/exclusion of 

specific industries, thus, is futile.  

The Entrepreneurial Industries method, ST3, requires innovative industries have 

three times the mean level of high skill or high tech employment, a demanding criterion 

that less than 40 industries met. Two less demanding alternatives, ST2 and STP, test how 

sensitive Entrepreneurial Industries is to the inclusion of specific industries.  

The ST2 method lowers the cutoff required to meet the high skill and high tech 

primary criteria to two times the mean, hence ST2, and keeps the secondary criterion 

requirement. Two times the mean is the lowest threshold for high tech industries, as 

defined by the BLS (its “low content” high tech industries).  

Using the ST2 method, the number of innovative industries rose from 39 to 61 

and included more service industries (NAICS 51-81). Some newly included industries are 

Casino Hotels (NAICS 72112), Independent Artists, Writers, and Performers (NAICS 

71151), Services for the Elderly and Persons with Disabilities (62412), and Monetary 

Authorities-Central Banks (NAICS 52111). The owner/operator and risk/uncertainty 

bearing attributes of entrepreneurship will screen out some of these innovative industries 

from the Entrepreneurial Industries indicators, e.g., the Federal Reserve bank system 

(NAICS 52111) has no self employed, and has had no births in the last 15 years. As a 

result, Fed establishments would not appear in either the self employment or birth data. 
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Recall, with ST3 no industries met both high skill and high tech; there was considerable 

overlap between high skill and high tech using ST2, mainly in the service sectors.  

The STP method differs from ST3 and ST2 by forgoing the requirement for a 

secondary criterion but allowing high patent to stand alone as a primary criterion. 

Although the patent data are not ideal due to data problems, discussed in Section 4.1, 

industries with high levels of patenting are at the extreme of innovation—so much so that 

firms are willing to spend the time and money necessary to patent the new technology, 

and presumably reap sizeable economic rents from these patents.  

Using the STP method, the number of innovative industries rose from 39 to 70—

more industries than even the ST2 method includes (Table 4.9). Adding patents as a 

primary criterion, rather than eliminating the secondary criterion, accounted for most of 

this increase and the majority of industries new in STP are manufacturing industries 

(Table 4.9). Indeed, most of the innovative industries meet more than one secondary 

criterion, suggesting the principal hurdle is the high standard necessitated by meeting 

three times the mean for high skill or high tech.  
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Table 4.9 Count of Industries Meeting ST3, ST2 or STP at 3-Digit NAICS  

 
 

Summary statistics show the alternative methods have higher means than 

Entrepreneurial Industries (ST3), because they include more industries, which makes the 

count higher (Table 4.10). The mean for births is an order of magnitude lower than the 

mean for self employment. The mean for STP applied to self employment is much higher 

than the mean for STP applied to births, and its standard deviation is much higher too, 

suggesting there is much more variation in STP than ST2 or ST3, which could be 

problematic for use in entrepreneurship analysis. 

Naics Description ST3 ST2 STP
221 Utilities 1 2 2
237 Heavy and Civil Engineering Construction 1
311 Food Manufacturing 1 1 2
325 Chemical Manufacturing 2 5 7
326 Plastic & Rubber Product Mfg. 1
331 Primary Metal Manufacturing 2
332 Fabricated Metal Product Manufacturing 1 1
333 Machinery Manufacturing 1 2
334 Computer and Electronic Manufacturing 6 6 6
335 Electrical Equipment Manufacturing 1 1
336 Transportation Equipment Manufacturing 2 2 4
337 Furniture and Related Product Manufacturing 1 2 3
423 Merchant Wholesalers, Durable Goods 1 2 1
441 Motor Vehicle and Parts Dealers 1 1 1
486 Pipeline Transportation 1
511 Publishing Industries (except internet) 1 1 1
516 Internet Publishing and Broadcasting 1 1 1
517 Telecommunications 2 3 2
518 Internet Service Providers 2 2 2
521 Monetary Authorities-Central Bank 1
541 Miscellaneous Professional, Scientific, and Technical Services 6 8 6
551 Management of Companies and Enterprises 1 1 1
561 Administrative and Support Services 5 5 8
562 Waste Management and Remediation Services 1
621 Ambulatory Health Care Services 1 2 1
622 Hospitals 1 2 1
623 Other Residential Care Facilities 1
624 Nursing and Residential Care Facilities 1 3 1
711 Performing Arts, Spectator Sports, and Related Industries 1
713 Amusement, Gambling, and Recreation Industries 1
721 Accomodation 1
811 Repair and Maintenance 1 1 1
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Table 4.10 Summary Statistics for Alternate Methodologies 

 Obs. Mean St. Dev. Min. Max. 

ST3_birth 2635 0.00019 0.00020 0 0.0026 
ST2_birth 2777 0.00030 0.00026 0 0.0039 
STP_birth 2762 0.00024 0.00022 0 0.0028 

ST3_SE 3068 0.0034 0.0022 0 0.0190 
ST2_SE 3077 0.0083 0.0050 0 0.0396 

STP_SE 3076 0.01164 0.0067 0 0.0745 
 

I map the three indicators, based on their distribution to examine their spatial 

distribution (Figure 4.8). STP is visually different from ST2 and ST3. STP is high in 

southern Appalachia from the Atlanta metro area to the Ozarks. This is likely due to a 

concentration of independent manufacturing in this region. Compared to ST3, the ST2 

method results in more counties at the high end of the range (greater than two standard 

deviation above average), noticeably so in the front range of the Rocky Mountains and in 

the Northeast. Otherwise, ST2 and ST3 are spatially similar. I prefer ST3 to ST2 though, 

because it has a higher innovation criterion. 

 
Figure 4.8 Comparison Of Indicators Using Three Methodologies 
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4.4 CONCLUSION 

Entrepreneurial Industries is conceptually valid, empirically valid, and robust to 

the selection of innovative industries. I demonstrated construct validity by showing 

Entrepreneurial Industries results are correlated with widely used entrepreneurship 

indices and that Entrepreneurial Industries is positively correlated to growth and 

prosperity and negatively with indicators of economic distress. Entrepreneurial Industries 

represents an improvement over other entrepreneurship measures and indicators because 

it captures multiple dimensions of entrepreneurship, including innovation. 

Entrepreneurial Industries is substantively different from its parent measures. Finally, 

Entrepreneurial Industries is available annually for U.S. counties, allowing it to serve as a 

useful building block for regional analysis across space and time. 

Entrepreneurial Industries has the potential to improve regional research and 

economic development practice and policymaking, making policies and programs more 

effective and less costly. Additionally, using an entrepreneurship benchmark that 

excludes lifestyle or necessity-based entrepreneurs may alter perceptions of regional 

entrepreneurship and highlight programmatic needs and successes. 

I cannot identify innovative establishments, so I proxy with the most innovative 

industries and argue that their nexus with establishment births and the self employed is a 

useful indicator of entrepreneurship. It is not a count of entrepreneurs. Although such a 

count might be ideal, it is unobtainable on an annual basis for U.S. counties. To 

differentiate Entrepreneurial Industries from other entrepreneurship measures I employ 

high standards for defining innovative industries at the cost of not including some 

innovative establishments and including some non-innovative establishments. Sensitivity 

analysis, however, shows Entrepreneurial Industries results are robust to variation in the 

choice of innovative industries, thus, arguing about the inclusion of a specific industry 

will not change the results. 

Entrepreneurial Industries in rural counties require careful interpretation and 

additional data could improve Entrepreneurial Industries in rural areas. Unsuppressed self 

employment data would improve Entrepreneurial Industries, particularly in sparsely 

populated counties where one or two establishments, now disclosed, could lead to a high 

Entrepreneurial Industries rate. Additionally, rural areas suffer from construct validity 
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problems where a smaller stock of entrepreneurs exists and the denominator, 

employment, is shrinking, which can make Entrepreneurial Industries appear to increase 

over time (McGranahan and Wojan, 2007).  

 The list of innovative industries is only an indicator of innovativeness; it is not 

definitive, and should not be used for industry targeting. Additionally, Entrepreneurial 

Industries is static over both space and time due to its construction, preventing analysis of 

the spread of innovation across space or the change in high skill/high tech employment 

over time. Being able to capture change in innovation across space would enable me to 

define innovative industries better and change in innovation over time would also help, 

by identifying where innovation and/or automation is affecting the percent high skill and 

high tech employment. Finally, data on Entrepreneurial Industries employment, 

productivity, or value added could improve the indicator and the definition of innovative 

industries, but to conduct such analysis I need micro data from the Center for Economic 

Studies.  
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CHAPTER 5: ENTREPRENEURIAL INDUSTRIES:  

ENTREPRENEURSHIP MODEL 

 

While much of the research on the determinants of entrepreneurship is at the 

national level (Acs and Armington, 2006), research on the regional determinants of 

entrepreneurship is growing (Gebremariam et al., 2006; Goetz and Rupasingha, 2008). 

This interest has emerged from research that suggests a strong connection between 

entrepreneurship and growth. Many studies use measures of entrepreneurship that ignore 

innovation, such as self employment, despite innovation being a long established defining 

attribute of entrepreneurship (Schumpeter and Opie, 1983). This chapter examines the 

determinants of Entrepreneurial Industries and contributes to the determinants of 

entrepreneurship literature. 

Evans and Leighton (1989) conducted one of the first studies on the determinants 

of self employment, using longitudinal micro data on white males who identified 

themselves as self employed. Parker (1996) and Schiller and Crewson (1997) built upon 

this initial work by broadening the sample and providing a theoretical foundation for the 

model. This research has broader applicability as research that is more recent showed that 

determinants of firm births resemble the determinants of self employment (Lee et al., 

2004; Acs et al., 2006). Common determinants include entrepreneurial attitudes (fear of 

failure, goal-setting, confidence in abilities), access to capital, firm characteristics, and 

geographical environment.  

Recent research examining the determinants of regional self employment has 

found region-specific factors affect entrepreneurship (Georgellis and Wall, 2000). Most 

regional entrepreneurship research, however, focuses on urban regions, and often omits 

rural places. Glaeser (2007) found that, in metro areas, self employment rates were 

highest for men and rise with age, educational attainment, and population. Little is known 

about the determinants of self employment in nonmetro areas though. Goetz and 

Rupasingha (2008) use all U.S. counties in their entrepreneurship model and find a 

nonmetropolitan binary variable is significant, indicating the existence of a rural/urban 

difference in entrepreneurship levels. 
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In this chapter, I examine the drivers of Entrepreneurial Industries, which is 

unique because it incorporates innovation. I build on Goetz and Rupasingha’s (2008) 

county-level entrepreneurship model and find that the drivers of innovative 

entrepreneurship differ from self employment. The entrepreneurship model explains more 

variation in Entrepreneurial Industries growth than self employment growth suggesting 

factors can explain Entrepreneurial Industries more than self employment. I find financial 

collateral and amenities positively influence Entrepreneurial Industries, while self 

employment is driven by a negative relationship with income and income growth. Results 

suggest entrepreneurship models are sensitive to the entrepreneurship measure and that 

Entrepreneurial Industries may be more useful to policymakers and economic 

development practitioners who would like to promote innovative entrepreneurship, rather 

than necessity-based entrepreneurship in their regions.  

 

5.1 DATA 

I use Goetz and Rupasingha’s (2008) model as a starting-point for my model because 

it is the state-of-the-art model and incorporates the findings of other regional 

entrepreneurship models. Explanatory variables are drawn from literature on the 

determinants of entrepreneurship, and address individual and regional characteristics 

associated with entrepreneurial activity. These explanatory variables also reflect findings 

of prior work on modeling regional self employment and establishment birth rates (Evans 

and Leighton, 1989; Parker, 1996; Lee et al., 2004).  

 

5.1.1 Independent Variables 

Like other models (Lee et al., 2004; Acs et al., 2006), Goetz and Rupasingha’s 

dependent variable is expressed as a function of demographic,Ω , regional, Ψ , and 

policy variables, Γ , Equation (5.1). 

(5.1)  ( , , ) ( )i i i i i iy f f β ε= Ω Ψ Γ = +X  

Goetz and Rupasingha (2008) use lagged explanatory variables to reduce the 

endogeneity bias and show that at least some of the causality flows from explanatory 

variables to self employment. Goetz and Rupasingha examine growth in nonfarm 

proprietorships between 1990 and 2000, but I use 2000 as the base year and examine 
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Entrepreneurial Industries over the most recent business cycle, in part, because I found 

unusually robust growth during the 1990s affected test results.  

 

5.1.1.1 Demographic variables Ω  

In Equation (5.1), Ω  represents collateral, human capital, and other demographic 

characteristics. Collateral facilitates borrowing capital and represents the ability of 

nascent entrepreneurs to obtain financing for entrepreneurial ventures; thus, I expect to 

find a positive coefficient (Goetz and Freshwater, 2001). A county’s median home value, 

HomeValue, suggests the overall level of collateral available for a loan, while the rate of 

owner occupied homes, HomeOwn, gives the share of people who have the collateral 

available to them (Table 5.1).  

Measures of high school and college educational attainment are included in the 

model to control for human capital’s role in determining entrepreneurship rates, and I 

expect this relationship to be positive (Evans and Leighton, 1989; Audretsch and Fritsch, 

2002). I control for human capital with the percent of adults, over age 25, who are college 

educated, College, and percent of adults who graduated from high school or receive a 

GED, but not college, HS. I use both because I am interested in the hypothesis that 

education has a U-shape relationship with entrepreneurship (Goetz and Rupasingha, 

2008). 

Goetz and Rupasingha include age, ethnicity, and gender because research 

suggests entrepreneurs are more likely to be male and older than the general population 

(Goetz and Freshwater, 2001). To control for these relationships, the model includes the 

percent of the population that is Caucasian, White, the county median age, MedAge, and 

the female percentage of the labor force, Female.  

 

5.1.1.2 Regional variables,Ψ  

Financial capital, labor market, economic structure, and other place-based 

characteristics are represented by Ψ  in Equation (5.1). Local bank deposits per capita 

give insight on the region’s availability of financial capital, particularly in rural areas 

where venture capital does not usually exist (Garofolli, 1994; Low et al., 2005). 

DeposPop measures how much money local banks have on hand for small business loans 
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and, although loan decisions are increasingly made with score-carding or at distant 

headquarters, this variable is useful in assessing financial capital’s availability on past 

entrepreneurship. The Federal Deposit Insurance Corporation make these data available 

annually for all counties, and this is one of the few county-level datasets on the 

availability of financial capital (Table 5.1).   

The unemployment rate, Unemp, and its square, UnempSq, are widely used in 

growth and entrepreneurship models; I include both due to expected nonlinearities in the 

coefficient. Parker (1996) hypothesizes that low unemployment “pulls” people into 

entrepreneurship due to the buoyant regional economy and high probability of success. 

Conversely, high unemployment can also lead to entrepreneurship because people are 

“pushed” into entrepreneurship due to a lack of wage and salary job opportunities, e.g., 

the jobless recoveries following the 1991 and 2001 recessions.  

I use average wage and salary income, WSinc, as a proxy for available income. I 

argue average wage and salary income represents the opportunity cost of leaving wage 

and salary employment to enter self employment or start a new business—the tradeoff 

many nascent entrepreneurs face (Low and Weiler, 2008). I also include growth in wage 

and salary income, WSincGro, because the level is affected by past economic conditions 

and the change reflects current economic conditions, which affect the decision to enter 

self employment.  

I include a set of industry employment variables after ensuring there is no 

collinearity between industry employment and the Entrepreneurial Industries indicators, 

although both are based on industries. I include percent employment in Ag, agriculture 

and forestry, Mining, NonDurManu, non-durables manufacturing, DurManu, durables 

manufacturing, Trade, wholesale and retail trade, Visitor, recreation, arts, 

accommodation, and food services, and Services, information, finance, insurance, real 

estate, and professional, scientific, and technical services. Other industries are the omitted 

condition.  

Entrepreneurial Industries is higher in metropolitan areas and amenity-driven 

places, so I control for both. I include a dummy variable, Nonmetro, to test whether the 

nonmetro status of a county affects entrepreneurship and control for this expected 

relationship. I control for the attractiveness of place using McGranahan’s (1999) amenity 
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index, Amenity. The index includes measures of topography, weather, and water, and I 

expect it to be positive because others have found footloose entrepreneurs are attracted to 

regions with natural and scenic amenities. Additionally, Entrepreneurial Industries is high 

in amenity-driven regions such as Florida and the Rocky Mountains.  

Finally, I include the level of the dependent variable in the growth model, 

Equation 5.9, to control for the existing base of entrepreneurs. Goetz and Rupasingha 

include variables on the relative risk and return of their dependent variable, self 

employment. Data on the risk and return of Entrepreneurial Industries are not available, 

publically, for counties, and the relative risk of Entrepreneurial Industries is a part of the 

definition (churn), so I do not include variables on the relative risk and return of 

Entrepreneurial Industries in the model.  

 

5.1.1.3 Policy variables, Γ  

I use a state income tax index to represent the policy vector, Γ , in this model 

because the majority of self employed and establishment births revenue flow through 

individual income taxes and comparing state tax policies other than on income is 

difficult. The Individual Income Tax index, Tax, is from the Tax Foundation and is an 

index with a scale of zero to ten; zero being the worst and 10 being the best. The Tax 

Foundation’s background paper on tax indices contains more, detailed information on this 

variable (Barro, 2008).  

I think Goetz and Rupasingha’s state-level policy vector is too aggregated to be 

meaningful and makes interpreting the coefficient difficult.9

                                                   
9 I do not use the Business Tax Climate Index, which is used in several other determinants studies, 

because all self employed businesses’ revenue flows through individual income taxes and the majority of 
establishment births flow through individual income taxes (S-Corporation, Partnerships, and Sole 
Proprietorships are all taxed via individual income taxes, leaving only C-corporations). I do not know the 
legal form of establishments in my birth data, but the Brookings Institution reports that only 7.1 percent of 
small business returns are from C-corps. Thus, if 92.1 percent of small businesses have their revenue taxed 
via individual taxes, then the Individual Income Tax Index may be more appropriate than the Business Tax 
Index. Higher taxes increase entrepreneurship because the potential to evade taxes is higher (Parker, 1996); 
however, high taxes may reduce entrepreneurship because of higher personal and self employment taxes, 
therefore, the expectation of the coefficient sign is ambiguous. 

 Goetz and Rupasingha use 

state-level indices of economic freedom, which measure the size of government, taxation, 

and labor market freedom. I think the Individual Income Tax index is more relevant for 
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the self employed and new/small firms because income tax affects all firms but 

government size, regulations, and labor policies, in aggregate, are marginally relevant. 

Table 5.1 contains all the explanatory variables used in my model, their 

description, source, and summary statistics. I also include whether the same variable was 

used by Goetz and Rupasingha, or if not, what variable was used in Goetz and 

Rupasingha’s model. 

 

Table 5.1 Explanatory Variables for Entrepreneurship Model 

 
 

5.1.2 Dependent Variables 

I examine both the level of entrepreneurship and entrepreneurship growth over the 

most recent business cycle using Entrepreneurial Industries. I examine growth between 

2001 and 2006 because data for Entrepreneurial Industries are not available prior to 1997, 

precluding analysis of the 1991-2001 business cycle. Descriptive statistics for all 

dependent variables are in Table 5.2.  

  Data to calculate change in births are not available, so I evaluate the determinants 

of the level of Entrepreneurial Industries using the Entrepreneurial Industries indicators 

 Goetz & 
Rupasingha Explanatory Variables Source Mean StD Min Max

same HomeValue % of residences which are owner occupied # 82806.1 46280.5 0 1E+06
same HomeOwn Median home value ($) # 0.742 0.073 0.196 0.899
same College % >25 years with a 4-year college degree # 0.163 0.075 0.049 0.605
same HS % >25 years high school diploma, highest degree # 0.349 0.065 0.109 0.532
same MedAge Median age # 37.3 3.9 20.6 54.3
same Female % female # 0.458 0.021 0.231 0.541
same White % white # 0.851 0.159 0.050 1.000

PCI WSinc Average wage and salary income * 20.6 5.6 0.0 68.6
Change in 

PCI WSincGro Average wage and salary income * 0.493 0.382 -0.527 11.086
same DeposPop Bank deposits ($1000) per capita FDIC 0.012 0.014 0.000 0.480
same Unemp % unemployed # 0.048 0.026 0.000 0.277
same UnempSq Unemp squared # 0.003 0.004 0.000 0.077
same Nonmetro non-metropolitan OMB 0.662 0.473 0.000 1.000
same Amenity McGranahan's amenity scale see text 0.056 2.316 -6.400 11.170
same Ag % of employed in agriculture & forestry # 0.063 0.071 0.000 0.556
same Mining % in mining # 0.012 0.027 0.000 0.456
same NonDurManu % in nondurable manufacturing # 0.071 0.051 0.000 0.431
same DurManu % in durable manufacturing # 0.089 0.064 0.000 0.420
same Trade % in retail and wholesale trade # 0.145 0.025 0.017 0.299
same Visitor % in arts, recreation, food, and accommodation # 0.106 0.044 0.000 0.411
same Services % in information, FIRE, Prof & Sci Services # 0.071 0.033 0.000 0.364

Economic 
freedom 

index Tax Individual Income Tax index, FY July 2005 see text 5.8 2.0 2.0 10.0
All data are 2000, unless otherwise noted
* Bureau of Economic Analysis, Regional Economic Information System (REIS)
# Decennial Census of Population, 2000
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discussed in Chapter 4, EI_birth/pop and EI_se/emp, as well as Prop, the nonfarm 

proprietorship, or self employment, rate for discussion purposes.  

To examine the determinants of growth in entrepreneurship, my dependent 

variables are EI_se_chg and Prop_chg, which are the change, or growth, in EI_se/emp 

and Prop (Table 5.2). Goetz and Rupasingha calculate their dependent variable, the 

proprietor growth rate, as the proprietorship rate at time t+1  minus the proprietorship 

rate at time t (Equation 5.2), and I calculate my dependent variables the same way 

(Equation 5.3).  

Table 5.2 Dependent Variables 

 
 

(5.2) 00 00 90 90/ /proprietor prop totemp prop totemp∆ = −   

(5.3) 2006 2001 2006 2001_ _ _ / _ /y EI se EI se EI se totemp EI se totemp∆ = − = −  
 

5.2 MODEL 

In initial OLS estimations, I find no evidence of multicollinearity but do find 

evidence of heteroskedasticity. The Breusch-Pagan (BP) test for heteroskedasticity rejects 

the null hypothesis of no heteroskedasticity in the error terms, BP=575.06 and p <0.0001. 

Heteroskedasticity in the OLS model is one of the first indicators that the errors contain a 

spatial process. Based upon visual heteroskedasticity in the map of the dependent 

variables (Figure 4.5, 4.6) and the map of the OLS residuals (Figure 5.1), it appears that 

spatial processes may be driving the heteroskedasticity. The Moran’s I, a test statistic for 

spatial autocorrelation, is positive and significant (p=0.019), indicating spatial processes 

in OLS residuals. 

Dependent Variables Mean StDev Min Max
Y EI_se/emp EI applied to self employment data" /nonfarm employment* 0.0034 0.0022 0.0000 0.0190
Y EI_birth/pop EI applied to births% /population*, 3-year MA 1999-2001 0.00008 0.00007 0 0.00071
Y Prop nonfarm proprietor employment*/total nonfarm employment* 0.247 0.093 0.030 0.710
Y t-(t-1) EI_se_chg EI_se/emp2006-EI_se/emp2001 0.0019 0.0016 -0.0043 0.0148
Y t-(t-1) Prop_chg Prop2006-Prop2001 0.0316 0.0394 -0.2093 0.3976
Y ST2 ST2 industries applied to self employment data" /nonfarm emp* 0.008 0.005 0 0.040
Y STP STP industries applied to self employment data" /nonfarm emp* 0.012 0.007 0 0.075
* Bureau of Economic Analysis, Regional Economic Information System (REIS)
" Bureau of Census, Nonemployer Statistics, 2006, unless otherwise noted
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Figure 5.1 OLS Residuals* 
*Virginia excluded due to missing data 

 

5.2.1 Spatial Econometric Model Specification 

Spatial processes are common in U.S. county-level models and more resent 

research usually attempts to control for it using spatial econometrics, including Goetz and 

Rupasingha (2008). They, however, incorrectly specify their spatial econometric model 

and interpret non-identified coefficients. I correct this problem and estimate the correct 

model.  

Goetz and Rupasingha use the General Spatial Model (SAC) spatial econometric 

model that incorporates both spatial error and spatial lag terms (Equation 5.4). Employing 

such a model, however, often leads to identification problems and should be avoided 

unless strong theoretical reasons exist (Florax and Rey, 1995). 10

                                                   
10 Detecting the presence of both spatial error and spatial lag processes is difficult because the LM test 
tends to be significant when either the error or the lag alternative hypothesis is proper, but not necessarily 
both, due to the specified null hypothesis (Anselin, 2008b). The LM test with alternative hypothesis of a 
higher order alternative model, with both a spatial error and a spatial lag term is possible; however, 
rejection of the null of this test does not necessarily imply that the higher order model is the proper 
alternative. In many cases, re-specification of the spatial W matrix can change the LM test results. 

 Both nuisance (error) 

  

>2 St. Dev above Mean

Below Mean

1-2 St. Dev above Mean

Mean to 1 St. Dev above mean
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errors and substantive (lag) errors exist in most U.S. county-level models, but one 

dominates the other and only the dominant type of spatial dependence should be 

controlled for with the appropriate model, e.g., Spatial Error Model (SEM) (see Appendix 

B, Equation B.1) or the Spatial Autoregressive Model SAR (Appendix B, Equation B.2). 

Higher-order models, like SAC, attempt to control for both the nuisance (error) and 

substantive (lag) dependence. Higher-order spatial models, however, can lead to 

identification problems that can be controlled for by using either the lag or error model, 

but not both. 

I illustrate the problem with Goetz and Rupasingha’s model. In time-series 

analysis, the SAC model, Equation 5.4, is similar to a first-order autoregressive model 

with serially correlated errors. The SAC spatial model is much more complex, however, 

and requires great care to ensure proper identification (Anselin, 2008a). If 1 2W W= or the 

spatial weights are not correctly specified the weights matrix is in both the error term and 

an explanatory variable—creating a substantial identification problem (Anselin, 2008b).  

(5.4a) 1Y W Y Xρ β ε= + + , where 

(5.4b) 2W uε λ ε= + , with 2~ (0, )nN Iµ σ . 

Following Anselin (2008a), I rewrite the SAC model to illustrate the identification 

problem: 

(5.5)  1 2 2 1 2y W y W y W W y X W Xρ λ ρλ β λ β µ= + − + − + . 

If 1 2WW  are non-overlapping ( 1 2WW =0), we have: 

(5.6) 1 2 2y W y W y X W Xρ λ β λ β µ= + + − + . 

In practice, however, the same W is often used. Goetz and Rupasingha use the same W 

matrix for both, the k=3 nearest neighbors matrix. Thus, 1 2W W= . Rearranging: 

(5.7)  2( )y Wy W y X WXρ λ ρλ β λ β µ= + − + − +  

When β  =0 this model, Equation 5.7, is not identified (Kelejian and Prucha, 1998). 

Goetz and Rupasingha have some zero coefficients, which results in the entanglement of 

rho and lambda (Anselin, 2008a).  

To address the identification problem, the weights matrices could be re-specified 

(Wojan et al., 2007), or a procedure for interpreting LM tests should be followed (Florax 
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and Rey, 1995; Appendix B.4). If Florax and Rey’s (1995) method is adopted, the 

dominant type of spatial dependence is controlled for and the identification problems and 

W specification problems are avoided. Wojan et al. (2007) do not follow Florax and 

Rey’s procedure, but address the problem by using social weights and geographic 

weights to specify 1 2W W≠  in a higher-order model, circumventing the non-overlapping 

weights problem, but requiring novel solutions to define the same neighbors in different 

ways. This approach is rarely used because the parameters in social/spatial interaction 

models are identified only under strict conditions (Manski, 1993; Anselin 2008a) and a 

mis-specified W matrix could change the alternative hypothesis of the LM test (Florax 

and Rey, 1995). Finally, re-specification of the weights matrix may eliminate the need for 

the SAC model, or any higher-order spatial model.  

Goetz and Rupasingha do not use the LM test (see Appendix B), rather they use 

the SAC model and validate ex-post when they find rho and lambda are statistically 

significant. They write a lengthy interpretation of the rho and lambda coefficients, but 

this interpretation is invalid due to the identification problem discussed above.  

Because Goetz and Rupasingha’s spatial model specification is flawed, I follow 

Florax and Rey’s (1995) LM procedure. This procedure identifies the spatial error 

process as dominant, thus the Spatial Error Model (SEM) is the appropriate spatial 

econometrics model. The SEM model is identical to the OLS specification, but I specify 

the non-spherical error term, ε , as:  

(5.8) W uε λ ε= + where ~ . . .u i i d  

 

5.2.2 Estimated Equations 

I estimate a series of entrepreneurship models using SEM structure and a 

maximum likelihood estimator. I begin with the growth equation, which includes the 

lagged level of entrepreneurship (Equation 5.9), and I use EI_se_chg, Prop_chg, and 

Prop_chg90s, Prop_chg calculated as change between 1990 and 2000 as dependent 

variables.  
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(5.9)    
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 For the level dependent variable, I estimate the same model without the lagged-

level (Equation 5.10). Dependent variables for the initial estimation include the 

EI_se/emp, EI_birth/pop, and Prop. 

(5.10) 
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5.3 RESULTS AND SENSITIVITY ANALYSIS 

5.3.1 Base Model: Growth in Entrepreneurship 

I estimate the entrepreneurship growth model with Equation 5.9. Data for 

calculating growth in Entrepreneurial Industries applied to births are not available, so 

results are based on the estimation of change in Entrepreneurial Industries self 

employment between 2001-2006, EI_se_chg. A summary of results is presented in Table 

5.3, and the full set of results is available in Appendix C. 

Results suggest that natural amenities, access to financial collateral, and location 

in metropolitan statistical areas are the best predictors of growth in EI_se_chg in the 

model (Table 5.3, Model 1). The positive and significant (0.05) sign on Amenity affirms 

work by McGranahan and Wojan (2007) that argued amenities attract knowledgeable and 

skilled workers. I expected Amenity to have a positive relationship with Entrepreneurial 

Industries growth because these knowledgeable and skilled people are more likely to be 



 

76 
 

innovative and entrepreneurial. Many studies have found that access to capital increases 

growth in entrepreneurship (Garofolli, 1994), and I do not find evidence to reject this 

hypothesis. Coefficient signs on home ownership and median home value were positive 

and significant (0.01), suggesting that where housing values are higher and more people 

owned a home, in 2000, Entrepreneurial Industries grew more. Correlations and spatial 

data analysis found Entrepreneurial Industries was highest in metropolitan counties, and 

the negative and significant coefficient on Nonmetro affirms the statistical significance of 

these findings. 

Human capital, demographic, and seed capital variables behaved differently than 

expected. Prior work suggests that entrepreneurs are older, more likely to be male, 

educated, and Caucasian that the population as a whole. I find a negative coefficient on 

MedAge, a positive coefficient on Female, and a zero coefficient on White, suggesting 

that growth in Entrepreneurial Industries might be via non-traditional entrepreneurs who 

are younger, female, and less educated. These demographics are also characteristic of 

cities, so it is possible that Nonmetro did not control for these characteristics. Similarly, 

the negative coefficient on College may reflect that a larger percent of city residents are 

college educated, and Entrepreneurial Industries growth is highest outside these areas 

because the high school educated are necessary employees for the entrepreneur. Finally, 

the negative coefficient sign on DeposPop can be attributed to more financial 

sophistication in areas of high Entrepreneurial Industries growth—less local bank 

deposits could indicate more investments in the stock market, the business itself, or other, 

more sophisticated financial instruments. In conclusion, theoretically inconsistent 

coefficient signs signal the need for cautious interpretation of the results.  

I found no relationship between unemployment and Entrepreneurial Industries 

growth. Although other studies have found a relationship between unemployment and 

entrepreneurship (Parker, 1996), my finding results from excluding necessity-based 

entrepreneurs from my entrepreneurship indicator.  

Growth in wage and salary income during the 1990s had a positive coefficient 

while the level of wage and salary income had a negative coefficient. To explain the 

negative coefficient, I must assume that where wage and salary incomes were high there 

was less incentive to innovate or take the risks required to become an entrepreneur. The 
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positive coefficient sign on wage and salary income growth during the 1990s suggests the 

region, as a whole, is experiencing economic growth and prosperity.  

For a comparison, I run the same regression using Goetz and Rupasingha’s 

dependent variable, growth in nonfarm proprietorships, Prop_chg (Table 5.3, Model 2), 

and I found a major difference in the determinants of Prop_chg and EI_se/emp. Indeed, 

the only significant coefficient that had the same sign as in Model 1 was Nonmetro, 

indicating that growth in both Entrepreneurial Industries and self employment was higher 

in metro counties than nonmetro counties. One difference of interest is the coefficient 

sign on Amenity; it had a negative coefficient whereas it is consistently positive and 

significant in the EI regressions, suggesting growth in self employment occurs in low-

amenity areas. The adjusted R-square11

Because my 2001-2006 results differ from Goetz and Rupasingha’s, I run my 

model using Prop_chg_90s as the dependent variables and 1990 explanatory variables 

(Table 5.3, Model 3). Although Goetz and Rupasingha use the same dependent variable, 

my results are very different, likely because I corrected the spatial econometric model 

specification. Wage and salary income, and its growth all have a negative coefficient, 

suggesting growth in self employment during the 1990s was highest in areas that featured 

low wages and little or no growth in wages—all features of necessity-based 

entrepreneurship. Fit was higher for the 1990-2000 model proprietor growth model than 

the 2001-2006 model (adjusted R-square=0.099, 0.042, respectively), likely due to the 

tremendous growth over the 1990-2000 period. This difference shows that regression 

results can vary with the selected time period, which might explain some of the many 

discrepancies in entrepreneurship model results. 

 for Prop_chg (model 2) is 0.042, but the adjusted 

R-square is four times as high, 0.173, for the EI_se_chg model (model 1), which suggests 

variables, such as financial collateral and amenities, may help drive innovative 

entrepreneurship.  

 

 

                                                   
11 I report the adjusted R-square of the OLS regression because the pseudo R-square from the Maximum 
Likelihood Estimation (MLE), correlation between response and fitted variables, is only a rough estimate 
of the explanatory power of the model, and does not have the same meaning that the R-square of a linear 
model has—making interpretation of the pseudo R-square difficult.  
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Table 5.3 Determinants of Growth in Entrepreneurial Industries and Entrepreneurship 

 
 

5.3.2 Determinants of the Entrepreneurial Industries Level 

I model the level of entrepreneurship, EI_se/emp and EI_birth/pop, using the 

specification in Equation 5.10. By examining the results of Entrepreneurial Industries 

applied to both self employment and births, I hope to understand the drivers of both the 

stock of individual entrepreneurs and the flow of entrepreneurial establishments. A full 

set of results are in Appendix C. 

In both models, Amenity, College, financial collateral, and growth in wage and 

salary income have a positive relationship with the level of Entrepreneurial Industries 

(Table 5.4). Like the growth model, Amenity has a positive and significant (0.01) 

relationship with Entrepreneurial Industries, suggesting that innovative entrepreneurs live 

and work in pleasant and/or scenic places. The percent of adults with a college education, 

Model 1 Model 2 Model 3

EI_s
e_

ch
g

Prop
_c

hg

Prop
_c

hg
_9

0s

Exp
ect

ati
on

HomeValue + +
HomeOwn + +
College - +
HS - +/-
MedAge - + +
Female + -
White - +
WSinc - - +/-
WSincGro + - +/-
DeposPop - +
Unemp +/-
UnempSq +/-
Nonmetro - - - -
Ag + +
Mining +/-
NonDurManu + +/-
DurManu + +/-
Trade +/-
Visitor +/-
Services + +
Amenity + - +
Tax +/-
Level of Y - + - +/-
Adj. R^2* 0.173 0.042 0.099
*OLS R-square, not pseudo R-square
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College, is also positively related to Entrepreneurial Industries, but without data on 

individual entrepreneurs I cannot tell if the entrepreneurs themselves have college 

educations, or it the entrepreneurs live/operate near a skilled labor force. Percent of adults 

with a high school diploma was insignificant. Results suggest the availability of financial 

collateral, HomeValue and HomeOwn, and growth in wage and salary incomes, 

WSincGro, contribute to the level of Entrepreneurial Industries, suggesting that 

Entrepreneurial Industries is higher in socioeconomically advantaged counties. 

Unemployment variables were insignificant in both models, as expected, and observed in 

the Entrepreneurial Industries growth model. 

The dummy variable for nonmetropolitan counties is insignificant in the 

EI_birth/pop model, although it is negative in the EI_se/emp model and the 

Entrepreneurial Industries growth models. I expected the coefficient sign to be negative 

because Entrepreneurial Industries was higher in metro counties. I do not find evidence of 

multicollinearity, which could lead to a wrong coefficient sign, so I conclude that, on the 

aggregate, Entrepreneurial Industries births are not significantly different in metro and 

nonmetro counties.  
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Table 5.4 Determinants of Entrepreneurial Industries and Entrepreneurship  

 
 

The individual income tax index has a positive coefficient in the birth model, 

suggesting the lower the state income tax burden on individuals, the higher the level of 

Entrepreneurial Industries births. This coefficient was insignificant in the 

entrepreneurship growth model though, perhaps because the self employed are more 

interested in the tax advantages associated with small business ownership that they are 

about the additional tax burden. 

Coefficient signs on demographic variables are mixed. Median age has a positive 

coefficient in the Entrepreneurial Industries birth model but a negative coefficient in the 

Entrepreneurial Industries self employment model, while Female and White are positive 

in the Entrepreneurial Industries self employment model but insignificant in the 

Entrepreneurial Industries birth model. The coefficient on DeposPop is also mixed. 

Model 4 Model 5 Model 6

EI_s
e/e

mp

EI_b
irt

h/p
op

Prop
 

expect
atio

n

HomeValue + + + +
HomeOwn + + +
College + + + +
HS +/-
MedAge - + + +
Female + - -
White + - +
WSinc - - +/-
WSincGro + + - +/-
DeposPop - + +
Unemp - +/-
UnempSq +/-
Nonmetro - - -
Ag - + +
Mining +/-
NonDurManu - +/-
DurManu +/-
Trade - +/-
Visitor + + +/-
Services - - +
Amenity + + +
Tax + +/-
Adj. R^2* 0.357 0.398 0.511
*OLS R-square, not pseudo R-square
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Mixed signs do not tell us much about entrepreneurship as a whole, but I think they 

signal differences between the stock of self employed and the flow of establishment 

births. Mixed coefficient signs also suggest that modeling entrepreneurship does not 

always lead to definitive results, and my results should be interpreted as such. 

For a comparison, I use Prop as a dependent variable in the same equation (see 

Table 5.4, model 6). Financial collateral and human capital variable coefficients are the 

same in both the Entrepreneurial Industries and Prop models, suggesting these positive 

relationships are robust to different entrepreneurship measures. Coefficients signs on 

other measures, however, including demographics, are opposite and do not tell us much 

about entrepreneurship. The coefficient on Amenity is insignificant. Finally, the 

relationship between proprietorships and income growth is negative, but positive for 

Entrepreneurial Industries and income growth; this finding suggests that self employment 

occurs in lower income counties, perhaps due to necessity rather than to bring innovation 

to the market.  

 

5.3.3 Sensitivity of Results to Choice of Innovation Industries 

Sensitivity of my results to the method used to select innovative industries is 

important because, given the differences between Entrepreneurial Industries and self 

employment results, I want to ensure my results are independent of the Entrepreneurial 

Industries method.  Using ST2 and STP as dependent variables, I run Equation 5.10; all 

but one estimated coefficient are the same in sign and significance (Table 5.5). 

Coefficient signs for ST3 (model 4) and ST2 (model 7) models are identical and only 

College differs in the STP model (model 8). The coefficient on College is negative, likely 

due to the dominance of manufacturing industries in STP because manufacturing 

establishments generally need skilled laborers for assembly, but not necessarily a college 

educated labor force. Results summarized in Table 5.5 suggest regression results 

discussed in Section 5.3.2 are insensitive to the choice of specific industries. Full results 

are available in Appendix C. 
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Table 5.5 Comparison of Results From EI Methodologies 

Model 7 Model 8 Model 4

 

ST2
STP

EI_s
e/e

mp 

(ST3)  
 

HomeValue + + +
HomeOwn + + +
College + - +
HS
MedAge - - -
Female + + +
White + + +
WSinc - - -
WSincGro + + +
DeposPop - -
Unemp
UnempSq
Nonmetro - - -
Ag - - -
Mining
NonDurManu +
DurManu
Trade
Visitor +
Services - - -
Amenity + + +
Tax +
R-square 0.542 0.346 0.357  

 

5.4 CONCLUSION 

I found financial collateral, income growth, being in a metro area, and natural 

amenities drive regional entrepreneurship. These findings are a stark contrast to results 

using self employment to measure entrepreneurship. In short, regression results vary with 

the entrepreneurship metric used, leading to mixed and sometimes theoretically 

inconsistent results. Coefficient signs on demographic variables, in particular, had little or 

no consistency between models. Differences are likely due to the exclusion of necessity-

based entrepreneurs. My findings illustrate the problems with using entrepreneurship 

model results to identify economic development and policy strategies. Mixed and 

theoretically inconsistent coefficient signs signal the need for cautious interpretation of 

the results.  
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Results also vary with the time period used. Tremendous growth in the 1990s 

likely created the differences in coefficient sign and fit between the 1991-2001 and 2001-

2006 models of self employment. This difference raises concerns about the usefulness of 

entrepreneurship model results for creating policy recommendations and might explain 

some of the discrepancies among different models’ results (Bruyat and Pierre-Andre, 

2000; Tamasy, 2006). 

Results suggest that different entrepreneurship metrics and time periods fuel 

policymaker confusion, making it difficult to discern valuable findings and questionable 

findings (Tamasy, 2006). Rather than continually tweaking models and metrics, I think 

future research on the determinants of entrepreneurship should be region-specific and 

policy recommendations based on regional strengths and weaknesses, using these 

regression results as only a starting point. I do not think we can learn much more from 

modeling entrepreneurship than we already have. 
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CHAPTER 6: ENTREPRENEURIAL INDUSTRIES: 

REGIONAL GROWTH MODEL 

 

The widely held belief that entrepreneurship and long-term regional employment 

growth are correlated (Acs and Armington, 2003) has spurred a growing body of research 

examining the consequences of entrepreneurship on regional growth. An innovation-

entrepreneurship-growth nexus is widely touted, yet it has not been established 

empirically (SBA, 2005). Omitting innovation from entrepreneurship measures has 

handicapped this growing body of research.  

Recent research suggests entrepreneurship is a vehicle for incorporating human 

capital, research and development, and innovation into the economy (Acs et al., 2004; 

Glaeser, 2006). McGranahan, Wojan, and Lambert (2009) build on these ideas and 

examine how the nexus between entrepreneurship and creative class affects economic 

growth. They develop a model of county growth incorporating amenity levels and test to 

what extent the entrepreneurship and human capital drives nonmetropolitan growth in the 

presence of different amenity levels.  

I use McGranahan et al.’s growth model as a starting point for my model because 

it is a parsimonious and state-of-the-art model that accounts for the nexus between 

amenities, skills, entrepreneurship, and growth. I proceed by discussing the model and the 

entrepreneurship metrics employed, which include Entrepreneurial Industries and 

McGranahan et al.’s entrepreneurship measures. I find Entrepreneurial Industries have a 

robust, positive relationship with economic growth and conclude that the best way of 

advancing entrepreneurship policy and practice is to use what we have already learned to 

start building region-specific solutions. 

 

6.1. MODEL 

McGranahan, Wojan, and Lambert’s (2009) model differs from previous growth 

models by recognizing that knowledge and creativity are not intrinsic characteristics of 

places. They test whether the interaction between creative capital, a proxy for knowledge 

and talent, and entrepreneurship explains variation in nonmetro county growth, 

particularly in the context of different place-based amenity levels.  
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McGranahan et al. (2009) posit that outdoor amenities attract talent, but 

entrepreneurship is necessary to incorporate this talent (or set of skills and knowledge) 

into the economy to create growth in establishments, jobs, start-ups, and the creative 

class. McGranahan et al. find counties with a higher proportion of creative class and 

entrepreneurship experienced more growth during the 1990s than other counties. Results 

suggest the entrepreneurship/creative class nexus is particularly strong in high amenity 

areas, e.g., mountainous and coastal areas, but the relationship is less relevant in low 

amenity areas, e.g., the Great Plains. 

McGranahan et al.’s model provides a solid foundation for my model because it is 

relatively parsimonious; authors found simultaneous estimation was unnecessary and this 

enables me to simplify the model and its interpretation so I can focus on the richness of 

my results. Finally, McGranahan et al.’s model incorporates two of the most popular 

measures of entrepreneurship—self employment and the establishment rate, so 

substituting-in Entrepreneurial Industries is a natural modification to the model.12

 

  

6.1.1. Explanatory Variables 

I model growth as a function of Ρ , local resources (including entrepreneurship), 

Λ , labor market characteristics, ϒ , urban influence, Σ , industry sectors, ∆ , 

demographic characteristics, Ι , institutions, and Α , amenities (Equation 6.1). Table 6.1 

contains variable definitions, sources, and summary statistics. All explanatory variables 

are for the year 2000, unless otherwise noted. 

(6.1) 06 01 ,Growth ε− = Ρ + Λ + ϒ +Σ + ∆ + Ι + Α+  

 

6.1.1.1 Local resources vector, Ρ , and test variables 

 Rho, Ρ , represents the vector of local resources and includes the test variable, 

entrepreneurship (Table 6.1, denoted in grey). Entrepreneurial Industries variables are 

                                                   
12 McGranahan et al test, independently, two measures of entrepreneurship—self employment and the 
establishment rate. Self employment is one of the most widely used measures of entrepreneurship but it 
overestimates entrepreneurship because it does not capture the innovative component of entrepreneurship. 
The establishment rate is the ratio of establishments to employees, the inverse of the widely used average 
employee per establishment measure of entrepreneurship. This measure is problematic because it does not 
capture innovation, risk, and uncertainty.  
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EI_se/emp and EI_birth/pop, and both are discussed in detail in Chapter 4. Both are better 

indicators of entrepreneurship than widely used metrics because they capture innovation, 

a key component of entrepreneurship (Schumpeter and Opie, 1983). 

Other variables in the local resources vector include percent recast creative class, 

Creative, as discussed in McGranahan and Wojan (2007), percent of adults over 25 with 

a high school diploma, HS, and the percent of adults over 25 with a four-year college 

degree, College, to control for the level of human capital. Creative and the 

entrepreneurship variable are standardized to aid interpretation, and I expect them to have 

positive coefficients (McGranahan et al., 2009). Finally, the interaction between Creative 

and the entrepreneurship measure is included because it is McGranahan et al.’s test 

variable. 

Lambda,Λ , represents the vector of labor market explanatory variables and 

includes the employment rate, EmpRate, and median household income, MedInc. 

McGranahan et al. (2009) used the employment rate rather than the unemployment rate, 

arguing that underemployment and discouraged workers often skew the unemployment 

rate downward in rural areas. Although discouraged workers also affect the employment 

rate, McGranahan et al. argue that it is less affected by them. 

Upsilon, ϒ , represents the vector of urban influence variables and includes 

population density, PopDen, the percent of workers working outside the county, 

Commute, and a dummy variable for metropolitan counties, Metro. This vector is 

included because previous research indicated that growth is higher in densely settled 

areas, likely due to larger labor pools (McGranahan and Wojan, 2007). 

Sigma,Σ , represents the vector of industry employment variables. Industry 

employment is calculated as the percent of employed persons employed in each industry. 

The model includes Ag, agriculture and forestry, Mining, NonDurManu, non-durables 

manufacturing, DurManu, durables manufacturing, Trade, wholesale and retail trade, 

Visitor, recreation, arts, accommodation, and food services, and Services, information, 

finance, insurance, real estate, and professional, scientific, and technical services. Other 

industries are the omitted condition. InnovEmp, the percent of employment in innovative 

industry establishments, controls for the presence of innovative industries in each county, 
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and ensures my test variable only captures the nexus between innovative industries and 

entrepreneurs.  

Delta, ∆ , represents the vector of demographic variables. The population aged 8-

17, Pop8-17, represents the future labor force, population over the age of 62, Pop62, 

controls for areas that attract many retirees, and percent black, PctBlack, percent Native 

American, PctNA, and percent Hispanic, PctHis are included because different groups 

may have different opportunities and proclivities to engage in economic activity 

(McGranahan et al., 2009). 

Iota, Ι , represents the vector of institutional variables, which control for 

employment affects due to the presence of large institutions. Institutional variables 

include Military, percent aged 18-24 who are serving in the armed services, and the 

percent of the population aged 18-62 who are currently enrolled in higher education, 

CollegePop. 

Alpha, Α , represents the vector of amenity variables, outdoor amenities, 

OutAmen, and public land, PubLand. The outdoor amenities variable is similar to the 

widely used amenity variable (McGranahan, 1999), but it includes landscape—percent 

forest and its square—because recent literature indicates landscape preference for 

partially forested areas (McGranahan, 2008). For details on how OutAmen is constructed, 

see McGranahan et al. (2009). PubLand is the percent of land in each county publically 

owned, based on a survey by the U.S. Forest Service. 

Finally, I include the lag of the three dependent variables, change in 

establishments, EstabChg90, change in jobs (nonfarm employment), JobChg90, and 

change in population, PopChg90. State fixed effects are included, and Alabama is the 

omitted condition.  
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Table 6.1 Explanatory Variables for Growth Model 
Explanatory Variables Source Mean StD Min Max

Entrepreneurship  Test Variables (all are standardized)
SelfEmp nonfarm proprietor employment/total nonfarm employment * -1.9E-10 1 -3.8171 6.809

Estab/Emp private nonfarm establishments/private nonfarm employment ^ 8.9E-10 1 -2.4467 5.110
EI_se/emp EI applied to self employment data" /nonfarm employment* see text 6.6E-09 1 -0.8237 5.822

EI_birth/pop EI applied to births% /population*, 3-year MA 1999-2001 see text 3.1E-09 1 -1.1490 10.008
ST2 ST2 industries applied to self emp data" /nonfarm emp* see text 4.8E-09 1 -0.9415 6.302
STP STP industries applied to self emp data" /nonfarm emp* see text 7.2E-09 1 -0.8142 5.873

Creative Creative class employment /total employment#, standardized see text 3.6E-10 1.000 -2.922 6.345
HS % of population >age 25 with secondary school diploma/GED # 0.774 0.087 0.347 0.970
College % of population over age 25 with a 4 year college degree # 0.163 0.075 0.049 0.605
EmpRate % of population age 16-64 employed # 0.708 0.093 0.215 0.935
MedInc Median household income # 35021 8604 9888 82929
PopDen Population/land area # 214 1520 0.0966 54235
Commute % of employed working out of county # 0.320 0.173 0.017 0.862
Metro OMB-designated metropolitan county, 2003 OMB 0.338 0.473 0 1
Ag % of employed in agriculture & forestry # 0.063 0.071 0 0.556
Mining % in mining # 0.012 0.027 0 0.456
NonDurManu % in nondurable manufacturing # 0.071 0.051 0 0.431
DurManu % in durable manufacturing # 0.089 0.064 0 0.420
Trade % in retail and wholesale trade # 0.145 0.025 0.017 0.299
Visitor % in arts, recreation, food, and accommodation # 0.071 0.033 0 0.364
Services % in information, FIRE, Prof & Sci Services # 0.106 0.044 0 0.411
InnvInd_Emp % emp. in  Innovative Industry establishments, 2000, stdzd ^ 0.019 0.031 0 0.253
Pop8-17 % of population age 8-17 # 0.181 0.021 0.097 0.308
Pop62 % of population age 62 and over # 0.175 0.046 0.024 0.397
PctBlack Black % of population # 0.083 0.143 0 0.861
PctNA Native American % of population # 0.016 0.064 0 0.937
PctHis Hispanic % of population # 0.063 0.123 0 0.981
Military % of population 18-24 in the Armed Services # 0.004 0.024 0 0.610
CollegePop % of population 18-64 enrolled in college or university # 0.079 0.057 0.010 0.539
OutAmen climate and landscape measure see text -0.054 0.953 -2.094 4.696
PubLand Public % of land area, stdzd, US Forest Service see text -0.036 0.943 -0.582 5.401

Y_ EstabChg90 Log change in establishments, 1990-2000 ^ 0.016 0.033 -0.223 0.546
JobChg90 Log change in employment, 1990-2000 * 4.788 0.159 4.190 6.761
PopChg90 Log change in in population, 1990-2000 # 0.0013 0.019 0 0.910

All data are 2000 unless otherwise noted
* Bureau of Economic Analysis, Regional Economic Information System (REIS)
^ Bureau of Census, County Business Patterns
" Bureau of Census, Nonemployer Statistics, 2006, unless otherwise noted
# Decennial Census of Population, 2000, unless otherwise noted
% Special tabulation of single unit employer establishment births

Ρ

Λ

ϒ

Σ

∆

Ι

Α

 
 

6.1.2 Dependent Variables 

Like McGranahan et al. (2009), I use change in jobs and change in establishments 

as dependent variables. I also use change in population because it has been widely used 

as a dependent variable in growth studies. Following McGranahan et al., I calculate the 

dependent variables, a growth rate, as t+1 minus t, normalized by t. I calculate growth 

between 2001, t, and 2006, t+1, to proxy for the most recent, 2001-2007, business cycle, 

because 2007 are unavailable. Change in population, PopChg, is calculated using BEA-

REIS data. Change in employment, or jobs, JobChg, is calculated using BEA-REIS also, 

and change in establishments, EstabChg, with County Business Patterns data. Table 6.2 
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contains the variable names, descriptions, source, and summary statistics for the three 

dependent variables used in this analysis.  

 

Table 6.2 Dependent Variables 

 
* BEA-REIS 

^ U.S. Census Bureau, County Business Patterns 

 

6.1.3 Model Specification 

I specify the OLS model using the variables discussed above and use the results to 

test for multicollinearity, heteroskedasticity, and spatial dependence. I do not find 

evidence of multicollinearity among the explanatory variables. I do find, however, 

evidence of heteroskedasticity in the OLS estimation, as indicated by the Breusch-Pagan 

test (BP=1811.5, and p<0.001). Heteroskedasticity is very common in U.S. county-level 

regressions due to the heterogeneity among counties. I use the White-Huber correction to 

make the standard errors robust to heteroskedasticity and find that the recalculated t-

statistics on the Entrepreneurial Industries indicators are smaller, although they all remain 

statistically different from zero.  

Increasingly, regional growth models control for spatial effects because growth 

processes vary widely across the United States and can cause coefficients to be 

misinterpreted (Partridge et al., 2008). The dynamics of rural and urban growth vary, and 

county heterogeneity makes the problem especially complex (Feser and Isserman, 2006; 

Partridge et al., 2008). Administrative boundaries, the degree of agglomeration, and rural-

urban interaction affect the direction and magnitude of growth and change.  

The presence of heteroskedasticity suggests a spatial dependence problem in the 

OLS residuals, so I conduct Lagrange Multiplier (LM) tests for spatial dependency 

structure using the procedure in Appendix B.4. I use a first-order queen contiguity matrix 

in the tests due to the nature of spatial dependence and its suitability for use with irregular 

polygons. LM and Robust LM tests indicate the Spatial Error Model (SEM) is 

Dependent Variables Mean StDev Min Max
PopChg Change in population, 2001-2006/population, 2001 * 0.0149 0.0755 -0.792 0.535
EstabChg Change in establishments, 2001-2006/private sector nonfarm jobs, 2001 ^ 0.0245 0.0885 -1 0.537
JobChg Change in nonfarm jobs, 2001-2006/nonfarm jobs 2001 * 0.0767 0.0963 -0.358 1.116
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appropriate; it will control for nuisance errors, which override substantive error 

processes, and reduce heterogeneity. 

I estimate Equation 6.2 with the explanatory variables presented in Table 6.1 and 

I specify the structure of epsilon to be consistent with SEM. Let ESHIP represent any one 

of the entrepreneurship variables described in Table 6.1, EshipXcc, the interaction term 

between the ESHIP and Creative, and Growth, any of the three dependent variable 

presented in Table 6.2. 

(6.2) 

06 01 00 00 00 00 00

00 00 00 00 00

00 00 00 00 00

00 00 00 008 17 62

Growth ESHIP Creative EshipXcc College HS
EmpRate MedInc PopDen Commute Metro Ag
Mining NonDurManu DurManu Trade Visitor
Services Age Age PctBlack PctN

− = + + + +
+ + + + + +
+ + + + +
+ + − + + + 00 00

00 00 00 90

00 90 00 90

90
90 90 ,

A PctHis
MilitaryPop CollegePop OutAmen PubLand EstabChg
JobChg PopChg StateFE ε

−

− −

+
+ + + + +
+ + + +

 

where ε λ ε µ= +W  and µ  is assumed independently and identically distributed (i.i.d.).  

 

6.2 RESULTS AND SENSITIVITY ANALYSIS 

6.2.1 Estimation Results 

Entrepreneurial Industries has a positive relationship with population, 

employment, and establishment growth. Results are summarized in Table 6.3 with 

dependent variables on the left-hand-side. Standardized coefficients on Entrepreneurial 

Industries are relatively close to each other, but lowest for the EstabChg regressions, 

perhaps because establishment formation is an employment strategy in weaker 

economies, like self employment by necessity (McGranahan et al., 2009).  
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Table 6.3 Summary of Growth Model Results Using Entrepreneurial Industries 

Coef Z R^2 Coef Z R^2

Entrepreneurship Variable 

D
ep

en
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nt
 

V
ar
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bl

e

EI_se/emp EI_birth/pop

Δpop 0.017 12.4 *** 0.58 0.004 3.2 *** 0.57

Δjobs 0.013 6.2 *** 0.38 0.002 1.0 0.39

Δestabs 0.010 5.0 *** 0.40 0.005 2.5 *** 0.4D
ep

en
de

nt
 

V
ar

ia
bl

e

 
 

The only insignificant coefficient between growth and Entrepreneurial Industries 

is the coefficient on EI_birth/pop with dependent variable, JobChg, which is odd because 

theoretically, the birth of an establishment necessitates at least one paid employee. 

Although the coefficient on EI_birth/pop is positive, it is not statistically different from 

zero. A plausible explanation is that a nascent single-unit establishment has one paid 

employee but two unpaid proprietors; if the unpaid proprietors have to drop out of the 

wage and salary job market to start the business, then the birth is accompanied by the loss 

of two jobs, and on the aggregate, an insignificant number of jobs are created. This 

hypothesis might be especially true during the early 2000s due to the jobless recovery, 

but without more data on business cycle effects and flow data fluctuation I cannot test 

this explanation.  

I add percent employment in innovative industries (InnovEmp) to the model to test 

if innovative industries, not the industry/entrepreneurship nexus, drive results and find no 

evidence to support this. Entrepreneurial Industries remains positive and significant 

(0.01) and coefficient size does not decrease when I add InnovEmp to the model, 

suggesting that the innovative industries and self employment/birth nexus is a unique 

driver of growth.  

For a comparison, I test the relationship between growth and traditional 

entrepreneurship measures, SelfEmp and Estab/Emp, in the same model; results were 

different and inconsistent with theory (Table 6.4). Although SelfEmp and Estab/Emp both 

have a positive relationship with JobChg, neither have a statistically significant 

relationship with EstabChg. The most troubling results is that PopChg has a negative 

relationship with the self employment rate and no relationship with the establishment 

rate, perhaps because self employment is highest in sparsely populated areas and SelfEmp 
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includes entrepreneurship by necessity. McGranahan et al. did not use change in 

population as a dependent variable, so I cannot compare these unexpected results to 

theirs. My findings illustrate the problems with modeling the relationship between growth 

and entrepreneurship, the results vary with the chosen entrepreneurship measure and time 

period selected. 

 

Table 6.4 Summary of Growth Model Results Using Widely Used  

Entrepreneurship Measures 

Coef Z R^2 Coef Z R^2

D
ep

en
de

nt
 

V
ar

ia
bl

e

Entrepreneurship Variable
Estab/EmpSelfEmp Rate

Δpop -0.007 -5.3 *** 0.56 -0.001 -0.8 0.56

Δjobs 0.019 9.2 *** 0.40 0.015 7.2 *** 0.39

Δestabs -0.003 -1.5 0.39 -0.001 -0.8 0.40D
ep

en
de

nt
 

V
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e

 
  Significance Level: *** 0.01 ** 0.05 * 0.1 

 

6.2.2 Sensitivity of Results to Methodology 

I find the positive relationship between Entrepreneurial Industries and growth is 

robust to variation in the Entrepreneurial Industries method (Table 6.5). The coefficients 

on ST2 (skill and technology at two times the mean, secondary criteria the same as ST3) 

and STP (skill, tech, and patents are the primary criteria, no secondary criteria) are 

positive, and slightly larger than ST3 (skill and technology at three times the mean), 

possibly because both include more establishments than ST3. AIC scores are lowest for 

the alternative measures. The adjusted R-square values are highest for the base model, 

ST3, which suggests the model captures more of the variation in ST3 than other 

indicators and indicates ST3 results may be of more use for policy and practice. Full 

model results are available in Appendix D. 
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Table 6.5 Sensitivity to Entrepreneurial Industries Methodology 

Coef Z R^2 AIC Coef Z R^2 AIC

D
ep

en
de

nt
 

V
ar
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bl

e

ST2 Methodology STP Methodology

Δpop 0.021 12.4 *** 0.49 -9063 0.018 12.4 *** 0.51 -9031

Δjobs 0.019 7.4 *** 0.29 -6454 0.014 6.1 *** 0.29 -6435

Δestabs 0.016 6.6 *** 0.29 -6981 0.010 5.0 *** 0.28 -6953D
ep

en
de

nt
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bl

e
 

Coef Z R^2 AIC
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Base Eqn-ST3

Δpop 0.017 12.4 *** 0.58 -9027

Δjobs 0.013 6.2 *** 0.38 -6435

Δestabs 0.010 5.0 *** 0.40 -6951D
ep
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nt
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6.3 CONCLUSION 

Entrepreneurial Industries has a robust positive relationship with growth in 

population, employment, and establishments. These findings are consistent with my 

expectations, likely because Entrepreneurial Industries captures the innovative nature of 

entrepreneurship, which others have found is associated with economic growth (SBA, 

2005).  The choice of entrepreneurship measure can affect results. Some measures do not 

lead to theoretically consistent results. I find a negative relationship between PopChg and 

the self employment and establishment rate, both of which are widely used 

entrepreneurship measures. I do not find a statistically significant relationship between 

EstabChg and the widely used entrepreneurship measures. Widespread use of such non-

innovative measures may be causing policymaker confusion (Tamasy, 2006). My 

findings suggest that Entrepreneurial Industries is a better indicator of entrepreneurship 

because it produced theoretically consistent results.  

Before researchers spend more time and effort fixing specification problems, 

endogeneity problems, and the spatial econometric specification, I encourage them to 

take a step back and look at the big-picture, regional growth modeling.  I have shown that 

the relationship between entrepreneurship and growth changes with both the definition of 

entrepreneurship and with the definition of growth. These results beg the questions, 

“what can we learn from these exercises” and “how useful is this growth model to 

policymakers and economic development practitioners.”  
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Future research on regional economic growth should be region-specific. Results, 

such as these, can be used as a starting-point, but the uniqueness of each region suggests 

that a one-size-fits-all recipe for economic growth is a dream. Instead of continually 

striving to improve, or tinker with, the study of entrepreneurship and its effect on 

economic growth, researchers should consider focusing on region-specific work and 

interpreting results we already have for use in different regions.  
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CHAPTER 7: CONCLUSION 

 

The answers to our problems don’t lie beyond our reach. 

They exist in our laboratories and universities; in our fields and our factories; 

in the imaginations of our entrepreneurs. 

—President Barack Obama, Inauguration Day, January 20, 2009 

 

I have created an indicator of entrepreneurship that captures multiple attributes of 

entrepreneurship, including innovation—an aspect of entrepreneurship that contributes to 

economic growth, but is ignored by existing measures. Entrepreneurial Industries is a 

valid indicator of entrepreneurship. Entrepreneurial Industries is a refinement of widely 

utilized entrepreneurship measures and is available annually at the county-level. 

Entrepreneurial Industries also better represents Schumpeterian entrepreneurship and 

captures multiple dimensions of entrepreneurship (stock/flow, individual/establishment) 

with two metrics. Entrepreneurial Industries has the potential to improve regional 

entrepreneurship research by enabling it to focus on innovative entrepreneurship. 

Entrepreneurial Industries also has an audience in economic development practitioners 

and policymakers who strive for recent, relevant data and benchmarks to better guide 

policymaking.  

This dissertation makes broader contributions to regional economic research. I 

discuss measure standardization, raise questions about the robustness of other, widely-

used measures, discuss the effects of the selected time period, and develop methods to 

identify high skill occupations and innovative industries. Moreover, budding spatial 

econometricians can use the appendix on spatial econometrics and learn from the higher-

order model discussion. This chapter reviews the merits of Entrepreneurial Industries and 

other contributions of the dissertation.  

 

7.1 ENTREPRENEURIAL INDUSTRIES: WHAT IT IS 

The main contribution of Entrepreneurial Industries is that it is a valid indicator of 

innovation—Schumpeter’s concept of entrepreneurship—while other widely available 

county-level measures do not consider entrepreneurship. The nexus of innovative 
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industries and births/self employment differs from total innovative industry employment 

and parent entrepreneurship measures so Entrepreneurial Industries is a better indicator of 

entrepreneurship for policy and economic development work because it offers a useful 

benchmark indicator. For FY 2010, U.S. States have budgeted $42.3 million for 

entrepreneurship development programs (C2ER, 2009).13

Scholars posit that the ideal indicator of entrepreneurship must include multiple 

dimensions (Audretsch, 2005) and unlike other entrepreneurship indicators, 

Entrepreneurial Industries is multi-dimensional. The definition of entrepreneurship I posit 

in Chapter 2 serves as its foundation and requires that Entrepreneurial Industries meet 

three attributes of entrepreneurship, whereas most measures only capture one or two. 

Additionally, I can assess the stock of individuals and the flow of establishments with 

Entrepreneurial Industries, which is beneficial because stock and flow and individual and 

establishment measures can vary significantly. 

 Improving the entrepreneurship 

benchmark for the programs and their supporting policies could lead to more effective 

economic development and increase economic growth at minimal cost. An 

entrepreneurship indicator that captures innovation is also useful for regional researchers 

who have long noted the need for such an indicator. 

Entrepreneurial Industries uses data available annually for counties. This makes it 

flexible and current enough for use by policymakers, economic development 

practitioners, and researchers. Counties are a good unit of analysis because they are at the 

heart of local policy and can be aggregated to labor market areas or metro areas. Annual 

availability makes the Entrepreneurial Industries indicator more flexible and timely than 

decennial Census data. Annual data are useful for policy applications that require recent 

data. The indicator is NAICS-based, so not available prior to 1997, limiting its potential 

for longitudinal analyses.  

Entrepreneurial Industries has a robust, positive relationship with economic 

growth. Using the Entrepreneurial Industries indicator in an entrepreneurship model can 

help identify incentives and policy-levers for encouraging economic growth.  

                                                   
13 Council for Community and Economic Research, State Economic Development Database, “Total State 
Expenditures by Functional Economic Development Program Area for FY2010”. Thirteen States have 
clearly identified “Entrepreneurial Support” programs. This figure does not include federal funding or state 
funding t may be funneled through regional development agencies. 
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7.2 ENTREPRENEURIAL INDUSTRIES: WHAT IT IS NOT 

Entrepreneurial Industries does possess several shortcomings. Self employment 

data are suppressed to prevent disclosure of individuals, a potential problem with 

EI_se/emp in sparsely populated counties. Accessing unsuppressed data requires a special 

agreement with the Census Bureau, like the one executed for the birth data. Another 

potential problem is the large year-to-year variation in flow data (birth data), which 

makes longitudinal data sensitive to individual observations. I use a moving-average for 

births that helps to avoid this problem, curtailing false-positives. Both of these issues 

relate to the indicator’s use in rural areas; regression results for rural areas are the same 

despite these problems, but the coefficients are smaller. Where suitable, aggregating 

counties up to labor market areas may provide answers to these questions and eliminate 

these rurality-based problems.  

This dissertation is motivated, in part, to reduce the confusion surrounding 

entrepreneurship measures. That said the complexity of the Entrepreneurial Industries 

indicator might add to policymaker and economic development practitioner confusion.  

  

7.3 FUTURE WORK 

 Additional data could strengthen Entrepreneurial Industries, but the availability of 

these data is outside my immediate locus of control. Unsuppressed Nonemployer 

Statistics would bolster the self employment measure, particularly in rural areas. A longer 

time-series would improve evaluation of the measures. Micro data on innovative 

industries would enable me to examine the employment, value added, and productivity of 

these industries as well as the education, occupation, and industry of employment for 

individuals. Longitudinal information about innovative industry establishments and their 

exports, growth, and resiliency to downturn would also provide useful information on 

creating economic growth via entrepreneurship. I am currently working with the Center 

for Economic Studies in Suitland, MD, to gain access to some of these data for a firm 

resiliency project.  
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7.4 CONCLUSION 

 Entrepreneurial Industries is a valid indicator of the entrepreneurship construct. I 

hope this research encourages discussion and research on entrepreneurship measures and 

measure construction and clarity. It is timely and relevant, and Entrepreneurial Industries 

may be a good starting point to reinvigorate the literature.  

While working on this dissertation, I learned to question data, question its use, 

and be suspicious when authors do not discuss method or measure construction. I found 

that the period for analysis could affect results, e.g., self employment during the 1990s 

and self employment during the 2000s. Measure construction, even the method used to 

standardize a rate, can affect results. “Results” can be shaped by the data and methods 

utilized. I learned that results can vary based on the metrics and model and, as a result, 

researchers should be wary of making policy recommendations based on one set of 

results. I hope researchers and end-users question available data and use the best possible 

entrepreneurship indicator because of this dissertation. For example, the differences 

between regression results using Entrepreneurial Industries and its parent measures are 

astounding. 

Beyond discussion of the appropriate entrepreneurship metrics, I think 

entrepreneurship research is at a crossroad and needs to head in a different direction. We 

cannot learn much more from entrepreneurship and growth models because I think they 

are too sensitive to choice of data and model specification. For years, we have been 

tweaking econometric models and available data, however contradictory and theoretically 

inconsistent the end-product. Policymakers and practitioners are presented with 

confounding results, which end up being ignored.  

Research needs to move away from tweaking models and focus on region-specific 

strategies based on places’ strengths and weaknesses. Region-based entrepreneurship and 

economic development policies must be based on underlying regional research. Results 

of the entrepreneurship and growth model presented in this dissertation can be used as a 

starting-point, but the uniqueness of each region suggests that no “cookbook” answer to 

economic development problems exists.
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APPENDIX A: DATA FOR IDENTIFYING ENTREPRENEURIAL INDUSTRIES 

 

I discuss two data sets, establishment births and self employment, which I use to 

count the number of innovative industry establishments in each county. I argue that these 

data meet the owner/operator and risk/uncertainty dimensions of entrepreneurship—

enabling me to focus on capturing the third dimension, innovation, using the innovative 

industries. Both datasets are available annually, to best account for cultural and 

technological change, business cycles, atypical economic events, and maximize 

flexibility and timeliness of the analysis (Gartner and Shane, 1995).   

 

A.1 ESTABLISHMENT BIRTH DATA 

Many researchers use establishment births as a measure of entrepreneurship (Lee 

et al., 2004; Acs and Mueller, 2008), because establishment births can create growth and 

increase economic performance (North, 1994). I use single-unit employer establishment 

births, at the five-digit NAICS industry level, for single-unit establishments in U.S. 

counties because these data meet the owner/operator and risk/uncertainty bearing 

attributes of entrepreneurship.  

Single-unit employer establishment births meet the owner or operator dimension 

of entrepreneurship because a person(s) must legally establish the firm, be responsible 

for initial product process or selection, and hiring its first employee. The birth data meet 

the risk/uncertainty bearing dimension of entrepreneurship because the person who 

establishes the organization generally has an ownership stake, which in a new 

establishment, is inherently risky. Risk and uncertainty arise due to the expectation of 

future sales, profits, establishment success and the risk associated with predicting 

consumer demand. Single-unit establishment owners bear the up-front costs associated 

with business operation in the initial phase of operation.  

I have access to an establishment dynamics dataset that includes the gross number 

of establishment births and deaths plus the number of establishments that persisted in 

each county, in each five-digit industry for multi-unit and single-unit firms. I use single-

unit establishments (with a single physical location), that exclude branches, franchises, or 
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subsidiaries of another firm, because single-unit establishments are inherently less 

entrepreneurial than single-unit establishments due to their independent nature.14

Birth data are unsuppressed and, consequently, not publicly available. They are 

part of a special tabulation of the Statistics of U.S. Businesses series, obtained from the 

Bureau of the Census, courtesy of the United States Department of Agriculture, 

Economic Research Service. The publically available version of these data includes the 

number of establishments in each county for two-digit NAICS; however, this level of 

aggregation is not suitable for counting innovative industries. Much like Census Bureau 

economic data, these data exclude establishments with no employees, employees of 

private households, railroad employees, agricultural production employees, most 

government employees and professional employer organizations. Where establishments 

have more than one product, the NAICS codes for their major activity are used.  

  

An establishment birth is defined as an establishment having paid employee(s) in 

year t+1, but not having any paid employees in year t, or not existing in year t.  In this 

dataset, for example, a birth recorded in 2002-2003 indicates the firm had no paid 

employees in mid-March 2002 and had one or more paid employees in mid-March, 2003. 

The Census Bureau made careful attempts count only new establishment births by 

omitting multiple “births” of the same firm that has frequent births/deaths.  

Alone, these establishment birth data overestimate entrepreneurship because 

innovation is ignored. For example, many new establishments replicate existing 

establishments, e.g., a hair salon or a childcare facility. I overcome this problem by 

selecting only innovative industry establishments from the employer birth dataset. 

 

A.2 SELF EMPLOYMENT DATA 

The self employment rate is a widely used indicator for entrepreneurship because 

it is readily available, easy to use, and practical (Noteboom, 1999; Schiller and Crewson, 

                                                   
14 Data are based on administrative records; nonsampling errors exist in the data, but precautionary steps 
were taken by Census Bureau personnel in all phases of collection, processing, and tabulation to minimize 
the effects of nonsampling errors. Total establishments (births + deaths + persisting establishments) in the 
2002-2003 dataset have a 0.9998 correlation with total number of establishments in the 2003 County 
Business Patterns across all U.S. counties. Thus, while the Census Bureau has not disclosed the method for 
the compilation of the birth dataset, a statistical test shows the datasets not statistically different in number 
of establishments (Spearman test, Rho=0.993 and P-value <0.000). 
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1997). I measure self employment with the Census Bureau’s Nonemployer Statistics, 

which include the number of establishments with no paid employees in each county, by 

six-digit NAICS code.15

Regional entrepreneurship researchers often use BEA-REIS nonfarm proprietor 

data to measure county-level self employment, however, these data are not available at 

the industry level, so I use the Census’ publically available Nonemployer Statistics 

Series.

  

16

The industries included in Nonemployer Statistics are the same as for the 

establishment birth data. These data exclude establishments with receipts under $1,000, 

with the exception of construction industry businesses that are included with receipts over 

$1. This exclusion omits the smallest of firms, making it a more accurate measure of 

active small businesses than measures that have no exclusions. 

 Nonemployer Statistics include the count of nonemployer establishments, in 

most industries and at the county-level. Nonemployer establishments are those with no 

employees who file federal tax Form 1040 (Schedule C), for sole proprietorships, or 

Form 1065, for partnerships. A diminutive number of incorporated nonemployer 

establishments are included (Census, 1997) but the Census Bureau tries to eliminate 

incorporated nonemployer establishments (who use contract employees) by screening out 

these establishments using an industry-specific gross receipts cutoff. Nonemployer 

Statistics assigns county of location based upon the tax filing address, the owner’s home 

address, which may outside the county where the business is physically located.  

 I assume Nonemployer Statistics meet the owner/operator and risk/uncertainty 

bearing attributes of entrepreneurship, but not the innovation attribute. The self employed 

are considered owner/operators because there are no employees—thus the owner(s) are 

responsible for day-to-day operation of the establishment and most nonemployer 

establishments are proprietorships or partnership that, by definition, meets the ownership 

attribute. Self employment also includes a degree of risk bearing because uncertainty in 

business viability and profits is inherent in any private business (Knight, 1942; Cantillon, 

1964; Henderson et al., 2006). Self employment overestimates entrepreneurship because 
                                                   
15 Disclosure problems exist because these data are publicly available, this will be addressed subsequently. 
16 The Census and BEA data are comparable; BEA nonfarm proprietor and Census nonemployer data have 
a Pearson Correlation of 0.9865 and a difference of means tests rejects the null hypothesis that the two 
measures are independent, thus, the nonemployer data are not statistically different from the self 
employment measure that is widely used in the entrepreneurship literature. 
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many non-innovative firms are included, which Schumpeter argues are no longer 

entrepreneurial when they have ceased to innovate. Many self employed fail this test 

because they are lifestyle entrepreneurs who provide replicable services or goods to a 

local market. By using the self employed in selected, Entrepreneurial Industries, I reduce 

the overestimation of innovative industries in the self employment rate. 

Publically available nonemployer establishment numbers are suppressed for some 

industries in some counties, unlike the establishment birth data. Most suppressed data are 

withheld from publication because they would disclose the operations of an individual 

business, a violation of U.S. Code, Title 13, Section 9. Data are suppressed if a region 

contains less than three nonemployer establishments in an industry classification. Data 

are also suppressed for quality purposes. Where industry classification codes are missing, 

they are imputed and if more than 40 percent of data are for firms with an imputed 

NAICS code, the data are suppressed because they do not meet publication standards. 

I treat the suppressed data as zeros because they represent less than three 

establishments. The consequence of this, however, is that Entrepreneurial Industries are 

underestimated—especially in counties with low population or few establishments. Thus, 

a rural country that has a high level of Computer Service Design and Related Services 

(NAICS 54151) is especially entrepreneurial because the number was high enough to 

register (three or more establishments). Thus, counties with a non-zero value are 

especially entrepreneurial when compared to others.  

After completion of this dissertation, I would like to propose to the Census 

Bureau the compilation of the measure using data with no disclosure issues. The raw data 

will not be made publicly available, rather the nonemployer Entrepreneurial Industries 

measure.  
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APPENDIX B: SPATIAL ECONOMETRICS 

 

Controlling for spatial processes in econometric models reduces noise, 

heterogeneity among units of observation, and improves model fit (Anselin, 1988). Using 

a given spatial weights matrix, scholars have identified two types of spatial dependence, 

spatial error (nuisance) dependence and spatial lag (substantive) dependence, and models 

to control for them.  

 

B.1 SPATIAL WEIGHTS MATRIX 

A spatial weights matrix, W, defines spatial unit interaction and is used in spatial 

econometric models to define neighboring observations. The spatial weights matrix is an 

n x n positive matrix that specifies the neighbors for each observation, i.e., it specifies 

each county’s neighboring counties. Each county appears in both row and column and 

non-zero elements in the matrix indicate a neighbor relation between counties in row i 

and column j. By convention, there are no self-neighbors and the weights matrix is row-

standardized to facilitate with interpretation and ease computational expense.  

There is very little formal guidance for choosing the optimal spatial weights 

matrix (Anselin, 2008a). The most widely used specification of spatial weights matrices 

for U.S. counties is the first-order queen contiguity matrix, which specifies a county’s 

neighbors as all counties that are adjacent, in any manner, to the observed county (first-

order). Goetz and Rupasingha, however, do not use this W matrix, they use a k=3 

nearest-neighbor matrix, which defines neighboring counties as the three closest county 

centroids to each observation.  

Examples of both of these spatial weights matrices are below (Figures B.1, B.2). 

First-order queen contiguity matrix neighbors for Champaign county (Figure B.1)  are A, 

B, C, D, E, and F—even though F is only contiguous at a vertex; k=3 nearest-neighbors 

matrix neighbors are A, B, and E because these counties’ centroids are closest to the 

centroid of Champaign county. First-order queen contiguity matrix neighbors for Denver 

County (Figure B.2) are 1, 2, 4, and 5; k=3 nearest-neighbors matrix neighbors are 3, 4, 

and 5. Note that the k=3 nearest neighbor matrix neighbors for Denver County include a 
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non-contiguous county because the centroid for county 3 is closer than the centroid of 

county 1 or county 2.  

 

  
Figure B.1 Champaign County  Figure B.2 Denver County 

 

B.2 SPATIAL ERROR PROCESSES 

County-level U.S. analysis often suffers from spatial dependence in the error term 

because county heterogeneity and aerial unit problems create non-spherical disturbances 

in the error term. Spatial Error Processes are spatially correlated disturbances between 

cross-sectional units and can occur due to omitted spatially correlated variables or the 

value of adjacent observations moving together due to common or correlated 

unobservable variables. For this reason, spatial error processes are also known as 

nuisance errors. I expect county-level models to contain spatial error processes due to 

heterogeneity of counties, but developing a theory behind implementation of the spatial 

error model is difficult because the errors are not due to some underlying process—rather 

a host of micro processes.  

Spatial Error Processes can be controlled for in the Spatial Error Model (SEM), 

which uses the spatial weights matrix to collect non-spherical errors, assuming that 

remaining errors are spherical, or identically and independently distributed. If spatial 

error processes are not accounted for, estimates can be inefficient, leading to invalid 

Champaign A.

B.
C.

D.

E.

F.

Denver

1.

2.

3.

4.

5.
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hypothesis testing. Estimates, however, will not be biased, thus the coefficient sign is not 

affected.  

The SEM model is specified in Equation B.1. 

(B.1)      ,Y Xβ ε= +  where, W uε λ ε= +  and  u ~i.i.d. 

 
B.3 SPATIAL LAG PROCESSES 

Spatial Lag Processes occur due to interaction among neighbors, e.g., copycat 

behavior, that are due to an underlying spatial process, rather than spatially correlated 

variables like the spatial error process. For this reason, the spatial lag process creates 

substantive errors that, when unaccounted for, can lead to biased and inconsistent 

coefficients, which has the effect of potentially giving the wrong sign on coefficients or 

leading to invalid hypothesis testing. Thus, spatial lag processes have more dire 

consequences on estimation than spatial error processes. 

Spatial dependence is frequently incorporated into models using the Spatial 

Autoregressive (SAR) lag model that is not unlike the first order autoregressive model 

used in time-series analysis. Multiplying the spatial weights matrix by the dependent 

variable creates a spatially lagged dependent variable with estimated parameter, rho. The 

SAR model is specified in Equation B.2: 

(B.2)    Y Y Xρ β ε= + +W , where ε ~ independent and identically-distributed. 

 
B.4 DIAGNOSITIC TESTS FOR SPATIAL DEPENDENCE 

The Lagrange Multiplier (LM) test can indicate whether spatial error and/or 

spatial lag process are present in OLS regressions. The LM tests for diagnosing spatial 

dependence have been implemented in various R packages and require constructing a 

spatial weights matrix, W, and running the OLS regression. 

The first step in testing for spatial autocorrelation is to conduct two Lagrange 

Multiplier (LM) tests, one for a missing spatially lagged dependent variable and a second 

LM test for error dependence on OLS regressions. If only one of the LM tests fails to 

reject the null hypothesis, the researcher can stop and proceed with the indicated model. 

If both LM tests fail to reject the null in favor of the spatial error and spatial lag 

processes, then Robust LM tests should be conducted and interpreted. The Robust LM 

test (lag) tests for a missing spatially lagged dependent variable in the possible presence 
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of error dependence, while the Robust LM test (error) tests for error dependence in the 

possible presence of a missing lagged dependent variable. If both robust tests fail to reject 

the null hypothesis, the model with the largest coefficient is employed (Florax and Rey, 

1995); however, there is academic debate about the appropriateness of this procedure. 

Goetz and Rupasingha do not follow Florax and Rey’s procedure; instead, they use an 

alternative, higher-order model, which purportedly controls for both spatial error and 

spatial lag processes.
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APPENDIX C: CHAPTER 5 RESULTS 
 

Table C.1 Model 1 and Model 2 Results 
Model 1 Model 2

Dependent 
Variable, Y EI_se_chg Prop_chg

Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.0018761 0.0009035 0.047598 0.025355
HomeValue 8.5234E-09 9.409E-10 9.282E-09 2.5685E-08
HomeOwn 0.0056 0.0005 -0.0135 0.0136
College -0.0020 0.0006 -0.0134 0.0159
HS -0.0004 0.0005 0.0289 0.0148
MedAge -0.0001 0.0000 0.0007 0.0002
Female 0.0067 0.0015 -0.0400 0.0407
White 0.0003 0.0002 -0.0370 0.0064
WSinc -0.0001 0.0000 -0.0002 0.0002
WSincGro 0.0001 0.0001 0.0013 0.0020
DeposPop -0.0047 0.0019 0.0214 0.0502
Unemp -0.0036 0.0030 -0.0426 0.0805
UnempSq 0.0080 0.0162 -0.0740 0.4387
Nonmetro -0.0005 0.0001 -0.0031 0.0018
Ag -0.0003 0.0006 -0.0240 0.0168
Mining 0.0016 0.0012 -0.0425 0.0313
NonDurManu 0.0000 0.0007 0.0595 0.0187
DurManu 0.0003 0.0006 0.0335 0.0156
Trade 0.0000 0.0012 -0.0460 0.0332
Visitor -0.0002 0.0009 0.0259 0.0251
Services -0.0015 0.0010 0.0735 0.0278
Amenity 0.0001 0.00002 -0.0014 0.0004
Tax 0.000016 0.000014 -0.0005 0.0004
Level of Y -0.2692 0.0186 0.0618 0.0143
Lambda 0.06436** 0.10583***
LogLik 15230.75 5458.198   
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Table C.2 Model 3 Results 
Model 3

 
 

Dependent 
Variable, Y EI_se_chg

Coeff Std. Dev.
Intercept^ -0.001876 0.0009035
HomeValue 8.523E-09 9.409E-10
HomeOwn 0.0056 0.0005
College -0.0020 0.0006
HS -0.0004 0.0005
MedAge -0.0001 0.0000
Female 0.0067 0.0015
White 0.0003 0.0002
DeposPop -0.0047 0.0019
Nonmetro -0.0005 0.0001
Ag -0.0003 0.0006
Mining 0.0016 0.0012
NonDurManu 0.0000 0.0007
DurManu 0.0003 0.0006
Trade 0.0000 0.0012
Visitor -0.0002 0.0009
Services -0.0015 0.0010
Amenity 0.0001 0.00002
Level of Y -0.2692 0.0186
Lambda 0.06436**
LogLik 15230.75
^Some explanatory variables were 
unavailable for 1990s   
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Table C.3 Model 4, 5, and 6 Results 
 

Model 4 Model 5 Model 6
 Dependent 

Variable EI_se/emp EI_birth/pop Prop 
Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.

Intercept -0.00537 0.00111 -0.000095 0.000032 0.55504 0.04133
HomeValue 1.49E-08 1.14E-09 3.28E-10 3.33E-11 3.93E-07 4.26E-08
HomeOwn 0.0075 0.0006 0.000013 0.000018 0.1730 0.0226
College 0.0015 0.0007 0.000326 0.000021 0.0976 0.0269
HS -0.0003 0.0007 -0.000018 0.000020 0.0188 0.0250
MedAge -0.0001 0.0000 0.0000010 0.0000003 0.0050 0.0004
Female 0.0125 0.0018 0.000032 0.000052 -0.8228 0.0665
White 0.0015 0.0003 0.000006 0.000008 -0.0469 0.0109
WSinc 0.0000 0.0000 -0.0000002 0.0000002 -0.0106 0.0003
WSincGro 0.0004 0.0001 0.000017 0.000003 -0.0128 0.0033
DeposPop -0.0073 0.0023 0.000203 0.000067 0.0395 0.0852
Unemp -0.0035 0.0037 -0.000126 0.000106 -0.2661 0.1361
UnempSq 0.0032 0.0199 -0.000035 0.000582 0.9151 0.7431
Nonmetro -0.0012 0.0001 0.000002 0.000002 -0.0203 0.0030
Ag -0.0023 0.0008 0.000088 0.000022 0.0243 0.0285
Mining 0.0016 0.0014 0.000040 0.000041 -0.0067 0.0530
NonDurManu 0.0004 0.0008 0.000015 0.000025 -0.0858 0.0315
DurManu 0.0000 0.0007 -0.000005 0.000021 0.0079 0.0265
Trade 0.0014 0.0015 0.000010 0.000044 -0.1404 0.0562
Visitor 0.0017 0.0011 0.000118 0.000033 0.0892 0.0425
Services -0.0052 0.0013 0.000039 0.000037 -0.0932 0.0468
Amenity 0.0001 0.00002 0.000001 0.000001 -0.0007 0.0007
Tax 0.00003 0.00002 0.000001 0.000001 0.0010 0.0007
Lambda 0.1698*** 0 0.07275**
LogLik 14615.14 25081.61 3895.73   
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Table C.4 Model 7 and 8 Results 
Model 7 Model 8

  Dependent 
Variable, Y ST2 STP

Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.0185 0.0021 -0.0043 0.0035
HomeValue 3.98E-08 2.18E-09 4.78E-08 3.58E-09
HomeOwn 0.0140 0.0012 0.0257 0.0019
College 0.0227 0.0014 -0.0117 0.0023
HS 0.0011 0.0013 -0.0013 0.0021
MedAge -0.0001 0.0000 -0.0002 0.0000
Female 0.0272 0.0034 0.0188 0.0056
White 0.0028 0.0006 0.0070 0.0009
WSinc -0.0002 0.0000 -0.0005 0.0000
WSincGro 0.0006 0.0002 0.0014 0.0003
DeposPop -0.0189 0.0043 -0.0033 0.0071
Unemp 0.0061 0.0070 0.0017 0.0115
UnempSq -0.0082 0.0380 -0.0041 0.0622
Nonmetro -0.0020 0.0002 -0.0020 0.0003
Ag -0.0037 0.0015 -0.0114 0.0024
Mining 0.0017 0.0027 -0.0027 0.0044
NonDurManu -0.0006 0.0016 0.0056 0.0027
DurManu -0.0002 0.0014 0.0019 0.0022
Trade 0.0016 0.0029 0.0015 0.0047
Visitor 0.0045 0.0022 -0.0024 0.0036
Services -0.0078 0.0024 -0.0179 0.0039
Amenity 0.0004 0.00004 0.0005 0.0001
Tax 0.000093 0.000036 -0.000043 0.000060
Lambda 0.14706*** 0.19918***
LogLik 12701.2 11237.57
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APPENDIX D: CHAPTER 6 RESULTS 
 

Table D.1 Full Results, Table 6.3, ESHIP=EI_SE/EMP 

EI_s
e/e

mp  

Y=Job
Chg

EI_s
e/e

mp 

Y=Pop
Chg

EI_s
e/e

mp 

Y=Esta
bC

hg          

Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.5730 0.0697 -0.6264 0.0450 -0.5595 0.0640
Creative 0.0075 0.0031 0.0095 0.0020 0.0222 0.0027
 E'ship 0.0134 0.0022 0.0174 0.0014 0.0046 0.0019
Creative X e'ship -0.0013 0.0013 -0.0043 0.0008 -0.0057 0.0009
HS -0.1160 0.0379 -0.1109 0.0244 -0.0689 0.0346
College -0.0416 0.0306 -0.0297 0.0198 -0.0187 0.0281
EmpRate 0.0379 0.0267 0.0104 0.0173 0.0000 0.0247
MedInc 5.85E-07 3.28E-07 2.71E-07 2.12E-07 3.90E-07 3.00E-07
PopDen -2.35E-06 1.05E-06 -1.85E-06 6.76E-07 4.59E-07 9.67E-07
Commute 0.1108 0.0110 0.0519 0.0071 0.0380 0.0100
Metro 0.0075 0.0043 0.0111 0.0028 0.0075 0.0039
Ag 0.0401 0.0365 -0.0054 0.0236 0.0417 0.0334
Mining -0.0686 0.0669 -0.1176 0.0432 -0.1080 0.0612
NonDurManu -0.1145 0.0414 -0.0300 0.0268 -0.0001 0.0380
DurManu -0.1650 0.0346 -0.0637 0.0224 -0.1299 0.0317
Trade 0.0647 0.0709 0.1119 0.0456 0.1705 0.0644
Visitor -0.0016 0.0717 0.0343 0.0463 0.0632 0.0653
Services 0.0207 0.0602 -0.0030 0.0388 0.0717 0.0548
Pop8-17 0.3625 0.1044 -0.1076 0.0677 0.3390 0.0969
Pop62 0.1711 0.0506 -0.2696 0.0327 -0.0201 0.0466
PctBlack -0.0507 0.0144 -0.0368 0.0094 -0.0409 0.0131
PctNA 0.0063 0.0281 0.0233 0.0182 -0.1110 0.0258
PctHis 0.0466 0.0156 0.0178 0.0102 -0.0309 0.0145
Military 0.1817 0.0667 -0.0727 0.0430 0.2676 0.0609
CollegePop 0.0530 0.0336 0.0081 0.0216 -0.0182 0.0309
OutAmen 0.0162 0.0026 0.0105 0.0017 0.0136 0.0024
PubLand -0.0023 0.0023 -0.0038 0.0015 0.0003 0.0021
EstabChg90 0.4378 0.0569 0.1098 0.0367 0.2579 0.0522
JobChg90 0.1090 0.0125 0.1472 0.0080 0.1053 0.0114
PopChg90 -0.00014 0.0001 0.00002 0.0001 0.00005 0.0001
Lambda 0.1436*** 0.0871*** 0.2006***
LogLik 4545.79 3249.72 3507.62  
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Table D.2 Full Results, Table 6.3, ESHIP=EI_BIRTH/POP 

EI_b
irth

/po
p  

Y=Job
Chg

EI_b
irth

/po
p 

Y=Pop
Chg

EI_b
irth

/po
p 

Y=Esta
bC

hg

Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.5578 0.0699 -0.6142 0.0458 -0.5595 0.0640
Creative 0.0195 0.0029 0.0188 0.0019 0.0222 0.0027
 E'ship 0.0020 0.0021 0.0043 0.0014 0.0046 0.0019
Creative X e'ship -0.0061 0.0010 -0.0058 0.0007 -0.0057 0.0009
HS -0.0982 0.0380 -0.0987 0.0248 -0.0689 0.0346
College -0.0675 0.0306 -0.0546 0.0201 -0.0187 0.0281
EmpRate 0.0298 0.0268 0.0005 0.0176 0.0000 0.0247
MedInc 6.56E-07 3.28E-07 3.32E-07 2.15E-07 3.90E-07 3.00E-07
PopDen -1.06E-06 1.06E-06 -5.09E-07 6.95E-07 4.59E-07 9.67E-07
Commute 0.1184 0.0109 0.0562 0.0072 0.0380 0.0100
Metro 0.0064 0.0043 0.0127 0.0028 0.0075 0.0039
Ag 0.0417 0.0365 -0.0133 0.0239 0.0417 0.0334
Mining -0.0653 0.0669 -0.1200 0.0438 -0.1080 0.0612
NonDurManu -0.1036 0.0415 -0.0157 0.0272 -0.0001 0.0380
DurManu -0.1577 0.0346 -0.0546 0.0227 -0.1299 0.0317
Trade 0.0689 0.0708 0.1263 0.0463 0.1705 0.0644
Visitor 0.0369 0.0716 0.0611 0.0468 0.0632 0.0653
Services 0.0083 0.0601 -0.0115 0.0393 0.0717 0.0548
Pop8-17 0.2936 0.1051 -0.1767 0.0690 0.3390 0.0969
Pop62 0.1122 0.0508 -0.3297 0.0333 -0.0201 0.0466
PctBlack -0.0629 0.0142 -0.0541 0.0093 -0.0409 0.0131
PctNA 0.0065 0.0281 0.0220 0.0184 -0.1110 0.0258
PctHis 0.0480 0.0156 0.0167 0.0103 -0.0309 0.0145
Military 0.1457 0.0669 -0.0983 0.0437 0.2676 0.0609
CollegePop -0.0008 0.0339 -0.0310 0.0222 -0.0182 0.0309
OutAmen 0.0179 0.0026 0.0132 0.0017 0.0136 0.0024
PubLand -0.0038 0.0022 -0.0059 0.0015 0.0003 0.0021
EstabChg90 0.4369 0.0572 0.1020 0.0374 0.2579 0.0522
JobChg90 0.1149 0.0124 0.1536 0.0081 0.1053 0.0114
PopChg90 -0.0001 0.0001 0.0001 0.0001 0.00005 0.0001
Lambda 0.0931*** 0.1311*** 0.1984***
LogLik 3248.44 4504.59 3511.62   
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Table D.3 Full Results, Table 6.4, ESHIP=SELFEMP 

    

Self
Emp  

Y=Job
sC

hg

Self
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Y=Pop
Chg

Self
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Y=Esta
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hg      

Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.4611 0.0704 -0.6926 0.0468 -0.6068 0.0654
Creative 0.0153 0.0026 0.0133 0.0017 0.0173 0.0024
 E'ship 0.0194 0.0021 -0.0074 0.0014 -0.0029 0.0019
Creative X e'ship 0.0018 0.0017 0.0014 0.0011 0.0001 0.0015
HS -0.1395 0.0377 -0.1015 0.0250 -0.0775 0.0348
College -0.0500 0.0303 -0.0457 0.0201 -0.0075 0.0282
EmpRate 0.0259 0.0265 0.0090 0.0176 0.0073 0.0247
MedInc 7.58E-07 3.26E-07 2.37E-07 2.16E-07 3.26E-07 3.03E-07
PopDen -1.92E-06 1.05E-06 -1.26E-06 6.99E-07 -3.90E-07 9.73E-07
Commute 0.0644 0.0119 0.0668 0.0079 0.0375 0.0110
Metro 0.0141 0.0042 0.0165 0.0028 0.0115 0.0039
Ag 0.0026 0.0362 -0.0172 0.0241 0.0330 0.0336
Mining -0.0912 0.0664 -0.1326 0.0441 -0.1210 0.0615
NonDurManu -0.0810 0.0413 -0.0374 0.0274 -0.0134 0.0383
DurManu -0.1509 0.0344 -0.0686 0.0228 -0.1409 0.0319
Trade 0.0949 0.0701 0.1317 0.0466 0.1796 0.0648
Visitor 0.0108 0.0709 0.0371 0.0471 0.0403 0.0656
Services 0.0236 0.0596 -0.0289 0.0396 0.0600 0.0552
Pop8-17 0.2098 0.1048 -0.0859 0.0697 0.3974 0.0978
Pop62 -0.0227 0.0531 -0.2352 0.0353 0.0299 0.0493
PctBlack -0.0359 0.0145 -0.0700 0.0097 -0.0486 0.0136
PctNA 0.0175 0.0280 0.0081 0.0186 -0.1196 0.0260
PctHis 0.0418 0.0155 0.0122 0.0103 -0.0357 0.0146
Military 0.1691 0.0660 -0.0765 0.0439 0.2869 0.0611
CollegePop 0.0401 0.0330 0.0065 0.0219 0.0137 0.0305
OutAmen 0.0162 0.0026 0.0148 0.0017 0.0150 0.0024
PubLand -0.0059 0.0022 -0.0059 0.0015 -0.0001 0.0021
EstabChg90 0.3607 0.0585 0.1198 0.0389 0.2733 0.0541
JobChg90 0.1025 0.0124 0.1606 0.0082 0.1087 0.0115
PopChg90 -0.00012 0.0001 0.00004 0.0001 0.00002 0.0001
Lambda 0.1157*** 0.1216*** 0.1902***
LogLik 3273.72 4484.69 3494.27   
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Table D.4 Full Results, Table 6.4, ESHIP=ESTAB/EMP 
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Y=Job
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Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.6571 0.0703 -0.6370 0.0467 -0.5878 0.0646
Creative 0.0108 0.0026 0.0140 0.0018 0.0158 0.0024
 E'ship 0.0153 0.0021 -0.0011 0.0014 -0.0010 0.0019
Creative X e'ship 0.0003 0.0016 -0.0004 0.0011 -0.0076 0.0015
HS -0.1273 0.0379 -0.1103 0.0252 -0.0698 0.0347
College -0.0594 0.0304 -0.0424 0.0203 -0.0094 0.0281
EmpRate 0.0179 0.0267 0.0073 0.0178 0.0097 0.0247
MedInc 7.03E-07 3.27E-07 2.88E-07 2.18E-07 3.46E-07 3.01E-07
PopDen -1.95E-06 1.05E-06 -1.44E-06 6.95E-07 -7.43E-07 9.58E-07
Commute 0.1062 0.0108 0.0493 0.0072 0.0339 0.0099
Metro 0.0145 0.0042 0.0168 0.0028 0.0102 0.0039
Ag 0.0068 0.0364 -0.0245 0.0242 0.0380 0.0335
Mining -0.0600 0.0668 -0.1360 0.0444 -0.1154 0.0613
NonDurManu -0.1006 0.0414 -0.0249 0.0275 -0.0048 0.0380
DurManu -0.1554 0.0346 -0.0634 0.0230 -0.1312 0.0318
Trade 0.0654 0.0706 0.1392 0.0469 0.1876 0.0646
Visitor 0.0145 0.0713 0.0365 0.0473 0.0423 0.0653
Services -0.0096 0.0599 -0.0195 0.0398 0.0703 0.0549
Pop8-17 0.2675 0.1051 -0.1319 0.0700 0.3369 0.0972
Pop62 0.0082 0.0541 -0.2948 0.0360 -0.0220 0.0498
PctBlack -0.0591 0.0142 -0.0575 0.0095 -0.0447 0.0132
PctNA 0.0140 0.0282 0.0162 0.0187 -0.1072 0.0259
PctHis 0.0453 0.0156 0.0120 0.0104 -0.0330 0.0145
Military 0.2245 0.0669 -0.0823 0.0444 0.2766 0.0613
CollegePop 0.0675 0.0335 -0.0017 0.0223 -0.0106 0.0307
OutAmen 0.0182 0.0026 0.0143 0.0017 0.0164 0.0024
PubLand -0.0055 0.0022 -0.0064 0.0015 -0.0001 0.0021
EstabChg90 0.2473 0.0632 0.1238 0.0420 0.3164 0.0579
JobChg90 0.1417 0.0129 0.1529 0.0086 0.1081 0.0119
PopChg90 -0.0001 0.0001 0.0000 0.0001 -0.00002 0.0001
Lambda 0.0983*** 0.1805*** 0.1918***
LogLik 3256.53 3700.60 3506.77   
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Table D.5 Full Results, Table 6.5, ESHIP=ST2 

ST2  
 
Y=Job

Chg

ST2 
Y=Pop
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ST2 
Y=Esta

bC
h

g
     

Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.
Intercept -0.5480 0.0697 -0.5932 0.0449 -0.5491 0.0637
Creative 0.0060 0.0032 0.0104 0.0021 0.0153 0.0030
 E'ship 0.0194 0.0026 0.0209 0.0017 0.0159 0.0024
Creative X e'ship -0.0040 0.0012 -0.0075 0.0008 -0.0060 0.0011
HS -0.1093 0.0378 -0.1000 0.0243 -0.0721 0.0344
College -0.0559 0.0305 -0.0491 0.0197 -0.0129 0.0280
EmpRate 0.0219 0.0266 -0.0084 0.0172 -0.0051 0.0245
MedInc 5.44E-07 3.27E-07 2.32E-07 2.11E-07 3.14E-07 3.00E-07
PopDen -2.55E-06 1.05E-06 -1.68E-06 6.74E-07 -6.10E-07 9.54E-07
Commute 0.1103 0.0110 0.0529 0.0071 0.0343 0.0100
Metro 0.0063 0.0043 0.0097 0.0028 0.0060 0.0039
Ag 0.0378 0.0364 -0.0066 0.0234 0.0442 0.0333
Mining -0.0610 0.0667 -0.1082 0.0429 -0.1032 0.0609
NonDurManu -0.1120 0.0413 -0.0260 0.0266 -0.0095 0.0378
DurManu -0.1637 0.0345 -0.0599 0.0222 -0.1361 0.0316

Trade 0.0630 0.0706 0.1093 0.0453 0.1585 0.0642
Visitor 0.0118 0.0715 0.0547 0.0459 0.0546 0.0651

Services 0.0117 0.0599 -0.0143 0.0385 0.0664 0.0546
Pop8-17 0.3650 0.1040 -0.1150 0.0673 0.3926 0.0959
Pop62 0.1539 0.0502 -0.2965 0.0324 0.0118 0.0460
PctBlack -0.0502 0.0143 -0.0401 0.0093 -0.0305 0.0132

PctNA 0.0020 0.0280 0.0183 0.0181 -0.1143 0.0256

PctHis 0.0425 0.0156 0.0133 0.0101 -0.0340 0.0145

Military 0.1761 0.0665 -0.0853 0.0427 0.2812 0.0606
CollegePop 0.0247 0.0332 -0.0247 0.0213 -0.0080 0.0302
OutAmen 0.0135 0.0027 0.0084 0.0017 0.0102 0.0025
PubLand -0.0028 0.0023 -0.0047 0.0015 0.0010 0.0021
EstabChg90 0.4258 0.0567 0.0921 0.0364 0.2531 0.0517
JobChg90 0.1100 0.0124 0.1484 0.0080 0.1016 0.0113
PopChg90 -0.0001 0.0001 0.0000 0.0001 0.00003 0.0001
Lambda 0.0997*** 0.16225*** 0.2106***
LogLik 3259.43 4563.76 3522.77  
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Table D.6 Results, Table 6.5, ESHIP=STP 

     
STP   

Y=Job
Chg

STP 
Y=Pop

Chg

STP 
Y=Esta

bC
h

g
Coeff Std. Dev. Coeff Std. Dev. Coeff Std. Dev.

Intercept -0.5755 0.0697 -0.6279 0.0450 -0.5782 0.0639
Creative 0.0079 0.0031 0.0097 0.0020 0.0165 0.0028
 E'ship 0.0139 0.0023 0.0182 0.0015 0.0105 0.0021
Creative X e'ship -0.0020 0.0012 -0.0049 0.0008 -0.0039 0.0011
HS -0.1148 0.0379 -0.1092 0.0244 -0.0789 0.0346
College -0.0432 0.0306 -0.0313 0.0198 -0.0024 0.0281
EmpRate 0.0365 0.0267 0.0091 0.0173 0.0071 0.0246
MedInc 5.82E-07 3.28E-07 2.64E-07 2.12E-07 3.45E-07 3.01E-07
PopDen -2.47E-06 1.05E-06 -1.93E-06 6.75E-07 -7.21E-07 9.56E-07
Commute 0.1124 0.0110 0.0533 0.0071 0.0352 0.0101
Metro 0.0070 0.0043 0.0104 0.0028 0.0075 0.0039
Ag 0.0400 0.0365 -0.0052 0.0236 0.0425 0.0335
Mining -0.0704 0.0669 -0.1193 0.0432 -0.1132 0.0612
NonDurManu -0.1145 0.0414 -0.0293 0.0268 -0.0118 0.0380
DurManu -0.1661 0.0346 -0.0645 0.0223 -0.1400 0.0317

Trade 0.0625 0.0709 0.1091 0.0456 0.1625 0.0645
Visitor 0.0007 0.0718 0.0365 0.0462 0.0457 0.0655

Services 0.0175 0.0602 -0.0054 0.0388 0.0676 0.0550
Pop8-17 0.3650 0.1044 -0.1075 0.0677 0.3969 0.0964
Pop62 0.1720 0.0506 -0.2695 0.0327 0.0250 0.0464
PctBlack -0.0508 0.0144 -0.0370 0.0094 -0.0318 0.0133

PctNA 0.0067 0.0281 0.0240 0.0182 -0.1117 0.0258

PctHis 0.0466 0.0156 0.0179 0.0102 -0.0315 0.0145

Military 0.1812 0.0667 -0.0731 0.0430 0.2875 0.0609
CollegePop 0.0506 0.0336 0.0057 0.0216 0.0100 0.0306
OutAmen 0.0161 0.0026 0.0103 0.0017 0.0123 0.0024
PubLand -0.0024 0.0023 -0.0039 0.0015 0.0011 0.0021
EstabChg90 0.4413 0.0569 0.1129 0.0367 0.2675 0.0519
JobChg90 0.1100 0.0125 0.1481 0.0080 0.1029 0.0114
PopChg90 -0.0001 0.0001 0.0000 0.0001 0.00002 0.0001
Lambda 0.0871*** 0.1463*** 0.2017***
LogLik 3249.40 4547.76 3508.38  
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