
Abstract
Funded by the National Digital Information Infrastructure and Pres-
ervation Program (NDIIPP), the ECHO DEPository Project supports
the digital preservation efforts of the Library of Congress by contrib-
uting research and software to help society GET, SAVE, and KEEP
its digital cultural heritage. Project activities include building Web
archiving tools, evaluating existing repository software, developing
architectures to enhance existing repositories’ interoperability and
preservation features, and modeling next-generation repositories
for supporting long-term preservation. This article describes the
development of the Hub and Spoke (HandS) Tool Suite, built to help
curators of digital objects manage content in multiple repository sys-
tems while preserving valuable preservation metadata. Implementing
METS and PREMIS, HandS provides a standards-based method for
packaging content that allows digital objects to be moved between
repositories more easily while supporting the collection of techni-
cal and provenance information crucial for long-term preservation.
Related project work investigating the more fundamental semantic
issues underlying the preservation of the meaning of digital objects
over time is profiled separately in this issue (Dubin et al., 2009).

The Hub and Spoke Interoperability Architecture
HandS is a suite of tools built to support moving content between reposi-
tories while generating and maintaining PREMIS-based technical and
preservation metadata. It emerged out of project activities to evaluate
open-source repositories in which we found typically low out-of-the-box

Developments in Digital Preservation at
the University of Illinois: The Hub and
Spoke Architecture for Supporting
Repository Interoperability and Emerging
Preservation Standards

Thomas Habing, Janet Eke, Matthew A. Cordial,
William Ingram, and Robert Manaster

LIBRARY TRENDS, Vol. 57, No. 3, Winter 2009 (“The Library of Congress National Digital
Information Infrastructure and Preservation Program,” edited by Patricia Cruse and Beth
Sandore), pp. 556–579
(c) 2009 The Board of Trustees, University of Illinois

557habing/hub and spoke architecture

support for interoperability and low support for emerging preservation
standards. The next section describes the impetus and rationale behind
the HandS development in more detail.

Hub and Spoke Background
The development of the Hub and Spoke (HandS) Architecture was a nat-
ural outcome of activities required to develop a test bed for evaluating
multiple repository systems. During the development of our test bed we
found ourselves developing a number of different though similar custom-
ized scripts and programs for exporting digital packages from one reposi-
tory system and importing those digital packages into another repository
system. The repository systems themselves had very little in common that
would facilitate this task. They typically supported different descriptive
metadata formats, had no support for provenance metadata, offered little
or no support for technical metadata, and employed different means of
identifying the files constituting a package. The development of an in-
house tool to facilitate data interoperability between multiple repositories
without the need to develop customized mechanisms for each repository
combination therefore soon emerged as a key task to support our reposi-
tory evaluation activities.

At the same time, we were also coming to a more structured under-
standing of emerging digital preservation standards, specifically early
drafts of An Audit Checklist for the Certification of Trusted Digital Repositories
(RLG,	2005;	Kaczmarek	et	al.,	2006;	Kaczmarek,	Habing,	and	Eke,	2006)	
and the PREMIS Data Dictionary for Preservation Metadata (PREMIS Work-
ing Group, 2005). We began to see that a formally developed interoper-
ability architecture designed with a focus on providing additional support
for retention of provenance and technical metadata could be a valuable
and practical project deliverable, and one with immediate application in
our own libraries and in other institutions that commonly implement mul-
tiple repository systems to manage and preserve digital collections.

The Need for Interoperability and
Preservation Support

Institutions Commonly Rely on Multiple Repositories
There are currently many different digital repositories in widespread
use, including DSpace, Greenstone, Fedora, EPrints, and CONTENTdm,
along with digital archive services like those from OCLC and CDL. There
are also many different sources of input into these systems, such as from
Web crawlers like Heritrix or packaged content from OCLC’s Web Ar-
chives Workbench, as well as numerous digitization and scanning services.
It is also not uncommon for several of these systems to be in use within a
single institution. If curators wish to share data internally, or with other
institutions or consortia, it is very likely that multiple repository systems

558 library trends/winter 2009

will come into play. Repository interoperability issues also emerge as in-
stitutions update or replace their repository systems, and must migrate
content from an existing repository system to its replacement.

Out-of-the-box Repository Interoperability Is Low
Our repository evaluation experiments and our experiences with reposi-
tories in production at our own institutions show that the native ability for
repositories to interoperate is typically very basic. Almost none of the sys-
tems we tested were able to operate with one another beyond a rudimen-
tary level, usually restricted to the OAI Protocol for Metadata Harvesting
(OAI-PMH) for Dublin Core. If any OAIS concepts are implemented (and
few are), such as the use of submission or dissemination information pack-
ages (SIPs and DIPs), these implementations vary greatly (Consultative
Committee for Space Data Standards, 2002). In an ideal OAIS-compliant
world, a DIP from one repository should be a SIP to another. However,
in reality, a dissemination package produced by DSpace cannot be used
for submission into EPrints. Because of these inconsistencies, achieving
any real interoperability between repository systems usually entails some
level of custom software development. Further, anytime a new repository
is added to the mix, new software will need to be developed in order to
accommodate the added repository.

Support for Emerging Preservation Standards Is Low
Few of the current repositories have any explicit support for preservation,
such as for collecting preservation metadata as articulated by PREMIS, or
activities to support preservation such as format migrations or checksum
validations as outlined in the Trusted Digital Repository Checklist. For an
institution that deploys several repository systems, a task as simple as per-
forming consistent backups to off-line storage can become complicated
by the fact that the systems store their underlying data differently. There
may be data stored in relational databases, XML databases, RDF triple
stores, and various file systems—all of which must be backed up, and may
require different backup techniques.

Summation
The general lack of repository support for interoperability and for emerg-
ing repository standards at a time when libraries and other institutions
commonly rely on multiple repository systems to manage, share, and pre-
serve content, is the fundamental impetus behind the development of the
HandS Tool Suite. The key principles of interoperability and preserva-
tion, and the approaches implemented in the HandS to support them,
are examined more closely in the next section, followed by a functional
and technical overview of the HandS tools.

559habing/hub and spoke architecture

Hub and Spoke Key Principles
The Hub and Spoke approach is based on the two key principles of in-
teroperability and preservation, with the understanding that interoper-
ability is not only an end unto itself, but it is also critical for preservation.

Interoperability
To reduce the complexity of interoperability, the Hub and Spoke uses a
common packaging format for interchange of digital resources between
different repositories. Digital packages coming from a repository are
transformed into this common format before any further processing, and
digital packages are transformed from this common format into the na-
tive repository format when being placed into a repository. The idea is to
reduce an N2 problem into a 2N problem as shown in figure 1.

Preservation
The second key principle is that the common packaging format as well as
the processes that act on that packaging format should not only support
interoperability, but should also promote preservation. This principle
treats the common packaging format as an archival information package
(AIP) in the OAIS model. The assumption being that one reason pack-
ages are being moved between repositories is for preservation.

There are several features of the Hub and Spoke architecture that pro-
mote preservation. One key preservation feature is the reliance on cur-
rent best practices regarding preservation metadata, primarily informed

Figure 1. Interoperability Standards: A Simple Idea

560 library trends/winter 2009

by PREMIS. The Hub and Spoke is especially concerned with technical
metadata about the files and bitstreams, which comprise a digital package,
and also with provenance metadata about the events that occur during the
package’s lifetime, including events pertaining not only to the files and
bitstreams, but also to the metadata itself. The technical metadata is used
to validate the files and bitstreams throughout a digital object’s lifetime
and are updated as required, for example when a format transformation
occurs. The provenance metadata is also updated throughout an object’s
lifetime. The tools that implement the HandS architecture perform these
actions automatically as required during processing, but the data are al-
ways present in the packages so that other systems can also perform these
actions as needed.

Another key preservation feature is the treatment of the packages
themselves. For purposes of repository interoperability and also to sup-
port preservation, the Hub and Spoke framework treats the instantiations
of the packages as first class digital objects. This means that when a HandS
package is transformed for ingestion into a specific digital repository, not
only are the metadata, files, and bitstreams that comprise the package de-
composed as appropriate for the repository and uploaded, but the pack-
age itself (in our case a suite of METS files) is also treated as a digital object
to be uploaded to the repository. Later when the digital package needs to
be disseminated from the repository, not only are the metadata, files, and
bitstreams available for download, but also the original HandS package.
This allows the HandS system to compare the package as it was originally
ingested to how it now appears as disseminated from the repository. This
process, we feel, is critical for preservation in an environment of heteroge-
neous and changing repositories. Another aspect of this treatment of the
Hub and Spoke packages as first class digital objects is that we can create
snapshots of individual packages at points in time and also record pres-
ervation metadata about the package snapshots. The HandS Tool Suite
currently implements this concept as a master package, which references
time-stamped snapshots of the main package. The master package also
records preservation metadata about the snapshots. This approach is ex-
plained in more detail in the next section, which describes the concrete
implementation of the HandS packages using METS.

METS Profile
To realize the above principles, we wanted to utilize the prevailing digital
library standards as much as possible. To that end, we adopted METS as
the packaging standard, PREMIS as the preservation metadata standard,
and MODS as the descriptive metadata standard. We also optionally uti-
lize several format-specific technical metadata standards such as MIX and
textMD for image and text objects respectively, among others. Our METS

561habing/hub and spoke architecture

profile, the ECHO DEP Generic METS Profile for Preservation and Digital Re-
pository Interoperability (Habing, 2005), is currently registered with the Li-
brary of Congress.

As already described, the primary focus of the HandS METS profile is
to enable repository interoperability and to support preservation of re-
pository content. Because of the strong focus on preservation rather than
access, the HandS profile is relatively noncommittal regarding file for-
mats	or	structures;	instead,	special	attention	is	given	to	administrative	and	
technical metadata, particularly to integrating the PREMIS data model
and schema into METS. We anticipate that our file format-agnostic HandS
profile may be overlaid on top of, or inherited by, other profiles that bet-
ter define a particular file format or structure, providing them with added
support for preservation or interoperability. An example of this arrange-
ment, where a format-specific METS profile is implemented as a subclass
of the PREMIS-focused HandS profile, is the ECHO DEP METS Profile
for Web Site Captures (Habing, 2006), also registered with the Library of
Congress. Thus the ECHO DEP Generic METS Profile for Preservation and
Digital Repository Interoperability is generally not concerned with render-
ing or making accessible any particular representation of an object, but
it is concerned with preserving the object and its representations, includ-
ing the history of how those have changed over periods of time. In this
context, preservation refers to short-term interoperability, preserving the
representations and metadata as a digital package is moved between two
different repositories. It also refers to the long-term preservation of the
package and its history as it exists in various repositories for long periods
of time and undergoes various “preservation actions” such as fixity checks,
normalizations, or format migrations.

Note that though the profile is generally agnostic about almost all as-
pects of a digital object’s representation, such as structure or file formats,
we have made some pragmatic concessions, such as mandating at least
MODS for the primary descriptive metadata (dmdSec) while at the same
time allowing multiple alternative descriptive metadata sections. The alter-
native descriptive metadata sections are used as a means to record various
versions of these metadata as they have existed in different repositories or
at different points in time. A potential usage scenario can be illustrated in
the following migration example using our METS profile:

•	 We	start	with	a	digital	object	whose	original	source	descriptive	metadata	
is in the MARCXML format. Because our profile requires MODS as the
primary descriptive metadata, the MARCXML will be transformed into
MODS, and the MODS will be stored in the METS document along with
a provenance statement with some details about the transformation,
especially identifying the source metadata format. However, because
descriptive metadata are considered to be a significant part of the rep-

562 library trends/winter 2009

resentation of an entity and because transformations between metadata
formats are often imperfect, the original MARCXML format is also
stored in the METS document as an alternate metadata format.

•	 Now	suppose	that	the	digital	object	is	to	be	ingested	into	DSpace.	DSpace,	
however, does not have native support for the MODS or MARCXML
metadata	formats;	therefore,	as	part	of	the	ingest	process,	the	MODS	
must be transformed into the idiosyncratic Dublin Core (DC) metadata
format that is supported by DSpace. This metadata format is also added
as another alternate descriptive metadata format to the METS docu-
ment, along with a provenance statement describing how this new DC
format was derived from the primary MODS format.

•	 Next	imagine	that	the	object	exists	in	DSpace	for	some	period	of	time	
during which the descriptive metadata undergoes some revision, such
as the addition of new subject terms or the addition of an abstract. Now
the object is to be disseminated from DSpace for ingest into some new
repository. This could trigger the addition of another alternate descrip-
tive metadata section to the METS document. This alternate format
would conform to the idiosyncratic DSpace Dublin Core format, but
the provenance statement would specify that this DC format represents
a newer version of the descriptive metadata than was originally ingested
into DSpace.

The above scenario would produce a chain of descriptive metadata for-
mats, such as MARCXML (original) → MODS (primary) → DC (version
1) → DC (version 2), with provenance PREMIS event statements adequate
to determine the sequence of events that led to this chain. As part of this
profile we also envision future processes that might reconcile later meta-
data revisions and merge those revisions back into a new primary MODS
descriptive metadata section. The preservation of semantics during these
types of migrations is one of the concerns of semantic preservation de-
scribed in Dubin et al. in this issue.

Because we feel that administrative metadata are important for pres-
ervation, this profile is fairly prescriptive when it comes to the administra-
tive metadata, which can be associated with almost all of the sections that
make up a representation: structures, files, and bitstreams, and descriptive
metadata. Particular attention is paid to the technical and provenance
metadata associated with these METS sections.

Master METS Profile
Another key idea behind our METS profile is the idea of a Master METS
document. Each package in the HandS architecture consists of a single
Master METS document, one or more METS Snapshot documents, plus
all the files and bitstreams that are referenced from the METS Snapshots,
as shown in figure 2.

563habing/hub and spoke architecture

Each Snapshot represents a version of the digital package at a point
in time, usually when the package is either retrieved from or placed into
a given repository. Nearly any aspect of a digital object’s representation
may change with time, including descriptive metadata, structure, and, as
illustrated above, even the files referenced from a package, perhaps as
format migrations occur. These changes are recorded as provenance state-
ments in the METS Snapshot in which the change is manifest. For exam-
ple, METS Snapshot 2 in the above diagram would have a PREMIS event
describing that File 1 was deleted from the package and File 4 was added

Figure 2. Master METS Showing Multiple Snapshots and Associated Files

564 library trends/winter 2009

to the package. In most cases, the HandS system can automatically de-
tect when these changes occur and will automatically add the appropriate
provenance statements or embellish the technical metadata as required.
However, it may not be able to determine why the changes occurred
without some sort of intelligent intervention. HandS is able to detect the
changes because it has access to the previous Snapshots and can compare
the Snapshot of the package as it went into a repository to the package
that is retrieved from the repository. This is one of the primary reasons
that the METS documents themselves are also placed into a repository
along with the other files that are actually part of the package.

Summation
The METS profile implementations described above are an integral piece
of the HandS architecture, used as framework for generating and main-
taining PREMIS-based metadata over time to support long-term preserva-
tion. The next section looks in more detail at other mechanisms of the
HandS Tool Suite, and illustrates its overall workflow cycle.

HandS Workflow Cycle
As described in the preceding sections, the HandS Tool Suite provides a
framework for sustaining and enriching preservation metadata for digi-
tal objects as they are moved into, out of, and between digital repository
systems. Digital objects or preservation packages typically refer to a set of
files that represents a single intellectual entity, including metadata about
the entity or about the files themselves. In the Hub and Spoke workflow
cycle (see fig. 3), digital objects are retrieved, converted to a common
profile, validated, enriched with metadata, transformed into a repository-
compatible form, and ingested into a digital repository.

Workflow Overview: GET, PROCESS, PUT
Preservation packages may enter the HandS workflow in various ways:
some may come from third-party applications like the OCLC Web Ar-
chives Workbench, others may be disseminated from a digital repository
like DSpace or EPrints, and some will originate simply as directories of
files on a computer file system. In any case, the set of files that make up
the preservation package must first be gathered and organized for pro-
cessing. Objects entering the workflow from a digital repository system
must first be fetched from the repository by interacting with its native
dissemination routine, which will vary from repository to repository. This
interaction with the repository system is facilitated by our Lightweight
Repository Create, Retrieve, Update, and Delete Service—affectionately
named LRCRUD. LRCRUD is made up of two modules: the LRCRUD Cli-
ent, which runs on the same machine as the other HandS tools, and the
LRCRUD Service, which runs alongside a digital repository system. To re-

565habing/hub and spoke architecture

trieve a package from the repository, the LRCRUD Client makes a request
to the LRCRUD Service. The LRCRUD Service, in turn, communicates
directly with the repository system and retrieves the package via the re-
pository’s native dissemination routine. The LRCRUD Service zips up the
package and sends it over the network to the Client. Once the package
has been received by the LRCRUD Client and verified, its contents are
unzipped onto the local file system.

From there, the To-Hub Packager tool converts the digital object into
what we call a Hub Package. A Hub Package is made up of the content
files	 that	 constitute	 the	digital	object;	METS	documents	 containing	de-
scriptive, administrative, and structural metadata about the object at vari-
ous	points	in	time;	and	a	single	Master	METS	document	that	comprises	
chronological and structural information about the other METS docu-
ments. The Master METS file will contain a pointer to at least one, but po-
tentially several other ECHO DEP METS documents, each of which serves
as a snapshot of the Hub Package at some point in its lifecycle. The ECHO
DEP	METS	document	is	the	heart	of	a	Hub	Package;	it	holds	together	all	
the files and various metadata that make up the package. When a Hub
Package is created, a new ECHO DEP METS document is generated for
the package. If the package already contains an older ECHO DEP METS
document (generated prior to ingestion into the repository), the new
METS document is compared to the older one to discover any changes or

Figure 3. HandS Workflow Cycle

566 library trends/winter 2009

damages to the package that might have occurred while in the custody of
the repository.

The ECHO DEP METS document is then enriched with technical
metadata and validated against the ECHO DEP METS Profile registered
with the Library of Congress (Habing, 2005). The TechMD Augmentor
tool enriches the METS document with format-specific technical meta-
data found by analyzing each of the package’s content files, and convert-
ing the result into PREMIS Object metadata. Once the package has been
analyzed and enriched, the Profile Validator closely inspects the constitu-
ent files that make up the package, both data and metadata, and verifies
there are no errors or inconsistencies.

At this point, the Hub Package is ready to be sent on to another reposi-
tory. But first, it has to be converted into a form compatible with inges-
tion into the target repository, which again will vary from repository to
repository. This final conversion is carried out by a From-Hub Packager
tool built specifically for the target repository. From there, the package
is handed off from the LRCRUD Client to the LRCRUD Service for the
target repository and ingested.

The workflow cycle might be more easily understood by following an
example preservation package as it makes its way through the process. For
this example, we will use three small files that make up a single Web page:
an HTML file, a Cascading Style Sheet (CSS), and a JPEG image. These
three files compose a single preservation package, or item, which has been
submitted to a DSpace digital repository. Using the HandS Tool Suite, we
will transfer the item from DSpace to an EPrints repository, while generat-
ing preservation and technical metadata along the way.

Step 1: Retrieve Repository X Dissemination Package via LRCRUD
In our example, suppose we have an LRCRUD Service running alongside
a DSpace repository on a remote server. The LRCRUD Client application
sends a request to the LRCRUD Service to retrieve (GET) a package from
the repository. The LRCRUD Service relays the retrieval request to DSpace
using the repository’s native dissemination method. The output of a reposi-
tory’s dissemination will typically be made up of any number of metadata
streams and other supporting artifacts in addition to the item’s content files.
In the case of DSpace, the package will include a DSpace METS file that
encompasses MODS descriptive metadata about the package and PREMIS
technical metadata pertaining to each of the constituent bitstreams. In
our example, the package returned by DSpace now contains four files: the
HTML, CSS, and JPEG files we began with, and a DSpace METS file.

The LRCRUD Service receives the DSpace dissemination and pack-
ages its contents into a zip archive, which will be transmitted over HTTP
to the LRCRUD Client. The LRCRUD Service also calculates file size and
a checksum value for the zip file before sending it, and transmits these
values as Content-MD5 and Content-Length HTTP header fields along

567habing/hub and spoke architecture

with the package zip file. As the LRCRUD Client receives the package zip
file, it too calculates file size and checksum values, which are validated
against the HTTP header fields to ensure the package was unharmed dur-
ing the file transfer. Assuming the values agree, the package is unzipped
and saved to disk.

Step 2: Create Hub Package from Repository Dissemination Files
To create a Hub Package from the repository dissemination package, the
To-Hub packager needs to produce a new ECHO DEP METS document
for the package. The packager begins by searching the retrieved files for
any metadata included by the repository. In our example, the packager
locates the DSpace METS document and retrieves its MODS descriptive
metadata stream. This DSpace MODS metadata will be transformed into
Aquifer MODS and inserted into the new ECHO DEP METS document’s
descriptive metadata section. Other repositories export metadata in differ-
ent formats (e.g., Dublin Core), but in all cases the package metadata is
ultimately transformed to Aquifer MODS by the To-Hub Packager.

The To-Hub Packager then creates an entry in the file section of the
ECHO DEP METS document for each of the package’s constituent files. In
our example, the new ECHO DEP METS document will contain a file ele-
ment for each of our three content files. The To-Hub Packager will also create
in the new ECHO DEP METS document three PREMIS technical metadata
objects to correspond to three file elements. Each will contain basic tech-
nical metadata about one of the files, including checksum values, file size,
and MIME-type. Finally, any leftover descriptive and technical metadata
elements from the DSpace METS document are inserted into the ECHO
DEP METS document as alternate metadata so that it is never lost.

If the package contains older ECHO DEP METS documents (because
it had been packaged by HandS before entering the repository), the most
recent ECHO DEP METS document is compared to the just-generated
ECHO DEP METS document to expose any changes the package may have
undergone since it was last analyzed. These data are recorded in the new
ECHO DEP METS document’s provenance metadata as PREMIS events.
If the package contains a Master METS document, a pointer to the new
METS document is created and designated as the most-current ECHO
DEP METS document for the package. If no Master METS document can
be found, the To-Hub Packager creates one from scratch. Once the new
METS document has been created and the Master METS document is up-
dated, Hub Package creation is complete. Our example Hub Package now
consists of a Master METS document, which points to a single ECHO DEP
METS document. This ECHO DEP METS document contains descriptive
metadata	about	the	package;	technical	metadata	about	each	of	the	three	
content files, along with pointers to those files and the technical metadata
left	by	DSpace;	and	provenance	metadata	documenting	the	package’s	ex-
port from the repository and its Hub Package transformation.

568 library trends/winter 2009

Step 3: Generate Technical Metadata; Augment Hub Package METS Document
Using tools from the JSTOR/Harvard Object Validation Environment
(JHOVE), the HandS TechMD Augmenter module analyzes each of the Hub
Package’s content files and generates format-specific, technical metadata for
each. The JHOVE-generated metadata is transformed using format-specific
XSLT stylesheets, and inserted into the technical metadata section of the
ECHO DEP METS document. Any inconsistencies between the technical
metadata currently held in the METS document and metadata generated
by JHOVE are recorded in the provenance section of the ECHO DEP METS
document as PREMIS validation events. The technical metadata stored in
the ECHO DEP METS document is formatted in compliance with the fol-
lowing	metadata	preservation	standards:	AudioMD	for	audio	files;	TextMD	
for	text,	XML,	and	HTML;	and	MIX	for	images.

In our example the HTML, CSS, and JPEG files will each be analyzed
by JHOVE. The JHOVE output for both the HTML and CSS files will be
formatted as TextMD, and the output for the JPEG image will be format-
ted as MIX. Each will be inserted into the ECHO DEP METS document in
a technical metadata element corresponding to the appropriate file ele-
ment. The JHOVE analysis itself is also documented and recorded in the
ECHO DEP METS document as a validation event. One of the limitations
of JHOVE is its small number of supported media types. In its current re-
lease JHOVE offers no support for closed formats such as Microsoft Office
files. Another drawback of using JHOVE is that it only reports the MIME-
type	correctly	for	HTML	or	XML	files	if	they	are	well	formed;	otherwise	
it reports them as plain text, causing discrepancies within the ECHO DEP
METS document and validation warnings. Nevertheless, we found JHOVE
to be a useful tool for analyzing files and generating technical metadata.
For more on JHOVE visit http://hul.harvard.edu/jhove/.

Step 4: Validate Hub Package METS Document against METS Profile
The Profile Validator examines the current ECHO DEP METS document
for the Hub Package against the requirements of our METS profiles cur-
rently registered with the Library of Congress (Habing 2005, 2006).

Key validation points include checking to make sure that the primary
descriptive metadata element contains a MODS object that conforms to
the	Aquifer	MODS	profile;	that	every	file	referenced	by	the	file	section	has	
associated	 technical	metadata	PREMIS	objects;	and	 that	all	provenance	
metadata associated with a file contain valid PREMIS event elements (DLF
Aquifer Metadata working Group, 2006). The Profile Validator also checks
that the package content files referenced by the ECHO DEP METS docu-
ment are accounted for, and that their checksum, file-size, and mime-type
values are correct.

Our example ECHO DEP METS document passes validation for the
following reasons: it contains valid Aquifer MODS in its primary descrip-
tive	metadata	element;	each	of	its	file	elements	reference	technical	meta-

569habing/hub and spoke architecture

data	elements	containing	valid	and	complete	PREMIS	object	metadata;	
and it conforms structurally to our METS profile requirements. Once the
validation has completed, the validation event itself is documented and
recorded in the ECHO DEP METS as a PREMIS validation event.

Step 5: Create Repository Package from Hub Package
Before a repository can accept a package for submission, it must first re-
ceive a description of the package’s contents. The From-Hub Packager
module uses descriptive metadata extracted from the Hub Package ECHO
DEP METS document to generate the repository-specific metadata need
for package submission. This process usually involves transforming the
Aquifer MODS metadata found in the ECHO DEP METS document into
a metadata format required for repository submission, and will vary from
repository to repository.

In our example, we are sending the package to an EPrints repository,
which means the packager will generate an EPrints-specific metadata file
from the Aquifer MODS stream. The transformation event is recorded in
the ECHO DEP METS document as a PREMIS metadata-transformation
event, and the newly-generated metadata is added to the METS document
as alternate descriptive metadata. A Repository Package zip file is then
created, consisting of the Master METS document, all the subordinate
METS snapshot documents and the content data files, as well as any repos-
itory-specific metadata files.

Step 6: Send Repository Package to Repository Y via LRCRUD
At this last step in our example, we have an EPrints-specific LRCURD Service
running on a remote server with an EPrints repository. The LRCRUD Client
sends a request to the LRCRUD Service to create (POST) a new package.
The LRCRUD Service relays the create request to the repository and, using
the repository’s native methods, creates an empty record. The LRCRUD
Service receives a new location identifier, or handle, corresponding to the
newly created location in the repository, which it sends back to the LRCRUD
Client. This location identifier is inserted into the package’s ECHO DEP
METS document as the primary ID for the METS document.

The LRCRUD Client then sends a request to the LRCRUD Service
to update (PUT) the new package at that location. The LRCRUD Client
calculates file size and checksum values for the package zip file before
sending it to the Service, and it transmits these values as Content-MD5
and Content-Length HTTP header fields along with the package. As the
LRCRUD Service receives the package zip file from the Client, it calcu-
lates its own file size and checksum values and validates them against the
HTTP header fields to ensure the package was unharmed during the file
transfer. Once the LRCRUD Service has validated the file transfer, it un-
zips the package and ingests each of its contents—including the package
METS files—into the repository using the repository’s native submission
routine. The repository-specific descriptive metadata that was generated

570 library trends/winter 2009

in Step 5 above is submitted to the repository as well. Once the package
has been fully ingested, the LRCRUD Service returns an update response
message to the LRCRUD Client confirming the successful submission, or
an error if the submission failed.

Some repositories allow for certain bitstreams to be given privileged
status. In such cases the Master METS and ECHO DEP METS files may
receive	special	status;	but	in	all	cases	the	METS	files	are	preserved	along	
with the other package content files and are treated as first class objects
with regard to the repository. That way, when the package is retrieved
from the repository, all the metadata pertaining to the state of the pack-
age before it was submitted to the repository is not lost.

Summation
Through the workflow process described above, HandS provides tools to
facilitate moving digital objects between multiple repositories while gen-
erating and maintaining important PREMIS-based technical and prove-
nance preservation metadata. Digital objects are retrieved, converted to
a common profile, validated, enriched with metadata, transformed into a
repository-compatible form, and ingested into the target repository.

HandS Technical Implementation
The key technical components of the HandS implementation are the Hub
and Spoke METS profile Java classes, providing an extensible Java API to
our	METS	profile	with	Apache	XMLBeans;	the	To-	and	From-Hub	Pack-
ager	modules,	 facilitating	interoperability	 through	pluggable	 interfaces;	
and the Lightweight Repository CRUD Service (LRCRUD), supporting
the dissemination and submission of objects by defining a protocol for
transmitting digital objects to and from repository systems over HTTP.

Hub and Spoke METS Profile API
The core of the HandS Tool Suite is our METS Profile API, a Java code
representation of a METS XML document compiled from our METS pro-
file. The bulk of our METS classes were created with Apache XMLBeans
(http://xmlbeans.apache.org/), a tool for generating Java classes from
XML schema files (XSD files). With XMLBeans, we are able to compile
XML schema documents to produce a Java code structure, allowing us
to work with XML data through our own Java classes and methods. To
create our METS profile API, we combine methods from XMLBeans-
generated classes from the METS, MODS, and PREMIS schemas, along
with format-specific preservation metadata schemas like MIX, TextMD,
and AudioMD. We also layer custom-built convenience methods on top of
the XMLBeans-generated methods to facilitate additional manipulation
of the METS document in a fashion unique to our METS profile.

A new HandS Profile Java object can be created from scratch given a
set of content files and accompanying metadata, or by instantiating an

571habing/hub and spoke architecture

existing XML METS document that conforms to our profile. Once instan-
tiated, the underlying METS document object can be operated upon pro-
grammatically through API calls. In working with the API, we are assured
that any manipulation of the METS document will always be consistent
with our METS profile. For instance, to add a new file to the preservation
package, a call is made to the addFile() method, which in turn triggers
calls to other methods that ensure the METS object remains consistent
with our profile—such as adding a new PREMIS Object techMD section
associated with the new file, and generating checksum, MIME-type, and
file size values. At any time the METS object can be validated against our
profile, or re-serialized as XML and saved to the file system.

To- and From-Hub Packagers
To facilitate repository interoperability, the HandS Tool Suite includes a
set of packager classes for transforming a collection of preservation items
into a Hub Package, and for transforming a Hub Package into a form re-
quired for submission into a given repository. For items entering the Hub
and Spoke from a digital repository, the repository-specific To-Hub pack-
ager takes the native repository dissemination, unpacks it, and instanti-
ates a new HandS METS Profile object from its contents. Going the other
way, a repository-specific From-Hub packager prepares a Hub Package for
submission into the particular repository.

Currently, we have To-Hub packagers for processing items coming
from DSpace, EPrints, OCLC’s Web Archives Workbench, or from a di-
rectory of files. Our current list of From-Hub packager targets includes
DSpace, EPrints, and the Library of Congress archive standard Bagit. To-
and From-Hub packager modules for the Fedora repository are currently
in development. We have employed a “pluggable” architecture for creat-
ing packager modules. Base To- and From-Hub classes are implemented
in Java as abstract classes with the intention that they will be overridden
and extended by other programmers needing to tailor the HandS Tools to
their specific repository or archiving standard. This modular architecture
allows other developers to create packager plug-ins for their own reposi-
tory systems without having to recompile or re-factor the existing HandS
codebase.

Lightweight Repository CRUD Service (LRCRUD)
The Lightweight Repository CRUD service specification defines dissemi-
nation and submission Web-service interfaces to digital repository systems
for use with the ECHO DEP Hub and Spoke Tool Suite. The LRCRUD
specification defines a protocol for transmitting digital objects to and
from repository systems over HTTP. It enables users to obtain objects in a
format expected by the HandS processing scripts and supplies digital ob-
jects to repositories in a format expected by their native ingestion mecha-
nisms. The specification is implementation-agnostic: it simply defines the

572 library trends/winter 2009

parameters and responses required to enable a service implementation to
communicate with the LRCRUD client application. This allows LRCRUD
implementers to choose the most appropriate environment and program-
ming languages for interacting with their chosen repository. The HandS
Tool Suite currently has LRCRUD implementations for DSpace, EPrints,
and Fedora.

The LRCRUD Service follows Representational State Transfer (REST)
conventions. It exposes CRUD actions on repository content over the
HTTP protocol. As mentioned above, CRUD is an acronym for Create Re-
trieve Update and Delete—the basic operations that applications should
implement when acting upon persistent storage like relational database
management systems, file systems, and the like. The LRCRUD client com-
municates with the LRCRUD service via HTTP methods, status codes, and
headers. The list below shows how the CRUD actions are mapped to the
HTTP methods:

•	 Create == POST
•	 Retrieve	==	GET
•	 Update	==	PUT
•	 Delete	==	DELETE

In most cases the LRCRUD service will reside on the same host as the re-
pository it serves so that it has access to the repository’s API.
LRCRUD	is	essentially	a	“dumb”	packager;	it	is	simply	a	way	to	supply	

files to the remote repository in any format/configuration that it can na-
tively ingest. In this it is similar to protocols like the Simple Web Service
Offering Repository Deposit, or SWORD (Allinson, François, and Lewis,
2008;	JISC,	2008),	which	are	being	adopted	by	repositories—and	which	
may make the submission function of LRCRUD ultimately unnecessary.

It may be beneficial to present some descriptive step-by-step examples
in order to clarify the functions of the LRCRUD components within the
Hub and Spoke Tool Suite. These examples describe in detail the interac-
tions between the client and the service.

LRCRUD Functions—Examples
Dissemination
Dissemination (see fig. 4) is the act of retrieving an item from a repository,
whereby the item is defined as an intellectual entity comprising any num-
ber of content streams, metadata streams, and other supporting artifacts.
Items disseminated from a repository using the LRCRUD service are most
likely bound for processing and transformation by the HandS Tool Suite
To-Hub packager. The packager creates METS files conformant to the
HandS profile, extracts and augments technical metadata, and records
provenance information.

Described below are the four major steps in negotiating dissemination:

573habing/hub and spoke architecture

•	 The LRCRUD client submits an HTTP GET request to the LRCRUD
service. The GET request provides the ID of the item desired via the
LRCRUD service URL syntax.

•	 The	service	calls	the	repository’s	native	dissemination	routine	for	the	
ID indicated.

•	 The	service	receives	the	output	from	the	dissemination	and	adds	the	
entire content into a zip file.

•	 The	service	returns	the	zip	file	containing	the	“package”	to	the	client.

Submission
Submission (see fig. 5) is the act of either (1) adding an item to a reposi-
tory for the first time or (2) updating an item already in the repository.
Described below is the process of adding an item to a repository for the
first	time.	This	is	a	two-stage	process;	the	first	stage	reserves	an	identifier	
in the system, while the second actually places content in the repository.

Stage 1: Create stub record to reserve an identifier. It is critical
to note that the package itself is not uploaded as part of the POST re-
quest;	rather,	the	POST	request	creates	only	a	stub	or	placeholder	record.	
The reason that the actual package is not uploaded as part of the POST
is that the identifier assigned to the package by the repository needs to

Figure 4. LRCRUD Dissemination

574 library trends/winter 2009

be embedded in the METS file, which is part of the package. The typical
sequence of operations to ingest a new package is to use POST to create a
new placeholder record and get the identifier for that record. That identi-
fier is then used to update provenance and other metadata that is part of
the package, and then the placeholder record is updated or overwritten
with the actual package using the PUT action.

The major steps in this process are:

•	 the LRCRUD client issues a POST request to the LRCRUD service speci-
fying the ID of “where” to create the record (e.g., in a specific collec-
tion)	if	needed;

•	 the	service	calls	the	repository’s	native	item	or	ID	creation	routine;
•	 the	repository	supplies	the	service	with	the	ID	for	the	newly	created	
record;

Figure 5. LRCRUD Submission

575habing/hub and spoke architecture

•	 the	service	responds	to	the	client	with	an	HTTP	201	“Created”	message	
and returns the ID in the Location: header.

Stage 2: Upload and ingest the item. In this stage, the item is up-
loaded and placed in the repository. This is the exact process for updating
an existing item:

•	 the LRCRUD client issues a PUT request to the LRCRUD service to re-
place the package identified by the supplied URI. The entity body of the
request	will	contain	a	zip	file	containing	the	“package”	to	be	ingested;

•	 the	service	unpacks	the	files	and	calls	the	repository’s	native	ingestion	
routine;

•	 the	service	responds	to	the	client	with	an	HTTP	204	“No	Content”	mes-
sage indicating that the request was successful.

Lessons Learned
Below, in no particular order, are several key lessons learned during the
course of developing the HandS architecture.

Merging Metadata Is Potentially Risky
After expending much effort exploring how we might merge different
versions of metadata files so as to maintain a single master metadata file,
we reached the conclusion that this was a very difficult problem, and po-
tentially dangerous in terms of data loss. This realization led us to our cur-
rent architecture that skirts the issue of merging metadata into a single
file by maintaining multiple Snapshot METS files all referenced from a
common Master METS file.

METS Supports Multiple Metadata Formats Well
Combining PREMIS, MODS, and other XML-based technical metadata
formats into a single METS document worked well for this particular proj-
ect. The general structure of METS seemed to lend itself to constructing
preservation packages. Our conceptual model, which was directly influ-
enced by the METS and PREMIS structures, consisted at a high level of
the intellectual entity having one or more representations. These repre-
sentations and all their component parts were the primary focus of the
preservation efforts. The METS file itself is treated as the abstract parent
representation of the intellectual entity. However, there are also one or
more concrete representations consisting of each structMap within the
METS file. These representations consist of the relationships embodied in
the	structMap	(and	possibly	the	related	structLink	sections);	the	files	and	
bitstreams	referenced	from	the	structMap;	and	the	associated	descriptive	
metadata (dmdSec), which could be referenced via the structMap or via
individual files or bitstreams. All remaining parts of the METS document,
primarily the header (metsHdr) and administrative metadata (amdSec)
sections, are not considered part of the intellectual entity’s representa-

576 library trends/winter 2009

tions but are, instead, metadata about these representations—mostly con-
cerned with preservation and thus having a strong focus on technical and
provenance metadata. There were pragmatic challenges in getting these
disparate metadata standards to work together, however, and the next
paragraph conveys one such example.

Implementing PREMIS in METS Requires High Level Structural Decisions
Embedding PREMIS metadata within a METS package was not an intui-
tive undertaking. There were several reasons for this. Among these were
various overlaps in the metadata fields supported by each standard. When
faced with these overlaps our general approach was to provide the meta-
data in both places. Although this approach introduced duplication and
the opportunity for inconsistencies into the metadata, we feel the added
flexibility in processing compensated for these shortcomings. Moreover,
the HandS Tool Suite validation steps ensured that these types of incon-
sistencies were not present. Decisions were also required as to where to
embed the PREMIS entities within the METS file. While these entities are
clearly all administrative metadata, they do not always fit neatly within one
of the four subgroups—techMD, digiprovMD, sourceMD, or rightsMD—
provided by METS. Refer to the ECHO DEP METS profiles (Habing,
2005) for details. Project staff also participated in a working group chaired
by Rebecca Guenther at the Library of Congress to address this issue. The
working group produced a report, Guidelines for using PREMIS with METS
for Exchange (Guenther, 2008).

Next Steps: The Hub and Spoke
Development of the Hub and Spoke Tool Suite is ongoing. The latest ver-
sions of the source code can be downloaded from the project’s SourceForge
website at http://sourceforge.net/. Recent developments include the addi-
tion of a From-Spoke for the Bagit specification (Boyko et al., 2008) and
modifications to support version 1.5 of DSpace. Work is continuing apace
on both From- and To-Spokes for the Fedora repository with particular at-
tention being paid to how our METS profile might be accurately mapped
to a Fedora content model, reducing the need for potentially lossy map-
pings as have thus far been required for other repository systems. The
project is also looking at other potential repositories, such as LOCKSS or
CONTENTdm, for Spoke development. In addition to developing new
Spokes, we are also monitoring developments with the next version of
JHOVE, as well as with the Global Digital Format Registry (GDFR, n.d.),
to explore how these tools might be used to enhance the format-specific
technical metadata we are currently generating for different file types.

Supporting Preservation Now and in the Future
The Hub and Spoke (HandS) framework enhances the interoperability
and preservation features of existing open-source repository systems. It

577habing/hub and spoke architecture

provides a suite of tools to facilitate moving digital objects between reposi-
tories more easily while supporting the collection of technical and prov-
enance information crucial for long-term preservation. It is intended to
support curators’ efforts today to manage content in multiple repository
systems and to preserve valuable preservation data in accordance with
emerging digital preservation standards.

In the long term, however, we see the need for the next generation of
digital repositories to do more in order to support our ability to preserve
the meaning of the digital objects maintained in repositories. Current
repository systems preserve the structures of digital objects, from which
meaning or semantics must be inferred. Learning from real-world data
migration examples from the HandS efforts, GSLIS and NCSA research-
ers are working to model how semantic inference capability may help
next-generation archives preserve the meaning (not just the structures)
of digital objects and head off longer-term preservation risks. Specifically,
we are developing automated reasoning techniques targeted at identify-
ing, and eventually correcting, problematic metadata descriptions. This
work is profiled separately in this issue by Dubin et al.

Conclusion
With digital preservation still in its infancy, many changes to emerging
standards, strategies, and methodologies can be expected in the coming
years. The Hub and Spoke framework provides a model that attempts to
incorporate current technologies and best practices from the field to sup-
port digital preservation in current repository environments. It imple-
ments METS and PREMIS to provide a standards-based method for pack-
aging content that allows digital objects to be moved between repositories
more easily while supporting the collection of technical and provenance
information crucial for long-term preservation. HandS is intended to help
curators of digital objects today by providing improved support for pres-
ervation and interoperability to existing repository systems. Ultimately,
in order to meaningfully preserve our digital content over time, we will
need the next generation of preservation tools to support automatic in-
ference of meaning, or semantics, from changed—and thus potentially
ambiguous—information structures.

Acknowledgments
The authors would like to acknowledge the generous support from the
Library of Congress, through the National Digital Information Infrastruc-
ture and Preservation Program, which made possible the research and
development of the preservation and interoperability technologies that
are the focus of this article.

578 library trends/winter 2009

References
Allinson, F., François, S., & Lewis, S. (2008, January). SWORD: Simple Web-service offering

repository deposit. Ariadne, 54. Retrieved September 11, 2008, from http://www.ariadne
.ac.uk/issue54/allinson-et-al/

The Apache Software Foundation. (2008). Welcome to XMLBeans. Retrieved September 11,
2008, from http://xmlbeans.apache.org/

Boyko, A., Kunze, J., Littman, J., & Madden, L. (2008). The Bagit file package format (V0.95). Re-
trieved September 15, 2008, from http://www.cdlib.org/inside/diglib/bagit/bagitspec.html

Consultative Committee for Space Data Standards. (2002). Reference model for an Open Archival
Information System (OAIS). CCSDS 650.0-B-1. Blue Book. Retrieved September 12, 2008,
from http://public.ccsds.org/publications/archive/650x0b1.pdf

DLF Aquifer Metadata Working Group. (2006). Digital Library Federation / Aquifer Implementation
Guidelines for Shareable MODS Records. Retrieved September 10, 2008, from http://wiki.dlib
.indiana.edu/confluence/download/attachments/24288/DLFMODS_Implementation-
Guidelines_Version1-2.pdf?version=1

Dubin, D., Futrelle, J., Plutchak, J., & Eke, J. (2009). Preserving Meaning, Not Just Objects:
Semantics and Digital Preservation. Library Trends, 57(3), 595-609.

The ECHO DEPository project. (n.d.). Retrieved September 9, 2008, from http://ndiipp.uiuc.edu/.
Global Digital Format Registry (GDFR) Information Site. (n.d.). Retrieved September 15,

2008, from http://www.gdfr.info/
Guenther, R. (2008). Guidelines for using PREMIS with METS for exchange. Retrieved September

11, 2008, from http://www.loc.gov/standards/premis/guidelines-premismets.pdf
Guenther, R. (2008). Battle of the buzzwords: Flexibility vs. interoperability when implement-

ing PREMIS in METS. D-Lib Magazine, 14(7/8). Retrieved September 12, 2008, from http://
www.dlib.org/dlib/july08/guenther/07guenther.html

Habing, T. G. (2005). ECHO Dep generic METS profile for preservation and digital repository in-
teroperability. Retrieved September 10, 2008, from http://www.loc.gov/standards/mets/
profiles/00000015.xm;

Habing, T. G. (2006). ECHO Dep METS profile for Web site captures. Retrieved September 10,
2008, from http://www.loc.gov/standards/mets/profiles/00000016.xml

Habing, T. G. (2007). Lightweight repository CRUD Service (LRCRUDS). Retrieved September 10,
2008, from http://dli.grainger.uiuc.edu/echodep/hands/LRCRUDS.htm

JISC. (2008). SWORD. Retrieved September 11, 2008, from http://www.ukoln.ac.uk/
repositories/digirep/index/SWORD

JHOVE: JSTOR/Harvard Object Validation Environment. (2007). Retrieved September 11, 2008,
from http://hul.harvard.edu/jhove/

Kaczmarek, J., Habing, T. G., & Eke, J. (2006). Repository software evaluation using the audit
checklist for certification of trusted digital repositories. In Proceedings of the 6th ACM/IEEE-
CS joint conference on digital libraries 2006, Chapel Hill, NC, USA June 11-15, 2006. New York:
Association for Computing Machinery. Retrieved September 10, 2008, from http://doi.
acm.org/10.1145/1141753.1141774

Kaczmarek, J., Hswe, P., Eke, J., & Habing, T. G. (2006). Using the “Audit checklist for the
certification of a trusted digital repository” as a framework for evaluating repository soft-
ware applications. D-Lib Magazine, 12(12). Retrieved September 10, 2008, from http://
www.dlib.org/dlib/december06/kaczmarek/12kaczmarek.html.

METS: Metadata encoding & transmission standard, official website (2008). Retrieved Sep-
tember 10, 2008, from http://www.loc.gov/standards/mets/

MIX: NISO metadata for images in XML schema, technical metadata for digital still images
standard, official website. (2008). Retrieved September 10, 2008, from http://www.loc
.gov/standards/mix/

MODS: Metadata object description schema, official website. (2008). Retrieved September
10, 2008, from http://www.loc.gov/standards/mods/

OAI-PMH: Open Archives Initiative—Protocol for Metadata Harvesting. (2008). Retrieved
September 12, 2008, from http://www.openarchives.org/pmh/

PREMIS: Preservation metadata maintenance activity, official website. (2008). Retrieved Sep-
tember 10, 2008, from http://www.loc.gov/standards/premis/

PREMIS Working Group. (2005). Data dictionary for preservation metadata. Dublin, OH: OCLC
and RLG. Retrieved September 10, 2005, from http://www.oclc.org/research/projects/
pmwg/premis-final.pdf

579habing/hub and spoke architecture

RLG. (2005). An audit checklist for the certification of trusted digital repositories. Mountain View,
CA: RLG. Retrieved September 10, 2008, from http://worldcat.org/arcviewer/1/
OCC/2007/08/08/0000070511/viewer/file2416.pdf

textMD: Technical Metadata for Text, official website. (2008). Retrieved September 10, 2008,
from http://www.loc.gov/standards/textMD/

UIUC Echodep Hub and Spoke Framework Tool Suite. (n.d.). Retrieved September 12, 2008, from
http://dli.grainger.uiuc.edu/echodep/hands/

Thomas Habing is a research programmer at the Grainger Engineering Library
Information Center at the University of Illinois at Urbana-Champaign where for
the past ten years he has worked on various digital library projects. Tom currently
spends half his time as a developer for the DLF Aquifer American Social History
Online project. The remainder of his time is spent providing technical support for
various ongoing projects at UIUC, including being the developer of the UIUC OAI
Registry, providing technical leadership for the library’s NDIIPP ECHO DEPository
grant project, and various internal projects. Tom’s start in digital libraries was as lead
developer on the library’s NSF-funded Digital Library Initiative (DLI I) project and
on the CNRI-funded DLib Test Suite projects.

Janet Eke served as project coordinator of the NDIIPP-funded digital preservation
projects based at the University of Illinois at Urbana-Champaign from Fall 2004
through August 2008. She is now the research services coordinator at the Graduate
School of Library and Information Science (GSLIS) at the University of Illinois at
Urbana-Champaign where she helps to develop services, tools, and resources to
support and promote the research efforts of the school. Previously at GSLIS she
provided research services at a fee-based custom research unit and taught a master’s
course in online searching. Before joining GSLIS in 1998, she worked for many years
in public libraries.

Matt Cordial is digital library software engineer for the Informatics and Cyberinfra-
structure Services unit at the Arizona State University. He is responsible for the design,
implementation, and maintenance of applications that interface with ASU’s Fedora
repository and other external systems. He develops workflow tools for the capture,
ingest, and update of a wide range of digital objects: textual objects, images, audio
and video data, numeric and geospatial data, etc. Cordial holds a master’s degree
from the Graduate School of Library and Information Science at the University of
Illinois at Urbana-Champaign.

Bill Ingram is a visiting research programmer at the Grainger Engineering Library
Information Center at the University of Illinois at Urbana-Champaign, where he pro-
vides programming support for several of the library’s grant-funded research projects.
Recent projects include the NDIIPP-funded Hub and Spoke Tool Suite, the IMLS
Digital Content Gateway, and a Mellon-funded experiment using OAI-ORE Resource
Maps to support scholarly annotation of digitized books. In addition, Ingram attends
the Graduate School of Library and Information Science at the University of Illinois
at Urbana-Champaign, where he expects to receive his MS in December 2008.

Robert Manaster is a research programmer for the IT Infrastructure and Software
Development Group at the University of Illinois Champaign-Urbana. He is involved
in various software development projects, such as BeanCounter (a Web-based li-
brary reporting system) and digiTrak (a Web-based mass digitization tracking sys-
tem. He customizes and integrates vendor software, as well as does database design
and consulting. In addition, he provides support and administration for existing IT
infrastructure. Robert holds an MS in Library and Information Science from the
University of Illinois.

