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Abstract

Robots are becoming increasingly prevalent in our daily lives. However, these autonomous agents work
best in isolation. Integrating robots into human environments remains challenging due to the complex and
dynamic nature of human-robot interactions. This thesis addresses the challenge of robot navigation in
human environments by proposing structured learning methods that enhance robots’ ability to interact with
humans in a safe, efficient, and socially aware manner.

We explore two types of interactions: implicit interactions through motion and explicit interactions through
language. We build navigation systems that predict human intentions, reason about subtle interactions among
agents, and plan paths for robots to fulfill tasks. In previous work, model-based approaches and end-to-end
learning methods have demonstrated their own advantages and limitations. To combine the best of both
worlds, this thesis develops structured ML systems by incorporating the predictions of human behaviors into
robot planning. In addition, we formulate interactive scenarios using graph structures, which enables robots
to achieve a more nuanced understanding of human behavior and interaction dynamics. We propose intention
and interaction-aware robot decision-making systems for navigation in human spaces. Through simulation
benchmarks, real world experiments, and user studies, we demonstrate robot’s capability to navigate in
various complex human environments.

Our contributions span three applications: (1) driver trait inference for autonomous vehicle navigation
at T-intersections, (2) crowd navigation using attention-based spatio-temporal graphs, and (3) assistive
navigation for persons with visual impairments using dialogue and visual-language grounding. Through these
applications, we demonstrate the effectiveness of structured learning in robotic tasks that involve human-robot
interaction. This thesis proposes algorithms and tools for deploying robots in real-world human settings,
advancing the field of learning-based human-robot interaction.
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Chapter 1

Introduction

1.1 Overview & Challenges

The past decade has witnessed numerous breakthroughs in robotics, ranging from da Vinci Surgical System
to Tesla Optimus. However, these robots work best in isolation, such as highly controlled laboratories or
restricted areas in warehouses. To deploy robots in human environments, researchers and engineers have
made numerous efforts in fields such as autonomous driving, last-mile delivery robots, and household robots.
Unfortunately, these products are far from perfect today. In 2019 and 2023, two fatal crashes of autonomous
vehicles, with a cyclist and a pedestrian respectively, have raised public concern [1], [2]. For delivery robots,
at least for some portion of the time, they are teleoperated by humans and thus are not fully autonomous [3].
For household robots, a state-of-the-art example is Amazon Astro, which has limited functionalities besides
what a virtual digital assistant can offer [4]. The root cause of these limitations can be traced to a core
challenge in deploying robots in human environments: Subtle and highly dynamic interactions are always
happening among different agents. These interactions are prevalent in human environments yet difficult to
infer, which poses significant challenges for robot planning.

To address the aforementioned problem, this thesis focuses on robot navigation in interactive human
environments. Two types of interactions exist while robots navigate among humans: Implicit interactions
through motions (e.g., two agents yielding to each other when crossing a corridor) and explicit interactions
through communication (e.g., speech, text, interfaces). To take complicated and long-term responsibilities
such as museum guides and babysitters, robots must adeptly manage both types of interactions. Achieving
this goal involves predicting human intentions from motions or language, reasoning about interactions, and
planning accordingly to achieve task goals.

A large body of previous research uses model-based approaches. In these works, robots make decisions
based on mathematical models of human navigation behaviors or conversation patterns [5], [6]. However, these
model-based approaches make assumptions, such as humans are fully cooperative. Thus, the performance of
these methods degrades in real-world scenarios with emergent phenomena, such as uncooperative humans [7],
[8]. To alleviate this problem, more recent works have developed end-to-end machine learning (ML) pipelines
for robots to learn to navigate or hold conversations with humans [9], [10]. While promising, training
these models consumes a large amount of data and computation resources, which cannot be afforded by all
real-world robotic applications, especially those in low data regimes.

Thus, the goal of this thesis is to propose structured learning methods that introduce structures into ML
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models. By combining the strengths of both worlds, robots could achieve a more nuanced understanding of
human behavior and interaction dynamics. Structured learning-based frameworks enhance robots’ ability
to navigate in a safe and socially aware manner in complex human environments where large amounts of
real-world datasets do not exist.

1.2 Problem Statement

This thesis develops structured ML systems for robot decision making in human environments. The following
research problems are investigated:

1. Consider a navigation scenario with a pedestrian or vehicle crowd, such as a traffic intersection, a
sidewalk, or a busy lobby. We assume an explicit communication channel among agents does not exist.
Other agents run their own policies and may have different internal states (e.x. intended goals, walking
or driving styles, etc), both of which are not observable to the robot. Instead, the robot can only
observe the positions of a variable number of agents across time with a limited sensor range. Given a
predefined goal, the research question is how to control a robot to the goal while avoiding collisions
with other agents in a safe, efficient, and socially aware manner?

2. Suppose a human user gives verbal commands such as “Take me to the kitchen,” how can the robot
match the user’s intended destinations to the environment and fulfill the corresponding task in an
intuitive manner? In addition, to enhance the user’s understanding of the surrounding environment,
how can language be used to present semantic information from robot sensors?

1.3 Contributions

As shown in Fig. 1.1, this thesis develops structured robot navigation systems in various interaction scenarios
with various learning methods. We present efforts to uncover structures of interactive behaviors, a key factor
that determines the navigation performance of the robot. We develop ML models to represent the interactions
among different agents, and incorporate the learned representations of interactions into the path planning
stack of robots. Our work demonstrates the synergy between intention prediction and planning, as well as the
power of injecting structures into multi-agent problems. Our case studies include three interactive navigation
tasks with high impact on real-world applications: Our applications of implicit interactions include navigation
in an uncontrolled intersection for an autonomous vehicle and in pedestrian crowds for a mobile robot. Our
application of explicit interactions is a robot guide for persons with visual impairments. More specifically, we
present the following contributions.

1.3.1 Driver Trait Inference for T-Intersection Navigation

In autonomous driving, the ego vehicle needs to infer and adapt to the internal traits of its surrounding road
participants such as aggressiveness and distraction levels. We formulate the trait inference as a representation
learning problem. Previous works have used supervised learning to classify the traits, yet trait labels are
expensive to obtain for real driving datasets [11], [12]. The key critical innovation is an unsupervised approach
to learn a representation of driver traits with a recurrent network based on variational autoencoder (VAE).
The learned representation can form clusters of different traits from observed trajectories. Incorporated with
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Figure 1.1: An illustration of thesis overview. This thesis explores the space of problems related to
the complexity of human-robot interactions (HRI), the type of interaction, and level of supervision in the
machine learning.

inferred traits, the ego vehicle is able to learn an adaptive policy and shows better navigation performance
compared with state-of-the-art baselines [13], [14].

1.3.2 Crowd Navigation with attention-based spatio-temporal graphs

Compared with driving, robot navigation in a moving crowd has fewer constraints and more free-form
interactions. Yet few previous works account for the heterogeneous interactions among all observed agents
and obstacles through both space and time [5], [15], [16]. For the first time, we model the crowd navigation
problem as a heterogeneous spatio-temporal graph (st-graph), which captures various interactions among
agents and obstacles through space and time. From the st-graph, we derive a novel reinforcement learning
(RL) policy network architecture for the robot with an attention mechanism, enabling the robot to attend to
important humans, such as those nearly colliding with the robot. We first start with a sparse st-graph that
captures some interactions in sparse crowds and constrained environments. Later on, we propose a dense
st-graph that captures all interactions among dynamic agents in dense crowds, as well as interactions among
static and dynamic agents in constrained environments.

To avoid short-sighted robot behaviors, I propose an intention-aware RL formulation that enables proactive
planning in a general and scalable manner. By incorporating predicted human behavior into the observation
space and reward function, the intention-aware RL framework encourages the robot to avoid intrusions into
the intended path of human agents. The main benefits are improved safety and social awareness in simulated
and real-world navigation in pedestrian-rich environments.

1.3.3 Assistive navigation with dialogue and visual-language grounding

Persons with visual impairments (PwVI) have difficulties understanding and navigating spaces around
them [17], [18]. Current wayfinding technologies either focus solely on navigation or provide limited com-

3



munication about the environment [19], [20]. Motivated by recent advances in visual-language grounding
and semantic navigation [21], [22], we propose a guiding robot powered by a dialogue system and the ability
to associate the environment with natural language. By understanding the commands from the user, the
robot is able to guide the user to the desired landmarks on the map, describe the environment, and answer
questions from visual observations. Through effective utilization of dialogue, the robot can ground the user’s
freeform language to the environment, and give the user semantic information through spoken language.
With dialogue and grounding, the users can communicate with the robot and navigate to places of interest
intuitively and efficiently.

1.4 Thesis Structure

The rest of this thesis is structured as follows:

• Chapter 2 presents work for driver trait inference for T-intersection navigation.
The contents of this chapter are based on the following paper:

– Shuijing Liu, Peixin Chang, Haonan Chen, Neeloy Chakraborty, and Katherine Driggs-Campbell.
“Learning to Navigate Intersections with Unsupervised Driver Trait Inference.” In IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2022, pp. 3576-3582. URL:
https://arxiv.org/abs/2109.06783.

• Chapter 3 presents the first version of our work for crowd navigation in human crowds with sparse
interactions. Our network incorporates robot-human interactions in the st-graph and robot policy
network.
The contents of this chapter are based on the following paper:

– Shuijing Liu*, Peixin Chang*, Weihang Liang†, Neeloy Chakraborty†, and Katherine Driggs-
Campbell. “Decentralized Structural-RNN for Robot Crowd Navigation with Deep Reinforcement
Learning.” In IEEE International Conference on Robotics and Automation (ICRA), 2021, pp.
3517–3524. URL: https://arxiv.org/abs/2011.048201.

• Chapter 4 presents the second version of our work for intention-aware crowd navigation, which incorpo-
rates all spatio-temporal interactions among dense and highly interactive agents. We also incorporate
the future intentions of pedestrians in the planning framework.
The contents of this chapter are based on the following paper:

– Shuijing Liu, Peixin Chang, Zhe Huang, Neeloy Chakraborty, Kaiwen Hong, Weihang Liang, D.
Livingston McPherson, Junyi Geng, and Katherine Driggs-Campbell. “Intention Aware Robot
Crowd Navigation with Attention-Based Interaction Graph.” In IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 12015-12021. URL: https://arxiv.org/abs/2203.
01821.

• Chapter 5 presents the third version of our work for crowd navigation in constrained environments. We
extend the st-graph to include static obstacles and environmental constraints in a scalable fashion, so
that the robot can avoid collisions with both humans and obstacles.
The contents of this chapter are based on the following paper:

1We have obtained permission from the publishers to reprint these articles.
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– Shuijing Liu, Neeloy Chakraborty, Kaiwen Hong, and Katherine Driggs-Campbell. “Structured
Attention Graph for Constrained Robot Crowd Navigation with Low Fidelity Simulation.” In
preparation, 2024.

• Chapter 6 presents a mobile robot for Assistive navigation with dialogue and visual-language grounding.
The contents of this chapter are based on the following paper:

– Shuijing Liu, Aamir Hasan, Kaiwen Hong, Runxuan Wang, Peixin Chang, Zachery Mizrachi, Justin
Lin, D. Livingston McPherson, Wendy A. Rogers, and Katherine Driggs-Campbell. “DRAGON:
A Dialogue-Based Robot for Assistive Navigation with Visual Language Grounding.” IEEE
Robotics and Automation Letters (RA-L), vol. 9, no. 4, pp. 3712-3719, 2024. URL: https:
//arxiv.org/abs/2307.06924.

We conclude the thesis and point out directions for future work in Chapter 7. A literature review is provided
for each contribution in Chapter 2 to 6.
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Chapter 2

Driver Trait Inference for T-Intersection
Navigation

2.1 Introduction

To successfully navigate through uncontrolled intersections, autonomous vehicles must carefully reason about
how to interact with different types of human drivers [11]. It is important for the vehicle to infer the traits of
human drivers, such as the propensity for aggression or cooperation, and adjust its strategies accordingly [14],
[23]. Inspired by recent advancements of unsupervised learning and deep reinforcement learning, we propose
a novel pipeline to learn a representation of traits of other drivers, which is used for autonomous navigation
in uncontrolled intersections.

Trait inference is challenging yet essential for the navigation of autonomous vehicles for two reasons. First,
the environment is not fully observable to the ego vehicle, since each traffic participant runs its own policy
individually and has its own internal states. The ego vehicle needs to interpret the hidden states such as
driving styles and intents of other agents to understand future behaviors that may influence planning [14],
[23]. Second, uncontrolled intersections are less structured since traffic lights and stop signs are not present to
coordinate agent behaviors. The traffic participants implicitly interact and negotiate with each other, making
the environment complex and potentially dangerous [24]–[27]. By inferring the traits of other drivers, the ego
vehicle can be cautious when other drivers are aggressive or irrational and bold when they are passive or
cooperative, improving both the safety and efficiency of interactive navigation.

To address the above problems, Morton et al learns a latent representation of driver traits, which is
fed into a feedforward policy to produce multimodal behaviors [13]. However, the feedforward policy only
considers current states and actions which are not sufficient to fully express long-term properties of drivers
such as traits. As a result, this representation fails to distinguish between different traits. Ma et al classifies
driver traits with supervised learning to aid navigation in intersections [14] but has the following two problems.
First, the trait labels are expensive to obtain and usually do not exist in most real driving datasets [11], [12].
Second, the navigation policy is trained with ground truth trait labels instead of predicted traits. When
the trait classifier and the policy are combined in testing, intermediate and cascading errors cause severe
performance degradation.

In this chapter, we study the same uncontrolled T-intersection navigation problem as in [14], which is
shown in Fig. 2.1. Before entering the T-intersection, the ego vehicle needs to infer the latent driving styles of
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Figure 2.1: The T-intersection scenario in left-handed traffic. The goal of the ego car (yellow) is to
take a right turn and merge into the upper lane without colliding with other cars. The conservative car (blue)
yields to the ego car while the aggressive cars (red) do not yield.

other drivers to determine whether they are willing to yield to the ego vehicle. Based on the inferred driving
style, the ego vehicle must intercept the drivers who will yield to achieve the goal.

We seek to create a pipeline that first learns a representation of driver traits in an unsupervised way,
and then uses the trait representation to improve navigation in the T-intersection. In the first stage, we
encode the trajectories of other drivers to a latent representation using a variational autoencoder (VAE) with
recurrent neural networks (RNN). Since trajectory sequences reveal richer information about driver traits
than single states, the VAE+RNN network effectively learns to distinguish between different traits without
any explicit trait labels. In the second stage, we use the latent representations of driver traits as inputs to
the ego vehicle’s navigation policy, which is trained with model-free reinforcement learning (RL). With the
inferred traits, the ego vehicle is able to adjust its decisions when dealing with different drivers, which leads
to improved performance. Since the RL policy is trained with the learned representations instead of ground
truth labels, our pipeline is much less sensitive to cascading errors from the trait inference network.

We present the following contributions:

1. We propose a novel unsupervised approach to learn a representation of driver traits with a VAE+RNN
network;

2. We use the learned representation to improve the navigation of an autonomous vehicle through an
uncontrolled T-intersection;

3. Our trait representation and navigation policy exhibit promising results and outperform previous works.

This chapter is organized as follows: We review related works in Section 2.2. We formalize the problem
and propose our method in Section 2.3. Experiments and results are discussed in Section 2.4. We conclude
the paper in Section 2.5.

2.2 Related Works

2.2.1 Driver internal state estimation

Driver internal state estimation can be divided into intent estimation and trait estimation [28]. Intent
estimation often uses methods such as probabilistic graph model and unparameterized belief tracker to predict
the future maneuvers of other drivers [26], [29], [30], which can then inform downstream planning for the
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ego driver [26], [30], [31]. Trait estimation infers the properties of drivers such as driving styles, preferences,
fatigue, and level of distraction [28]. Some works distinguish between distracted and attentive drivers for
behavior prediction and cooperative planning [32], [33]. Driving style recognition has been addressed with
both unsupervised and supervised learning methods, which we will discuss in detail below [13], [14], [34], [35].

Morton et al propose a method that first encodes driving trajectories with different driving styles to a
latent space. Then, the latent encodings and the current driver states are fed into a feedforward policy that
produces multimodal actions [13]. The encoder and the policy are optimized jointly. However, since the
feedforward policy only considers the relations between current states and actions, the joint optimization
encourages the encoder to encode short-term information of the trajectories such as accelerations while
ignoring the persistent properties such as traits. In contrast, since our method uses an RNN decoder to
reconstruct the trajectories, the encoder must encode the trait information. Ma et al propose a graph neural
network that classifies the driving styles with supervised learning, which requires large amounts of labeled
data and is difficult to scale in reality [14]. In addition, since the definitions of trait properties vary by
individuals and cultures, manually labeled trait information will likely be noisy and inconsistent. In contrast,
our method is unsupervised and does not need any trait labels.

2.2.2 Representation learning for sequential data

Contrastive learning is widely used to learn representations from sequential data such as videos and pedestrian
trajectories [36]–[38]. However, the performance of contrastive learning is sensitive to the quality of negative
samples, and finding efficient negative sampling strategies remains an open challenge [39].

Another category of representation learning methods is VAE and its variants [40], [41]. Bowman et al
introduce an RNN-based VAE to model the latent properties of sentences [42], which inspires us to learn the
traits of drivers from their trajectories. Conditional VAEs (CVAE) are widely used in pedestrian and vehicle
trajectory predictions since discrete latent states can represent different behavior modes such as braking
and turning [43]–[46]. While these behavior modes change frequently, the driver traits that we aim to learn
are persistent with each driver [28]. Also, the goal of these CVAEs is to generate multimodal trajectory
predictions while, to the best of our knowledge, our work is the first to infer driver traits with VAE for
autonomous driving.

2.2.3 Autonomous driving in uncontrolled intersections

Autonomous navigation through uncontrolled intersections is well studied and has had many successful
demonstrations [14], [26], [47], [48]. Some heuristic methods use a time-to-collision (TTC) threshold to decide
when to cross [48], [49]. However, the TTC models assume constant velocity for the surrounding vehicles,
which ignores the interactions and internal states of drivers. Also, the TTC models can be overly cautious and
cause unnecessary delays [47]. Another line of works formulates the problem as a partially observable Markov
decision process (POMDP), which accounts for the uncertainties and partial observability in the intersection
scenario but is computationally expensive to solve [26], [50], [51]. RL-based methods use neural networks as
function approximators to learn driving policies. Isele et al learns to navigate in occluded intersections using
deep Q-learning [47]. Ma et al focuses on navigation in a T-Intersection where the drivers exhibit different
traits [14]. However, the navigation policy is trained with ground truth traits and only uses the inferred
traits in testing. Thus, the performance of the RL policy is sensitive to the intermediate errors from the trait
inference module. In contrast, our method trains the RL policy directly with inferred trait representations,
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which eliminates the problems caused by the intermediate errors.

2.3 Methodology

In this section, we first present our unsupervised approach to represent driver traits from unlabeled driving
trajectories with a VAE+RNN network. Then, we discuss how we use the inferred traits to improve the
navigation policy.

2.3.1 Preliminaries

Consider a T-intersection environment with an ego vehicle and n surrounding vehicles. The number of
surrounding vehicles n may change at any timestep t. Suppose that all vehicles move in a 2D Euclidean space.
Let ot0 be the state of the ego vehicle and oti be the observable state of the i-th surrounding vehicle at time t,
where i ∈ {1, ..., n}. The state of the ego vehicle ot0 consists of the position (px, py) and the velocity (vx, vy)

of the vehicle. The observable state of each surrounding vehicle oti consists of its position (pix, p
i
y). In contrast

to the previous work [14], oti does not include other vehicles’ velocities because they are hard to accurately
measure without special facilities and algorithms in the real world [52], [53]. In addition, each surrounding
vehicle has a latent state zi that indicates the aggressiveness (i.e., the trait) of the i-th driver. We assume
that the driving style of each driver zi does not change throughout an episode. The positions of surrounding
vehicles ot1, ..., o

t
n are observable to the ego vehicle, while the latent states z1, ..., zn are not.

2.3.2 Trait representation learning

Data collection

For each vehicle in the T-Intersection, the vehicle in front of it has the most direct influence on its behaviors.
For this reason, in the trait representation learning stage, we define the observable state of each vehicle to be
x = (∆px,∆px,f ), where ∆px is the horizontal offset from the vehicle’s starting position in the trajectory,
and ∆px,f is the horizontal displacement of the vehicle from its front vehicle. Then, the trajectory of each
driver is a sequence of states x = [x1, ..., xl], where l is the length of the trajectory.

We only keep the longitudinal state information because all vehicles move in horizontal lanes and the
lateral states are not insightful in this setting, except indicating which lane the vehicle is in. We rotate
the trajectories so that all trajectories in the dataset are aligned in the same direction. Thus, the lane and
the directional information is indistinguishable within the trajectory data, allowing the network to focus on
learning the trait difference instead of other differences between vehicles.

To collect the trajectory data, we run a simulation of the T-intersection scenario without the presence of
the ego car and record the trajectories of all surrounding vehicles, which are controlled by the Intelligent
Driver Model (IDM) [54]. Learning trait representations from this dataset allows the ego car to infer the
traits from the trajectories of other drivers before deciding to intercept or wait. The dataset is denoted as
{xj}Nj=1, where N is the total number of trajectories.

Network architecture

We use the collected dataset to train the VAE+RNN network to learn a representation of traits, as shown in
Fig. 2.2a. The VAE network consists of an encoder, which compresses a trajectory x to a distribution of a
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Figure 2.2: The network architectures. (a) The VAE+RNN network for trait representation learning.
The fully connected layers before and after GRUs are eliminated for clarity. The dice represents the
reparameterization trick. The start-of-sequence state is denoted by ⟨SOS⟩. (b) The navigation policy network.
The weights of the encoder (blue) is fixed and only the yellow part is trained with RL. We use [••] to denote
concatenation. For illustration purposes, we assume that the inferred trait z1, ..., zn is updated at time t.

latent trait vector z, and a decoder, which reconstructs the trajectory from the latent vector z. Both the
encoder and the decoder are gated recurrent unit (GRU) networks since GRUs are more computationally
efficient than long short-term memory networks (LSTM).

Given a trajectory x = [x1, ..., xl], the encoder GRU first applies a non-linear embedding layer fencoder to
each state xt and then feeds the embedded features to the GRU cell:

ht
e = GRU

(
ht−1
e , fencoder(x

t)
)

(2.1)

where ht
e is the hidden state of the encoder GRU at time t ∈ {1, ..., l}. After the entire trajectory is fed

through the encoder GRU, we take the last hidden state hl
e as the encoded latent feature of the trajectory x

and apply fully connected layers fµ and fσ to get the Gaussian parameters of the latent driving style z ∈ R2

in a two-dimensional latent space:
µ = fµ(h

t
e), σi = fσ(h

t
e). (2.2)

Finally, we use the reparameterization trick to sample z from N (µ, σ) for efficient learning: z = µ+ ϵσ, ϵ ∼
N (0, I).

In the decoding stage, since the driving style of each driver does not change over time, we treat the latent
state z as part of the vehicle state instead of the initial hidden state of decoder GRU. To this end, at each
timestep t, we concatenate the reconstructed state x̂t−1 from the last timestep and the latent state z from
the encoder. Then, we embed the joint states using fdecoder, feed the embeddings into the next decoder GRU
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cell, and apply another embedding gdecoder to the next hidden state ht
d, which outputs the next reconstructed

state x̂t:
ht
d = GRU

(
ht−1
d , fdecoder([x̂

t−1, z])
)

x̂t = gdecoder(h
t
d).

(2.3)

In the first timestep, we use a special start-of-sequence (SOS) state, which is similar to the start-of-sequence
symbol in natural language processing to reconstruct x̂1 [55]. The process in Eq. 2.3 repeats until we
reconstruct the whole trajectory x̂ = [x̂1, ..., x̂l].

The objective for training our VAE+RNN network is

L = βDKL (N (µ, σ)||N (0, I)) + ||x− x̂||2 (2.4)

where DKL is the Kullback–Leibler (KL) divergence. The first term regularizes the distribution of the latent
trait z to be close to a prior with a standard normal distribution. The second term is the reconstruction loss
and measures the L2 error of the reconstructed trajectories from the original trajectories. The two terms are
summed with a weight β.

By optimizing Eq. 2.4, our network learns latent encodings that represent the trait of each trajectory
without any ground truth trait labels. Note that we also make no assumptions on the number of trait classes
or the semantic meanings of the trait classes. Thus, our network has the potential to generalize to real
trajectory datasets with more complex traits.

2.3.3 Navigation policy learning

We model the T-intersection scenario as a POMDP, defined by the tuple ⟨S,A, T ,R,O,P, γ⟩. Suppose that
there are n surrounding vehicles at timestep t. We use ot = [ot0, o

t
1, ..., o

t
n] ∈ O to denote the observations of

the ego vehicle, where O is the observation space. Let ut
i = [oti, zi] ∈ R4 be the state of the i-th surrounding

vehicle. Since the ego vehicle is influenced by all surrounding vehicles, we use st = [ot0, u
t
1, ..., u

t
n] ∈ S to

denote the state of the POMDP, where S is the state space. And P : S → O is the set of conditional
observation probabilities.

At each timestep t, the ego vehicle chooses the desired speed for the low-level controller at ∈ A according
to its policy π(at|st), where A = {0, 0.5, 3}m/s is the action space. In return, the agent receives a reward
rt and transits to the next state st+1 according to an unknown state transition T (·|st, at). Meanwhile, all
other vehicles also take actions according to their policies and move to the next states with unknown state
transition probabilities. The episode continues until t exceeds the maximum episode length T , the ego vehicle
reaches its goal, or the ego vehicle collides with any other vehicle. The goal of the agent is to maximize the
expected return, Rt = E[

∑T
i=t γ

i−tri], where γ is a discount factor. The value function V π(s) is defined as
the expected return starting from s, and successively following policy π.

To handle the unknown transitions and environment complexity, we train our policy network illustrated
in Fig. 2.2b using model-free deep RL. During RL training, we fix the trainable weights of the encoder. For
every l timesteps, we feed the trajectories of the surrounding vehicles over the past l timesteps to the encoder
and infer the driving style zti of each driver i. To improve efficiency, we only update the latent states of the
drivers in the lanes that the ego car has not passed yet, as shown in Fig. 2.5. Since the ego car is not allowed
to move backward, the latent states of the drivers that the ego car has already passed or the drivers that have
already yielded to the ego car have no effect on the ego car’s decisions and thus are not updated anymore.

Our policy network is a GRU with an attention module. We concatenate the state of each driver ut
i
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with the state of the ego vehicle o0 to obtain qti = [ut
i, o

t
0], where qti ∈ R8 and i ∈ {1, ..., n}. We feed each

concatenated state qti into an attention module which assigns attention weights to each surrounding vehicle.
Specifically, we embed qti using a multi-layer perceptron (MLP) denoted as femb and calculate the mean of
the embeddings of each surrounding vehicle:

mt =
1

n

n∑
i=1

eti, eti = femb(q
t
i) (2.5)

where mt is the resulting mean. The weighted feature of each surrounding vehicle cti is calculated by

cti = αt
i · eti, αi = fattn([e

t
i,m

t]) (2.6)

where αt
i ∈ R is the attention score for the i-th vehicle, and fattn is another MLP. We then concatenate the

sum of ct1, ..., ctn with the state of the ego vehicle ot0 and feed the result to a GRU:

ht
π = GRU

(
ht−1
π ,

[
n∑

i=1

cti, o
t
0

])
(2.7)

Finally, the hidden state of the GRU ht
π is fed to a fully connected layer to obtain the value V (st) and the

policy π(at|st). We use Proximal Policy Optimization (PPO), a model-free policy gradient algorithm, for
policy and value function learning [56].

2.4 Experiments and results

In this section, we first describe the simulation environment for training. We then present our experiments
and results for trait representation and navigation policy.

2.4.1 Simulation environment

Fig. 2.5 shows our simulation environment adapted from [14]. At the beginning of an episode, the surrounding
vehicles are randomly placed in a two-way street with opposite lanes and we assume that they never take
turns or change lanes. The number of surrounding vehicles varies as vehicles enter into or exit from the
T-intersection. We assume that all cars can always be detected and tracked. The surrounding vehicles are
controlled by IDM [54]. Conservative drivers vary their front gaps from the preceding vehicles between 0.5m

and 0.7m and have the desired speed of 2.4m/s. Aggressive drivers vary their front gaps between 0.3m and
0.5m and have the desired speed of 3m/s. If the ego car moves in front of other cars, conservative drivers
will yield to the ego car, while aggressive drivers will ignore and collide with the ego car.

The ego car starts at the bottom of the T-intersection. The goal of the ego car is to take a right turn to
merge into the upper lane without colliding with other cars. The ego car is controlled by a longitudinal PD
controller whose desired speed is set by the RL policy network. The right-turn path of the ego car is fixed to
follow the traffic rule. The ego car also has a safety checker that clips the magnitude of its acceleration if it
gets dangerously close to other cars.

Let Sgoal be the set of goal states, where the ego vehicle successfully makes a full right-turn, and Sfail be
the set of failure states, where the ego vehicle collides with other vehicles. Let rspeed(s) = 0.05× ∥vego∥2 be a
small reward on the speed of the ego vehicle and rstep = −0.0013 be a constant penalty that encourages the
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ego vehicle to reach the goal as soon as possible. The reward function is defined as

r(s, a) =


2.5, if s ∈ Sgoal

−2, if s ∈ Sfail

rspeed(s) + rstep, otherwise.

(2.8)

2.4.2 Trait inference

Baseline

We compare the latent representation of our method with the method proposed by Morton et al [13]. The

Table 2.1: Testing results of simple supervised classifiers with learned latent representations

Method Accuracy

Ours 98.08%
Morton et al. 60.22%

encoder of the baseline is the same as our encoder except that the baseline takes the longitudinal acceleration
at each timestep as an extra input. The policy network of the baseline is a 4-layer multilayer perceptron
(MLP) network that imitates the IDM policy from the trajectory dataset.

Training and evaluation

Our dataset contains approximately 696, 000 trajectories from both classes, and the train/test split ratio is
2:1. We train both methods for 1000 epochs with a decaying learning rate 5× 10−4. The weight of the KL
divergence loss β is 5× 10−8 for both methods.

To better understand the learned latent representation and how it provides trait information to the
navigation policy, we fix the trainable weights of the encoders, train linear support vector classifiers using the
inferred latent states as inputs, and record the testing accuracy of the classifiers. To visualize the learned
representations, we feed a set of testing trajectories into the encoder and visualize their latent representations.

Results and interpretability

In Table 2.1, the supervised classifier with our latent representation achieves much higher classification
accuracy than that of Morton et al. Together with Fig. 2.3a, we show that our representation successfully
separates the vehicle trajectories with different traits in most cases. For example, in Fig. 2.3c, #1, #5, and
#6 are in the aggressive cluster, while #2, #7, and #8 are in the conservative cluster. The overlapped region
encodes the trajectories with ambiguous traits, such as very short trajectories (#3) and the trajectories
with ambiguous front gaps. For example, the average front gap of #4 is between the aggressive #6 and
the conservative #8. Besides the binary traits, our latent representation also captures other meaningful
information. First, the trajectories of the cars whose front cars go out of the border, such as #1 and #2, are
mapped into the fan-shaped peripherals of the two clusters respectively. Second, in the central regions of the
two clusters, the trajectories with larger average speeds are mapped in the lower left part (#5 and #7), while
those with smaller average speeds are in the upper right part (#6 and #8).
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Figure 2.3: Visualizations of the latent representations of two driver traits. (a) Our method. (b)
The method by Morton et al. (c) The original processed trajectories corresponding to the labeled latent
vectors in (a) and (b). The x-axis is the horizontal displacement in meters. Each triangle marker indicates
the position of a car at each timestep and the markers become darker over time. Denser triangles indicate
smaller velocities. The blue and red trajectories indicate conservative and aggressive cars respectively. The
brown trajectories indicate the front cars. If the front car goes out of the boundary before the trajectory
ends, the brown trajectories will be shorter than the red or blue trajectories, such as #1 and #2.

From Table 2.1 and Fig. 2.3b, the baseline suffers from severe model collapse and the representation
fails to separate the two traits. The reason is that the MLP policy only considers current state-action pairs,
which encourages the encoder to only encode features within short time windows such as accelerations while
ignoring the properties of the trajectories such as traits. Despite the model collapse, the baseline still learns
some meaningful representations. For example, the trajectories with uniform speeds together such as #5 and
#7 and forms separate clusters for the decelerating trajectories such as #6. Therefore, we conclude that
compared with single states, trajectories exhibit richer information about traits and are better suited for trait
representation learning.

2.4.3 Navigation with inferred traits

Baselines and ablations

We use the following two baselines: (1) The pipeline proposed by Ma et al, which trains a supervised trait
predictor and an RL policy with binary ground truth trait labels separately and combines them at test
time [14]; (2) We use the latent representation by Morton et al to train a policy network using the same
method described in Sec. 2.3.3. In addition, we use an RL policy trained with ground truth labels as an
oracle, and another RL policy trained without any trait information as a naïve model. To examine the
effectiveness of the attention mechanism, we train an ablated model of our method without the attention
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module. For a fair comparison, the architectures of all policy networks are kept the same.

Figure 2.4: Success, timeout, and collision rates w.r.t. different driver trait distributions.
P (conservative) is the probability for each surrounding driver to be conservative. The task difficulty increases
as P (conservative) decreases. The numbers on the bars indicate the percentages of the corresponding bars.

Training

We run three experiments with different proportions of two types of drivers, as shown in Fig. 2.4. We train
the policy networks for all methods and ablations for 1× 107 timesteps with a decaying learning rate 1× 10−4.
To accelerate and stabilize training, we run twelve instances of the simulation environment in parallel for
collecting the ego car’s experiences. At each policy update, 30 steps of 6 episodes are used. For Ma et al, we
pretrain a trait classification network with a 96% testing accuracy and use the classifier to infer traits for the
RL policy.

Evaluation

We test all models with 500 random unseen test cases. We measure the percentage of success, collision, and
timeout episodes as the evaluation criteria.

Results

As shown in Fig. 2.4, the success rates of our method are closest to the oracle who has access to true trait
labels in all experiments, with an average difference of 2%. We believe the main reason is that our trait
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Figure 2.5: Qualitative result of our method. The ego car is in yellow, the conservative cars are in blue,
and the aggressive cars are in red. As mentioned in Sec. 2.3.3, the latent traits of the light blue and light red
cars are updated periodically, while those of the dark blue and dark red cars are not updated and stay the
same as before.

representation effectively captures the trait differences of the surrounding drivers and aids the decision-making
in RL. The performance gap between the oracle and our method is caused by the drivers with ambiguous
traits, as well as the fact that the learned representation is noisier than the true labels. Although the model
with no labels can implicitly infer traits to some extent in RL training, our policy is able to utilize the
existing trait representation and focuses more on the decision-making of the ego vehicle, which leads to better
navigation performance. Fig. 2.5 shows a successful episode of our method, where the ego car waits until a
conservative car appears, cuts in the front of the conservative cars when passing both lanes, and completes
the right turn.

Compared with our model, the model by Morton et al has a lower success rate especially in more challenging
experiment settings when P (conservative) is smaller. The reason is that the latent representation does not
distinguish between different traits and only provides very limited useful information to RL. This implies
that the policy still needs to implicitly infer the traits while being distracted by the latent representation,
which negatively affects the performance.

For Ma et al, the trait classifier and the RL policy both have good performance when tested separately.
However, when the two modules are combined together, intermediate and cascading errors significantly lower
the success rates. The performance drop is due to the distribution shift between the true traits and inferred
traits. Since the policy is trained with true traits, it fails easily whenever the trait classifier makes a small
mistake. Moreover, Ma et al requires trait labels, but our trait representation is learned without any labels
and still outperforms Ma et al in navigation.

2.4.4 Attention vs. no attention

The second from the rightmost graph in Fig. 2.4 shows that the removal of the attention module results in
3% ∼ 14% lower success rates. Since the attention module assigns different weights to the cars with different
traits and in different positions, the policy is able to focus on the cars which have a bigger influence on the
ego car, which validates the necessity of the attention mechanism.

16



2.5 Summary

We propose a novel pipeline that encodes the trajectories of drivers to a latent trait representation with a
VAE+RNN network. Then, we use the trait representation to improve the navigation of an autonomous
vehicle through an uncontrolled T-intersection. The trait representation is learned without any explicit
supervision. Our method outperforms baselines in the navigation task and the trait representation shows
interpretability. Possible directions to explore in future work include (1) validating our method with real
driving trajectory data, (2) generalizing our model to more sophisticated driver internal states and more
navigation tasks, and (3) incorporating occlusions and limited sensor range of the ego vehicle to close the gap
between the simulation and the real world.

Code implementation and videos are available at https://github.com/Shuijing725/VAE_trait_inference.
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Chapter 3

Decentralized Structural-RNN for Robot
Crowd Navigation

3.1 Introduction

As mobile robots are becoming prevalent in people’s daily lives, autonomous navigation in crowded places with
other dynamic agents is an important yet challenging problem [57], [58]. Inspired by the recent applications
of deep learning in robot control [59]–[62] and in graph modeling [63], we seek to build a learning-based
graphical model for mobile robot navigation in pedestrian-rich environments.

Robot crowd navigation is a challenging task for two key reasons. First, the problem is decentralized,
meaning that each agent runs its own policy individually, which makes the environment not fully observable
to the robot. For example, other agents’ preferred walking style and intended goals are not known in advance
and are difficult to infer online [64]. Second, the crowded environment contains both dynamic and static
agents, who implicitly interact with each other during navigation. The ways agents influence each other
are often difficult to model [65], making the dynamic environment harder to navigate and likely to produce
emergent phenomenon [66].

Despite these challenges, robot crowd navigation is well-studied and has had many successful demon-
strations [16], [67], [68]. Reaction-based methods such as Optimal Reciprocal Collision Avoidance (ORCA)
and Social Force (SF) use one-step interaction rules to determine the robot’s optimal action [5], [68], [69].
Another line of works first predict other agents’ future trajectories and then plan a path for the robot [70]–[73].
However, these two methods suffer from the freezing robot problem: in dense crowds, the planner decides that
all paths are unsafe and the robot freezes, which is suboptimal as a feasible path usually exists [7].

More recently, learning-based methods model the robot crowd navigation as a Markov Decision Process
(MDP) and use Deep V-Learning to solve the MDP [15], [16], [74]–[76]. In Deep V-Learning, the agent
chooses an action based on the state value approximated by neural networks. However, Deep V-Learning is
typically initialized by ORCA using supervised learning and, as a result, the final policy inherits ORCA’s
aforementioned problems. Moreover, to choose actions from the value network, the dynamics of the humans
are assumed to be known to the robot and are deterministic, which can be unrealistic in real applications.

In this chapter, we seek to create a learning framework for robot crowd navigation using spatio-temporal
reasoning trained with model-free deep reinforcement learning (RL). We model the crowd navigation scenario
as a decentralized spatio-temporal graph (st-graph) to capture the interactions between the robot and
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Figure 3.1: Real-world crowd navigation with a TurtleBot 2i. The orange cone on the floor denotes
the robot goal. The TurtleBot is equipped with cameras for localization and human tracking.

multiple humans through both space and time. Then, we convert the decentralized st-graph to a novel
end-to-end decentralized structural-RNN (DS-RNN) network. Using model-free RL, our method directly
learns a navigation policy without prior knowledge of any agent’s dynamics or expert policies. Since the
robot learns entirely from its own experience, the resulting navigation policy easily adapts to dense human
crowds and partial observability and outperforms previous methods in these scenarios.

We present the following contributions: (1) We propose a novel deep neural network architecture called
DS-RNN, which enables the robot to perform efficient spatio-temporal reasoning in crowd navigation; (2) We
train the network using model-free RL without any supervision, which both simplifies the learning pipeline
and avoids the network from converging to a suboptimal policy too early; (3) Our method demonstrates
better performance in challenging navigation settings compared with previous methods. For more details, our
code is available at https://github.com/Shuijing725/CrowdNav_DSRNN.

3.2 Related Works

3.2.1 Reaction-based crowd navigation methods

Robot navigation in dynamic environments has been studied for over two decades [67], [77]–[79]. A subset of
these works specifically focuses on robot navigation in pedestrian-rich environments or crowd navigation [57],
[80].

Reaction-based methods such as Reciprocal Velocity Obstacle (RVO) and ORCA model other agents as
velocity obstacles to find optimal collision-free velocities under reciprocal assumption [5], [68], [81]. Another
method named Social Force models the interactions in crowds using attractive and repulsive forces [69].
However, these algorithms suffer from the freezing robot problem [7]. In addition, since the robot only uses
the current states as input, the generated paths are often shortsighted and unnatural.

In contrast, we train our network with model-free RL to mitigate the freezing problem. Also, our network
contains RNNs that take a sequence of trajectories as input to encourage longsighted behaviors.
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3.2.2 Learning-based crowd navigation methods

With the recent advancement of deep learning, imitation learning has been used to uncover policies from
demonstrations of desired behaviors [82], [83]. Another line of works use Deep V-Learning, which combines
supervised learning and RL [15], [16], [74]–[76], [84]. Given the state transitions of all agents, the planner first
calculates the values of all possible next states from a value network. Then, the planner chooses an action
that leads to the state with the highest value. To train the value network, Deep V-Learning first initializes
the network by supervised learning using trajectories generated by ORCA, and then fine-tunes the network
with RL. Using a single rollout of the policy, Monte-Carlo value estimation calculates the ground-truth values
for both supervised learning and RL.

Deep V-Learning has demonstrated success in simulation and/or in the real world but still suffers from
the following drawbacks: (1) Deep V-Learning assumes that the state transitions of all surrounding humans
are known and well-defined, which are in fact highly stochastic and difficult to model; (2) Since the networks
are pre-trained with supervised learning, they share the same disadvantages with the demonstration policy,
which are hard to be corrected by RL; (3) Monte-Carlo value estimation is not scalable with increasing time
horizon; and (4) To achieve the best performance, Deep V-Learning needs state information of all humans.
If applied to real robots, a real-time human detector with a 360◦ field of view is required, which can be
expensive or impractical.

To tackle these problems, we introduce a policy network trained with model-free RL, which does
not need state transitions, Monte-Carlo value estimation, or expert supervision. Further, we show that
incorporating both spatial and temporal reasoning in our network improves performance in challenging
navigation environments over prior methods.

3.2.3 Spatio-temporal graphs and structural-RNN

St-graph is a type of conditional random field [85] with wide applications [63], [86]–[88]. St-graphs use nodes
to represent the problem components and edges to capture the spatio-temporal interactions [63]. With each
node or edge governed by a factor function, st-graph decomposes a complex problem into many smaller and
simpler factors.

Jain et al propose a general method called structural-RNN (S-RNN) that transforms any st-graph to a
mixture of RNNs that learn the parameters of factor functions end-to-end [63]. S-RNNs have been applied
to research areas such as human tracking and human trajectory prediction [89], [90]. However, the scope
of these works is restricted to learning from static datasets. Applying st-graph to crowd navigation poses
extra challenges in data collection and decision-making under uncertainty. Although some works in crowd
navigation have used graph convolutional network [91] to model the robot-crowd interactions [76], [84], to
the best of our knowledge, our work is the first to combine S-RNN with model-free RL for robot crowd
navigation.

3.3 Methodology

In this section, we first formulate the robot decision making in crowd navigation as an RL problem. Then,
we present our approach to model crowd navigation scenario as an st-graph, which leads to the derivation of
our DS-RNN network architecture.
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3.3.1 Problem formulation

Consider a robot interacting with an episodic environment with other humans. We model this interaction as
an MDP, defined by the tuple ⟨S,A, P,R, γ,S0⟩. Suppose that all agents move in a 2D Euclidean space. Let
wt be the robot states and ut

i be the i-th human’s states observable by the robot. Then, the state st ∈ S
for the MDP is st = [wt,ut

1, ...,u
t
n] assuming a total number of n humans was involved at the timestep t.

The robot state wt consists of the robot’s position (px, py), velocity (vx, vy), goal position (gx, gy), maximum
speed vmax, heading angle θ, and radius ρ. Each human state ut

i consists of the human’s position (pix, p
i
y). In

contrast to previous works [5], [15], [16], [84], the human state ut
i does not include the human’s velocity and

radius because they are hard to be measured accurately in the real world.

Figure 3.2: Conversion from the st-graph to the factor graph. (a) St-graph representation of the
crowd navigation scenario. We use w to denote the robot node and ui to denote the i-th human node. (b)
Unrolled st-graph for two timsteps. At timestep t, the node feature for the robot is xt

w. The spatial edge
feature between the i-th human and the robot is xt

uiw. The temporal edge feature for the robot is xt
ww. (c)

The corresponding factor graph. Factors are denoted by black boxes.

In each episode, the robot begins at an initial state s0 ∈ S0. At each timestep t, the robot takes an action
at ∈ A according to its policy π(at|st). In return, the robot receives a reward rt and transits to the next state
st+1 according to an unknown state transition P (·|st, at). Meanwhile, all other humans also take actions
according to their policies and move to the next states with unknown state transition probabilities. The
process continues until t exceeds the maximum episode length T , the robot reaches its goal, or the robot
collides with any humans.

Let γ ∈ (0, 1] be the discount factor. Then, Rt =
∑∞

k=0 γ
krt+k is the total accumulated return from

timestep t. The goal of the robot is to maximize the expected return from each state. The value of state s

Figure 3.3: DS-RNN network architecture. The components for processing spatial edge features, temporal
edge features, and node features are in blue, green, and yellow, respectively. Fully connected layers are
denoted as FC.
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under policy π, defined as V (s) = E[Rt|st = s], is the expected return for following policy π from state s.

3.3.2 Spatio-Temporal Graph Representation

We formulate the crowd navigation scenario as a decentralized st-graph. Our graph G = (V, ES , ET ) consists
of a set of nodes V , a set of spatial edges ES , and a set of temporal edges ET . As shown in Fig. 3.2a, the nodes
in the st-graph represent the agents, the spatial edges connect two different agents at the same timestep, and
the temporal edges connect the same nodes at adjacent timesteps. We prune the edges and nodes not shown
in Fig. 3.2a as they have little effect on the robot’s decisions1. The corresponding unrolled st-graph is shown
in Fig. 3.2b.

The factor graph representation of the st-graph factorizes the robot policy function into the robot node
factor, spatial edge factors, and robot temporal edge factor. At each timestep, the factors take the node or
edge features as inputs and collectively determine the robot’s action. In Fig. 3.2c, factors are denoted by
black boxes and have parameters that need to be learned.

We choose xt
uiw to be the vector pointing from humans’ position to the robot position, (pix − px, p

i
y − py),

xt
ww to be robot velocity (vx, vy), and xt

w to be wt. To reduce the number of parameters, all spatial edges
share the same factor. This parameter sharing is important for the scalability of our st-graph because the
number of parameters is kept constant with an increasing number of humans [63].

3.3.3 Network Architecture

As shown in Fig. 3.3, we derive our network architecture from the factor graph representation of the st-graph
motivated by [63]. In our network, we represent each factor with an RNN, referred to as spatial edgeRNN
RS , temporal edgeRNN RT , and nodeRNN RN respectively. We use W and f to denote trainable weights
and fully connected layers throughout this section.

The spatial edgeRNN RS captures the spatial interactions between humans and the robot. RS first
applies a non-linear transformation to each spatial feature xt

uiw and then feeds the transformed results to the
RNN cell:

ht
uiw = RNN

(
ht−1
uiw, fspatial(x

t
uiw)

)
(3.1)

where ht
uiw is the hidden state of the RNN at time t for i-th human and the robot. Due to the parameter

sharing mentioned in Section 3.3.2, the spatial edge features between all human-robot pairs are fed into the
same spatial edgeRNN.

The temporal edgeRNN RT captures the dynamics of the robot’s own trajectory. Similar to RS , RT

applies a linear transformation to the temporal edge feature and processes the results with its RNN cell:

ht
ww = RNN

(
ht−1
ww , ftemporal(x

t
ww)

)
(3.2)

where ht
ww is the hidden state of the RNN at time t.

The outputs of two edgeRNNs are fed into an attention module which assigns attention weights to each
spatial edge. The attention mechanism is similar to the scaled dot product attention in [92]. Let V t be the
output of RS at time t, V t = [ht

u1w, ..., h
t
unw]

⊤, where n is the number of spatial edges or humans. Both V t

1From experiments, we find that a network derived from a full st-graph as in [63] performs very similarly to DS-RNN.
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and ht
ww are first put through linear transformations:

Qt = V tWQ, Kt = ht
wwWK (3.3)

where Qt ∈ Rn×dk , Kt ∈ R1×dk , and dk is a hyperparameter for the attention size. The attention weight at
time t, αt, is calculated as

αt = softmax
(

n√
dk

Qt(Kt)⊤
)

(3.4)

The output of the attention module at time t, vtatt, is the weighted sum of spatial edges:

vtatt = (V t)⊤αt (3.5)

The nodeRNN RN uses the robot state, xt
w, the weighted hidden states of RS , vtatt, and the hidden

states of temporal edgeRNN, ht
ww, to determine the robot action and state value at each time t. The

nodeRNN concatenates vtatt and ht
ww and embeds the concatenated results and the robot state with linear

transformations:
et = fedge([v

t
att, h

t
ww]), nt = fnode(x

t
w) (3.6)

Both et and nt are concatenated and fed into RN to get the nodeRNN hidden state.

ht
w = RNN

(
ht−1
w , [et, nt]

)
(3.7)

Finally, the ht
w is input to a fully connected layer to obtain the value V (st) and the policy π(at|st). We use

Proximal Policy Optimization (PPO), a model-free policy gradient algorithm, for policy and value function
learning [56] and we adopt the PPO implementation from [93]. To accelerate and stabilize training, we run
twelve instances of the environment in parallel for collecting the robot’s experiences. At each policy update,
30 steps of six episodes are used.

By identifying the independent components of robot crowd navigation, we split the complex problem
into smaller factors, and use three RNNs to efficiently learn the parameters of the corresponding factors. By
combining all components above, the end-to-end trainable DS-RNN network performs spatial and temporal
reasoning to determine the robot action.

3.4 Simulation Experiments

In this section, we describe the simulation environment for training and present our experimental results in
simulation.

3.4.1 Simulation environment

Fig. 3.4 shows our 2D simulation environments adapted from [16]. We use holonomic kinematics for each
agent, whose action at time t consists of the desired velocity along the x and y axis, at = [vx, vy]. All humans
are controlled by ORCA with randomized maximum speed and radius. We assume that humans react only to
other humans but not to the robot. This invisible setting prevents our model from learning an extremely
aggressive policy in which the robot forces all humans to yield while achieving a high reward. We also assume
that all agents can achieve the desired velocities immediately, and they will keep moving with these velocities
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(a) (b)

Figure 3.4: Illustration of our simulation environment. In a 12m× 12m 2D plane, the humans are
represented as circles, the orientation of an agent is indicated by a red arrow, the robot is the yellow disk,
and the robot’s goal is the red star. We outline the borders of the robot FoV with dashed lines. The humans
in the robot’s FoV are blue and the humans outside are red.

for ∆t seconds. We define the update rule for an agent’s position px, py as follows:

px[t+ 1] = px[t] + vx[t]∆t

py[t+ 1] = py[t] + vy[t]∆t
(3.8)

Environment configurations

Fig. 3.4a shows the FoV Environment, where the robot’s field view (FoV) is within 0◦ to 360◦ and remains
unchanged in each episode. The robot assumes that the humans out of its view proceed in a straight line with
their last observed velocities. There are always five humans, whose starting and goal positions are randomly
placed on a circle with radius 6m. The FoV Environment simulates the limited sensor range of a robot, since
deploying several sensors to obtain a 360◦ FoV is usually expensive and unrealistic in the real world.

Fig. 3.4b shows the Group Environment, where the robot’s FoV is 360◦ but the number of humans is large
and remains the same in each episode. Among these humans, some form circle groups in random positions
and do not move while the rest of them move freely. The Group Environment simulates the scene of a dense
crowd with both static and dynamic obstacles. We use this environment to evaluate whether the robot
policies have the freezing robot problem.

To simulate the variety of complexities in real-world crowd navigation, we add the following randomness
and features not included in the original simulator from [16]. When an episode begins, the robot’s initial
position and goal are chosen randomly. In addition, all humans occasionally change their goal positions within
an episode. Finally, to simulate a continuous human flow, immediately after humans arrive at their goal
positions, they will move to new random goals instead of remaining stationary at their initial destinations.
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Figure 3.5: Success, timeout, and collision rates w.r.t. different FoV. The numbers on the bars
indicate the percentages of the corresponding bars.

Reward function

The reward function awards the robot for reaching its goal and penalizes the robot for colliding with humans
or getting too close to humans. In addition, we add a potential-based reward shaping to guide the robot to
approach the goal:

r(st, at) =



−20, if dtmin < 0

2.5(dtmin − 0.25), if 0 < dtmin < 0.25

10, if dtgoal ≤ ρrobot

2(−dtgoal + dt−1
goal), otherwise.

(3.9)

where dtmin is the minimum separation distance between the robot and any human at time t, and dtgoal is the
L2 distance between the robot position and goal position at time t. Intuitively, the robot gets a high reward
when it approaches the goal while maintaining a safe distance from all humans.
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Figure 3.6: Success, timeout, and collision rates w.r.t. different number of humans.

3.4.2 Experiment setup

Baselines and Ablation Models

We compare the performance of our model with the representatives of the three types of methods in Section 3.2.
We use ORCA and SF as the baselines for reaction-based methods; Relational Graph Learning (RGL) [84]
as a baseline for both trajectory prediction based methods and Deep V-Learning; and CADRL [15] and
OM-SARL [16] as the baselines for Deep V-Learning.

To remove the performance gain caused by other factors such as model-free RL and RNN, we also
implement an ablation model, called RNN+Attn, by adding an RNN to the end of OM-SARL network. For
RNN+Attn, the attention module assigns attention weights on the state features of humans. The weighted
human features are then concatenated with robot state features to form the joint state features which are
passed to an RNN network with the same size and sequence length as the robot nodeRNN in our model.
Both networks are trained using PPO with the same hyper-parameters and thus the results serve as a clean
comparison to highlight the benefits of our DS-RNN.

Training

We use the same reward as defined in Equation 3.9 for CADRL, OM-SARL, RGL, RNN+Attn, and DS-RNN.
The network architectures of all methods are kept the same in all experiments. We train DS-RNN and
RNN+Attn for 1× 107 timesteps with a learning rate 4× 10−5. We train all baselines as stated in the original
papers.

26



Table 3.1: Navigation time (second) in two environments.

Method FoV Number of Humans

90◦ 180◦ 360◦ 10 15 20

ORCA 9.12 9.96 10.40 15.94 19.09 19.66
SF 20.86 24.28 23.96 24.60 30.26 31.12
CADRL 30.84 27.54 33.46 32.62 36.81 41.75
OM-SARL 18.32 13.70 21.04 27.25 23.79 29.24
RGL 9.54 9.48 9.59 13.22 14.75 16.44
RNN+Attn 16.57 14.00 10.96 16.01 21.31 25.55
DS-RNN 11.83 10.99 11.79 13.51 15.64 15.52

Evaluation

We evaluate the performance of all the models with six experiments: for the FoV Environment, the FoV of
the robot is 90◦, 180◦, or 360◦; for the Group Environment, the number of humans is 10, 15, or 20. For each
of the six experiments, we test all the models with 500 random unseen test cases. We measure the percentage
of success, collision, and timeout episodes, as well as the average navigation time of the successful episodes.

3.4.3 Results

Spatio-temporal reasoning

We show the effectiveness of our DS-RNN architecture by comparing it with RNN+Attn. In Fig. 3.5 and
Fig. 3.6, compared with RNN+Attn, our model exhibits higher success rates and lower collision and timeout
rates in all settings. In Table 3.1, our model has shorter navigation time because DS-RNN often finds a
better path (Fig. 3.7e and 3.7f). We believe the main reason is that by formulating the crowd navigation
into an st-graph, we decompose the robot decision making into smaller factors and feed each RNN with only
relevant edge or node features. In this way, the three RNNs are able to learn their corresponding factors
more effectively. By combining all factors (RNNs), the robot is able to explicitly reason about the spatial
relationships with humans and its own dynamics to take actions. In contrast, RNN+Attn does not have such
spatio-temporal reasoning and learns all factors with one single RNN, which explains its lower performance.

Comparison with traditional methods

We compare the performance of our model with those of ORCA and SF. As shown in Fig. 3.6, in the Group
Environment, ORCA and SF exhibit high timeout rates, which increases significantly as the number of humans
increases. This observation indicates that the freezing robot problem is prevalent in these mixed static and
dynamic settings (Fig. 3.7a). Also, as Table 3.1 suggests, the large navigation times show that both methods
are overly conservative in dense crowds. In the FoV Environment, our method also outperforms ORCA and
SF in most metrics, as shown in Fig. 3.5 and Table 3.1, because our method explores the environment and
learns from the past experience during RL training. Combined with spatio-temporal reasoning, our method is
able to better adapt to dense and partially observable environments. In addition, with our method, the robot
is long-sighted because RL optimizes the policy over cumulative reward and the RNNs takes a sequence of
trajectories to make decisions while ORCA and SF only consider the current state (Fig. 3.7c).
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Group Environment (20 Humans)

(a) ORCA (b) OM-SARL (c) DS-RNN

FoV Environment (90◦)

(d) RGL (e) RNN+Attn (f) DS-RNN

Figure 3.7: Trajectory comparisons of different methods with the same test cases. Letter “S”
denotes moving agents’ starting positions, and stars denote moving agents’ goals. The yellow filled circle
denotes the robot. For the Group Environment (top), static humans are grouped in three circles.
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Figure 3.8: The setup of the real world experiment.

Comparison with Deep V-Learning

We compare model-free RL training with Deep V-Learning used by CADRL, OM-SARL, and RGL. In Fig. 3.6,
all three baselines exhibit large timeout rates. The reason is that the value networks are initialized by a
suboptimal expert (ORCA) in supervised learning and are insufficient to provide good state value estimates,
resulting in policies that inherit OCRA’s drawbacks. In contrast, model-free RL enables RNN+Attn and
DS-RNN to learn from scratch and prevents the network from converging to a suboptimal policy too early.
In addition, despite the unknown state transitions of all agents, RNN+Attn and our method still perform
better in all metrics compared with Deep V-Learning.

As shown in Fig. 3.7d and 3.7f, RGL is competitive to our method in some cases, because the relational
graph can perform spatial reasoning and human trajectory predictions make RGL long-sighted. However,
in RGL, the relational graph and the robot planner are separated modules, while our network is trained
end-to-end and jointly learns the robot-human interactions and decision making.

3.5 Real-world Experiments

We evaluate our trained model’s performance on a TurtleBot 2i mobile platform. The hardware platform is
shown in Fig. 3.8 and the pedestrian environment is shown in Fig. 3.1. An Intel RealSense depth camera
D435 with an approximately 69.4◦ FoV is used to obtain human positions. We use YOLOv3 [94] for human
detection and Deep SORT [95] for human tracking (our implementation is adopted from [96]). The human
detection and tracking are combined with the camera depth information to calculate human positions. An
Intel RealSense tracking camera T265 is used to localize the robot and obtain the robot orientation. We
run the above perception algorithms and our decision-making model on a remote host computer. The
communication between the robot and the host computer is established by Robot Operating System (ROS).
A video demonstration is available at https://youtu.be/bYO-1IAjzgY, where the robot successfully reaches
the goals with maneuvers to maintain a safe distance with humans in various scenarios.
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3.6 Limitations

Our work encompasses the following limitations. First, our st-graph and DS-RNN only considers robot-human
interactions, yet ignores human-human interactions which may also affect the robot’s actions. Second, our
framework only considers the past and current states of agents without explicitly predicting the future states.
Thus, the robot may still exhibit some awkward behaviors such as intercepting in front of humans. Third, in
the real world experiment, due to the sensor limitations, the detected human positions are noisy and thus
cause differences in robot behaviors between the simulation and the real world. Finally, the total number
of humans is fixed for each network model, which poses challenges to the generalization of our model to
navigation scenarios with real human flows.

3.7 Summary

We propose a novel DS-RNN network that incorporates spatial and temporal reasoning into robot decision
making for crowd navigation. We train our DS-RNN with model-free deep RL without any supervised learning
or assumptions on agents’ dynamics. Our experiments shows that our model outperforms various baselines in
challenging simulation environments and show promising results in the real world.

Videos and simulation code are available at https://sites.google.com/illinois.edu/crowdnav-dsrnn/
home.
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Chapter 4

Intention Aware Robot Crowd Navigation
with Attention-Based Interaction Graph

4.1 Introduction

In the Chapter 2, a partial st-graph and decentralized structural-RNN (DS-RNN) network is proposed as an
RL-based crowd navigation robot controller [27]. DS-RNN models crowd navigation as a spatio-temporal
graph (st-graph) to capture the interactions between the robot and the other agents through both space
and time. However, as shown in Fig. 4.1a, DS-RNN and other previous methods such as ORCA [5] only
consider the past and current state of humans without explicitly predicting their future trajectories. As a
result, the robot sometimes exhibits unsafe or shortsighted behaviors. To deal with this problem, trajectory
prediction-based methods plan optimal robot actions conditioned on the predicted future trajectories of other
agents [84], [97], [98]. However, the prediction-based methods are usually limited to one-step prediction,
discrete action space, or a small set of human intentions.

Another weakness of reaction-based and learning-based methods is that they only consider robot-human
(RH) interactions but ignore human-human (HH) interactions. Since the previous works are usually evaluated
in sparse crowds or dense crowds with mostly static agents, omitting the human-human interactions does
not have a great impact. Yet in dense and highly interactive crowds, the performance of these methods
degrades due to the lack of human-human interaction modeling. Some attempts have been made to consider
HH interactions, but these works either use predefined values to hardcode HH attention scores or do not
distinguish the difference between RH and HH interactions [76], [84]. Since we have control of the robot but
not humans, RH and HH interactions have different effects on the robot’s decision-making and thus need to
be processed separately.

In this chapter, we seek to learn an intention-aware navigation policy which reasons about different
interactions in the crowd, as shown in Fig. 4.1b. First, we propose spatio-temporal interaction graph
(sti-graph), which captures all interactions in the crowd, and derive a novel neural network from the sti-graph
to learn navigation policies. We use two separate multi-head attention networks to address the different
effects of RH and HH interactions. The attention networks enable the robot to pay more attention to the
important interactions, which ensures good performance when the number of humans increases and the graph
becomes complex. Second, we enable longsighted robot behaviors by combining the predictions of other
agents’ intentions with planning. Given any pedestrian trajectory predictor, we design a reward function
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Figure 4.1: Previous works and our method. (a) Previous works consider only robot-human interactions
(red-dotted lines) and the safety space of humans are circles centered at the pedestrian’s position, which may
result in unsafe or shortsighted robot behaviors. (b) Beyond robot-human interactions, our method considers
human-human interactions (blue-dotted lines). Our safety space is a set of circles centered at the future
positions of humans, which improves the performance and intention awareness of the robot.

which encourages the robot to keep away from both current and intended positions of humans, improving
both safety and social awareness of the robot.

The main contributions of this chapter are as follows.

1. We propose a novel graph neural network that uses attention mechanism to effectively capture the
spatial and temporal interactions among heterogeneous agents.

2. We propose a novel method to incorporate the predicted intentions of other agents into a model-free
RL framework. Our method is compatible with any trajectory predictor.

3. The experiments demonstrate that our method outperforms previous works in terms of navigation
performance and social awareness.

4. We create an open-source simulation benchmark for crowd navigation, and successfully transfer the
learned policy to a real TurtleBot-2i.

This chapter is organized as follows: We review previous related works in Section 4.2. We formalize the
problem and propose our network architecture in Section 4.3. Experiments and results in simulation and in
the real world are discussed in Section 4.4 and Section 4.5, respectively. Finally, we conclude the chapter in
Section 4.7.

4.2 Related Works

4.2.1 Trajectory prediction-based crowd navigation

Utilizing the recent advancements in pedestrian trajectory prediction [65], [90], [99], [100], one line of work
uses the predicted human states to compute the transition probabilities of MDP and then plans optimal robot
actions with search trees [84], [101], [102]. However, the computation cost of tree search grows exponentially
with the size of robot action space. Thus, these methods usually choose discrete and small action spaces, which
leads to less natural robot trajectories. Another line of work uses the one-step predictions as observations of
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model-free RL policies [97], [103]. Although the action space can be large and continuous, one-step predictions
only capture the instantaneous velocities instead of intentions of pedestrians. Our method makes predictions
for several timesteps to capture the long-term intents of pedestrians and modify the reward function based
on predictions so that the robot is intention-aware.

Although some other works attempt to predict the long-term goals of pedestrians to aid planning, the
set of all possible goals is finite and small, which limits the generalization of these methods [98], [104]. In
contrast, for our method, the goals of pedestrians can be any position in a continuous two-dimensional space.

4.2.2 Attention mechanism for crowd interactions

Interactions amongst multiple agents contain essential information for both multi-pedestrian trajectory
prediction and crowd navigation [16], [27], [90], [100]. To capture this information for each agent, self-
attention computes attention scores between the agent and all other observed agents [92]. This better captures
the pair-wise relationships in the crowd than combining the information of other agents with concatenation
or an LSTM encoder [15], [75]. In crowd navigation of robots and autonomous vehicles, some works use
attention to determine the relative importance of each human to the robot [16], [27], [105]. However, the
interactions among humans can influence the robot but are not explicitly modeled. Other works attempt to
model both robot-human (RH) and human-human (HH) attentions using graph convolutional networks [76],
[84]. However, Chen and Liu et al. use predefined values to hardcode HH attention scores [76], while Chen
and Hu et al. do not distinguish the difference between RH and HH interactions [84]. As a step further
toward this direction, our method recognizes the heterogeneous nature of RH and HH interactions and learns
the attention scores separately using different attention networks.

4.3 Methodology

In this section, we first formulate crowd navigation as an RL problem and introduce the prediction reward
function. Then, we present our approach to model the crowd navigation scenario as a sti-graph, which leads
to the derivation of our network architecture.

4.3.1 Preliminaries

MDP formulation

Consider a robot navigating and interacting with humans in a 2D space. We model the scenario as a Markov
Decision Process (MDP), defined by the tuple ⟨S,A,P, R, γ,S0⟩. Let wt be the robot state which consists of
the robot’s position (px, py), velocity (vx, vy), goal position (gx, gy), maximum speed vmax, heading angle
θ, and radius of the robot base ρ. Let ut

i be the current state of the i-th human at time t, which consists
of the human’s position (pix, p

i
y). Then, the K predicted future and the M previous positions of the i-th

human are denoted as ût+1:t+K
i and ut−M :t−1

i , respectively. We define the state st ∈ S of the MDP as
st = [wt,ut

1, û
t+1:t+K
1 , ...,ut

n, û
t+1:t+K
n ] if a total number of n humans are observed at the timestep t, where

n may change within a range in different timesteps. If
In each episode, the robot begins at an initial state s0 ∈ S0. According to its policy π(at|st), the robot

takes an action at ∈ A at each timestep t. In return, the robot receives a reward rt and transits to the
next state st+1 according to an unknown state transition P(·|st, at). Meanwhile, all other humans also take
actions according to their policies and move to the next states with unknown state transition probabilities.
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Figure 4.2: The spatial-temporal interaction graph and the network architecture. (a) Graph
representation of crowd navigation. The robot node is denoted by w and the i-th human node is denoted
by ui. HH edges and HH interaction functions are in blue, while RH edges and RH interaction functions
are in red. Temporal function that connects the graphs at adjacent timesteps is in purple. (b) Our network.
A trajectory predictor is used to predict personal zones. Two attention mechanisms are used to model the
human-human interactions and robot-human interactions. We use a GRU as the temporal function.

The process continues until the robot reaches its goal, t exceeds the maximum episode length T , or the robot
collides with any humans.

Trajectory predictor

As shown in Fig. 4.2b, at each timestep t, a trajectory predictor takes the trajectories of observed humans
from time t−M to t as input and predicts their future trajectories from time t+ 1 to t+K:

ût+1:t+K
i = Predictor(ut−M :t

i ), i ∈ {1, ..., n} (4.1)

We add a circle centered at each predicted position to approximate the intended paths of humans, as shown
in Fig. 4.1b. If the predictor has learnable parameters, it needs to be pretrained and is only used for inference
in our framework.
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Reward function

To discourage the robot from intruding into the predicted zones of humans, we use a prediction reward rpred

to penalize such intrusions:

ripred(st) = min
k=1,...,K

(
1t+k
i

rc
2k

)
rpred(st) = min

i=1,...,n
ripred(st)

(4.2)

where 1t+k
i indicates whether the robot collides with the predicted position of the human i at time t+ k and

rc = −20 is the penalty for collision. We assign different weights to the intrusions at different prediction
timesteps, and thus the robot gets less penalty if it intrudes into the predicted social zone further in the
future.

In addition, we add a potential-based reward rpot = 2(−dtgoal + dt−1
goal) to guide the robot to approach the

goal, where dtgoal is the L2 distance between the robot position and goal position at time t. Let Sgoal be the
set of goal states, where the robot successfully reaches the goal, and Sfail be the set of failure states, where
the robot collides with any human. Then, the whole reward function is defined as

r(st, at) =


10, if st ∈ Sgoal

rc, if st ∈ Sfail

rpot(st) + rpred(st), otherwise.

(4.3)

Intuitively, the robot gets a high reward when it approaches the goal and avoids intruding into the current
and future positions of all humans.

The goal of the agent is to maximize the expected return, Rt = E[
∑T

i=t γ
i−tri], where γ is a discount

factor. The value function V π(s) is defined as the expected return starting from s, and successively following
policy π.

4.3.2 Spatio-Temporal Interaction Graph

We formulate the crowd navigation scenario as a sti-graph. In Fig. 4.2a, at each timestep t, our sti-graph
Gt = (Vt, Et) consists of a set of nodes Vt and a set of edges Et. The nodes represent the detected agents.
The edges connect two different detected agents and represent the spatial interactions between the agents at
the same timestep. The invisible humans that fall out of the robot’s field of view and their corresponding
edges are not included in the graph Gt, since the robot cannot predict or integrate their motions in planning.
Since we have control of the robot but not the humans, the human-human interactions and the robot-human
interactions have different effects on the robot decision-making. Thus, we divide the set of edges Et into
the human-human (HH) edges that connect two humans and the robot-human (RH) edges that connect the
robot and a human. The two types of edges allow us to factorize the spatial interactions into HH interaction
function and RH interaction function. In Fig. 4.2a, the HH and RH functions are denoted by the blue and
red boxes respectively and have parameters that need to be learned. Compared with the previous works that
ignore HH edges [5], [16], [27], [69], our method considers the pair-wise interactions among all visible agents
and thus scales better in dense and highly interactive crowds.

Since the movements of all agents cause the visibility of each human to change dynamically, the set of
nodes Vt and edges Et and the parameters of the interaction functions may change correspondingly. To this
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end, we integrate the temporal correlations of the graph Gt at different timesteps using another function
denoted by the purple box in Fig. 4.2a. The temporal function connects the graphs at adjacent timesteps,
which overcomes the short-sightedness of reactive methods and enables long-term decision-making of the
robot.

To reduce the number of parameters, the same type of edges share the same function parameters. This
parameter sharing is important for the scalability of our sti-graph because the number of parameters is kept
constant with an increasing number of humans [63].

4.3.3 Network Architecture

In Fig. 4.2b, we derive our network architecture from the sti-graph. In our network, a trajectory predictor
predicts the personal zones of humans. We represent the HH and RH functions as feedforward networks with
attention mechanisms, referred to as HH attn and RH attn respectively. We represent the temporal function
as a gated recurrent unit (GRU). We use W and f to denote trainable weights and fully connected layers
throughout this section.

Attention mechanisms

The HH and RH attention functions are similar to the scaled dot-product attention in [92], which computes
attention score using a query Q and a key K, and applies the normalized score to a value V .

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V (4.4)

where d is the dimension of the queries and keys.
In HH attention, the current states and the predicted future states of humans are concatenated and

passed through linear layers to obtain Qt
HH ,Kt

HH , V t
HH ∈ Rn×dHH , where dHH is the attention size for the

HH attention.

Qt
HH = [ut:t+K

1 , ...,ut:t+K
n ]⊤WQ

HH

Kt
HH = [ut:t+K

1 , ...,ut:t+K
n ]⊤WK

HH

V t
HH = [ut:t+K

1 , ...,ut:t+K
n ]⊤WV

HH

(4.5)

We obtain the human embeddings vtHH ∈ Rn×dHH using a multi-head scaled dot-product attention, and the
number of attention heads is 8.

In RH attention, Kt
RH ∈ R1×dRH is the linear embedding of the robot states wt and Qt

RH , V t
RH ∈ Rn×dRH

are linear embeddings of the weighted human features from HH attention vtHH .

Qt
RH = vtHHWQ

RH , Kt
RH = wtWK

RH , V t
RH = vtHHWV

RH (4.6)

We compute the attention score from Qt
RH , Kt

RH , and V t
RH to obtain the twice weighted human features

vtRH ∈ R1×dRH as in Eq. 4.4. The number of attention heads is 1.
In HH and RH attention networks, we use binary masks that indicate the visibility of each human to

prevent attention to invisible humans. Unlike DS-RNN that fills the invisible humans with dummy values [27],
the masks provide unbiased gradients to the attention networks, which stabilizes and accelerates the training.
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GRU

We embed the robot states wt with linear layers fR to obtain vtR, which are concatenated with the twice
weighted human features vtRH and fed into the GRU:

vtR = fR(w
t), ht = GRU

(
ht−1, ([vtRH , vtR])

)
(4.7)

where ht is the hidden state of GRU at time t. Finally, the ht is input to a fully connected layer to obtain
the value V (st) and the policy π(at|st).

Training

If the trajectory predictor has learnable parameters, we train the predictor with a dataset of human trajectories
collected from our simulator. In RL training, we freeze the parameters of the trajectory predictor and only
run inference. We train trajectory predictor and RL policy separately because the two tasks have different
objectives, and thus joint training is unstable and less efficient. We use Proximal Policy Optimization (PPO),
a model-free policy gradient algorithm, for policy and value function learning [56]. To accelerate and stabilize
training, we run 16 instances of the environment in parallel to collect the robot’s experiences. At each policy
update, 30 steps of six episodes are used.

4.4 Simulation Experiments

In this section, we present our simulation environment, experiment setup, and experimental results in
simulation.

4.4.1 Simulation environment

Our 2D environment simulates a scenario where a robot navigates through a dense crowd in a 12m× 12m

space, as shown in Fig. 4.3. Our simulation captures more realistic crowd navigation scenarios than previous
works in two aspects [16], [27]. First, our robot sensor has a limited circular sensor range of 5m, while the
previous works unrealistically assume that the robot has an infinite detection range. Second, the maximum
number of humans can reach up to 20, leading to a denser and more interactive human crowd.

In each episode, the starting and goal positions of the robot and the humans are randomly sampled on the
2D plane. To simulate a continuous human flow, humans will move to new random goals immediately after
they arrive at their goal positions. All humans are controlled by ORCA and react only to other humans but
not to the robot for two reasons: (1) This invisible setting prevents our model from learning an extremely
aggressive policy in which the robot forces all humans to yield while achieving a high reward; (2) In a
real-world dense crowd, the effect of the robot to humans can be ignored because there is little space for
humans to react.

We use holonomic kinematics for simulated robot and humans, whose action at time t consists of the
desired velocity along the x and y axis, at = [vx, vy]. The action space of the robot is continuous with a
maximum speed of 1m/s. We assume that all agents can achieve the desired velocities immediately, and they
will keep moving with these velocities for the next ∆t seconds. We define the update rule for an agent’s
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Figure 4.3: Illustration of our simulation environment. In a 12m× 12m 2D plane, the humans are
represented as circles, the orientation of an agent is indicated by a red arrow, the robot is the yellow disk,
and the robot’s goal is the red star. We outline the borders of the robot FoV with dashed lines. The humans
in the robot’s FoV are blue and the humans outside are red.

position px, py as follows:

px[t+ 1] = px[t] + vx[t]∆t

py[t+ 1] = py[t] + vy[t]∆t
(4.8)

We use two simulation environments for experiments. The first environment simulates humans with
constantly changing intents and different traits with the following randomizations: First, all humans
occasionally change their goals to other random positions within an episode; Second, each human has
a random maximum speed vmax ∈ [0.5, 1.5]m/s and radius ρ ∈ [0.3, 0.5]m. In the second environment, all
humans have the same maximum speed and radius with no random goal changes. The crowds in both
environments are dense and interactive, while the randomizations in the first environment pose extra challenges
for prediction and decision making.

4.4.2 Experiment setup

Baselines and Ablation Models

To show the benefits of incorporating predictions, we compare the performance of four models. The first
model (No pred, HH attn) does not use any predictor. The second model (Const vel, HH attn) uses the
constant velocity predictor which predicts linear future trajectories based on the current velocity of the agent.
The third model (GST, HH attn) uses Gumbel Social Transformer (GST) predictor, which is a deep network
and can predict non-linear trajectories when the robot has a limited field of view and the tracking of humans
is imperfect [106]. The final model (Oracle, HH attn) is an oracle which has the access to the ground truth
future trajectory of humans. All predictors predict human trajectories for 5 timesteps.

38



We also compare the performance of our model with the representative methods for crowd navigation.
We choose ORCA [5] and SF [69] as the reactive-based baselines and DS-RNN [27] as the learning-based
baseline1. To further show the benefits of including human-human interactions in RL policy, the ablation
model (GST, no HH attn) uses GST as the trajectory predictor and replaces the HH attention with several
fully-connected layers.

Training and Evaluation

For RL methods with prediction, we use the reward function as defined in Eq. 4.3. For RL methods without
prediction, the reward function excludes rpred. We train all RL methods for 2× 107 timesteps with a learning
rate 4× 10−5.

Table 4.1: Navigation results with randomized humans

Method SR↑ NT↓ PL↓ ITR↓ SD↑
ORCA 69.0 14.77 17.67 19.61 0.38
SF 29.0 20.28 15.93 17.68 0.37
DS-RNN 64.0 16.31 19.63 23.91 0.34
Ours (No pred, HH attn) 67.0 16.82 20.19 16.13 0.37

Ours (GST, no HH attn) 77.0 12.96 18.43 8.24 0.40
Ours (Const vel, HH attn) 87.0 14.03 20.14 7.00 0.42
Ours (GST, HH attn) 89.0 15.03 21.31 4.18 0.44

Ours (Oracle, HH attn) 90.0 16.03 22.82 1.70 0.47

Table 4.2: Navigation results without randomized humans

Method SR↑ NT↓ PL↓ ITR↓ SD↑
ORCA 78.0 15.87 18.53 26.04 0.36
SF 34.0 19.95 17.75 21.35 0.35
DS-RNN 67.0 20.06 25.42 13.31 0.37
Ours (No pred, HH attn) 82.0 19.15 22.82 14.87 0.37

Ours (GST, no HH attn) 82.0 14.21 19.35 7.22 0.40
Ours (Const vel, HH attn) 94.0 18.26 23.98 4.49 0.43
Ours (GST, HH attn) 94.0 17.64 22.51 3.06 0.43

Ours (Oracle, HH attn) 94.0 15.38 21.23 2.97 0.45

We test all methods with 500 random unseen test cases. Our metrics include navigation metrics and
social metrics. The navigation metrics measure the quality of the navigation and include the percentage
success rate (SR), average navigation time (NT) in seconds, and path length (PL) in meters of the successful
episodes. The social metrics measure the social awareness of the robot, which include intrusion time ratio
(ITR) and social distance during intrusions (SD) in meters. The intrusion time ratio per episode is defined as
c/C, where c is the number of timesteps that the robot collides with any human’s true future positions from
t+ 1 to t+ 5 and C is the length of that episode. The ITR is the average ratio of all testing episodes. We

1Comparison to more baselines can be found in [27]

39



define SD as the average distance between the robot and its closest human when an intrusion occurs. For fair
comparison, all intrusions are calculated by ground truth future positions of humans.

Figure 4.4: Comparison of different methods in the same testing episode with randomized
humans. The orientation of an agent is indicated by a red arrow, the robot is the yellow disk, and the
robot’s goal is the red star. We outline the borders of the robot sensor range with dashed lines. Represented
as empty circles, the humans in the robot’s field of view are blue and those outside are red. The ground
truth future trajectories and personal zones are in gray and are only used to visualize intrusions, and the
predicted trajectories are in orange. More qualitative results can be found in the video attachment.

4.4.3 Results

Effectiveness of HH attention

The results of robot navigation in two simulation environments are shown in Table 4.1 and Table 4.2. In both
tables, for methods with prediction, compared with the ablation model (GST, no HH attn), (GST, HH attn)
has 12% higher success rates, lower ITR, and longer SD. For methods without prediction, (GST, no pred, HH
attn) outperforms ORCA, SF, DS-RNN in most cases, especially in the more challenging environment in
Table 4.1. Fig 4.4 provides an example episode where ORCA and DS-RNN end up with collisions. ORCA
assumes that humans take half of the responsibility for collision avoidance, and thus fails immediately if the
assumption no longer holds (Fig 4.4a). For DS-RNN, the robot enters instead of deviates from a clutter of
humans (Fig 4.4b), indicating that the robot has difficulties reasoning about HH interactions. Since (GST,
no HH attn) and the aforementioned three baselines only model RH interactions but ignore HH interactions,
the HH attention and our graph network contribute to performance gain. These results suggest that the
HH interactions are essential for dense crowd navigation and are successfully captured by our HH attention
mechanism, regardless of the presence of predictor and prediction rewards.
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Figure 4.5: The hardware configuration of TurtleBot 2i.

Intention awareness

From both tables, we observe that the methods with predictions (last four rows) generally outperform those
without predictions (first four rows). From the values of (No pred, HH attn), (Const vel, HH attn), and (GST,
HH attn), we see that the trajectory predictors improve the success rate by around 20% with randomized
scenarios (Table 4.1) and by around 12% without randomized scenarios (Table 4.2). In addition, the models
aided by the trajectory predictors have at least 7% lower ITR and 0.02m larger SD. The longer NT and
PL are caused by our reward function that penalizes the robot to take short yet impolite paths. Comparing
the two tables, we observe that incorporating predictions gives a larger performance gain in the randomized
scenario, where the crowd behaviors are more complicated and thus are more difficult to predict implicitly.
Thus, we conclude that our prediction-aided pipeline enables proactive and long-sighted robot decision making
especially in challenging crowd navigation tasks.

In both scenarios, the performance of (GST, HH attn) is closest to the oracle in terms of all metrics,
followed by (Const vel, HH attn). Since GST can predict non-linear trajectories while constant velocity
predictor cannot, this trend also indicates that a more expressive predictor leads to a better policy. However,
we also notice that (GST, HH attn) only outperforms (Const vel, HH attn) with small margins, especially in
Table 4.2. The reason is that the humans in our simulator are controlled by ORCA, which prefers linear
motion if no other agents are nearby. Thus, the best choice of predictors depends on the complexity of crowd
behaviors.

As an illustrative example, with predictions, the robot in Fig 4.4d always keeps a good social distance from
the future paths of all humans, while intrusion only happens once in Fig 4.4c. In contrast, without predictions,
the robots in Fig 4.4a and b are notably more aggressive and impolite. Therefore, our prediction-aided
RL pipeline effectively prevents the robot from intruding into the intended paths of other agents and thus
improves the robot’s social awareness.

4.5 Real-world Experiments

To show the effectiveness of our method on real differential drive robots and real crowds, we deploy the
model trained in the simulator to a TurtleBot 2i. We use an Nvidia Jetson Xavier with ROS as the on-board
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Figure 4.6: The environment of the real world experiment.

computer. We use an Intel RealSense tracking camera T265 to obtain the pose of the robot. Different from
Sec. 3.5, we change sensor for human detection from an RGBD camera to a 2D LiDAR. The reason is that
the camera field-of-view is too small and the mounting point of the camera is unstable, which causes errors in
human detection. In Fig. 4.5b, with an RPLIDAR-A3 laser scanner, we first remove non-human obstacles on
a map, and then use a 2D LIDAR people detector [107] to estimate the positions of humans and a Kalman
filter for tracking.

As shown in Fig. 4.6, in a 5m× 5m indoor space with 1 to 4 humans, we run 18 trials and the success
rate is 83.33% (Qualitative results are in the video). In the failure cases, the turning angle of the robot is
too large and it collides with the walls, which indicates that incorporating the environmental constraints is
needed in future work. Nevertheless, we demonstrate that our navigation policy interacts with real humans
proactively despite noises from the perception module and robot dynamics.

4.6 Limitations

Our work encompasses the following limitations. First, the invisible setting of our simulation environment is
different from the reality where the motions of pedestrians and those of the robot mutually affect each other.
Since the robot does not affect human behaviors, it is difficult to quantify the social awareness of the robot
and incorporate it into our design. Second, in the real world experiment, due to the sensor limitations, the
detected human positions are noisy and thus cause differences in robot behaviors between the simulation and
the real world.

4.7 Summary

We propose a novel RL framework for intention-aware navigation in dense and interactive crowds. We capture
the heterogeneous interactions in the crowd with self-attention mechanisms and propose a novel graph neural
network to learn navigation policies. To incorporate the future intention of other agents, our reward function
penalizes the robot if it intrudes into the predicted positions of other agents. The experiments show that
our method outperforms various baselines in partially-observed dense crowds and shows promising results in
the real world. Possible directions to explore in future work include (1) using datasets collected from real
pedestrians to train our method, and (2) performing user studies to evaluate the social awareness of our
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model.
Website and videos are available at https://sites.google.com/view/intention-aware-crowdnav/

home.
The simulation code and pretrained models are available at https://github.com/Shuijing725/CrowdNav_

Prediction_AttnGraph.
The code and guidance for sim2real are available at https://github.com/Shuijing725/CrowdNav_

Sim2Real_Turtlebot.
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Chapter 5

Structured Graph Network for
Constrained Robot Crowd Navigation
with Low Fidelity Simulation

5.1 Introduction

Mobile robots are becoming increasingly prevalent in transportation, delivery, and people’s homes. To co-exist
and collaborate with people seamlessly, robots must navigate through dynamic environments with both
moving agents and static obstacles. In dynamic environments, the traversable area is usually constrained.
For example, in indoor environments, walls and furniture are common, while in outdoor environments, robots
must stay on their lanes or sidewalks. To navigate, the robot must be able to understand the interactions
among different agents and entities to make decisions that avoid collisions.

Robot crowd navigation has received much attention since last century [67], [78], [79], [108], [109].
Model-based approaches have explored various mathematical models, such as velocity obstacles [5], [68],
dynamic windows [67], and attraction/repulsion forces [69], to optimize robot actions. Although these
models consider both humans and obstacles, they are prone to failures such as the freezing problem due
to unrealistic assumptions on human behaviors [7], [27]. In addition, the hyperparameters are sensitive to
different environments and thus need to be hand-tuned to ensure good performance [110].

Another line of work trained more expressive crowd navigation policies using imitation learning and
reinforcement learning [15], [16], [27], [111], [112]. However, these works focus on navigation in open spaces
and ignore static obstacles and geometric constraints. To address this issue, some learning-based approaches
use raw camera images or LiDAR scans to represent constrained and crowded environments [113], [114].
Other works use a combination of human detection and raw sensor information [108], [115]. These end-to-end
(E2E) neural networks have made promising progress with very few assumptions about the environment and
a simplified navigation pipeline. However, to deploy the learned policies to the real world, these E2E methods
need either a large amount of demonstration data from the real world or a high-fidelity simulator, both of
which are expensive to obtain and prone to domain shifts between training and testing scenarios [116].

In this chapter, we ask the following research question: Is it possible to deploy a reinforcement learning
(RL) policy for constrained crowd navigation with a cheap low-fidelity simulator using no demonstrations?

44



Figure 5.1: A split representation of constrained navigation scenario. In a dynamic scene, human
information is obtained from detections by sensors. For obstacle information, we remove all humans and
compute a point cloud from a known map and the robot’s location. In this way, we can learn a robot policy
with smaller sim2real gaps with a cheap low-fidelity simulator.

The first step is to come up with an environment representation that is robust to the sim2real gap from
perception. As shown in Fig. 5.1, we propose to split the human and obstacle representation and leverage
on processed inputs instead of raw sensor inputs. We represent humans with detected states and obstacles
as computed point clouds from map and robot localization. With processed states of humans and objects,
the split representation is less affected by inaccurate simulations of human gaits, visual appearance, and 3D
shapes. As a result, we can train the robot policy in a low-fidelity simulator, such as the one in Fig. 5.3, with
a much smaller sim2real gap during deployment compared with previous E2E methods.

After we separate the representations of each human from static objects, we seek to learn a navigation policy
that reasons about interactions among different entities, as shown in Fig. 5.2. In constrained environments,
agents have limited spaces to maneuver and thus interact with each other, as well as obstacles, frequently. To
capture these subtle interactions, we propose spatio-temporal graph (st-graph) and derive a novel neural
network from the st-graph to learn navigation policies. We use three separate attention networks to address
the different effects of robot-human, human-human, and human-obstacle interactions. After training with RL,
the attention networks enable the robot to pay more attention to the important interactions, which ensures
good performance when the number of humans increases and the graph becomes complex.

The main contributions of this paper are as follows. (1) We propose a split representation of constrained
and crowded environments, which enables RL policy learned in a low-fidelity simulator to deploy in the

45



real world without additional finetuning. (2) We propose a graph-based policy network that uses attention
mechanism to effectively capture the spatial and temporal interactions among agents and obstacles. (3) The
experiments demonstrate the effectiveness of our method in various challenging navigation scenarios both
simulation and real world.

5.2 Preliminaries

5.2.1 MDP formulation

Consider a robot navigating with humans and obstacles in a 2D space. We model the scenario as a Markov
Decision Process (MDP), defined by the tuple ⟨S,A,P, R, γ,S0⟩. Let wt be the robot state which consists
of the robot’s position (px, py), velocity (vx, vy), goal position (gx, gy), and heading angle θ. Let ht

i be the
current state of the i-th human at time t, which consists of the human’s position and velocity (pix, p

i
y, v

i
x, v

i
y).

Let ot be the current observations of the static obstacles and walls. We define the state st ∈ S of the MDP
as st = [wt,ot,ht

1, ...,h
t
n] if a total number of n humans are observed at the timestep t, where n may change

within a range in different timesteps.
In each episode, the robot begins at an initial state s0 ∈ S0. According to its policy π(at|st), the robot

takes an action at ∈ A at each timestep t. In return, the robot receives a reward rt and transits to the
next state st+1 according to an unknown state transition P(·|st, at). Meanwhile, all other humans also take
actions according to their policies and move to the next states with unknown state transition probabilities.
The process continues until the robot reaches its goal, t exceeds the maximum episode length T , or the robot
collides with any humans.

5.2.2 Reward function

The reward function awards the robot for reaching its goal and penalizes the robot for collisions with or
getting too close to humans or obstacles. In addition, we add a potential-based reward shaping to guide the
robot to approach the goal:

r(st, at) =



−20, if dtmin < 0

2(dtmin − 0.25), if 0 < dtmin < 0.25

20, if dtgoal ≤ ρrobot

2(−dtgoal + dt−1
goal), otherwise.

(5.1)

where dtmin is the minimum separation distance between the robot and any human or obstacle at time t, and
dtgoal is the L2 distance between the robot position and goal position at time t. Intuitively, the robot gets
a high reward when it approaches the goal while maintaining a safe distance from all dynamic and static
obstacles.

5.3 Methodology

In this section, we propose a structured representation of constrained and crowded scenes. Then, we formulate
the scene as a spatio-temporal graph that allows the robot to reason about different interactions among
entities, and derive a structured attention network to learn a robot policy.
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Figure 5.2: The spatial-temporal interaction graph and the network architecture. (a) Graph
representation of crowd navigation. The robot node is denoted by w and the i-th human node is denoted by
ui. HH edges and HH functions are in blue, while RH edges and RH functions are in red. Temporal function
that connects the graphs at adjacent timesteps is in purple. (b) Our network. A trajectory predictor is used
to predict personal zones. Two attention mechanisms are used to model the human-human interactions and
robot-human interactions. We use a GRU as the temporal function.

5.3.1 Scene representation

High-dimensional raw sensor representation suffer from large sim2real gaps due to the presence of humans,
obstacles with different shapes, and complex landscapes. These gaps cause serious problems for robot
deployment in real environments. Instead of investing in expensive high-fidelity simulators or laborious
dataset collection, we use low-fidelity simulators. To circumvent the sim2real gap, our scene representation
leverages processed information from perception modules, maps, and robot localization, which are relatively
easier to obtain and robust to domain shifts.

As shown in Fig. 5.1, at each timestep t, we split a dynamic scene into a human representation denoted
as ht

1, ...,h
t
n, as well as an obstacle and constraint representation denoted as ot. In human representation,

the position and velocity of each human is detected from off-the-shelf human detectors [94], [95], [107]. By
representing each human as a low-dimentional state vector, we abstract away detailed information such as
gaits and appearance, which are difficult to model accurately [104], [117]. To obtain obstacle and constraint
representation, we first map the environment and process the map by combining close-by obstacles and
approximating obstacle shapes as polygons. The map processing step is shown from Fig. 5.1(a) to Fig. 5.1(c).
During navigation, assuming robot localization is available, we can compute a “fake” point cloud by performing
a ray tracing algorithm centered at the robot location, as shown in Fig. 5.1(c). The “fake” point cloud contains
approximate information on obstacles and constraints, which is sufficient for robot navigation. It is worth
noting that compared to real point clouds from sensors, our obstacle representation is not affected by the
presence of humans and is less sensitive to inaccuracies simulations of object appearance or shapes.

By decomposing the scene into dynamic and static parts, and obtaining them from perception algorithms
and localization respectively, we avoid potential sources that cause sim2real gaps yet retain essential information
for navigation.

5.3.2 Structured interaction graph

Interactions among different entities contain essential information for multi-agent problems including crowd
navigation [16], [27], [90], [100], [118]. We formulate constrained crowd navigation as a spatio-temporal (st)

47



graph, which breaks the problem into smaller components in a structured fashion [63]. In Fig. 5.2(a), the
robot, all observed humans, and the observed static environment are nodes in the st-graph Gt. At each
timestep t, the edges that connect different nodes denote the spatial interactions among nodes. Since we have
control of the robot but not the humans, robot-human interactions have direct effects while human-human
interactions have indirect effects on the robot actions. Since the agents including humans and robots are
movable but the obstacles are not movable, interactions among agents are mutual while the influence of
static obstacles on agents is one-way. For these reasons, different interactions have different effects on robot
decision-making. Thus, we categorize the spatial edges into three types: human-human (HH) edges (in
blue color in Fig. 5.2), obstacle-human (OH) edges (green), and robot-human (RH) edges (red). The three
types of edges allow us to factorize the spatial interactions into HH function, OH function, and RH function.
Each function is a neural network that has parameters to be learned. Compared with the previous works
that ignore some edges [16], [27], [111], our method allows the robot to reason about all observed spatial
interactions that exist in constrained crowded environments.

Since the movements of all agents cause the visibility of humans and obstacles to change dynamically,
the set of nodes and edges and the parameters of the interaction functions may change correspondingly. To
this end, we integrate the temporal correlations of the graph Gt at different timesteps using another function
denoted by the purple box in Fig. 5.2a. The temporal function connects the graphs at adjacent timesteps,
which overcomes the short-sightedness of reactive methods and enables long-term decision-making of the
robot.

To reduce the number of parameters, the same type of edges share the same function parameters. This
parameter sharing is important for the scalability of our st-graph because the number of parameters is kept
constant with an increasing number of humans [63].

5.3.3 Structured attention network

In Fig. 5.2b, we derive our network architecture from the st-graph. We represent the HH, OH, and RH
functions as feedforward networks with attention mechanisms, referred as HH attn, OH attn, and RH attn
respectively. We represent the temporal function as a gated recurrent unit (GRU). We use W and f to denote
trainable weights and fully connected layers throughout this section.

Attention mechanisms

The attention modules assign weights to all edges that connect to a node, allowing the node to pay more
attention to important edges or interactions. The 3 attention networks are similar to the scaled dot-product
attention [92], which computes attention score using a query Q and a key K, and applies the normalized
score to a value V .

Attn(Q,K, V ) = softmax
(
QK⊤
√
d

)
V (5.2)

where d is the dimension of the queries and keys. Multi-head attention concatenate multiple single-head
attention functions to jointly attend to information from h different representation embeddings of the agents:

MultiHeadAttn(Q,K, V ) = [headi, ...,headh]W
o

where headi = Attn(QWQ
i ,KWK

i , V WV
i )

(5.3)
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In HH attention, the current states of humans are concatenated and passed through linear layers to obtain
Qt

HH ,Kt
HH , V t

HH ∈ Rn×dHH , where dHH is the attention size for the HH attention.

Qt
HH = [ut:t+K

1 , ...,ut:t+K
n ]⊤WQ

HH

Kt
HH = [ut:t+K

1 , ...,ut:t+K
n ]⊤WK

HH

V t
HH = [ut:t+K

1 , ...,ut:t+K
n ]⊤WV

HH

(5.4)

We obtain the human embeddings vtHH ∈ Rn×dHH using a multi-head scaled dot-product attention from
Eq. 5.3, and the number of attention heads is 8.

In OH attention, the obstacle point cloud is fed into a 1D CNN network, which results in the obstacle
embedding vtO:

vtO = fCNN (ot) (5.5)

Then, we use a linear layer to embed the encoded obstacle vtO, and the resulting output vector is denoted
as Kt

OH ∈ R1×dOH . Qt
RH , V t

RH ∈ Rn×dRH are linear embeddings of the weighted human features from HH
attention vtHH .

Qt
OH = vtHHWQ

OH , Kt
OH = vtOW

K
OH , V t

OH = vtHHWV
OH (5.6)

We compute the attention score from Qt
OH , Kt

OH , and V t
OH to obtain the twice weighted human features

vtOH ∈ R1×dOH as in Eq. 5.2. The number of attention heads is 1.
Similarly, in RH attention, we first embed the robot with a linear layer

vtR = fR(w
t) (5.7)

Then, we feed the robot embedding vtR to another linear layer, which results in an output embedding
Kt

RH ∈ R1×dRH . Qt
RH , V t

RH ∈ Rn×dRH are linear embeddings of the weighted human features from OH
attention vtOH .

Qt
RH = vtOHWQ

RH , Kt
RH = wtWK

RH , V t
RH = vtOHWV

RH (5.8)

We compute the attention score from Qt
RH , Kt

RH , and V t
RH to obtain the weighted human features for the

third time vtRH ∈ R1×dRH as in Eq. 5.2. The number of attention heads is 1.
In all three attention networks, we use binary masks that indicate the visibility of each human to prevent

attention to invisible humans. The masks provide unbiased gradients to the attention networks, which
stabilizes and accelerates the training.

GRU

We concatenate the robot embedding vtR, the obstacle embedding vtO, and the weighted human features vtRH

and fed into the GRU:
ht = GRU

(
ht−1, ([vtRH , vtR, v

t
O])
)

(5.9)

where ht is the hidden state of GRU at time t. Finally, the ht is input to a fully connected layer to obtain
the value V (st) and the policy π(at|st).

We use Proximal Policy Optimization (PPO), a model-free policy gradient algorithm, for policy and value
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function learning [56]. The entire network, including 1D CNN, 3 attention networks, and the GRU are trained
together.

5.4 Simulation Experiments

In this section, we present our simulation environment, experiment setup, and experimental results in
simulation.

5.4.1 Simulation environment

Our simulator is developed with PyBullet [119]. The 3D environment simulates two scenarios where a
TurtleBot 2i navigates through a crowd in a constrained space with static obstacles, as shown in Fig. 5.3.
We conduct simulation experiments in random environment in Fig. 5.3(a). In each episode, obstacles are
initialized with random shapes and random poses. The initial positions of the humans and the robot are also
randomized. The human goals are set on the opposite side of their initial positions so that they cross each
other in a circle. The number of humans varies from 2 to 4 and the number of obstacles varies from 7 to 9.

To simulate a continuous human flow, humans will move to new random goals immediately after they
arrive at their goal positions. All humans are controlled by ORCA [5]. 80% of humans do not react to the
robot and 20% of humans react to the robot. This mixed setting prevents our network from learning an
extremely aggressive policy in which the robot forces all humans to yield while achieving a high reward, while
maintaining a enough number of reactive humans to resemble the real crowd behaviors.

We use unicycle kinematics for the robot. The action of the robot consists of desired translational and
rotational accelerations at = [atrans, arot]. The robot action space is discrete: the translational acceleration
atrans ∈ {−0.05m/s2, 0m/s2, 0.05m/s2} and the rotational acceleration arot ∈ {−0.1 rad/s2, 0 rad/s2, 0.1 rad/s2}.
At each timestep t, the robot policy outputs a desired acceleration command, and we assume a constant force
corresponding to the acceleration is applied to the wheel motors for ∆t seconds. The translational velocity
is clipped within [0m/s, 0.5m/s] and rotational velocity is within [−1 rad/s, 1 rad/s]. The robot motion is
governed by the dynamics of TurtleBot 2i.

We use holonomic kinematics for humans. The human action space is the desired velocity along the x

and y axis, vt = [vx, vy]. The speed of humans is limited to 0.5 m/s to accommodate the speed of the robot.
Due to the lack of a human dynamics model, we assume that humans can achieve the desired velocities
immediately, and they will keep moving with these velocities for the next ∆t seconds.

5.4.2 Experiment setup

Baselines and ablation models

To validate the effectiveness of the proposed scene representation, we compare our method with the following
baselines:

• Object-centric: The human representation is the same as the proposed method, while obstacles are
represented by the coordinates of their polygon vertices. The obstacle embedding network is changed
into a multi-layer perception instead of 1D CNN.

• Raw point cloud: The humans and obstacles are represented as raw point clouds from a LiDAR. No
human detection or artificial point cloud is available. The point cloud is fed into a 1D CNN and a GRU
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Figure 5.3: Two PyBullet simulation scenarios. (a) Random environment with random obstacles and
circle-crossing humans. (b) Sim2real environment with fixed obstacles and the random human flow is designed
based on the layout.

which outputs the robot action and the state value. No attention network is used since all entities are
mixed as a single point cloud.

To validate the effectiveness of the structured graph network, we experiment with ablations of different
attention models to justify the effect of 3 types of spatial interaction networks. Everything else except the
presence of attention network(s) is kept the same as our method.

• Ours, RH attn: The network has only RH attention and does not have HH or OH attention. Policy
networks with RH attention are widely used in previous works such as [16], [27], [105].

• Ours, RH+OH attn: The network has only RH and OH attention and does not have HH attention.

• Ours, RH+HH+OH attn: The full version of our proposed network with all 3 attention modules.

Training

The policy is trained for 6 × 107 steps in total. To accelerate and stabilize training, we run 16 parallel
environments to collect the robot’s experiences. The learning rate is 8 × 10−5 and decays linearly during
training. At each policy update, 30 steps of six episodes are used.

Evaluation metrics

We test all methods with 500 random unseen test cases. Our metrics include success rate (Success), collision
rate (Collision), timeout rate (Timeout), and average navigation time (Time) in seconds.

Table 5.1: Navigation results in random environment.

Method Success↑ Collision↓ Timeout↓ Time↓
Object-centric 0.63 0.27 0.09 12.02
Raw point cloud 0.58 0.27 0.15 12.02

Ours, RH attn 0.56 0.28 0.16 12.02
Ours, RH+OH attn 0.68 0.26 0.06 11.28
Ours, RH+HH+OH attn 0.75 0.15 0.10 11.75
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5.4.3 Results

In Table 5.1, among the baselines, raw point cloud performs the worst because the network needs to extract
both human and obstacle features from raw sensor inputs, which slows down the convergence. Object-centric
is better due to the presence of low-level state information. Nevertheless, object-centric is outperformed by our
method, because the vertex representation is sparse and not always useful for navigation. For example, among
all vertices of a long and thin wall, the occluded vertices or the vertices outside of the robot field-of-view
are fed into the network, yet none of them affects navigation. In addition, the vertex representation is
sensitive to the permutation order of vertices, which poses extra challenges for learning [120]. In contrast, our
representation leverages low-level human states from detectors, which accelerates the convergence and thus
achieves better performance with the same amount of training budget. For the obstacle representation, the
“fake” point cloud is denser and more relevant to robot decision-making compared with vertex representation.

Among ablated models, we observe that if we remove HH attention, the success rate drops by 7% because
the interactions among humans are dense due to the presence of obstacles and environmental constraints. As
a result, a human constantly changes its trajectories due to other humans. If we further remove OH attention,
the success rate drops by another 12% because the obstacles limit the traversable regions of agents, and
thus human trajectories are also directly affected by obstacles. Thus, we conclude that reasoning about both
human-human and human-robot interactions plays an important role in robot collision avoidance, in addition
to robot-human interactions from previous works.

5.5 Real-world Experiments

We train our method in another simulation environment and transfer the policy to a TurtleBot 2i in a
real constrained indoor environment with pedestrians. The sim2real environment in Fig. 5.3(b) mimics a
real-world hallway with various obstacles in a university building. We define a set of human routes and robot
routes based on the environment layout and randomly choose a route for each agent in each episode. In
addition, some static humans are added to simulate a more realistic crowd. The poses obstacles are fixed and
the number of obstacles is 11. The number of dynamic humans varies from 1 to 3 and the number of static
humans varies from 1 to 3.

We use an Intel RealSense tracking camera T265 to obtain the pose of the robot. With an RPLIDAR-A3
laser scanner, we first remove non-human obstacles on a map, and then use a 2D LIDAR people detector [107]
to estimate the positions of humans. The “fake” point cloud is obtained from the robot localization and
the sim2real simulation environment. From results (see videos here), we observe that the robot is able to
achieve goals without collisions no matter the pedestrians react to the robot or not. However, the robot fails
if the pedestrians intentionally block its path, since this kind of adversarial behavior is not available in the
simulator during training.

5.6 Summary

In conclusion, to enable robots to navigate in constrained crowded environments, we propose a structured
scene representation from preprocessed information. Then, we formulate the scenario as a st-graph, which
leads to the derivation of a robot policy network that reasons about different interactions during navigation.
We train the network with RL and demonstrate good results in both simulation and the real world. However,
our work encompasses the following limitations, which opens up opportunities for future work:
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Figure 5.4: A two-level hierarchical planner. To enable long-horizon navigation, we can treat our method
as a local planner and combine it with a global planner.

1. The robot only achieves a 75% success rate when it only navigates for 3 to 4 meters from start to goal.
The task horizon and success rate are not enough for robot deployment in real applications, such as
last-mile delivery. To address this issue, as shown in Fig. 5.4, we plan to adopt a hierarchical planner,
which consists of a global planner that outputs waypoints, and a local planner that takes waypoints
and performs low-level control. The current model can be used as the local planner. Possible options
for the global planner include sample-based planners such as A∗ and Rapidly exploring random tree
(RRT) and learning-based policies.

2. As Sec. 5.5 discussed, the robot policy is overfitted to the simulated human behaviors. However, the
simulated humans do not capture all the nuanced behavior patterns of real humans. A more realistic
human motion model is necessary, which might need to be learned from real pedestrian data [121]. In
addition, adversarial RL training may also improve the robustness of the robot policy with respect to
changes in human behaviors [122], [123].
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Chapter 6

A Dialogue-Based Robot for Assistive
Navigation with Visual Language
Grounding

6.1 Introduction

Wayfinding, defined as helping people orient themselves in an environment and guiding them from place to
place, is a longstanding challenge for persons with visual impairments (PwVI) [17], [18]. To improve the
quality of PwVI’s lives, we aim to build a guiding robot that can connect language to the surrounding world
to verbally interact with PwVI.

To pair wayfinding with communication, a line of previous works gives users signals such as navigation
instructions [19], [124] and basic environment information [20], [125]. As a step further, other wayfinding
technologies recognize and convey the semantic meaning of the surrounding environment such as naming
the landmarks [126]–[128]. However, these methods require special environmental setups, such as multiple
RFID tags and bluetooth beacons. To improve the aforementioned systems with recent advances in machine
learning [10], [22], [129], we aim to remove dependence on these types of special infrastructure by integrating
advances in visual-language grounding into conversational wayfinding.

More broadly, technologies in vision-language navigation and voice-controlled robots have made significant
progress [10], [22], [129]. These navigation agents are able to perform various tasks according to natural
language commands such as “Bring me a cup,” with simple onboard sensors. This is usually achieved
by encoding visual landmarks in a semantic map and associating language with these landmarks during
navigation, which is referred to as visual-language grounding [21], [22]. However, these general-purpose
frameworks assume that humans can provide step-by-step navigation instructions. These systems are not
built for PwVI, who often need help perceiving the environment and planning paths. Thus, building a robot
guide that can intuitively exchange semantic information with users remains an open challenge.

In this chapter, we propose DRAGON, a Dialogue-based Robot for Assistive navigation with visual-
language Grounding. In Fig. 6.1, since PwVIs have limited vision, DRAGON uses speech to communicate
with the user and a physical handle for fully autonomous navigation guidance. The dialogue and navigation
can be executed simultaneously. When the user gives a speech command, Speech Recognition (SR) and
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Figure 6.1: DRAGON identifies the intents of the user through dialogue, grounds language with
the environment, and guides the user to their desired goal.

Natural Language Understanding (NLU) modules first extract the user’s intents and desired destinations.
The user command does not have any templates or constraints on vocabulary or expressions. Based on
the outputs of NLU, one of the following grounding functionalities is triggered: (1) finding users’ desired
destinations with a visual-language model [130] and guiding them to the destinations; (2) describing nearby
objects; and (3) answering questions from users. With (2) and (3), DRAGON can help users gain awareness
of their surroundings during navigation.

To find users’ intended goals on a map, we propose a novel landmark recognition module based on
Contrastive Language-Image Pre-training (CLIP) [130]. After a straightforward mapping process, the
landmark recognizer is able to select the landmark whose image best matches the user descriptions. Our
landmark recognizer is able to associate flexible and open-vocabulary commands with few constraints on user
expressions. If the description is ambiguous, our system will disambiguate user intents through additional
dialogue. Then, the corresponding goal location is passed to the path planners for navigation guidance.
Combined with the robot’s navigation module, the powerful and reliable landmark recognizer is essential to
ensure the success and user experience of DRAGON.

Our main contributions are as follows: (1) As an interactive navigation guide for PwVI, DRAGON enables
voice-based dialogue, which carries rich information and has grounding capabilities; (2) We propose a novel
landmark mapping and recognition method that can associate free-form language commands with image
landmarks. Our method can be easily plugged into the standard navigation module of mobile robots; (3) A
user study with five blindfolded participants (N=5) demonstrates that DRAGON is able to understand user
intents through dialogue and guide them to desired destinations in an intuitive manner. To the best of our
knowledge, our work is the first to show that visual-language grounding via dialogue benefits robotic assistive
navigation.
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6.2 Related Works

6.2.1 Wayfinding robots and technologies

Navigation guidance:

To guide PwVI from point A to point B following a planned path, unactuated devices, such as smartphones
and wearables, rely on haptic or audio feedback to give instructions such as going straight and turning
right [124], [126], [127], [132]. However, delays and misunderstandings might lead to inevitable deviations,
which take time and effort to recover from [125], [126]. On the other hand, robots provide a physical holding
point, which offers kinesthetic feedback to minimize deviations and reduce the mental load of users [133]–[135].
Such physical guidance can be combined with aforementioned verbal or haptic navigation instructions to
further improve performance at the cost of a more expensive system [19], [20]. To ensure both efficiency and
low cost, we mount a handle on our robot to give intuitive real-time steering feedback in navigation.

Semantic communication:

A large part of blind navigation technologies ignores exchanging environmental information with users [19],
[134], [136]. To deal with this issue, CaBot applies object recognition to describe the user’s neighborhood,
yet the user cannot hold conversations with the robot or choose their destinations [20]. To enable users to
choose a semantic goal (e.g. a restroom), some works mark points of interest using bluetooth beacons [126],
[127] or Radio-Frequency Identification (RFID) tags [128], [133], which requires heavy instrumentation. As
an alternative, extracting semantic information from ego-centric camera images is much cheaper and easier.
For example, SeeWay uses skybox images to represent landmarks [132]. Similarly, Landmark AI offers
semantic-related functionalities including describing the environment, reading road signs, and recognizing
landmarks using a phone camera [131]. However, these phone applications are not robots and thus cannot
physically guide users or provide a stable mounting point for cameras. In contrast, Table 6.1 shows that
DRAGON brings conversational wayfinding to the next level: A robot can simultaneously offer physical
guidance and enable users to trigger a variety of functionalities through dialogue.

6.2.2 Command following navigation

Tremendous efforts have been made in understanding and grounding human language instructions for various
robotic tasks [10], [22], [129]. In command following navigation, a modular pipeline usually consists of three
modules: (1) an NLU system to map instructions to speaker intent; (2) a grounding module to associate
the intent with physical entities; and (3) a simultaneous localization and mapping (SLAM) and a planner
to generate feasible trajectories [21], [137], [138]. Other works attempt to learn end-to-end policies from
simulated environments or datasets [62], [139]–[141]. However, due to sim-to-real gaps in perception, language,
and planning, deploying these policies to the real world remains an open challenge for applications in the low
data regime such as wayfinding [142]. Therefore, we adopt the modular pipeline to ensure performance in the
real world.

6.2.3 Semantic landmark recognition

Understanding the semantic meanings of a scene is a vital step towards interactive navigation [21], [22].
Some works reconstruct volumetric maps for the environment, where each grid is associated with a semantic
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label [22], [138], [143]. Other works build more abstract scene graphs [144], [145]. However, implementing these
methods on a real robot is expensive, as they require accurately calibrated depth cameras and high-performing
instance segmentation models.

Another line of work collects images as landmarks to create topological graphs [146]–[148]. In navigation,
the goal location is retrieved by computing the similarity between a goal image and all stored landmarks.
However, the above works only consider image goals, which are less natural than language in human-centered
applications. Inspired by Shah et al. [21] and Huang et al. [22], we use CLIP [130] to associate image
landmarks with users’ language commands. Compared with previous works that use closed vocabulary object
detectors, which are limited to a predefined set of semantic classes [143]–[145], our method can handle more
flexible and open-vocabulary commands. We use CLIP to select landmarks and keep traditional cost maps
for planning, enabling easy integration of our method into the navigation stack of mobile robots.

6.3 System Overview

Figure 6.2: An overview of the system and platform of DRAGON. (a) Submodules, message passing,
and user interface. (b) The robot platform.

In this section, we describe the setup and configuration of our robot guide with special considerations
for PwVI users. Fig. 6.2(a) shows an overview of our proposed system with three main components: (1)
The TurtleBot platform (yellow); (2) Audio communication interface (purple); (3) Dialogue and grounding
modules (red). The modules communicate with each other through ROS. We expand part (1) and (2) in this
section and part (3) in Sec. 6.4.

6.3.1 Robot platform

Overview

We use the Turtlebot2i as our robot platform. As shown in Fig. 6.2(b), the robot is fitted with the following
sensors and equipment: (1) An RP-Lidar A3 laser range finder is mounted on the top of the robot structure
for SLAM; (2) An Intel RealSense D435i camera is mounted on the top of a monopod facing forward for
scene description and question answering; (3) A wireless headset is used to communicate with the user. The
headset is lightweight and maximally protects the users’ privacy, while the absence of wires avoids tripping
hazards; (4) A T-shaped handle is attached to the top rear side of the robot as a holding point for the user’s
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arm. The handle allows users to choose their preferred holding configurations such as one hand or two hands.
The robot is connected to a desktop computer which provides more computation resources through WiFi.

Planning and Navigation

The robot operations are managed by the ROS move_base navigation stack, which is a standard package to
autonomously navigate a mobile robot to a given goal pose. Before navigation, we create a 2D occupancy
map of the environment using laser-based SLAM and mark the semantic landmarks at the same time (see
Fig. 6.3 and Sec. 6.4.2 for details). At the beginning of each trial, the goal pose is obtained from the dialogue
with the user (further specified in Sec. 6.4). During navigation, adaptive Monte Carlo localization is used
to localize the robot on the map. We use the dynamic window approach (DWA) [67] and A∗ as local and
global planners, respectively. The minimum translational velocity is restricted to be non-negative to prevent
the robot from moving backward and colliding with the user. The maximum velocity of the robot can be
adjusted by the user (see Sec. 6.4.4).

6.3.2 Audio Communication Interface

Speech is a natural choice for human-robot communication, particularly in cases where the human has limited
vision [18], [149], [150]. To this end, as shown in purple in Fig. 6.2(a), we develop an audio communication
interface that consists of: (1) Input: When audio is captured by the audio_capture package, the OpenAI
Whisper speech recognition model [151] transcribes speech commands to text, which are passed to the NLU
module. The SR module continuously transcribes the audio from the microphone and publishes the text
transcriptions to a ROS topic in real time; (2) Output: We use the Google text-to-speech (TTS) service to
convert the text output from the visual-language modules and navigation module to speech, which is then
narrated to the user via the headset. The TTS is another ROS topic that converts and plays the synthesized
sound constantly.

6.4 Dialogue And Grounding

The goal of DRAGON is to connect the user with the environment through conversation. In this section,
we describe how our dialogue system understands user language (Sec. 6.4.1), maps and localizes semantic
landmarks (Sec. 6.4.2), provides information about the environment (Sec. 6.4.3), and adjusts the navigation
preference of the user (Sec. 6.4.4). Our grounding system is visualized in the red parts of Fig. 6.2(a). The
inputs to the subsystem are the transcribed texts from SR and the outputs are synthetic speech from TTS.

6.4.1 Natural language understanding (NLU)

The NLU takes a transcribed sentence as input and outputs user intents and entities of interest. The intent
recognizer is a multi-label classifier with all classes shown in Table 6.2. The intents are designed based on the
needs of our tasks. The entities are locations, objects, and object attributes which include the material and
functionalities of an object. We use Dual Intent and Entity Transformer for intent classification and entity
recognition [152]. We train the model using a custom dataset with 1092 sentences collected by ourselves. For
each intent, we collect various expressions including misspelled and phonetically similar phrases, which makes
our NLU robust to the nuances of human language and the errors caused by the SR. For example, “a think”
and “a sink” both refer to the kitchen sink. We also collected expressions for multi-intents and unknown
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Table 6.2: All user intents and their descriptions.

Intents Descriptions

Greet Wake up the robot and begin an interaction.
Object goal Go to a specific object landmark.

May contain entities including objects and attributes.
Location goal Go to a rough goal location (kitchen, lounge, etc)

without mentioning a specific object.
May contain location entities.

Affirm Confirm the goal.
Deny Deny the goal.
Describe Ask for a description of the surrounding environment.
Ask Ask a question about the surrounding environment.
Pause Pause the current navigation.
Resume Resume the current navigation.
Accelerate Increment velocities, up to a limit.
Decelerate Decrement velocities, down to a limit.
Unknown The text does not belong to any intents above (i.e.

be noise, chitchat, etc) and is ignored by the robot.

intents so that the NLU can fulfill a request containing multiple intents and ignore noise input. For instance,
“Hello robot, can you take me to a sofa?” will both activate the robot and set an object goal. Once the intent
and entities are extracted, the corresponding downstream module is activated. The NLU may pass additional
input arguments to modules such as extracted entities or the whole sentence. Different downsteam models
are triggers based on extracted intents and entities.

During navigation, the landmark recognition is triggered if the user intent is Object goal or Location goal
and the NLU extracts a goal object from the input sentence. The extracted information of the goal is kept in
memory throughout the conversation. If the user mentions additional information about the landmark, we
use simple prompt engineering to make the description more specific. For example, locations and attributes
of objects, such as “a chair in the kitchen,” can be added to the memorized description. In addition, the robot
uses clarification dialogue to disambiguate the desired landmark if the input description does not contain any
object. If the user only provided the location or attributes without mentioning the object name (e.g. “Take
me to the kitchen”), our system provides hints to encourage the user to provide more specific descriptions
(e.g. “What object are you looking for in the kitchen?”). If there are multiple similar objects in different
landmarks, our system disambiguates the user’s preferred landmark (e.g. “What kind of chair are you looking
for? A dining chair, an office chair, or a sofa?”). After choosing a unique landmark, our system confirms the
memorized goal description with the user (e.g. “Do you wish to go to a dining chair?”). No further action is
taken until the user affirms the goal. The memorized goal information is cleared after the confirmation to
prepare for the next goal.

With the disambiguation and confirmation dialogue, the NLU is able to precisely capture the user’s
desired destination with minimal constraints on the user’s phrasing, which is crucial for the whole navigation
experience. Using better language models for the NLU is left for future work.
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6.4.2 Landmark mapping and recognition

To guide the user to their object goals, we first record the images and locations of landmarks during SLAM.
Then, we use a fine-tuned CLIP model to match the user’s description with goal images, whose corresponding
location and orientation are sent to the navigation stack for navigation guidance. The CLIP model version is
ViT-B/32 [130].

The landmark mapping process is performed simultaneously with SLAM. During SLAM, when the robot
is at a landmark that might be a point of interest, we simply save the current robot pose in the map frame
and an RGB image of the landmark to the disk with a single key press. No labels or text descriptions are
needed at this stage. The resulting landmark map is shown in Fig. 6.3.

During navigation, this module is activated when the intent is Object goal or Location goal. After the goal
is confirmed by the NLU, the CLIP model selects the landmark whose image has the highest similarity score
with the descriptions of landmarks. To obtain the image-text similarity score, a text encoder and an image
encoder first convert the input text and all images to vector embeddings. Then, the text and image similarity
score is computed by the cosine similarity between the pairwise text and image embeddings. The image with
the highest similarity score is selected as the goal. Finally, the corresponding location of the chosen landmark
on the map is sent to an action client, which sets the goal for the robot.

The zero-shot performance of pre-trained CLIP models is not satisfactory in our environment due to
distribution shifts. As shown in Fig. 6.3, the objects in the images are frequently cropped due to the low
mounting point of our camera and the close distance between the camera and the objects. In addition, the
descriptions of landmarks from a PwVI might be vaguer than those in public datasets (e.g. “a chair” v.s.
“a blue chair in front of a white wall”). To this end, we fine-tune the CLIP model with a custom dataset
containing 544 image and text description pairs with a 8 × 10−6 learning rate for 35 epochs. The images
are taken by the robot camera in our environment and the text is provided by the authors. By using an
open-vocabulary model to recognize landmarks, DRAGON can handle free-form language and is not limited
to a fixed set of object classes. Thus, the user expressions are less restricted, making the grounding module
easier for non-experts to use.

6.4.3 Environment understanding modules

To help the user gain awareness of their surroundings, we use an object detector [153] to describe the objects
(activated if the intent is Describe) and a visual-question-answering (VQA) model [154] to answer the user’s
questions (activated if the intent is Ask). Both models take the current camera image as input.

The output of the object detector consists of a list of detected instances, their object classes, confidence
scores, and bounding boxes. To avoid narrating a long list and to keep the description concise, we post-process
the output as follows. We first apply non-maximum suppression and filter out the detected instances with low
confidence scores. Then, for the remaining instances, we keep the top three classes with the largest average
bounding boxes, and list the object class names together with the numbers of objects (e.g. “2 chairs, 1 person,
and 1 table”).

The VQA model takes the current camera image and the user’s question from the SR and outputs a
short answer to the question. Since healthy people and PwVI would ask different questions to the same
images [155], we collect a dataset of 10252 (image, question, answer) triplets to fine-tune the VQA model for
20 epochs. Again, images are taken by the robot camera in our environment and the text is provided by the
authors. To handle free-form user expressions, the dataset contains cases where multiple questions have the
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same meaning but different phrasing (e.g. “Is any person in front of me?” and “Anyone here?”).
Finally, the outputs of the object detector and VQA are narrated to the user in real time. Since both

models can only take an RGB image, our system cannot provide depth-based information or detect anything
out of the camera view.

6.4.4 Navigation preference customization

To accommodate the different walking paces of users and to avoid tiring the user during navigation, the robot
can change its speed (activated if the intent is Accelerate or Decelerate), take a pause (Pause), and resume
(Resume). To pause the robot, our system stores and cancels the current goal from the action client in the
navigation stack. To resume, the stored goal is sent to the action client again. To update the speed, we
change the maximum translational and rotational velocities of the DWA local planner in real-time.

6.5 Experiments

6.5.1 Baseline

We compare the CLIP-based landmark recognizer with a closed-vocabulary object detector as the base-
line [153] 1. The vocabulary size, or the number of classes, of the detector is more than 1200 and it is
fine-tuned with the same amount of data as CLIP. In the baseline, the landmark images are passed into the
object detector, which outputs the class names of detected objects. During navigation, the baseline chooses
the landmark with the highest number of objects mentioned by the user. Since the vocabulary of object
detectors is fixed, the baseline is unable to incorporate an object’s attributes or locations obtained from
disambiguation. All other modules are the same for our system and the baseline.

6.5.2 User Study

Environment

All experiments were conducted in an everyday indoor environment in a university building. Three routes
were created with furniture obstacles. Fig. 6.3 provides a layout of the environment, all landmarks, and three
routes highlighted with orange curves. The routes were designed to have varying levels of difficulties for the
system to correctly interpret the destination. Specifically, landmark A of Route 1 contains simple objects,
landmark B of Route 2 contains more complicated objects, and landmark C of Route 3 contains a transparent
door that is hard for object recognition.

Participants

The user study was conducted with N=5 participants (mean age=26; 3 males; 2 females; all participants
were university students). All participants have full (corrected) vision and are asked to wear a blindfold to
simulate a visual impairment. While our true target population are PwVI, the purpose of this pilot study is
to validate the capabilities of DRAGON. A user study with PwVI is left for future work.

1Open-vocabulary object detectors exist [153]. We choose a closed-vocabulary detector to represent a closed-vocabulary
grounding model.
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Figure 6.3: The map of our environment with semantic landmarks. The images are landmarks with
locations marked by red dots. The orange lines are the three routes in the user study. The red squares are
the starting locations of routes.

Table 6.3: Example expressions and their corresponding landmarks from CLIP v.s. the detector. The
landmark labels are from Fig. 6.3. Underlined expressions are collected from the user study.

Landmark CLIP Detector

A door, exit, entrance, gate poster
glass door, automatic door

B

sofa, couch, coach, sofa,
fabric chair, relaxing chair thermostat
thermostat, climate control

C
sink, think, sync, faucet faucet
soap, hand wash, water pipe bottle
paper towel dispenser, bowls dispenser
kitchen countertop, drying rack bowl

Procedure

Participants were first familiarized with the goals of the study and requested to fill a demographic and robot
technology survey. Then, participants were provided with a test run to get familiar with the system and its
intricate navigation feedback mechanism. To begin the trial, the users were asked to command the robot to
take them to a predetermined goal destination. Participants were not constrained in either the vocabulary or
the sentence structure of their speech commands. The users were also informed that they could interact with
the robot (e.g. ask for a description of their surroundings) at any point of the navigation. After each route,
we used a short questionnaire to measure the participant’s perception of the system. A strictly structured
post-survey interview was conducted after participants finished all three routes to collect their feedback with
the system. The same procedure was performed for CLIP and the detector, resulting in a total of 15 trials
per method (3 routes and 5 users). The order of which method was tested first was randomized for each
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Figure 6.4: An example navigation trial with human-robot dialogue in the user study. In the
dialogue boxes, “H” denotes the human and “R” denotes the robot. The camera view is shown in the lower
right corner.

participant to minimize the bias introduced due to the order of testing. All materials included in the user
study, including a full walkthrough of the whole study for a participant and all questionnaires can be found
here: https://drive.google.com/file/d/15KNR6C82mUrKSPMFRCnAJZ1C2NGX7dXJ/view.

6.5.3 Metrics

Objective Metrics

We measure the accuracy of all interactions during the user study, including 312 NLU, 30 landmark recognition
(LR) and navigation trials, 15 environment description (EnvDes), 74 VQA, and 15 navigation preference
adjustment (NavAdj). The NLU is correct when the extracted intent and entities (if any) are both correct.
We also measure the accuracy of the NLU by taking the correctness of SR into account to analyze the effect
of wrong SR. The effect of wrong NLU outputs is ignored when evaluating its downstream modules. An
LR is considered correct if the robot chooses the correct landmark. A navigation trial is successful if the
robot guides the user to the correct landmark without any delays or collisions along the route. An EnvDes
is considered fully correct if all named objects exist in the camera image and the number of all objects is
correct. It is considered partially correct if all named objects exist but the number of some objects is wrong.
The correctness of answers from VQA is based on the camera images, not on the information out of the
camera view. A NavAdj is successful if the change in robot speed is consistent with the user commands.

Subjective metrics

For both methods, we compare the scores for categories from the short questionnaire in Table 6.6. The
difference in scores for each participant was aggregated and analyzed to discount individual biases. We
evaluate user preferences for the other modules through a simple Likert scale analysis on the responses from
the post-survey interview. Additionally, participants’ feedback is summarized for qualitative analysis.

Table 6.4: Success rates (%) of LR and navigation (including overall success rate, and success rate if LR is
correct), and the average number of dialogue rounds for a successful LR.

Method LR Navigation

Overall # rounds Overall Correct LR

Ours 100 2.4 100 100
Baseline 46.67 3.71 46.67 100
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Table 6.5: Accuracies (%) of the SR, NLU (including overall accuracy, accuracy if SR is correct and if SR is
wrong), EnvDes with fully correct and partially correct number of objects, VQA, and navigation adjustment
modules.

SR NLU EnvDes VQA NavAdj
Overall Correct SR Wrong SR Full Partial

70.19 85.26 93.61 65.59 45.45 75.76 82.43 100

6.6 Results

In this section, we discuss the results of our user study. Example navigation trials, as well as demonstrations
of each module during the user study, are in this video and Fig. 6.4.

6.6.1 Quantitative Evaluation

LR and navigation

CLIP and the baseline only differ in LR and its resulting navigation. As seen in Table 6.4, the success rate of
navigation is 100% if LR succeeds, because ROS navigation stack can navigate the robot to any desired goal
pose robustly in our environment. This dependency indicates that the performance of LR is the key factor
for navigation in the DRAGON system.

For LR, as shown in Table 6.4, our CLIP model with disambiguation outperforms the detector baseline by
achieving 100% success rate in LR and navigation with fewer rounds of dialogue on average. We attribute
this result to the fact that CLIP is an open vocabulary model that can take free-form query text, which
is essential for our task because the user may use different expressions to refer to the same landmark. On
the contrary, a closed vocabulary object detector can only handle a fixed set of object classes with limited
expressions. For example, in Table 6.3, although both models can handle different objects that belong to
the same landmark, CLIP can associate synonyms, such as “sofa” and “couch,” and wrong transcriptions,
such as “coach,” to the correct landmark. In contrast, the closed-vocabulary detector can only handle strictly
fixed expressions. The detector misidentifies some objects such as the transparent door in Landmark C after
fine-tuning. Since our target users are usually non-experts, the baseline sometimes needs the user to rephrase
multiple times to recognize the goal, which causes the user to run out of patience, and results in failure or
more rounds of dialogue.

Besides CLIP, the disambiguation dialogue also contributes to the performance. With disambiguation,
additional information such as the material and functionality of objects can be merged into the query text,
such as “fabric chair” and “relaxing chair,” as shown in Table 6.3. These rich descriptions are helpful in
distinguishing landmarks that have the same objects with different attributes, such as the different types of
chairs in Landmark A, D, and E in Fig. 6.3 with fewer rounds of user rephrasing.

NLU

In Table 6.5, the overall accuracy of NLU is over 15% higher than SR, as the NLU is trained with incorrectly
transcribed text and thus can work even when SR is incorrect. However, we do notice that NLU performs
better with correct SR. The common failure cases of NLU occur when (1) The SR mistakenly breaks a
sentence into two halves (e.g. “Is there anything?” and “To my right.” are treated as two sentences); and (2)
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The NLU does not correctly extract intents from noisy transcriptions and chitchat, which can happen during
the user study. Thus, we believe that a better SR engine would vastly benefit the performance of the whole
system. However, since DRAGON will not begin navigation until the user confirms the goal in the dialogue,
the wrong SR and NLU have little effect on navigation.

Other Modules

The system’s environment descriptions are sometimes inaccurate due to errors in the object detector such
as: (1) detecting incorrect number of objects (e.g. 3 wall sockets, when there was only 1 present); and (2)
incorrect object classifications of rare or uncommon objects (e.g. a building information tablet was classified
as a poster). Although we use non-maximum suppression and confidence score threshold to reduce the errors,
they are hard to entirely eliminate due to the data distribution shift and the blurry images caused by the
robot motion. Nevertheless, in Table 6.5, the model is able to output a list of objects with correct class names
in 75.76% of the cases, which might be more important to the user than a correct number of objects.

The VQA module accurately answers the user’s questions in 82.43% of the cases. The model fails in cases
where the user asks questions that the robot cannot answer based on a single RGB image. For example,
without precise depth information the VQA model only answers “far” or “close” if the question is “How far
is the person from me?”. Without a wider field of view, the model outputs objects on the front side if the
question is “What is on my right?”.

6.6.2 Qualitative Evaluation

In Table 6.6, participants showed an increasing preference for DRAGON with CLIP over the detector in all
user experience categories across all routes. Specifically, participants reported a 32% improvement with a
mean score difference of 1.60± 0.89 in the overall experience and a mean score difference of 1.40± 0.89 in the
communication experience. The difference increases as the goal landmark contains more complicated objects
in Route 2, and objects that are difficult to detect in Route 3, where the failures in LR significantly lower
the user score for the detector based system. Particularly, participants noted that DRAGON with CLIP
understood their intent, asked good follow-up questions, and correctly guided them to their destination. In
contrast, the closed-vocabulary detector failed at these aspects and occasionally was unable to recognize
destinations even though they existed. Participants also noted that the failures in intent understanding led
to a frustrating communication experience with the detector.

One user in particular mentioned that the CLIP based model “... was able to actually understand me,
so it accurately took me to the location and correctly answer [sic] my questions." while the detector based
model “... would confirm the location I wanted to go to but could not find [sic; participant meant understand]
the right location". However, users also mentioned potential improvements for DRAGON including more
detailed environment descriptions, a quicker response time, and warnings of potential dangers such as “We’re
going through a door.”

For the user experience categories that are the same for both LR methods, such as the ‘intuitiveness
of communication interface’ and the ability of the system to aid in ‘gaining awareness of the environment’,
participants reported average scores of 7.07± 2.17 and 6.07± 3.21, respectively. As evidenced by these scores,
the users’ opinions regarding these two categories were positive, due to the inclusion of the dialogue and
grounding modules. However, participants highlighted minor inaccuracies in the environment descriptions
and the slow pace of communication due to processing times and network delays as potential issues.
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Table 6.6: Mean user experience scores on a scale of 1 to 10.

Use experience category Route 1 Route 2 Route 3

CLIP Detector CLIP Detector CLIP Detector

Ease of following 8.8 8.6 8.8 5.6 9.2 1.0
Navigational Experience 8.4 7.4 7.6 4.8 8.8 1.0
Intent Understanding 7.6 8 7.6 4.6 8.4 3.4

6.7 Limitations

DRAGON encompasses the following limitations, which opens up directions for future work. First, the
current dialogue system is rule-based with fixed behaviors for each intent. Replacing hard-coded rules with
adaptive learning-based policies, such as large language models, should generalize to more complex user
behaviors and more subtasks. Second, the environment understanding modules provide limited information.
The environment understanding module can only enlist detected objects, and the VQA module can only
answer simple questions with a single-word answer. Future informative descriptions should include object
relationships in images, incorporate information from the map and other sensors, and inform users about the
planned path and potential dangers. Finally, the physical interface of the platform should be redesigned to
improve ergonomics.

6.8 Summary

In conclusion, we present DRAGON, a first-of-its-kind guide robot that fulfills user intents and familiarizes the
user with their surroundings through interactive dialogue. We use CLIP to retrieve landmark destinations from
commands and provide visual information through language. The user study shows promising communication,
grounding, and navigation performance of DRAGON. Our work suggests that visual-language grounding and
dialogue can greatly improve human-robot interaction.

Videos and more information are available at https://sites.google.com/view/dragon-wayfinding.
Code implementation in ROS and Python is available at https://github.com/Shuijing725/Dragon_

Wayfinding.
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Chapter 7

Conclusion

7.1 Summary of contributions

This thesis presents systems and algorithms for robot navigation in interactive human environments by
answering the following questions: (1) How to predict unspoken intentions of humans and reason about
implicit interactions when navigating among humans? (2) How to infer the human intentions through dialogue
and exchange semantic information about the surrounding environment?

Chapter 2 presented an unsupervised method for inferring driver traits such as driving styles from
observed vehicle trajectories. We use a variational autoencoder with recurrent neural networks to learn a
latent representation of traits without any ground truth trait labels. Then, we use this trait representation to
learn a policy for an autonomous vehicle to navigate through a T-intersection with deep reinforcement learning.
Our pipeline enables the autonomous vehicle to adjust its actions when dealing with drivers of different
traits to ensure safety and efficiency. Our method demonstrates promising performance and outperforms
state-of-the-art baselines in the T-intersection scenario.

Chapter 3 presented decentralized structural-Recurrent Neural Network (DS-RNN), a novel network that
reasons about spatial and temporal relationships for robot decision making in crowd navigation. DS-RNN is
trained with model-free deep reinforcement learning without any expert supervision. Simulation experiments
demonstrate that our model outperforms previous methods in challenging crowd navigation scenarios. We
successfully transfer the policy learned in the simulator to a real-world TurtleBot 2i.

Chapter 4 presented a novel recurrent graph neural network with attention mechanisms to capture
heterogeneous interactions among agents through space and time in dense crowds. To encourage longsighted
robot behaviors, we infer the intentions of dynamic agents by predicting their future trajectories for several
timesteps. The predictions are incorporated into a model-free RL framework to prevent the robot from
intruding into the intended paths of other agents. We demonstrate that our method enables the robot to
achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios. We
successfully transfer the policy learned in simulation to a real-world TurtleBot 2i.

Chapter 5 presents a scene representation and structured graph attention network for navigation in
dynamic and constrained environments. The scene representation and network enable smooth deployment
of the robot in real domains with a policy trained using reinforcement learning (RL) with a low-fidelity
simulator and no demonstration data. In the representation, we separate human and obstacles and leverage on
processed state information. Additionally, we extend our previous spatio-temporal graph attention network to
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capture interactions among humans and obstacles. We demonstrate the effectiveness of this method through
various challenging constrained crowd navigation scenarios in both simulation and real-world.

Chapter 6 presented a guiding robot that interacts with blind people through language and physical forces.
The robot is equipped with a dialogue system and can ground objects and landmarks in the environment
with natural language. The main functionalities of the robot include understanding the commands from
the user, guiding the user to the desired landmarks on the map, describing the environment, and answering
questions from visual observations. We conduct a user study with blindfolded participants in an everyday
indoor environment. Our results demonstrate the effectiveness and ease of use of our system.

Overall, these contributions address key challenges in deploying robots in human environments. However,
remaining challenges still exist before deploying these works in real-world human environments. Practical
insights and possible directions for future work are described below.

7.1.1 Practical insights

Translating the systems and algorithms presented in this thesis into real-world applications involves addressing
the following considerations. First, improving human models is needed to minimize sim2real gaps caused by
inaccurate human behaviors. Besides ORCA and IDM, data-driven methods might be beneficial to improving
social-awareness and naturalness of human models [121]. Second, integrating these advanced algorithms into
existing robotic hardware requires ensuring compatibility and optimizing performance to operate in real-time.
This might involve hardware upgrades or modifications to enhance sensor capabilities, perception modules,
and computational efficiency. Third, developing comprehensive safety protocols and fail-safe mechanisms is
essential to guarantee the safety of both humans and robots in interactive environments. Lastly, regulatory and
ethical considerations must be addressed to ensure compliance with legal standards and societal acceptance.
Addressing the above practical insights can enhance the deployment and mass production of the proposed
systems in real life.

7.2 Future work

For robots to serve humans in all types of everyday scenarios, we need to iterate between training the robot
and deploying it in real human environments. To facilitate this training and deployment loop, we point out
future work in the following three directions: 1) Developing a unified model for both implicit and explicit
interactions to unlock more robot capabilities; 2) Learning social behaviors from foundational models to
improve the finetuning efficiency during deployment; 3) Developing intuitive lifelong learning methods from
non-expert humans.

7.2.1 Unified interaction models

For robots to collaborate with humans on tasks such as preparing a meal, they must interact with humans
both implicitly and explicitly. For this reason, I aim to expand the spatio-temporal interaction graph to
capture interactions beyond movement, such as motions, dialogue, gaze, and so on. However, as we expand
the graph, we must consider computational constraints and better understand the important factors in
different interaction settings. To achieve this, inspired by the successful adaptation of st-graph in complex
prediction tasks [63], I plan to design st-graphs with edges that encode various types of interactions.
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7.2.2 Interaction learning from foundational models

My previous works train predictors and planners using a separate dataset or simulator for each task. However,
this “tabula rasa” paradigm can be data inefficient. The trained models also have limited generalization
across different tasks [156]. On the other hand, large language models (LLMs) encompass common sense
knowledge, such as social norms [157]. To improve the data efficiency and generalization of my method, I
plan to incorporate visual language foundation models into the intention predictor and robot planner. The
proposed approach takes observed video frames and task-specific prompts as inputs and outputs human
intentions or robot motion primitives. Since my previous framework makes minimal assumptions on the form
of submodules, it has promising compatibility for LLMs.

7.2.3 Data efficient and intuitive learning from non-experts

When a trained robot is deployed in everyday environments, its performance drops inevitably due to domain
shifts. Ideally, we need data-efficient and intuitive fine-tuning algorithms that allow non-experts with little
domain expertise to customize and improve the robot. Building on my previous work on planning with
representations [129], I aim to propose 1) intuitive user interfaces for non-experts to provide finetuning data
from their own devices, such as phone cameras and microphones, and from direct physical teleoperation; 2)
data-efficient algorithms for robot to self-improve with minimal data collected from non-experts [158], [159].
With an intuitive and data-efficient finetuning mechanism, the robot can continually improve itself in target
environments and customize toward user preferences.
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